
Analysis of JPEG codec

Fiala Péter

Mediacommunications Technologies Laboratory

1 JPEG compression step-by-step

1.1 Block scheme

JPEG Compression is performed following the main
steps described below: (see Figure 1 for illustration):

1. The RGB-coded image is transformed into
YCbCr color space.

Y = 0.2126R+ 0.7152G+ 0.0722B (1)
Cb = B − Y (2)
Cr = R− Y (3)

2. As the human eye is less sensitive to small scale
details in the color information than to that of
the luminance channel, therefore the Cb and Cr
signals are downsampled (following spatial low
pass filtering in order to avoid aliasing).

3. The obtained three channels are split up into
blocks of equal size (8x8), called macro blocks.
The next transform steps are performed for each
macro block independently.

4. The macro block is transformed into spatial fre-
quency domain by means of a spatial 2D Dis-
crete Cosine Transform. A transformed macro
block’s (0,0) (left upper) pixel contains the mean
level of the original macro block, while pixels
with a higher index contain the weights of high
frequency components.

5. The higher order components are requanized,
meaning that they are coded with a reduced
number of bits.

6. The obtained bit sample is further compressed
using a lossless compression (Huffmann-
coding), and the JPEG file contains the
Huffmann-coded bitstream. Further details of
the lossless compression are not targeted in the
present laboratory exercise.

The losses in the JPEG transform are influenced
by two parameters: The downsampling rate of the
chroma channels (1, 2, 4), and the requantization
depth.

1.2 The Discrete Cosine Transform

The Discrete Cosine Transform transforms the N
samples of the input signal xn into N samples of the
transformed signal Xk by the definition:

Xk =

N−1∑
n=0

xn

√
2

N
cos

(
π

N

(
n+

1

2

)
k

)
, k = 0, . . . , N−1

(4)
The DCT is easily represented as a matrix-vector
product:

X0

X1

...
XN−1

 =
[√

2
N cos

(
π
N

(
n+ 1

2

)
k
)]


x0
x1
...

xN−1

 (5)

where the first (k = 0) row contains constant val-

ues
√

2
N , the following rows contain the samples of

cosine functions with increasing frequency, as dis-
played in figure 2. The inverse transform is defined

1



R
G

B

Y
Cb

Cr

Y
Cb

Cr

Y
Cb

Cr

macro blocks

color space downsampling segmenting

Figure 1: Block scheme of JPEG coding

0 1 2 3 4 5 6 7

n

-0.5

0

0.5

D
C

T
8 n,

k

k=0
k=1
k=2

Figure 2: The first three base functions of the 8 point
DCT (samples from the DCT matrix’s first three
rows)

by the formula

xn =
N−1∑
k=0

Xk

√
2

N
cos

(
π

N

(
n+

1

2

)
k

)
, n = 0, . . . , N−1

(6)
that clearly indicates that the input signal xn is re-
produced as the superposition of cosine functions of
increasing frequency. As the transform is orthonor-
mal. the DCT matrix’s inverse equals its transpose.

For the case of the JPEG transform, the xmn macro
blocks are transformed along both dimensions:

xmn → Xlk (7)

As a 0-th step of the transform, the pixel values of
the macro block that originally vary between 0 and
255, are shifted by −128, so that an approximately
zero-mean signal is subjected the cosine transform.

2 Requantizing

The transformed macro blocks are requantized. Re-
quantization is by definition performed by using
matrices that contain increasing values for increas-
ing indices:

Qlk =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(8)

2



The transformed macroblock Xlk is requantized by
evaluating the values Xlk/(c · Qlk), and rounding
them to the nearest integer. As a result, higher fre-
quency components are stored with less precision.
Parameter c defines the rate of requantization.

3 Analysis of transforming coder

3.1 Coding – Decoding

The attached Matlab files contain the skeleton of a
JPEG coder and decoder, as well as a testing script,
that encodes and decodes a given image file, and
compares the original to the result.

1. Discuss the coding and decoding algorithm
with the lecturer.

2. Implement the block that is responsible for re-
sampling the chroma signals. This involves
downsampling at encoding phase and interpo-
lation at decoding.

(a) Implement both methods using smoothing
by a simple rect window.

(b) Implement both methods using an ideal
low-pass filter.

3. Implement the coder block that is responsible
for the 8 × 8 DCT transform. The implementa-
tion should compute the 1D DCT-t as a matrix-
vector product

d = Dx, (9)

where x is the original sample vector, d denotes
the DCT-transformed values.

(a) How do you compute the 2D DCT with
matrix D?

(b) How do you compute the inverse DCT? Do
you need the inverse of matrix D?

4. Implement the PSNR function that is used to
compare the two images.

5. Investigate how the resampling of the chroma
channels influences the subjective quality of the
image. Investigate the same with the requanti-
zazion depth.

6. Investigate the coding with blocks containing
higher number of pixels (16, 32). Where do you
need to modify the original implementation?
Can you reuse your above implemented func-
tions for the modified algorithm?

3.2 Image manipulation in the coded do-
main

Some image manipulations can be performed in the
coded domain. This is advantageous, as the round-
off errors of the decoding and encoding process can
be avoided.

1. Display a grayscale index image of the coded
image. Implement a function that extracts the
preview from the coded structure.

2. Compute the mirrored image in the trans-
formed domain. Hint: The order of blocks
needs to be modified (flipud, fliplr). The inner
content of each block can be flipped by realizing
that even DCT components are the weights of
even functions, while odd index componenets
are the weights of odd functions.

3


