Solving linear systems of equations

Simulation Methods in Acoustics



Agenda

» Problem definition

» We want to solve Ax =b, sox = A"1b
» Main message: We do NOT compute A~!I

» Direct solution strategies
» Unstructured methods (no special relations of elements a;;)
1. Forward / backward substitution
2. Gaussian elimination
3. LU factorization
4. Pivoting
» Structured methods (make use of relations of aj;)
» Symmetry — LDLT
Symmetric, positive definite — Cholesky
Positive semidefinite
Banded systems — Band LU
Reducing bandwidth — Cuthill-McKee
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> lterative solution strategies (later)



Forward and backward substitution

» Solve Ax = b, with A =L, a lower triangular matrix.
(Ais nx n, rank n, a; =0if i <)

» Example:
PR
b1 h2| | x b
» Solution is easy in this case:
1. x1 = bi/h1
2. xp = (bo — bix1) /o
> In general:
i—1
Xj = b,' — Z /,JXJ //,','
j=1
> We get the result in forward order: x1, x2, ..., X,
» If A = U upper triangular, similarly, but in backward order



The Gaussian elimination

» How do we solve Ax = b by hand?

> Idea: transform A into upper triangular form U and use
backward substitution

» Method: subtract equations from each other, such that zero
coefficients are obtained

> Example:
» Look at the simple system

3x1 +5x% = 9
6x1 +7x = 4

» Subtract 2 times the first equation from the second:

3x1 +5x = 9
— 3X2 = —14—

» Attain first x, = 14/3, and then x; = —43/9



The LU factorization |.

» LU factorization = Gauss elimination formalized

» Take the example v; # 0 and 7 = v /vy, then
1 0
-7 1

7 =100,...,0, Tks1,...

> More generally:
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» Define the Gauss transformation My = | — Te}, such that
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The LU factorization II.

» It is (usually!) possible to find Gauss transformations
M,_1---M2M;A = U is upper triangular.

» Algorithm: construction of the LU factorization
Start with A(M) .= A set k =
1. Determine multipliers: 7'( )= a( ) k (i=k+1,...,n)
2. Apply My =1 —1(e] to get A("“s( M A,
3. While k < n—1, set k = k + 1, repeat from step (1).
» Matrix entries ag(l,i) must not be zero. These are called pivots.
» Where is L, then?
» M1 = (I—Tek) =1+ 7e]
» L is the unit lower triangular matrix of multipliers:
n—1
L=M1 .. MM1=...= |+ZT(k)eE
k=1
» Finally: M,_1---MoM;A=U — A=LU
N————

L1

"We will see that usually means always, if A is full rank shortly.



The LU factorization IlI.

» Uniqueness:
» Theorem. If A = LU exsists, then it is unique.
» Proof. Suppose A = L;U; = LyU,. Then, L 'L; = U,UT .
As Ly 'Ly is unit lower triangular while UoU; ! is upper
triangular, both most equal I. Thus, L; = L, and
U; = U,.
» Solving Ax = b using LU factorization
1. Compute LU= A to get LUx=Db
2. Solve for y in the lower triangular system LUx =Ly = b
3. Solve for x in the upper triangular system Ux =y
» Think of formulas with A1 as equation solving!
» s=ctA"lb — solve Ax = b, then s = cTx
Multiple r.h.s.. AX =B — LUX = B, solve for each r.h.s.
Constraint matrix: X = —As’lAm — solve A X =A,,
Computing the inverse: AX =1 — also multi-r.h.s. problem
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Pivoting |.

> Example:

0.0001 1 1 0] [00001 1
A‘{ 1 1} - {10000 1“ 0 9999} =tu

» What is the problem here?

> Solving Ax = b (i.e. A% = b) propagates error from b to %.
> Error bounded by the condition number x(A) = ||A|| ||A7|

If b=b+ ¢, then max{||x — x||} = (A) ||€]|

Here, x(A) ~ 2.7, but x(L) ~ x(U) ~ 108

Even if A is well-conditioned, large error can arise

This is due to the small pivot (agll) = 0.0001)

» Strategy: interchange rows to avoid small pivots.

11 1 o1 1
PA= [0.0001 1] - [0.0001 1] [o 0.9999] =tu
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Pivoting Il.

> Algorithm: LU factorization with partial pivoting. In each step
of the LU algorithm, find a permutation matrix M) that

swaps Ag,i) with the largest ’AJ(/:)’ U=k k+1,...n).

» This computes PA = LU, where
» P is an interchange permutation matrix
» L is unit lower triangular with |/;] <1
» U is upper triangular

» Pivoting strategies (where to look for the largest element?)
» Partial pivoting — swap rows
» Complete pivoting — swap rows and columns (PAQ = LU)
» Rook pivoting — swap rows or columns (PAQ = LU)



Symmetric systems — The LDLT factorization

» Theorem: If A is symmetric (with nonsingular principal
submatrices, i.e. nonzero pivots), then there exsists a unique
factorization A = LDL™, where D is diagonal.

> Proof: A has a unique LU factorization A = LU. The matrix
L'AL~T = UL~ T is both symmetric and upper triangular,
therefore it is diagonal. Thus, D = UL T and
A =LDLT. O
» Solving Ax = b (LDLTx = b):
1. Solve Lz=b for z

2. Solve Dy =z fory (this is very cheap)
3. Solve LTx =y for x



Symmetric positive definite system — Cholesky

» Theorem: If A is positive definite and symmetric, there
exsists a unique factorization A = GGT, such that G is lower
triangular with positive diagonal entries.

» Theorem: If A is positive definite and X is full rank, then
B = XTAX is also positive definite.

> Proof: If z satisfies 0 > zTBz = (Xz)" A (Xz), then Xz = 0.
But since X is full rank, this implies that z = 0.

» Proof: From the previous theorem L~'AL~T = D is positive
definite. Thus, dx in D = diag(di, ..., d,) are positive and

G = Ldiag(\/di,...,Vdp). O



Pivoting and symmetry

» Reminder: pivoting is used for avoiding small dividers

» But: Pivoting destroys symmetry! If A is symmetric and P is
an interchange permutation matrix, then PA is not symmetric.

» However, PAPT is symmetric. We can introduce symmetric
pivoting, and formulate the factorization PAPT = LDLT,

> In case of symmetric pivoting, the factor ayx is swapped with
the maximal diagonal entry aj; (j = k+1,...,n).
» Then, Ax = b is solved as

1. Solve Lw = Pb for w

. Solve Dy = w for y (very cheap)
. Solve LTz =y for z

. Compute x = PTz (only reordering)

A~ o



Positive semidefinite systems

» LDLT for a positive semidefinite matrix with rank r

L
PAPT = [Lﬂ D, [LG|LY ]

D, = diag(di,...,d,) has positive diagonal entries, Lj; is
unit lower triangular, and Ly; € R(7=r)xr

» The Cholesky decomposition is similar

G
Pap” = |21 [GHIGE



Banded systems

» Theorem: If A = LU has an upper bandwidth (ubw. in short)
g and lower bandwidth (Ibw.) p, then U has upper bandwidth
g and L has lower bandwidth p.

» Proof: By induction. Write A as
A | wil [1 0171 0 a wl
“|v B| |v/a l,.1] |0 B—wwT/a| |0 1,1
Here, the matrix B — va/a has ubw. g and lbw. p since only
the first p components of v and the first g components of w

are nonzero. Let L; and Uy be the LU factorization of this
matrix. Then,

=l v v=lo b

Gives A = LU with the above bandwidths. O



Reducing bandwidth

>

Solving systems with small bandwidth () is fast!
Cost of solution is O(n\?)

» Bandwidth depends on the choice of the order of DOFs.
» Algorithm: Cuthill - McKee ordering for symmetric matrices

Choose a peripheral vertex P (i.e. with the lowest vertex
degree) and start with a result set R := {P}. Set i := 1.

1. Construct the adjacency set A; := Adj{R;} \ R
2.

3. Append A; to the result set R.

4.

Sort A; in ascending vertex degree.

Set i := i+ 1 and continue from step (1).

Note: this is a breadth first search (BFS) algorithm with an
extra ordering step. Finally, R is a re-indexing permutation.
Algorithm: Reverse Cuthill—McKee. The same, but the
result is reversed in the end. This gives less fill-in in practice.

Example — the worst DOF ordering in 1D case (n = 101):

(1) <> (101) «» (2) <> (99) <> - -+ -+ < (50) <> (51)



Bandwidth reduction example

» Example: random points in 2D space, with near points
connected by springs

» Bandwidth reduction of the resulting sparse stiffness matrix K
using the permuation vector p computed by the
Cuthill—McKee algorithm is shown in the figure
(Left: original, right: after renumbering)
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