Solving linear systems of equations

Simulation Methods in Acoustics

(ロ)、(型)、(E)、(E)、 E) の(()

Agenda

- Problem definition
 - We want to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$, so $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
 - ► Main message: We do NOT compute A⁻¹!
- Direct solution strategies
 - Unstructured methods (no special relations of elements a_{ij})

- 1. Forward / backward substitution
- 2. Gaussian elimination
- 3. LU factorization
- 4. Pivoting
- Structured methods (make use of relations of a_{ij})
 - ► Symmetry LDL^T
 - Symmetric, positive definite Cholesky
 - Positive semidefinite
 - Banded systems Band LU
 - Reducing bandwidth Cuthill McKee
- Iterative solution strategies (later)

Forward and backward substitution

Solve Ax = b, with A = L, a lower triangular matrix. (A is $n \times n$, rank n, $a_{ij} = 0$ if i < j.)

Example:

$$\begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} b_1 \\ b_2 \end{cases}$$

Solution is easy in this case:

1.
$$x_1 = b_1/l_{11}$$

2. $x_2 = (b_2 - l_{21}x_1)/l_{22}$

In general:

$$x_i = \left(b_i - \sum_{j=1}^{i-1} I_{ij} x_j\right) / I_{ii}$$

- We get the result in *forward* order: x_1, x_2, \ldots, x_n
- If A = U upper triangular, similarly, but in backward order

The Gaussian elimination

- How do we solve Ax = b by hand?
- Idea: transform A into upper triangular form U and use backward substitution
- Method: subtract equations from each other, such that zero coefficients are obtained

Example:

Look at the simple system

$$3x_1 + 5x_2 = 9 6x_1 + 7x_2 = 4$$

Subtract 2 times the first equation from the second:

$$3x_1 + 5x_2 = 9$$

 $-3x_2 = -14$

• Attain first
$$x_2 = 14/3$$
, and then $x_1 = -43/9$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The LU factorization I.

- LU factorization = Gauss elimination formalized
- Take the example $v_1 \neq 0$ and $\tau = v_2/v_1$, then

$$\begin{bmatrix} 1 & 0 \\ -\tau & 1 \end{bmatrix} \begin{cases} v_1 \\ v_2 \end{cases} = \begin{cases} v_1 \\ 0 \end{cases}$$

More generally:

$$\boldsymbol{\tau}^{\mathrm{T}} = [0, \dots, 0, \tau_{k+1}, \dots, \tau_n], \quad \text{with} \quad \tau_i = \frac{v_i}{v_k} \quad (i > k)$$

• Define the Gauss transformation $\mathbf{M}_k = \mathbf{I} - \boldsymbol{\tau} \mathbf{e}_k^{\mathrm{T}}$, such that

$$\mathbf{M}_{k}\mathbf{v} = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ 0 & & 1 & 0 & & 0 \\ 0 & & -\tau_{k+1} & 1 & & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & & -\tau_{n} & 0 & & 0 \end{bmatrix} \begin{cases} v_{1} \\ \vdots \\ v_{k} \\ v_{k+1} \\ \vdots \\ v_{n} \\ \end{cases} = \begin{cases} v_{1} \\ \vdots \\ v_{k} \\ 0 \\ \vdots \\ 0 \\ \end{cases}$$

The LU factorization II.

- It is (usually¹) possible to find Gauss transformations M_{n−1} · · · M₂M₁A = U is upper triangular.
- ► Algorithm: construction of the LU factorization
 - Start with $A^{(1)} := A$, set k := 1
 - 1. Determine multipliers: $\tau_i^{(k)} := a_{ik_i}^{(k)} / a_{kk}^{(k)}$ $(i = k + 1, \dots, n)$
 - 2. Apply $\mathbf{M}_k = \mathbf{I} \boldsymbol{\tau}^{(k)} \mathbf{e}_k^{\mathrm{T}}$ to get $\mathbf{A}^{(k+1)} = \mathbf{M}_k \mathbf{A}_k$
 - 3. While k < n 1, set k := k + 1, repeat from step (1).
- Matrix entries a^(k)_{kk} must not be zero. These are called *pivot*s.
 Where is L, then?

$$\blacktriangleright \mathbf{M}_{k}^{-1} = \left(\mathbf{I} - \boldsymbol{\tau} \mathbf{e}_{k}^{\mathrm{T}}\right)^{-1} = \mathbf{I} + \boldsymbol{\tau} \mathbf{e}_{k}^{\mathrm{T}}$$

L is the *unit lower triangular* matrix of multipliers:

$$\mathbf{L} = \mathbf{M}_{n-1}^{-1} \cdots \mathbf{M}_2^{-1} \mathbf{M}_1^{-1} = \cdots = \mathbf{I} + \sum_{k=1}^{n-1} \boldsymbol{\tau}^{(k)} \mathbf{e}_k^{\mathrm{T}}$$

► Finally:
$$\underbrace{\mathsf{M}_{n-1}\cdots\mathsf{M}_2\mathsf{M}_1}_{\mathsf{L}^{-1}}\mathsf{A} = \mathsf{U} \quad \rightarrow \quad \mathsf{A} = \mathsf{LU}$$

The LU factorization III.

- Uniqueness:
 - **Theorem.** If **A** = **LU** exsists, then it is unique.
 - ▶ **Proof.** Suppose $\mathbf{A} = \mathbf{L}_1 \mathbf{U}_1 = \mathbf{L}_2 \mathbf{U}_2$. Then, $\mathbf{L}_2^{-1} \mathbf{L}_1 = \mathbf{U}_2 \mathbf{U}_1^{-1}$. As $\mathbf{L}_2^{-1} \mathbf{L}_1$ is unit lower triangular while $\mathbf{U}_2 \mathbf{U}_1^{-1}$ is upper triangular, both most equal I. Thus, $\mathbf{L}_1 = \mathbf{L}_2$ and $\mathbf{U}_1 = \mathbf{U}_2$.
- Solving Ax = b using LU factorization
 - 1. Compute LU = A to get LUx = b
 - 2. Solve for **y** in the lower triangular system $\mathbf{LUx} = \mathbf{Ly} = \mathbf{b}$
 - 3. Solve for **x** in the upper triangular system $\mathbf{U}\mathbf{x} = \mathbf{y}$
- ▶ Think of formulas with **A**⁻¹ as equation solving!
 - $s = \mathbf{c}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{b} \rightarrow \text{solve } \mathbf{A} \mathbf{x} = \mathbf{b}$, then $s = \mathbf{c}^{\mathrm{T}} \mathbf{x}$
 - Multiple r.h.s.: $AX = B \rightarrow LUX = B$, solve for each r.h.s.
 - Constraint matrix: $\mathbf{X} = -\mathbf{A}_s^{-1}\mathbf{A}_m \rightarrow \text{solve } \mathbf{A}_s\mathbf{X} = \mathbf{A}_m$
 - Computing the inverse: $\mathbf{AX} = \mathbf{I} \rightarrow$ also multi-r.h.s. problem

Pivoting I.

Example:

$$\mathbf{A} = \begin{bmatrix} 0.0001 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10000 & 1 \end{bmatrix} \begin{bmatrix} 0.0001 & 1 \\ 0 & -9999 \end{bmatrix} = \mathbf{LU}$$

What is the problem here?

► Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ (i.e. $\hat{\mathbf{A}}\hat{\mathbf{x}} = \hat{\mathbf{b}}$) propagates error from $\hat{\mathbf{b}}$ to $\hat{\mathbf{x}}$.

- Error bounded by the condition number $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$
- If $\hat{\mathbf{b}} = \mathbf{b} + \boldsymbol{\epsilon}$, then max $\{\|\hat{\mathbf{x}} \mathbf{x}\|\} \approx \kappa(\mathbf{A})\|\boldsymbol{\epsilon}\|$
- Here, $\kappa(\mathbf{A}) \approx 2.7$, but $\kappa(\mathbf{L}) \approx \kappa(\mathbf{U}) \approx 10^8$
- Even if A is well-conditioned, large error can arise
- This is due to the small pivot $(a_{11}^{(1)} = 0.0001)$

Strategy: interchange rows to avoid small pivots.

$$\mathbf{PA} = \begin{bmatrix} 1 & 1 \\ 0.0001 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0.0001 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0.9999 \end{bmatrix} = \mathbf{LU}$$

Pivoting II.

- Algorithm: LU factorization with *partial pivoting*. In each step of the LU algorithm, find a permutation matrix Π^(k) that swaps A^(k)_{kk} with the largest |A^(k)_{jk}| (j = k, k + 1, ... n).
- This computes PA = LU, where
 - P is an interchange permutation matrix
 - **L** is unit lower triangular with $|I_{ij}| < 1$
 - U is upper triangular
- Pivoting strategies (where to look for the largest element?)
 - Partial pivoting swap rows
 - Complete pivoting swap rows and columns (PAQ = LU)

Rook pivoting – swap rows or columns (PAQ = LU)

Symmetric systems – The LDL^{T} factorization

- Theorem: If A is symmetric (with nonsingular principal submatrices, i.e. nonzero pivots), then there exsists a unique factorization A = LDL^T, where D is diagonal.
- Proof: A has a unique LU factorization A = LU. The matrix L⁻¹AL^{-T} = UL^{-T} is both symmetric and upper triangular, therefore it is diagonal. Thus, D = UL^{-T} and A = LDL^T.

• Solving Ax = b (LDL^Tx = b):

- 1. Solve $\mathbf{L}\mathbf{z} = \mathbf{b}$ for \mathbf{z}
- 2. Solve $\mathbf{D}\mathbf{y} = \mathbf{z}$ for \mathbf{y} (this is very cheap)
- 3. Solve $\mathbf{L}^{\mathrm{T}}\mathbf{x} = \mathbf{y}$ for \mathbf{x}

Symmetric positive definite system - Cholesky

- Theorem: If A is positive definite and symmetric, there exsists a unique factorization A = GG^T, such that G is lower triangular with positive diagonal entries.
 - Theorem: If A is positive definite and X is full rank, then B = X^TAX is also positive definite.
 - ▶ **Proof:** If z satisfies $0 \ge z^T B z = (Xz)^T A (Xz)$, then Xz = 0. But since X is full rank, this implies that z = 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Proof: From the previous theorem L⁻¹AL^{-T} = D is positive definite. Thus, d_k in D = diag(d₁,...,d_n) are positive and G = L diag(√d₁,...,√d_n).

Pivoting and symmetry

- Reminder: pivoting is used for avoiding small dividers
- But: Pivoting destroys symmetry! If A is symmetric and P is an interchange permutation matrix, then PA is not symmetric.
- However, PAP^T is symmetric. We can introduce symmetric pivoting, and formulate the factorization PAP^T = LDL^T.
- ► In case of symmetric pivoting, the factor a_{kk} is swapped with the maximal diagonal entry a_{jj} (j = k + 1,..., n).

▶ Then, **Ax** = **b** is solved as

- 1. Solve $\mathbf{L}\mathbf{w} = \mathbf{P}\mathbf{b}$ for \mathbf{w}
- 2. Solve $\mathbf{D}\mathbf{y} = \mathbf{w}$ for \mathbf{y} (very cheap)
- 3. Solve $\mathbf{L}^{\mathrm{T}}\mathbf{z} = \mathbf{y}$ for \mathbf{z}
- 4. Compute $\mathbf{x} = \mathbf{P}^{\mathrm{T}}\mathbf{z}$ (only reordering)

Positive semidefinite systems

LDL^T for a positive semidefinite matrix with rank r

$$\mathbf{PAP}^{\mathrm{T}} = \begin{bmatrix} \mathbf{L}_{11} \\ \mathbf{L}_{21} \end{bmatrix} \mathbf{D}_r \begin{bmatrix} \mathbf{L}_{11}^{\mathrm{T}} | \mathbf{L}_{21}^{\mathrm{T}} \end{bmatrix}$$

 $\mathbf{D}_r = \operatorname{diag}(d_1, \dots, d_r)$ has positive diagonal entries, \mathbf{L}_{11} is unit lower triangular, and $\mathbf{L}_{21} \in \mathbb{R}^{(n-r) \times r}$

The Cholesky decomposition is similar

$$\boldsymbol{\mathsf{P}}\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{P}}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{\mathsf{G}}_{11} \\ \boldsymbol{\mathsf{G}}_{21} \end{bmatrix} \begin{bmatrix} \boldsymbol{\mathsf{G}}_{11}^{\mathrm{T}} | \boldsymbol{\mathsf{G}}_{21}^{\mathrm{T}} \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Banded systems

- Theorem: If A = LU has an upper bandwidth (ubw. in short) q and lower bandwidth (lbw.) p, then U has upper bandwidth q and L has lower bandwidth p.
- **Proof:** By induction. Write **A** as

$$\mathbf{A} = \begin{bmatrix} \alpha & \mathbf{w}^{\mathrm{T}} \\ \mathbf{v} & \mathbf{B} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \mathbf{v}/\alpha & \mathbf{I}_{n-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \mathbf{B} - \mathbf{v}\mathbf{w}^{\mathrm{T}}/\alpha \end{bmatrix} \begin{bmatrix} \alpha & \mathbf{w}^{\mathrm{T}} \\ 0 & \mathbf{I}_{n-1} \end{bmatrix}$$

Here, the matrix $\mathbf{B} - \mathbf{vw}^{\mathrm{T}}/\alpha$ has ubw. q and lbw. p since only the first p components of \mathbf{v} and the first q components of \mathbf{w} are nonzero. Let \mathbf{L}_1 and \mathbf{U}_1 be the LU factorization of this matrix. Then,

$$\mathbf{L} = \begin{bmatrix} 1 & 0 \\ \mathbf{v}/\alpha & \mathbf{L}_1 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} 1 & \mathbf{w}^{\mathrm{T}} \\ 0 & \mathbf{U}_1 \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Gives $\mathbf{A} = \mathbf{L}\mathbf{U}$ with the above bandwidths.

Reducing bandwidth

- Solving systems with small bandwidth (λ) is fast!
 Cost of solution is O(nλ²)
- Bandwidth depends on the choice of the order of DOFs.
- ► Algorithm: Cuthill-McKee ordering for symmetric matrices
 - Choose a peripheral vertex P (i.e. with the lowest vertex degree) and start with a result set $R := \{P\}$. Set i := 1.
 - 1. Construct the adjacency set $A_i := \operatorname{Adj} \{R_i\} \setminus R$
 - 2. Sort A_i in ascending vertex degree.
 - 3. Append A_i to the result set R.
 - 4. Set i := i + 1 and continue from step (1).

Note: this is a breadth first search (BFS) algorithm with an extra ordering step. Finally, R is a re-indexing permutation.

- Algorithm: Reverse Cuthill-McKee. The same, but the result is reversed in the end. This gives less fill-in in practice.
- Example the worst DOF ordering in 1D case (n = 101):

$$(1) \leftrightarrow (101) \leftrightarrow (2) \leftrightarrow (99) \leftrightarrow \cdots \leftrightarrow (50) \leftrightarrow (51)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bandwidth reduction example

- Example: random points in 2D space, with near points connected by springs
- Bandwidth reduction of the resulting sparse stiffness matrix K using the permuation vector p computed by the Cuthill-McKee algorithm is shown in the figure (Left: original, right: after renumbering)

