
Solving linear systems of equations

Simulation Methods in Acoustics

Agenda

I Problem definition
I We want to solve Ax = b, so x = A−1b
I Main message: We do NOT compute A−1!

I Direct solution strategies
I Unstructured methods (no special relations of elements aij)

1. Forward / backward substitution
2. Gaussian elimination
3. LU factorization
4. Pivoting

I Structured methods (make use of relations of aij)
I Symmetry – LDLT

I Symmetric, positive definite – Cholesky
I Positive semidefinite
I Banded systems – Band LU
I Reducing bandwidth – Cuthill – McKee

I Iterative solution strategies (later)

Forward and backward substitution

I Solve Ax = b, with A = L, a lower triangular matrix.
(A is n × n, rank n, aij = 0 if i < j .)

I Example: [
l11 0
l21 l22

]{
x1
x2

}
=

{
b1
b2

}
I Solution is easy in this case:

1. x1 = b1/l11
2. x2 = (b2 − l21x1) /l22

I In general:

xi =

bi −
i−1∑
j=1

lijxj

 /lii

I We get the result in forward order: x1, x2, . . . , xn
I If A = U upper triangular, similarly, but in backward order

The Gaussian elimination

I How do we solve Ax = b by hand?

I Idea: transform A into upper triangular form U and use
backward substitution

I Method: subtract equations from each other, such that zero
coefficients are obtained

I Example:
I Look at the simple system

3x1 + 5x2 = 9

6x1 + 7x2 = 4

I Subtract 2 times the first equation from the second:

3x1 + 5x2 = 9

− 3x2 = −14

I Attain first x2 = 14/3, and then x1 = −43/9

The LU factorization I.
I LU factorization = Gauss elimination formalized
I Take the example v1 6= 0 and τ = v2/v1, then[

1 0
−τ 1

]{
v1
v2

}
=

{
v1
0

}
I More generally:

τT = [0, . . . , 0, τk+1, . . . , τn] , with τi =
vi
vk

(i > k)

I Define the Gauss transformation Mk = I− τeTk , such that

Mkv =

1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 1 0 0
0 −τk+1 1 0
...

...
...

...
. . .

...
0 −τn 0 0

v1
...
vk
vk+1

...
vn

=

v1
...
vk
0
...
0

The LU factorization II.

I It is (usually1) possible to find Gauss transformations
Mn−1 · · ·M2M1A = U is upper triangular.

I Algorithm: construction of the LU factorization
Start with A(1) := A, set k := 1

1. Determine multipliers: τ
(k)
i := a

(k)
ik /a

(k)
kk (i = k + 1, . . . , n)

2. Apply Mk = I− τ (k)eTk to get A(k+1) = MkAk

3. While k < n − 1, set k := k + 1, repeat from step (1).

I Matrix entries a
(k)
kk must not be zero. These are called pivots.

I Where is L, then?
I M−1

k =
(
I− τeTk

)−1
= I + τeTk

I L is the unit lower triangular matrix of multipliers:

L = M−1
n−1 · · ·M

−1
2 M−1

1 = · · · = I +
n−1∑
k=1

τ (k)eTk

I Finally: Mn−1 · · ·M2M1︸ ︷︷ ︸
L−1

A = U → A = LU

1We will see that usually means always, if A is full rank shortly.

The LU factorization III.

I Uniqueness:
I Theorem. If A = LU exsists, then it is unique.
I Proof. Suppose A = L1U1 = L2U2. Then, L−1

2 L1 = U2U
−1
1 .

As L−1
2 L1 is unit lower triangular while U2U

−1
1 is upper

triangular, both most equal I. Thus, L1 = L2 and
U1 = U2.

I Solving Ax = b using LU factorization

1. Compute LU = A to get LUx = b
2. Solve for y in the lower triangular system LUx = Ly = b
3. Solve for x in the upper triangular system Ux = y

I Think of formulas with A−1 as equation solving!
I s = cTA−1b → solve Ax = b, then s = cTx
I Multiple r.h.s.: AX = B → LUX = B, solve for each r.h.s.
I Constraint matrix: X = −A−1

s Am → solve AsX = Am

I Computing the inverse: AX = I → also multi-r.h.s. problem

Pivoting I.

I Example:

A =

[
0.0001 1

1 1

]
=

[
1 0

10000 1

] [
0.0001 1

0 −9999

]
= LU

I What is the problem here?

I Solving Ax = b (i.e. Âx̂ = b̂) propagates error from b̂ to x̂.
I Error bounded by the condition number κ(A) =

∥∥A∥∥∥∥A−1
∥∥

I If b̂ = b + ε, then max {‖x̂− x‖} ≈ κ(A) ‖ε‖
I Here, κ(A) ≈ 2.7, but κ(L) ≈ κ(U) ≈ 108

I Even if A is well-conditioned, large error can arise
I This is due to the small pivot (a

(1)
11 = 0.0001)

I Strategy: interchange rows to avoid small pivots.

PA =

[
1 1

0.0001 1

]
=

[
1 0

0.0001 1

] [
1 1
0 0.9999

]
= LU

Pivoting II.

I Algorithm: LU factorization with partial pivoting. In each step
of the LU algorithm, find a permutation matrix Π(k) that

swaps A
(k)
kk with the largest

∣∣∣A(k)
jk

∣∣∣ (j = k , k + 1, . . . n).

I This computes PA = LU, where
I P is an interchange permutation matrix
I L is unit lower triangular with |lij | < 1
I U is upper triangular

I Pivoting strategies (where to look for the largest element?)
I Partial pivoting – swap rows
I Complete pivoting – swap rows and columns (PAQ = LU)
I Rook pivoting – swap rows or columns (PAQ = LU)

Symmetric systems – The LDLT factorization

I Theorem: If A is symmetric (with nonsingular principal
submatrices, i.e. nonzero pivots), then there exsists a unique
factorization A = LDLT, where D is diagonal.

I Proof: A has a unique LU factorization A = LU. The matrix
L−1AL−T = UL−T is both symmetric and upper triangular,
therefore it is diagonal. Thus, D = UL−T and
A = LDLT.

I Solving Ax = b (LDLTx = b):

1. Solve Lz = b for z
2. Solve Dy = z for y (this is very cheap)
3. Solve LTx = y for x

Symmetric positive definite system – Cholesky

I Theorem: If A is positive definite and symmetric, there
exsists a unique factorization A = GGT, such that G is lower
triangular with positive diagonal entries.

I Theorem: If A is positive definite and X is full rank, then
B = XTAX is also positive definite.

I Proof: If z satisfies 0 ≥ zTBz = (Xz)T A (Xz), then Xz = 0.
But since X is full rank, this implies that z = 0.

I Proof: From the previous theorem L−1AL−T = D is positive
definite. Thus, dk in D = diag(d1, . . . , dn) are positive and
G = Ldiag(

√
d1, . . . ,

√
dn).

Pivoting and symmetry

I Reminder: pivoting is used for avoiding small dividers

I But: Pivoting destroys symmetry! If A is symmetric and P is
an interchange permutation matrix, then PA is not symmetric.

I However, PAPT is symmetric. We can introduce symmetric
pivoting, and formulate the factorization PAPT = LDLT.

I In case of symmetric pivoting, the factor akk is swapped with
the maximal diagonal entry ajj (j = k + 1, . . . , n).

I Then, Ax = b is solved as

1. Solve Lw = Pb for w
2. Solve Dy = w for y (very cheap)
3. Solve LTz = y for z
4. Compute x = PTz (only reordering)

Positive semidefinite systems

I LDLT for a positive semidefinite matrix with rank r

PAPT =

[
L11
L21

]
Dr

[
LT11|LT21

]
Dr = diag (d1, . . . , dr) has positive diagonal entries, L11 is
unit lower triangular, and L21 ∈ R(n−r)×r

I The Cholesky decomposition is similar

PAPT =

[
G11

G21

] [
GT

11|GT
21

]

Banded systems

I Theorem: If A = LU has an upper bandwidth (ubw. in short)
q and lower bandwidth (lbw.) p, then U has upper bandwidth
q and L has lower bandwidth p.

I Proof: By induction. Write A as

A =

[
α wT

v B

]
=

[
1 0

v/α In−1

] [
1 0
0 B− vwT/α

] [
α wT

0 In−1

]
Here, the matrix B− vwT/α has ubw. q and lbw. p since only
the first p components of v and the first q components of w
are nonzero. Let L1 and U1 be the LU factorization of this
matrix. Then,

L =

[
1 0

v/α L1

]
U =

[
1 wT

0 U1

]
Gives A = LU with the above bandwidths.

Reducing bandwidth

I Solving systems with small bandwidth (λ) is fast!
Cost of solution is O(nλ2)

I Bandwidth depends on the choice of the order of DOFs.
I Algorithm: Cuthill – McKee ordering for symmetric matrices

Choose a peripheral vertex P (i.e. with the lowest vertex
degree) and start with a result set R := {P}. Set i := 1.

1. Construct the adjacency set Ai := Adj {Ri} \ R
2. Sort Ai in ascending vertex degree.
3. Append Ai to the result set R.
4. Set i := i + 1 and continue from step (1).

Note: this is a breadth first search (BFS) algorithm with an
extra ordering step. Finally, R is a re-indexing permutation.

I Algorithm: Reverse Cuthill – McKee. The same, but the
result is reversed in the end. This gives less fill-in in practice.

I Example – the worst DOF ordering in 1D case (n = 101):

(1)↔ (101)↔ (2)↔ (99)↔ · · · · · · ↔ (50)↔ (51)

Bandwidth reduction example

I Example: random points in 2D space, with near points
connected by springs

I Bandwidth reduction of the resulting sparse stiffness matrix K
using the permuation vector p computed by the
Cuthill – McKee algorithm is shown in the figure
(Left: original, right: after renumbering)

0 50 100

nz = 1304

0

50

100

K (bw = 89)

0 50 100

nz = 1304

0

50

100

K(p,p) (bw = 37)

