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I. INTRODUCTION

The physical reconstruction of arbitrary sound fields over
an extended listening area—generally termed as sound field
synthesis (SFS)—has been the subject of extensive research
over the last three decades [1]. As a common characteristics,
different SFS techniques apply a densely spaced loudspeaker
ensemble, termed as the secondary source distribution (SSD).
The loudspeakers are fed with properly chosen driving func-
tions, so that their resultant sound field coincides with the
target sound field in the receiving area.

Regarding the methodology how driving functions are de-
rived SFS techniques can be classified into two main areas:

The explicit solution aims at the direct solution of the
inverse problem constituted by the general SFS integral. Once
an orthogonal / spectral decomposition is known for the actual
SSD geometry, the driving function spectrum may be obtained
by comparison with the corresponding spectral coefficients
of the involved sound fields taken on a control surface [2].
Hence, these solutions are often termed as mode-matching
solutions [3]. For simple geometries the explicit solution are
well-known. The solution in spherical and cylindrical SSD
surfaces are termed as Nearfield Compensated Higher Order
Ambisonics (NFC HOA) [4]–[7], giving a wideband extension
for traditional Ambisonics technique [8]. Recently the explicit
solution for planar and linear geometries was introduced by
Ahrens first for a virtual plane wave [9]–[11], later extended
to arbitrary virtual source models. The approach is referred to
as the Spectral Division Method (SDM). The explicit solution
accounts for the global description of the involved sound field,
therefore it may be termed as global solution [12].

As an alternative, Wave Field Synthesis (WFS)—giving
an implicit solution—is based on the single layer boundary
integral formulation of arbitrary sound fields, containing the
required driving functions implicitly [13]. All WFS approaches
apply the stationary phase approximation (SPA) to the bound-
ary integral in order to reduce the problem dimensionality from
3 to 2. Traditional WFS, as given by Berkhout et. al [14],
[15] utilized the Rayleigh integral representations to obtain
driving functions for linear SSDs with dipole characteristics,
later extended to monopole secondary sources [16]–[18]. Tra-
ditional WFS considered only directive virtual point sources
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and ensured optimal synthesis on a reference line parallel to
the SSD. Revisited WFS [19] extended the theory for arbitrary
virtual source models, including non-linear SSD curves by
applying the Kirchhoff-approximation to the 2.5D Neumann
Rayleigh integral and ensured optimal synthesis of 2D virtual
fields on a curve containing the pre-defined reference point. In
a former article by the present authors a unified WFS theory
was proposed [20]. It was verified, that within the validity
of the SPA the synthesis of an arbitrary virtual source may
be referenced on an arbitrary smooth, convex reference curve
by defining proper referencing functions. In this unified WFS
theory the former approaches occur as special cases. As WFS
finds the solution by matching the local wavefronts of the SSD
and the virtual sound field, it is often termed as local solution
[12].

The relation of the implicit and explicit solutions has already
been investigated in numerous studies. It was verified, that
revisited WFS constitutes a high frequency approximation of
Nearfield Compensated Infinite Order Ambisonics in a circular
SSD geometry [12]. Furthermore the same connection was
shown between WFS and SDM for the special cases of a
virtual point source [21], a virtual plane wave [22], [23], and
recently for an arbitrary 2D virtual sound field [20].

The present article establishes the link between the Spectral
Division Method and unified WFS theory by showing their
equivalence within the validity of the stationary phase ap-
proximation, regardless of the virtual sound field. The paper
briefy recalls the two approaches including the introduction of
the local wavenumber concept. Then, using the SPA, general
spatial domain SDM driving functions are derived. The driving
functions require the evaluation of the target field along an
arbitrary, pre-defined reference curve, opposed to WFS, where
the driving functions are formulated in terms of the virtual
field’s normal derivative on the SSD. Finally it is shown, that
the derived SDM solution is equivalent to the unified 2.5D
WFS driving functions stemming from the 2.5D Neumann
Rayleigh integral, and inherently contains the referencing
curve concept.

II. THEORETICAL BASICS

A. SFS problem formulation

The general SFS geometry, applying a linear SSD is de-
picted in Figure 1. Assume a continuous linear set of sec-
ondary sources, located at x0 = [x0, 0, 0]

T. The listening area
is a horizontal half-plane, containing the SSD x = [x, y >
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Fig. 1. Geometry for the general SFS problem applying a linear SSD

0, 0]T. Assuming a harmonic time dependence given by ejωt

the synthesized field is given by

P (x, ω) =

∫ ∞
−∞

D(x0, ω)G(x− x0, y, ω)dx0, (1)

where G(x, ω) describes the field of an individual SSD
element and D(x0, ω) is the driving function to be found, so
that the synthesized field equals the target field in the listening
area. Generally the SSD elements are regarded to be acoustic
point sources, described by the fullspace, free field 3D Green’s
function

G(x, ω) =
1

4π

e−jk|x|

|x|
, (2)

where k = ω
c is the acoustic wavenumber and c is the speed

of sound.
Obviously, (1) describes a cylindrically symmetric sound

field with the center being the SSD. Phase correct synthesis
is restricted to sound fields whose local propagation direction
coincides with that of the SSD. In practice, fixing the listening
plane to z = 0 limits phase correct synthesis to 2D virtual
sound fields invariant along the z-dimension and ensembles of
3D point sources located at the z = 0 plane. In the following
sections the explicit requirement is formulated using the local
wavenumber vector.

B. The Explicit solution: Spectral Division Method

The explicit solution exploits the fact that integral (1)
describes a convolution along the x-axis. For the linear SSD
geometry the orthogonal set of basis functions are given
by exponentials and the spectral decomposition is obtained
by performing a forward Fourier transform along the x-
dimension. The spatial Fourier transform used in the present
treatise is defined in the appendix A. In the spectral domain the
convolution transforms into a multiplication and the wavenum-
ber content of the synthesized field reads

P̃ (kx, y, 0, ω) = D̃(kx, ω)G̃(kx, y, 0, ω). (3)

Here G̃(kx, y, 0, ω) describes the spectrum of a 3D point
source placed at the origin. Fixing the y-coordinate to a
reference distance yref the driving function reads

D̃(kx, ω) =
P̃ (kx, yref , 0, ω)

G̃(kx, yref , 0, ω)
(4)

and in the spatial domain it is given as

D(x0, ω) =
1

2π

∫ ∞
−∞

P̃ (kx, yref , 0, ω)

G̃(kx, yref , 0, ω)
e−jkxx0dkx. (5)

Since 3D point sources are applied for the synthesis in a
2D listening area the driving functions are termed as the 2.5
SDM driving functions. The driving functions ensure perfect
synthesis of the pressure field on the reference line, however,
the local propagation direction—and the particle velocity—
can be reconstructed only for sound fields propagating in
an in-plane direction in z = 0. Restricting the target sound
field to fulfill these requirements reduces the base of the
spectral decomposition to plane waves propagating parallel to
the synthesis plane with kz = 0. The dispersion relation for the
2.5D SDM scenario is formulated as

(
ω
c

)2
= k2x+k

2
y , therefore

the kx component completely determines the propagation of
the actual plane wave component.

C. The Implicit solution: 2.5D WFS theory

Before the WFS solution is outlined two important concepts
are introduced, utilized extensively in the followings.

1) Local Wavenumber Vector: Consider an arbitrary steady
state harmonic sound field, written in a general polar form

P (x, ω) = A(x, ω)ejφ(x,ω), (6)

with A(x, ω), φ(x, ω) ∈ R being its amplitude and phase
functions. The dynamics of the wave propagation is described
by the phase function of the sound field. Borrowed from
geometrical optics we introduce the local wavenumber vector,
defined by the gradient of the phase function [24]

klP (x) = [klx(x), k
l
y(x), k

l
z(x)]

T = −∇φ(x, ω). (7)

The local wavenumber vector points in the direction of the
maximum phase advance, i.e. it is perpendicular to the wave
front in an arbitrary position. For an isotropic media this is
the direction of the wave’s energy flow, i.e. the wavenumber
vector points in the local wave propagation direction. Utilizing
the first order Taylor series of the phase function in (6) it
can be shown, that each point of an arbitrary sound field can
be approximated by local plane waves with the wavenumber
given by the local wavenumber vector [24, Ch.7], for which
the local dispersion relation

k2 =
(ω
c

)2
= |klP (x)|2 = klx(x)

2 + kly(x)
2 + klz(x)

2 (8)

holds. The length of the vector is therefore frequency depen-
dent, which remains unindicated in the followings for the sake
of brevity.

For the sake of simplicity in the present article we restrict
the investigation to strictly non-converging (i.e. to diverg-
ing/outgoing or plane waves), which can be defined using the
local wavenumber vector as

∇ · klP (x) = −
(
φ′′xx(x, ω) + φ′′yy(x, ω) + φ′′zz(x, ω)

)
≥ 0,

(9)
where ∇· is the divergence operator and f ′′xx(x) denotes
the second partial derivative of a function f with respect
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Fig. 2. Illustration of the wavenumber vector, in case of a 3D point source,
taken along y0 = 0.5 m. The wavenumber vector, and the x component
of the local wavenumber along with its derivative (i.e. φ′′xx(x, y0, 0, ω)) are
normalized by k = ω

c
.

to x, taken at x. As a more strict assumption, we require
that inequality (9) is satisfied for each component separately,
thus the second partial derivatives of the phase function are
nonpositive. This holds trivially for simple sound fields, e.g.
fields of point/line sources and plane waves. The possibility
of synthesizing focused sources is therefore excluded from
the present investigation. For an illustration of the introduced
vector quantities see Figure 2.

2) Stationary Phase Approximation: Both 2.5D WFS the-
ory and evaluation of Fourier integrals rely heavily on the
stationary phase approximation (SPA). As a basic tool of
asymptotic analysis the method yields an approximate solution
for integrals—containing at least one critical point in the
integral path—of the form

I =

∞∫
−∞

F (z) ejφ(z) dz (10)

when ejφ(z) is highly oscillating and F (z) is comparably
slowly varying.

A rigorous derivation of the SPA based on integration by
parts is given in [25]–[27]. More informally the method relies
on the second order truncated Taylor series of the exponent
around z∗, where φ′(z∗) = 0 and φ′′(z∗) 6= 0, with φ′(z)
denoting the derivative with respect to z:

φ(z) ≈ φ(z∗) + 1

2
φ′′(z∗)(z − z∗)2. (11)

The critical point z∗ is termed the stationary point. The
SPA assumed that where the phase varies, i.e. φ′(z) 6= 0,
the integral of rapid oscillation cancels out, and the greatest
contribution to the total integral comes from the immediate
surroundings of the stationary point. Moreover in the proxim-
ity of the stationary point F (z) can be regarded as constant
with the value F (z∗).

With these considerations—supposing also only one station-
ary point in the integration path—the integral becomes

I ≈ F (z∗) e+jφ(z∗)

∞∫
−∞

e+j 12φ
′′(z∗)(z−z∗)2 dz. (12)

The remaining integral can be explicitly solved and the SPA
of (10) becomes [25, (2.7.18)]

I ≈

√
2π

|φ′′(z∗)|
F (z∗) e+jφ(z∗)+jπ4 sgn(φ′′(z∗)). (13)

For multidimensional integrals a generalized SPA formula-
tion is available with the stationary point found, where the
phase gradient vanishes [25, (2.8.23)]. However, if the inte-
gration directions are orthogonal—as satisfied throughout the
present treatise—the integration can be evaluated by applying
multiple one dimensional SPAs consecutively.

3) 2.5D WFS driving functions: The basis of WFS theory is
the 3D Neumann Rayleigh integral formulation, representing
an arbitrary sound field in the form of an infinite surface
integral. Assume an infinite plane, located at x0 = [x, 0, z]T.
Supposing, that all sources of sound are located at the y < 0
half space, at an arbitrary listening position with y > 0 the
Rayleigh integral reads

P (x, ω) = −2
∫∫ ∞
−∞

∂P (x, ω)

∂y

∣∣∣∣
x=x0

G(x− x0, ω)dz0 dx0.

(14)
This formulation implicitly contains the driving function for
an infinite planar SSD.

In order to derive the driving functions for a linear SSD at
z = 0 the SPA is applied to evaluate the 3D Rayleigh integral
along the z-dimension. To find the phase function of the target
field’s y-derivative, consider the gradient of the general polar
form (6)

∇P (x, ω) =
(
∇AP (x, ω)
AP (x, ω)

+ j∇φP (x, ω)
)
P (x, ω). (15)

As a standard prerequisition a rapidly changing phase function
was assumed compared to the amplitude rate of change, i.e.∣∣∣∇AP (x,ω)
AP (x,ω)

∣∣∣� |∇φP (x, ω)| = k holds. In the high-frequency
region therefore the gradient can be approximated by

∇P (x, ω) ≈ −jk(x)P (x, ω). (16)

Note, that this is again a local plane wave approximation of
an arbitrary sound field.

Applying the HF gradient approximation in the Rayleigh
integral (14) and exploiting, that the constant phase shift
in (16) vanishes due to differentiation, the stationary phase
position of (14) is found, where

∇x0,z0φP (x0, ω) +∇x0,z0φG(x0 − x, ω) = 0, (17)



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 4

x

y

x∗0

x

klP (x0)

klG(x0)

Fig. 3. Geometry for finding the stationary point for the 3D Rayleigh integral
illustrated at the z = 0 plane.

where the reciprocity of Green’s function was exploited. Since
the gradient of the fields represent the local wavenumber
components klx(x0) and klz(x0), that along with the local dis-
persion relation completely determine the wavenumber vector
the stationary position is found, where

klP (x0) = −klG(x− x0) (18)

i.e. where the local propagation direction of the virtual field
and the Green’s function coincide. For an illustration in the
z = 0 plane refer to Figure 3. By replacing the Green’s
function into the SSD this means, that in the receiver position
x the actual SSD element and the virtual field propagate into
the same direction.

This interpretation is applied in order to approximate the
3D Rayleigh integral in the vertical dimension. Since it was
assumed, that the virtual field propagates along the xy-axis
at z = 0 (i.e. kz,P (x, y, 0) ≡ 0), therefore fixing the receiver
position to the same plane trivially yields the stationary point
z∗ = 0. Applying a one-dimensional SPA to (14) along the z-
axis with accounting for the negative second phase derivatives
yields the 2.5D Neumann Rayleigh integral

P (x, ω) = −2
∫ ∞
−∞

√√√√ 2π

j
∣∣∣φ′′P,zz(x0, ω) + φ′′G,zz(x− x0, ω)

∣∣∣
∂P (x, ω)

∂y

∣∣∣∣
x=x0

G(x− x0, ω)dx0, (19)

with x = [x, y, 0]T and x0 = [x0, 0, 0]T denoting now in-
plane positions. The 2.5 Rayleigh integral implicitly contains
the 2.5D linear driving functions, yet depending on the receiver
position.

In order to ensure optimal synthesis along an arbitrary
reference curve instead of a point the role of receiver position
and its stationary position is interchanged. According to the
SPA each point on the SSD x0 dominates those parts of the
listening plane xref , for which x0 is a stationary position, i.e.
klx,P (xref(x0)) = klx,G(xref(x0)− x0) is satisfied. Therefore,
with choosing x0 as a free variable, within the validity of the
SPA the 2.5D WFS driving functions can be extracted from

x

y

x0

x∗(x0)

x∗(x0)

y∗(x0)

klP (x0)

Fig. 4. Illustration for finding the points of correct synthesis for a given SSD
element at x0, with a known virtual source local wavenumber vector

(19) as

D2.5D WFS(x0, ω) = −2×√√√√ 2π

j
∣∣∣φ′′P,zz(x0, ω) + φ′′G,zz(xref(x0)− x0, ω)

∣∣∣ ∂P (x, ω)∂y

∣∣∣∣
x=x0

.

(20)

In unified WFS theory the 2.5D correction factor was termed
the referencing function

dref(x0) =
k∣∣∣φ′′P,zz(x0, ω) + φ′′G,zz(xref(x0)− x0, ω)

∣∣∣ , (21)

with normalization by k resulting in frequency independent
referencing schemes [20]. Furthermore, it was shown, that the
points of correct synthesis xref(x0) are lying from each SSD
elements towards the direction of the local wavenumber vector
of the target field, thus

xref(x0) = x0 +
klP (x0)

k
d0(x0), (22)

where d0(x0) is the distance at which synthesis is optimized
(for 2D virtual fields equaling with dref(x0)). Substituting to
the second derivative of the Green’s function at z = 0 yields

φ′′G,zz(xref(x0)− x0, ω) = −
k

d0(x0)
. (23)

Thus, once the distance function d0(x0) is defined based on
the actual shape of the desired reference curve xref from (22),
substitution into (23) and further into (20) yields the 2.5D
WFS driving function with an arbitrary reference curve.

As a simple example: from geometrical considerations the
reference distance for a fixed yref receiver coordinate—i.e.
referencing the synthesis to a parallel reference line—is given
by

d0(x0) = yref
k

kly,P (x0)
, (24)

and the general 2.5D WFS driving function ensuring optimal
synthesis along a reference line reads

D2.5D WFS(x0, ω) =

− 2

√√√√ 2π

j
∣∣∣φ′′P,zz(x0, ω)−

kly,P (x0)

yref

∣∣∣ ∂P (x, ω)∂y

∣∣∣∣
x=x0

. (25)
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For a virtual 3D point source the formulation results in the
well-known traditional 2.5D WFS driving functions [18].

III. RELATION OF THE EXPLICIT AND IMPLICIT SOLUTION

In this section the equivalence of the SDM and the unified
WFS theory is presented. The main steps of the derivation are
the followings
• First the general SDM driving functions are expressed

in an asymptotic form. The calculus can be done by
assuming, that the involved spectra are obtained via the
SPA of the corresponding forward Fourier-transforms.
This step links the spectral coefficients to stationary
positions in the target field and the Green’s function
placed at the SSD.

• It is followed by the inverse Fourier transform of the
asymptotic spectral driving functions. The evaluation of
the inverse transform with the SPA relates the forward
transform stationary positions to positions along the SSD.
As a result purely spatial driving functions are obtained,
calculated by the ratio of the target field and the Green’s
function taken in the corresponding stationary positions
on a pre-defined receiver curve.

• Finally the latter driving functions are expressed in terms
of the target field measured on the SSD. This is done by
approximating the target field in the receiver position by
the 3D Rayleigh integral, evaluated using the SPA.

Note, that the following derivation does not hold for a virtual
plane wave, for which no unique stationary position can be
found and also the SPA prerequisitions are not fulfilled for its
spectrum. However, as a limiting case the final results hold
for a virtual plane wave without any modification.

A. Asymptotic approximation of the SDM driving functions

The derivation starts from the general SDM driving func-
tions given by (4). For the sake of brevity both frequency
and z dependency is suppressed, since the driving functions
are defined at z = 0. By definition the wavenumber content
of the involved quantities is obtained via a forward Fourier
transform

P̃ (kx, y) =

∫ ∞
−∞

AP (x, y)e
jφP (x,y)ejkxxdx, (26)

G̃(kx, y) =

∫ ∞
−∞

AG(x, y)e
jφG(x,y)ejkxxdx. (27)

It is assumed, that the involved spectra are obtained by using
the SPA: Under high-frequency assumptions the Fourier inte-
gral may be approximated by evaluation around its stationary
point x∗(kx), where

−φ′x(x∗(kx), y, ω) = klx(x
∗(kx), y, ω) = kx (28)

holds: the greatest contribution to the wavenumber spectrum
at an arbitrary wavenumber kx has the point in space x∗,
where the local wavenumber component klx(x

∗) equals the
spectral coefficient kx. Note, that it is assumed, that in the
sound field each local propagation direction is unique. The
notation x∗(kx) indicates that each wavenumber component
kx determines a unique spatial stationary point.

Fig. 5. Illustration of the relationship between the local wavenumber vector
component klx,P (x, y0) of the point source, shown in Figure 2 and its
wavenumber content. The corresponding signs denote stationary point pairs
in the spectral components and the local wavenumber components.

Supposing, that x∗P (kx) and x∗G(kx) are the stationary
positions for the corresponding integrals, i.e.

klx,P (x
∗
P (kx), y, ω) = klx,G(x

∗
G(kx), y, ω) = kx (29)

holds, and accounting for the negative second derivatives—
since both P and G are non-converging waves—their spectra
can be approximated as [28, Ch. 5]

P̃ (kx, y) ≈
√

2π

j|φ′′P,xx(x∗P (kx), y)|

AP (x
∗
P (kx), y)e

jφP (x∗P (kx),y)ejkxx
∗
P (kx), (30)

G̃(kx, y) ≈
√

2π

j|φ′′G,xx(x∗G(kx), y)|

AG(x
∗
G(kx), y)e

jφG(x∗G(kx),y)ejkxx
∗
G(kx). (31)

The asymptotic approximation of the SDM driving functions
on a given spectral component therefore reads

D̃(kx) ≈√
|φ′′G,xx(x∗G(kx), y)|
|φ′′P,xx(x∗P (kx), y)|

P (x∗P (kx), y)

G(x∗G(kx), y)
ejkx(x

∗
P (kx)−x∗G(kx)).

(32)

B. SDM driving functions in the spatial domain
Using the asymptotic approximation of the SDM spectrum

the spatial driving functions are obtained via an inverse spatial
Fourier transform:

D(x0) ≈
1

2π

∫ ∞
−∞

√
|φ′′G,xx(x∗G(kx), y)|
|φ′′P,xx(x∗P (kx), y)|

P (x∗P (kx), y)

G(x∗G(kx), y)
ejkx(x

∗
P (kx)−x∗G(kx))e−jkxx0dkx. (33)
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klP (x∗P (x0)) = klG(x∗P (x0)− x0)

Fig. 6. Illustration of the evaluation position x∗P (x0) (and x∗G(x0)) as the
function of x0. For a given SSD position x0 the stationary positions at y,
where the virtual field propagation direction coincides with that of the Green’s
function translated into x0. At x∗P (x0) the local curvature of the translated
Green’s function is always greater, than that of the virtual field.

Again, the integral is approximated using the SPA, with the
phase function under investigation given by

φ̃(kx) = φP (x
∗
P (kx), y)− φG(x∗G(kx), y)

+ kx (x
∗
P (kx)− x∗G(kx))− kxx0. (34)

Similarly to the forward transform, in the inverse transform
each wavenumber component kx will dominate one spatial
position x0, where the actual wavenumber component coin-
cides with the local wavenumber of the sound field klx(x0).
This wavenumber is found as the stationary phase wavenumber
of integral (33) [28]. Differentiating (34) with respect to kx
and exploiting (28) yields the stationary wavenumber k∗x(x0),
satisfying

∂φ̃(kx)

∂kx

∣∣∣∣∣
kx=k∗x(x0)

= x∗P (k
∗
x(x0))− x∗G(k∗x(x0))− x0 = 0.

(35)
Note, that this definition relates the evaluation points x∗P
and x∗G directly to the actual SSD coordinate x0, therefore
the intermediate stationary wavenumber (k∗x()) dependency
may be omitted. Furthermore along with the definition of
the forward transform stationary points (29), the stationary
positions satisfy

klx,P (x
∗
P (x0), y, ω) = klx,G(x

∗
G(x0), y, ω), (36)

where

x∗G(x0) = x∗P (x0)− x0 (37)

holds. This results states, that for a given SSD coordinate x0
the evaluation point x∗P is found, where the local propagation
direction of the target field P coincides with that of a point
source positioned at [x0, 0, 0]T measured on the reference
line. For an illustration refer to Figure 6.

In order to evaluate the SPA of the inverse integral (33) one
still needs the second derivative of the phase function (34)
with respect to kx. Performing the differentiation and using
(29) and its derivative to express the required rate of change

of the stationary positions (x∗
′

P (kx) and x∗
′

G(kx)) the second
derivative reads

∂2

∂k2x
φ̃(kx) =

φ′′P,xx(x
∗
P (kx), y)− φ′′G,xx(x∗G(kx), y)

φ′′P,xx(x
∗
P (kx), y)φ

′′
G,xx(x

∗
G(kx), y)

. (38)

The absolute value of the phase function’s second deriva-
tives are proportional to the curvature of the wavefront in
an arbitrary position [29], which is maximal for a point
source. Furthermore, from simple geometrical considerations
the curvature—since being inversely proportional with the
distance from the point source— is maximal for the actual
SSD element at x0 in the stationary receiver position at x∗P (x0)
(refer to Figure 6 for an illustration). Accounting also for the
negative sign for simple virtual fields

φ′′P,xx(x
∗
P (kx), y) > φ′′G,xx(x

∗
G(kx), y) (39)

holds and the sign of (38) is positive.
These results now may be substituted back into the SPA (13)

of the inverse transform (33). For the sake of brevity in the
followings the evaluation point is denoted by x∗P → x∗. Based
on (35) around the stationary wavenumber the exponentials
cancel out, and accounting for the positive sign of the second
derivative as a result one obtains the spatial asymptotic SDM
driving functions

D(x0) ≈

√√√√√√
∣∣∣φ′′G,xx(x∗(x0)− x0, y)∣∣∣2∣∣∣φ′′P,xx(x∗(x0), y)− φ′′G,xx(x∗(x0)− x0, y)∣∣∣√

j

2π

P (x∗(x0), y)

G(x∗(x0)− x0, y)
, (40)

where klx,P (x
∗(x0)) = klx,G(x

∗(x0) − x0) holds. This result
states, that an arbitrary sound field may be synthesized by
finding the positions along the reference line, where the
propagation direction/wavefront of the target field matches the
field of the actual SSD elements. In this stationary position the
driving functions are obtained by the ratio of the target field
and the actual SSD element, corrected by the factor, containing
the wavefront curvature at the same position. Therefore the
explicit, global solution can be approximated by simple local
wavefront matching.

One important fact is pointed out here: although having
derived the above driving functions in terms a forward an
inverse spatial Fourier transform along a straight line, there
is no restriction on the y-coordinate of the stationary point
in (40) due to the local approximations involved: the y-
coordinate might be x0-dependent. This means, that an ar-
bitrary referencing curve may be defined as x∗(x0), and the
driving functions can be calculated by finding the stationary
positions klx,P (x

∗(x0)) = klx,G(x
∗(x0)−x0) along this curve.

Evaluating the driving functions in the stationary positions
will result in amplitude correct synthesis along the reference
curve. This means, that the presented driving functions are
equivalent to the 2.5D WFS driving functions, written in terms
of the target pressure field taken on the reference curve. In
the followings first a simple example is presented in order to
demonstrate the validity of the spatial SDM driving functions.
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Fig. 7. Synthesis of a 2D point source (a,c) and a 3D point source (b,d) located at xs = [0, −1, 0]T, oscillating at ω0 = 2π · 1 krad/s. The synthesis is
referenced on a circle around the virtual source, with a radius of Rref = 3 m.

C. Spatial SDM application example

Consider the synthesis of a 2D/3D point source, referencing
the synthesis to a circle around the virtual point source.
For the sake of simplicity the source is located at xs =
[0, ys, 0]

T. Along with the equation describing the reference
curve x∗(x0) = [x∗(x0), y

∗(x0), 0]T the stationary points
satisfy the following equations (since under high-frequency
approximations the phase function of a 2D and 3D point source
equal [27])

x∗(x0)√
x∗(x0)2 + (y∗(x0)− ys)2

=
x∗(x0)− x0√

(x∗(x0)− x0)2 + y∗(x0)2
,

(41)

x∗(x0)
2 + (y∗(x0)− ys)2 = R2

ref . (42)

The solution for the equations is given by

x∗(x0) = x0
Rref√
x20 + y2s

(43)

y∗(x0) = ys

(
1− Rref√

x20 + y2s

)
(44)

Substituting into (40) yields the explicit driving function in
the spatial domain referencing the synthesis on a circle. In this
case the only difference between the 2D and 3D point source
driving functions is the actual form of P (x∗(x0), y∗(x0)).

Investigating Figure 7 verifies, that in both cases the syn-
thesis is optimized on the prescribed reference curve.

D. The Rayleigh SDM formulation

As a last step in order to present the relation between SDM
and WFS the spatial domain SDM driving function (40) is
expressed in terms of the target field, measured on the SSD.
This is done by expressing the target field at the evaluation
point in terms of a 3D Neumann Rayleigh integral, evaluated
by the SPA. For the derivation of the 2.5D Rayleigh integral
(19) the vertical SPA had already been evaluated. In order
to evaluate the the horizontal integral the stationary position
x∗0(x) is found, where

klx,P (x
∗
0(x)) = klx,G(x− x∗0(x)) (45)

holds, with x = [x, y, 0]T and x∗0(x) = [x∗0(x), 0, 0]T.
Around the stationary point the the asymptotic approximation
of the 3D Rayleigh integral reads

P (x) ≈ −22π
j

1√∣∣∣φ′′P,zz(x∗0(x)) + φ′′G,zz(x− x∗0(x))
∣∣∣×

1√∣∣∣φ′′P,xx(x∗0(x)) + φ′′G,xx(x− x∗0(x))
∣∣∣×

∂P (x)

∂y

∣∣∣∣
x=x∗0(x)

G(x− x∗0(x)), (46)

One still needs to express the second derivative of the target
field phase φP at an arbitrary receiver position x in terms of
the second derivative taken on the SSD at the stationary point
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x∗0(x). This is possible by expressing the second derivative of
the asymptotic Rayleigh integral’s phase function, i.e. from

∂2

∂x2
(φP (x

∗
0(x)) + φG(x− x∗0(x))) . (47)

Again, performing the differentiation by applying the chain
rule, exploiting the Rayleigh stationary point definition (45)
for simplification and its derivative to express x∗

′

0,x(x) yields

φ′′P,xx(x) ≈
φ′′P,xx(x

∗
0(x))φ

′′
G,xx(x− x∗0(x))

φ′′P,xx(x
∗
0(x)) + φ′′G,xx(x− x∗0(x))

. (48)

Comparing the definition of the stationary points for the
Rayleigh integral (45) and the stationary SDM evaluation
points (36) is is revealed, that they describe stationary point
pairs. Therefore in the spatial SDM driving function (40)
both the target field and the second phase derivative at the
evaluation point x∗(x0) can be expressed by the corresponding
quantities taken at x0, by using (46) and (48) respectively
with a substitution of x∗0(x) → [x0, 0, 0]T and x →
[x∗(x0), y, 0]T.

By substituting (48) into (40) yields

D(x0) ≈
√∣∣∣φ′′P,xx(x0, 0) + φ′′G,xx(x

∗(x0)− x0, y)
∣∣∣√

j

2π

P (x∗(x0), y)

G(x∗(x0)− x0, y)
(49)

and finally by expressing the target field by (46) the Green’s
function vanishes and one obtains the asymptotic form of the
spatial SDM driving functions written in terms of the target
field taken on the SSD

D(x0) ≈ −2
√

2π

j

1√∣∣∣φ′′P,zz(x0, 0) + φ′′G,zz(x
∗(x0)− x0, y)

∣∣∣
∂P (x)

∂y

∣∣∣∣
x=x0

.

(50)

Comparing with (20) reveals, that the asymptotic SDM
driving functions exactly coincide the 2.5D WFS driving
function. It is important to note however, that the WFS driving
functions were obtained from the 2.5D Neumann Rayleigh
integral in an intuitive manner, by introducing the reference
curve concept with interchanging the role of the receiver
position and its stationary SSD position. On the other hand the
driving function (50) inherently contains the horizontal SPA
and the reference curve concept. It is therefore verified, that
under high-frequency assumptions, WFS is the asymptotic or
local approximation of the global explicit solution.

IV. CONCLUSION

The article presented a detailed treatise on the connection
of the well-established implicit SFS technique Wave Field
Synthesis and the explicit inverse solution termed the Spectral
Division Method. Emerging from the physical interpretation of
the involved approximations it was shown explicitly, that Wave
Field Synthesis constitutes a local wavefront matching solution
for the underlying problem by applying local plane wave

approximations for the wave field to be synthesized. Applying
WFS the virtual and synthesized wavefronts are matched both
in propagation direction and wavefront curvature. For the sake
of better comparability a (so far unknown) generalization for
the 2.5D WFS driving functions was presented, being able
to synthesize an arbitrary 3D virtual field, optimized on an
arbitrary curve, termed as the reference curve.

SDM—constituting a global mode-matching solution—
provides an explicit solution, ensuring perfect synthesis along
a reference line, although yielding the driving function in terms
of a multiple integral, making practical applications unfeasible.
It was proven, that assuming high-frequency conditions, within
the validity of the local plane wave approximation of the target
sound field, the SDM can be expressed in the spatial domain,
providing a wavefront matching solution for the SFS problem
in terms of the target field and the Green’s function taken at
the desired reference curve. The presented asymptotic driving
functions—so far unknown for the sound field reproduction
problem—gives the possibility to control an arbitrary sound
field on a reference curve, without having information on the
sound field along the SSD. This option may be feasible for
e.g. suppressing the diffraction effects due to truncated linear
SSDs. The validity of the presented new driving functions are
also verified via simple simulation examples.

Finally the general high-frequency/local equivalence of
WFS and the SDM is shown by approximating the target field
on the reference field by the asymptotic approximation of the
Rayleigh integral.

APPENDIX A
DEFINITION OF FOURIER TRANSFORMS

Throughout the article the temporal and spatial forward
Fourier transforms are defined conventionally as

P (x, ω) =

∫ ∞
−∞

p(x, t)e−jωtdt, (51)

P̂ (kx, y, z, ω) =

∫ ∞
−∞

P (x, y, z, ω)ejkxxdx. (52)

The corresponding inverse transforms are defined with revers-
ing the exponential sign and normalizing by 1

2π .
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