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The sound field synthesis of moving sound sources is of great importance when dynamic virtual sound
scenes are to be reconstructed. Previous analytically correct solutions considered only virtual sources
moving uniformly along a straight trajectory, synthesized using a linear loudspeaker array. This
article presents the synthesis of point sources following an arbitrary trajectory. Under high-frequency
assumptions 2.5D Wave Field Synthesis driving functions are derived for arbitrary shaped secondary
source contours by adapting the stationary phase approximation to the dynamic description of
sources in motion. It is explained, how a referencing function should be chosen in order to optimize
the amplitude of synthesis on an arbitrary receiver curve. Finally a finite difference implementation
scheme is considered, making the presented approach suitable for real-time applications.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Wave Field Synthesis (WFS) aims at the physical re-
production of a target sound field within an extended
listening area using a densely spaced loudspeaker ensem-
ble, termed as the secondary source distribution (SSD).
The loudspeakers are fed with properly derived driving
functions, so that the field in the listening area—i.e.
the resultant field of the secondary sources—coincides
with the target sound field. WFS is an implicit solu-
tion methodology, where the driving functions are ex-
tracted from an appropriate boundary integral represen-
tation of the target wave field. Early WFS theory consid-
ered planar and linear SSDs, where the driving functions
are obtained from the Rayleigh-integral representation
of the target field1–3. Recently it was shown, that in
the high frequency domain WFS can be applied to arbi-
trarily shaped enclosing secondary arrays4, utilizing the
high frequency approximation of the general Kirchhoff-
Helmholtz integral5. In an upcoming work from the
present authors it is demonstrated, that by introducing a
proper referencing function WFS is capable of amplitude
correct synthesis along an arbitrary listening curve using
an arbitrary shaped SSD contour6.

In addition to the synthesis of stationary virtual sound
fields—e.g. plane waves and stationary point sources—
the synthesis of moving point sources gained increasing
interest. For this dynamic case the primary challenge
is the proper reconstruction of the Doppler-shift, which
is inherently solved when the dynamic description of the
target field is adapted to the WFS theory7,8. As a special
case, the synthesis of sources under uniform motion using
a planar/linear SSD is well-studied. In recent articles
by the authors driving functions were obtained for linear
secondary sources by adapting traditional WFS theory to
the dynamic scenario9, and by alternatively applying the
explicit spectral solution, termed as the Spectral Division
Method10.

It is well known that spatial aliasing artifacts, resulting
from the discretization of the SSD, are more significant

for moving sources8,11. The spectral solution provides
a useful tool for the quantitative investigation of spa-
tial aliasing12. It was shown that linear secondary ar-
rays yield increased spatial aliasing artifacts, which veri-
fies the necessity of WFS driving functions for non-linear
(curved) SSDs.

The present article deals with the general solution of
the dynamic SFS problem. By adapting the moving
source dynamics to unified WFS formulation6, driving
functions are given for arbitrary shaped SSDs, ensuring
amplitude correct synthesis on an arbitrary shaped re-
ceiver curve in the high-frequency region. The paper is
structured as follows: Section II.A introduces the con-
cept of wave field synthesis, and Section II.B derives the
sound field of a monopole following an arbitrary trajec-
tory. Section III adapts WFS to the field of the moving
source, and derives 3D driving functions for arbitrarily
shaped surface SSD, as well as 2.5D driving functions for
curved SSD contours. By utilizing the referencing func-
tion concept, referencing functions are derived for the
2.5D case, allowing amplitude correct synthesis along a
predefined reference curve. Section IV presents numeri-
cal validation of the derived driving functions. Finally,
Section V presents an efficient computation scheme that
allows real time computation of the driving functions.

II. THEORETICAL BACKGROUND

A. Wave Field Synthesis theory

The general SFS problem can be formulated as follows.
Consider a secondary source distribution consisting of
identical sources, located at x0 = [x0, y0, z0]T ∈ S. The
synthesized pressure field at the receiver position x reads

p(x, t) =

∫
S

∫ ∞
−∞

d(x0, t0)h(x− x0, t− t0)dt0dx0, (1)

where h(x, t) is the spatio-temporal impulse response of
the secondary sources and d(x, t) is the driving function
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to be derived, so that the synthesized sound field equals
to the target sound field over an extended area.

Traditional WFS theory constructs the driving func-
tions from the Rayleigh-integral representation of the tar-
get sound field: for an infinite planar boundary surface
the Kirchhoff-Helmholtz integral (KHI)—that represents
any source free sound field inside an enclosure as a double
layer potential—degenerates to a single layer potential
over the Rayleigh-plane, with the integral kernel being
the 3D Green’s function, describing the field of an acous-
tic point source. In the aspect of WFS with a planar
SSD consisting of a continuous distribution of 3D point
sources the Rayleigh-integral implicitly contains the driv-
ing functions in the form of the normal derivative of the
target field taken on the SSD3,13.

As it was pointed out by Fazi5—emerging from
the equivalent scattering interpretation of the general
SFS problem—in case of convex enclosing boundaries
and high-frequencies (where the wavelength is signifi-
cantly smaller than the boundary dimensions), the Kir-
choff/Physical Optics approximation may be applied to
the KHI. Under these assumptions the boundary can be
considered locally planar, and the KHI is approximated
locally by the Rayleigh-integral. The pressure field inside
the enclosure is written in the time domain as

p(x, t) =

∫
S

∞∫
−∞

d3D(x0,t0)︷ ︸︸ ︷
−2w(x0)

∂

∂nin
p(x0, t0) g(x−x0, t−t0)dt0dx0

(2)
and equivalently in the frequency domain (assuming a
time dependency ejωt ) as

P (x, ω) =

∫
S

D3D(x0,ω)︷ ︸︸ ︷
−2w(x0)

∂

∂nin
P (x0, ω)G(x− x0, ω)dx0,

(3)

where g(x, t) = 1
4π

δ(t−|x|/c)
|x| and G(x, ω) = 1

4π
e−jω|x|/c

|x|
are the 3D Green’s function in the temporal and fre-
quency domain respectively, with c being the speed of
sound. Here

∂

∂nin
P (x0) =

〈
nin(x0) · ∇P (x)|x=x0

〉
denotes the inward normal derivative of the incident field
taken on the boundary surface. The integrals implicitly
contain the 3D driving functions.

Only those parts of the SSD contribute to the integral,
where the field of the secondary element propagates in
the same direction as the target sound field. This part of
the SSD is often termed as the illuminated region, and is
selected by the window function w(x0):

w(x0) =

{
1 〈k(x0) · nin(x0)〉 > 0

0 elsewhere,
(4)

where k(x0) denotes the local wavenumber vector of the
virtual sound field at the SSD. In the aspect of WFS
this type of windowing is referred to as secondary source
criterion4,14.
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FIG. 1. General 3D WFS geometry for the derivation of 2.5D
driving functions. The SSD surface S = f(x0, y0) is chosen
to be independent of the z-coordinate in order to be able to
evaluate the integral with respect to z0 using the SPA. If the
virtual sound field is a 2D one, propagating in the direction
parallel to the listening plane the the SSD can be interpreted
as a continuous set of infinite vertical line sources along C
(described by the 2D Green’s function), capable of the perfect
synthesis of a virtual 2D field inside the enclosure. ERRE
MOST NINCS HIVATKOZS AZ ELS SECTIONBEN!
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FIG. 2. Arrangement for the description of a source, moving
at an arbitrary trajectory

The local wavenumber vector can be defined as

k(x) = −∇∠P (x, ω), (5)

where ∠ denotes the phase of an arbitrary sound field.
The wavenumber vector points in the direction of local
propagation, and is perpendicular to the wave front.

Note that the derived driving functions would ensure
perfect synthesis for a planar SSD, where the enclosed
sound field degenerates to a half space. For any other
SSD geometries high-frequency assumptions must hold.

B. Description of moving sources on arbitrary 3D trajectory

Consider a translation invariant point source,
moving along an arbitrary trajectory xs(t) =
[xs(t), ys(t), zs(t)]

T and radiating with the source
time history q(t). The radiated field pm(x, t) at an
arbitrary receiver position x can be written as the
convolution of the source signal and the time varying
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impulse response of the moving source:

pm(x, t) =

∫ ∞
−∞

q(t̂)gm(x− xs(t̂), t− t̂)dt̂, (6)

where the impulse response

gm(x− xs(t̂), t− t̂) =
1

4π

δ
(
t− t̂− |x−xs(t̂)|c

)
|x− xs(t̂)|

(7)

is the retarded Green’s function and t̂ denotes the emis-
sion time. In order to exploit the sifting property of
the Dirac delta in (6), a new variable t′ is introduced as

t′(t̂) = t̂+ |x−xs(t̂)|
c . The Jacobian reads as

dt′(t̂)

dt̂
= 1− 1

c

〈
∂
∂txs(t̂) · (x− xs(t̂))

〉
|x− xs(t̂)|

(8)

where vs(t̂) = ∂
∂t̂
xs(t̂) denotes the source velocity vector.

As the Dirac-delta sifts out t′(t̂) = t, the radiated field
reads as

pm(x, t) =
1

4π

q
(
t− |x−xs(t̂)|c

)
|x− xs(t̂)| − 1

c

〈
vs(t̂) · (x− xs(t̂))

〉 , (9)

where t̂ satisfies

t− t̂ =
|x− xs(t̂)|

c
. (10)

Conventionally the radiated field is expressed in terms
of the propagation time-delay τ(x, t) = t− t̂. Introducing
∆(x, t) for the attenuation factor the radiated field is
given as

pm(x, t) =
1

4π

q(t− τ(x, t))

∆(x, t− τ)
, (11)

with

∆(x, t) = |x− xs(t)| −
〈

1

c
vs(t) · (x− xs(t))

〉
=

= R(x, t) (1−M(t) cosϑ(x, t)) (12)

where R(x, t) is the source-receiver distance, M(t) =
|vs(t)|/c is the Mach-number, ϑ(x, t) is the angle be-
tween the velocity vector and the source-receiver vector,
and equation

R(x, t− τ)− cτ = |x− xs(t− τ)| − cτ = 0 (13)

is satisfied. In equation (12) (1−M(t) cosϑ(x, t))
−1

is termed as the Doppler-factor, describing the relative
frequency-shift in case of a harmonic source signal15.
For subsonic velocities (i.e. v < c) only the positive
root of the quadratic equation (τ > 0) is taken into
consideration16. Note, that the evaluation of equation
(11) requires the solution of the non-linear equation (13)
for each time instant and listener position.

III. WFS OF MOVING SOURCES

A. 3D driving functions

The dynamic description obtained in the previous sec-
tion can be directly used for the synthesis of moving
sources. For the sake of simplicity assume a harmonic
source time-history q(t) = ejω0t, with the oscillation fre-
quency ω0. The radiated field reads

Pm(x, t, ω0) =
1

4π

ejω0(t−τ(x,t))

∆(x, t− τ(x, t))
. (14)

The 3D WFS driving functions in the time-frequency do-
main can be expressed from (2) by evaluating (−2) times
the normal derivative of the sound field on the SSD

D3D(x0, t, ω0) = −2w
〈
nin(x0) · ∇Pm(x, t, ω0)|x=x0

〉
(15)

The gradient of the sound field is expressed as

∇Pm(x, t, ω0) =

− 1

4π

(
∇ (∆(x, t− τ))

∆(x, t− τ)
+ jω0∇τ(x, t)

)
ejω0(t−τ(x,t))

∆(x, t− τ)
,

(16)

where ω0∇τ(x, t) = k(x, t) is the local wavenumber
vector. For the Physical Optics approximation high-
frequency/far-field assumptions are standard prerequisi-
tions. In this case the phase changes rapidly compared

to the amplitude (jω0∇τ(x, t) � ∇(∆(x,t−τ))
∆(x,t−τ) ) and the

gradient can be approximated as

∇Pm(x, t, ω0) ≈ − jω0∇τ(x, t)

4π

ejω0(t−τ(x,t))

∆(x, t− τ)
(17)

= −jk(x, t)Pm(x, t, ω0). (18)

This high-frequency gradient approximation is a local
plane wave approximation of the moving source sound
field. The approximation can be applied for any har-
monic target sound field in the high-frequency region,
leading to a general 3D WFS driving function

D3D(x0, t, ω0) = −2w 〈k(x0, t) · nin(x0)〉P (x0, t, ω0).
(19)

This result is a generalization of the driving functions
given in [(20),17]

The gradient of the propagation time delay ∇τ can be
evaluated by implicit differentiation of (13):

∇τ(x, t) =
1

c

x− xs(t− τ)

∆(x, t− τ)
, (20)

and by denoting the normal component of the source-
SSD distance by Rn(x0, t) = 〈(x0 − xs(t)) · nin(x0)〉 the
driving functions read

D3D(x0, t, ω0) = w
jk0

2π

Rn(x0, t− τ)

∆(x0, t− τ)

ejω0(t−τ(x0,t))

∆(x0, t− τ)
, (21)

with k0 = ω0/c being the source wavenumber, and the
window function w(x0, t) given by (4), with the depen-
dencies suppressed for the sake of brevity.
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B. 2.5D driving functions

Practical WFS implementations apply an SSD curve
instead of a surface, located at the listening plane x0 =
[x0, y0, 0]. In order to derive the corresponding driv-
ing functions, the geometry shown in Figure 1 is used.
The listener plane is assumed to be at z = 0 (i.e.
x = [x, y, 0]T), and the trajectory of the virtual source
is also restricted to zs(t) = 0.

For this geometry integration in (3) can be approxi-
mated using the Stationary Phase Approximation (SPA),
which method forms the backbone of 2.5D WFS.

The SPA is a method of asymptotic analysis, and pro-
vides approximate formula for integrals with a rapidly
oscillating kernel. Application of the SPA to the convo-
lution integral (3) was investigated in details recently6,
and the following physical interpretation was established.
Physically, the SPA states that the integral providing the
radiated field at x is dominated by those SSD elements
x0, whose sound field in x propagates into the same di-
rection as the target sound field in x0. As a consequence,
the SPA assigns a unique stationary position x0 to each
receiver position x. On the other hand, each point on the
SSD dominates the synthesized sound field towards the
direction of local propagation of the target sound field
k(x0), measured on the actual SSD element.

Substituting the driving functions into the SFS inte-
gral (2) and integrating with respect to time yields the
synthesized field inside the enclosure, with x0, y0 ∈ C

P (x, t, ω0) =
jk0

8π2

∮
C

∫ ∞
−∞

w
Rn

(
x0, t− |x−x0|

c − τ
)

∆
(
x0, t− |x−x0|

c − τ
)

e
jω0

(
t− |x−x0|

c −τ
(
x0,t− |x−x0|

c

))
∆
(
x0, t− |x−x0|

c − τ
)
|x− x0|

dz0dy0dx0. (22)

Integration with respect to z0 may be approximated ap-
plying the SPA18,19:∫ ∞

−∞
F (z)e−jφ(z)dz ≈

√
2π

j|φ′′(zs)|
F (zs)e

−jφ(zs), (23)

where the stationary point zs is defined as ∂
∂zφ(z)

∣∣
z=zs

=

0. As both the source and receiver are located at z = 0,
the trivial stationary point of integral (22) is zs = 0. The
phase function under consideration is

φ(z0) = −ω0

(
t− |x− x0|

c
− τ

(
x0, t−

|x− x0|
c

))
(24)

and its second derivative wrt. z0 in the stationary point
z0 = 0 is given as (for derivation refer to the Appendix)

∂2φ(z0)

∂z2
0

∣∣∣∣
z0=0

= k0

|x− x0|+
∣∣∣x0 − xs

(
t− |x−x0|

c − τ
)∣∣∣

|x− x0|∆
(
x0, t− |x−x0|

c − τ
)
(25)

Denoting the in-plane distances by r = x − x0, R(t) =
x0−xs(t) and substituting back into (22), the synthesized

field is approximated as

P (x, t, ω0) =

∮
C

w
Rn

(
x0, t− r

c − τ
)

∆(x0, t− r
c − τ)√

jk0

2π

√
r∆(x0, t− r

c − τ)

r +R(t− r
c − τ)

1

4π

ejω0(t− rc−τ(x0,t− rc ))

∆(x0, t− r
c − τ)r

dy0dx0

(26)

Since the time variable is present with a constant tem-
poral shift t− r

c the integral can be reformulated as

P (x, t, ω0) =∮
C

w
Rn(x0, t0 − τ)

∆(x0, t0 − τ)

√
jk0

2π

√
r∆(x0, t0 − τ)

r +R(t0 − τ)

ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ)

1

4π

δ(t− t0 − r
c )

r
dt0dy0dx0. (27)

The integral is written in terms of the time-domain
Green’s function, therefore comparison with (2) yields
the final 2.5D driving functions:

D2.5D(x0, t0, ω0) =

w
√
dref(x0, t0)

√
jk0

2π

Rn(t0 − τ)

∆(x0, t0 − τ)

ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ)
, (28)

where the referencing function dref(x0, t0) is given by

dref(x0, t0) =
r ·∆(x0, t0 − τ)

r +R(t0 − τ)
. (29)

In order to get an insight into the structure of the
driving function it can be rearranged as

D2.5D(x0, t0, ω0) =√
2πr

jk0︸ ︷︷ ︸
SSD

compensation

√
∆(x0, t0 − τ)

r +R(t0 − τ)︸ ︷︷ ︸
virtual source
compensation

(−2)w
∂

∂nin
Pm(x0, t0, ω0)︸ ︷︷ ︸
3D

driving function

.

(30)

The driving function therefore consists of the simple 3D
WFS driving functions, adjusted by two correctional fac-
tors: the geometry under discussion theoretically would
be able to perfectly synthesize a 2D sound field with a
set of infinite line sources (described by the 2D Green’s
function) using a 2D driving function20. In the present
case, however, 3D point sources (described by the 3D
Green’s function) are applied to synthesize a 3D sound
field. This causes both a secondary source and a virtual
source dimensional mismatch.

The secondary source correction factor compensates
for the discrepancy between the frequency responses and
attenuation factors of the 2D and 3D Green’s functions.
Obviously, the amplitude factor can be optimized for a
fixed distance from each SSD element, given by r.

The virtual source compensation factor resolves the
virtual source dimensionality mismatch, correcting the
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virtual source attenuation factor. The correction factor
gains physical meaning in the stationary SSD point—i.e.
where (x0 − xs(t0 − τ)) and (x − x0) point in the same
direction, thus |x0−xs(t0− τ)|+ |x−x0| = |x−xs(t0−
τ)| = r + R(t0 − τ), refer to Figure 3 for the geometry.
For the stationary SSD element the numerator corrects
the 3D driving function to a ideal 2D one20 (since the
field of a moving infinite line source would attenuate by
a factor ∼ 1/

√
∆), while the denominator adjusts the

correct attenuation factor from a 2D moving source to
a 3D one using the corresponding static distances—due
to the static SSD elements. This statement gives us an
important insight into the WFS compensation factors,
also reflecting that the vertical and horizontal SPAs are
inherently related, since the result of the vertical SPA can
be physically interpreted only in the horizontal stationary
point.

For an arbitrary source signal, with the frequency con-
tent being Q(ω0) =

∫∞
−∞ q(t)e−jω0tdt the driving function

is written as the weighted sum of the spectral components

d2.5D(x0, t0) =
1

2π

∫ ∞
−∞

D2.5D(x0, t0, ω0)Q(ω0)dω0 =

w
√
dref(x0, t0)

Rn(t0 − τ)

∆(x0, t0 − τ)2

1

2π

∫ ∞
−∞

√
jk0

2π
Q(ω0)ejω0(t0−τ(x0,t0))dω0. (31)

The integral describes an inverse Fourier-transform of the
source signal, taken at t0 − τ(x0, t0) pre-filtered with a

filter, defined by its transfer function H(ω0) =
√

jω0

2πc .

The driving function in the time domain therefore reads

d2.5D(x0, t0) = w
√
dref(x0, t0)

Rn(t0 − τ)

∆(x0, t0 − τ)

h(t0) ∗t0 q(t0 − τ(x0, t0))

∆(x0, t0 − τ)
, (32)

where h(t0) = F−1
ω

{
H( jω

2π )
}

.

EZEKNEK NINCS MOST HELYK

Integration along the z0 axis will result in the 2.5D
driving functions with a correction term, still depending
on the receiver position and frequency. Finally, depen-
dency on the listener position can be eliminated by intro-
ducing a properly chosen referencing function. This may
be done by further utilizing the SPA concept in order
to ensure an amplitude correct synthesis on an arbitrary
reference curve. The derivation is explained in details in
the corresponding section, applied directly for a moving
virtual point source.

It is important to note, that for a linear SSD—as a spe-
cial SSD curve—the synthesized field is correct within the
validity of the SPA, since it is derived from the Rayleigh-
integral directly. Any other SSD shape will introduce
further errors due to the Kirchhoff/Physical Optics ap-
proximation.

C. Defining the referencing function:

The correct choice of the referencing function allows
us to optimize the synthesis on an arbitrary shaped ref-
erence curve in front of the SSD. According to the SPA
each SSD element contributes to the total synthesized
field in one unique direction, assigned by the local prop-
agation direction of the virtual sound field, taken on that
SSD element. Therefore, the shape of the curve at which
the synthesis is optimized can be controlled by adjusting
the amplitude of the corresponding stationary SSD ele-
ments. This can be formulated mathematically using the
normalized wavenumber vector6, defined by

k̂(x0, t) =
k(x0, t)

k(x0, t)
=
∇∠P (x, t, ω)|x=x0

1
c
∂
∂t∠P (x0, t, ω)

, (33)

where k(x, t) = ω(x, t)/c is the acoustic wavenumber,
and the instantaneous frequency is defined as ω(x, t) =
∂
∂t∠P (x, t, ω). In the present case the wavenumber is
given as

k(x0, t) =
1

c

∂

∂t0
(ω0(t0 − τ(x0, t0))) = k0

R(t0 − τ)

∆(x0, t0 − τ)
(34)

and the normalized wavenumber vector reads

k̂(x0, t) =
x0 − xs(t0 − τ)

R(t0 − τ)
. (35)

The distance at which amplitude correct synthesis is
ensured is given by the secondary source compensation
factor, in a distance r from the stationary SSD element.
The locations of amplitude correct synthesis are therefore
given as

xref = x0 + k̂(x0, t)r. (36)

and by substituting back (35) and expressing r in terms
of dref from (29)

xref = x0 + dref(x0, t0)
x0 − xs(t0 − τ)

∆(x0, t0 − τ)− dref(x0, t− τ)
.

(37)
For an illustration on the local wavenumber vector and
the explanation of this referencing approach in this dy-
namic scenario see Figure 3.

As a simple example the synthesis using a linear SSD
is considered, with referencing to a straight line parallel
with the SSD, termed as reference line.

For the given geometry x0 = [x0, y0 = const, 0],
nin = [0, 1, 0]T, and the reference curve given by
xref = [x0, yref , 0], where yref > y0. Expressing the
referencing function from (37) leads us to

dref(x0, t0) = ∆(x0, t0 − τ)
xref − x0

xref − xs(t0 − τ)
. (38)

Since in the current case the x-coordinates of the refer-
ence curve are arbitrary, the referencing function is writ-
ten purely in terms of the y-coordinates. Along with
that, with Rn =

〈
(x0 − xs(t)) · [0, 1, 0]T

〉
= y0 − ys(t),
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FIG. 3. Illustration of the stationary SSD position includ-
ing moving source dynamics. The ”snapshot” is taken at t.
According to the stationary phase approximation the SSD el-
ement x0 determines the synthesized field along the direction,
given by the local wavenumber vector k̂(x0, t0). At the time
instant t0 the wave front of the moving source, arriving to
x0 is described by a spherical wave front, emerging from the
virtual source position at xs(t0−τ), therefore its propagation
direction at x0 is described by k(x0, t0) = x0 − xs(t0 − τ).
If an other spherical wave front is generated by the SSD ele-
ment at x0, than in any later time instant t > t0 the virtual
wavefront and the secondary wavefront coincide along the di-
rection of k̂(x0, t0). Here t = r

c
, where r is the distance of

the stationary SSD element from the reference curve at which
the amplitude correction is optimized. Obviously, by control-
ling the distance r, the shape of the reference curve can be
adjusted according to (37).

and assuming, that the virtual source does not cross the
SSD (i.e. w(x0) = 1) the final driving functions read

D2.5D(x0, t0, ω0) =√
yref − y0

yref − ys(t0 − τ)

√
jk0

2π
(y0 − ys(t0 − τ))

ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ)
3
2

.

(39)

This driving function is the traditional WFS driving func-
tion as given by e.g. Verheijen and Start for a stationary
virtual point source2,3, with the original stationary dis-
tances replaced with the corresponding dynamic ones.
Using this driving function, evaluating the integral along
x0 for the synthesized field by a further application of the
SPA would explicitly result in the target sound field3.

For the special case of a source, moving uniformly at
a straight trajectory parallel to the SSD the equation
for τ may be solved explicitly. Introducing this solution
the present driving function would yield the driving func-
tions, given in [10].

IV. SIMULATION RESULTS:

Two examples are presented in order to demonstrate
the validity of the driving functions. All simulations were

FIG. 4. Synthesis of a point source, moving on a sinusoid
trajectory: the spatial distribution of the target sound field
(a), the synthesized field (b) and the difference measured in
dB scale (c) at t = 0.

carried out in the time domain, by evaluating

psynth(x, t) =
∑
x0

d
(
x0, t− |x−x0|

c

)
|x− x0|

dx0, (40)

with the sampling weighting factor defined for the actual
synthesis geometry8. The evaluation requires the solu-
tion of the non-linear equation for τ in each field point
for each SSD element, resulting in great computational
complexity.

A. Synthesis using linear SSD

First, the synthesis with a linear SSD and a reference
line is investigated. In this example consider a source, os-
cillating at ω0 = 2π · 1000 rad/s, and with the trajectory
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given by xs(t) = [v0t, 0.5 sin
(

2π
λx
v0t
)
− 1, 0]T, where

v0 = 150 m/s and λx = 3 m. The source therefore moves
on a sinusoid trajectory, with the time-variant instanta-

neous speed given by v(t) = v0

√
1 +

(
π
λx

)2

cos2
(

2π
λx
v0t
)

.

The SSD is located at y0 = 0. The ideally continuous,
infinite SSD was truncated at |x0| < 15 m and sampled
at ∆x0 = 0.05 m. With these parameters the truncation
and discretization artifacts are minimal.

The result of synthesis is shown in figure 4 (b) along
with the target sound field in (a) at t = 0. Similarly
to the stationary case, phase correct synthesis can be
achieved in the whole listening plane y > y0. As figure 4
(c) confirms—depicting the error between the target and
the synthesized field—the synthesis is optimized on the
reference line, exhibiting a minimum of the amplitude
error along y = yref .

It should be noted here, that due to the equivalent
scattering interpretation of the SFS problem, the error
image gives the phase correct solution for the scattering
of the same moving source over y < y0 from an infinite
plane, located at y = y0, and being approximately am-
plitude correct along y = −yref .

B. Synthesis using circular SSD

Although giving an optimal solution within the context
of the SPA, with the least approximations introduced,
the linear geometry is capable of the reconstruction of
sources, only moving behind the SSD. Also the reproduc-
tion of the entire motion would require an infinite SSD.
Besides, it has been shown recently, that spatial alias-
ing artifacts— emerging due to the discrete nature of the
SSD in real-life applications–are enhanced for the straight
SSD case, resulting in unwanted frequency components
in the synthesized field12, which effects are suppressed in
case of a smooth enclosing SSD. Therefore, in the aspect
of practical applications employment of enclosing SSDs
is feasible.

The second example presents a more general scenario:
the synthesis a moving source with non-linear trajectory,
applying a non-linear enclosing SSD.

The SSD is chosen to be a circular one, with the center
located at xc = [−1, 1, 0]T and the radius of RSSD =
2 m. The virtual source oscillates at ω0 = 2π·1000 rad/m,
traveling along a exponential trajectory, with its location
given by xs = [v0t+ 1.5, ev0t/1.25 − 2.5, 0]T, where v0 =
100 m/s (the damping factor 1.25 was chosen in order to
keep the source speed below the ultrasonic region in the
time regime of investigation).

In order to demonstrate, how the synthesis can be op-
timized on an arbitrary curve, the reference curve was
chosen to be a concentric circle inside the SSD with the
radius of Rref = 1.5 m. The synthesis was performed by
the direct evaluation of (28). In this case the referenc-
ing function can be expressed from (37), using that the
referencing curve must satisfy equation

|xref − xc| = Rref . (41)

From the quadratic equation dref can be expressed ex-
plicitly exploiting that |x0 − xc| = RSSD and by taking
only the real root into consideration.

The time evolution of synthesis is presented in figure
5 in three different time instants. As it can be seen the
phase field can be reconstructed perfectly inside the SSD,
with the amplitude correct synthesis restricted on the
prescribed reference curve: the error distribution has a
minimum on the reference circle. Obviously, synthesis is
optimized on those parts of the reference curve, for which
a stationary SSD element exist, restricting the amplitude
correct synthesis to an arc, with its position depending on
the virtual source position at the emission time, and the
length of the arc depends on the distance of the virtual
source measured from the SSD.

Since investigating the spatial characteristics of the
synthesis verified that the phase of the virtual sound field
can be resynthesized over the whole listening area per-
fectly, with optimizing the amplitude distribution on an
arbitrary receiver curve at any time instant, therefore the
examination of the temporal characteristics is negligible.
The time history of a virtual source pass-by could be syn-
thesized with minimal amplitude error on any point on
the reference line in the first example, while in the sec-
ond example amplitude errors rise on the reference circle
when no stationary SSD element can be found for the
given listener position due to the actual virtual source
position.

V. AN EFFICIENT IMPLEMENTATION SCHEME:

The derivation of the driving functions, presented in
the foregoing, assumed that the source position at the
emission time instant—and the corresponding propaga-
tion delay τ—is known a-priori. The implementation of
the driving functions therefore requires the solution of
(13) for each SSD element at each time instant, which
makes real-time implementation unfeasible.

In order to decrease the computational cost of the im-
plementation a simple finite difference scheme may be
applied, by approximating τ(x, t) with its first order Tay-
lor’s approximation:

τ(x, t+ dt) = τ(x, t) + dt
d

dt
τ(x, t). (42)

The temporal derivative of τ(x, t) is given by

d

dt
τ(x, t) = τ ′(x, t) =

− 1
c 〈vs(t− τ) · (x− xs(t− τ))〉

∆(x, t− τ)
.

(43)
Therefore after choosing a proper sampling frequency
fs = 1/dt the discretized form of the field radiated by
a moving point source can be calculated at t = n · dt as

p(x, n) =
1

4π

q(n · dt− τ(x, n))

∆(n · dt− τ(x, n))
, (44)

where

τ(x, n) = τ(x, n− 1) + dt · τ ′(x, n− 1). (45)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Time evolution of the synthesis of a moving point source using a circular SSD. The snapshots were taken at t = −35 ms
(a-c), t = 0 ms (d-f) and t = 15 ms (g-i). The figures show the real part of the target sound field (a,d,g), the synthesized field
(b,e,h) and the absolute error of the synthesis (c,f,i).

Obviously, this approximation requires the solution of
(13) for τ at one time instant, e.g. at the time origin.
Once it is solved, the field can be calculated iteratively
using the above equations. Applying the iterative de-
scription makes the real-time implementation of the driv-
ing functions possible.

Figure 6 shows the result of the iterative approxima-
tion of τ(x, t) for the case of a sinusoid trajectory, pre-
sented in section IV.A, with all the simulation parameters
being the same. The time evolution of τ(x, t) is evalu-

ated at x = [0, 0, 0]T, with the sampling frequency set
to fs = 10 kHz. Numerical tests showed a high-stability
of the presented solution, with the greatest relative error
(≈ 1 %) present around the time origin, where τ(x, t)
is highly non-linear. This error can be efficiently sup-
pressed by increasing the sampling frequency. Obviously,
since all the state-variables are updated from the analyt-
ically known source position vector xs(t), therefore the
perfect tracking of the prescribed trajectory is inherently
ensured.

WFS of moving sources 8



FIG. 6. Comparison of the calculated propagation time delay
τ by the direct solution of (13) (solid line), serving as a refer-
ence solution, and by approximating with the iterative finite
difference scheme given by (45) (dotted line).

The further investigation of the stability and accuracy
of this iterative technique falls beyond the scope of the
present treatise.

VI. CONCLUSION:

The article presented the general Wave Field Synthesis
driving functions for the synthesis of a source, moving on
an arbitrary trajectory.

The derivation utilized the unified WFS theory for ar-
bitrary shaped loudspeaker ensemble, stemming from the
physical optics approximation of the Kirchhoff-Helmholtz
integral. Adapting the theory to the dynamic description
of arbitrarily moving point sources, and applying the sta-
tionary phase approximation to a properly chosen 3D ge-
ometry the 2.5D WFS driving functions were expressed
for an arbitrary SSD contour. These driving functions in-
clude the referencing function, that’s appropriate choice
allows to optimize the synthesis to an arbitrary shaped
receiver curvature, termed the reference curve. It was
shown how the SPA can be interpreted physically by tak-
ing the source dynamics into account, achieving a virtual
source-stationary secondary source wave front matching
both in the spatial and the temporal domain.

The validity of the presented WFS driving functions
was demonstrated via pathological examples with a pre-
scribed time-dependent source position function xs(t). It
was shown, that the amplitude correct synthesis can be
controlled perfectly by applying the referencing schemes,
that were proposed for stationary virtual sound field6,
with taking the virtual field dynamics into consideration.

In the aspect of practical applicability the a-priory
knowledge of xs(t) is an optimistic assumption. Instead,
more often a parametric curve is given, which the virtual
source moves along with a pre-defined velocity profile–
e.g. with constant speed—. The derivation of xs(t) from
the parametric curve and the given velocity profile is not
straightforward, it is a frequently emerging problem in
the field of e.g. computer graphics and robotics. Analyt-
ical solutions are barely available, generally numerical in-

tegration is involved in order to estimate the arc length21.
The further investigation of this topic is however out of
the scope of the present article.

The driving functions, presented relied on the a-priori
knowledge of the propagation time delay, the time, that
acoustic waves need to propagate from the source posi-
tion at the emission time to the listening position, leading
to a non-linear equation. In order to obtain a real-time
implementable driving function a finite difference solu-
tion was presented, relying on the first order Taylor’s ap-
proximation of the propagation time delay. By applying
this approach the non-linear equation has to be solved
only at a single time instant, and the driving functions
may be calculated iteratively, making real-time applica-
tions of the foregoing possible.
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