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1. Introduction
Spatial sound reproduction systems with a large number
of densely spaced loudspeakers have been the target of
research for over a decade. The aim of these systems
is to physically synthesize a desired sound �eld in an
extended listening area. Wave �eld synthesis (WFS) [1�
4] and spectral division method (SDM) [5] are two well
known analytical methods for sound �eld synthesis.

Traditional methods, like wave �eld synthesis involve
identical acoustical point sources as secondary sources
for the reproduction of the desired sound �eld. The
general theory of spectral division method gives us the
possibility to derive an analytical formulation to the case,
where directional secondary sound sources are employed
[6], as long as we suggest identical secondary sources.
However, the requirement of applying linear, continuous
distribution of identical point sources is not realizable in
practice. Typically sound �eld reproduction is realized
by using dynamic loudspeakers arranged along a line.
Obviously, real-life loudspeakers � even from the same
type � are not identical; both their temporal and spatial
characteristics are di�erent. To the author's knowledge
the e�ects of these stochastic properties have not been
investigated in details yet. The objective of the research
is to give a rigorous mathematical description of the
radiated noise and to examine if these stochastic artifacts
may have an audible e�ect on the synthesized sound �eld.

First, we present a model and a general formula that
describes the e�ect of several di�erent stochastic sources.
From all of these e�ects, the paper focuses stochastic
loudspeaker sensitivity.

2. Model for stochastic sound re-

production

General theory

The general problem arrangement can be seen in �gure 1.
The generated wave �eld is written as the sum of the wave
�elds of individual monopoles, called secondary sources,
that form the secondary source distribution. Our aim
is to �nd the secondary sources' driving function that
results in a generated �eld equal to that of the virtual
source. The term 2.5-dimensional synthesis refers to the
fact, that instead of a planar secondary source distribu-
tion � that would be needed to perfectly synthesize the
sound �eld in the listener's half space � we employ a
linear distribution of three-dimensional point sources. In
this con�guration perfect reproduction is only possible
on the reference line that is parallel to the secondary
source line. In other locations of the synthesis plane � a
horizontal plane containing the secondary source line �
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Figure 1: Geometry for the derivation of 2.5-dimensional
synthesis operator in spatial and wave number domain

amplitude errors occur.

The resulting sound �eld, generated by the secondary
source distribution on the line [x y 0]T can be written as
a convolution form:

P (x, y, ω) =

∫ ∞
−∞

Q(x− x0, ω)G(x0, y, ω)dx0, (1)

where Q(x, ω) is the driving function, while G(x, y, ω) is
the three-dimensional free-�eld Green's function. In the
z = 0 plane it is given by

G(x, y, ω) =
1

4π

e−jk
√

x2+y2√
x2 + y2

. (2)

For the sake of brevity the notation of frequency depen-
dence will be further omitted.

Traditional WFS driving function formulation was given
by Verheijen [1]. With the notation shown in �gure 1 and
for a virtual monopole at xs = [xs (−ys) 0]T the driving
function takes the form

QWFS(x) =

√
jk

2π

√
yrefy2s
yref + ys

e−jkr

r
3
2

. (3)

For the sake of simplicity the origin of the coordinate
system is chosen so that the virtual monopole is located
at xs = 0.

As it was pointed out in [5], the convolution form of the
Rayleigh integral (1) can be transformed into a spectral
multiplication, thus, the spectrum of the driving function
can be written as:

Q̃SDM(kx) =
P̃ (kx, yref)

G̃(kx, yref)
, (4)

where P̃ (kx, yref) and G̃(kx, yref) are the spectra of the
sound �eld of the virtual source and Green's function at
the origin, measured on the reference line. This is the
concept of the SDM method.



In the author's previous work it was shown that for a
virtual monopole under certain assumption the driving
functions derived by WFS and SDM can be considered
to be equal [7]. As these approximations hold for
the particular case, presented in the paper, the driving
function Q(x) may refer to a driving function derived by
any of these methods.

Modelling extended sources

In this treatise a similar treatment of extended sound
sources is used as it was given by [1]. We assume that
the extended source � the loudspeaker diaphragm � is
located at the y = 0 plane, vibrating with a normal
surface velocity Vn(x, 0, z). The radiated �eld in the
plane z = 0 can be written analytically utilizing the
Rayleigh I integral theorem, again in a convolutional
form:

P (x, y, 0) = − jρ0ck

2π
Vn(x, 0, z) ∗ ∗G(x, y, z) (5)

If the vertical size of the speaker is small compared to the
wavelength, then the radiated sound �eld can be written
as a one-dimensional convolution along the x-axis:

P (x, y, 0) ≈ G(x, y, 0) ∗ h(x), (6)

where h(x) is a low-frequency far�eld approximation of
the surface velocity function:

h(x) = − jρ0ck

2π

∫ ∞
−∞

Vn(x, 0, z)dz. (7)

From here the one-dimensional function h(x) will be
termed as spatial extension function or strength function.
Numerical simulations showed that this approximation
holds well to 2-3 kHz frequency range besides about 0.1-
0.2 m diaphragm diameter. Using the approximation the
reconstructed sound �eld of a virtual monopole can be
written as

P (x, y) = Q(x) ∗ h(x) ∗G(x, y, 0). (8)

Note, that here the discretization of the secondary
source distribution is omitted. It could be treated
analytically by sampling the Q(x) driving function before
the convolution.

To examine, how the extension function varies as the
function of diaphragm geometry and frequency a me-
chanical �nite element model was created. Simulation
was carried out for a simple loudspeaker model with a
polypropylene diaphragm, driven with the force exerted
by the voice coil. The membrane parameters, material
properties and dimensions were taken from related re-
search [8, 9].

The simulation results were used to approximate the
extension function h(x) by evaluating equation (7) at
1 kHz. The resulting function is shown in �gure 2.

Modelling extended stochastic sources

So far we considered sound sources with deterministic
properties. Obviously, real-life speakers always have
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Figure 2: (a) Excursion amplitude of the FEM loudspeaker
model and (b) spatial extension function, calculated
numerically at 1 kHz

slightly di�erent characteristics, even if they are of the
same type. In the present work we take two stochastic
components into consideration:

• Stochastic sensitivity models that each loudspeakers
have slightly di�erent electro-mechanical transducer
gain, depending on electrical, magnetic and mechan-
ical properties. The sensitivity noise can be modeled
as an additive noise ns(x) to the nominal sensitivity.
If the sensitivity is normalized, then the resulting
noisy driving function can be written as:

Qn(x) = Q(x)(1 + ns(x)) = Q(x) +Q(x)ns(x), (9)

The result shows that sensitivity noise acts as a
multiplicative noise on the driving function.

• Mechanical anisotropy is introduced to model the
stochastic e�ects originating from surface rugosity,
space dependent material properties and modal be-
havior. As these components will directly a�ect the
surface velocity function, they can be treated as
an additive noise nm(x, τ) to the extension function
h(x):

hn(x) = h(x) + sup(h(x)) (nm(x, τ)) . (10)

where dependency on variable τ indicates the di�er-
ent realizations on di�erent source elements.

Substitution of the noisy driving function and extension
function into equation (8) reveals that the radiated �eld
can be written as the sum of four components:

• the ideal noiseless sound �eld of the virtual source

• radiated noise resulting from stochastic sensitivity

• radiated noise resulting from the mechanical noise

• a combined e�ect of the two noise components

The �nal aim of the research is the analytical description
of all noise components. In the present paper from now
we focus our investigation on the e�ects of stochastic
sensitivity.

3. Investigation of the e�ects of

stochastic sensitivity
In the current section we investigate the properties of
the radiated noise for the case of a synthesized virtual
monopole.



Figure 3: Real value of the radiated noise: Re {N(x, y)}

As most physical random processes, the sensitivity noise
is in�uenced by many random parameters, thus its
distribution can be considered to be Gaussian: ns(x) ∈
N (0, σ2

s ). It is obvious, that the sensitivity noise is
uncorrelated, since there's no dependency between the
sensitivity of di�erent source elements. The autocorre-
lation of this component is therefore Rnsns

(τ) = σ2
s δ(τ).

It can be easily proven that the resulting multiplicative
noise component n′s(x) = Q(x)ns(x) (from equation (9))
is a non-stationary white noise with the autocorrelation
function Rn′sn

′
s
(x, τ) = |Q(x)|2δ(τ).

Autocorrelation function of the radiated

noise

From equation (8), the radiated noise, originating from
the stochastic sensitivity can be written as:

N(x, y) = n′s(x) ∗ (h(x) ∗G(x, |y|)) (11)

In the frequency range of interest (f < 1.5 kHz) it
is feasible to assume that the support of the source
extension function is smaller than the wavelength of the
Green's function. In this case as a far�eld approximation
the frequency shaping e�ect of the linear �ltering may be
omitted, therefore

h(x) ∗G(x, y) ≈ EhG(x, y), (12)

where Eh =
∫∞
−∞ h(x)dx. Numerical simulations, carried

out utilizing the FEM loudspeaker model also con�rmed
the validity of this approximation.

Applying the approximation, the autocorrelation func-
tion of the radiated noise can be written by de�nition:

RNN (x, y, ξ, ν) = σ2
sE

2
h

∫ ∞
−∞

G(x− τ, y)

G(x− τ − ξ, y − ν)|Q(τ)|2dτ. (13)

Due to the complexity of the expression the analytic
investigation has not been carried out yet.

In �gure 3 the real value of the radiated noise can be seen,
which simulation was carried out by evaluating equation
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Figure 4: Comparison of analytical and simulated intensity
IN (x, y) on reference line

(11) over the whole listening area for a virtual source,
located 1 m behind the secondary array, radiating at
1 kHz. The simulation result suggests that there's a
strong radial correlation into the direction of a virtual
sound source, however studying maximum correlation
direction of the �eld described by equation (13) is the
topic of a future research. The exact position of this
virtual source is studied in the following subsection.

Intensity of radiated noise

Besides the autocorrelation function the intensity distri-
bution function is an important � maybe more informa-
tive � property of the radiated noise as it is comparable
to the energy of the ideal, noiseless synthesized �eld.

The intensity function of the radiated noise from equa-
tion (13) can be written as

IN (x, y) = RNN (x, y, 0, 0) = σ2
sE

2
h|G(x, y)|2 ∗ |Q(x)|2.

(14)
The convolution can be carried out by means of far�eld
approximations in spectral domain. Here without deriva-
tion, the resulting intensity function is found to take the
form:

IN (x, y) = σ2
sE

2
h

2
3ys + y

ys + yref

yref
y

k/π

r′2
. (15)

where r′ =
√
x2 + (yref +

2
3ys)

2. The expression is even

simpler on the reference line:

IN (x, yref) = σ2
sE

2
h

(
1−

1
3ys

ys + yref

)
k/π

r′2
. (16)

Figure 4 compares the above result with an appropriate
Monte Carlo simulation. It can be stated that there is
a good match between simulated and analytical average
intensity over a large parameter range.

By investigating the analytical formulation of intensity
it can be noted that r′ gives the distance between
points of the reference line and a point source, located
at (0,− 2

3ys, 0), therefore, it is closer to the secondary
source distribution than the original virtual point source,
located at (0,−ys, 0). In other words the equation
states that the intensity of the noise, radiated from the
secondary sources due to the stochastic sensitivity �uctu-
ates around the intensity of the sound �eld, generated



by a phantom source, located closer to the secondary
source distribution by a factor of 1

3 , radiating on the
same frequency as the virtual source. The rate of
oncoming of the virtual source to the secondary source
line is speci�ed by the driving function, thus the present
approaching originates from the 2.5-dimensional driving
function correction.

We may de�ne the relative noise intensity (or noise-to-
signal ratio) as the ratio of noise intensity and intensity of
the �eld of the virtual source. The driving function was
derived so that the synthesis is perfect on the reference
line. Applying the same approximations as before and
utilizing interchangeability of extensions of the secondary
source and the virtual source [7], the �eld of the virtual

source on the reference line reads P (x, yref) = Eh
e−jkr

r .
From this, the noise-to-signal ratio is expressed as

Irel(x) = 10lgσ2
s

( 2
3ys + yref

ys + yref

)
k

π

( r
r′

)2
, (17)

where r =
√
x2 + (ys + yref)2. The result states that

the relative noise intensity is the largest in front of the
virtual sound source (x = 0), while in lateral positions
the noise intensity is approximately proportional to the
target sound �eld. The maximum of the relative noise
intensity is given by:

Irel,max = 10lgσ2
s

(
ys + yref
2
3ys + yref

)
k

π
(18)

As an example let's investigate the synthesis of the sound
�eld of a point source radiating at 1 kHz. For the sake of a
real-life example the standard deviation from the nominal
sensitivity was measured for Behringer Truth B2030A
studio monitors, for which the result was σs = 7 %.
As the term, containing ys and yref varies in the [1, 32 ]
interval, the maximal relative intensity of the phantom
source will be between −15 and −13 dB. The audibility
of such a phantom source in the presence of the ideal
synthesized sound �eld of the original virtual source is
the topic of a further research.

4. Conclusion
In the present contribution a treatise on stochastic sound
�eld reproduction was given. In the presented model
spatially extended source elements were considered as
secondary source elements. Extending the traditional
model we also took the stochastic properties of real-life
sound sources into consideration. From all of the modeled
noise components, stochastic loudspeaker sensitivity was
examined in details.

For the intensity of the radiated noise � by simplifying
the general autocorrelation formula at zero space lag
� a well-usable analytic formula can be given. It was
shown, that the relative noise intensity � compared to
the �eld of the noiseless virtual source � is proportional
to the energy of the sensitivity noise and to the examined
frequency. The main �nding of the research was that the
radiated noise seems to originate from a point source with

a stochastic directivity, slightly closer to the secondary
source distribution that the original virtual source. The
approaching factor 2

3 is a direct consequence of the 2.5-
dimensional correction of the WFS driving function. The
virtual source position mismatch due to driving functions
belonging to di�erent secondary source distribution is
still an open question.

In the present proceeding only a part of the research
treating stochastic sound �eld synthesis was presented.
Giving a mathematical formulation for the mechanical
noise and the evaluation of the combined e�ect of
sensitivity noise and mechanical noise is the topic of
future work. Besides this, the sensitivity noise can
be considered frequency dependent. To investigate the
e�ects of the sensitivity noise in case of synthesizing wave
fronts emitted by virtual sources time domain analysis is
needed. This aspect of examination is also yet to be
carried out.
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