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ABSTRACT

Sound field reproduction (including wavefield synthesis and spectral division method) is a state-of-the-art
technique, aiming to physically reproduce an arbitrary sound field, usually generated by a virtual sound
source. To achieve this, densely spaced loudspeaker array, termed as secondary source distribution is
driven by a driving function derived either in spatial or spectral domain.

The synthesis is usually modelled as reproduction, applying continuous point source distribution.
However, practial realization applies extended vibrating surfaces (e.g dynamic loudspeaker), exhibiting
stochastic properties. In this contribution we give a treatise on the synthesis applying extended secondary
sources. Stochastic behaviour is modelled as additive noise on source extension function and on the
driving function. The proposed model can incorporate the effect of stochastic speaker sensitivity, surface
rugosity, mechanical anisotropy and stochastic modal behaviour.

It is investigated, how the different stochastic properties contribute to the radiated sound field. Based
on the sensitivity of human auditory system it is examined, how the stochastic behaviour of the sec-
ondary sources influences the localization of the synthesized virtual sound source. Besides analytical
examination the results of Monte Carlo simulations are presented.

1 INTRODUCTION

Sound reproduction methods, applying a large number of densely spaced loudspeakers have been the
target of research for over a decade. The aim of these techniques is to physically synthesize a desired
sound field over an extended listening area. Well known approaches in this context are wave field synthe-
sis (WFS) [1, 2, 3], spectral division method (SDM) [4, 5] and higher-order Ambisonics (HOA) besides
numerous numerical approaches.

Traditional techniques, like WFS and SDM involve identical acoustical point sources along an in-
finite line as secondary source distribution for the reproduction of the desired sound field. The general
theory of spectral division method gives us the possibility to derive an analytical formulation to the case
where directional secondary sound sources are employed, as long as we suggest identical secondary
sources [6]. Secondary source directivity can be adapted also to the theory of wave field synthesis within
the limits of the stationary phase approximation, still, assuming identical source elements [7]. However,
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the requirement of applying linear, continuous distribution of identical point sources is barely fulfilled
in practice. Typically sound field reproduction is realized by using electrodynamic or electrostatic loud-
speakers arranged along a line, thus realizing distribution of acoustical monopoles or dipoles.

Obviously, real-life loudspeakers – even from the same type – are not identical; both their temporal
and spatial characteristics are different. These random differences can be treated as stochastic transducer
characteristics. To the author’s knowledge the effects of the stochastic properties have not been investi-
gated in details yet. The objective of the research is to give a rigorous mathematical description of the
radiated noise and to examine if these stochastic artifacts may have an audible effect on the synthesized
sound field.

In the present paper after a short overview on the theoretical basis of sound field reproduction we
present a synthesis model, using deterministic, then stochastic extended secondary source elements.
Two main stochastic components are taken into consideration: stochastic loudspeaker sensitivity origi-
nating from stochastic electric and electrodynamic parameters of the transducer, and mechanical noise
representing stochastic mechanical material properties. These latter effects are also investigated using
mechanical finite element simulations carried out for a typical electrodynamic loudspeaker model. It is
investigated, how these two noise components influence the synthesized sound field of a virtual point
source.

2 THEORETICAL OVERVIEW

2.1 Theory of sound field reproduction

In this section a short overview is given on the theory of sound field reconstruction, focusing mainly
on the wave field synthesis, as in the latter investigation the traditional wave field synthesis driving
functions are used. However, as it was pointed out in the author’s previous work by applying farfield-
approximations to spectral division method, the SDM and WFS can be treated equivalent [8].

The general problem arrangement can be seen in figure 1. In this configuration the generated wave
field can be written as the sum of the wave fields of individual monopoles, called secondary sources, that
form the secondary source distribution. Our aim is to find the secondary sources’ driving function that
results in a generated field equal to that of the virtual source. The resulting sound field, generated by the
secondary source distribution on the line [x 0 0]T can be written as a convolution form:

P (x, y, ω) =

∫ ∞
−∞

Q(x0, ω)G(x− x0, y, ω)dx0, (1)

where Q(x, ω) is the driving function, while G(x, y, ω) is the three-dimensional free-field Green’s func-
tion [9]. In the z = 0 plane it is given by

G(x, y, ω) =
1

4π

e−jk
√

x2+y2√
x2 + y2

. (2)

For the sake of brevity the notation of frequency dependence will be further omitted.
The mathematical basis of traditional WFS is the Rayleigh I integral, a special case of Kirchhoff-

Helmholtz integral formula [10, 11]. The Rayleigh integral describes the wave field of an infinite plane
radiating to the infinite halfspace, so the Sommerfeld radiation condition is fulfilled. In the aspect of
WFS, the Rayleigh I integral states that the pressure field of a virtual source behind an infinite plane
can be synthesized in front of the plane with a planar monopole distribution, driven with two times the
normal velocity component created by the virtual source on the plane.

Practical implementations of wave field synthesis employ loudspeakers located along a horizontal
line instead of a plane. This is termed as 2.5-dimensional synthesis. In this configuration perfect re-
production is only possible on the reference line that is parallel to the secondary source line. In other
locations of the synthesis plane – a horizontal plane containing the secondary source line – amplitude
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Figure 1: Geometry for the derivation of 2.5-dimensional synthesis operator in spatial and wave number
domain

errors occur. Traditional WFS 2.5-dimensional driving function formulation was given by e.g. Verheijen,
applying the stationary phase approximation to the Rayleigh I integral [1]. With the notation shown in
figure 1 and for a virtual monopole at xs = [xs (−ys) 0]T the driving function takes the form

QWFS(x) =

√
jk

2π

√
yrefy2

s

yref + ys

e−jkr

r
3
2

. (3)

For the sake of simplicity the origin of the coordinate system is chosen so that the virtual monopole is
located at xs = 0.

As it was pointed out in [4], the convolution form of the Rayleigh integral (1) can be transformed
into a spectral multiplication, thus the spectrum of the driving function can be written as

Q̃SDM(kx) =
P̃ (kx, yref)

G̃(kx, yref)
, (4)

where P̃ (kx, yref) and G̃(kx, yref) are the spectra of the sound field of the virtual source and the Green’s
function at the origin, measured on the reference line. This is the concept of the SDM method.

2.2 Modelling Extended Sources

In this treatise a similar treatment of extended sound sources is used as it was given by [1]. We assume
that the extended source – the loudspeaker diaphragm – is located at the y = 0 plane, vibrating with
a normal surface velocity Vn(x, 0, z). The radiated field in the plane z = 0 can be written analytically
utilizing the Rayleigh I integral theorem, again in a convolutional form:

P (x, y, 0) = − jρ0ck

2π
Vn(x, 0, z) ∗ ∗G(x, y, 0) (5)

If the vertical size of the speaker is small compared to the wavelength, then the kernel of the convo-
lution (the Green’s function) can be made independent of the z-dimension and the radiated sound field
can be written as a one-dimensional convolution along the x-axis:

P (x, y, 0) ≈ h(x) ∗G(x, y, 0), (6)

where h(x) is a low-frequency farfield approximation of the surface velocity function:

h(x) = − jρ0ck

2π

∫ ∞
−∞

Vn(x, 0, z)dz. (7)
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Figure 2: (a) Amplitude of excursion of the FEM loudspeaker model and (b) spatial extension function,
calculated numerically at 1 kHz

From here the one-dimensional function h(x) will be termed as spatial extension function or strength
function. Numerical simulations showed that this approximation holds well to the frequency range of
2-3 kHz besides about the diaphragm diameter of 0.1-0.2 m.

Using the approximation and by utilizing the associative property of convolution, the reconstructed
sound field of a virtual monopole can be written as

P (x, y) = Q(x) ∗ h(x) ∗G(x, y, 0), (8)

where Q(x) is the reconstruction driving function, derived either by WFS or SDM technique.
Note, that the discretization of the secondary source distribution is omitted here. This means that

the synthesis could be interpreted physically as synthesis using overlapping loudspeaker distribution.
Naturally it is not a realizable condition, yet it makes the mathematical description less complicated. The
application of non-overlapping loudspeaker array could be treated analytically by sampling the driving
function Q(x) before the convolution with the loudspeaker extension function.

To examine how the extension function varies as the function of diaphragm geometry and frequency a
mechanical finite element model was created. Simulation was carried out for a simple loudspeaker model
with a polypropylene diaphragm, with the diameter of 13 cm – which is a feasible size in the aspect of
wave field synthesis – driven with the force exerted by the voice coil. The membrane parameters, material
properties and dimensions were taken from related research [12].

The simulation results were used to approximate the extension function h(x) by evaluating equation
(7) at 1 kHz. The resulting function is shown in figure 2.

3 MODEL FOR STOCHASTIC EXTENDED SOURCES

So far we considered sound sources with deterministic properties. Obviously, real-life speakers always
have slightly different characteristics, even if they are of the same type. The main objective of the
present work is to investigate how these stochastic properties influence the radiated sound field described
by equation (8). In the present section we take two stochastic components into consideration:

• Stochastic sensitivity models that each loudspeaker has slightly different electromechanical trans-
ducer gain, depending on electrical, magnetic and mechanical properties. The sensitivity noise can
be modeled as an additive noise ns(x) to the nominal sensitivity. If the sensitivity is normalized,
then the resulting noisy driving function can be written as:

Qn(x) = Q(x)(1 + ns(x)) = Q(x) +Q(x)ns(x), (9)
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The result shows that sensitivity noise acts as a multiplicative noise on the driving function.

• Mechanical anisotropy is introduced to model the stochastic effects originating from surface ru-
gosity, space dependent material properties, such as material density or stiffness. As these compo-
nents will directly affect the surface velocity function, they can be treated as an additive noise on
the extension function h(x):

hn(x) = h(x) + I(x)nm(x, τ), (10)

with a yet unknown intensity function, and where dependency on variable τ indicates the different
realizations on different source elements.

Substitution of the noisy driving function and extension function into equation (8) reveals that the
radiated field can be written as the sum of four components:

• the ideal noiseless sound field of the virtual source: Q(x) ∗ h(x) ∗G(x, y, 0)

• radiated noise resulting from stochastic sensitivity: Q(x)ns(x) ∗ (h(x) ∗G(x, y, 0))

• radiated noise resulting from the mechanical noise: (Q(x) ∗ I(x)nm(x, τ)) ∗G(x, y, 0)

• a combined effect of the two noise components: Q(x)ns(x) ∗ I(x)nm(x, τ) ∗G(x, y, 0)

In the followings it is investigated, how the intensity of these radiated noise components is distributed in
the listener’s plane.

4 EFFECTS OF STOCHASTIC SENSITIVITY

In the current section we investigate the properties of the radiated noise, originating from stochastic sen-
sitivity for the case of a synthesized virtual monopole with special attention to the intensity distribution
over the listener’s plane.

As most physical random processes, the sensitivity noise is influenced by many random parame-
ters, thus its distribution can be considered to be Gaussian: ns(x) ∈ N (0, σ2

s ). It is obvious, that the
sensitivity noise is uncorrelated, since there’s no dependency between the sensitivity of different source
elements. The autocorrelation of this component is therefore Rnsns(τ) = σ2

s δ(τ). It can be easily
proven that the resulting multiplicative noise component n′s(x) = Q(x)ns(x) (from equation (9)) is a
non-stationary white noise with the autocorrelation function Rn′

sn
′
s
(x, τ) = σ2

s |Q(x)|2δ(τ).
From equation (8) the radiated noise, originating from the stochastic sensitivity can be written as

Ns(x, y) = n′s(x) ∗ (h(x) ∗G(x, y)) = n′s(x) ∗
∫ ∞
−∞

h(x− x0)G(x0, y)dx0. (11)

Here the filtered Green’s function describes one extended element of the secondary source distribution.
In the frequency range of interest (f < 1.5 kHz) it is feasible to assume that the support of the source
extension function is smaller than the wavelength of the Green’s function, so that over its supportG(x, y)
is approximately constant. Clearly, this approximation is valid at low frequencies, in the far-field of
the secondary source distribution, especially in front of the virtual sound source (at x = xs), where
the Green’s function is stationary. Using the assumption the convolution can be transformed into a
multiplication and by denoting the integral of the spatial extension function by Es =

∫∞
−∞ h(x)dx the

filtered Green’s function reads
h(x) ∗G(x, y) ≈ EsG(x, y). (12)

Numerical simulations, carried out by utilizing the FEM loudspeaker model also confirmed the validity
of this approximation. As a result the radiated noise is written as

Ns(x, y) = Es

∫ ∞
−∞

Q(τ)ns(τ)G(x− τ, y)dτ. (13)
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Figure 3: (a) Comparison of simulated and analytical cm approaching factor and (b) intensity of the
radiated noise, with simulation parameters: ys = 0.5 [m], yref = 1 [m], y = 1.5 [m], σs = 1, (cm =
0.324)

We are interested in the intensity distribution of the radiated noise, which is by definition IN (x, y) =
E
(
|N(x, y)|2

)
. It can be easily proven that the intensity distribution is

INs(x, y) = σ2
sE

2
s |Q(x)|2 ∗ |G(x, y)|2. (14)

The convolution can be carried out analytically, the derivation can be found in the appendix. As a
final result we obtain

INs(x, y) = σ2
sE

2
s

cmys + y

ys + yref

yref

y

k/π

r′2
, (15)

where r′ =
√
x2 + (y + cmys)2 and

cm(ys, y) ≈ 0.63
2

π
atan

(
π
ys
y

)
. (16)

It is important to note that for a fixed listener position y the intensity function (15) describes the
intensity of the sound field of a point source. This phantom source is located closer to the secondary
source than the original virtual point source. The actual approaching factor of the phantom source to
the secondary source array, denoted by cm varies as the function of the listener position and the virtual
source position from a factor of 0 to about 0.63: far from the secondary source distribution, the position
of the phantom source gets close to the secondary source line.

In figure 3 (b) the result of Monte Carlo simulations is shown, comparing the average intensity of
the radiated noise, evaluating equation (11) directly with different noise realizations and the result of
analytical formulation, given by (15). The simulation were carried out by averaging 5000 realizations.
As it can be seen the analytical approximation of the average radiated intensity shows a very good match
with the results of the Monte Carlo simulations.

5 EFFECTS OF THE MECHANICAL NOISE

In the followings the direct effects of the stochastic mechanical properties of secondary sources are
investigated.

As it was already pointed out, the noise originating from mechanical anisotropy may be regarded as
an additive noise to the loudspeaker extension function. To gain insight into the properties of the me-
chanical noise stochastic mechanical properties were added to the mechanical FEM loudspeaker model.
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As the part of investigation slightly varying material density was assumed by adding exponentially corre-
lated Gaussian noise to the mass matrix. Correlated, periodic noise was also added to the stiffness matrix
for the suspension elements, symbolizing slightly varying suspension stiffness. Figure 4 (a) shows one
realization of the additive noise to the loudspeaker material density.

Monte Carlo simulations were carried out, evaluating the resulting loudspeaker surface velocity and
calculating the one-dimensional loudspeaker extension function by direct evaluation of equation (7).
By performing 500 simulations for different noise realization it was found, that the mechanical noise
– denoted by nm(x, τ) – is non-stationary, with the intensity function proportional to the extension
function, thus

h′(x) = h(x) + h(x)nm(x, τ), (17)

and its autocorrelation function is described by Rnmnm(x, τ) = Rnmnm(x)δ(τ), meaning that the noise
is uncorrelated among the different loudspeakers. The average intensity of the mechanical noise can be
seen in figure 4 (b).

Properties of the radiated noise:
The radiated noise can be calculated from the convolution

Nm(x, y) = (h(x)nm(x, τ) ∗Q(x)) ∗G(x, y, 0) = G(x, y) ∗
∫ ∞
−∞

Q(τ)h(x− τ)n(x− τ, τ)dτ. (18)

In the integral the kernel of convolution – the non-stationary noise – changes continuously with the con-
volution spatial shift, which indicates that there’s a different noise realization on each element of the sec-
ondary source distribution. This means that the radiated field is obtained as the result of a non-stationary
convolution. For non-stationary convolution the associative property of stationary convolution does not
hold, meaning that in order to obtain a correct result convolutions have to be carried out sequentially.

In the equation n′m(x) =
∫∞
−∞Q(τ)h(x − τ)n(x − τ, τ)dτ results in one noise realization, as an

additive noise on the driving function Q(x). The intensity of this noise can be expressed analytically (by
exploiting that the noise is uncorrelated in direction τ ):

In′
m
(x) = σ2

m|Q(x)2| ∗ |h(x)|2, (19)

where σ2
m = Rmm(0) is the standard deviation of the original mechanical noise, infused into the FEM

model. Here function |Q(x)|2 is a smooth function of x, thus it is feasible to suggest that it is approxi-
mately constant over the interval, specified by the support of |h(x)|2, therefore the same approximation
can be applied as it was given in the previous section:

In′
m
(x) = σ2

mE
2
m|Q(x)2|, (20)
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Figure 4: (a) Additive noise loudspeaker material density (b) Intensity of resultant additive noise on the
extension function h(x) at 100 Hz
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Figure 5: (a) One realization of radiated noise, originating from the mechanical noise and (b) intensity of
the radiated noise, with simulation parameters: ys = 1 [m], yref = 1 [m], y = 1 [m], σs = 1 (cm = 0.4)

where E2
m =

∫∞
−∞ |h(x)|

2dx. Note that whilst in the previous section E2
s was the square of the average

value of the loudspeaker extension function, here E2
m is the total energy of the function, thus E2

m ≥ E2
s

holds.
It can be proven, that the autocorrelation function of n′m(x) is specified by h(x), so that the supports

of the two functions are equal. As the autocorrelation function is of small support, it is feasible to
approximate the noise as a non-stationary white noise: Rn′

mn′
m
(x, τ) ≈ σ2

mE
2
m|Q(x)2|δ(τ).

Using this, the radiated noise can be written as:

Nm(x, y) = G(x, y) ∗ n′m(x). (21)

For the equation the same procedure can be carried out as it was shown in the previous section for
sensitivity noise and finally the intensity of radiated noise, similarly to that of the sensitivity noise reads:

INm(x, y) = σ2
mE

2
m|Q(x)2| ∗ |G(x, y)|2. (22)

The analytic expression for the radiated intensity can be given in the same manner as for the sensitivity
noise, given in the appendix, thus for the average intensity distribution the following final result was
obtained:

INm(x, y) = σ2
mE

2
m

cmys + y

ys + yref

yref

y

k/π

r′2
, (23)

where r′ =
√
x2 + (y + cmys)2 and cm is given by equation (16).

The result indicates that not only the noise due to the stochastic sensitivity, but also the mechanical
noise seems to originate from a phantom source, located closer to the secondary source distribution. In
figure 5 (a) one realization of the radiated mechanical noise can be examined, while figure 5 (b) depicts
the comparison of the result of Monte Carlo simulation and the analytical formula (23) for the average
radiated noise intensity. As it can be seen, again a very good match can be observed, meaning that the
assumptions made for the approximations are correct over a wide parameter range.

6 CONCLUSION

In the present contribution a treatise on stochastic sound field reproduction was given. In the presented
model spatially extended source elements were considered as secondary source elements, modeling real-
life loudspeakers. Extending the traditional model we also took the stochastic properties of real-life
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sound sources into consideration. Here stochastic loudspeaker sensitivity and stochastic mechanical
properties were examined in details.

For the intensity of the radiated noise originating from the stochastic sensitivity and stochastic ma-
terial properties an analytic formula can be given. For the sake of finding a closed form for the average
intensity of the radiated noise a well-usable approximation was given for the modified Bessel-function,
applying exponential function with a varying exponent.

The main finding of the research was that the radiated noise components seem to originate from a
point source with a stochastic directivity, closer to the secondary source distribution than the original
virtual source. The approaching factor is not constant, it is the function of the original virtual source
position and the listener’s position. For this approaching function an analytic approximation was given,
obtained by numerical error minimization.

In the present proceeding only a part of the research, treating stochastic sound field synthesis was
presented. Giving a mathematical formulation for the combined effect of sensitivity noise and mechanical
noise is the topic of a future work. Besides this, both the sensitivity noise and mechanical noise can
be considered to be frequency dependent. To investigate the effects of the sensitivity noise in case of
synthesizing wave fronts emitted by virtual sources time domain analysis is needed. This aspect of
examination is also yet to be carried out.
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APPENDIX

Evaluation of convolution for the radiated noise:
In equation (14) energy of the three-dimensional Green’s function and the 2.5-dimensional driving

functions are:

|G(x, y)|2 =
1

16π2

1

x2 + y2
, |Q(x, y)|2 =

k

2π

yrefy
2
s

ys + yref

1

(x2 + y2
s)

3
2

. (24)

The convolution was carried out in the spectral domain, as due to the properties of Fourier-transform:

INs(kx, y) = σ2
sE

2
hFx

(
|Q(x, y)|2

)
Fx

(
|G(x, y)|2

)
, (25)

where x and kx are Fourier-transform pairs.
Here, without derivation the required Fourier-transforms are

Fx

(
|G(x, y)|2

)
=

√
π

2

e−y|kx|

y
, Fx

(
|Q(x)|2

)
=

k√
2π3

yrefys
ys + yref

|kx|K1(ys|kx|), (26)

where K1() is the modified Bessel function of the second kind.

Approximation of the modified Bessel function:
In order to carry out the inverse Fourier-transform of equation (25) analytically, the Bessel function is

approximated by an exponential function:

ys|kx|K1(ys|kx|) ≈ e−cys|kx| (27)

The error term was defined so that the error of the spectral product was taken into consideration:

ε(kx, c) =

∣∣∣∣∣
∫ ∞
−∞
|G(kx, y)|2

(
|kx|K1(ys|kx|)−

e−cys|kx|

ys

)
dkx

∣∣∣∣∣ . (28)

Note that this error definition will ensure minimal error in front of the virtual sound source, at x = 0, as
the integral part is the definition of the inverse Fourier transform of the error term at x = 0. The error
term was minimized numerically by calculating parameter c, for which: min (ε(kx, c)) = ε(kx, cm) ≈ 0.
It was found that the constant cm at which the expression takes its minimum value is a function of ratio
ys
y .

The result of numerical estimation of cm is shown in figure 3 (a) with continuous blue line. An
analytical approximation of this function was found, shown in the figure by red dashed line:

cm(ys, y) ≈ 0.63
2

π
atan

(
π
ys
y

)
. (29)

Using the approximation the spectrum of the squared energy of the driving function is written as:

Fx

(
|Q(x)|2

)
≈ k√

2π3

yref

ys + yref
e−cmys|kx|, (30)

where cm is given by equation (29).

Evaluation of the radiated noise intensity:
Using the aforementioned, the spectrum of the intensity of the radiated noise can be given by

INs(kx, y) = σ2
sE

2
s

k

2π

yref

ys + yref

e−|kx|(y+cmys)

y
. (31)

The inverse Fourier-transform can be carried out by utilizing the definite integral of exponential func-
tions. By introducing r′ =

√
x2 + (y + cmys)2, as a final result for the average intensity distribution we

obtain

INs(x, y) = σ2
sE

2
s

cmys + y

ys + yref

yref

y

k/π

r′2
. (32)
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Evaluation of filtered mechanical noise correlation:
As we could see in the related section the mechanical noise acts as a non-stationary additive noise on

the driving function, described by the non-stationary convolution:

n′m(x) =

∫ ∞
−∞

Q(τ)h(x− τ)nm(x− τ, τ)dτ. (33)

By definition, the autocorrelation function is written as Rn′
mn′

m
(x, ξ) = E (n′m(x)n′m(x− ξ)) :

Rn′
mn′

m
(x, ξ) = E

( ∫ ∞
−∞

Q(τ1)h(x− τ1)nm(x− τ1, τ1)dτ1∫ ∞
−∞

Q(τ2)h(x− τ2 − ξ)nm(x− τ2 − ξ, τ2)dτ2

)
. (34)

By changing the sequence of integration and expectation, and by applying that the expected value of a
deterministic function is the function itself:

Rn′
mn′

m
(x, ξ) =

∫ ∞
−∞

∫ ∞
−∞

Q(τ1)Q(τ2)h(x−τ1)h(x−τ2−ξ)E (nm(x− τ1, τ1)nm(x− τ2 − ξ, τ2)) dτ1dτ2.

(35)
by definition: E (nm(x− τ1, τ1)nm(x− τ2 − ξ, τ2)) = Rnmnm(τ2 − τ1 + ξ, τ1 − τ2) :

Rn′
mn′

m
(x, ξ) =

∫ ∞
−∞

∫ ∞
−∞

Q(τ1)Q(τ2)h(x−τ1)h(x−τ2−ξ)Rnmnm(τ2−τ1+ξ, τ1−τ2)dτ1dτ2. (36)

We know that the autocorrelation of the original mechanical noise is a Dirac function in its second
dimension:

Rn′
mn′

m
(x, ξ) =

∫ ∞
−∞

∫ ∞
−∞

Q(τ1)Q(τ2)h(x−τ1)h(x−τ2−ξ)Rnmnm(τ2−τ1+ξ)δ(τ1−τ2)dτ1dτ2. (37)

We may exploit the sifting property of the Dirac function, thus integration according dτ1 will sift out the
value of integrand at τ1 = τ2 = τ :

Rn′
mn′

m
(x, ξ) =

∫ ∞
−∞

Q(τ)Q(τ)h(x− τ)h(x− τ − ξ)Rnmnm(ξ)dτ. (38)

Rn′
mn′

m
(x, ξ) = Rnmnm(ξ)

∫ ∞
−∞
|Q(τ)|2h(x− τ)h(x− τ − ξ)dτ. (39)

We may use the denotation h′(x, ξ) = h(x)h(x− ξ), so the autocorrelation will read:

Rn′
mn′

m
(x, ξ) = Rnmnm(ξ)|Q(x)|2 ∗ h′(x, ξ). (40)

We know, that h(x) = 0, if x 6∈ [−L
2 ;

L
2 ], thus the support of the extension function is L, the diameter

of the loudspeaker. It means that function h′(x, ξ) = h(x)h(x− ξ) ≡ 0 if ξ 6∈ [−L;L], while in region
ξ ∈ [L;L] the maximum (and the energy) of the function h′(x, ξ) decays rapidly with increasing space
lag ξ.

As this will also mean thatRn′
mn′

m
(x, ξ) ≡ 0, if |ξ| > L the correlation lenght of the noise realization

is small, thus it is feasible to substitute the weakly correlated noise with a non-stationary white noise, so
that

Rn′
mn′

m
(x, ξ) = Rnmnm(0)|Q(x)|2 ∗ |h(x)|2δ(ξ). (41)

By utilizing that |h(x)|2 is of small support the convolution can be transformed into a multiplication: by
denoting |h(x)|2 = E2

m and σ2
m = Rnmnm(0) the equation reads:

Rn′
mn′

m
(x, ξ) = σ2

mE
2
m|Q(x)|2δ(ξ). (42)
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