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DSP-based correction of loudspeaker and room responses is becoming an important part of improving sound reproduction. Such
response equalization (EQ) is based on using a digital filter in cascade with the reproduction channel to counteract the response
errors introduced by loudspeakers and room acoustics. Several FIR and IIR filter design techniques have been proposed for equal-
ization purposes. In this paper we investigate Kautz filters, an interesting class of IIR filters, from the point of view of direct least
squares EQ design. Kautz filters can be seen as generalizations of FIR filters and their frequency-warped counterparts. They pro-
vide a flexible means to obtain desired frequency resolution behavior, which allows low filter orders even for complex corrections.
Kautz filters have also the desirable property to avoid inverting dips in transfer function to sharp and long-ringing resonances
in the equalizer. Furthermore, the direct least squares design is applicable to nonminimum-phase EQ design and allows using a
desired target response. The proposed method is demonstrated by case examples with measured and synthetic loudspeaker and
room responses.
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1. INTRODUCTION

Equalization of audio reproduction using digital signal pro-
cessing (DSP), such as improving loudspeaker or combined
loudspeaker-room responses, has been studied extensively
for more than twenty years [1–8]. Availability of inexpensive
DSP processing power almost in any audio system makes it
desirable and practical to correct the response properties of
analog and acoustic parts by DSP. The task is to improve the
system response of a given reproduction channel towards the
ideal one, that is, flat frequency response and constant group
delay.

It is now commonly understood that this equalization
should be done carefully, taking into account physical, sig-
nal processing, and particularly psychoacoustic criteria. An
ideal equalizer, that is, the inverse filter of a given system
response, works only in offline simulations [6]. Even for
a point-to-point reproduction path, minor nonstationar-
ity of the path and limitations in response measurement
accuracy make ideal equalization impossible. Furthermore,
monophonic reproduction has to be usually considered as a
SIMO (single-input multiple-output) system since the signal

may be received in different points, whereas multichannel
reproduction is correspondingly a MIMO (multiple-input
multiple-output) system. However, in this paper we restrict
ourselves to study point-to-point reproduction paths only.

The problem of loudspeaker response equalization is
simpler than the correction of a full acoustic path includ-
ing room acoustics. Loudspeaker impulse responses are rela-
tively short and the magnitude response is regular in a well-
designed speaker. EQ filter techniques proposed for the pur-
pose include FIR filters, warped FIR and IIR filters [2], and
Kautz filters [9]. FIR filters are straightforward to design
but require using high orders because of the inherently uni-
form frequency resolution that is highly nonoptimal at low-
est frequencies. Furthermore, long FIR equalizers may pro-
duce pre-echo problems, that is, audible signal components
arrive before the main response. Warped and Kautz filters
allocate frequency resolution better, thus reducing required
filter orders radically. Flattening of loudspeaker magnitude
response on the main axis to inaudible deviations can be
done quite easily with any of these techniques. For a high-
quality speaker the phase response errors (group delay de-
viations) are often not perceivable without any correction,
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but nonminimum-phase EQ designs can improve this even
further. A particular advantage of DSP-based loudspeaker
equalization is that the design of the speaker itself can be op-
timized by other criteria, while good final response charac-
teristics are obtained by DSP.

Room response equalization is a much harder problem
than improving loudspeaker responses only. From a filter
design point of view, the same FIR and IIR techniques as
in loudspeaker equalization are available for room response
correction, but depending on the case, filter orders become
much higher.

While flattening of the magnitude response also in
this case is relatively easy to carry out, difficult problems
are found particularly in reducing excessive reverberation,
reflections from room surfaces, and sharp resonances due to
low-frequency room modes. Reduction of the effect of per-
ceived room reverberation, in order to improve clarity, is a
very hard task because of the highly complex modal behav-
ior of rooms at mid to high frequencies. By proper shaping of
the temporal envelope of the response, for example, by com-
plex smoothing technique in EQ FIR filter design [10, 11],
this can be achieved to some degree. This requires necessarily
high-order equalization filters. Counteracting room surface
reflections is only possible to a specified point in the space,
from where the receiver is allowed to move less than a frac-
tion of wavelength of the highest frequency in question. At
lowest frequencies, modal equalization [12] has been devel-
oped to control the temporal decay characteristics of modal
resonances that have too high Q-values.

In all cases of EQ filter design the basic problem is to se-
lect and realize a filter structure and then to calibrate it at
the site of audio reproduction. This reminds adaptive fil-
tering although the adaptation in most cases is done only
offline and kept fixed as far as no recalibration is required.
From the viewpoint of this paper we divide the filter param-
eter estimation techniques into two categories. Figure 1(a)
shows a case where the EQ filter target response is obtained
separately by any appropriate response inversion method,
after which the EQ filter is optimized to approximate that
with given criteria. We call this the indirect design approach.
Figure 1(b) depicts the direct method where the difference
between desired and equalized response is minimized di-
rectly in the least squares (LS) sense in the EQ filter calibra-
tion process.

Another conceptual categorization for the purpose of this
paper is the division to minimum-phase and nonminimum-
phase equalization. Minimum-phase inversion of the mea-
sured response is often applied because of simplicity, af-
ter which the EQ filter is designed to approximate this
minimum-phase part of the equalizer target response.
That means correcting only the magnitude response, while
nonminimum-phase characteristics remain as they are. This
is enough in most loudspeaker equalization tasks as well as in
basic room response correction, but certain EQ tasks require
nonminimum-phase processing.

Based on these categorizations we can now characterize
different equalization filter design methods. Direct inversion
in the transform domain through discrete Fourier transform,
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Figure 1: (a) Indirect and (b) direct EQ filter design. HEQ(z) is
equalization filter, HR(z) is reproduction channel, HM(z) is mea-
sured response. Target response denotations HTE(z) and HT(z) dis-
tinguish between the two different equalization configurations. Au-
dio signals are denoted by single line and filter design data by double
line.

that is, HEQ(z) = 1/HM(z) in Figure 1(a), is problematic in
many ways and cannot be used directly [6, 13], so that some
modifications have to be applied to obtain useful results.
These methods may apply some preprocessing such as com-
plex smoothing before inversion to obtain HEQ(z).

A direct method for obtaining an FIR equalizer is AR
modeling (linear prediction) of HM(z) to get an all-pole fil-
ter, the inverse of which is an FIR filter for HEQ(z) [2]. The
method results in minimum-phase equalization. This ap-
proach allows also to realize warped FIR filters when using
proper prewarping before AR modeling [2]. In warped IIR
design [2] the measured response is first minimum-phase in-
verted and prewraped and then ARMA (pole-zero) modeled,
thus belonging primarily to the category of indirect model-
ing. In [9], Kautz filters have been used in a similar indirect
way but with increased freedom of allocating frequency reso-
lution. The direct LS design of Kautz equalizers was suggested
for the first time in [14]. In the present paper we generalize
and expand this approach.

The rest of this paper is structured as follows. Section 2
introduces the concept of Kautz filters. Section 3 presents the
principles of Kautz modeling and EQ filter design, including
both LS design of tap coefficients and principles for Kautz
pole selection. Loudspeaker equalization cases are studied
in Section 4 and room response correction is investigated in
Section 5. This is followed by discussion and conclusions.

2. KAUTZ FILTERS

The Kautz filter has established its name due to a rediscovery
in the early signal processing literature [15, 16] of an even
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Figure 2: The Kautz filter. For zi = 0 in (1) it degenerates to an FIR
filter, for zi = a, −1 < a < 1, it is a Laguerre filter where the tap
filters can be replaced by a common prefilter.

older mathematical concept related to rational representa-
tions and approximations of functions [17]. The generic
form of a Kautz filter is given by the transfer function

H(z) =
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where wi, i = 0, . . . ,N , are somehow assigned tap-output
weights. The orthonormal Kautz functions Gi(z), i =
0, . . . ,N , are determined by any chosen set of stable poles:
{zj}Nj=0, such that |zj| < 1. The superscript (·)∗ denotes
complex conjugation. Figure 2 may be a more instructive de-
scription than formula (1).

Defined in this manner, Kautz filters are merely a class
of fixed-pole IIR filters that are forced to produce orthonor-
mal tap-output impulse responses. However, a Kautz filter is
in fact more genuinely a generalization of the FIR filter and
its warped counterparts, which is characterized in terms of
properties of the all pass filter that constitutes the backbone
of a tapped transversal structure in Figure 2.

It is easy to see that if zj = 0 for all j, the Kautz structure
is reduced to an FIR filter. For zj = a, a fixed value−1 < a < 1
for all j, a Laguerre filter is obtained.

The time-domain counterpart of (1), the Kautz filter im-
pulse response, is given by

h(n) =
N∑

i=0

wigi(n), (2)

where functions {gi(n)}Ni=0 are impulse responses or inverse
z-transforms of functions {Gi(z)}Ni=0. The meaning of or-
thonormality is specified most economically by defining the
time-domain inner product of two (causal) signals x(n) and
y(n),

〈x, y〉 :=
∞∑

n=0

x(n)y∗(n). (3)

Now, impulse responses {gi(n)}Ni=0 are orthogonal in the
sense that 〈gi, gk〉 = 0 for i =/ k, and normal, since 〈gi, gi〉 = 1
for i = 0, . . . ,N .

A reasonable presumption in modeling a real response
is that the poles zj should be real or occur in complex-
conjugate pairs. For complex-conjugate poles, an equiva-
lent real Kautz filter formulation [15], depicted in Figure 3,
prevents dealing with complex (internal) signals and filter
weights. The normalization terms in the real Kautz structure
are

pi =
√(

1− ρi
)(

1 + ρi − γi
)

2
,

qi =
√(

1− ρi
)(

1 + ρi + γi
)

2
,

(4)

where γi = −2 RE{zi} and ρi = |zi|2 are expanded poly-
nomial coefficients of the second-order blocks. The all pass
characteristics of the transversal blocks are restored by shift-
ing the denominators in Figure 3 one step to the right and
by compensating for the change in the tap-output blocks. A
mixture of structures in Figures 2 and 3 is used in the case of
both real and complex-conjugate poles.

3. MODELING AND EQUALIZATION USING
KAUTZ FILTERS

There are two different aspects of optimization when using
Kautz filters in system modeling and equalization: (a) finding
optimal tap coefficients {wi} and (b) finding an optimal set
of Kautz poles {zj}. The former problem can be solved as an
LS problem, while finding optimal poles (together with tap
coefficients) is necessarily an iterative or a search process.

In this section we first study the former problem. That is,
modeling and equalization of system responses when there is
a prefixed set of Kautz poles. Modeling of a given HTE(z) is
discussed first briefly and the main topic, direct LS EQ de-
sign, then in more detail. Thereafter the selection of Kautz
poles, that is, allocation of frequency resolution, is studied.

3.1. Kautz modeling of a given response

When an equalizer target response hTE(n) for “forward mod-
eling” is given, the task of approximating it by a Kautz filter is
particularly straightforward: a desired pole set is selected to
form the basis functions gi(n), after which the approximation
is composed as

hEQ(n) =
N∑

i=0

cigi(n), ci =
〈
hTE, gi

〉
, (5)

that is, the filter weights ci are the orthogonal expansion co-
efficients (Kautz-Fourier coefficients) of hTE(n) with respect
to the choice of the basis functions.

One of the favorable specialities of Kautz filter design,
compared to other IIR or pole-zero filter configurations, is
that the approximation is independent of rearrangement of
the pole set, which implies means for reducing as well as ex-
tending the model by pruning, tuning, and appending poles,
respectively. In addition, the use of orthogonal expansion co-
efficients corresponds to LS design with respect to the partic-
ular pole set, and as a consequence of the orthogonality, the
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Figure 3: One possible realization of a real Kautz filter, corresponding to a sequence of complex-conjugate pole pairs [15].

approximation error (energy) E is given simply as

E = ETE −
N∑

i=0

c2
i , (6)

where ETE is the energy of the target response. As an alterna-
tive to the evaluation of ci = 〈hTE, gi〉 using the inner product
formula (3), the Kautz filter tap-output weights are also ob-
tained by feeding the signal hTE(−n) to the Kautz filter and
reading the tap outputs xi(n) at n = 0: ci = xi(0). That is, all
inner products in (5) are implemented simultaneously using
filtering. Note that in the case of an FIR filter this would equal
the design by truncation of hTE(n).

The “forward modeling” approach was applied in [9]
according to the indirect method of Figure 1(a) by first
minimum-phase inverting a measured impulse response and
then applying the Kautz modeling. Theoretically another way
is to make a Kautz model directly for the measured response
and try to invert it, which is however problematic because
the nonminimum-phase model leads to an unstable filter. In
fact, this kind of inversion schemes are particularly unattrac-
tive from the point of view of Kautz filters because of the nu-
merator configuration in the transfer function.

3.2. Direct LS equalization using Kautz filters

The equalization method that is of main interest in this paper
is the direct EQ configuration by least squares Kautz filter de-
sign as shown in Figure 1(b). The equalizer, with impulse re-
sponse hEQ(n), is identified in cascade with the system hR(n)
based on measurement hM(n) in order to approximate the
target response hT(n) in the time-domain by

hE(n) = hEQ(n)∗ hR(n) ≈ hT(n), (7)

where (∗) is the convolution operator. The direct equaliza-
tion is provided by the least squares configuration [18]: the
square error in the approximation (7) is minimized with re-
spect to the equalizer parameters (filter tap coefficients). In
terms of the Kautz equalizer, the tap-output weights {wi} are
optimized according to

min
wi

(
∑

n

(
hE(n)− hT(n)

)2
)

, (8)

where the equalized response

hE(n) =
N∑

i=0

wixi(n), xi(n) = gi(n)∗ hR(n). (9)

Using system identification terminology, the equalization
setup is an output-error configuration with respect to a spe-
cial choice of model structure. It can even be considered as
a generalized linear prediction: we could call it “Kautz pre-
diction.” Furthermore, it is a quadratic LS problem with a
well-defined and unique solution that is obtained from the
corresponding normal equations. If the Kautz equalizer tap-
output responses xi(n) = gi(n)∗ hR(n) are assembled into a
“generalized channel convolution matrix”

S =

⎡
⎢⎢⎢⎢⎢⎣

x0(0) · · · xN (0)

x0(1) · · · xN (1)
...

. . .
...

x0(L) · · · xN (L)

⎤
⎥⎥⎥⎥⎥⎦

, (10)

then the normal equations submit to the matrix form

STSw = s, w =
[
w0 · · · wN

]T
, (11)

where s is the (cross-)correlation vector between the tap-
output responses and the desired target response hT(n), si =
〈hT, xi〉. The matrix product STS, where (·)T denotes trans-
pose of a matrix, implements correlation analysis of the tap-
output responses, 〈xi, xj〉, in terms of the inner product (3),
where it is presumed that the Kautz filter responses are real-
valued. Here we consider only the case of an impulse as the
target response, hT(n) = δ(n − Δ), where δ(·) is the unit
impulse, including a potential delay Δ. Then the correlation
vector simply picks the (Δ + 1)th row of the matrix S,

s =
[
x0(Δ) · · · xN (Δ)

]T
. (12)

The solution of the matrix equation (11) is

w = (STS
)−1

s (13)

and it provides the LS optimal equalizer tap-output weights
with respect to the choice of Kautz functions gi(n).
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A specialized question is the choice of the “correlation
length” L. Our choice is to use a sufficiently large L > M,
where M is the (effective) length of the response hM(n), that
in practice drains out the memory of the Kautz equalizer for
hM(n). For a particular choice of a Kautz filter this length
could also be quantized since the Kautz filter response is a
superposition of decaying exponential components. This is
in fact not a big issue due to the nature of the configuration,
and in practice any L > M will collect the essential part of the
“correlation energy,” for example, the choice L =M+N as in
the conventional LS setting.

3.3. Selection of Kautz poles and frequency resolution

Full optimization of an equalizer filter could be defined as
finding the lowest (or low enough) order filter that meets the
required response quality criteria and other criteria such as
stability and numerical robustness. For Kautz filters this in-
cludes optimizing both the tap coefficients and the pole po-
sitions. As with IIR filters in general, optimizing poles is a
complex task.

In Kautz filters, due to the orthonormality of the pole-
related subsections, there is an interesting interpretation for
pole positioning. Inspired by frequency-warped filters [19],
in [9] we have used the negated phase function of the Kautz
all pass backbone as a frequency mapping and the negated
phase derivative as a function to characterize the inherent al-
location of frequency resolution induced by pole positions.
This implies that when high resolution is needed around
a certain frequency, there should be a pole near the corre-
sponding angle and close to the unit circle. The relation-
ship between the all pass operator and the corresponding or-
thonormal filter structure (the Kautz filter) is explained more
thoroughly in [9]. Several resolution allocation strategies are
discussed briefly below and within case examples.

3.4. Approximation of log-scale resolution

The logarithmic frequency scale is the most natural one in
audio technology due to the nearly logarithmic ERB scale
[20] corresponding to the resolution of the human auditory
system. The desired log-like frequency resolution1 is pro-
duced simply by choosing the Kautz filter poles according to
a logarithmically spaced pole distribution. In polar coordi-
nates, a set of poles

{
z1, . . . , zN

} {
r1e jω1 , . . . , rNe jωN

}
(14)

is generated, where the angles {ω1, . . . ,ωN} correspond to
logarithmic spacing for a chosen number of points between
0 and π. We choose the corresponding pole radius as an ex-
ponentially decreasing sequence

ri = αωi , α = eln(r1)/w1 , r1 < 1. (15)

1 Parallel all pass structures have also been proposed to obtain logarithmic
resolution scaling [21].

This choice of pole radii will provide an approximately
constant-Q resolution for the Kautz equalizer. Each pole is
then “duplicated” with its complex-conjugate to produce a
real Kautz filter (Figure 3). From a practical point of view,
the poles are generated using the formulas

ωi = 2π fi
fs

, (15a)

pi = Rωi/πe± jωi , (15b)

where pi is the ith pole pair {zi, z∗i }, fi is the corresponding
frequency (in Hz), R is the pole radius corresponding to the
Nyquist frequency fs/2, and fs is the sample rate (in Hz).

Figure 4 characterizes the phase and resolution behavior
of a log-scale Kautz filter when the pole radii of a spiral-
like set of complex-conjugate poles are varied, as shown in
the z-domain pole plot in Figure 4(a). The all pass phase
and its derivative are plotted with different scales in sub-
plots (Figures 4(b)–4(d)). With small values of pole radii the
phase derivative (resolution function) is smooth and approx-
imately linear on a log-log scale (Figure 4(d)), while with
poles closer to the unit circle the phase derivative shows a
peak for each pole frequency.

The resolution behavior is also seen in the magnitude
spectra of real Kautz filter tap outputs, as plotted for a se-
lected set of log-scaled poles in Figure 5. The constant-Q
behavior can be easily observed. Each pole pair generates
a pair of orthogonal outputs with the corresponding reso-
nance frequencies and equal Q-values. The sum of the mag-
nitude spectra also characterizes the resolution function of
the Kautz filter. A rule of thumb for obtaining a smooth res-
olution function is to set the neighboring resonance curves to
cross each other at approximately −3 dB points. As the case
studies below show, the selection of pole radii is often not
critical at all.

3.5. Iterative pole positioning techniques

Iterative methods, such as Prony’s method [22] and the
Steiglitz-McBride method [23], are common in IIR filter de-
sign. For Kautz filters we have successfully applied what we
call the BU-method to iteratively search for an optimal posi-
tioning of Kautz poles.

The BU-method is based on an old concept of comple-
mentary signals [24] that relates the optimization problem of
an orthonormal rational filter structure (the Kautz filter) to
the properties of the all pass part of the filter. The orthog-
onal nature of the approximation error induced by a cho-
sen Kautz filter representation was presented in Section 3.1.
In addition, a practical method for the evaluation of the fil-
ter coefficients was given: if the time-inverted target signal
h(−n), M, . . . , 0, is fed to the chosen Kautz filter, then the LS
optimal filter weights are attained as the tap-output samples
at n = 0. The optimization problem with respect to the poles
can thus be seen as an energy compaction procedure: how to
choose the poles so that the energy (sum of squares) of the
filter weights is maximized. The “principle of complemen-
tary signals” [24] now states that an equivalent objective is
to minimize the energy of the all pass filter response a(n) =
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A[h(−n)] in the interval [−M, 0], where A(z) is the transver-
sal all pass part of the Kautz filter. For the optimization of the

all pass filter we have utilized an iterative procedure proposed
by Brandenstein and Unbehauen [25], which explains our
choice of naming the BU-method.

The BU-method has been applied successfully together
with frequency warping to obtain perceptually relevant allo-
cation of frequency resolution. It should be emphasized that
here the utilization of the method to optimize Kautz equal-
izer poles is based on an estimate of the response HTE(z) =
1/HM(z). Further details on the BU-method are out of the
scope of this paper, they can be found in [9, 26].

3.6. Other pole positioning strategies

Information about the system to be equalized, whether from
measured response or known otherwise, can be used to help
in the selection of good pole positions. AR modeling (linear
prediction) can be applied to find a good initial set of system
poles, or variation in power spectrum is analyzed to find the
need for equalization resolution as a function of frequency.
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Figure 6: Flow diagram of Kautz filter equalizer design for a set of different methods.

Advanced search techniques such as genetic algorithms
may be useful if no side information is available about poten-
tial pole positioning although this may require excessive time
of computation. Notice that when searching for the lowest
filter order to meet given criteria, the filter order is also one
of the variables to be iterated.

Hand tuning by an experienced designer may also lead to
a good final EQ filter, for example, by discarding or inserting
poles in strategic positions.

3.7. Specification of equalization target

There are some important topics to be kept in mind when se-
lecting the target response of equalization. Here we empha-
size two of them: delay of the response onset and compensa-
tion for the roll-offs of loudspeaker response.

In direct LS equalizer design it is possible to set a desired
target response, which normally is a unit impulse. If it cor-
responds to zero time delay, a minimum-phase EQ filter is
obtained. By delaying the target impulse more than the max-
imum group delay of the measured response, see (12), the
equalization process starts to correct the phase behavior also.
In such a case it is desirable to include an FIR part (i.e., poles
at the origin) about the size of the measured group delay or
more, as will we discussed in the case studies below.

Figure 6 shows a flow diagram of Kautz filter equalizer
design for a set of different methods at each step of the design
process.

4. LOUDSPEAKER EQUALIZATION CASES

In this section we discuss three cases of loudspeaker equal-
ization, first focusing on magnitude correction and then
including phase correction by using nonminimum-phase EQ
filter design.

Loudspeakers are typically designed to deal with high sig-
nal levels with low distortion only within their pass-band.

The low- and high-frequency roll-offs should therefore not
be flattened away although it is computationally possible. In
most cases a good choice is to keep these roll-offs as they
behave naturally. For example, the low cut-off highpass is of
fourth order for a bass reflex design and of second order for
a closed box design. A simple way to take these into account
is to inverse-compensate the measured response according
to these rules, or otherwise straighten it beyond roll-off fre-
quencies. Hence the equalizer designed with this target keeps
the natural roll-offs of the loudspeaker response.

4.1. Loudspeaker equalization, Case 1

The first example of Kautz equalizer design is presented in
Figure 7. It is based on a measured loudspeaker response that
has a relatively nonflat magnitude response (Curve (a)). The
response is corrected by a 24th-order (12 pole pairs) Kautz
filter with logarithmically positioned pole frequencies be-
tween 80 Hz and 23 kHz (indicated by vertical lines in the
middle of the figure) and R = 0.03 (see (15b)). After low-
and high-frequency roll-off compensations to avoid boosting
off-bands of the speaker, as shown by Curve (c), the EQ fil-
ter resulting from Kautz LS equalization has the magnitude
response of Curve (d). The equalized response is plotted in
Curve (e) and as a 1/3-octave smoothed version in Curve (f).

Filter orders from 8 up (4 pole pairs) give useful results
in this case although the selection of order and pole posi-
tions may introduce considerable variation in flatness of the
result. Therefore full optimization requires a search over sets
of poles and filter orders, in spite of the fact that the LS pro-
cedure itself always gives optimal tap coefficients for a given
fixed order and pole set.

Curve (g) in Figure 7 demonstrates the effect of poor
Kautz pole radius selection. In this case the poles are set too
close to the unit circle (R = 0.8), thus the frequency ranges
around the pole frequencies get too much emphasized.
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Otherwise, in most cases, the selection of pole radii is not
critical at all. Even very small radii, such as R = 10−5, work
well in this case.

Comparison of Curves (e) and (g) explains also clearly
why LS equalization using the Kautz filter configuration can
be controlled to behave favorably with dips in the response
to be equalized, while exact inversion of a response with
deep dips results in undesirable peaks and long-ringing decay
times in the equalizer [10]. In Kautz filters the pole radii de-
termine the maximum Q-values of resonances. If pole radii
are selected conservatively, no excess peaking and ringing of
resonances appear in the equalizer response.

4.2. Loudspeaker equalization, Case 2

In the second example of Kautz EQ filter design, both
the direct and indirect methods are investigated using the
measured response of Case 1. The Kautz filter poles are
generated in both cases using a warped counterpart of the
BU-method [27] with respect to the inverted target response.
The equalizer filter order is chosen to be 38 (18 complex-
conjugate pole pairs and two real poles). The purpose of this
example is to demonstrate that two very different equalizer
parametrization schemes, corresponding to (5) and (9), re-
spectively, produce very similar magnitude response correc-
tion results, as depicted in Figure 8. The original response,
the equalized ones, and the equalizer responses are shown, as
well as the pole frequencies obtained from the BU-method.
Notice that the poles are allocated mostly to areas where the
need for correction is highest.2

The ability of the direct LS method to improve phase
characteristics is demonstrated in Figure 9. The early part
of the measured loudspeaker impulse response and the
minimum-phase LS equalized response are displayed in pan-
els (a) and (b). In panel (c) the LS equalizer is designed with
respect to a delay Δ = 12 samples in the target of equal-
ization. The pole set that is generated from a minimum-
phase target response is not very good at producing pure de-
lay components, which results also in inefficiency in magni-
tude equalization (not shown). A way to obtain better equal-
ization is to include zeros in the Kautz filter pole set: in
Figure 9(d) the equalizer is equipped with 12 additional poles
at the origin, that is, part of the Kautz filter is implemented
as an FIR filter substructure. As can be seen, the equalized
response is closer to pure impulse (with the additional delay)
than in panels (a)–(c), which means more uniform group de-
lay.

4.3. Loudspeaker equalization, Case 3

To gain more insight over the nonminimum-phase equaliza-
tion, that is, of both magnitude and phase, it is advantageous
to demonstrate the phase correction by using a synthetic
(simulated) loudspeaker response instead of a real measured
one. Figures 10 and 11 depict the magnitude and group delay

2 From a practical point of view, the correction of sharp peaks and dips
in loudspeaker response is not needed and may even worsen the result in
directions off from the main axis.
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behavior of an idealized two-way loudspeaker. It consists of a
low-frequency driver in a vented box (4th-order highpass at
80 Hz) and a high-frequency driver, both with flat response
except the low-frequency roll-off. They are combined with
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Figure 9: Early part of time-domain responses: (a) measured loudspeaker; (b) LS equalized (Kautz filter order 38); (c) using the same set of
poles and including delay (Δ = 12 samples) in target; and (d) by including 12 poles at the origin and delay (Δ = 12 samples) in target.

a second-order Linkwitz-Riley crossover network [28, 29],
which in an ideal case results in a flat magnitude response
at the main axis.

In this particular case we investigate a loudspeaker where
the acoustic center of the high-frequency driver is 17 cm
behind the acoustic center of the low-frequency unit. This
means a temporal nonalignment of about 0.5 ms, which re-
sults in ripple of the main axis magnitude response (“Orig-
inal” in Figure 10) and similarly a nonflat group delay re-
sponse (“Original” in Figure 11). The magnitude response
error of this amount is audible. Although the group delay
deviation remains within 1 ms above 300 Hz, which is hardly
noticeable in practice, it is interesting to check how the phase
correction by Kautz LS equalization works. This brings nec-
essarily latency beyond the maximum group delay of the
original response.

Curves “EQ min-phase” in Figures 10 and 11 show
the magnitude and group delay responses of the simulated
loudspeaker when a Kautz equalizer is designed based on the
minimum-phase part of the loudspeaker impulse response.

The Kautz filter has 18 pole pairs and it was designed with
logarithmic distribution of poles between 80 Hz and 23 kHz
and pole radius coefficient R = 0.1. The low-frequency
roll-off is compensated in EQ design to remain as it was
originally. After equalization the magnitude response is flat
within ±1 dB, while the group delay (dashed line) is not es-
sentially improved (dashed curve in Figure 11).

Curves “EQ excess-phase” in Figures 10 and 11 illustrate
the results of magnitude plus phase equalization with a Kautz
LS equalizer. In this case the target response of the equalized
system is given as a delayed impulse, with a latency higher
than the maximum delay of the loudspeaker itself. The target
group delay was set here to 1.5 ms (66 samples at 44.1 kHz
sample rate). A direct LS Kautz equalizer was designed
with 8 logarithmically distributed pole pairs within 80 Hz to
23 kHz, with R = 0.05, plus 96 poles at the origin. Notice that
the latter ones correspond again to FIR filter behavior, so that
the equalizer is a mixture of an FIR and an IIR filter.

After applying excess-phase equalization the magnitude
response in Figure 10 is again within ±1 dB, while the
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group delay curve in Figure 11 has ripple less than ±0.1 ms.
(The growth of low-frequency group delay comes from the
highpass behavior of the loudspeaker, which is not compen-
sated for.)

Figure 12 plots the time-domain responses of the orig-
inal simulated loudspeaker, and its minimum-phase and
nonminimum-phase versions. Minimum-phase equalization
makes the impulse response even worse with some postoscil-
lation, while allowing excess delay in nonminimum-phase
design makes the response close to an ideal impulse.

5. ROOM RESPONSE EQUALIZATION CASES

In this section we examine two basic examples of room re-
sponse correction using Kautz LS equalization.

5.1. Room response equalization, Case 4

In this case the loudspeaker had a low-frequency roll-off at
about 80 Hz, which was compensated in target response de-
sign. The room was a listening room of 33 m2 with fairly
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Figure 12: Impulse responses of the simulated loudspeaker.

well controlled acoustics. Figure 13 shows the first 5 ms of
the measured impulse response in subplot (a) and magni-
tude response in subplot (c) in full resolution and 1/3-octave
smoothed.

A minimum-phase Kautz equalizer of order 24 (12 pole
pairs) was designed with logarithmically positioned pole fre-
quencies between 50 Hz and 20 kHz, using pole radius pa-
rameter R = 0.5. The resulting impulse response and mag-
nitude response are plotted in Figure 13, subplots (b) and
(d), respectively. The magnitude response is flattened as de-
sired. In the impulse response some low-frequency oscilla-
tion is damped, but the peaks corresponding to reflections
from surfaces cannot naturally be canceled out by such a
low-order equalizer. Equalizer filter orders down to 8–12 (4–
6 pole pairs) provide useful equalization results in this par-
ticular case.

5.2. Room response equalization, Case 5

The use of prefixed pole distributions in defining the Kautz
equalizer, such as the logarithmic one, can be seen as a
“signal-independent” way of reflecting desired overall res-
olution of modeling. The signal-dependent or case-specific
approach would then correspond to approximating a some-
how attained inverse target response in a way that also in-
cludes optimization of the pole positions. This was done in
the loudspeaker equalization Case 2, where the poles were
generated with respect to an inverted minimum-phase target
response. The same procedure can in principle be applied to
the case of room response equalization, although the follow-
ing example is included mainly as a cautionary and specula-
tive curiosity, demonstrating the capabilities and limitations
of Kautz equalization.

Figure 14 displays the magnitude response characteristics
of a 320th-order Kautz equalizer. The Kautz filter poles were
generated with respect to a DFT-based minimum-phase in-
verted target response of the measured room response (in-
cluding compensation of the low-frequency roll-off). The
warped BU-method, as described in [27], was used to em-
phasize the lower frequency region, which in effect also re-
duces the need for controlling the high end roll-off.
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Figure 13: Kautz equalization of a room response: (a) first 5 ms of the impulse response; (b) first 5 ms of the equalized impulse response; (c)
original magnitude response; and (d) Kautz equalized magnitude response. In magnitude responses the lifted upper curves are computed
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Figure 14: Magnitude response of a 320th-order Kautz equalizer
(b) constructed from a minimum-phase inverse of the measured
room response (a). The magnitude equalization result is in the mid-
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This kind of target signal lengths and filter orders are ad-
mittedly at the limit of the capabilities of the BU-method,

possibly already somewhat on the questionable side. Never-
theless, the pole optimization process seems to be able to find
and equalize modal components: in the lower frequency part
this could actually in some cases be desirable, but the spiking
of the higher frequency part of the equalizer response more
or less contradicts the idea of using a Kautz equalizer. It is
possible to control the pole set, for example, by direct tuning
of the poles or by further modifications of target response
in the pole optimization procedure. An interesting possibil-
ity would be to use (complex) smoothing techniques [10] as
preprocessing for the BU-method.

The question of including perceptually meaningful phase
equalization into the Kautz equalizer configuration seems
to be particularly difficult in the case of room response
equalization. One would hope that adding zeros to the pole
set and a corresponding amount of allowed delay for the
overall system would result in useful approximative phase
response equalization, such as reduced reverberation. This
is however apparently not the case: the amount of zeros
and combined processing delay has to be increased to the
limit of “genuine FIR LS nonminimum-phase equalization”
before the magnitude response equalization results regain
usability. In fact, one way to proceed is to use a sufficiently
high-order nonminimum-phase FIR LS equalizer as the
new target for the Kautz equalizer. The initial growing part
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before the maximum amplitude can then be implemented
as an FIR substructure of the Kautz equalizer, whereas the
decaying part or the equalizer response is approximated
as a “forward” Kautz model, for example, by using the
BU-method to extract the poles.

Based on our experience so far, the Kautz filters may not
offer clear advantages in phase correction of room responses,
because the FIR part needed is of such a high order that the
IIR part compactness does not help much, and because the
design process itself is complex and computationally expen-
sive.

6. DISCUSSION AND CONCLUSIONS

In the present study we have extended the use of Kautz filters
for loudspeaker and room response correction. The novelty
is to apply least squares optimal direct design of Kautz equal-
izers. Logarithmic frequency resolution is approximated by
setting the distribution of pole frequencies logarithmically
and by controlling the pole radii to approximate constant-
Q behavior. This is conceptually similar to EQ filter design
through linear prediction in the case of uniform frequency
resolution.

An advantage of the new method is that it can be ap-
plied to nonminimum-phase EQ design, as demonstrated for
loudspeaker equalization. Another favorable feature is the in-
herent control of sharp magnitude response dips to avoid
corresponding sharp peaks and long-ringing temporal de-
cays in the equalizer. This is done simply by limiting the Q-
values of the Kautz system pole pairs.

Low-order Kautz equalizers (4 to 12 pole pairs) are found
in practice to yield good magnitude response correction.
Phase correction may need higher orders with a set of system
poles at the origin and excess delay required for the target
response.

Kautz filters are known to be numerically robust due to
all pass type of elements used in the implementation. For low
orders it is possible to map the EQ transfer function obtained
to a direct form IIR structure for maximal efficiency on DSP
processors. This and many other practical questions remain
however out of the scope of this paper.

A web page with Matlab code examples for Kautz equali-
zation is available at http://acoustics.hut.fi/demos/KautzEQ.
html.
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