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ABSTRACT
This paper presents a new digital filtering approach to the equalization of audio systems such as loudspeaker
and room responses. The equalization scheme utilizes a particular infinite impulse response (IIR) filter
configuration called Kautz filters, which can be seen as generalizations of finite impulse response (FIR) filters
and their warped counterparts. The desired frequency resolution allocation, in this case the logarithmic one,
is attained by a chosen set of fixed pole positions that define the particular Kautz filter. The frequency
resolution mapping is characterized by the allpass part of the Kautz filter, which is interpreted as a formal
generalization of the warping concept. The second step in the actual equalizer design consists of assigning
the Kautz filter tap-output weights, which is then in turn more or less a standard least-square configuration.
The proposed method is demonstrated using measured loudspeaker and room responses.

1. INTRODUCTION

The utilization of digital signal processing (DSP)
techniques for the equalization of audio systems,
such as loudspeaker and room responses or com-
bined loudspeaker-room responses, have been stud-
ied extensively for more than twenty years. A thor-
ough list of references, an overview of methods, and
considerations on known obstacles are provided by
Mourjopoulos [15] [16]. Some additional references
may also be cited [17, 13, 3, 7, 24, 8]. In particu-
lar, the problems associated with equalizer design by
inverting an identified system function serve as the

main motivation of this paper. The issue of non-
minimum phase equalization can be considered as
a fundamental question. On the other hand, it is
also important to understand what a chosen equal-
izer configuration tries to accomplish from a broader
point of view. The focus here is not particularly on
non-minimum phase design considerations, but more
likely on the undesired phenomenon that system
function zeros tend to transform into problematic
prominent and ”long-ringing” resonances (poles) in
an equalizer design by inverting the system func-
tion. Pre-processing, such as (complex) smoothing



PAATERO AND KARJALAINEN Equalization using Kautz filters on log-scale

of the audio responses may be utilized in the equal-
izer design phase to overcome or reduce this effect
[4]. An alternative is to identify the equalizer di-
rectly (in cascade with the system), for example,
using least-squares techniques [14]. This latter ap-
proach is adopted in this paper in the context of
Kautz filters, which can be seen to provide general-
izations of FIR and warped FIR equalizer designs,
respectively.

Kautz filters, or more suggestively, generalized
transversal filters, are fixed-pole IIR filters that in-
herit many favorable properties of FIR filters, such
as unconditional stability and robustness of design
and implementation. In addition, the Kautz filter
has a tapped transversal structure comprised of an
allpass filter backbone and related tap-output all-
pole filters that together enforce the tap-output im-
pulse responses to be mutually orthonormal for any
choice of desired stable poles. The FIR filter is a
Kautz filter with respect to the choice of poles at
the origin.

We have demonstrated the potential applicability
of Kautz filters for modeling such audio related
measured responses as instrument body responses
[18, 20, 22] and various room responses [19, 23],
as well as loudspeaker equalizer design based on
inverted minimum phase target responses [18, 21].
Here the objective is somewhat different: the de-
sired overall allocation of frequency resolution of the
equalizer is attained by choosing a fixed pole dis-
tribution that consists of complex conjugate pole
pair with logarithmically spaced angles and a related
mapping of the pole radii. The properties of such
an equalizer are characterized in terms of the tap-
output impulse responses and the allpass operator
that defines the Kautz filter.

The Kautz filter tap-output weights are determined
in the least-square sense from the corresponding nor-
mal equations: the Kautz filter tap-output responses
(with respect to the response to be equalized as the
input) are used to construct a correlation matrix and
a correlation vector, respectively, which are then put
into the form of a set of normal equations that is
solved for the least-square optimal weights. The tar-
get signal (in forming the correlation vector) is the
unit impulse signal, including a potential delay for
the overall system. This approach also suggests the
possibility of utilizing modified equalization targets,

Fig. 1: The Kautz filter. For zi =0 in (1) it degen-
erates to an FIR filter, for zi = a,−1<a< 1, it is a
Laguerre filter where the tap filters can be replaced
by a common pre-filter.

as well as a generalized channel equalization scheme
with respect to a generic input signal. It would
also be possible (and interesting) to tackle the exact
equalization task of a non-minimum phase response
by optimizing with respect to different choices of
Kautz equalizers and the required delay of the over-
all system. However, the purpose of this paper is
to show that feasible approximative equalization is
achieved with low-order Kautz equalizers.

2. KAUTZ FILTERS

The Kautz filter has established its name due to a
rediscovery in the early signal processing literature
[9, 1] of an even older mathematical concept related
to rational representations and approximations of
functions [25]. The generic form of a Kautz filter
is given by the transfer function

Ĥ(z) =
∑N

i=0
wiGi(z)

=
N∑

i=0

wi




√
1− ziz∗i

1− ziz−1

i−1∏

j=0

z−1 − z∗j
1− zjz−1


 ,(1)

where wi, i = 0, . . . , N , are somehow assigned tap-
output weights. The orthonormal Kautz functions
Gi(z), i = 0, . . . , N , are determined by any chosen
set of stable poles: {zj}N

j=0, such that |zj |<1. The
superscript (∗) denotes complex conjugation. Fig-
ure 1 is hopefully more instructive than formula (1).

Defined in this manner, Kautz filters are merely
a class of fixed-pole IIR filters that are forced to
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produce orthonormal tap-output impulse responses.
However, a Kautz filter is in fact more genuinely
a generalization of the FIR filter and its warped
counterparts, which will be demonstrated in terms
of properties of the allpass filter that constitute the
backbone of the tapped transversal structure of Fig-
ure 1.

The time-domain counterpart of (1), the Kautz filter
impulse response, is given by

ĥ(n) =
N∑

i=0

wigi(n), (2)

where functions {gi(n)}N
i=0 are impulse responses or

inverse z-transforms of functions {Gi(z)}N
i=0. The

meaning of orthonormality is specified most econom-
ically by defining the time-domain inner product of
two (causal) signals x(n) and y(n),

(x, y) :=
∞∑

n=0

x(n)y∗(n). (3)

Now, impulse responses {gi(n)}N
i=0 are orthogonal in

the sense that (gi, gk) = 0 for i 6= k, and normal,
since (gi, gi) = 1 for i = 0, . . . , N .

A reasonable presumption in modeling a real re-
sponse is that the poles should be real or occur
in complex conjugate pairs. For complex conjugate
poles, an equivalent real Kautz filter formulation [1],
depicted in Fig. 2, prevents dealing with complex
(internal) signals and filter weights. The allpass
characteristics of the transversal blocks is restored
by shifting the denominators in Fig. 2 one step to
the right and by compensating for the change in the
tap-output blocks. A mixture of structures in Fig. 1
and Fig. 2 is used in the case of both real and com-
plex conjugate poles.

3. MODELING AND EQUALIZATION USING
KAUTZ FILTERS

Our previous proposals for utilizing Kautz filters in
relation to audio and acoustic systems have been
based on approximative modeling of given (mea-
sured of somehow identified) target responses. The
design procedure is then particularly straightfor-
ward: a desired pole set is generated with respect

Fig. 2: One possible realization of a real Kautz
filter, corresponding to a sequence of complex-
conjugate pole pairs [1]. The normalization terms
are pi =

√
(1− ρi)(1 + ρi − γi)/2 and qi =√

(1− ρi)(1 + ρi + γi)/2, where γi = −2RE{zi}
and ρi = |zi|2 are expanded polynomial coefficients
of the second-order blocks.

to the target response h(n) and the approximation
(or the model) is composed as

ĥ(n) =
N∑

i=0

cigi(n), ci = (h, gi). (4)

That is, the filter weights are the orthogonal expan-
sion coefficients (Kautz-Fourier coefficients) of h(n)
with respect to the choice of basis functions. One of
the favorable specialities of Kautz filter design com-
pared to other IIR or pole-zero filter configurations
is that the approximation is independent of rear-
rangement of the pole set, which implies means for
reducing as well as extending the model by pruning,
tuning, and appending poles, respectively. In ad-
dition, the use of orthogonal expansion coefficients
correspond to least-square (LS) design with respect
to the particular pole set, and as a consequence of
the orthogonality, the approximation error (energy)
is given simply as

E = (h, h)−
N∑

i=0

c2
i , (5)

where (h, h) is the energy of the target response.
As an alternative to the evaluation of ci = (h, gi)
using the inner product formula (3), the Kautz filter
tap-output weights are also attained by feeding the
signal h(−n) to the Kautz filter and reading the tap
outputs xi(n) = Gi[h(−n)] at n = 0: ci = xi(0).
That is, all inner products in (4) are implemented
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simultaneously using filtering. In the case of an FIR
filter this would equal design by truncation of h(n).

3.1. Least-square equalization using Kautz filters

As for any pole-zero model configuration, it is not
in general a straightforward operation to invert or
“flip” a Kautz model of a system into its inverse
system or equalizing counterpart. In fact, this kind
of direct inversion schemes are particularly unattrac-
tive from the point of view of Kautz filters because
of the numerator configuration in the transfer func-
tion. The art of equalization by direct inversion
techniques [17, 14, 3, 15] will not be considered fur-
ther, but it is nevertheless interesting to notice that
many of the consequential requirements posed upon
an equalizer are inherently available in a Kautz filter
configuration, namely,

• genuine IIR nature of the equalizer

• explicit control over the poles

• pure delays and allpass filters as building blocks

• linear in the weight-parameters, allowing a well-
posed LS configuration

The equalization configuration that is more inter-
esting from the Kautz filter point of view can be
characterized as direct equalization: the equalizer
(with impulse response heq(n)) is identified in cas-
cade with the system h(n) to be equalized, to meet
or approximate the ideal equalization target

ĥ(n) = h(n) ∗ heq(n) ≈ δ(n−∆), (6)

where δ(·) is the unit impulse, including a poten-
tial delay ∆. Also in this direct configuration it is
still possible to use an inverted target response as
the basis of design, directly as in (4) or for exam-
ple to identify just the poles. These alternatives will
be demonstrated in the loudspeaker equalization ex-
ample. It is noteworthy that some of the known
problems associated to using an inverted response to
construct the equalizer, such as “ringing poles” and
truncation effects, do not (necessarily) pass on to the
Kautz equalizer. This may by itself reduce the need
for complicated pre-processing operations. In addi-
tion, even this simple approximation setup is by no
means constrained to minimum-phase or magnitude-
only equalization: the target response may obviously

be constructed to take into account phase as well as
magnitude equalization.

A more genuine form of direct equalization is pro-
vided by the least-square configuration [14]: the
square error in the approximation (6) is minimized
with respect to the equalizer parameters (filter coef-
ficients). In terms of the Kautz equalizer, the tap-
output weights {wi} are optimized according to

min
wi

(∑
n

(ĥ(n)− δ(n−∆))2
)

, (7)

where the equalizer response

ĥ(n) =
N∑

i=0

wixi(n), xi(n) = gi(n) ∗ h(n), (8)

is the Kautz filter response to the input h(n). Using
system identification terminology, the equalization
setup is an output-error configuration with respect
to a special choice of model structure. It can even
be considered as a generalized linear prediction for-
mulation. Furthermore, it is a quadratic LS prob-
lem with a well-defined and unique solution that
is obtained from the corresponding normal equa-
tions: if the Kautz equalizer tap-output responses
xi(n) = gi(n) ∗ h(n) are assembled into a “general-
ized channel convolution matrix”

S =




x0(0) · · · xN (0)
x0(1) · · · xN (1)

...
. . .

...
x0(L) · · · xN (L)


 , (9)

then the normal equations submit to the matrix form

ST Sw = s, w = [w0 · · · wN ]T , (10)

where s is the (cross-)correlation vector between the
tap-output responses and the desired response d(n),
si = (d, xi). The matrix product ST S, where (·)T

denotes transpose of a matrix, implements correla-
tion analysis of the tap-output responses, (xi, xj), in
term of the inner product (3), where it is presumed
that the Kautz filter responses are real-valued. In
the case of an impulse as the desired response,
d(n) = δ(n−∆), the correlation vector simply picks
the (∆ + 1)th row of the matrix S,

s = [x0(∆) · · · xN (∆)]T . (11)
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The solution of the matrix equation (10) is

w = (ST S)−1s (12)

and it provides the LS optimal equalizer tap-output
weights with respect to the choice of Kautz func-
tions.

There are obviously practical as well as more prin-
cipled aspects that still have to be specified in the
proposed Kautz equalizer configuration. For exam-
ple, some kind of compensation of the low- and high-
frequency roll-offs of the response to be equalized is
usually needed in the design phase to attain desired
equalization profiles. The subject of coefficient (and
related signal) scaling should also be taken into ac-
count. However, these considerations do not differ
too much from the ones encountered already in the
FIR equalizer case. A somewhat more specialized
question is the choice of the “correlation length” L.
Our choice is to use a sufficiently large L > M , where
M is the length of the response h(n), that in prac-
tice drains out the memory of the Kautz equalizer for
the input h(n). For a particular choice of a Kautz
filter this length could also be quantized since the
Kautz filter response is a superposition of decaying
exponential components. This is in fact not a big
issue due to the nature of the configuration, and in
practice any L > M will collect the essential part
of the “correlation energy”, for example, the choice
L = M + N as in the conventional LS setting.

3.2. Log-scale modeling using Kautz filters: pole
distributions and resolution descriptions

The choice of poles has not been considered so far.
In the case of modeling a given target response, the
poles may be optimized using an iterative method
[18] that resembles the denominator part of the
well-known Steiglitz-McBride method. This pole
optimization process, entitled the BU-method, will
be utilized in the loudspeaker equalization Case 1.
However, in an identification setup, such as the LS
equalization configuration, there are really not too
convincing methods available. A gradient based
search method has been proposed in the case of an
conventional IIR equalizer [12]. The Kautz filter
can be seen as transitional form between strict pole-
zero modeling and an FIR-like configuration using a
“slightly recursive” structure. This property is uti-
lized in the following by incorporating desired overall

frequency resolution allocation by the choice of pole
distributions.

A well-known way to attain flexibility in the fre-
quency resolution description is to use warped filter
configurations [5]. Warped structures may also be
used to approximate logarithmic allocation of fre-
quency resolution, but the approximation is not par-
ticularly good. Parallel allpass structures have been
proposed to attain more accurate descriptions on
a logarithmic scale [6]. In this paper the desired
log-like frequency resolution is produced simply by
choosing the Kautz filter poles according to a loga-
rithmically spaced pole distribution. In polar coor-
dinates, a set of poles

{z1, . . . , zN} ⇀↽ {r1e
jω1 , . . . , rNejωN } (13)

is generated, where the angles {ω1, . . . , ωN} corre-
spond to a logarithmic spacing for a chosen number
of points in the interval [ω1 ωN ] ⊂]0 π[. We choose
the corresponding pole radius as an exponentially
decreasing sequence

ri = αωi , α = eln(r1)/w1 , r1 < 1. (14)

This choice of pole radii will provide an approxima-
tive constant-Q resolution for the Kautz equalizer.
Each pole is then “duplicated” with its complex con-
jugate to produce a real Kautz filter (Fig. 2). From a
more practical point of view, the poles are generated
using the formulas

ωi = 2πfi/fs (15)
pi = R ωi/π e±jωi (16)

where pi is the ith pole pair {zi, z
∗
i }, fi is the corre-

sponding frequency (in Hz), and R is the pole radius
corresponding to the Nyquist frequency fs/2, where
fs is the sample rate (in Hz).

Figure 3 gives an example of the magnitude spec-
trum of Kautz filter tap-output impulse responses
for the choice of logarithmically spaced poles. Each
“resonance” is represented by a pair of responses ac-
cording to the dual output related to the correspond-
ing pais of poles (Fig. 2). The pole set that gener-
ated the response is depicted in Fig. 4(a). Figures
4(b)–(d) characterize the attained frequency resolu-
tion allocation from the perspective of the transver-
sal allpass part of the Kautz filter. The relationship
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Fig. 3: Magnitude responses of the Kautz filter tap-
output impulse responses with respect to the pro-
posed logarithmic distribution of poles.

between the allpass operator and the corresponding
orthonormal filter structure (the Kautz filter) is ex-
plained more thoroughly in [21]. The negated phase
function of the allpass filter (solid line in Fig. 4(c))
can be interpreted as the frequency scale mapping,
whereas its derivative in Fig. 4(d) characterizes the
frequency resolution allocation introduced by the
choice of poles. The upper curve in Fig. 4(d) is the
sum of magnitude responses of Fig. 3, which shows
quite explicitly that the chosen resolution descrip-
tion is somehow meaningful.

The effect of pole radius tuning is demonstrated in
Fig. 5 using various displaying scales for the allpass
phase mappings and corresponding derivatives. It is
noteworthy that the phase responses are quite insen-
sitive to relatively big changes in the radius profile.
The pole distributions are chosen purposefully close
to the unit circle to produce spiking in the resolution
mapping: there is a clear transition from a localized
resolution to a smoother overall description when
the radius parameter R in Eq. (16) is reduced. An-
other notable aspect is that the smoothness scales
well (evenly for the whole frequency range) with the
chosen rule for the pole radius mapping.

4. EXAMPLES OF LS EQUALIZATION USING
KAUTZ FILTERS

In this section we apply the proposed principles
of Kautz filter design for the equalization of loud-
speaker and room responses. The examination of
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Fig. 4: a) The poles set, b) negated phase func-
tions of 2nd order allpass blocks, c) (allpass) tap-
output phases – overall phase (solid line) is the fre-
quency scale mapping (circles indicate pole positions
on this mapping), and d) phase derivative (lower
curve) w.r.t. sum of Kautz filter tap-output magni-
tude responses (scaled).

many practical issues would need a more thorough
investigation; here we take only some cases that il-
lustrate the characteristics and capabilities of Kautz
equalizers.

4.1. Loudspeaker equalization, Case 1

In this first example of Kautz filter equalization, an
inverted minimum-phase target response (with re-
spect to a measured loudspeaker response) is used
both directly and indirectly to construct the equal-
izer. The Kautz filter poles are generated in both
cases using a warped counterpart of the BU-method
[20] with respect to the inverted target response.
The equalizer filter order is chosen to be 38 (18 com-
plex conjugate pole pairs and two real poles). The
purpose of this example is to demonstrate that two
very different equalizer parametrization schemes,
corresponding to Equations (4) and (8), respectively,
produce very similar magnitude response equaliza-
tion results, as depicted in Fig. 6.

The early part of the measured loudspeaker impulse
response and the LS equalized response are displayed
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in panels (a) and (b) of Fig. 7. In Fig. 7(c) the LS
equalizer is designed with respect to a delay ∆ = 12
in the target of equalization. The pole set that is
generated from a minimum phase target response
is not very good at producing pure delay compo-
nents, which results also in inefficiency in magnitude
equalization (not shown). A somewhat trivial way
to attain better equalization is to include zeros in
the Kautz filter pole set: in Fig. 7(d) the equalizer
is equipped with 12 additional poles at the origin,
that is, part of the Kautz filter is implemented as an
FIR filter substructure.

4.2. Loudspeaker equalization, Case 2

Another example of Kautz equalizer design is pre-
sented in Fig. 8. It depicts the same loudspeaker
response as in Case 1 having a relatively non-flat
magnitude response (curve (a)). The response is
corrected by a 24th order (12 pole pairs) Kautz fil-
ter with logaritmically positioned pole frequencies
between 80 Hz and 23 kHz (indicated by vertical
lines in the middle of the figure) and R = 0.03
(see Eq. 16). After low- and high-frequency roll-
off compensations to avoid boosting off-bands of the
speaker, as shown by curve (c), the equalizer filter
resulting from Kautz LS equalization shows its mag-
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Fig. 6: Magnitude responses from bottom to
top: measured loudspeaker response, LS equalized
(method (8)), pole frequencies, equalized using (4)
w.r.t. inverted target, corresponding equalizer re-
sponses.

nitude response in curve (d). The equalized response
is plotted in curve (e) and as a 1/3-octave smoothed
version in curve (f).

Filter orders from 8 up (4 pole pairs) give useful re-
sults in this case, although the selection of order and
pole positions may introduce considerable variation
in flatness of the result. Therefore full optimization
requires a search over sets of poles and filter orders,
in spite of the fact that the LS procedure itself al-
ways gives optimal tap coefficients for a given fixed
order and pole set.

Curve (g) in Fig. 8 demonstrates the effect of Kautz
pole radii selection. In this case the poles are set
too close to the unit circle (R = 0.8), thus the fre-
quency ranges around pole frequencies get too much
emphasis. Otherwise, in most cases, the selection of
pole radii is not critical at all. Even very small radii,
such as R = 10−5, work well in this case.

Comparison of curves (e) and (g) explains also
clearly why LS equalization using the Kautz filter
configuration behaves favorably with zeros in the re-
sponse to be equalized, while exact inversion of a re-
sponse with deep dips results in undesirable peaks
and long-ringing decay times in the equalizer [4]. In
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Fig. 7: Early part of time-domain responses: a) mea-
sured loudspeaker, b) LS equalized (Kautz filter or-
der 38), c) using the same set of poles and including
delay (∆ = 12) in target, and d) by including 12
poles at the origin and delay (∆ = 12) in target.

Kautz filters the pole radii determine the maximum
Q values of resonances. If the pole radii are selected
conservatively, no excess peaking and ringing of res-
onances appear in the equalizer response.

4.3. Loudspeaker equalization, Case 3

In this subsection we demonstrate further the use of
Kautz modeling in loudspeaker equalization includ-
ing both magnitude and phase correction. While
in previous studies with warped and Kautz filters
[7, 5, 21] we have applied magnitude-only equaliza-
tion, it is interesting to investigate the ability of
Kautz inverse models to correct also the phase be-
havior.

For clarity of phase curves, it is preferable to demon-
strate the phase correction by using a synthetic (sim-
ulated) loudspeaker response instead of a real mea-
sured one. Figures 9 and 10 depict the magnitude
and group delay behaviors of an idealized two-way
loudspeaker. It consists of a low-frequency driver in
a wented box (4th order highpass at 80 Hz) and a
high-frequency driver (up to 18 kHz), both with flat
response between roll-off frequencies. They are com-
bined with a second order Linkwitz-Riley crossover
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Fig. 8: Basic example of loudspeaker response equal-
ization by Kautz filter inverse modeling. From bot-
tom up: (a) measured magnitude response, (b) same
one 1/3-octave smoothed, (c) low and high roll-off
compensation, (d) magnitude response of 24th order
(12 pole pairs) Kautz equalizer, (e) equalized mag-
nitude response, (f) same one 1/3-octave smoothed,
and (g) Kautz equalized response with R = 0.03.
Vertical lines at 35 dB level indicate the frequency
positions corresponding to logarithmically spaced
pole angles.

network [10, 11], which in an ideal case results in a
flat magnitude response at the main axis.

In this particular case we investigate a loudspeaker
where the acoustic center of the high-frequency
driver is 17 cm behind the acoustic center of the
low-frequency unit. This means a temporal non-
alignment of about 0.5 ms, which results in ripple
of the main axis magnitude response (‘Original’ in
Fig. 9) and similarly a non-flat group delay response
(‘Original’ in Fig. 10). The magnitude response er-
ror of this amount is easily audible. Although the
group delay deviation remains within 1 ms above 300
Hz, which is hardly noticeable in practice, it is inter-
esting to check how the phase correction by Kautz
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Fig. 9: Magnitude responses of the simulated loud-
speaker: LP = low-pass crossover; HP = high-
pass crossover; original = response due to driver
distance misalignment; minimum-phase equalized;
excess-phase equalized response.

LS equalization works. This brings necessarily in-
creased latency beyond the maximum group delay
of the original response.

Curves ‘EQ min-phase’ in Figs. 9 and 10 show the
magnitude and group delay responses of the simu-
lated loudspeaker when a Kautz equalizer is designed
based on the minimum-phase part of the loudspeaker
impulse response. A Kautz filter of 18 pole pairs was
designed with logarithmic distribution of poles be-
tween 80 Hz and 23 kHz and pole radius coefficient
R = 0.1. High- and low-frequency roll-offs are com-
pensated in EQ design to remain as they were orig-
inally. After equalization the magnitude response is
flat within ±1 dB, while the group delay (dashed
line) is not essentially improved.

Curves ‘EQ excess-phase’ in Figs. 9 and 10 illus-
trate the results of magnitude plus phase equaliza-
tion with a Kautz LS equalizer. In this case the
target response of the equalized system is given as
a delayed impulse, with a latency higher than the
maximum delay of the loudspeaker itself. The tar-
get group delay was set here to 1.5 ms (66 samples
at 44.1 kHz sample rate). A Kautz equalizer was de-
signed with 8 logarithmically distributed pole pairs
within 80 Hz to 23 kHz, with R = 0.05, plus 96 poles
at the origin. Notice that the latter ones correspond
again to FIR filter behavior, so that the equalizer is
a mixture of an FIR and an IIR filter.
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Fig. 10: Group delay responses of the simulated
loudspeaker: original = ripple due to driver distance
misalignment; minimum-phase equalized; excess-
phase equalized response with extra group delay.

After applying excess-phase equalization the magni-
tude response in Fig. 9 is again within ±1 dB, while
the group delay curve in Fig. 10 has ripple less than
±0.1 ms. (The growth of low-frequency group de-
lay comes from the high-pass behavior of the loud-
speaker, which is not compensated for.)

4.4. Room response equalization, Case 4

In this subsection we examine a basic example of
loudspeaker plus room response correction using
Kautz LS equalization. The loudspeaker used had
a lower roll-off frequency of about 80 Hz, compen-
sated in target response design. The room was a
listening room of 33 m2 with fairly well controlled
acoustics. Figure 11 shows the first 5 ms of the mea-
sured impulse response in pane (a) and magnitude
response in pane (c) in full resolution and 1/3-octave
smoothed.

A Kautz equalizer of order 24 (12 pole pairs) was
designed with logarithmically positioned pole fre-
quencies between 50 Hz and 20 kHz, using the pole
radius parameter value R = 0.5. The resulting im-
pulse response and magnitude response are plotted
in Fig. 11, panes (b) and (d). The magnitude re-
sponse is flattened as desired. In the impulse re-
sponse some low-frequency oscillation is damped,
but the peaks corresponding to reflections from sur-
faces cannot of course be canceled out by such a low-
order equalizer. However, even equalizer orders of
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Fig. 11: Kautz equalization of a room response: (a) first 5 ms of the impulse response, (b) first 5 ms of the
equalized impulse response, (c) original magnitude response, and (d) Kautz equalized magnitude response.
In magnitude responses the lifted upper curves are computed through 1/3-octave smoothing.

8–12 (4–6 pole pairs) seen to provide useable equal-
ization results in this particular case.

In principle the Kautz equalization is capable to ap-
proach perfect inversion or any resolution of magni-
tude and phase equalization. In practice there are
however limitations, such as ability to do major cor-
rections in phase behavior, e.g., proper temporal en-
velope manipulation as done in [4]. This remains a
topic for future research.

5. DISCUSSION AND CONCLUSIONS

Many DSP techniques have been proposed earlier
for the equalization of audio reproduction channels,
either for loudspeaker only or for combined loud-
speaker and room responses. We have earlier in-
vestigated different frequency warping techniques,
including Kautz filters, which allow for maximum
flexibility of frequency resolution control in equal-

izer design [21]. The previous Kautz filter equaliz-
ers were designed as models for responses that were
separately inverted for given reproduction system re-
sponses. For simplicity, the inversion was done only
for the minimum-phase part.

In the present study we have extended the use of
Kautz filter equalizers to more general cases by sys-
tematic design of inverse filter models directly from
given impulse responses of audio reproduction sys-
tems. The novelty is to apply least square optimal
design of Kautz filter tap coefficients for a fixed set
of system poles. Logarithmic frequency resolution is
approximated by setting the pole angle distribution
logarithmically and by controlling the pole radii to
approximate constant-Q behavior. This is concep-
tually similar to inverse (FIR) filter design through
linear prediction for uniform frequency resolution.

An advantage of the new method is that it can
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be applied to non-minimum phase EQ design, as
demonstrated for loudspeaker equalization. Another
favorable feature is the inherent control of sharp
magnitude response dips to avoid sharp peaks and
long-ringing temporal decays in the equalizer design.
This is done simply by limiting the Q-values of the
Kautz system pole pairs.

After introducing Kautz filters in Section 2 and the
new principle of Kautz equalization in Section 3, a
set of case studies are presented in Section 4. These
include different loudspeaker response corrections,
including non-minimum phase equalization. A typi-
cal listening room case is also studied for combined
loudspeaker and room response equalization. This
is primarily magnitude-only equalization; more de-
tailed control of phase behavior is left to future re-
search.

Low-order Kautz equalizers (4 to 12 pole pairs) are
found in practice to yield good magnitude response
correction. Phase correction may need higher orders
with a set of system poles at the origin and excess
delay required for the target response.

Kautz filters are know to be numerically robust due
to the allpass type of elements used in the imple-
mentation. For low orders it is possible to map the
transfer function to direct form IIR structures for
maximal efficiency on DSP processors. This and
many other practical questions remain however out
of the scope of this paper, which is the first step
in introducing this new concept of audio equalizer
design.
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