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Abstract

Sound field synthesis aims at the the reproduction of the physical properties of an
arbitrary wavefield over an extended listening region by driving a densely spaced
loudspeaker ensemble, termed the secondary source distribution. The loudspeakers
are fed with properly chosen driving signals or driving functions so that the sum of
the fields of the individual loudspeakers would equal to the desired virtual/target
sound field. Two basic types of solutions exist in order to arrive at the required driving
functions: Explicit solution solves the integral equation describing the synthesized
sound field directly for the driving function by performing its spectral decomposition.
On the other hand, the implicit solution aims at the formulation of the synthesized
field in terms of a contour integral which would contain the driving function implicitly.
The implicit approach is generally termed as Wave Field Synthesis.

The present dissertation revisits the theoretical foundations of Wave Field Synthesis
in order to overcome the limitations of the previous approaches. As an important
result, loudspeaker driving functions are presented for a freely chosen secondary
source contour in order to synthesize an arbitrary virtual field and optimizing the
synthesis to an arbitrary reference curve at which amplitude correct synthesis is
achieved.

Afterwards, a high frequency, asymptotic spatial domain formulation is given
for the explicit solution which is shown to be equivalent with the presented Wave
Field Synthesis approach. Hence, the general asymptotic relationship between the
two approaches is established for the first time. Furthermore, a simple asymptotic
anti-aliasing strategy is proposed in order to suppress aliasing waves emerging in
case of the application of a practical discrete secondary source distribution, instead of
the theoretical continuous one.

Finally, as a complex application example the synthesis of the field generated by
moving virtual sources is discussed. It is shown that all the presented results can be
extended for the inclusion of this dynamical case: Both Wave Field Synthesis and
explicit driving functions are given for the reproduction of moving sources—with
also highlighting their high frequency equivalence—before extending the introduced
anti-aliasing strategy for the synthesis of time-variant wavefields.





Kivonat

A hangtér-reprodukció célja egy tetszőleges virtuális akusztikai környezet, a vir-
tuális hangtér fizikai jellemzőinek visszaállítása kiterjedt megfigyelői terület men-
tén, a megfigyelési területet határoló hangszórósokaság, az ún. másodlagos for-
ráseloszlás megfelelő vezérlésével. A reprodukció alapfeladata ezen hangszóró-
vezérlőfüggvények meghatározása úgy, hogy az egyes hangszóróelemekből származó
hullámok összege megegyezzen az elérendő virtuális térrel. Két alapvető módszer
létezik a probléma megoldására: Az explicit megoldás célja a szintetizált teret leíró
integrálegyenlet közvetlen megoldása a vezérlőfüggvényre vonatkozóan, amely egy
megfelelő spektrális dekompozícióval érhető el. Ezzel szemben az implicit megoldás,
vagy elterjedtebb nevén a hangtérszintézis (Wave Field Synthesis) alapja a virtuális
hangteret peremfeltételek alapján leíró kontúrintegrál meghatározása, amely implicite
magában tartalmazza a keresett vezérlőfüggvényeket.

A jelen disszertáció a hangtérszintézis elméletét tárgyalja újra a kiindulási alapok-
tól kezdve a technika általánosításának érdekében. Fontos eredményként hangszóró-
vezérlőfüggvényeket kerülnek bemutatásra, amelyek alkalmazásával egy tetszőleges
virtuális hangtér előállítható szabadon választott másodlagos forráskontúrral és a
szintézis tetszőleges referenciagörbére optimalizálható, amely görbe mentén amplitú-
dóhelyes szintézis érhető el.

Ezután az alapvetően a spektrális tartományban adott explicit megoldás
nagyfrekvenciás, tértartománybeli közelítése kerül bemutatásra, amely megoldás a be-
mutatott hangtérszintézis módszerrel megegyező alakra hozható. Ez tehát bizonyítja
a két módszer nagyfrekvenciás, aszimptotikus ekvivalenciáját általános szintézis prob-
lémákra. A dolgozat ezen felül egy egyszerű aszimptotikus átlapolódásgátló-szűrési
stratégiát is bemutat, amely alapján a hangszórósor diszkrét jellege miatt jelenlévő
másodlagos, térbeli-átlapolódó hullámfrontok hatékonyan elnyomhatók.

Végezetül összetett példaként a leírtak alkalmazására a mozgó források által keltett
hangterek szintézisének kérdései kerülnek tárgyalásra. A dolgozatban bemutatott
módszerek egyszerűen kiterjeszthetőek mozgó források szintézisére: hangtérszintézis
és explicit vezérlőfüggvények kerülnek bevezetésre erre a dinamikus, idővariáns
esetre is, az átlapolódásgátló-szűrési stratégia kiterjesztésével együtt.





Acknowledgements

This dissertation concludes the work of 9 years which I spent in the Laboratory of
Acoustics and Studio Technologies starting with my MSc studies in 2010. I’m thankful
for my BSc supervisor Krisztián Gulyás who drew my attention to an interesting
technology called Wave Field Synthesis, and who advised me to seek the help of Péter
who could better help me with the technique’s theoretical basics.

My greatest gratitude goes to my MSc and PhD supervisor Péter Fiala. His con-
tribution, his strong mathematical and theoretical skills, his help regarding all the
underlying math and his friendship were indispensable for the birth of the presented
results and for the quality of the present writing, as well as for the co-foundation of
the first hungarian „Winnie the Pooh” club.

Also, I thank to all my colleagues for welcoming me in the Laboratory of Acoustics
and for the years we spent together: Péter Rucz, Attila Balázs Nagy, Fülöp Auguszti-
novicz, Ferenc Márki, Dóra Jenei-Kulcsár and Tamás Mócsai, all of whose company
and support I greatly appreciated throughout the years.

Over the years I had the luck to connect my work with fellow researchers. I am
very grateful to meet and work together with Fiete Winter, Nara Hahn, Franz Zotter,
Jens Ahrens and Sascha Spors, whose work was a starting point for my research. I am
especially thankful for Frank Schultz for the friendly and fruitful discussions, all the
collaboration and for his careful proofreading of the present dissertation.

Also, from the last years I am grateful for Csaba Huszty and his team for the
cooperation in which I could employ my knowledge from the field of sound field
reproduction.

Last, but certainly not least, I would like to thank my family, all my friends and
my girlfriend for not only accepting but also for supporting me throughout the years I
spent with my research.





Contents

1 Introduction 1
1.1 Overview of spatial audio techniques . . . . . . . . . . . . . . . . . . . 1
1.2 Wave Field Synthesis history and motivation of the presented research: 6

2 Theory of wave propagation and radiation problems 11
2.1 The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The homogeneous wave equation . . . . . . . . . . . . . . . . . 12
2.1.2 The inhomogeneous wave equation . . . . . . . . . . . . . . . . 13
2.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Solution of the homogeneous wave equation . . . . . . . . . . . . . . . 16
2.2.1 Plane wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 The angular spectrum representation . . . . . . . . . . . . . . . 18
2.2.3 Solution in other geometries . . . . . . . . . . . . . . . . . . . . 19

2.3 Solution of the inhomogeneous wave equation . . . . . . . . . . . . . . 20
2.3.1 The Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Solution of the general inhomogeneous wave equation . . . . . 22

2.4 Boundary integral representation of sound fields . . . . . . . . . . . . . 24
2.4.1 The Kirchhoff-Helmholtz integral equation . . . . . . . . . . . . 24
2.4.2 The simple source formulation . . . . . . . . . . . . . . . . . . . 26
2.4.3 The Rayleigh integrals . . . . . . . . . . . . . . . . . . . . . . . . 28

3 High frequency approximation of wavefields and radiation problems 31
3.1 Local attributes of sound fields . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 The local wavenumber vector . . . . . . . . . . . . . . . . . . . . 31
3.1.2 The local wavefront curvature . . . . . . . . . . . . . . . . . . . 34
3.1.3 High frequency gradient approximation . . . . . . . . . . . . . . 35

3.2 The Kirchhoff approximation . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 The stationary phase approximation . . . . . . . . . . . . . . . . . . . . 41

3.3.1 The integral approximation . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Asymptotic approximation of boundary integrals . . . . . . . . 42
3.3.3 Asymptotic approximation of spectral integrals . . . . . . . . . 47

4 Theory of sound field synthesis 53
4.1 Implicit solution: Wave Field Synthesis . . . . . . . . . . . . . . . . . . 54

4.1.1 3D Wave Field Synthesis . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 The 2.5D Kirchhoff approximation . . . . . . . . . . . . . . . . . 57
4.1.3 2.5D Wave Field Synthesis . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Explicit solution: Spectral Division Method . . . . . . . . . . . . . . . . 67



4.2.1 3D Spectral Division Method . . . . . . . . . . . . . . . . . . . . 67
4.2.2 2.5D Spectral Division Method . . . . . . . . . . . . . . . . . . . 70
4.2.3 Explicit solution in the spatial domain . . . . . . . . . . . . . . . 73

4.3 Relation of implicit and explicit solutions . . . . . . . . . . . . . . . . . 76
4.4 Synthesis applying discrete secondary source distribution . . . . . . . 78

4.4.1 Description of spatial aliasing . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Avoiding spectral overlapping . . . . . . . . . . . . . . . . . . . 81
4.4.3 Avoiding the reproduction of mirror spectra . . . . . . . . . . . 84

5 Synthesis of moving sound sources 89
5.1 Description of moving sources . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Time domain description . . . . . . . . . . . . . . . . . . . . . . 89
5.1.2 Time-frequency domain description . . . . . . . . . . . . . . . . 92

5.2 Wave Field Synthesis of moving sources . . . . . . . . . . . . . . . . . . 95
5.2.1 3D Wave Field Synthesis of a moving point source . . . . . . . . 96
5.2.2 The time domain 2.5D Kirchhoff approximation . . . . . . . . . 98
5.2.3 2.5D Wave Field Synthesis of a moving point source . . . . . . . 101

5.3 Explicit solution for the synthesis of moving sources . . . . . . . . . . . 105
5.3.1 Spectral representation of moving sources . . . . . . . . . . . . 105
5.3.2 3D Spectral Division Method for moving sources . . . . . . . . 107
5.3.3 2.5D Spectral Division Method for moving sources . . . . . . . 109

5.4 Practical aspects of the synthesis of moving sources . . . . . . . . . . . 111
5.4.1 Calculation of source trajectory . . . . . . . . . . . . . . . . . . . 111
5.4.2 Calculation of propagation time delay . . . . . . . . . . . . . . . 112
5.4.3 Effects of the SSD discretization . . . . . . . . . . . . . . . . . . 112
5.4.4 Choosing the referencing scheme . . . . . . . . . . . . . . . . . . 118

6 Conclusion 119

7 Theses 123

Appendices 127

A Appendix A 129
A.1 Definition and properties of the Fourier transform and the Dirac delta 129

B Appendix B 133
B.1 Notes on the Hessian of the phase function . . . . . . . . . . . . . . . . 133

B.1.1 Definition of the principal curvatures and principal directions . 133
B.1.2 Hessian for the SPA applied for the Rayleigh integral . . . . . . 135

C Appendix C 139
C.1 Wavenumber vector of a point source pair . . . . . . . . . . . . . . . . . 139

D Appendix D 141
D.1 Asymptotic approximation of the explicit driving function . . . . . . . 141

E Appendix E 145



E.1 Farfield approximation of planar radiators . . . . . . . . . . . . . . . . 145

F Appendix F 149
F.1 Spectral representation of non-stationary convolutions . . . . . . . . . 149

G Appendix G 151
G.1 Representation of sources, moving on straight trajectories . . . . . . . . 151

Bibliography 155





Nomenclature

x Position vector in Descartes coordinates: x = [x, y, z]T

v General 3D vector in Descartes coordinates: v = [vx, vy, vz]T

|v| Length, or l2 norm of vector: |v| =
√∑

i v
2
i

v̂ Normalized vector, with unit length pointing into the direction of v: v̂ = v
|v| .

〈u · v〉 Inner product of vectors u and v: 〈u · v〉 =
∑
i ui · vi = uTv

n Normal vector of a surface, or contour

∂
∂xi

Partial derivative of a function with respect variable xi

d
dxi Total derivative of a function with respect argument xi

∇x Gradient operator. In Descartes-coordinates: ∇x f = ∂f
∂xex + ∂f

∂y · ey + ∂f
∂z · ez ,

with ex,y,z being unit vectors into x, y, z directions

∇x · Divergence operator. In Descartes-coordinates: ∇x · f = ∂f
∂x + ∂f

∂y + ∂f
∂z

∇2
x Laplace operator. In Descartes-coordinates: ∇2

x f = ∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2

∂
∂v Directional derivative of a function into the direction of vector v: ∂

∂vf =
〈∇x f · v〉

f ′xi(x0) Shorthand for the partial derivative of function f(x) with respect to variable

xi, taken at the evaluation point x0: f ′xi(x0) = ∂
∂xi
f(x)

∣∣∣∣
x=x0

f ′′xi,xj (x0) Shorthand for the second partial derivative of function f(x) with respect to

variables xi, xj , taken at the evaluation point x0: f ′′xi,xj (x0) = ∂2

∂xi∂xj
f(x)

∣∣∣∣
x=x0

Fx {} Fourier transform of a function with respect to variable x

F−1
kx
{} Inverse Fourier transform of a function with respect to variable kx

∗x Convolution of functions w.r.t. variable x: f ∗x g =
∫∞
−∞ f(x− x0)g(x0)dx0.





1Introduction

1.1 Overview of spatial audio techniques

Spatial audio aims at the recreation of a sound scene containing sources of sound,
termed as audio objects, in a sense that the human listener perceives the spatial charac-
teristics of the desired acoustic environment [Zha+17]. Sound field reproduction achieves
this by driving an arrangement of fix positioned loudspeakers, so that the superpo-
sition of the sound waves emerging from the individual loudspeakers generates the
impression of the desired virtual audio object, present in the sound scene. Alterna-
tively, binaural rendering applies a headphone for the reproduction of localization cues
for the human auditory system directly at the ears of the listener. These cues are
triggered by the head-related transfer function (HRTF) including the interaural time
and level differences (ITD and ILD) due the anthropometry of the listener, dynamic
cues due to the movement of the listener’s head and several environment scattering
cues, which all are combined by the human brain, generating the perceived spatial
impression [Bla83].

The present thesis considers only spatial audio by loudspeakers. In this case, the
general aim is the derivation of loudspeaker driving signals from a given source
excitation signal in a manner that the reproduced field exhibits prescribed spatial
characteristics, e.g. a specific apparent direction of arrival or a prescribed apparent
source width. In the following, first a short overview is given on the different sound
field reproduction approaches, classified based on the basic goal of reproduction.

Stereophony: Sound field reproduction has been the subject of excessive study
and development over the second half of the XX. century, starting with the work of
Blumlein, who introduced the first two-loudspeaker system in 1931 (along with the
related recording, transmission and playback methodology) and thereby creating the
basics of stereophony [Blu32; Ale00]. Blumlein’s invention was first put to practice in
the 1950s, and since then stereophony has risen to a huge commercial success. Modern
stereophonic systems include the well-known Dolby stereo, 5.1, 7.1 systems, the 22.2
system of the NHK [Ham+05; Ham+11] or the current state-of-the-art commercial
spatial audio systems, Dolby Atmos [Atm] and DTS-X. While the first three systems
ensured only 2D sound reproduction in the horizontal plane containing the listener’s
ears, recent systems introduced height information as well, by adding height channels
to the reproduction loudspeaker layout.
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Figure 1.1. Typical two-channel stereophonic loudspeaker geometry (a) and exemplary
interchannel amplitude and time differences (b) for the panning of the phantom source to be
localized from the angular direction φp. Most of the data are experimental results, as published
by de Boer [Boe40] (measured for male speech signal), Brittain and Leakey (measured for
speech signal, limited to 5 kHz) [BL56] and Leakey [Lea60] (measured for wide-band speech
signal), while the tangent law is an analytically given curve, based on a simple physical model.

Generally speaking—independently from the number of the speakers applied—
stereophony generates the desired spatial impression by the recreation of some of the
above localization cues at the listener position. Correct localization therefore can be
ensured only over a limited listening area termed as the sweet spot, being a central
limitation of these techniques. Increasing the number of the loudspeakers allows only
for a more precise reproduction of the target fields’ spatial attributes (e.g. for a more
accurate localization).

The source of the stereophonic signals may be either a recording of the sound scene
to be reproduced, captured by a suitable microphone array [Lip85; WD99; WT17] or
the signal of the audio objects present in the virtual sound scene, distributed among
the loudspeakers applied for reproduction.

The latter approach requires an appropriate panning law, describing how the indi-
vidual loudspeaker signals are obtained from the object source signal, ensuring that in
the reproduced field the given audio object is perceived by the listener with desired
spatial characteristics (e.g. object position, apparent width, etc.) [Pul01a; Pul01b].
Traditional stereophonic panning techniques included applying either interchannel
intensity difference or time delay between the signals of the loudspeakers. These
techniques are commonly referred to as intensity stereophony/amplitude panning and
time-based stereophony respectively. Ultimately both approaches control the apparent
virtual audio object’s position by adjusting the interaural time difference between
the listener’s ears (meaning that even amplitude difference between the loudspeaker
signals is converted to time difference at the ears, as it is discussed in Section 3.1.3).

Originally, both the interchannel amplitude and time differences—required in
order to ensure the desired spatial impression—were defined based on experimental
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data [Boe40; BL56; Lip85; HW97; Rum01]. Later, the physically motivated sine law
[Bau61; RS07] and the tangent law of panning[Ben+85; RS07] were introduced, based on
an analytical model of the reproduced stereophonic field. The latter is discussed within
the context of the introduced theoretical framework in the present thesis. Several
basic intensity and time-based panning laws are depicted in Figure 1.1 (b). Amplitude
panning was extended towards 3D spatial audio by Vector Base Amplitude Panning
(VBAP) introduced by Pulkki [Pul97], allowing the positioning of phantom/virtual
sources in the 3D space by distributing its excitation signal between loudspeaker
triplets.1

Ambisonics: As an alternative for stereophony, the theory of Ambisonics was
introduced by Gerzon in the 1970s, proposing both a novel recording and reproduc-
tion system [Ger73] and later elaborating an objective evaluation methodology for
Ambisonic type sound systems [Ger92]. Being an intermediate approach between
stereophony and sound field synthesis, traditional Ambisonics aims at the repro-
duction of physical properties of a sound field in the proximity of a fixed listening
position.

Generally speaking, Ambisonics represents a sound field in terms of its orthogonal
decomposition over a sphere, so that the sound scene to be reproduced is described
and stored as coefficients of the orthogonal basis functions. The orthogonal basis for
Ambisonics is given by the set of spherical harmonics. The so-called encoding step of
Ambisonics format is therefore the decomposition of the sound field to be reproduced
into a series of spherical harmonics up to a given order N , with the order defining
the spatial resolution and the size of the receiver zone for the representation [Ger85].
Ambisonics signals hence are time histories belonging to given spherical harmonic
shapes.

Traditional Ambisonics considered only spherical harmonics up to the first order
(N = 1) [Ger75], while modern microphone array designs allow the capturing of
the sound field to be reproduced at a higher resolution with the technique termed as
Higher Order Ambisonics (HOA,N ≥ 2) [AW02; ME02; AG10]. Similarly to stereophony,
besides measuring the target sound field at a predefined listener position, Ambisonics
allows the rendering of virtual audio objects defined by a physical model: once a
model for the spatial characteristics of the virtual audio object is available, spherical
harmonic decomposition may be performed analytically resulting in Ambisonics
coefficients up to an arbitrary order [AS08b; Ahr10].

Finally, at the reproduction, or decoding stage the loudspeaker signals for the actual
loudspeaker layout are decoded from the spherical harmonics coefficients following
some suitable decoding strategy [Dan00; Dan+03; Zot+12; ZF12; ZF18]. Applying a
decoding strategy that takes the actual reproduction loudspeaker characteristics into
consideration is termed as Near-Field Compensated Higher Order Ambisonics (NFC-HOA)
[Dan03].

1VBAP can be applied for loudspeaker pairs as well, in which case the formulation is equivalent with
the tangent law of stereophony.
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Figure 1.2. The general
geometry for sound field
synthesis: the goal of syn-
thesis is to reproduce the
physical properties of a vir-
tual sound object, or pri-
mary source of sound inside
a control region, bounded
by a densely spaced loud-
speaker ensemble.

Sound field synthesis: An important property of spherical harmonic decompo-
sition of a given sound field around a fixed point is that increasing the decomposition
order increases the area/volume at which the sound field is represented correctly. By
driving a loudspeaker ensemble that is capable of reproducing higher order harmonics
the sweet spot limitation of stereophony could be overcome. This fact adumbrates the
motivation behind physically based sound field reproduction methods, commonly
referred to as sound field synthesis techniques or holophony: once the physical properties
of a desired sound field are reproduced over an extended listening area, it is inher-
ently ensured that the listener perceives the desired perceptual properties [Spo+13].
Obviously, controlling the sound field over an extended region requires numerous
loudspeakers, positioned on the boundary of the control region, as depicted in Fig-
ure 1.2. Hence, these techniques are often referred to as massive multichannel sound
reproduction methods [Spo+13; Zha+17].

Generally speaking, the sound field synthesis problem is an inverse problem: the
synthesized sound field is described analytically in the form of an integral/summation
of the individual loudspeakers’ sound field [Faz+08; Faz10; Ahr10; Ahr12]. In order to
derive analytical loudspeaker signals, this integral formulation has to be solved in an
inverse manner for any target virtual sound field. The solution is available explicitly
only for special geometries: for a spherical and circular arrangement of loudspeakers
the direct solution is proven to coincide with NFC-HOA [WA01; Dan03; Pol05; Faz+08;
AS08a; Faz10; AS11a], while for a theoretical infinite planar or linear distribution
of loudspeakers the solution is known as the Spectral Division Method (SDM) [Faz10;
AS10c; AS12; Ahr12]. NFC-HOA and SDM are therefore commonly referred to as the
explicit solutions for the sound field synthesis problem.

Besides NFC-HOA and SDM the most prominent, well-known sound field synthe-
sis approach is Wave Field Synthesis, being the main subject of the present dissertation.
Wave Field Synthesis (WFS) aims to recreate the desired sound field—or more pre-
cisely the desired wavefront—by putting the Huygens principle into practice: each
reproduction loudspeaker acts as the source of a secondary wavefront, so that the
resultant field of the entire speaker arrangement coincides with that of a virtual sound
source [Ber+93; Ver97; Ahr12]. As WFS yields driving signals from the local behavior
of the virtual sound field at the position of the loudspeakers it is often termed as a
local solution to the SFS problem. On the other hand, the explicit solutions compute
the driving signal for a single loudspeaker from the global description of the virtual
field, therefore NFC-HOA and SDM are termed as global solutions. Furthermore, since
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WFS extracts the loudspeaker driving signals from an appropriate boundary integral
representation of sound fields containing the solution implicitly, WFS is referred to as
an implicit solution.

Categorization of spatial audio techniques: As a summary of the foregoing the
above described spatial audio techniques may be categorized based on the representa-
tion of the virtual sound scene to be reproduced [Spo+13]

• Channel-based representation is the most widely used method up to nowadays,
storing and transmitting directly the driving signals of the loudspeakers, used
for reproduction. Traditional stereophonic methods, like Dolby stereo, 5.1 and
7.1, are commonly channel-based formats with the drawback of reproducing the
desired spatial characteristics only by applying a predefined, often standardized
loudspeaker layout.

• Object-based representation stores the desired virtual sound scene in terms of
the virtual audio object properties: the time history of the individual auditory
events along with their spatial characteristics as metadata (position, source
width, etc.). Obviously, the decoding/reproduction stage requires the rendering
of the loudspeaker driving signal for the actual loudspeaker layout, for which
either VBAP, Wave Field Synthesis or simple stereophonic panning laws may be
used.

• As a third possibility, transform-based representation stores the characteristics of
the sound scene in terms of its coefficients for the expansion into orthonormal
spatial basis functions. Similarly to the object-based case, a sophisticated decod-
ing/rendering stage is required at the reproduction side in order to derive the
driving signals for the loudspeaker arrangement, for which either NFC-HOA or
the Spectral Division Method may be applied.

Due to the simplicity of the reproduction stage, up to the recent years commer-
cially available technologies almost exclusively utilized channel-based representations,
however, in the recent years object-based reproduction techniques have started to
gain more ground. Dolby Atmos and DTS-X are the first commercially successful
object-based surround sound technologies, both realizing object-based stereophony
[Atm]. As a further step, the 3D audio coding part of the latest MPEG-H coding stan-
dard allows for standardized encoding, transmission and decoding of spatial audio
scenes [Her+15b; Her+15a]: the standard audio decoder is capable of decoding either
channel-based, object-based, or transform-based representations of the desired audio
scene. Object-based rendering is performed by Vector-based Amplitude Panning,
while transform-based representation is realized by a standardized Higher-Order
Ambisonics encoder and decoder.

Since several years Wave Field Synthesis based sound systems has been available
commercially since the introduction of the IOSONO and Sonic Emotion systems,
even though that no complete, generalized WFS theory has existed so far: Previous
WFS approaches have been dealing with the reproduction of specific sound object
models applying specific loudspeaker geometries with restricted control regions.
These limitations are overcome in the present thesis by presenting a generalized
Wave Field Synthesis approach. In the following, first a brief overview of Wave
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primary wavefront

secondary
wave-
fronts

listening region

Figure 1.3. Reproduction of a primary wavefront based on the Huygens principle.

Field Synthesis history is given, with highlighting the deficiencies of its theory that
motivated the research, summarized in the present dissertation.

1.2 Wave Field Synthesis history and motivation of
the presented research:

The Huygens principle states that each point on a primary wavefront at a given
time instant acts as the source of spherical wavelets, and the sum of these secondary
waves determine the form of the original wavefront at any subsequent time [Huy90].
Hence, if secondary sources of sound are present in the space covering a part of
the primary wavefront, then the primary field can be reconstructed as the sum of
the secondary wavefronts. The idea of synthesizing wavefronts with loudspeakers
based on the Huygens principle in order to reconstruct wavefields over an extended
listening area dates back to the 1930s, to the concept of the acoustic curtain by Steinberg
and Snow [SS34]. They intuitively stated that an auditory scene could be recorded,
transmitted and reproduced by recording the sound scene with a large, densely spaced
microphone array and playing back with the same amount of loudspeakers located in
the same arrangement as the microphones, at the reproduction venue.2 The concept
is illustrated in Figure 1.3. Due to the obvious technical constraints of that time, the
concept has not been put into practical application until the 1980s.

The original theory of Wave Field Synthesis—often referred to as traditional WFS—
evolved from the works of Berkhout et al. at the Technical University of Delft utilizing
concepts, well-known in the field of seismic migration.The basis of WFS theory were
the Rayleigh integrals, the mathematical form of the Huygens principle, represent-
ing a sound field as the sum of spherical waves, emerging from an infinite plane.
Berkhout applied the stationary phase method (SPA) to the Rayleigh integrals in
order to arrive at loudspeaker driving signals for a linear array of loudspeakers in-
stead of the practically infeasible planar array. The original formulation provided
driving signals for loudspeakers with dipole characteristics [Ber88; Ber+93]—soon
extended for monopole loudspeakers as well [Ber92; Vog93; Vri+94; Sta97; Ver97;

2In fact, Snow termed the acoustic curtain concept as an ideal stereophonic system [Sno53].
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Bru04]—reproducing the wavefront of a virtual spherical wave in the horizontal plane,
containing the loudspeaker array. It was discussed that the dimensionality reduction
performed by the SPA restricts the amplitude correct reproduction to a control curve
in the plane of synthesis, termed here as the reference curve [Son+98]. For traditional
WFS, this reference curve was usually chosen to be a reference line, parallel with the
loudspeaker arrangement [Sta96; Sta97]. The theoretical framework of traditional
WFS has been extended towards various aspects, including the consideration of loud-
speaker directivity [Vri96; FF12], application of curved arrays [Sta96], synthesis of
extended and directive sources [Cor07; Baa08], the perceptual aspects of synthesis
[Hul04; Wit+04; Str+04; Cor06; Wit07], stochastic loudspeaker and array properties
[FF13a; FF13b], or the inclusion of the reproduction room’s effects to the WFS theory
[Spo+03; CN03; Spo+04; Buc+04; Pet+05]. Traditional WFS was also the subject of
various research projects, most notably the CARROUSO project, aiming at the inte-
gration of the technique into the MPEG-4 standard [Spo+01]. This endeavor was not
realized eventually, but two "spin-off" companies of the project, the IOSONO and
Sonic Emotion are still offering commercially available WFS systems nowadays.

The latest milestone in Wave Field Synthesis theory were the works of Spors et al.,
generalizing WFS towards the synthesis of an arbitrary analytically available sound
field, applying an arbitrary shaped loudspeaker contour [RS07; Spo+08]. The pre-
sented loudspeaker driving signals allowed the synthesis of general two-dimensional
sound fields, ensuring amplitude correct synthesis at a single reference point, allow-
ing the reproduction of complex virtual sound scenes, e.g. the field, generated by a
moving sound source [AS08c; AS08d; AS11c]. However, the method—since it derived
driving signals from the 2D Rayleigh integral—failed to control the amplitude of
general 3D sound fields. Furthermore, the exact connection between traditional and
the latter revisited WFS formulations has not been known so far.

The present dissertation revisits the theoretical basics of Wave Field Synthesis. First,
several high frequency acoustic concepts are introduced—e.g the local wavenumber
vector and the local wavefront curvature—being beneficial for the deeper under-
standing of the results, concerning WFS. By using these concepts brief and physically
illustrative loudspeakers driving signals are derived. These driving signals allow
the reproduction of arbitrary two-, or three-dimensional sound fields applying an
arbitrary shaped ensemble of loudspeakers with the amplitude of the synthesized
field optimized along an arbitrary reference curve. Hence, the presented theoretical
framework includes previous WFS approaches as special cases.

The introduced high frequency concepts are well-known in the field of high fre-
quency acoustics and ray acoustics. This indicates the important fact that WFS can be
regarded as the ray tracing, or ray-based solution of the general sound field synthesis
problem—which is a key message of the present work—realizing the matching of
the virtual source’s and the secondary loudspeakers’ wavefronts at the predefined
reference positions.3 This fact is also confirmed in the present thesis by showing that

3It should be noted that in some of the early works of Berkhout termed the technique as Wave Front
Synthesis [Ber+92; Ber92] which terminology may be more expressive, reflecting the underlying
physical interpretation of the approach.
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WFS is the high frequency, ray-based approximation of the explicit, direct solution for
the sound field synthesis problem. This connection of WFS and the explicit solution
has been investigated only for particular virtual source models in the related literature,
e.g. for the case of a virtual spherical wave [SA10] and for a virtual plane wave [SS16].

Finally, as a complex application example for the presented framework, the re-
production of moving virtual sources is investigated in details. The reproduction of
moving sources has been the subject of studies since the early age of WFS theory, as an
obvious need when dynamic sound scenes are to be synthesized. Early formulations
attempted to synthesize the field of a moving point source by applying the traditional
WFS driving signals with changing the virtual source position as the function of
time. This approach, however, failed to properly recreate the Doppler effect, leading
to serious artifacts in the synthesized field as investigated in details by Franck et
al. [Fra+07]. Ahrens et al. used the revisited WFS formulation in order to recreate
the field of a moving source [AS08c; AS08d; Gas+11; Ahr12]. However, due to the
physical constraints of revisited WFS theory, it failed to control the amplitude of the
synthesized source. In the present work, the physically correct loudspeaker driving
signals are presented for the synthesis of moving sources of sound, applying either
WFS or the explicit solution.

With highlighting the related publications by the author, the thesis is structured as
follows

• Chapter 2 gives an overview of basic acoustic concepts, required for dealing with
the general sound field synthesis problem. Different descriptions of sound fields
are discussed, including spectral integral and boundary integral representations.

• Chapter 3 introduces important high frequency concepts—the local wavenum-
ber vector, the local wavefront curvature and the high frequency gradient
approximation—which are later applied in order to explain results concern-
ing the stationary phase approximation (SPA) of integrals. The SPA is of central
importance in the aspect of the present thesis: loosely speaking, the present
work discusses how integral representations can be manipulated by the SPA in
order to extract the desired SFS driving signals from them. The application of
the SPA to the different integral representations is discussed via examples. Some
of the results in these examples—describing wave dynamics by investigating
the sound field’s phase function and its derivatives—are well-known in the field
of ray acoustics, however, the present thesis introduces a novel approach for
their derivation, so far unknown in the related literature.

• Chapter 4 deals with the solution of the general sound field synthesis prob-
lem. By applying the SPA to the boundary integral representation of wavefields
a generalized Wave Field Synthesis framework is introduced, capable of the
synthesis of an arbitrary sound field applying arbitrary shaped loudspeaker en-
sembles, with optimizing the synthesis on a pre-defined reference curve [Fir+17;
Sch+17]. Several applications of the presented concepts are illustrated with
examples, highlighting how previous WFS approaches are included inherently
in the present framework. By applying an asymptotic approximation to the
Spectral Division Method a novel SFS method is introduced, ensuring wavefront
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matching along a control curve requiring merely the virtual field measured at
these control points [FF17a]. It is highlighted that the proposed method is equiv-
alent with WFS, indicating the general relation between the implicit and the
explicit SFS methods [Fir+18; Sch+19]. Finally, the effect of the discrete secondary
source distribution (instead of the theoretical continuous one) is discussed, and
a novel anti-aliasing strategy is introduced [FF18a; Win+19].

• As a detailed, complex example for the above theoretical results, in Chapter 5
the reproduction of moving virtual sources is investigated [Fir19]. By adapt-
ing the generalized WFS theory to the analytical description of sources under
motion, driving signals are presented for an arbitrary contour of loudspeakers
[FF15b; FF16b; FF17b]. Besides Wave Field Synthesis, the explicit solution is
also presented, serving as a reference solution [FF14b; FF14a]. Finally, several
practical aspects of synthesis are discussed, evolving at the practical application
of the presented driving signals, e.g. numerical calculation of the presented
analytical driving signals and the effects of the applied loudspeaker array shape
[FF18b]. For this latter question the explicit solution—for which WFS consti-
tutes a high frequency approximation similarly to the case of stationary sound
scenes [FF15a]—is utilized to the analytical investigation of the evolving artifacts
[FF16a].





2Theory of wave propagation and
radiation problems

In this chapter the basics of sound radiation theory are introduced. The section
starts with discussing the physics of sound propagation and radiation by deriving the
formulation and solution of the governing homogeneous and inhomogeneous wave
equations. Various integral representations of sound fields are presented including
spectral and boundary integrals.

2.1 The wave equation

Sound is a mechanical disturbance propagating in an elastic fluid, causing an
alternation in the fluid’s density and pressure, as well as the displacement of the
medium’s particles. The propagation of the disturbance is described by the acoustic
wave equation.

Assume a homogeneous, elastic fluid, modeled as an ideal gas with no viscosity.
In the aspect of the present thesis it is appropriate to restrict the investigation to sound
propagation solely in air at room temperature.

The domain of investigation Ω ∈ Rn where sound waves propagate is termed
sound field hereinafter. Within this thesis usually three-dimensional problems are
investigated (n = 3). The acoustical properties of the sound field are described by
dynamic field variables in each point x ∈ Ω, at each time instant t: the vector variable
particle velocity v(x, t) and the scalar instantaneous sound pressure p(x, t) superimposed
onto the static pressure p0 ≈ 105 Pa. The medium is quiescent, meaning that on
average each particle is at rest with zero particle displacement (thus zero particle
velocity) at the static pressure p0. The presence of sound waves causes an incremental
change in the instantaneous pressure and particle velocity.

In order to apply a linear model for sound propagation two assumptions are made.
Since the traveling speed of thermal diffusion is small compared to the speed of sound,
it is feasible to assume that heat exchange along the wave due to compression and
expansion is negligible: the state changes are modeled as adiabatic. Furthermore,
the alternation of the instantaneous sound pressure is small compared to the static
pressure, so the non-linear adiabatic state change characteristics can be linearized
around p0. This latter assumption is fulfilled for pressure magnitudes below the
threshold of pain of the human auditory system [GD04; Ahr12].
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First, the homogeneous wave equation is presented describing merely the prop-
agation characteristics of acoustic waves in a source-free domain. For a more detailed
derivation refer to [MI68; Ber93; Wil99; Bla00].

2.1.1 The homogeneous wave equation

The linear homogeneous wave equation may be derived by utilizing two funda-
mental physical principles.

• The equation of motion: By applying Newton’s second law for an infinitesimally
small volume of the fluid, the connection between the particle velocity vector and
the pressure field is established at each point at each time instant. The resulting
Euler’s equation states that the force acting on the volume due to variation in the
spatial pressure distribution causes an acceleration of the volume:

∇x p(x, t) = −ρ0
∂

∂t
v(x, t), (2.1)

where ∇x is the gradient operator and ρ0 is the fluid’s ambient density. In room
temperature for the above given static pressure ρ0 = 1.18 kg/m3.

• The gas law: For adiabatic processes the change of state is governed by the
relation

p V γ = const, (2.2)

with p and V being the pressure and the volume of the fluid respectively, and
where γ = CP /CV is the ratio of specific heats of the fluid with constant pressure
and with constant volume. For air it is given as γ = 1.4. Linearization of (2.2)
around the undisturbed, static values p0, V0 yields

dp = p(x, t) = −γ p0
dV
V0
. (2.3)

The relative change of volume dV/V0 may be expressed by the divergence of the
particle displacement ∇x · u(x, t). Applying the definition of divergence and
expressing the equation in terms of particle velocity yields

∂

∂t
p(x, t) = −γ p0∇x · v(x, t). (2.4)

This continuity equation states that the net flow of the fluid out of an infinitezimal
volume results in decreased density and pressure inside the volume [AW05].

Taking the time derivative of equation (2.4) and the divergence of equation (2.1) the
particle velocity may be eliminated. By using the Laplace operator ∇x · ∇x = ∇2

x the
scalar linear homogeneous wave equation is obtained for the sound pressure

Homogeneous

wave eq.
∇2

x p(x, t)−
1
c2
∂2

∂t2
p(x, t) = 0, (2.5)

where c ≡
√

γ p0
ρ0

is the speed of sound in the medium. For air in room temperature
it is given as c = 343.1 m/s. The instantaneous pressure may also be eliminated in
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a similar manner, resulting in the vector wave equation for each component of the
particle velocity

∇2
x v(x, t)− 1

c2
∂2

∂t2
v(x, t) = 0, (2.6)

being valid in curl-free field where ∇x (∇x · v(x, t)) = ∇2
x v(x, t) holds. Besides the

pressure and the velocity, acoustic fields are often described by the scalar velocity
potential ϕ(x, t), for which the acoustic wave equation also holds, and which is related
to the other field variables as

v(x, t) = ∇x ϕ(x, t), p(x, t) = −ρ0
∂

∂t
ϕ(x, t). (2.7)

The wave equations fully describe the properties of acoustic wave propagation as long
as the above assumptions are fulfilled.

Equations (2.1) and (2.5) can be transformed into the angular frequency domain by
performing a temporal Fourier transform according to (A.1). Applying the differentia-
tion property of the Fourier transform to (2.1) yields the frequency domain Euler’s
equation

Euler equation∇x P (x, ω) = −jωρ0V(x, ω), (2.8)

relating the pressure distribution of a time-harmonic sound field to the harmonic
velocity vector field. By taking the Fourier transform of the wave equation (2.5), the
homogeneous Helmholtz equation is obtained:

Helmholtz

equation
∇2

x P (x, ω) + k2P (x, ω) = 0, (2.9)

where k is the acoustic wavenumber, which is related to the temporal frequency through
the linear dispersion relation k = ω

c . Equation (2.9) must hold for every physically
possible steady-state wave form with a harmonic time-dependence of ejωt, within a
source-free volume.

2.1.2 The inhomogeneous wave equation

So far wave propagation in source-free volumes has been investigated, without
considering how these waves were generated. A simple scalar disturbance of the
pressure field may be included into the wave equation resulting in the time domain
inhomogeneous wave equation

Inhomoge-

neous wave eq.∇2
x p(x, t)−

1
c2
∂2

∂t2
p(x, t) = −s(x, t), (2.10)

and by taking the Fourier transform with respect to time in the inhomogeneous Helmholtz
equation

(∇2
x + k2)P (x, ω) = −S(x, ω). (2.11)

Term s(x, t) is referred to as the load term, and it describes the spatial extension and
time history of the excitation.
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To involve more physical source excitation models additional force source terms
may be added to the equation of motion (2.1), or injected mass/volume terms may
be included in the continuity equation (2.4). This results in the general inhomogeneous
wave equations [Pie91; Kin+00; How07]

∇2
x p(x, t)−

1
c2
∂2

∂t2
p(x, t) = −ρ0

∂

∂t
q(x, t) +∇x · f(x, t), (2.12)

and
(∇2

x + k2)P (x, ω) = −jωρ0Q(x, ω) +∇x · F(x, ω) (2.13)

in the time and angular frequency domain respectively, where q(x, t) describes the
rate of increase of fluid volume per unit volume,1 and f(x, t) represents a body force
excitation. The first term is generated by sources that change the fluid volume, e.g. a
pulsating sphere or a baffled dynamic loudspeaker. The latter force term is produced
by sources, moving through the fluid without any change in volume, e.g. unbaffled
loudspeakers. A further third type of excitation term, as introduced by Lighthill,
accounts for sound waves, produced by turbulence resulting in quadrupole sound
fields [Lig52; Lig54; Kin+00]. This third term is not investigated in the present thesis.

2.1.3 Boundary conditions

In order to obtain a particular solution of the wave equation the behavior of
waves arriving at the boundaries of the volume under investigation has to be known:
the wavefield must satisfy prescribed boundary conditions. The general geometry
is depicted in Figure 2.1 with an enclosing surface/contour denoted by ∂Ω. If the
domain of interest is the exterior of the enclosing boundary while the sources are
inside the volume—or the source is the vibrating boundary surface itself—the problem
to be solved is termed an exterior radiation problem. On the other hand, if the aim is
to determine the sound field inside a source-free volume—or the reflected field of a
sound source inside a cavity—an interior problem must be solved.

The boundary conditions are typically prescribed pressure or particle velocity.
Zero pressure or velocity on the boundary surface formulates homogeneous boundary
conditions. Non-zero field variables on the other hand are termed inhomogeneous
boundary conditions.

In the aspect of this thesis two types of boundary conditions are of interest:

• Dirichlet boundary condition prescribes the pressure, measured on the boundary
surface. The homogeneous Dirichlet boundary condition is therefore

P (x, ω) = 0, ∀ x ∈ ∂Ω. (2.14)

These types of boundaries are called sound soft or pressure release boundaries,
and can be used to model e.g. the surface of the ocean, when modeling waves,
propagating in the water [Zio95; Bla00].

1The volume injection term q(x, t) can be modeled as a simple disturbance in the velocity potential i.e.
satisfies equation∇2

x ϕ(x, t)− 1
c2

∂2

∂t2ϕ(x, t) = −q(x, t) [Jen+07].
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nin

Ωi

Ωe

∂Ω

r

∂Ω∞ Figure 2.1. Geometry for the
boundary conditions in general
interior and exterior radiation
problems. The Sommerfeld ra-
diation condition can be derived
in a mixed interior and exterior
radiation problem by prescrib-
ing appropriate boundary condi-
tions on the surface ∂Ω∞ besides
increasing its radius r to infinity,
ensuring that no reflection may
occur from this outer boundary
surface.

The inhomogeneous Dirichlet boundary condition assumes a specific pressure
distribution on the boundary surface:

P (x, ω) = fD(x, ω), ∀ x ∈ ∂Ω. (2.15)

• Neumann boundary condition gives the normal derivative of the pressure on the
boundary surface, i.e. prescribes the normal velocity of the surface. Homoge-
neous Neumann boundary conditions are

∂P (x, ω)
∂n = 0, ∀ x ∈ ∂Ω, (2.16)

with ∂
∂nP (x, ω) = 〈n(x) · ∇x P (x, ω)〉, where n(x) denotes either the interior or

exterior normal vector of the boundary surface. These types of boundaries are
termed sound hard, or rigid boundaries, with the boundary condition ensuring
that no incident wave can mobilize the boundary surface.

Inhomogeneous Neumann boundary conditions are given by

∂P (x, ω)
∂n = fN (x, ω), ∀ x ∈ ∂Ω. (2.17)

Vibrating surfaces (e.g. mounted loudspeakers, or baffled pistons) are most often
modeled using these type of boundary conditions.

For radiation problems it is feasible to assume free field conditions, when only
outgoing waves are present in the sound field. This is ensured by the Sommerfeld
radiation condition that excludes the non-physical solutions of the wave equation
emerging from infinity. Mathematically it can be formulated by implying boundary
condition on ∂Ω∞ with r increased to infinity—as shown in Figure 2.1 [Sch92; Wil99]—
requiring

lim
r→∞

r

(
∂

∂r
P (x, ω)

∣∣∣∣
x∈∂Ω∞

+ jω
c
P (x, ω)

)
= 0, ∀ x ∈ ∂Ω∞ (2.18)

to be satisfied.
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2.2 Solution of the homogeneous wave equation

2.2.1 Plane wave theory

Now the general solution of the homogeneous wave equation is discussed in
Cartesian coordinate systems, leading to plane wave theory. The Descartes coordinate
form of the Laplace operator is given in the nomenclature. A common method for
obtaining the general solution of the Helmholtz equation is the separation of variables
[Dev12]: it is supposed that the solution of (2.9) can be written in the form of the
product

P (x, ω) = W (ω) ·X(x) · Y (y) · Z(z). (2.19)

Substituting it into (2.9) and dividing both sides by W (ω) ·X(x) · Y (y) · Z(z) yields

d2X(x)
dx2

1
X(x)︸ ︷︷ ︸

−k2
x

+ d2Y (y)
dy2

1
Y (y)︸ ︷︷ ︸

−k2
y

+ d2Z(z)
dz2

1
Z(z)︸ ︷︷ ︸

−k2
z

= −k2. (2.20)

Since each term contains a total derivative—being independent from any other
variable—equality may hold only if each term is constant. These constants are denoted
by k2

x, k
2
y, k

2
z . Consequently, each part of the equation leads to a simple eigenvalue

problem, for which the eigenfunction solution is given by exponentials. Written e.g.
for the x-variable:

d2X(x)
dx2 = −k2

xX(x) → X(x) = A1e−jkxx +A2ejkxx. (2.21)

These solutions may be substituted back into equation (2.19). In order to include
every possible solution the general solution for the free field homogeneous Helmholtz
equation is yielded by summation over all possible values of kx− ky − kz weighted by
arbitrary constants. However, the variables are not independent. For a fixed temporal
frequency their relation is described by the dispersion relation, resulting from (2.20)

k2 =
(
ω

c

)2
= k2

x + k2
y + k2

z , (2.22)

connecting the temporal and spatial frequencies. Through the present thesis ky will be
used as a dependent variable, so that

k2
y = k2 − k2

x − k2
z (2.23)

holds. With all the foregoing, and by denoting the arbitrary weighting constant by
P̃ (kx, kz, ω), the general solution of the 3D Helmholtz equation reads as

P (x, ω) = 1
(2π)2

∫∫ ∞
−∞

P̃ (kx, kz, ω) e−j(kxx+kyy+kzz) dkx dkz. (2.24)

Constant 1
(2π)2 is introduced as a Fourier transform normalization term. The general

solution—describing the inverse spatial Fourier transform of P̃ (kx, kz, ω) e−jkyy—is
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(a) (b)

Figure 2.2. Illustration of a traveling plane wave (a) and an evanescent wave (b) with λ = 2π
k

being the acoustic wavelength of the plane wave. In the present case the plane wave travels
along the xy-plane, with kz = 0. Variables kx = k cosϕ, ky = k sinϕ give the wavenumber
components along the x- and y-directions. For the case of the evanescent wave kx > ω

c ,
resulting in exponential decay along the y-direction. In a source-free region propagating
and evanescent waves form a complete, orthonormal basis for the solution of the Helmholtz
equation.

therefore obtained in the form of a spectral integral, similarly to the case of the
temporal solution. Obviously, the spectral coefficients P̃ (kx, kz, ω) are obtained via
a suitable forward Fourier transform, as explained in the next section. Finally, the
general solution for the homogeneous wave equation is obtained in terms of an inverse
temporal Fourier transform, given by

p(x, t) = 1
(2π)3

∫∫∫ ∞
−∞

P̃ (kx, kz, ω) ej(ωt−kxx+kyy+kzz) dω dkx dkz. (2.25)

One separated solution from integral (2.25) is given by

PPW(x, t) = ej(ωt−kxx+kyy+kzz) = ejωt · e−j〈k·x〉, (2.26)

where k = [kx, ky, kz]T is the wavenumber vector, with its length equaling the acoustic
wavenumber k = |k| and pointing into the direction of the maximum phase advance,
given by the gradient of the phase function. The separated solution represents a
harmonic plane wave with the acoustic wavelength given by λ = 2π

k , traveling into the
direction

k = −∇φPPW(x, ω), (2.27)

where φP denotes the phase of the wavefield P . The terminology indicates that the
surface of constant phase points are lying along an infinite plane, perpendicular to k.
Refer to Figure 2.2 (a) for the illustration of a traveling plane wave.

Since there is no constraint on the values of kx and kz , the dispersion relation is
satisfied also when k2

x+k2
z > k2, in which case ky becomes complex. In order to ignore

the non-physical exponentially increasing solution, ky may be defined as

ky =


√(

ω
c

)2 − k2
x − k2

z , if k2
x + k2

z ≤
(
ω
c

)2
−j
√
k2
x + k2

z −
(
ω
c

)2 = −jk′y , if k2
x + k2

z >
(
ω
c

)2
.

(2.28)
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Solutions with k′y ∈ R, k′y > 0, given as

PPW(x, t) = ej(ωt−kxx+kzz) e−k′yy (2.29)

describe plane waves propagating perpendicular to the y-axis and exhibiting an
exponentially decaying amplitude along the y-direction (see Figure 2.2 (b)): in those
cases when one wavelength component is shorter than the acoustic wavelength,
the wave can not propagate from the y = 0 surface, but an exponentially decaying
radiation phenomenon occurs. These type of waves are termed evanescent waves,
opposed to propagating waves for which all wavenumber components are real-valued.

A strong evanescent contribution is often the result of the difference between
the speed of sound in different materials: In the exemplary case of a vibrating plate
higher-order modes will not be radiated into the free space, since the bending wave’s
wavelength on the surface may become shorter than the acoustic wavelength would
be in air. In these cases, the air above the surface acts as a hydrodynamic short-circuit.

The evanescent contribution is often neglected in the field of sound field syn-
thesis, when the listener is relatively far from the secondary loudspeaker array and
loudspeaker spacing is significantly higher than the evanescent wavelengths.

2.2.2 The angular spectrum representation

Based on the foregoing, any source-free sound field may be expressed in terms of
a double inverse Fourier transform given by (2.24). This formulation is termed the
angular spectrum representation [Wil99; Goo05; NV06; Ahr10; Ahr12] or the plane wave
expansion [Spo05] of the sound field. Substituting y = 0 into equation (2.24) reveals
that the angular spectrum P̃ (kx, kz, ω) is given as the corresponding forward Fourier
transform of the pressure distribution along the infinite plane y = 0. In the following,
the domain characterized by kx, kz is termed the wavenumber domain.

As a consequence, equation (2.24) relates the pressure distribution of an arbitrary
sound field measured on the plane y = 0 to its pressure distribution on an arbitrary
parallel plane. In the wavenumber domain the relation reads as

Fx,z {P (x, ω)} = P̃ (kx, y, kz, ω) = P̃ (kx, 0, kz, ω) e−jkyy, (2.30)

with ky given by (2.28). Since the propagation of a single plane wave component is
determined merely by the phase change between the planes of investigation, therefore,
as a generalization

P̃ (kx, y, kz, ω) = P̃ (kx, y0, kz, ω) e−jky(y−y0) (2.31)

holds. Furthermore, the y-derivative of the angular spectrum can be expressed by
differentiating both sides of (2.31) with respect to the y-coordinate, resulting in

∂

∂y
P̃ (kx, y, kz, ω) = ∂

∂y

(
P̃ (kx, y0, kz, ω) e−jky(y−y0)

)
= −jky P̃ (kx, y, kz, ω), (2.32)

which is the Fourier transform differentiation theorem for wavefield extrapolation.
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These statements lead to two important formulations: equation (2.31) written in
the spatial domain by means of a double inverse Fourier transform yields

Wavefield

extrapolation 1.P (x, ω) = 1
4π2

∫∫ ∞
−∞

P̃ (kx, y0, kz, ω) e−jky(y−y0) e−j(kxx+kzz) dkx dkz. (2.33)

By expressing P̃ (kx, y0, kz, ω) in terms of the normal velocity Ṽn(kx, y0, kz, ω) using the
Euler’s equation (2.8), with the normal (y-) derivative at y = y0 calculated by applying
the differentiation theorem, one obtains

Wavefield

extrapolation 2.P (x, ω) = 1
4π2

∫∫ ∞
−∞

jωρ0Ṽn(kx, y0, kz, ω)︸ ︷︷ ︸
− ∂
∂y
P̃ (kx,y0,kz ,ω)

e−jky(y−y0)

jky
e−j(kxx+kzz) dkx dkz. (2.34)

These equations are of central importance in the field of Fourier acoustics. They state
that an arbitrary sound field is completely determined by either the pressure or by the
normal velocity component measured along an infinite plane. Wave propagation is
calculated by multiplying the measured spectra with an exponential term, referred to
as the pressure propagator G̃p in (2.33) and the velocity propagator G̃v in (2.34):

G̃p(kx, y − y0, kz, ω) = e−jky(y−y0), G̃v(kx, y − y0, kz, ω) = jωρ0
e−jky(y−y0)

jky
,

(2.35)

P̃ (kx, y, kz, ω) = P̃ (kx, y0, kz, ω) · G̃p(kx, y − y0, kz, ω). (2.36)

= Ṽn(kx, y0, kz, ω) · G̃v(kx, y − y0, kz, ω). (2.37)

Wave propagation in source-free volumes thus can be modeled by 2D linear spatio-
temporal filtering of the sound field measured along a plane, where the filter transfer
characteristics are given by the corresponding propagator. Formulation of the equa-
tions in the spatial domain results in 2D spatial convolutions, termed the Rayleigh I
and II integrals, as it will be further discussed in later sections.

2.2.3 Solution in other geometries

Similarly to the presented Cartesian solution, the general solution of the free
field homogeneous Helmholtz equation can be found for spherical and cylindrical
coordinate systems. The required representations are given in the form of an infinite
series of spherical and cylindrical harmonics respectively, relating the radiated sound
at an arbitrary point to the sound field measured on a spherical or an infinite cylindrical
surface. These solutions are of great importance when spherical or circular secondary
source distributions are applied for sound field reconstruction. Since the present
thesis does not include the explicit solution for synthesis in these geometries, the
presentation of the spherical and cylindrical solutions are omitted. For a detailed
investigation refer to [Wil99; Zot09; Faz10; Ahr12; Koy14].
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2.3 Solution of the inhomogeneous wave equation

2.3.1 The Green’s function

A common way to obtain the solution for the inhomogeneous wave equation is
using the Green’s function. The n-dimensional Green’s function is defined as the solution
for the following equation [Wil99; GD04]

∇2
xg(x|x0, t)−

1
c2
∂2

∂t2
g(x|x0, t) = −δ (x− x0) δ (t) , (2.38)

with x,x0 ∈ Rn and δ() being the Dirac delta distribution. The Green’s function
describes the sound field at x due to an impulsive disturbance located at x0 at the time
instant t = 0. The Green’s function is often referred to as the spatio-temporal impulse
response of the domain of interest and its temporal Fourier transform G(x|x0, ω) as
the spatio-temporal transfer function of a point source at x0. In the following, free field
conditions are assumed by invoking the Sommerfeld radiation condition. Under
these assumptions, the free field Green’s function is translation invariant, denoted by
g(x− x0, t). Furthermore, in a stationary isotropic medium the reciprocity principle for
the Green’s function holds due to its symmetry [SH11]

g(x0|x, t) = g(x|x0, t) = g(x− x0, t), (2.39)

∇xg(x0|x, t) = ∇xg(x|x0, t), (2.40)

stating that a response at x caused by a unit source at x0 is the same as the response at
x0 due to a unit source at x.

The motivation behind the use of the Green’s function is that assuming an arbitrary
linear differential operator Lx {} acting on a distribution p(x) with an arbitrary excita-
tion−s(x), the solution of the inhomogeneous differential equationLx {p(x)} = −s(x)
may be expressed by the convolution of the Green’s function and the load term:2

Lx {g(x− x0)} = −δ(x− x0) → p(x) =
∫

Ω
g(x− x0) s(x0) dΩ(x0). (2.41)

The Green’s function is usually obtained by the eigenfunction expansion of the
operator in a given geometry with specified boundary conditions. Under free space
assumptions, when harmonic functions give a full orthogonal basis a straightforward
method is to perform a Fourier transform to equation (2.38) with x0 = 0 with respect
to space and time, yielding in x ∈ R3

(
−(k2

x + k2
y + k2

z) +
(
ω

c

)2
)
G̃(k, ω) = −1, (2.42)

2Multiplying both sides of the left equation of (2.41) by −s(x0) and integrating along all dimensions
according to x0 results in −

∫
Ω s(x0)Lx {g(x− x0)} dΩ(x0) = s(x). Since Lx acts only on x, the

operator may be taken outside of the integration. Expressing the load term by −Lx {p(x)} leads to
Lx
{∫

Ω s(x0)g(x− x0)dΩ(x0)
}

= Lx {p(x)}.
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with k = [kx, ky, kz]T. The Green’s function in the wavenumber domain is therefore
given as [Dev12; Wat15]

G̃(k, ω) = − 1(
ω
c

)2 − k2
x − k2

y − k2
z

. (2.43)

Applying the Fourier convolution theorem to (2.41) the solution of the inhomogeneous
wave equation (2.10) in the wavenumber domain reads as

P̃ (k, ω) = S̃(k, ω) · G̃(k, ω) = − S̃(k, ω)(
ω
c

)2 − k2
x − k2

y − k2
z

, (2.44)

and the solution in the spatio-temporal domain is yielded by the inverse Fourier
transform

p(x, t) = 1
(2π)4

∫∫∫∫ ∞
−∞
− S̃(k, ω)(

ω
c

)2 − k2
x − k2

y − k2
z

e−j(〈k·x〉−ωt) dkx dky dkz dω. (2.45)

The different representations of the free field Green’s function may be obtained by
the corresponding inverse Fourier transform of (2.43). The resulting formulae are
collected in Table 2.1 by taking only the causal solutions into consideration. Two
representations of the 3D Green’s function are depicted in Figure 2.3.

Table 2.1. Free field acoustic Green’s function representations (x0 = 0) [DeS92; Duf01; Gib08;
AS10c; Dev12; Ahr12]. θ () denotes the Heaviside step function, H(2)

0 () is the zeroth order
Hankel function of the second kind and K0 () is the modified Bessel function of the second
kind [Olv+10]. The conditional expressions ensure that evanescent waves are attenuated
with increasing distance from the source. For the sake of brevity in the following Greens
function is expressed only in the propagating region, however it should be kept in mind that
evanescent wavenumber components are given as (2.28), resulting in the presented conditional
expressions.

3-dimensional 2-dimensional

G̃(kx, ky, kz, ω) − 1
(ωc )2−k2

x−k2
y−k2

z

− 1
(ωc )2−k2

x−k2
y

δ(kz)

G̃(kx, ky, z, ω) −
j
2

e−j
√

(ω
c

)2−k2
x−k2

y|z|√
(ω
c

)2 − k2
x − k2

y

,
√
k2
x + k2

y ≤
∣∣∣ω
c

∣∣∣
1
2

e−
√

k2
x+k2

y−(ω
c

)2|y|√
k2
x + k2

y − (ω
c

)2
,

√
k2
x + k2

y >

∣∣∣ω
c

∣∣∣
− 1

(ωc )2−k2
x−k2

y

G̃(kx, y, z, ω) −
j
4
H

(2)
0

(√
(
ω

c
)2 − k2

x

√
y2 + z2

)
, |kx| <

∣∣∣ω
c

∣∣∣
1

2π
K0

(√
k2
x − (

ω

c
)2
√
y2 + z2

)
, |kx| >

∣∣∣ω
c

∣∣∣
−

j
2

e−j
√

(ω
c

)2−k2
x|y|√

(ω
c

)2 − k2
x

, |kx| ≤
∣∣∣ω
c

∣∣∣
1
2

e−
√

k2
x−(ω

c
)2|y|√

k2
x − (ω

c
)2

, |kx| >
∣∣∣ω
c

∣∣∣
G(x, y, z, ω) 1

4π
e−jωc

√
x2+y2+z2√

x2+y2+z2
− j

4H
(2)
0

(
ω
c

√
x2 + y2

)
g(x, y, z, t) 1

4π

δ

(
t−
√
x2+y2+z2/c

)
√
x2+y2+z2

1
2π

θ(t−
√
x2+y2/c)√

t2−
(√

x2+y2
c

)2
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(a) (b)

Figure 2.3. Different representations of the 3D free field Green’s function in the angular
frequency domain G(x, y, z, ω), with λ = 2πc

ω = 2π
k (a) and in the semi-wavenumber domain

(i.e. the angular spectrum) G̃(kx, ky, z, ω) with k = ω
c (b), measured at z = 0.

In 3-dimensions, the 2-dimensional Green’s function represents the field of an infi-
nite line source along the z-axis that can be described as a continuous linear distribu-
tion of 3D point sources—explaining the infinite tail of the 2D impulse response—thus,
the relation between the 3D and 2D Green’s functions is given as

G2D(x, y, ω) =
∫ ∞
−∞

G3D(x, y, z, ω)dz = Fz {G3D(x, y, z, ω)}|kz=0 , (2.46)

obviously holding for any other representation, as it is reflected by the table above.

2.3.2 Solution of the general inhomogeneous wave equation

Now the solution of the general inhomogeneous wave equation, given by (2.13) is
presented. From (2.41) the solution in the spatial domain is obtained by the convolu-
tion of the source term and the Green’s function:3

P (x, t) = −
∫

Ω
jωρ0Q(x0, ω)G(x−x0, ω)+〈F(x0, ω) · ∇xG(x− x0, ω)〉 dΩ(x0), (2.47)

where Ω(x) is the domain of interest, containing the source distribution. From the
general solution the case of point-like disturbances are of special interest, with the
spatial distribution described by a Dirac distribution:

• supposing thatQ(x, ω) = Q(ω)δ(x), one obtains the field response to a point-like
volume injection

Pm(x, ω) = − jωρ0Q(ω)
4π

e−jω
c
|x−x0|

|x− x0|
. (2.48)

This is the field of an acoustic monopole, which is defined as a pulsating sphere
with its radius decreased to infinitesimal while the total volume velocity held
constant [How07]. Q(ω) is often referred to as monopole strength. Monopoles

3The second term can be obtained by integration by parts:
∫
∇ · F(x0)G(x − x0)dx0 =

∫
∇ ·

(F(x0)G(x− x0)) dx0−
∫
〈∇G(x− x0) · F(x0)〉 dx0. Applying the Gauss theorem and invoking the

Sommerfeld radiation condition reveals that the first term of the right handside vanishes.
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(a) (b) (c)

Figure 2.4. Qualitative illustration of the directivity characteristics of a monopole (a), a
dipole with the dipole axis being the y axis (b) and a horizontal quadrupole constructed from
two opposing dipoles in the horizontal plane (c). In the figures the distance from the origin
denotes the absolute value of the directivity into the given direction, with the sign indicated
by the color of the surface.

constitute a good farfield approximation of sources in the velocity field, e.g. a
dynamical loudspeaker mounted on a closed cabinet.

• assuming a point-like force excitation described by F(x, ω) = fF (ω)δ(x) where
the unit vector f denotes the direction of the force, the solution for the inhomo-
geneous wave equation is given by

Pd(x, ω) = −F (ω) 〈f · ∇xG(x, ω)〉 . (2.49)

The expression describes the field generated by an acoustic dipole, with vector
F (ω)f denoting the dipole moment. The terminology reflects that an acoustic
dipole can be constructed by two antiphase point sources positioned infinitesi-
mally close to each other.4 By expressing the gradient of the Green’s function
the full form of a dipole field is given as

Pd(x, ω) = F̂ (ω) cos θ ·
( 1
|x− x0|

+ jω
c

) 1
4π

e−jω
c
|x−x0|

|x− x0|
. (2.50)

with cos θ = 〈f ·(x−x0)〉
|x−x0| . Unlike monopoles, dipoles are directive sources with

the directivity characteristics described by cos θ. Dipoles give a good model for
e.g. unbaffled loudspeakers moving freely in the fluid, radiating maximally into
the direction of motion f—often termed the dipole axis—and without any lateral
radiation.

The importance of monopoles and dipoles along with higher order multipoles lies in
the farfield approximation of the field of extended sources, where a complex radiation
pattern may be expanded into the series of weighted multipole fields, termed multipole
expansion. Figure 2.4 presents the directivity pattern of multipoles up to the third order.
All multipole fields are solutions to the wave equation due to its linearity.

4Such a distribution can be described by the directional gradient of a Dirac distribution s(x, ω) =
〈f · ∇δ(x)〉.
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primary source

0

x

x0

nin

Ωi

Ωe

∂Ω

Figure 2.5. Geometry for the interior Kirchhoff-Helmholtz integral, representing the sound
field inside an enclosure Ωi, generated by an exterior sound source in the form of a surface
integral along ∂Ω. For 2D problems the boundary degenerates to a closed contour, enclosing
the area Ωi.

Comparison of G̃(kx, y, kz, ω) in Table 2.1 with the pressure and velocity propaga-
tors (2.35), and by applying the Fourier differentiation theorem (2.32) reveals that

G̃p(kx, y, kz, ω) = 2jkyG̃(kx, y, kz, ω) → Gp(x, ω) = −2 ∂
∂y
G(x, ω) = 2Pd(x, ω),

(2.51)

G̃v(kx, y, kz, ω) = 2jωρ0G̃(kx, y, kz, ω) → Gv(x, ω) = 2jωρ0G(x, ω) = −2Pm(x, ω),
(2.52)

holds, i.e. the pressure and velocity propagators are given by the fields of dipoles and
monopoles respectively. This finding will be further discussed in Section 2.4.3, dealing
with the Rayleigh integral formulation.

2.4 Boundary integral representation of sound fields

2.4.1 The Kirchhoff-Helmholtz integral equation

Any sound field, obeying the homogeneous Helmholtz equation, may be written
in the form of a surface integral above an enclosing surface, termed the Kirchhoff-
Helmholtz integral equation. This integral formulation, solving the homogeneous wave
equation with inhomogeneous boundary conditions, is of central importance in the
field of acoustics, e.g. forming the backbone of the Boundary Element Method [Kir07;
MN08], SVD-based Conformal Nearfield Acoustic Holography [Bai92; Wil99; Wu10],
and sound field synthesis.

In this section the integral formulation of interior problems in source-free volumes
is introduced, describing the sound field generated by a primary source outside the
volume of investigation. The effect of sources inside the enclosure may be straightfor-
wardly included to the following results by the appropriate addition of the solution of
the inhomogeneous Helmholtz equation [Spo05].
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Let Ωi be an n-dimensional enclosure bounded by the surface ∂Ω with arbitrary
position vectors x0,x ∈ Rn. Refer to Figure 2.5 for the geometry. For two continuous,
differentiable scalar valued functions Φ(x0), Ψ(x0) the Green’s theorem reads as

∫
Ωi

(
Φ(x0)∇2

x0Ψ(x0)−Ψ(x0)∇2
x0Φ(x0)

)
dΩi(x0) =∮

∂Ω

(
Ψ(x0)∂Φ(x0)

∂nin
− Φ(x0)∂Ψ(x0)

∂nin

)
d∂Ω(x0), (2.53)

with ∂
∂nin

denoting the inward normal derivative 〈nin(x0) · ∇x0Φ(x0)〉. Let Φ→ P be
the pressure field inside the enclosure and Ψ→ G be the Green’s function, located at
x, satisfying5

(∇2
x0 + k2)P (x0, ω) = 0, (∇2

x0 + k2)G(x0|x, ω) = −δ(x0 − x). (2.54)

Substitution into the Green’s theorem leads to

−
∫

Ωi

P (x0, ω)δ(x0−x)dΩi(x0) =
∮
∂Ω

(
G(x0|x, ω)∂P (x0, ω)

∂nin
− P (x0, ω)∂G(x0|x, ω)

∂nin

)
d∂Ω(x0).

(2.55)

The sifting property of the Dirac delta may be exploited by taking into account
that the singularity is located in the enclosure: if x lies outside the volume the integral
is identically zero, while if it is on the surface it is assumed that "only half of the
Dirac impulse is in the volume". For a rigorous derivation refer to [Wil99]. Finally, by
exploiting the symmetry and translation invariancy of the free field Green’s function
(2.39) the Kirchhoff-Helmholtz integral equation (KHIE) is obtained:

Kirchhoff-

Helmholtz

integral

αP (x, ω) =
∮
∂Ω
−
(
∂P (x0, ω)
∂nin

G(x− x0, ω)− P (x0, ω)∂G(x− x0, ω)
∂nin

)
d∂Ω(x0),

(2.56)
with

α =


1 ∀ x ∈ Ωi
1
2 ∀ x ∈ ∂Ω
0 ∀ x ∈ Ωe.

The equation states that the pressure field inside an enclosure is completely determined
by the boundary conditions for the pressure and normal velocity on the boundary
surface. The interior KHIE describes the pressure field only inside the volume of
investigation, outside the volume the left-hand side is identically zero. For exterior
radiation problems the exterior KHIE can be derived in a similar manner, describing
the pressure field outside the volume and ensuring zero left-hand side inside [Wil99].
In both cases the approach is capable of dealing only with forward propagation problems,
i.e. capable to describe the effects of a source distribution based on the radiated field
measured on a surface, but unable to describe the source properties from these data.

5Although the continuity requirement is not fulfilled for the Green’s function, with proper mathematical
workaround the singularity at x may be excluded from the enclosure [Wil99].
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This latter scenario is called an acoustic inverse problem, forming the basis of Acoustic
Holography and sound field synthesis.6

A frequently used form of the KHIE—obtained by utilizing the Euler’s equation
(2.8) to express the normal derivative of the pressure in terms of the normal velocity
on the surface—is given as

αP (x, ω) =
∮
∂Ω

(
Vn(x0, ω) jωρ0G(x− x0, ω)︸ ︷︷ ︸

−Pm(x−x0,ω)

+P (x0, ω) ∂G(x− x0, ω)
∂nin︸ ︷︷ ︸

−Pd(x−x0,ω)

)
d∂Ω(x0),

(2.57)
where the weighting factors containing the Green’s function can be recognized as
the fields of monopoles and dipoles, acting as velocity and pressure propagators
similarly to the angular spectrum approach. KHIE therefore consists of two integral
components, termed the single layer potential and the double layer potential: single layer
potential describes the field of the weighted sum of a single layer of point sources,
characterized by G(x|x0), while the double layer potential describes the field of an
ensemble of dipole sources, described by ∂G(x|x0,ω)

∂nin
, realized by two anti-phase point

sources: by a double layer.

The interior KHIE represents the sound field inside the domain of interest and
ensures zero pressure outside by utilizing both a single and a double layer potential.7

In the aspect of sound field synthesis the presence of both layers is infeasible. By
letting the sound field to be non-zero outside the enclosure it is possible to completely
describe the sound field in the region of interest in terms of only a single or double
layer potential. This is achieved by either modifying the Green’s function in order
to satisfy Dirichlet or Neumann boundary conditions or imposing these boundary
conditions on the sound field P (x, ω) itself in an equivalent scattering problem. In the
following these approaches are introduced for the simplification of the KHIE.

2.4.2 The simple source formulation

The simple source formulation is derived from the KHIE by the construction of
a separate exterior and interior radiation problem by prescribing the same inhomo-
geneous Dirichlet boundary condition for both fields on the boundary surface ∂Ω
[Cop68].

Assume an exterior sound field Pe(x, ω) in the geometry depicted in Figure 2.5,
satisfying the homogeneous Helmholtz equation at x ∈ Ωe, meaning that all sources
are located within the enclosure. The exterior wavefield is the combination of radiating
or diverging waves. On the other hand consider an interior sound field Pi(x, ω) inside
the enclosure x ∈ Ωi, induced by a sound source located outside the volume of
investigation. The interior field, constructed from a set of incoming or converging
waves, also satisfies the homogeneous Helmholtz equation in the interior domain.

6Actually, the KHIE can be made able to solve inverse problems, by replacing the forward propagating
Green’s function by the backward propagating Green’s function [WB89].

7Loosely speaking, the anti-phase side of the double layer cancels the field of the single layer outside
the region of interest.
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(a) (b)

(c)

P (x, ω) Pe(x, ω) = −Ps(x, ω)

Pi(x, ω)

Ωi ∂Ω

Ωe

Pt(x, ω) =
P (x, ω) + Ps(x, ω)

Ωe

Ωi
∂Ω

Figure 2.6. Illustration of the simple source formulation in a 2D interior problem (Ω ⊂ R2).
Figures show the incident/primary sound field (a), the field given by the simple source
formulation (b) and the scattering of the incident field from a sound soft boundary (c). The
incident field is the field of a 2D point source (i.e. a 3D line source) located at xs = [−0.4, 2.5]T,
oscillating at f0 = 1 kHz, with f = ω

2π . Equation (2.59) was evaluated numerically using
an open source C++ BEM software [FR14]. The figures demonstrate, how simple source
formulation expresses the incident field inside Ωi, and the (−1) times the scattered field at Ωe
in an equivalent sound soft scattering problem. Figure (c) showing the difference between the
incident field and the simple source field ((a)-(b)) therefore illustrates the total scattering in
the exterior domain.

The two spatially disjunct problems are connected through the following boundary
condition, written onto the boundary surface

Pe(x0, ω) = Pi(x0, ω), ∀ x0 ∈ ∂Ω. (2.58)

Both fields may be expressed in terms of an exterior and an interior KHIE respectively.
The integral description of the interior field is given by (2.56), while for the exterior
KHIE (expressed in terms of the inward normals) refer to [Wil99, eq. 8.30]. By adding
the exterior and interior integrals, terms, containing the pressure cancel out due to the
coupled boundary condition and the following integral expression is obtained [CH62;
Kel67; Wil99]

Simple source

formulation

∮
∂Ω

(
∂Pe(x0, ω)

∂nin
− ∂Pi(x0, ω)

∂nin

)
G(x− x0, ω) d∂Ω(x0) =


Pe(x, ω) ∀ x ∈ Ωe

Pe = Pi ∀ x ∈ ∂Ω
Pi(x, ω) ∀ x ∈ Ωi.

(2.59)
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The equation states that either the interior or the exterior sound field, satisfying the
homogeneous Helmholtz equation, may be represented as a single layer potential, with
the single layer strength function given in the integral (2.59) implicitly. The expression of
this strength function, obtained as the amount of discontinuity in the pressure gradient
is often termed the jump relation, indicating the fact that the sound field generated
by the single layer potential is continuous in pressure on the boundary, while the
gradient changes sign i.e. jumps.

As pointed out in [SS14; Faz10; FN13; ZS13], the following physical interpre-
tation can be assigned to the simple source formulation: Suppose that the surface
∂Ω represents the boundary of a sound soft scattering object. In acoustic scattering
problems it is assumed that the incident sound field P (x, ω), reflected by the scat-
tering object and thus generating a scattered field Ps(x, ω), is known a priori. The
field, measured in the presence of the obstacle is termed the total field Pt(x, ω), is
given by the sum of the incident and the scattered fields. In case of a sound soft
scatterer the total field obeys homogeneous boundary conditions on the scatterer
surface, i.e. Ps(x0, ω) = −P (x0, ω), x0 ∈ ∂Ω holds. In this interpretation the incident
field corresponds to the interior solution P (x, ω) ∼ Pi(x, ω), while the scattered field
corresponds to the exterior solution with reversed sign Ps(x, ω) ∼ −Pe(x, ω).

Comparing this result with the simple source formulation, it is clear that the
single layer strength function is the derivative of (−1) times the total field on the
boundary. See Figure 2.6 for an illustration of the simple source formulation and for
its interpretation as an equivalent scattering problem. In the presented general 2D
scenario the single layer weighting factors were calculated numerically for an general
shaped enclosing, reflecting surface.

2.4.3 The Rayleigh integrals

The Rayleigh integrals formulate a sound field based on the pressure field or the
normal velocity, measured along an infinite plane, by utilizing the Neumann or
Dirichlet Green’s functions.

In order to derive the Rayleigh integrals an interior problem is described by the
KHIE written on a simply joint boundary, consisting of a disc ∂ΩP and hemisphere
∂ΩS , as shown in Figure 2.7. With the radius of the hemisphere increased to infinity
(r →∞) the Sommerfeld radiation condition is invoked and the contribution of the
hemisphere vanishes: the radiated field is described by a surface integral written on
an infinite plane, termed here as the Rayleigh plane. The plane is located at y = 0 with
its normal given by nin = [0, 1, 0]T, and all the primary sources of sound are located
at y < 0. In this geometry the KHIE (2.56), describing the field at x = [x, y > 0, z]T

degenerates to

P (x, ω) = lim
r→∞

(∫
∂ΩP

d∂ΩP +
∫
∂ΩS

d∂ΩS

)
=∫

∂ΩP

(
P (x0, ω) ∂G(x0|x, ω)

∂y0

∣∣∣∣
y0=0

− ∂P (x0, ω)
∂y0

∣∣∣∣
y0=0

G(x0|x, ω)
)

d∂ΩP (x0). (2.60)
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x′

x0

nin
r

Ωi

∂ΩP

∂ΩS

Figure 2.7. Geometry for the
derivation of the Rayleigh integrals.
The radius of the hemisphere ∂ΩS is
increased to infinity, therefore only
the Rayleigh plane ∂ΩP contributes
to the radiated field at y > y0. For
this special geometry the required
Neumann and Dirichlet Green’s
functions are given by the sum of a
point source at the evaluation point
x and a point source, positioned at
x′, obtained by mirroring x to the
Rayleigh plane.

Obviously, any homogeneous solution of the Helmholtz equation may be added to
the Green’s function, the inhomogeneous wave equation and the Kirchhoff-Helmholtz
integral still holds.8 In the following, this fact is exploited in order to eliminate either
the single or the double layer potential in (2.60) by finding a proper additive term to
the Green’s function:

• The Neumann Green’s function eliminates the double layer potential by finding
a suitable additive term to the Green’s function, so that the it satisfies homoge-
neous Neumann boundary conditions along the Rayleigh plane:

GN(x0, ω) = G(x0|x, ω) + PN(x0, ω), (2.61)

∂GN(x0, ω)
∂nin

= ∂GN(x0, ω)
∂y0

= 0, ∀ x0 ∈ ∂ΩP . (2.62)

• The Dirichlet Green’s function eliminates the single layer potential by requiring
Dirichlet boundary conditions for the Green’s function, given by

GD(x0, ω) = G(x0|x, ω) + PD(x0, ω) = 0, ∀ x0 ∈ ∂ΩP , (2.63)

so that both PN and PD satisfy the inhomogeneous wave equation in y > y0.

In the general case of an arbitrary shaped enclosing surface the Neumann and
Dirichlet Green’s functions are given by the scattered field of a point source, positioned
at x, reflected from a rigid or a sound soft boundary respectively. Their actual form
therefore would depend on the evaluation point x. In the present geometry the
scattered field of a point source from a rigid or sound soft infinite plane can be easily
obtained by mirroring the in-phase or anti-phase source to the scatterer plane, and the
required Green’s functions are given as

GN(x0, ω) = G(x0|x, ω) +G(x0|x′, ω) (2.64)

GD(x0, ω) = G(x0|x, ω)−G(x0|x′, ω) (2.65)

with x′ = [x, 2y0 − y, z]T as illustrated in Figure 2.7.

8This property can be exploited in order to solve the inhomogeneous wave equation in the presence of
boundaries, by taking the reflected field into consideration.
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Substitution of (2.62) and (2.63) into the integral (2.60), with exploiting the symme-
try and the translation invariance of the Green’s function yields the Rayleigh I and II
(or Neumann and Dirichlet) integrals respectively [Ber84]:

Rayleigh I

and Rayleigh

II integrals

P (x, ω) =
∫
∂ΩP
−2 ∂P (x, ω)

∂y0

∣∣∣∣
y0=0

G(x− x0, ω)d∂ΩP (x0) (2.66)

P (x, ω) =
∫
∂ΩP

2P (x0, ω) ∂G(x− x0, ω)
∂y0

∣∣∣∣
y0=0

d∂ΩP (x0). (2.67)

Obviously, the Rayleigh integrals do not ensure a zero sound field behind the Rayleigh
plane at y < 0. In this region the Rayleigh I integral expresses the field of the primary
source distribution, reflected from an infinite rigid plane, while the Rayleigh II integral
gives that from a sound soft planar boundary according to the equivalent scattering
interpretation.

In the present thesis the Rayleigh I integral is of special importance, being a single
layer potential. Besides forming the basis of traditional Wave Field Synthesis, it is
used extensively for the calculation of the radiated field of radiators, mounted in
infinite walls, e.g. the field of loudspeaker pistons as given in Appendix E.1. The
integral states that the radiated field from a rigid vibrating plane can be calculated as
the sum of the fields of point sources on the surface, driven by the normal velocity
distribution, or mathematically speaking by convolving the Green’s function with the
velocity distribution over the infinite surface.

Besides the presented methodology based on the Neumann and Dirichlet Greeen’s
function, the Rayleigh integral can be deduced directly using the equivalent scatter-
ing interpretation of the simple source approach: for a planar reflecting surface the
reflected field can be obtained by mirroring the incident field to the scatterer, result-
ing in the same formulation. Another straightforward way to obtain the Rayleigh
integrals stems from the direct inverse Fourier transform of the angular spectrum
representations (2.33) and (2.34) by applying the Fourier transform convolution theo-
rem and applying that the pressure and velocity propagators are given by the field of
dipoles and monopoles, as it was stated in Section 2.3.2. The fact that all the presented
three approaches lead to the same solution stems from the uniqueness of the single
layer problem for a planar boundary. However this can not be generalized towards
arbitrary boundary shapes: the coincidence of the Dirichlet/Neumann and the free
space Green’s function holds only for the present, simple geometry.



3High frequency approximation of
wavefields and radiation problems

The boundary integral representations introduced in the previous section give the
possibility for controlling the sound field inside enclosures. However, their direct
application for sound field synthesis is of great computational complexity for arbitrary
geometries. In order to derive integral representations more suitable for general
sound field reproduction, the application of approximate solutions are inevitable. This
chapter presents high frequency asymptotic approximations of sound fields and their
integral representations. These approximations will be of crucial interest in finding
the driving function for general loudspeaker contours in the latter sections.

The presented local/asymptotic description of wavefields is not unknown in the
fields of acoustics: With minor modifications it is a massively used concept in ray
tracing and geometrical optics/acoustics. However, its application for sound field
synthesis problems has been unprecedented so far.

3.1 Local attributes of sound fields

3.1.1 The local wavenumber vector

Assume an arbitrary steady-state harmonic sound field in x ∈ R3, written in a
general polar form with AP (x, ω), φP (x, ω) ∈ R

P (x, ω) = AP (x, ω) ejφP (x,ω). (3.1)

The dynamics of wave propagation is described by the phase of the sound field. From
ray tracing/geometrical optics theory the following quantity is introduced [BG04;
Roe05]:

Local waveno.

vector
kP (x) = −∇x φ

P (x, ω), (3.2)

termed the local wavenumber vector of sound field P , being obviously the generalization
of the plane wave wavenumber vector introduced by equation (2.27).1 Note that the
local wavenumber vector is frequency dependent, which dependency is suppressed
for the sake of brevity. In Cartesian coordinates the components of the local wavenum-

1The negative sign ensures that the phase of the sound field decreases into the propagation direction,
similarly to the case of a plane wave
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a) b)

c) d)

Figure 3.1. Illustration of the local wavenumber vector for a 2D acoustic point source (a,c)
and a 2D plane wave (b,d). (a-b) show an arbitrarily chosen contour of constant phase
(isochronous contour), along with the wavenumber vector on this contour. (c-d) show the
x-component of the normalized local wavenumber vector (k̂Px (x, y0)), measured along the
horizontal dashed black lines.

ber vector are denoted as kP (x) = [kPx (x), kPy (x), kPz (x)]T. In the following, the
existence of the superscript distinguishes local properties from the global ones: the
local wavenumber components of a sound field from the wavenumber components
of its plane wave decomposition. The wavenumber vector, defined as the negative
gradient of the phase function, points into the direction of maximal phase advance,
being perpendicular to isophase surfaces, i.e. it is perpendicular to the wavefront in
any position. For an isotropic medium, where the propagation speed is constant, the
wavenumber vector points into the direction of the wave’s energy flow, thus towards
the local wave propagation direction.2 The illustration of the local wavenumber vector
of a point source and a plane wave is depicted in 3.1.

Now it is investigated how wave dynamics can be described in terms of the local
wavenumber vector. Substituting the general, polar formulation of an arbitrary sound
field (3.1) into the Helmholtz equation (2.9), expressing the Laplace operator by its
definition (∇2

x = ∇x · ∇x ), and expressing the derivative of the polar form yields∇2
x A

P

AP
− |∇x φ

P |2 + j

∇2
x φ

P + 2

〈
∇x φ

P · ∇xA
P
〉

AP

+
(
ω

c

)2
P = 0, (3.3)

2This statement holds exclusively for isotropic media. Although the wavenumber vector is always
perpendicular to the wavefront, in anisotropic media the energy of a wave not necessarily travels
along the path, defined by the wavefront normals [Pol77].



3.1 Local attributes of sound fields 33

with the function arguments being suppressed for the sake of transparency.

In order to have the equality satisfied, both the real and imaginary parts of the
bracketed term have to vanish, resulting in the following coupled equations:

∇2
x A

P

AP
− |∇x φ

P |2 +
(
ω

c

)2
= 0, (3.4)

∇2
x φ

P + 2

〈
∇x φ

P · ∇xA
P
〉

AP
= 0. (3.5)

Under high frequency conditions the phase changes rapidly compared to the
amplitude, i.e. ∇

2
xA

P

AP
� |∇xφ

P |2 holds, and by utilizing the definition of the local
wavenumber vector, equation (3.4) leads to the local dispersion relation

Local disper-

sion relation|kP (x)|2 = kPx (x)2 + kPy (x)2 + kPz (x)2 =
(
ω

c

)2
= k2, (3.6)

being a generalization of the dispersion relation, given for plane waves by (2.22). The
equation holds trivially for simple sound fields: for plane waves, for point sources and
for line sources excluding the source position,3 however fails in the presence of strong
interference phenomena, due to which the amplitude distribution varies rapidly over
the space. Furthermore, the present form of the local dispersion relation is valid only
for stationary sound fields in isotropic media. In Chapter 5 the theory will be extended
to include non-stationary fields through the example of the sound field, generated by
a moving harmonic source.

By applying the local dispersion relation, the normalized local wavenumber vector can
be defined for a stationary sound field as

k̂P (x) = kP (x)
|kP (x)| = kP (x)

ω/c
, (3.7)

being a vector of unit length (independent from frequency), pointing in the local
propagation direction of the sound field. The normalized wavenumber vector, i.e. the
normalized phase change of wavefields is a basic concept in ray tracing, massively
used for solving wave propagation problems in anisotropic media. In the field of ray
tracing expression Γ(x) = −φP (x,ω)

k is termed as the eikonal, whose gradient defines the
local propagation direction of the wavefield: ∇Γ(x) = k̂(x). In that context the local
dispersion relation in the form of (3.4) is termed the eikonal equation [Pie91; Kin+00],
having to be solved for the eikonal—often at space-variant sound speeds—yielding
the phase change of the sound rays over the ray path. The second basic ray tracing
equation, termed the transport equation, is given by (3.5), with its solution providing
the intensity change of sound rays. In the following section the physical interpretation
of this equation is investigated in terms of the local wavenumber vector and the local
wavefront curvature.

3As a well-known fact from the field of electrostatics, the amplitude factor of a point source serves as
the Green’s function for the Laplace equation, satisfying∇2

x A
P = ∇2

x
1

4π
1

|x−x0|
= −δ(x− x0). Hence,

for the field of a point source ∇
2

x A
P

AP
= 0 trivially holds and the local dispersion relation is satisfied,

except for the singular point.
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x0

k̂(x0)

ρ1

ρ2

v1v2

−φP (x) = const

Figure 3.2. Illustration of the prin-
cipal radii and principal curvatures
of an arbitrary smooth wavefront,
satisfying the local dispersion rela-
tion. The principal radii are denoted
by ρ1 and ρ2, with the correspond-
ing tangent vectors v1 and v2 respec-
tively, pointing into the direction of
the largest and smallest curvature,
being two eigenvectors of the phase
function’s Hessian. The principal cur-
vatures are given by the reciprocal of
the principal radii. In the present trea-
tise non-converging wavefields are
discussed with both principal curva-
tures being non-negative.

3.1.2 The local wavefront curvature

Applying the local wavenumber vector concept, the local wavefront curvature of
arbitrary sound fields can be introduced. The wavefront curvature and the radius of
curvature give an expressive physical interpretation and coordinate system indepen-
dent description for the results of the asymptotic approximations developed in the
following sections, and serves as a mathematical basis in order to distinguish divergent
and convergent wavefronts. A wavefield is termed divergent with a convex wavefront
propagating away from a source distribution and convergent or focused, if a concave
wavefront propagates towards a focal point. Mathematically, the local vergence of the
wavefield may be described by the principal curvatures of the wavefront or in a looser
sense by the mean curvature of the wavefront.

The principal curvature components κP1 (x), κP2 (x) are defined geometrically as
the reciprocal of the principal radii ρP1 (x), ρP2 (x), being the maximal and minimal
radii of osculating circles at a point on the wavefront, as illustrated in Figure 3.2.
Mathematically, the curvatures can be defined via the Hessian matrix of the phase
function HP (x), with the elements in 3D given by

HP
ij (x) = ∂2

∂xi∂xj
φP (x, ω) i, j = 1, 2, 3. (3.8)

As long as the local dispersion relation holds, the principal curvatures are given by the
two non-zero eigenvalues of the Hessian, normalized by −ω

c , as discussed in details in
the Appendix B.1 [Har99; Har01]. A wavefield is then divergent when both principal
curvatures are positive [Ble84; Arn86; PT92].

The mean curvature of the wavefront—generally defined as the divergence of the
surface normal [Gol05]—is given by the divergence of the normalized local wavenum-
ber vector, or the negative trace of the Hessian:

Mean wave-

front cur-

vature

κP (x) = ∇x · k̂P (x)
2 = −∇

2
x φ

P (x, ω)
2k = − 1

2k

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
φP (x, ω), (3.9)
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with k = ω
c being the acoustic wavenumber. Substitution into the transport equation

(3.5), the divergence of the local wavenumber vector can be expressed as

κP (x) = −
〈

k̂P (x) · ∇xA
P (x, ω)

AP (x, ω)

〉
= − 1

AP (x, ω)
∂AP (x, ω)

∂k̂P
. (3.10)

Hence, the transport equation states that at an arbitrary point the relative amplitude
change towards the wavefront’s propagation direction is given by the mean curvature.
This fact allows a formal definition for the vergence of the sound field in a mean sense:
a field is divergent, if its amplitude decreases into the local propagation direction and
convergent, if the intensity is focused towards the propagation direction.

As a strict definition—since the mean and the principal curvatures are related as
κP (x) = 1

2

(
κP1 (x) + κP2 (x)

)
—wavefields may be classified as

κP1 (x), κP2 (x), κP (x)


> 0 for a locally diverging/non-focused wavefield

= 0 for a plane-wave

< 0 for a locally converging/focused wavefield.

(3.11)

Within this thesis only non-converging wavefields will be discussed. Finally, one can
define the Gaussian curvature of the wavefront, given by κP1 · κP2 , being only negative,
if the wavefront has a saddle point in the point of investigation.

As a summary of the foregoing, Table 3.1 gives the local wavenumber vector, the
local wavefront curvatures and principal radii for frequently used sound field models.
The Hessian of the Green’s function’s phase, required for intermediate calculations is
given by (B.4).

Table 3.1. Local wavenumber vector kP , local wavefront curvatures κ and radii ρ of a 3D
point source, an infinite vertical line source (i.e. a 2D point source) and a 3D plane wave. The
phase of a line source is obtained from its high frequency approximation, given by (3.55)

3D point source
x = [x, y, z]T

2D point source
x = [x, y]T plane wave

P (x, ω) 1
4π

e−jk|x|

x − j
4H

(2)
0 (k|x|) e−〈k·x〉

kP (x) k
|x| · [x, y, z]

T k
|x| · [x, y, 0]T k

ρP1,2(x) |x| |x| , ∞ ∞

κP1,2(x) 1
|x|

1
|x| , 0 0

κP (x) 1
|x|

1
2|x| 0

3.1.3 High frequency gradient approximation

As a further approximation in the high frequency domain, the gradient of an
arbitrary sound field may be expressed in a simplified form in terms of the local
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wavenumber vector. By applying the product rule of differentiation, the gradient of
an arbitrary polar form sound field, described by (3.1), reads as

∇x P (x, ω) =(
∇xA

P (x, ω)
AP (x, ω) + j∇x φ

P (x, ω)
)
P (x, ω) =

(
∇xA

P (x, ω)
AP (x, ω) − jkP (x)

)
P (x, ω). (3.12)

In the high frequency region |kP (x)| ≈
(
ω
c

)
�
∣∣∣∇x AP (x,ω)
AP (x,ω)

∣∣∣ holds, and the gradient can
be approximated as

High freq.

gradient appr.
∇x P (x, ω) ≈ −jkP (x)P (x, ω). (3.13)

For an interpretation of the local wavenumber concept and the high frequency
gradient approximation, the first order Taylor expansion of the phase function may be
expressed around an arbitrary point x0, reading

φP (x, ω) ≈ φP (x0, ω) +
〈

(x− x0) · ∇x φ
P (x0, ω)

〉
. (3.14)

By substitution into (3.1) with a slowly varying amplitude function—i.e. AP (x) is
approximated by the first order Taylor expansion coefficient—in the proximity of x0

the sound field is approximated by

P (x, ω) ≈ P (x0, ω)e−j〈kP (x0)·(x−x0)〉. (3.15)

Therefore, each point of a sound field is approximated as a local elementary plane
wave with the wavenumber and angular frequency given by kP (x) and ω, respectively.
Furthermore, expressing the gradient of the local plane wave representation (3.15)
leads to the high frequency gradient approximation (3.13), which is obviously the
gradient of locally plane wavefields.

Application example: Stereophony

As an application example for the local wavenumber vector concept, the resultant
sound field of two 3D point sources is investigated, modeling a stereo loudspeaker
setup.

The point sources are positioned at x1 = [x1, y1, z1 = 0]T and x2 = [−x1, y1, z1 =
0]T in a standard stereo ensemble, with the stereo axis being the y-axis. The geometry
is illustrated in Figure 3.3 [Hav+08]. In the case of amplitude panning, the sources
are driven in-phase, with only their frequency independent amplitude factor A1, A2

differing. The resultant sound field reads as

P (x, ω) = A1
4π

e−jω
c
|x−x1|

|x− x1|
+ A2

4π
e−jω

c
|x−x2|

|x− x2|
. (3.16)

Generally, for an arbitrary receiver position x, the phase of the resultant field
and the local wavenumber vector can be only described by a complex formula, as
it is derived in C.1. From the aspect of stereophonic applications, the investigation
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x

y

x1x2

x1

y1

φ0

φp

kP (x)

phantom
source Figure 3.3. General two-channel

stereophonic geometry consisting of
two point sources, positioned sym-
metrically to the y-axis, termed the
stereo axis. The aperture angle is usually
set to 2φ0 = 60◦ and the listener’s po-
sition is at the origin [Rum01]. Simple
amplitude panning techniques apply
intensity difference between the loud-
speaker pair, so that the listener per-
ceives the illusion of a single sound
source, termed the phantom source, po-
sitioned along the active arc between
the two loudspeakers.

of the local propagation direction on the stereo axis is sufficient, since the listener’s
position is assumed to be the origin. On the stereo axis, i.e. along the y-axis, the local
wavenumber vector can be simplified to

kP (0, y, 0) = − ∇x φ
P (x, ω)

∣∣∣
x=0,z=0

= k


A1−A2
A1+A2

x−x1
|x−x1|

y−y1
|x−x1|

z−z1
|x−x1| = 0

 . (3.17)

Hence, the local wavenumber vector can be steered along the stereo axis by applying
appropriate frequency independent gains to the point source pair, in order to control
the kPx component. The local wavenumber vector for a general stereophonic scenario
is illustrated in Figure 3.4. Assuming that the local wavenumber vector determines
the apparent position of the phantom source, with the appropriate choice of the source
gains the desired phantom source direction can be set.

Assuming that the position of the phantom source or the target propagation di-
rection angle measured from the stereo axis is prescribed—denoted by φp in Figure
(3.3)—the required gain factors may be expressed from (3.17). The local propaga-
tion angle of the resultant field at the origin 0 can be written in terms of the local
wavenumber components as

tanφp = kPx (0)
kPy (0) = A1 −A2

A1 +A2

x1
y1
. (3.18)

Exploiting that tanφ0 = x1
y1

leads to the the formula

A1 −A2
A1 +A2

= tanφp
tanφ0

, (3.19)

which is identical to the well-known tangent law of stereophony [Pul97; Pul01a; Pul01c;
Ben+08], originally derived from a different consideration [Ben+85]. The tangent law
therefore ensures the matching of the local propagation directions of the target field
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(a) (b)

Figure 3.4. Sound field generated in a typical stereo setup. The point sources are positioned
with a base angle of φ0 = 30◦, with their distances from the origin being R0 = 2.5 m. The gain
factors A1, A2 were selected, so that the angle of the local wavenumber vector at the origin
would equal to φp = 10◦. In Figure (a) contour lines indicate isochronous surfaces with the
normalized local wavenumber vector displayed along the stereo axis. Figure (b) shows the
normalized wavenumber components along x = 0. Note that due to interference phenomena
the amplitude distribution changes rapidly, and as a consequence the local dispersion relation
(3.6) does not hold in particular positions: The length of the wavenumber vector decreases
between the sources where standing waves occur, and increases to infinity on the parts where
the amplitude vanishes and the phase changes rapidly due to destructive interference.

and the reproduced wavefronts in the proximity of the listener’s position, i.e. over the
sweet spot.

Obviously, the tangent law expresses merely the relationship between A1 and
A2, the exact value of the gain factors can be calculated by applying some type of
normalizing strategy [Moo90]. A frequently used strategy is to keep the intensity of the
reproduced field at a constant value, by requiring A2

1 +A2
2 = constant. Alternatively,

it may be exploited that the amplitude of the resultant field on the stereo axis equals
to 1

4π
A1+A2
|x−x1| (as given by (C.10)), in order to match the amplitude of the reproduced

field to that of the phantom point source.

3.2 The Kirchhoff approximation

The Kirchhoff approximation is an important high frequency asymptotic approx-
imation of the Kirchhoff-Helmholtz integral. Based on the equivalent scattering
interpretation the simple source formulation may be simplified in the high frequency
region using the Kirchhoff/Physical optics approximation, applied frequently to estimate
scattering from random surfaces [Vor99; Tsa+00]. In order to estimate the scattered
field—and its normal derivative on the scatterer surface—two approximations are
applied:
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(a) (b)
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kP (x0)
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Figure 3.5. Illustration of the geometrical optics approximation (a) and the tangent plane
approximation (b). Obviously, the figure depicts a non-convex scatterer object. Throughout
the dissertation only convex parts of this contour will be investigated.

• According to geometrical optics or ray acoustics, the scatterer surface can be divided
into an illuminated and a shadow region: only those parts of the scatterer surface
contribute to the scattered field that are directly illuminated by the primary
source, i.e. where the local propagation directions of the incident and the
reflected field—determined locally by the scatterer surface’s normal—coincide
[LF47]. In the field of high frequency boundary element method this is termed
as determining the visible elements on the boundary [Her+03]. Mathematically,
this requirement is formulated for a convex scatterer as weighting the integral
describing the scattered field by the windowing function

w(x0) =

1, ∀ 〈kP (x0) · nin(x0)〉 > 0
0 elsewhere,

(3.20)

where kP (x0) is the local wavenumber vector of the incident field and nin(x0) is
the inward normal of the surface element. For an illustration see Figure 3.5 (a).

This windowing means the neglection of both diffracting waves around the
scattering object (as well as the so-called creeeping rays [Ble84]) and reflections
from one part of the scatterer to an other [Pig+15]. Due to this latter restriction
the Kirchhoff approximation may be applied only to convex surfaces free of
secondary reflections.

• As the second simplification, the tangent plane approximation is applied on the
illuminated region. It is supposed that there exists a local relation between the
incident and the scattered field at each point on the surface. By assuming that the
incident wave is reflected locally obeying the Snell’s law [Vor07]—its amplitude
changes proportionally to the local reflection index, with the angle of incidence
equaling the angle of reflection measured from the local normal—the following
relations are yielded for a sound soft scatterer: [Ble84; Ble+00; PS02]

Ps(x0, ω) = −P (x0, ω), ∂

∂nin
Ps(x0, ω) = − ∂

∂nout
P (x0, ω), x0 ∈ ∂Ω,

(3.21)
where P (x, ω) is the incident field and Ps(x, ω) is the scattered field. The approx-
imation therefore calculates the reflected wavefield by modeling each point of
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(a) (b)

(c)

Figure 3.6. Illustration of the Kirchhoff approximation in a 2D problem (Ω ⊂ R2), applied for
the calculation of the scattering of a 2D point source, positioned at xs = [0.4, 2.5]T, oscillating
at f0 = 1 kHz. Figure (a) depicts the numerical evaluation of the Kirchhoff approximation
(3.22). Figure (b) describes the total field of the point source in the presence of a sound
soft scattering object. Figure (c) shows the absolute value of the total field on a logarithmic
scale. Inside the enclosure the sound field should be identically zero if no approximations
were applied, hence in these region the non-zero field indicates the error of the Kirchhoff
approximation. In Figure (a) the illuminated/active part of the scatterer contour is denoted by
solid black line, whilst the shadow region is denoted by dotted line.

the scatterer as an infinite tangential plane. For low-frequencies and non-smooth
boundaries the surface can not be considered locally planar, introducing further
artifacts.4

These approximations can be utilized in order to approximate the single source
formulation. According to the equivalent scattering interpretation, the external field is
given by the scattered sound field as Pe(x) = −Ps(x). Reformulating (3.21) merely in
terms of the inward normal vector and applying the geometrical optics windowing
function, one obtains the Kirchhoff approximation of the simple source formulation

Kirchhoff

approximation

∮
∂Ω
−2w(x0) ∂P (x0, ω)

∂nin
G(x− x0, ω) d∂Ω(x0) ≈


P (x, ω) ∀ x ∈ Ωi

P = −Ps ∀ x ∈ ∂Ω
−Ps(x, ω) ∀ x ∈ Ωe.

(3.22)

The integral gives a fair approximation for smooth, convex surfaces in the high
frequency and farfield region, where the wavelength and the wavefront curvature

4In order to overcome these limitations several curvature correctional and iterative approaches exist
[EG04].



3.3 The stationary phase approximation 41

are significantly smaller, than the dimensions of the scattering object.5 The Kirchhoff
approximation of the 2D example presented in Section 2.4.2 is illustrated in Figure 3.6.
The lack of diffracted waves around the enclosure gives rise to artifacts on parts of the
space where the local propagation direction of the incident field is nearly parallel with
the scatterer contour.

3.3 The stationary phase approximation

This section introduces a basic tool of asymptotic analysis, the stationary phase
approximation (SPA), being of central importance in the present thesis. It allows the
evaluation of integrals of complex functions by assuming that the greatest contribution
stems from critical points in the integral path. In the following chapters the SPA allows
the extraction of asymptotic, local solutions from the global ones for radiation and
reproduction problems, written in terms of either boundary or spectral integrals.

For the sake of brevity, the following notation convention is used hereinafter, as
given also in the nomenclature: Given an n-dimensional function f(x) with x =
[x1, x2, ..., xn]T, the first and second partial derivatives with respect to the i-th and
j-th coordinates xi, xj evaluated at the position x∗ are denoted as

∂

∂xi
f(x)

∣∣∣∣
x=x∗

= f ′xi(x
∗), ∂2

∂xi∂xj
f(x)

∣∣∣∣∣
x=x∗

= f ′′xixj (x
∗). (3.23)

3.3.1 The integral approximation

Generally speaking, the SPA yields the approximate value for the integrals of
complex valued functions, written in the general polar form as

I1D =
∞∫
−∞

A(x) ejφ(x) dx, InD =
∞∫
−∞

A(x) ejφ(x) dx (3.24)

in one and n dimensions respectively, when ejφ(x) is highly oscillating and A(x) is
comparably slowly varying.

For the SPA of the 1D integral, a rigorous derivation, based on integration by parts,
is given in [BH75; Ble84; Wil99]. Less formally, the method relies on the second order
truncated Taylor series of the exponent around the stationary point x∗, defined as the
point in the integration path, satisfying

φ′x(x∗) = 0, and φ′′xx(x∗) 6= 0. (3.25)

The Taylor series around the stationary point reads as

φ(x) ≈ φ(x∗) + 1
2φ
′′
xx(x∗)(x− x∗)2. (3.26)

5According to [BH75, Eq.(2.7.12)] the approximation holds, when k · ρ1,2 � 1, where ρ1,2 are the local
principal radii of the curved scatterer and k is the wavenumber.
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Supposing that the amplitude A(x) is a slowly varying smooth function compared to
φ(x), it is assumed that where the phase varies (i.e. φ′x(x) 6= 0), the integral of rapid
oscillation cancels out, thus the greatest contribution to the total integral comes from
the immediate surroundings of the stationary point. Moreover, in the proximity of
the stationary point A(x) can be regarded to be constant, with the value A(x∗). With
these considerations the integral becomes

I1D ≈ A(x∗) e+jφ(x∗)
∞∫
−∞

e+j 1
2φ
′′
xx(x∗)(x−x∗)2 dx. (3.27)

The remaining integral can be evaluated analytically, resulting in the stationary phase
approximation of (3.24) [BH75, Ch. 2.8], reading as

1D station-

ary phase

approximation

I1D ≈
√

2π
|φ′′xx(x∗)| A(x∗) ejφ(x∗)+jπ4 sgn(φ′′xx(x∗)). (3.28)

Similarly, in higher dimensions a simple stationary point is defined as

∇x φ(x)|x=x∗ = 0, (3.29)

where

det H(x∗) 6= 0, Hij(x∗) =
[
∂2φ(x)
∂xi∂xj

]∣∣∣∣∣
x=x∗

, i, j = 1, 2, ..., n (3.30)

holds, with H being the Hessian matrix of the phase function. The multidimensional
formula for the integral value reads as

Multi-

dimensional

SPA

InD ≈
√

(2π)n
| det H(x∗)| A(x∗) ejφ(x∗)+jπ4 sgn(H(x∗)), (3.31)

where sgn (H(x∗)) is the signature of the Hessian: the number of positive eigenvalues
minus the number of negative eigenvalues [Ble+00].

In the following, the physical interpretation of the SPA is discussed when applied
to boundary and spectral integrals of sound fields and simple examples are given for
its application. The conclusions of the presented examples will be further utilized in
the following chapters.

3.3.2 Asymptotic approximation of boundary integrals

First, the physical interpretation of the stationary position is discussed for the case
when the SPA is applied to boundary integrals, for the sake of simplicity, through the
example of the Rayleigh I integral.

Assume that the Rayleigh integral describes an arbitrary sound field at y > y0 in
terms of a boundary integral along the plane x0 = [x0, y = y0, z0]T, according to
(2.66). It is supposed that all sources of sound are located behind the Rayleigh plane
in the half space y < y0, generating a non-converging wavefront. For the application
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x

y

x

x∗0(x)

kP (x∗0(x))

kG(x∗0(x)− x)

Figure 3.7. 2D Geometry for the
physical interpretation of the station-
ary position for the Rayleigh integral.
The stationary position is found along
the integral surface/contour where
the local propagation direction—and
the local wavenumber vector—of the
described wavefield and the spheri-
cal field of a point source, positioned
at x coincide. Equivalently, it means
that the local propagation direction
of the described field at x∗0(x) equals
with that of the Green’s function ,po-
sitioned at x∗0(x), measured at the re-
ceiver position x.

of the SPA high frequency conditions are standard prerequisites in order to ensure a
highly oscillating exponential. Therefore, the gradient can be expressed by its high
frequency approximation (3.13), resulting in the high frequency Rayleigh integral

P (x, ω) = 2
∫∫ ∞
−∞

jkPy (x0)P (x0, ω)G(x− x0, ω) dx0 dz0. (3.32)

The goal is to evaluate the Rayleigh integral for a given receiver position x, by applying
the SPA. With the involved functions written in polar form, the integral reads as

P (x, ω) = 2
∫∫ ∞
−∞

kPy (x0)AP (x0, ω)AG(x− x0, ω)ej(φP (x0,ω)+φG(x−x0,ω)+π
2 ) dx0 dz0.

(3.33)
According to (3.29) the stationary position for the integral is found where the phase
gradient vanishes. Exploiting that the constant phase shift +π

2 vanishes due to differ-
entiation, the stationary position x∗0(x) for a given receiver position x is found where

∂
∂x0

∂
∂z0

φP (x0, ω)

∣∣∣∣∣∣∣
x0=x∗0(x)

= −


∂
∂x0

∂
∂z0

φG(x− x0, ω)

∣∣∣∣∣∣∣
x0=x∗0(x)

(3.34)

is satisfied. By the definition (3.2), the derivatives describe the corresponding compo-
nents of the local wavenumber vector. Since two components completely determine
the local wavenumber vector, therefore in the stationary position

Stationary

position of

boundary

integrals

kPx (x∗0(x)) = kGx (x− x∗0(x)) (3.35)

kPz (x∗0(x)) = kGz (x− x∗0(x))
kP (x∗0(x)) = kG(x− x∗0(x)) = −kG(x∗0(x)− x)

holds. In the right-hand side the chain rule6 and the reciprocity of the Green’s function
was exploited.

6Since the derivative is taken w.r.t. x0, according to the chain rule, the sign of the Green’s function’s
derivative is reversed, resulting in ∂

∂x0
φG(x − x0, ω) = −φG

′
x0 (x − x0, ω) and ∂

∂z0
φG(x − x0, ω) =

−φG
′

z0 (x− x0, ω).
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Hence, the SPA ’compares’ the propagation direction/wavefronts of the described
field and the Green’s function along the integral path. The stationary position for
a given receiver position is given by that point x∗0(x) where the local propagation
direction of the described wavefield is opposite to that of a monopole field centered at
the receiver position x. Obviously, by translating back the 3D Green’s function into
x∗0(x), its wavenumber vector at x will coincide with the described field’s wavenumber
vector. In other words, since the Rayleigh integral describes a sound field as the
resultant field of a planar distribution of point sources, for a given receiver point
that point source will have the greatest contribution, that’s sound field/wavefront
propagates into the same direction as the primary sound field/wavefront.

This interpretation is illustrated in Figure 3.7, with the example of a 2D point
source, described by the 2D Rayleigh integral. For the case of a point source at xs the
stationary position is found at the intersection of vector x − xs and the integration
path. In a 3D example, if the primary field is a spherical one, the stationary point is
found at the intersection of the Rayleigh plane and the vector pointing from the source
into the evaluation position.

Application example #1: Asymptotic evaluation of the Rayleigh
integral

As an application example for the SPA, the evaluation of the Rayleigh integral
around the stationary point is investigated in further details. As a result it is described,
how the local properties (its amplitude and phase) of wavefronts change over the
propagation path/ray path.

The stationary point was found on the Rayleigh plane where the local propagation
direction of the primary sound field coincides (with a negative sign) with the spherical
wavefront of the Green’s function, positioned at the receiver point. In order to evaluate
integral (3.32) around its stationary point according to (3.31) (with n = 2), the signature
and the determinant of the Hessian in the stationary position is required. In the present
geometry, the Hessian is given by the sum of the individual Hessians:

HP ·G(x0) = HP (x0) + HG(x− x0) =


∂2

∂x2
0

∂2

∂x0∂z0

∂2

∂x0∂z0
∂2

∂z2
0

(φP (x0, ω) + φG(x− x0, ω)
)
.

(3.36)
In the stationary position the primary wavefront and the Green’s function wavefront
are tangential (as it can be seen in Figure 3.7). Due to the spherical nature of the latter
one, in the stationary point the 3 eigenvectors of the above individual Hessians can
be chosen to coincide, therefore their principal curvatures (eigenvalues) are additive.
Thus, the resultant Hessian (3.36) can be expressed in terms of the principal curvatures
of the primary sound field κP1 , κ

P
2 and the Green’s function κG1 , κ

G
2 as

HP ·G(x∗0(x))=−kV

κP1 (x∗0(x)) + κG1 (x− x∗0(x)) 0

0 κP2 (x∗0(x)) + κG2 (x− x∗0(x))

VT,

(3.37)
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with V=

v1x v2x

v1z v2z

 being a matrix, constructed from the x, z-components of the eigen-

vectors/principal directions, corresponding to κP1 and κP2 , as shown in Figure 3.2. For
a more detailed description refer to Appendix B.1. The determinant of the Hessian
reads as

det HP ·G(x∗0(x)) =
(
κP1 (x∗0(x)) + κG1 (x− x∗0(x))

) (
κP2 (x∗0(x)) + κG2 (x− x∗0(x))

)
·

· k2 (v1xv2z − v2xv1z)2︸ ︷︷ ︸
k̂Py (x∗0(x))2

, (3.38)

where the underbraced part is the y-coordinate of a unit vector, being perpendicular
to v1 and v2, i.e. of the normalized local wavenumber vector. By taking into consid-
eration that for a divergent field both curvatures of the wavefront are positive and
the signature of the Hessian equals (-2), substitution into (3.31) yields the asymptotic
Rayleigh integral, reading

P (x, ω) = 4π P (x∗0(x), ω)G(x− x∗0(x), ω)√(
κP1 (x∗0(x)) + κG1 (x− x∗0(x))

)√(
κP2 (x∗0(x)) + κG2 (x− x∗0(x))

) (3.39)

=
√

ρP1 (x∗0(x))·ρG1 (x−x∗0(x))
ρP1 (x∗0(x))+ρG1 (x−x∗0(x))

√
ρP2 (x∗0(x))·ρG2 (x−x∗0(x))
ρP2 (x∗0(x))+ρG2 (x−x∗0(x))P (x∗0(x), ω)G(x− x∗0(x), ω),

written in terms both of the principal curvatures and radii.

Substituting the exact formulation of the 3D Green’s function and by exploiting
that according to (B.25), the principal radii increase proportional with the Euclidean
distance along the local propagation direction, i.e. ρPi (x) = ρPi (x∗0(x)) + ρGi (x−x∗0(x))
holds, the asymptotic formula takes the form

Asymptotic

Rayleigh inte-

gral

P (x, ω) =
√
ρP1 (x∗0(x)) · ρP2 (x∗0(x))

ρP1 (x) · ρP2 (x)︸ ︷︷ ︸
amplitude change
over propagation

e−jω
|x−x∗0(x)|

c︸ ︷︷ ︸
phase change

over propagation

P (x∗0(x), ω), (3.40)

where ρP1 · ρP2 is the reciprocal of the Gaussian curvature of the wavefront. Thus, in a
ray tracing manner the wavefield is approximated locally, based on its value at the
stationary position: the numerator of the amplitude factor approximates the pressure
field’s amplitude in the source position, attenuated by the denominator–describing
the attenuation factor for the source-to-receiver distance—while the simple phase shift
term corresponds to the propagation time delay. The equation reflects the fact that the
intensity of a 3D wavefield is proportional to the Gaussian curvature of the wavefront, being
a well-known fact in the field of optics [BW70, Sec. 3.1], [Bou+97, Sec. 1.3]. Similarly, a
2D wavefront’s amplitude attenuates proportionally to the only non-zero curvature,
given by ∼

√
ρP , which fact can be deduced from the SPA of the 2D Rayleigh integral.

Note that since points x and x∗0(x) are related by the local wavenumber vector,
therefore equation (3.40) generally describes how the field’s amplitude and phase
change along the direction of the local wavenumber vector, i.e. along the path of
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x∗0(x)

x
kG(x∗0(x)− x)

kG(x− x∗0(x))

kP (x∗0(x))

Figure 3.8. 2D
geometry for the
illustration of
the stationary
position for
the Kirchhoff-
Helmholtz
integral.

propagation. Departing from the Rayleigh plane concept, as a more general statement,
any propagating pressure field may be approximated along the propagation path as

P (x + dx · k̂P (x), ω) =
√

ρP1 (x)ρP2 (x)(
ρP1 (x) + dx

) (
ρP2 (x) + dx

) e−jω dx
c P (x, ω), (3.41)

as long as high frequency/farfield assumptions hold.7

Application example #2: The Kirchhoff approximation

As a second application example for the SPA of boundary integrals, an alternative
derivation of the Kirchhoff approximation is presented, obtained directly from the
Kirchhoff-Helmholtz integral. Suppose that an interior radiation problem is described
by the KHIE inside an enclosure Ω, bounded by ∂Ω. The field is given by

P (x, ω) =
∮
∂Ω
−
(
∂P (x0, ω)
∂nin

G(x− x0, ω)− P (x0, ω)∂G(x− x0, ω)
∂nin

)
d∂Ω(x0).

(3.42)
Assuming high frequency conditions, both the sound field and the Green’s func-
tion normal derivatives may be approximated using the high frequency gradient
approximation, resulting in

P (x, ω) =
∮
∂Ω

(
jkPn (x0) + jkGn (x− x0)

)
P (x0, ω)G(x− x0, ω) d∂Ω(x0). (3.43)

Again, it can be assumed that for a given receiver position x most part of the integral
cancels out, and the field is dominated by one particular stationary point on the
surface. Obviously, the stationary point is found on ∂Ω where the phase gradient
vanishes, i.e. where the local wavenumber vector/local propagation direction of the
described sound field and the Green’s function positioned at x coincide, satisfying

7From the above equation, the relative amplitude change can be expressed by applying the L’Hospital’s

rule, reading as 〈k̂
P (x)·∇x A

P (x,ω)〉
AP (x,ω) = limdx→0

√
ρP1 (x)ρP2 (x)

(ρP1 (x)+dx)(ρP2 (x)+dx)−1

dx = − 1
2
ρP1 (x)+ρP2 (x)
ρP1 (x)ρP2 (x) =

−κP (x),which result is in agreement with the definition of the mean curvature, originally obtained
from the transport equation (3.9).
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kP (x∗0(x)) = kG(x − x∗0(x)) = −kG(x∗0(x) − x). This interpretation is illustrated in
Figure 3.8 in case of a primary point source.

As an approximation, the amplitude factor of the integral can be substituted by
its stationary value, i.e. with kGn (x− x0) = kPn (x0). Furthermore, only that part of the
integral path contributes to the total sound field that serves as a stationary point for
any receiver position inside the enclosure, resulting in the windowing function (3.20)
and the KHIE may be further simplified towards

Kirchhoff

approximation
P (x, ω) =

∮
∂Ω

2w(x0)jkPn (x0)P (x0, ω)G(x− x0, ω) d∂Ω(x0). (3.44)

This is obviously equivalent to the Kirchhoff approximation (3.22), derived by phys-
ically motivated considerations from the equivalent scattering interpretation of the
simple source formulation.

3.3.3 Asymptotic approximation of spectral integrals

Now the physical interpretation of the stationary position is discussed when the
SPA is applied for spectral integrals. The forward and inverse Fourier transforms of
an arbitrary sound field P (x, ω), written in a general polar form, are given by

P̃ (kx, y, kz, ω) =
∫∫ ∞
−∞

AP (x, ω)ejφP (x,ω)ejkxxejkzzdxdz, (3.45)

P (x, ω) = 1
(2π)2

∫∫ ∞
−∞

AP̃ (kx, y, kz, ω)ejΦP̃ (kx,y,kz ,ω)e−jkxxe−jkzzdkxdkz, (3.46)

with P̃ (kx, y, kz, ω) = AP̃ (kx, y, kz, ω)ejΦP̃ (kx,y,kz ,ω), where AP̃ ,ΦP̃ ∈ R. The forward
and inverse transforms describe projection and composition of the sound field P to
and from spectral plane waves respectively (see Section 2.2.2). The propagation direction
of these spectral waves (i.e. their wavenumber vector) is completely determined by kx
and kz along with the acoustic wavenumber k, via the dispersion relation.

Supposing that the sound field fulfills the SPA requirements—i.e. under high
frequency assumptions—the forward transform (3.45) may be evaluated asymptoti-
cally, by applying the stationary phase method [Arn95; TM05]. The stationary point
x∗(kx, kz) is found for given spectral kx and kz values where the gradient of the expo-
nent is zero. Assuming that the local dispersion relation holds, two local wavenumber
components completely define the local wavenumber vector and the stationary posi-
tion for the spectral integral is found where

Stationary

position of

spectral inte-

grals

∂

∂x
φP (x, ω)

∣∣∣∣
x=x∗(kx,kz)

+ kx = 0 → kPx (x∗(kx, kz)) = kx, (3.47)

∂

∂z
φP (x, ω)

∣∣∣∣
x=x∗(kx,kz)

+ kz = 0 → kPz (x∗(kx, kz)) = kz, (3.48)

∇x φ
P (x, ω)

∣∣∣
x=x∗(k)

+ k = 0 → kP (x∗(k)) = k (3.49)

is satisfied, with k being the wavenumber vector of the spectral plane wave.
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(c)

(b)

(d)

(a)
x

y

x

y

k

x∗(k)

x∗(kx = 0.5k)

Figure 3.9. Illustration of the stationary position for the SPA of the Fourier transform in case
of a 3D point source, with its one-dimensional Fourier transform evaluated along the x-axis.
Figure (a) presents a spectral basis function (i.e. a horizontal plane wave), with the exemplary
wavenumber vector defined by kx = 0.5k. For this spectral component the stationary phase
point (indicated by white arrow) is found in the field of the point source (shown in Figure
(c)) where the local propagation direction of the point source coincides with that of the plane
wave. The coincidence of the local propagation directions is ensured by the assumption
that in the plane of investigation kGz (x, y, 0) ≡ 0, and the spectral plane wave is assumed to
propagate with kz = 0. The spectrum, shown in Figure (d) (as given analytically in Table (2.1)),
is dominated around kx = 0.5k by this stationary position, denoted by x∗(kx) in Figure (b).

This finding states that each point in the angular spectrum of a sound field is
dominated by the parts of the space where the local propagation direction coincides
with the corresponding spectral plane wave’s global propagation direction. The local
wavenumber components therefore may be also defined alternatively as the stationary
points of the spatial Fourier transform (3.45), as a function of space.8 The interpretation
of the stationary position for the Fourier transform SPA is illustrated in Figure 3.9
through the exemplary transformation of a point source.

The counterpart of this statement is that the greatest contribution to the inverse
transform (3.46) is associated to those plane waves—the stationary phase of the
inverse integral for given a x—whose wave number vector coincide with the local
wavenumber components of the sound field at x.

So far, it has been assumed that in the region of investigation (along an infinite
plane or line, depending on the transform dimensionality) the stationary phase posi-
tion and thus each propagation direction is unique along the integral path/surface.
This trivially does not hold for the case of e.g. a plane wave or for complex acoustic
fields produced by multiple sources of sound. The SPA, however, can be extended
for multiple stationary positions and the result of the approximation is obtained by
summing the SPA contributions over the stationary positions [Ble+00, p. 129]. In the
present treatise this limitation is not investigated further, since the results involving

8This definition if often termed Lagrange submanifolds, playing a central role in phase space representa-
tion of sound fields [SM93; Arn95; TM05].
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the SPA hold without any modification for a virtual plane wave as well, as a limiting
case.

Application example #1: 1D spectrum of the Green’s function

As an example, the 1D spatial Fourier transform of the 3D Green’s function is
investigated with the transform taken along the x-dimension. As a result, a frequently
used high frequency asymptotic approximation of the Hankel function is obtained.
For the sake of simplicity the point source is located in the origin.

The exact solution for the problem is available analytically in Table (2.1), given by
the second order Hankel function in the propagation region:

G̃(kx, y, z, ω) = 1
4π

∫ ∞
−∞

e−jk
√
x2+y2+z2√

x2 + y2 + z2 ejkxx dx = − j
4H

(2)
0

(√
k2 − k2

x

√
y2 + z2

)
.

(3.50)
In this simple case, the stationary positions can be found explicitly for a given
wavenumber and the SPA of the Fourier transform can be evaluated analytically.
By definition the stationary position for an arbitrary spectral wavenumber kx is found
where the x-derivative of the phase function vanishes and x∗(kx) satisfies

kGx (x∗(kx)) = k
x∗(kx)√

x∗(kx)2 + y2 + z2 = kx → x∗(kx) = ρ
kx
kρ
, (3.51)

with ρ =
√
y2 + z2 being the radial distance from the x-axis and kρ =

√
k2 − k2

x

being the corresponding radial wavenumber. For the geometric interpretation of the
stationary point refer to Figure 3.9. At the stationary point the phase of the integrand
and its second derivative reads

φG(x∗(kx)) = −ρkρ, φ
′′G
xx (x∗(kx)) = −k y2 + z2√

x∗(kx)2 + y2 + z23 = −
k3
ρ

k2ρ
. (3.52)

Substitution into the SPA (3.28) with exploiting that −k
√
x∗(kx)2 + y2 + z2 = −ρk2

kρ

and accounting for the negative sign of the second derivative yields the asymptotic
form of the 3D point source spectrum

Field of a

linear radiator
G̃(kx, y, z, ω) = − j

4H
(2)
0 (kρρ) ≈ 1√

8πj
e−jρkρ√
ρkρ

. (3.53)

This result is the well-known asymptotic expansion of the Hankel function for large
arguments [Olv+10, p. 10.17.6], given generally as

H
(2)
0 (z) ≈

√
2j
πz

e−jz. (3.54)

In the particular case under consideration, when the function to be Fourier trans-
formed is the Green’s function, the Fourier integral (3.50) can be interpreted as the
sound field of an infinite line source, with a harmonic spatial distribution described
by kx, evaluated at x = 0. Such a line source radiates attenuating conical wavefronts,
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(a) (b)

z = 0

x y

z

x

y

x∗(kx)

kx

kρ k

ρ

Figure 3.10. Interpretation of the Green’s function’s spectrum as the field of a line source,
with harmonic spatial distribution, described by wavenumber kx, evaluated at x = 0. Such a
source (shown in Figure (a)) radiates a cylindrical sound field, with the radial wavenumber

kρ and the longitudinal wavenumber kx, so that k =
√
k2
x + k2

ρ is satisfied. In case of kx = 0,
this corresponds to the field of the 2D Green’s function. From geometrical considerations,
and applying the interpretation of the SPA for boundary integrals, the stationary position for
integral (3.50) is found at x∗(kx) = ρkxkρ , as shown in Figure (b).

propagating radially away from the x-axis with the local wavenumber vector given
by kP (x) = [kx, kρ]T, as illustrated in Figure 3.10 (a). The attenuation of the waves
depends on the propagation direction: lateral waves (with small kρ) are extremely
enhanced.

The DC (kx = 0) component of the spectrum (3.53) describes the sound field
generated by an infinite line source along the x-axis, i.e. a 2D point source. The high
frequency approximation of the 2D Green’s function—which therefore stems from the
asymptotic approximation of (2.46) [Wil99, p. 118]—is thus given by

Approximate

2D Green’s

function

G2D(x, ω) ≈ 1√
8πj

e−jk|x|√
k|x|

=
√

2π|x|
jk G3D(x, ω), (3.55)

with x = [y, z]T. This result indicates that a 2D point source generates cylindrical
wavefronts, with its phase function—and its local wavenumber vector—coinciding
with that of a 3D point source, measured at z = 0. The sound field attenuates
proportionally to 1√

|x|
= 1√

ρG2D
=
√
κG2D , where κG2D is the horizontal principal

curvature of the wavefront (with the vertical one being zero). Opposed to a 3D
source’s flat frequency response, a 2D one exhibits a frequency response of ∼ 1/

√
jω,

corresponding with the infinite tail of a 2D field’s impulse response.

Application example #2: 2D spectrum of the Green’s function

As a second example, the 2D spatial Fourier transform of the Green’s function is
discussed. The Fourier transform reads as

G̃(ky, y, kz, ω) =
∫∫ ∞
−∞

G(x, y, z, ω) ejkxx ejkzz dx dz. (3.56)
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On a fixed y = const plane the stationary point for the integral is found where

kGx (x∗(kx), y, z∗(kz)) = kx, → k
x∗(kx)
|x∗(kx, kz)|

= kx (3.57)

kGz (x∗(kx), y, z∗(kz)) = kz, → k
z∗(kz)

|x∗(kx, kz)|
= kz (3.58)

|kG(x∗(kx, kz))| = |k|, → k
y

|x∗(kx, kz)|
= ky (3.59)

holds, i.e where the local propagation direction of the spherical wavefront coincides
with that of the spectral plane wave, described by kx, kz .

The determinant of the phase function’s Hessian can be given in terms of the
principal curvatures (known analytically for the Green’s function), by using the same
considerations as used in Section 3.3.2. By definition, around the stationary position
kGy (x∗(kx, kz)) = ky holds, and the determinant reads as

det HG(x∗(kx, kz)) = k2κG1 (x∗(kx, kz))κG2 (x∗(kx, kz))k̂Gy (x∗(kx, kz))2 =
k2
y

|x∗(kx, kz)|2
.

(3.60)
Accounting for the positive curvatures the signature of the Hessian equals (-2), and
the 2D Fourier transform can be approximated by the 2D SPA of (3.56) as

G̃(ky, y, kz, ω) = 2π√
|det HG(x∗(kx, kz))|

1
4π

e−jk|x∗(kx,kz)|

|x∗(kx, kz)|
e−jπ2 . (3.61)

Substituting the determinant and expressing the stationary positions by (3.57) leads
finally to

Field of a

planar radiatorG̃(ky, y, kz, ω) = 1
2

e−jkyy

jky
= 1

2
e−j
√

(ωc )2−k2
x−k2

zy

j
√(

ω
c

)2 − k2
x − k2

z

. (3.62)

Comparison with Table (2.1) reveals that in this special case, the 2D SPA yields the
exact spectrum of the Green’s function in the propagation region.

Similarly to the previous example, the above equation describes the field of an infi-
nite planar set of point sources with a harmonic spatial distribution, generating plane
waves into the direction k = [kx, ky, kz]T, measured at x = [0, y, 0]T. Furthermore,
at kx = kz = 0 the spectrum yields the 1D Green’s function

1D Green’s

function
G1D(y, ω) = 1

2
e−jky

jk , (3.63)

describing the field of a vibrating infinite planar surface, with the frequency response
given by ∼ 1

jω and the impulse response being a Heaviside step function. The 1D
Green’s function therefore realizes the full integration of the source time history, while
the 2D Green’s function’s impulse response can be interpreted as the half-integration
of the source signal [DB83; WR09; Sch+13; Wan16].





4Theory of sound field synthesis

In the following, the general sound field synthesis (SFS) problem is formulated.
Assume a source-free volume Ω ⊂ R3 bounded by a continuous set of acoustic sources,
forming the boundary surface ∂Ω. The enclosing source ensemble is termed the
secondary source distribution (SSD). The general geometry is depicted in Figure 4.1. For
the sake of simplicity it is assumed that the boundary is acoustically transparent and
the secondary sources are acoustic point sources, described by the free field Green’s
function. Since closed-box, dynamic loudspeakers can be modeled as 3D monopoles
in the low-frequency region, this choice of secondary sources is reasonable.

With these assumptions, the synthesized pressure at any receiver position x ∈ Ω is
given by the superposition of the fields of individual secondary sources, written as a
single layer potential [Ahr10; Ahr12; Wie14; SS14]

P (x, ω) =
∮
∂Ω
D(x0, ω)G(x− x0, ω)d∂Ω(x0), (4.1)

with G(x, ω) denoting the 3D free field Green’s function. The weighting factor
D(x0, ω), i.e. the loudspeaker driving signal is termed the driving function for the
given SSD. The sound field synthesis problem can be formulated as follows: Given a
target sound field or the sound field of a virtual source P (x, ω), the goal is to solve the
above integral equation for D(x0, ω), so that the superposition of the SSD’s sound
field—the synthesized field—equals to the target sound field. The problem is therefore
an inverse problem, with unique solution for general enclosures [Faz10].

virtual source

0

x

nin

x0

|x−
x0|

Ω

∂Ω

Figure 4.1. Geometry for the general sound field synthesis problem
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Comparing the general SFS formulation (4.1) with the Kirchhoff-Helmholtz inte-
gral (2.56), it becomes obvious that SFS with a single layer SSD is not able to ensure
identically zero sound field outside the enclosure. Practically, the dipole sources that
would cancel the field of the monopoles outside the volume, are excluded from the su-
perposition. In the present thesis free field conditions are assumed: the exterior sound
field satisfies the Sommerfeld radiation condition, thus the effects of the listening
environment, present in practical applications (i.e. wall reflections), are not considered.
For the inclusion of room effects to the SFS problem refer to [Spo05; Cec+18].

The general 3D SFS setup, as discussed above, requires an enclosing surface of 3D
point sources, making practical implementations hardly realizable. In practice it is
often sufficient to restrict the reproduction to the z = 0 plane containing a 2D contour
of secondary sources. This reproduction scenario is termed 2.5D synthesis, referring
to the fact that although the problem dimensionality is reduced to n = 2, still, the 2D
SSD contour consists of 3D point source elements. In this geometry, the general 2.5D
synthesis problem is formulated as

P (x, ω) =
∮
C
D(x0, y0, 0, ω)G(x− x0, y − y0, 0, ω) ds(x0, y0), (4.2)

where C(x0, y0) is the SSD contour and ds is the infinitesimal arc length. Obviously,
neither 2D nor 3D sound fields can be perfectly synthesized in this geometry, due to
dimensionality inconsistency between the target field and the SSD. Overcoming the
artifacts of this dimensionality mismatch is the central question of practical sound field
synthesis and is the main topic of the present chapter.

In the followings, this chapter presents approaches to solve the 3D and 2.5D SFS
problems, including physically based implicit and particularly mathematical explicit
solutions.

4.1 Implicit solution: Wave Field Synthesis

The implicit solution for the SFS problem aims at the derivation of a single layer
potential representation of the target sound field, containing the required SSD driv-
ing function implicitly. In this section it is discussed how these surface, or—more
practically—contour integral representations of an arbitrary 3D sound field may be
expressed in the form of (4.1) and (4.2), from which the driving function can be
extracted.

4.1.1 3D Wave Field Synthesis

In case of a 3D SFS problem, obtaining the implicit solution is straightforward,
based on the boundary integral representations discussed in the previous chapters.
Assume a general enclosing 3D SSD surface, consisting of 3D point sources. Compar-
ing the Kirchhoff approximation of the Kirchhoff-Helmholtz integral (3.22) or (3.44)
with the general SFS equation (4.1) reveals that the Kirchhoff approximation implic-
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itly contains the driving function D(x0, ω) for a general enclosing SSD surface. The
driving function is given by

D(x0, ω) = −2w(x0)∂P (x0, ω)
∂nin

, (4.3)

or making use of the high frequency gradient approximation, as
3D WFS driv-

ing functionD(x0, ω) = 2w(x0)jkPn (x0)P (x0, ω) (4.4)

with kPn (x0) being the normal component of the target field’s local wavenumber vector
along the SSD and w(x0) being the window function, as introduced in the previous
chapter:

w(x0) =

1, ∀ 〈kP (x0) · nin(x0)〉 > 0
0 elsewhere.

(4.5)

In the context of WFS the windowing is termed as secondary source selection [NE99;
Spo07a; Spo07b], selecting the active secondary sources contributing to the synthesized
field.

The driving function (4.4) is a common generalization of the 3D WFS driving
function given by [ZS13, (20)] specifically for a virtual point source. Both formulations
are valid in the high frequency region within the validity of the Kirchhoff approxima-
tion: in the farfield of the virtual source distribution, i.e. where the local plane wave
approximation of the virtual field holds.

In the special case of an infinite planar boundary surface, located along the plane
y = y0, the Kirchhoff-Helmholtz integral degenerates to the Rayleigh I (Neumann)
integral, representing the field of any source distribution, located at y < y0, in terms of
a single layer potential, as discussed in Section 2.4.3. Therefore, in this geometry with a
planar SSD, the driving function (4.3) is capable of the perfect synthesis of an arbitrary
virtual sound field in the listening half-space y > y0, without any approximations
involved. In this case, no windowing is required, i.e. w(x0) ≡ 1, and the normal
derivative is simply given by the y-derivative of the target/virtual sound field.

The following physical interpretation can be assigned to the 3D WFS driving
function: As it was discussed in Section 3.3.3, the frequency response of the 1D
Green’s function, given by (3.63)—representing an infinite planar distribution of 3D
point sources—is proportional to ∼ 1

jk = c
jω , expressing an infinite impulse response

of a step function, performing the integration of the source time history. In case of a
non-homogeneous distribution, a directivity factor of 1

jky is also present as given by
(3.62) and approximated locally by (3.38). This directivity factor of 1

jkPy (x0) indicates
that a surface of point sources generates a larger pressure field into lateral directions
than into the normal direction. Within the validity of the Kirchhoff approximation,
this statement can be extended towards arbitrary SSD surfaces, radiating with an
enhanced intensity into locally lateral directions.

The factor jkPn (x0) in (4.4) (and in the Rayleigh/Kirchhoff-Helmholtz integral) may
be, therefore, interpreted as a correction term ensuring flat frequency response for the
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(a)

(b)

Figure 4.2. 3D synthesis of a
3D point source ,located at xs =
[0.4, 2.5, 0]T, radiating at f0 =
1.5 kHz. The SSD surface is cho-
sen to be independent of the z-
coordinate, as illustrated in Fig-
ure 4.3. For the numerical cal-
culation, the SSD was truncated
along the vertical dimension by
choosing parameters, so that
diffraction effects due to the trun-
cation are negligible in the simu-
lation results. Figure (a) depicts
the real part of the synthesized
field and Figure (b) presents the
absolute error of synthesis (the
discrepancy between the synthe-
sized and the target sound field)
in a logarithmic scale, measured
in the horizontal plane, contain-
ing the virtual point source. The
active arc of the SSD is denoted
by solid black line and the inac-
tive part with dotted by black
line.

SSD surface by inverse filtering (taking the time derivative) of the excitation signal
and compensating for the SSD’s directive radiation characteristics locally.

Application example: 3D synthesis of a virtual point source

As a simple example, the 3D WFS of a virtual point source is discussed. Assume a
3D point source, located behind the SSD at xs = [xs, ys, zs]T with ys < y0. Substituting
the Green’s function into (4.4) yields the point source specific high frequency 3D WFS
driving function

D(x0, ω) = w(x0) jk
2π
〈x0 − xs · nin(x0)〉

|x0 − xs|
e−jk|x0−xs|

|x0 − xs|
, (4.6)

being equivalent with [ZS13, Eq. 20.] and [Spo+08, Eq. 19.].

The result of synthesis is depicted in Figure 4.2 for the special case of an SSD
surface, being invariant to translation along the z-axis, as illustrated by Figure 4.3
in the following section. The driving function ensures amplitude correct synthesis
within the validity of the Kirchhoff approximation: amplitude errors arise

• in the proximity of secondary sources where local curvature of the SSD surface
is large, due to the local failure of the tangent plane approximation

• in the proximity of secondary sources where the normal component of the local
wavenumber vector is small—i.e. at parts of the SSD that are nearly parallel to
the virtual field’s local propagation direction—since at these positions the high
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frequency gradient approximation fails, with also the lack of diffracted waves
leading to amplitude errors.

• at space regimes for which the above described secondary sources serve as
stationary positions, as discussed in Section 3.3.2.

The driving function (4.6) expresses the loudspeaker driving signal for a virtual
point source radiating at a single frequency component. Assuming a wideband source
excitation with the time history given by s(t) and its frequency content being S(ω), the
time domain WFS driving function is given by the inverse temporal Fourier transform
of (4.6), weighted by the excitation spectrum:

d(x0, t) = w(x0)
2π

∫ ∞
−∞

〈x0 − xs · nin(x0)〉
|x0 − xs|

jω
2πcS(ω)ejω(t− |x0−xs|

c
)

|x0 − xs|
dω. (4.7)

By realizing that jω S(ω) describes the temporal derivative of the source time history
(being equivalent with filtering the source signal with a 6 dB/octave highpass filter),
and exploiting the Fourier transform shift theorem, the time domain 3D WFS driving
function for a virtual point source is obtained as

d(x0, t) = w(x0)
2πc

〈x0 − xs · nin(x0)〉
|x0 − xs|

s′t(t−
|x0−xs|

c )
|x0 − xs|

, (4.8)

where differentiation with respect to time compensates for the SSD frequency response,
as discussed above.

4.1.2 The 2.5D Kirchhoff approximation

Before discussing the questions of 2.5D Wave Field Synthesis, a further simplifi-
cation of the Kirchhoff approximation is introduced. This simplification reduces the
3D Kirchhoff integral into a 2D contour integral representing a 3D sound field as the
superposition of 3D Green’s functions. The approximation is, therefore, referred to
as the 2.5D Kirchhoff integral, occurring frequently in the field of seismic migration
and inversion problems. The dimensionality reduction is performed by applying the
stationary phase approximation to the Kirchhoff integral along the vertical dimension.

Assume a 3D interior radiation problem, with the sound field under consideration
described by the Kirchhoff integral (3.44) written on a surface, being translation
invariant along the z-axis. The problem geometry is depicted in Figure 4.3. In the
following, the receiver position is assumed to be at z = 0 inside the enclosure at
x = [x, y, 0]T ∈ Ω. In this special geometry the integral variables are separable and
the Kirchhoff integral can be written as

P (x, ω) =
∮
C

∫ ∞
−∞

2w(x0)jkPn (x0)P (x0, ω)G(x− x0, ω) dz0 ds(x0, y0), (4.9)

with the integral variable ds being the infinitesimal arc length along the contour
C(x0, y0) = ∂Ω(x0, y0, 0).

The integral along z0 is approximated by applying the stationary phase approxi-
mation. The application of the 1D SPA formulation (3.28) requires the definition of the
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x

y

z

x
x0

plane of interest

∂Ω: 3D surface

C: 2.5D contour

Figure 4.3. Geometry for the
derivation of 2.5D Kirchhoff in-
tegral. The enclosing surface
∂Ω(x0, y0) is chosen to be indepen-
dent of the z-coordinate in order to
be able to evaluate the Kirchhoff
integral with respect to z0 using
the SPA. If the sound field to be de-
scribed is a 2D one propagating in
the direction parallel to the listen-
ing plane, then the surface can be
interpreted as a continuous set of
infinite vertical line sources along
C, capable of the perfect descrip-
tion of a 2D field inside the enclo-
sure by a 2D countour integral.

stationary position and the sign of the phase function’s second vertical derivative (i.e.
the signature of the 1D Hessian) at the stationary point.

Definition of the vertical stationary position: The vertical stationary position in
the geometry under investigation is straightforward: Since the contour of integration
is chosen to lie at the z = 0 plane, therefore the vertical stationary position has to be
found at z∗0 = 0. Based on the foregoing this requirement can be formulated as

kPz (x0, y0, 0) = kGz (x− x0, y − y0, 0) = 0, (4.10)

stating the trivial fact that a sound field can be described by a 2.5-dimensional contour
integral only in the plane where all the sound sources are located, and which plane the
emerging waves propagate parallel with. In the plane of investigation kPz (x, y, 0) ≡ 0
holds for the field of 3D sources located at the plane of investigation and of 2D sources
being invariant along the vertical dimension. Throughout the present thesis when
dealing with 2.5D synthesis problems, these types of virtual fields are considered
exclusively.

Definition of the Hessian’s signature: An important property of wavefields un-
der consideration is that their vertical curvature—given by φP

′′
zz (x0, y0, 0, ω)—is one of

their principal curvatures itself, denoted by κPv . Hence, as it is discussed in Appendix
B.1, in the stationary position (z0 = 0) the principal curvatures are additive, and the
second phase derivative is the negative sum of the principal curvatures of the target
sound field and the Green’s function:

φP ·G
′′

zz (x0, y0, 0, ω) = φP
′′

zz (x0, y0, 0, ω) + φG
′′

zz (x− x0, y − y0, 0, ω) =

= −k
(
κPv (x0, y0, 0) + κGv (x− x0, y − y0, 0)

)
. (4.11)

Note that here it was exploited that φP
′′

zz = φP
′′

z0z0 and φG
′′

zz = φG
′′

z0z0 holds. By definition,
for an arbitrary diverging sound field (including the Green’s function) the principal
curvatures are positive and sgn

(
φP ·G

′′
zz (x0, y0, 0, ω)

)
= −1 trivially holds. For a con-

verging wavefront the signature of the resultant curvature depends on the receiver
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position: In regions of the receiver plane where sound field P locally converges the
resultant curvature is positive, while in regions where the sound field diverges, e.g.
after passing a focal point, the resultant curvature is negative. In the present thesis
only locally diverging wavefields are discussed.

With these considerations, application of the SPA to (4.9) results in the 2.5D Kirch-
hoff integral for diverging sound fields, reading as

2.5D Kirchhoff

integral
P (x, ω) =

∮
C

2w(x0)
√

2π
j|φP ′′zz (x0, ω) + φG′′zz (x− x0, ω)| ·

jkPn (x0)P (x0, ω)︸ ︷︷ ︸
≈− ∂P (x0,ω)

∂nin

G(x− x0, ω) ds(x0, y0), (4.12)

with from now on both x = [x, y, 0]T and x0 = [x0, y0, 0]T denoting in-plane
positions when 2.5D scenarios are considered.

4.1.3 2.5D Wave Field Synthesis

The 2.5D Kirchhoff integral implicitly contains the 2.5D WFS driving function
for a continuous contour of 3D point sources at the z = 0 plane. The resulting
driving function is, however, still dependent on the listener position through the
argument of φG

′′
zz (x− x0, ω). Evaluation of the driving function with a fixed x value

would only allow the synthesis of the virtual field optimized to a single, particular
receiver position, termed the reference point, while over other positions in the listening
plane amplitude errors would be present. In the following it is presented how the
driving function can be further manipulated within the validity of the stationary
phase approximation in order to ensure amplitude correct synthesis along an arbitrary
receiver curve, termed the reference curve.

As it was stated in Section 3.3.2, for any receiver position x the Kirchhoff integral
is dominated by that stationary contour element x∗0(x), from which the emerging
spherical wavefronts locally coincide with the target field wavefront, i.e. where
kP (x∗0(x)) = kG(x− x∗0(x)) is satisfied. As a consequence, the 2.5D Kirchhoff integral
may be further approximated by expressing the amplitude factor with its value at the
stationary position as

P (x, ω) =
∮
C

2w(x0)
√

2π
j|φP ′′zz (x∗0(x), ω) + φG′′zz (x− x∗0(x), ω)| ·

jkPn (x0)P (x0, ω)G(x− x0, ω) ds(x0, y0), (4.13)

where x∗0(x) is defined by the implicit relation above.

The statement can be expressed by reversing causality, forming the main idea of
2.5D WFS theory: Every point x0 along the secondary distribution dominates the total
sound field at the set of positions x(x0) where the local propagation direction of the
point source positioned at x0 coincides with that of the target field, i.e. where their
local wavenumber vectors coincide. Hence, x and x0 are stationary point pairs, mutually
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determining each other. By reversing the causality, choosing x0 as an independent
parameter the driving function can be extracted from (4.13), resulting in the generalized
2.5D WFS driving function

2.5D WFS

driving

function

D(x0, ω) = w(x0)
√

8π
jk

√
dref(x0) jkPn (x0)P (x0, ω), (4.14)

with the term dref(x0) being a frequency independent gain factor, given by

dref(x0) = k

|φP ′′zz (x0, ω) + φG′′zz (xref(x0)− x0, ω)| (4.15)

= 1
κPv (x0) + κGv (xref(x0)− x0) (4.16)

= ρPv (x0) · ρGv (xref(x0)− x0)
ρPv (x0) + ρGv (xref(x0)− x0) , (4.17)

where κPv , κGv and ρPv ,ρGv are the vertical principal curvatures and radii of the involved
sound fields, respectively. Position xref(x0) is the reference position for the SSD element
at x0, for which receiver position x0 serves as a stationary phase point on the SSD,
defined by

2.5D WFS ref-

erence position
kP (x0) = kG(xref(x0)− x0). (4.18)

By substituting the explicit expression for the Green’s function’s wavenumber
(kG(x) = k x

|x| ) into (4.18), the set of positions for which a given x0 serves as the
stationary point reads as

xref(x0) = x0 + k̂P (x0)|xref(x0)− x0|, (4.19)

with k̂P (x0) denoting the normalized local wavenumber vector, being the unit vector
into the target field’s local propagation direction. The equation describes straight lines
passing through x0 into the direction of the local wavenumber vector of the target
sound field kP (x0). Along this straight line the virtual wavefront matches the actual
SSD element’s wavefront inside the listening region. Therefore, each SSD element
dominates the synthesized field towards the direction of the virtual field’s local
propagation direction measured at the SSD position. The actual reference position
xref(x0) can be freely/uniquely chosen along this line for a given SSD element at
x0. Within the validity of the SPA, driving function (4.14) ensures amplitude correct
synthesis in the reference position.

In practical applications, the set of the reference positions for all secondary sources
form a prescribed continuous reference curve Cref . The reference position for a given
SSD element is found at the intersection of the straight line described by (4.19) and
the reference curve. The reference curve must be a smooth convex curve inside
the listening region, ensuring that each reference point has a unique stationary SSD
element. Once the reference position xref(x0) ∈ Cref is known for each SSD element the
WFS driving function (4.14) can be evaluated. Referencing the WFS driving function is
therefore achieved by prescribing a unique reference point for each SSD element based
on the SPA, so that the set of these reference points form the continuous reference
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x0

xref(x0)kP(x0)

reference curve

Figure 4.4. Location of the reference position for an SSD element positioned at x0. Due to
the phase characteristics of the Green’s function, the reference position xref(x0) for an arbitrary
SSD element can be found at the intersection of the reference curve and the line emerging from
x0 pointing into the local wavenumber vector of the virtual field kP (x0). The location of the
arbitrarily chosen reference curve is denoted by dashed black line with solid line indicating
the positions for which a stationary SSD position can be found. Amplitude correct synthesis
may be only achieved along this part of the reference curve.

curve. The resulting driving function will result in amplitude correct synthesis over
the reference curve within the validity of the integral formulation (4.13).

The location of the reference position for a given SSD element is illustrated in Figure
4.4 for the case of a virtual point source. Once the reference position is expressed for
each SSD element, the driving function can be evaluated.

In order to obtain a physical interpretation of the structure of the resulting driving
function, it is expressed in terms of the vertical principal radii of the virtual field and
the Green’s function, yielding

Detailed 2.5D

WFS driving

function

D(x0,ω)=

√
2πρGv (xref(x0)− x0)

jk︸ ︷︷ ︸
SSD

compensation

√
ρPv (x0)

ρPv (x0) + ρGv (xref(x0)− x0)︸ ︷︷ ︸
virtual source
compensation =

√
ρPv (x0)

ρPv (xref (x0))

2w(x0)jkPn (x0)P (x0, ω)︸ ︷︷ ︸
2D high freq.

driving function

.

(4.20)
Again, ρPv and ρGv denote the principal radii of the virtual field and the Green’s function
along the vertical direction, with the absolute value operation in (4.15) omitted due to
their positive sign for diverging virtual fields. The Green’s function’s principal radius
is given simply as ρGv (xref(x0)− x0) = |xref(x0)− x0| and the virtual field’s principal
radius ρPv (xref(x0)) is expressed by applying (B.25).

The terms in the driving function can be identified as compensation factors for the
dimensionality mismatch emerging in the 2.5D Kirchhoff integral: Expressing the Kirch-
hoff approximation (3.22) for an entirely 2D problem, an arbitrary 2D sound field may
be described in the area of investigation by a contour integral. The enclosing boundary
can be interpreted as the continuous distribution of two-dimensional secondary point
sources described by the 2D Green’s function, representing infinite vertical line sources
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in three dimensions. The 2D Green’s function is weighted by the normal derivative
of the sound field, taken on the SSD contour. Application of the 2.5D WFS driving
function aims to describe a 3D sound field in terms of a 2D contour integral with the
kernel being the 3D Green’s function, weighted by the normal derivative of the 3D
sound field. This results in a dimensionality mismatch for both the virtual field and
the secondary source elements. The interpretation of the compensation factors in the
driving function is then the following:

• Term
√

2π|xref(x0)−x0|
jk is the compensation factor for the secondary source dimen-

sionality mismatch. Comparison with (3.55) indicates that the compensation factor
approximates the frequency response and attenuation factor of the 2D Green’s
function in terms of the 3D Green’s function. Obviously, the attenuation factors
can be matched only at a particular distance from a given SSD element, chosen to
be at the reference position xref(x0). On the other hand, the frequency response
compensation term ensures the flat frequency response of the SSD: a 2D contour
of point sources exhibits the frequency response of ∼ 1√

jk
, which along with the

normal derivative term would result in a transfer function of ∼
√

jk that has to
be compensated for.

• The virtual source compensation factor resolves the virtual source dimensionality
mismatch, correcting the virtual source attenuation factor from a 2D to a 3D one.
It is assumed that the general relationship between a 2D and a 3D sound field,
generated by the same planar source distribution at z = 0 reads as

P3D(x, ω) =

√
jk
2π

P2D(x, ω)√
ρPv (x)

, (4.21)

at x = [x, y, 0]T. This is a straightforward generalization of (3.55) towards
general sound fields. Expressing a 2D sound field at xref(x0) in terms of the 2D
Kirchhoff integral and rewriting in terms of the corresponding 3D sound fields
by applying (4.21) leads to the virtual source correction factor under discussion.
A detailed explanation for the virtual source dimensionality compensation is
given for the special case of a virtual point source in [VF12].

Optimizing the amplitude of synthesis, therefore, can be interpreted physically as
setting both the SSD and virtual source attenuation-correction factors for each SSD
element to be amplitude correct on the reference curve by prescribing a frequency
independent correction term.

The introduced driving function is capable of the synthesis of arbitrary sound
fields applying arbitrary shaped convex SSDs, referencing the synthesis to an arbitrary,
convex reference curve. The result of such a general 2.5D WFS scenario is presented
in Figure 4.5. The image depicting the synthesis error verifies that on those part of the
reference curve for which a stationary SSD element can be found amplitude correct
synthesis is ensured, as the error exhibits a minimum.

If a parametrization of the SSD contour and the reference curve along with an
analytical virtual source model is known, the reference position can be expressed
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(a)

(b)

Figure 4.5. 2.5D synthesis of a
3D point source located at xs =
[0.4, 2.5, 0]T, radiating at f0 =
1.5 kHz. Figure (a) depicts the
real part of the synthesized field,
(b) presents the absolute error of
synthesis in a logarithmic scale.
The reference curve was defined
by simply rescaling the SSD con-
tour, however, an arbitrary con-
vex reference contour could be
chosen. The active arc of the SSD
is denoted by the solid, the in-
active part with dotted by black
line. The reference position on
the reference curve for each ac-
tive SSD element is evaluated nu-
merically. In the present geome-
try there exist secondary sources
for which no unique reference
position can be found. In order to
ensure a smooth driving function
and avoid truncation artifacts for
these SSD positions the ampli-
tude correction term is extrapo-
lated by nearest-neighbor.

analytically, resulting in closed form driving function specific to the SSD and the refer-
encing contour. The following two examples demonstrate the analytical application of
the presented, generalized driving function.

Application example #1: Synthesis of a 3D point source
applying a linear SSD

As a first example, assume an infinite linear SSD located at x0 = [x0, 0, 0]T.
The reference contour is set to be an infinite line parallel to the SSD, located at
xref = [x0, yref , 0]T. This geometry has a distinctive role in the field of sound field
synthesis, being the arrangement for which traditional WFS was first formulated
[Ber88; Ber+93; Sta97; Ver97]. In this arrangement the driving function may be derived
from the vertical SPA of the Neumann Rayleigh integral, which describes a sound
field precisely in terms of a planar single layer potential. Therefore, application of a
linear SSD involves the least approximations, avoiding errors present in the Kirchhoff
approximation. Furthermore, choosing a reference line parallel to the SSD ensures
the existence of unique reference position for each SSD element, therefore, amplitude
correct synthesis may be ensured over the entire reference line. Finally, the explicit
solution can be found directly for this special geometry as described in the following
section.

The evaluation of the amplitude correction factor (4.15) requires the definition
of the distance between the reference position and the corresponding secondary
sources by solving equation (4.18) for |xref(x0) − x0|, termed the reference distance.
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(a) (b)

Figure 4.6. 2.5D synthesis of a 3D point source located at xs = [0, −2, 0]T, radiating at
f0 = kHz with the reference line set at yref = 1.5 m. Figure (a) depicts the real part of
the synthesized field, (b) shows the error of synthesis. Based on the equivalent scattering
interpretation of the synthesis the discrepancy between the synthesized field and the virtual
field at y < 0 can be interpreted as the field of a point source reflected from a planar scatterer
surface. Due to the problem symmetry the scattered field is given amplitude correctly along
y = −yref .

The terminology indicates that it denotes the distance measured from the individual
secondary sources at which the synthesis is optimized.

In the arrangement under discussion both x0 and xref are lying along infinite
parallel lines, with the y-coordinates of both curves fixed to constant, thus for the
second coordinates of equation (4.18)

yref = y0 + k̂Py (x0)|xref(x0)− x0| (4.22)

must hold. With y0 = 0 the above equation yields the reference distance for the present
geometry

|xref(x0)− x0| =
yref

k̂Py (x0)
= ρGv (xref(x)− x0). (4.23)

Substitution into (4.20) yields the linear 2.5D WFS driving function, ensuring am-
plitude correct synthesis of an arbitrary sound field on a reference line, reading as

D(x0, ω) =
√

8π
jk

√
ρPv (x0)

√
yref

yref + ρPv (x0)k̂Py (x0)
jkPy (x0)P (x0, ω). (4.24)

Finally, expressing the pressure field and the normalized local wavenumber vector
of the virtual point source results in the virtual source-SSD shape-receiver shape
specific driving function

Linear WFS

point source

driv. fun.

D(x0, ω) = − 1
4π

√
8π
jk

√
yref

yref − ys
jkys

e−jk|x0−xs|

|x0 − xs|
3
2
. (4.25)

This result is equivalent with the traditional WFS driving function of a point source
[Ver97, (2.27)], [Sta97, (3.16)&(3.17)], and furthermore identical to the farfield/high
frequency approximated explicit solution presented in the next section [SA10, (25)],
[Sch16, Ch. 2.3]. The result of synthesis is depicted in Figure 4.6, confirming that by
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applying the derived driving function amplitude correct synthesis is ensured along
the reference line.

Taking the temporal inverse Fourier transform of the driving function weighted by
S(ω) yields the temporal driving function for a virtual point source with the source
time history of s(t). Exploiting the shift theorem and the associativity of convolution
yields the temporal driving function

Linear time

domain point

source driv.

fun.

d(x0, t) = −
√

1
2πc

√
yref

yref − ys
ys
s.t(t−

|x0−xs|
c )

|x0 − xs|
3
2

, (4.26)

where s.t(t) = h(t) ∗t s(t), with ∗t denoting convolution in the time domain. The
source time history is pre-equalized with a filter, exhibiting the frequency response
of H(ω) =

√
jω, being a half-differentiator. The filter compensates the frequency

response of the 2D SSD contour as the part of the secondary source compensation
factor and is therefore always present in the 2.5D diving function for an arbitrary
target sound field and for an arbitrary SSD shape. The impulse response of the SSD
compensation filter can be expressed by differentiating the half-integrator’s impulse
response, as given in [DB83]

h(t) = δ(t)√
πt
− 1

2
θ(t)
t3/2

, (4.27)

where θ(t) is the Heaviside step function. Practical implementation of this prefilter
applying IIR filters is discussed in details in [Sch+13], while in [Sch16, Sec.s 2.5] the
ideal FIR filter coefficients are given analytically.

Application example #2: Synthesis of a plane wave applying a
circular SSD

As a second example, the synthesis of a plane wave applying a circular SSD
centered at the origin with the radius of RSSD is presented. The synthesis is referenced
to a concentric circle inside the SSD with the radius of Rref . Again, the system of
equations describing the reference distance for each SSD element is given by

xref(x0) = x0 + k̂P (x0)|xref(x0)− x0|, (4.28)

|xref(x0)| = Rref . (4.29)

The reference distance can be obtained by expressing the absolute value of (4.28).
Exploiting that |x0| = RSSD, |k̂P (x0)| = 1 and

〈
k̂P (x0) · x0

〉
= RSSD k̂

P
r yields the

reference distance

|xref(x0)− x0| = −RSSD

k̂Pr (x0)±

√
k̂Pr (x0)2 +

(
Rref
RSSD

)2
− 1

 , (4.30)

with k̂Pr (x0) denoting the radial component of the normalized wavenumber vector
and ± corresponds to the closer or the further arc of the reference circle to the actual
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(a) (b)

Figure 4.7. 2.5D synthesis of a 2D plane wave with the angular frequency f0 = 1 kHz
propagating into the direction kPW = [kPW

x , 0, 0]T. The SSD is a circular one, with the radius
of RSSD = 2 m. The reference curve is a circle with the radius of Rref = 1.5 m. Figure (a)
depicts the real part of the synthesized field, (b) shows the error of synthesis.

SSD position, respectively. Applying this reference distance in the general 2.5D WFS
driving function (4.14) allows the synthesis of an arbitrary sound field referenced on a
reference circle inside the SSD.

Assume the special case of a virtual 2D plane wave, propagating parallel to the
synthesis plane described by the wavenumber vector kPW = [kPW

x , kPW
y , 0]T. For a

2D sound field invariant along the vertical dimension the vertical wavefront curvature
is zero (φ

′′P
zz (x0) = 0) and the referencing function is the reference distance itself. The

driving function for the synthesis of a 2D plane wave is then given as

D(x0, ω) = −w(x0)
√

8π
jk

√
|xref(x0)− x0| jkPW

r (x0) e−j〈kPW·x0〉, (4.31)

with the reference distance given by (4.30). As an application of this driving function
a simple example is depicted in Figure 4.7 for the synthesis of a harmonic plane wave.

In order to find the driving signal for the synthesis of a plane wave carrying a
broadband excitation time history s(t), (4.31) is inverse Fourier transformed weighted
by the excitation spectrum, resulting in

d(x0, t) = −w(x0)
√

8π
c
|xref(x0)− x0| k̂PW

r (x0)h(t) ∗t s(t−
1
c

〈
k̂PW · x0

〉
), (4.32)

where h(t) = F−1
ω {
√

jω} is the SSD compensation filter, performing half-derivation
on the time history and k̂PW = [k̂PW

x , k̂PW
y , 0]T is a unit vector pointing into the plane

wave propagation direction.

Note that for the special case when RSSD → 0 the explicit driving function is also
available [AS08a; AS09b; AS09a], thus the presented driving function allows the com-
parison of the explicit and implicit methods. In this particular case the reference dis-
tance is simply given by |xref(x0)− x0| = −RSSD (cos (ϕ− ϕPW)− j| sin (ϕ− ϕPW) |),
with ϕ and ϕPW being the polar angles of the SSD element positions and the plane
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wave wavenumber vector. The resulting driving function is an asymptotic approxima-
tion of the NFC-HOA method, ensuring amplitude correct synthesis in the center of
the SSD.

4.2 Explicit solution: Spectral Division Method

The explicit solution for the general sound field synthesis problem aims at the direct
solution of the inverse problems, described by integral equations (4.1) and (4.2).

Generally speaking, the explicit methodology utilizes compact operator theory
by exploiting that integral (4.1) constitutes a compact Fredholm operator with the
kernel being the Green’s function [MF53; Ahr12]. Such an operator and the involved
acoustic fields measured on a control surface can be expanded into the series of
orthogonal eigenfunctions of the wave equation, forming a complete basis of the
required solution. The inverse problem can be straightforwardly solved for the driving
function expansion coefficients by a comparison of the corresponding eigenvalues, as
long as none of the expansion coefficients of the operator kernel is zero (otherwise the
problem is termed ill-conditioned). Finally, the explicit analytical solution is found for
the driving function as an infinite sum of the weighted basis functions. The method
is often referred to as mode-matching solution since the eigenfunctions of a given
geometry are termed the modes. This solution is unique for general enclosures and also
for the (strictly speaking) non-enclosing planar case as shown in [ZS13] and [Faz10]. In
the latter case the compact operator degenerates to the continuous eigenvalue domain
instead of countable eigenvalues as it will be presented in the following.

The determination of the required eigenfunctions for a general geometry is a tough
challenge. For spherical and circular geometries spherical and circular harmonics
form the demanded basis functions. For a rigorous treatment for mode-matching
approaches using spherical and circular SSDs refer to [AS08a; AS09b; AS09a; Zot09;
Ahr10; Ahr12; SS14] and [Koy+14; Koy14] for the cylindrical solution. In the present
thesis only planar and linear geometries are investigated in details.

4.2.1 3D Spectral Division Method

Assume an infinite planar SSD located at x0 = [x0, 0, z0]T, degenerated from the
geometry introduced for the Rayleigh integrals in Chapter 2 as shown in Figure 2.7.
The half-space of the synthesis is chosen to be at y > 0, therefore all the virtual sources
are assumed to be located at y < 0. The synthesized field in this geometry is given by
a continuous convolution along the SSD plane

P (x, ω) =
∫∫ ∞
−∞

D(x0, z0, ω)G(x−x0, y, z−z0, ω)dx0dz0 = D(x, z, ω)∗x,zG(x, y, z, ω).
(4.33)

Here, G(x, y, z, ω) denotes the sound field of a secondary source element placed at the
origin and ∗x,z denotes convolution along the x− and z-dimensions.
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For this geometry the orthogonal basis is given by the continuous set of exponen-
tials and the decomposition of the involved quantities is given by a double Fourier
transform [AW05; Ahr12; SS14], with the physical interpretation of a plane wave
decomposition as discussed in Section 2.2.2. Applying the convolution theorem to the
angular spectrum representation, the convolution is transformed into a multiplication
[Gir+01]:

P̃ (kx, y, kz, ω) = D̃(kx, kz, ω) · G̃(kx, y, kz, ω). (4.34)

The expansion coefficients are, therefore, obtained by a comparison of the spectral
coefficients and the driving function in the wavenumber and the spatial domain takes
the form:

D̃(kx, kz, ω) = P̃ (kx, y, kz, ω)
G̃(kx, y, kz, ω)

= Fx,z {P (x, ω)}
Fx,z {G(x, ω)} , (4.35)

3D SDM

driving fun.
D(x0, z0, ω) = 1

4π2

∫∫ ∞
−∞

P̃ (kx, y, kz, ω)
G̃(kx, y, kz, ω)

e−j(kxx0+kzz0) dkx dkz, (4.36)

respectively. Since the driving function spectrum is obtained by a division in the
spectral domain, the approach is termed the Spectral Division Method [AS10c; AS11a;
AS10a; AS12].

Substituting the kx − kz representation of the 3D Green’s function given by (3.62)
the driving function (4.36) reads as

D(x0, z0, ω) = 1
4π2

∫∫ ∞
−∞

2jky
P̃ (kx, y, kz, ω)

e−jkyy e−j(kxx0+kzz0) dkx dkz. (4.37)

with ky defined by (2.28). Expressing the target field spectrum by extrapolating from
the plane y = 0 according to (2.30)—i.e. as P̃ (kx, y, kz, ω) = P̃ (kx, 0, kz, ω)e−jkyy—
the exponential pressure propagators cancel out and the driving function becomes
independent from the y-coordinate. The driving function in the wavenumber domain
therefore reads as

D̃(kx, kz, ω) = 2jkyP̃ (kx, 0, kz, ω) = −2 ∂

∂y
P̃ (kx, y, kz, ω)

∣∣∣∣
y=0

. (4.38)

Here it was exploited that based on (2.32) multiplication by jky represents differentia-
tion along the y-dimension. Straightforwardly, the explicit expression of the driving
function in the spatial domain is obtained by the corresponding inverse Fourier trans-
form according to (4.36):

D(x0, z0, ω) = −2 ∂

∂y
P (x, ω)

∣∣∣∣
y=0

. (4.39)

The planar explicit driving function is thus equivalent to the implicit solution, in a
planar geometry provided by the Rayleigh integral. The coincidence of the explicit
and implicit driving functions is a consequence of the uniqueness of the problem in the
present geometry. Thereby it is also indirectly proven that the wavefield extrapolation
equations are the spectral domain representations of the Rayleigh integrals.

However, an important difference between the implicit and explicit solution exists:
Until (4.36) the present method does not pose any constraints on the actual form of
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(a) (b)

Figure 4.8. Synthesis of a virtual point source using a planar SSD applying the SDM driving
function. The SSD is located at x0 = [x0, 0, z0]T denoted by solid black line. The virtual
source is located at xs = [0, −2, 0]T, oscillating at f0 = 1 kHz. The figures depict the real part
of the synthesized field (a) and the deviation from the target sound field (b) measured at z = 0.

the Green’s function. Theoretically, an arbitrary transfer function may be assigned to
the secondary sources. As long the spectrum of the transfer function does not exhibit
zeros unique driving function may be derived applying the explicit methodology.

If the secondary sources are 3D point sources the following physical interpretation
can be assigned to the explicit solution: As it was stated in Section 3.3.3 a planar
distribution of point sources with a harmonic spatial distribution (described by kx, kz)
radiate plane waves with the same wavenumber components and with a direction
dependent intensity of 1

2jky (c.f. (3.62), degenerating at kx = kz = 0 to the 1D Green’s
function). The driving function (4.38) thus compensates the planar SSD’s response for
the synthesis of a single plane wave component. Finally, the explicit driving function
for an arbitrary virtual field is found as the sum of the individual plane wave driving
functions weighted by the virtual field’ plane wave expansion coefficients.

Application example: Synthesis of a 3D point source using a
planar SSD

The application of the planar explicit solution is presented via the synthesis of a
3D virtual point source positioned behind the SSD at xs = [xs, ys, zs]T The SSD is
located at x0 = [x0, 0, z0]T (ys < 0). The wavenumber domain representation of the
driving function is obtained by substituting the angular spectrum of a 3D point source
into (4.35) with applying the Fourier transform shift theorem1

D̃(kx, kz, ω) =
− j

2
e−jky(y−ys)

ky
ej(kxxs+kzzs)

− j
2e−jkyy/ky

= e−jkyysej(kxxs+kzzs). (4.40)

The double inverse Fourier transform can be carried out analytically by taking the y-
derivative of the Weyl’s integral representation of the Green’s function (being basically

1This is the corrected version of [SS14, eq. (A11)].
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the angular spectrum representation of a point source, as presented in [Lal68] or
[Wil99, (2.65)]):

∂

∂y
G(x0 − xs, ω) = 1

4π2

∫∫ ∞
−∞
−1

2e−jky(y−ys)ej(kxxs+kzzs) e−j(kxx0+kzz0) dkx dkz. (4.41)

Comparing (4.40) and (4.41) it is revealed that the driving function in the spatial
domain is given by

D(x0, z0, ω) = −2 ∂
∂y

G(x0 − xs, ω)|y=0 = − ys2π

( 1
|x0 − xs|

+ jk
) e−jk|x0−xs|

|x0 − xs|2
, (4.42)

which is in agreement with equation (4.39).

The result of synthesizing the steady-state field of a point source is illustrated in
Figure 4.8. In the target half space y > 0 perfect synthesis is achieved, as it is indicated
in Figure 4.8 (b) depicting the discrepancy between the synthesized and the target
sound field. Obviously, the figure also presents the result of 3D planar WFS of a
spherical wave without applying the high frequency gradient approximation.

4.2.2 2.5D Spectral Division Method

As the geometry for the derivation of the 2.5D explicit driving function, assume an
infinite linear distribution of secondary point sources located at x0 = [x0, 0, 0]T. The
synthesized field in this arrangement reads as

P (x, y, z, ω) =
∫ ∞
−∞

D(x0, ω)G(x− x0, y, z, ω) dx0. (4.43)

Similarly to the planar case the basis functions for a linear SSD are given by expo-
nentials: By realizing that the above equation is a convolution along the x-axis, the
convolution can be transformed into a multiplication by means of a spatial forward
Fourier transform

P̃ (kx, y, z, ω) = D̃(kx, ω) · G̃(kx, y, z, ω). (4.44)

The driving function spectrum is then obtained as a spectral ratio

D̃(kx, ω) = P̃ (kx, y, z, ω)
G̃(kx, y, z, ω)

= Fx {P (x, ω)}
Fx {G(x, ω)} , (4.45)

and the frequency domain driving function is obtained as the spatial inverse Fourier
transform with respect to kx

D(x0, ω) = 1
2π

∫ ∞
−∞

P̃ (kx, y, z, ω)
G̃(kx, y, z, ω)

e−jkxx0dkx. (4.46)

Again, theoretically the secondary source transfer function may describe the field of
an arbitrary sound source, as long as it does not exhibit zeros in order to keep the
problem well-conditioned.
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Unlike the planar case the present driving function depends on the listener po-
sition: Equation (4.46) may be solved only for positions on the surface of a cylinder
with a fixed radius of d =

√
y2 + z2 [Ahr10, p. 60.]. This is a direct consequence

of the fact that the pressure of an arbitrary 3D sound field measured on the SSD
does not determine completely the pressure on the reference line—and vice versa—.
Furthermore, an infinite line source—i.e. the SSD—can only radiate wavefronts with
cylindrical symmetry as it was discussed in details in Section 3.3.3. Phase correct
synthesis, therefore, can be achieved only in a plane containing the SSD in which the
radial wavenumber of the synthesized field and the target field coincide. Amplitude
correct synthesis is ensured in this plane at a distance dref =

√
y2 + z2, for which the

driving function is calculated.

For practical applications the plane of synthesis is chosen to be the horizontal plane
z = 0, requiring that for the virtual field kz(x, y, 0) = 0 holds. The driving function
thus reads as

2.5D SDM

driving func-

tion

D(x0, ω) = 1
2π

∫ ∞
−∞

P̃ (kx, yref , 0, ω)
G̃(kx, yref , 0, ω)

e−jkxx0 dkx. (4.47)

In this geometry amplitude correct synthesis is restricted to the reference line by setting
y = yref .

Similarly to the 3D case, the following physical interpretation can be assigned to
the 2.5D explicit solution: Given an infinite distribution of point sources along the
x-axis with a harmonic spatial distribution described by kx, the radiated sound field
is given by∫ ∞
−∞

G(x− x0, y, z, ω) ejkxx0 dx0 = G̃(kx, y, z, ω) e−jkxx (4.48)

= − j
4H

(2)
0

√(ω
c

)2
− k2

x

√
y2 + z2

 e−jkxx, (4.49)

at x = 0 resulting in the 2D Green’s function, as discussed in Section 3.3.3. Such a
source radiates cylindrical symmetric sound fields with cylindrical wavefronts as
depicted in Figure (3.10) (a). Along a fixed reference line at z = 0 the SSD repro-
duces a harmonic spatial distribution e−jkxx, attenuated approximately by 1√

ky |yref |
,

corresponding to attenuating plane waves with kz = 0. Therefore, the wavenumber
domain driving function ensures the compensation of the linear SSD response for the
synthesis of a single plane wave component propagating in the plane of synthesis.
Obviously, for sound fields that can be expanded into the series of plane waves with
kz = 0 the driving function is obtained as the weighted sum of the plane wave driving
function, resulting in (4.47).

It is worth noting that the analytic Fourier transform coefficients of the target
sound field are available only for limited simple virtual source models. Even in
these cases the inverse transform of the driving function can rarely be evaluated
analytically, therefore numerical transform is needed. For a practical and optimized
implementation of the SDM for an arbitrary target sound field refer to [Ahr+13].
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(a) (b)

Figure 4.9. Synthesis of a virtual point source employing a linear SSD applying the 2.5D
SDM driving function. The SSD is located at x0 = [x0, 0, 0]T, denoted by a solid black line.
The virtual source is located at xs = [0, −2, 0]T oscillating at f0 = 1 kHz. The reference line is
at yref = 1.5 m. The figure depicts the synthesized field at the synthesis plane (z = 0) with (a)
depicting the real part of the synthesized field, (b) depicting the error of synthesis.

Application example: Synthesis of a 3D point source using a
linear SSD

As an example for the 2.5D SDM, the reproduction of a 3D point source is presented.
The virtual source is located at xs = [xs, ys, 0]T, with ys < 0. The SSD is a linear
set of 3D point sources located along x0 = [x0, 0, 0]T. The explicit driving function
for a linear SSD is given by (4.47). Substituting the 1D spectra of the virtual and the
secondary point sources along with applying the Fourier shift theorem the driving
function is given in the propagation region as

D̃(kx, ω) =
− j

4H
(2)
0

(√(
ω
c

)2 − k2
x|yref − ys|

)
ejkxxs

− j
4H

(2)
0

(√(
ω
c

)2 − k2
x|yref |

) , (4.50)

and the spatial inverse Fourier transform yields the spatial domain driving function,
reading as

Linear SDM

point source

driv. fun.

D(x0, ω) = 1
2π

∫ ∞
−∞

H
(2)
0

(√(
ω
c

)2 − k2
x|yref − ys|

)
H

(2)
0

(√(
ω
c

)2 − k2
x|yref |

) e−jkx(x0−xs) dkx. (4.51)

The synthesized field applying this driving function is depicted in 4.9 (a). As it can be
seen from Figure (b) displaying the discrepancy between the synthesized field and the
target field, application of the explicit driving function ensures perfect synthesis on
the reference line. In other points amplitude errors are present.

As discussed in [SA10], the driving function spectrum can be simplified by apply-
ing the large-argument/asymptotic approximation of the Hankel function, given by
(3.54). The asymptotic form gives a fair approximation for (4.51) if ky|yref | � 1 holds,
valid in the farfield of the SSD in front of the virtual source where ky � kx dominates
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the inverse transform. By applying the Hankel function’s approximation the inverse
transform can be carried out analytically, resulting in

D(x0, ω) ≈ 1
2

√
yref

yref − ys
jω
c

ys
|x0 − xs|

H
(2)
1

(
ω

c
|x0 − xs|

)
. (4.52)

A further large-argument approximation of the first order Hankel function returns
the 2.5D WFS driving function for a 3D point source referencing the synthesis on a
reference line, given by (4.25). This indicates that the implicit solution constitutes a
high frequency approximation for the explicit solution in case of a virtual point source.
The equivalence of the SDM and 2.5D WFS with optimizing the synthesis of a virtual
plane wave on a reference line was further discussed in [Fir+17; SS16; Sch16]. In the
following the general relation of the explicit solution and 2.5D WFS is investigated.

4.2.3 Explicit solution in the spatial domain

The determination of a single spectral coefficient for the explicit solution requires
the knowledge of the entire target field over the boundary surface in order to perform
the spectral decomposition. The explicit solution is therefore often termed a global
solution. In contrary, the implicit solution requires the value of the local field variables
only at the actual SSD position at which the driving function is to be expressed. The
implicit solution is thus referred to as a local solution. In the following it is presented
how the global solution can be approximated asymptotically by the application of the
stationary phase method, resulting in an alternative local solution.

As discussed in Section 3.3.3 the stationary phase approximation allows the evalua-
tion of forward and inverse Fourier integrals around stationary positions in the spatial
and spectral domain. Therefore, it may be employed in order to give an approximate
formulation for the 2.5D explicit driving function merely in the spatial domain.

The complete derivation is presented in details in Appendix D.1. Here only the
result of the approximation is discussed. The derivation consists of two main steps:

1. First the spectral driving function is expressed in an asymptotic form, resulting
in (D.7). The calculus can be done by assuming that the involved spectra are
obtained via the SPA of the corresponding forward Fourier transforms. This
step links the spectral coefficients to stationary positions on the reference line
(see (D.4)).

2. It is followed by the inverse Fourier transform of the asymptotic spectral driving
function. The evaluation of the inverse transform with the SPA relates the
forward transform stationary positions to positions along the SSD.

As the result of the derivation for a linear SSD located along x0 = [x0, 0, 0]T the
asymptotic SDM driving function, expressed merely in the spatial domain reads as

2.5D explicit

driv. fun.
D(x0, ω) ≈

√√√√ |φG′′xx (xref(x0)− x0, ω)|2

|φP ′′xx (xref(x0), ω)− φG′′xx (xref(x0)− x0, ω)|

√
j

2π
P (xref(x0), ω)

G(xref(x0)− x0, ω) .

(4.53)
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x

y

x0

kP (xref(x0))

xref(x0)

Figure 4.10. Illustration of the
stationary position xref(x0) for
the evaluation of the spatial ex-
plicit driving function. For a
given SSD position x0 the ref-
erence (stationary) position is
found on a given reference line
where the virtual field propaga-
tion direction coincides with that
of the SSD element under dis-
cussion. Under the validity of
the Kirchhoff approximation this
principle may be extended to-
wards arbitrary SSD and refer-
ence contours.

In the driving function xref(x0) = [xref(x0), y, 0]T is the reference position for the SSD
element at x0, measured along a reference line, satisfying the relation

2.5D SDM ref-

erence position
kP (xref(x0)) = kG(xref(x0)− x0). (4.54)

Hence, in the explicit driving function for a given SSD coordinate x0 the reference
point xref is found on the reference line where the local propagation direction of the
target field P coincides with that of a point source positioned at [x0, 0, 0]T. For an
illustration refer to Figure 4.10.

The driving function (4.53) states that an arbitrary sound field may be synthe-
sized by finding the positions along the reference line, where the propagation direc-
tion/wavefront of the target field matches the field of the actual secondary sources.
In this stationary position the driving function is obtained by the ratio of the target
field and the actual SSD element, corrected by the factor, containing the wavefront
radii/curvatures at the same position. Therefore the explicit, global solution can be
approximated by local wavefront matching.

One important fact is pointed out here: although having derived the above driving
function in terms of a forward and an inverse spatial Fourier transform along a straight
line, there is no restriction on the y-coordinate of the stationary point in (4.53) due to
the local approximations involved: the y-coordinate might be x0-dependent. Hence,
an arbitrary referencing curve xref(x0) may be defined and the driving function can be
evaluated, once the stationary positions satisfying kPx (xref(x0)) = kGx (xref(x0)−x0) are
found along this curve. Evaluating the driving function in the stationary positions will
result in amplitude correct synthesis along the reference curve. Furthermore, within
the validity of the Kirchhoff approximation the SSD does not necessarily need to be
linear: the spatial explicit driving function can be applied using an arbitrary shaped
SSD contour. In that case (4.55) has to be evaluated with k̂Py (xref(x0))→ k̂Pn (xref(x0)),
i.e. with the wavenumber component along the normal direction of the stationary
SSD element.
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With these considerations and by expressing the second derivatives in terms of the
principal radii according to (B.6) the explicit driving function takes the final form

Detailed 2.5D

explicit driv.

fun.

D(x0, ω)=
√

jk
2πρGh (xref(x0)−x0)︸ ︷︷ ︸

SSD
compensation

√
ρPh (xref(x0))

ρPh (xref(x0))−ρGh (xref(x0)−x0)︸ ︷︷ ︸
virtual source
compensation =

√
ρPh (xref (x0))

ρPh (x0)

k̂Pn (xref(x0))P (xref(x0), ω)
G(xref(x0)− x0, ω) ,

(4.55)

with x0 = [x0, y0, 0]T and xref(x0) = [xref(x0), yref(x0), 0]T now denoting arbitrary
SSD and reference contours.

The formulation implies the fact that similarly to the implicit solution, the ex-
plicit driving function also requires the derivative of the target field measured on
the reference position. The driving function contains a virtual source compensation
factor, compensating for the relative amplitude change of the virtual sound field
between the SSD and the reference curve in terms of its horizontal principal radius.
Furthermore, the transfer function of the SSD contour—or more specifically the sta-
tionary SSD elements—is compensated regarding both its frequency response, being a
half-integrator, and its attenuation factor.

Application example: Synthesis of a 3D point source using a
linear SSD

In the following a simple example is presented in order to demonstrate the validity
of the spatial SDM driving function for the synthesis of a virtual 3D point source.
For the synthesis a linear secondary source distribution is applied, located at x0 =
[x0, 0, 0]T. The virtual source is positioned at xs = [xs, ys, 0]T with ys < 0 and
the reference curve chosen to be a circle around the virtual point source with the
radius of Rref . Along with the equation describing the reference curve xref(x0) =
[xref(x0), yref(x0), 0]T the stationary points satisfy the following equations

kG(xref(x0)− xs) = kG(xref(x0)− x0), (4.56)

|xref − xs| = Rref . (4.57)

The solution for the equations is given by

xref(x0) = xs +Rref
x0 − xs
|x0 − xs|

. (4.58)

Substitution of the Green’s function into (4.55)—with the principal radii given by
Euclidean distances—yields the explicit driving function in the spatial domain for a
virtual point source

D(x0, ω) =
√

|xref − xs|
|xref − xs| − |xref − x0|

√
jk

2π|xref − x0|
k̂Gy (xref(x0)−xs)

G(xref(x0)− xs)
G(xref(x0)− x0)

(4.59)
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(a) (b)

Figure 4.11. 2.5D synthesis of a 3D point source located at xs = [0, −2, 0]T, radiating at
f0 = 1 kHz. The synthesis is referenced on a circle around the virtual source, with a radius
of Rref = 4 m. Figure (a) depicts the real part of the synthesized field, (b) shows the error of
synthesis.

Finally, substituting the reference position coordinates along the reference circle (4.58)
specifies the driving function, optimizing the synthesis on the reference circle

D(x0, ω) = −ys

√
Rref − |x0 − xs|

Rref

√
jk
2π

e−jk|x0−xs|

|x0 − xs|
3
2
. (4.60)

Investigating Figure 4.11 verifies that the synthesis is optimized on the prescribed
reference curve.

Although having derived the above driving function from the pressure measured
along the reference curve, (4.60) is already written merely in terms of the target field
measured at the secondary sources, equivalently to the WFS solution. In the following
this relation is generalized by expressing the explicit driving function for an arbitrary
target sound field, written in terms of the pressure measured along the SSD, revealing
the general relation of the implicit and explicit solutions.

4.3 Relation of implicit and explicit solutions

The explicit SFS driving function, given by (4.55), requires the knowledge of the
virtual sound field measured along the reference curve. The findings presented in
Section 3.3.2 established an asymptotical connection between the target field measured
along the SSD and along the reference curve. Expressing the explicit driving function
with this formulation allows the comparison of the implicit and explicit solutions.

In order to express the driving function merely in terms of the involved quantities
measured along the SSD, all the local wavenumber vector, the principal radii and
the pressure has to be defined along y = 0. For the local wavenumber vector this
relationship can be simply established: Assuming isotropic medium, the propagation
direction—and the local wavenumber vector—does not change along the propagation
path, thus kP (xref(x0)) = kP (x0) holds.

The change of the principal radii over the propagation path is given by (B.25),
stating that the principal radii of an arbitrary field increase linearly along the path of
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propagation. The relation between the target field measured at an arbitrary reference
position and measured along the SSD can be established by the asymptotic evaluation
of the Rayleigh integral, as given for a general wavefield by (3.39). However, both
relations were only formulated for an independent receiver position x in terms of a
dependent SSD position x∗0(x), related through

kP (x∗0(x)) = kG(x− x∗0(x)). (4.61)

Comparing this definition of the stationary points for the Rayleigh integral (4.61) and
the stationary SDM evaluation points (4.54), it is revealed that they describe stationary
point pairs. Hence, without the loss of generality both the principal radii and the
pressure field measured on the reference curve can be formulated with choosing the
SSD position x0 as an independent variable, resulting in

ρPh (xref(x0)) = ρPh (x0) + ρGh (xref(x0)− x0), (4.62)

and

P (xref(x0), ω) = 4π

√
ρPh (x0) · ρGh (xref(x0)− x0)
ρPh (x0) + ρGh (xref(x0)− x0

·√
ρPv (x0) · ρGv (xref(x0)− x0)
ρPv (x0) + ρGv (xref(x0)− x0)P (x0, ω)G(xref(x0)− x0, ω), (4.63)

where positions xref and x0 are related through (4.54) and where it was exploited that
the principal radii are given by the vertical and horizontal radii components in the
present geometry.

With substituting all these expressions into the spatial explicit driving function
(4.55) the driving function takes the form

D(x0, ω) = 2
√

2πρGv (xref(x0)− x0)
jk

√
ρPv (x0)

ρPv (x0) + ρGv (xref(x0)− x0) jkPy (x0)P (x0, ω),

(4.64)
or expressed in terms of the second phase derivatives

D(x0, ω) = 2
√

2π
j

1√
|φP ′′zz (x0) + φG′′zz (xref(x0)− x0)|

jkPy (x0)P (x0, ω). (4.65)

Comparison with (4.20) and (4.14) reveals that the asymptotic SDM driving function
exactly coincides the 2.5D WFS driving function when applied for a linear—and
within the validity of the Kirchhoff approximation for an arbitrary shaped—SSD. It is
therefore verified that under high frequency assumptions WFS is the asymptotic, local
approximation of the global explicit solution.

An important difference is, however, that the WFS driving function was obtained
from the 2.5D Neumann Rayleigh integral in an intuitive manner, by introducing
the reference curve concept with interchanging the role of the receiver position and
its stationary SSD position. On the other hand the explicit driving function (4.53)
inherently contains the horizontal SPA and the reference curve concept.
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(a) (b)

Figure 4.12. 2.5D synthesis of a 3D point source located at xs = [0, −2, 0]T, radiating at
f0 = 2 kHz (a), or emitting an impulse bandlimited to 15 kHz measured at t0 = 10 ms (b). The
synthesis is performed using a linear SSD with the secondary source spacing set to ∆x = 10 cm
with referencing the synthesis to a reference line with yref = 1.5 m.

4.4 Synthesis applying discrete secondary source
distribution

Throughout this dissertation synthesis applying the continuous distribution of sec-
ondary sources has been discussed so far. In practical applications, the SSD is realized
by a densely spaced loudspeaker ensemble with the source elements positioned at
discrete locations. The violation of the continuous SSD assumption leads to severe
artifacts in the synthesized field, commonly referred to as spatial aliasing phenomena.

An advantage of the explicit solution is that it allows the analytical description of
aliasing artifacts, which can be directly applied to the results of WFS as well, due to
the presented asymptotic equivalence of the two methods. As an application example
for the equivalence of the explicit and implicit solutions, this section discusses the
analysis and mitigation of spatial aliasing.

4.4.1 Description of spatial aliasing

Physically, spatial aliasing can be interpreted as follows: In case of steady-state anal-
ysis, above a certain temporal frequency—termed as the aliasing frequency—the field
of the individual secondary sources no longer form a continuous virtual wavefront
but rather the fields of the individual secondary sources create a complex interference
pattern. The aliased synthesis in case of a virtual harmonic point source is depicted
in Figure 4.12 (a). The actual value of the aliasing frequency highly depends on the
local propagation direction of the virtual wavefront: Waves propagating laterally to
the SSD are more likely to cause aliasing due to the rapid change of phase between
adjacent secondary sources.

In the foregoing only steady-state analysis of wavefields was discussed. However,
spatial aliasing gains a simple physical interpretation when time domain analysis
is considered. As discussed already, the 2.5D WFS driving function applies a half-
differentiation to the input signal in order to compensate for the infinite tail (i.e. the
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(a) (b)
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Figure 4.13. Illustration of the discretization process of the linear WFS driving function.
Figure (a) shows the spectrum of the continuous driving function D̃(kx, ω), Figure (b) shows
the spectrum of the discretized driving function D̃S(kx, ω). The secondary source distance is
set to ∆x = 10 cm, corresponding to the sampling wavenumber kx,s ≈ 63 rad/m and resulting
in the aliasing frequency ωa ≈ 2π · 1.7 krad/s.

half-integrator characteristics) of the secondary source response, emerging due to the
geometry of the SSD. Compensation is, therefore, performed by each SSD element
canceling out the fields of the adjacent secondary sources after the virtual wavefront
is emitted. In case of a discrete SSD, this cancellation can not be performed above
the aliasing frequency, hence in the synthesized field the spherical wavefields of the
individual secondary sources will be present. Spatial aliasing therefore manifests
in a series of echoes—each produced by one individual secondary source element—
following the intended virtual wavefront carrying the driving function time history
of the individual secondary sources, high-pass filtered above the aliasing frequency
[SA09b]. The aliasing echoes are illustrated in Figure 4.12 (b).

Note that in a given receiver position due to the short time interval between
the arrival of the high-pass filtered echo wavefronts, aliasing is perceived rather as
the coloration of the virtual sound field, than actual echoes/reverberation. Due to
the precedence effect the localization of the virtual field is only slightly degraded,
along with an increase in the perceived virtual source width [Ahr17].2 A detailed
investigation of the perception of spatial aliasing in WFS can be found in [Win+18b].
In the following, only an objective description of the phenomena is presented.

Recently it has been shown that by applying concepts introduced in the present the-
sis, spatial aliasing artifacts can be directly described in the spatial domain [Win+18a;
Win+19]. As an alternative, the following derivation approaches the problem by for-
mulating the discrete driving function and the synthesized field in the wavenumber
domain, as it was described in [Ahr12].

Assume the synthesis of an arbitrary sound field by applying a linear SSD located
at x0 = [x0, 0, 0]T. The synthesized field in the spatial and wavenumber domains is
given by (4.43) and (4.44) respectively for the case of a continuous SSD. Discretization

2This is true only for the synthesis of non-focused fields. In case of reproducing e.g. a focused point
source, spatial aliasing appears as pre-echoes, arriving before the intended virtual wavefront [SA09a].
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of the SSD can be modeled mathematically by the sampling of the driving function
with the sampling distance ∆x being the actual loudspeaker spacing:

DS(x0, ω) =
∞∑

η=−∞
D(x0, ω) δ (x− η∆x) . (4.66)

Hence, in this model the SSD consists of a discrete set of point sources, represented
by a series of Dirac deltas. Exploiting that the spectrum of a series of Dirac deltas is
a pulse train itself [Gir+01], and applying the sifting property of the Dirac delta, the
wavenumber content of the sampled driving function reads as

D̃S(kx, ω) = 1
∆x

∞∑
η=−∞

D̃

(
kx − η

2π
∆x, ω

)
. (4.67)

Thus, as the result of discretization the spectrum of the sampled driving function is
obtained as the infinite sum of the continuous spectrum, repeating on the multiples of
the sampling wavenumber kx,s = 2π

∆x . Mathematically, spatial aliasing originates from
the overlapping of the repetitive spectra.

The discretization process is illustrated in the kx − ω domain in Figure 4.13 via the
example of the sampling of the driving function for a virtual point source, given by
(4.25). From simple geometrical considerations it can be deduced that below a given
angular frequency—the spatial aliasing frequency, obtained from ωa

c = kx,s
2 = π

∆x—no
spectral overlapping occurs between the propagation regions. Since WFS theory
assumes farfield conditions, neglecting the evanescent components is feasible.3 Above
the aliasing frequency high wavenumber components (|kx| > kx,s/2) of the translated
spectra overlap into the propagation region of the baseband driving function spectrum.

The wavenumber content of the synthesized field by applying a discrete SSD can
be written as

P̃ (kx, y, z, ω) = D̃S(kx, ω) G̃(kx, y, z, ω) = 1
∆x

∞∑
η=−∞

D̃

(
kx − η

2π
∆x, ω

)
G̃(kx, y, z, ω).

(4.68)
The reproduction process is illustrated by Figure 4.14 with the involved quantities
measured along an arbitrary reference line, y � 0. As it is demonstrated in Figure
4.14 (b), the transfer function from the SSD to the reference line—i.e. the Green’s
function—acts as a spatial low-pass filter, restricting the reproduced field on a given
angular frequency to |kx| < ω/c, i.e. to the propagation region. Note that again,
nearfield investigation where the spectrum of the Green’s function would exhibit a
high evanescent contribution is out of the scope of the present thesis.

Figure 4.14 (c) reflects the fact that aliasing components present in the synthesized
field are described mathematically as additive, overlapping spectral components in the
propagation region of the baseband spectrum, described by (4.68) with |η| > 0. This
additive error manifests in additive the wavefronts superimposed on the non-aliased
ideal wavefront described by component η = 0 in (4.68).

3A more detailed analysis on the aliasing occurring in case of the reproduction of virtual point sources
is found in [SA09b], where aliasing components are classified based on whether propagating/evanes-
cent component overlaps into the propagating or evanescent region of the baseband.
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(a) (b)

(c)

Figure 4.14. Illustration of aliased synthesis of a virtual point source in the setup, used
for 4.13. Figure (a) shows the spectrum of the discretized driving function with overlapping
spectral repetition. Figure (b) shows the spectrum of the 3D Green’s function and Figure (c)
shows the spectrum of the synthesized field, both measured along the reference line.

As discussed earlier, components in the spectrum of the synthesized field corre-
spond to attenuating plane waves oscillating at the angular frequency ω and prop-
agating into the direction described by kx. Hence, Figure 4.14 (c) suggests that an
arbitrary plane wave with the angular frequency below the aliasing frequency can
be synthesized with a discretized SSD. Above the aliasing frequency lateral waves
cannot be synthesized without the presence of aliasing plane wave components, prop-
agating into the opposite direction (with reversed kx value). Finally, above twice the
aliasing frequency even plane waves propagating perpendicular to the SSD can not be
synthesized without aliasing.

4.4.2 Avoiding spectral overlapping

A straightforward way to avoid spectral overlapping is to spatially bandlimit the
driving function to the Nyquist wavenumber kx,Nyq = kx,s/2 before discretization by
requiring

D̃(kx, ω) = 0, where |kx| ≥
π

∆x. (4.69)

to be fulfilled, i.e. by eliminating plane wave components that would cause spatial
aliasing. This can be achieved by applying a spatial low-pass filter to the driving
function. In [FF12; Ahr12] it is explained that the direct spatial pre-filtering of the linear
SFS driving function is equivalent with extending either the secondary or the virtual
source spatial distribution by the impulse response of the spatial filter. Therefore,
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spatial filtering inherently modifies the shape of the wavefront. By applying the
local wavenumber vector concept a more simple, general anti-aliasing strategy may
be introduced that can be implemented by simple temporal filtering of the driving
function, as given in the following.

According to (D.4) a given wavenumber component kx in the SDM driving func-
tion spectrum is dominated by that particular position of the SSD where the local
propagation direction of the virtual wavefield coincides with that of the actual spectral
plane wave, i.e. where kPx (x0) = kx holds. The same result can be deduced by locating
the stationary position for the spatial Fourier transform integral of the WFS driving
function in a linear SSD geometry. Hence, on a given angular frequency only those
parts of the SSD will cause spectral overlapping, where the x-component of the virtual
field’s local wavenumber vector is above the Nyquist wavenumber, i.e. where

|kPx (x0)| = ω

c
|k̂Px (x0)| ≥ kx,Nyq = π

∆x (4.70)

is satisfied. Therefore, within the validity of the SPA spatial aliasing components
can be assigned to particular positions along the SSD. This formulation allows the
elimination of the overlapping spectral components by simple temporal low-pass
filtering of the driving function with the angular cut-off frequency given as

D(x0, ω) = 0, where ω ≥ π

∆x
c

|k̂Px (x0)|
, (4.71)

being obviously, the asymptotic approximation of (4.69). The strategy may be gener-
alized towards the application of an arbitrary shaped SSD within the validity of the
Kirchhoff approximation. In this general scenario the SSD is assumed to be locally
linear with kPx replaced by the component of the local wavenumber vector being
tangential with the SSD kPt (x0). Hence, the ideal anti-aliasing condition for a general
SFS problem is formulated as

Symmetric

anti-aliasing

condition

D(x0, ω) = 0, where ω ≥ π

∆x
c

|k̂Pt (x0)|
. (4.72)

The above formulation can be interpreted as a frequency dependent secondary
source selection criterion: The window function in the general WFS driving function
(4.5) became frequency dependent, narrowing with increasing angular frequency.
The application of the ideal low-pass filter, as described by (4.72), would result in
truncation effects emerging from the muted and unmuted transition of the SSD due to
the discontinuity of the driving function [Sta97]. Therefore, in practical applications
anti-aliasing should be implemented by an appropriately smooth low-pass filter
design with the cut-off frequency given by (4.72).

Now the location of anti-aliased synthesis is investigated. Although spectral
overlapping can be avoided by the presented strategy, lateral aliasing waves are
still present in the synthesized wavefield emerging from the partial reproduction
of the mirror spectra: Investigating Figure 4.15 (c) suggests that at a given angular
frequency ω with a given SSD element at x0 anti-aliased synthesis can be performed
into directions for which |kPt (x0)| < kt,s

2 = π
∆x holds. Above the Nyquist wavenumber
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(a) (b)

(c)

Figure 4.15. Illustration of the anti-aliasing filtering of the WFS driving function for a virtual
point source. Figure (a) shows the spatially bandlimited driving function spectrum, low-pass
filtered by applying (4.72). Figure (b) shows the spectrum of the discretized driving function
with non-overlapping spectral repetition. Figure (c) shows spectrum of the synthesized field
measured along the reference line.

components of the mirror spectra are reproduced as well, manifesting in lateral waves
in the synthesized field. As it was already stated: one particular SSD element at
dominates the synthesized field along a straight line, passing through the SSD element
into the direction of the virtual field’s local wavenumber vector. This means that
anti-aliased synthesis can be achieved along a beam, with its center passing through
the SSD element where kPt (x0) = 0 holds and the opening angle of the beam decreases
with frequency. As an upper limit, full band synthesis (ω →∞) can be only performed
with the particular SSD element with kPt (x0) = 0 and full band, anti-aliased synthesis
is achieved at those spatial locations for which it serves as a stationary SSD element.

Figure 4.16 illustrates the effect of the presented anti-aliasing strategy. It is veri-
fied that into the direction dominated by the SSD element where the local propaga-
tion direction of the virtual field coincides with the SSD normal (i.e. the tangential
wavenumber component vanishes) aliasing components can be almost totally sup-
pressed behind the virtual wavefront. Into this particular direction full-band synthesis
can be achieved. Into other directions lateral aliasing components are present and the
synthesized virtual wavefront is bandlimited.

Besides the above symmetrical anti-aliasing filtering, overlapping of the mirror
spectra may be eliminated by bandlimiting the driving function wavenumber content
around an arbitrary chosen center wavenumber kPt,0 to the bandwidth of 2π

∆x , as
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(a)

(b)

Figure 4.16. 2.5D synthesis of
a 3D point source located in xs =
[1.5, 3, 0]T m and emitting a ban-
dlimited impulse, applying an ar-
bitrary shaped discrete SSD with
the secondary source spacing be-
ing ∆x = 10 cm, and with the
snapshot taken at t0 ≈ 6 ms. Fig-
ure (a) shows the effect of the dis-
crete SSD, resulting in aliasing
echoes following the intended
wavefront. Figure (b) shows the
result of spatial anti-aliasing fil-
tering. As a result, anti-aliased
synthesis may be achieved be-
hind the virtual wavefront into
the particular direction, denoted
by dashed arrow. The arrow orig-
inates at the SSD element with no
temporal bandwidth limitation,
i.e. performing full-band synthe-
sis. This full-band SSD element is
found, where the local propaga-
tion direction of the virtual field
coincides with the SSD normal
(i.e. kPt (x0) = 0).

illustrated in Figure 4.17 (a). The center wavenumber defines the direction into
which full-band, anti-aliased synthesis can be achieved: The SSD element where
kPt (x0) = kPt,0 holds performs full-band synthesis and dominates the synthesized field
into the direction kP (x0). Asymmetric anti-aliasing filtering can be performed by the
angular low-pass filtering of the driving function according to

Asymmetric

anti-aliasing

condition

D(x0, ω) = 0, where ω ≥ π

∆x
c

|k̂Pt (x0)− k̂Pt,0|
. (4.73)

The result of asymmetric anti-aliasing filtering is presented in Figure 4.17 (b), illustrat-
ing how anti-aliased synthesis may be optimized into an arbitrary direction.

The local increase of the synthesis accuracy is referred to as Local Wave Field
Synthesis (LWFS) in the related literature, being the subject of extensive study in the
recent years [AS10b; AS11b; Spo+11; WS15a; WS15b; Hah+17; Hah+16; Win+16]. The
local increase of accuracy is usually achieved by spatial bandwidth limitation of the
driving function, performed in simple SSD geometries (e.g. linear, circular SSDs). The
above derivation hence gives an asymptotic approximation of these spatial bandwidth
limitation techniques, valid for an arbitrary SSD contour.

4.4.3 Avoiding the reproduction of mirror spectra

As presented in the foregoing, even besides ideal anti-aliasing filtering of the
driving function, lateral aliasing components following the virtual wavefront will still
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(a)

kPx,0

(b)

Figure 4.17. 2.5D synthesis of
a 3D point source located in xs =
[1.5, 3, 0]T m, emitting a ban-
dlimited impulse, applying an
arbitrary shaped discrete SSD
with the secondary source spac-
ing being ∆x = 10 cm, and
with the snapshot taken at t0 ≈
6 ms. Figure (a) shows the sam-
pled driving function spectrum
with asymmetric bandwidth lim-
itation. Figure (b) presents the
synthesized field. The synthesis
is performed by optimizing spa-
tial anti-aliasing into the direc-
tion, indicated by dashed arrow
in Figure (b) by simple bandlimi-
tation of the driving function in
the angular frequency domain,
according to (4.73). The corre-
sponding center wavenumber is
indicated by dotted line in Figure
(a).

be present. Mathematically, these post-aliasing artifacts originate from the reproduction
of the mirror spectra components above the Nyquist wavenumber, as illustrated in
Figure 4.15 (c). The reproduction of mirror spectra can be only avoided by applying a
secondary source distribution with the transfer function of a spatial low-pass filter
with high attenuation above the Nyquist wavenumber.4 This requirement is fulfilled
by directive secondary sources radiating with low intensity into lateral directions, i.e.
to large tangential wavenumbers.

Physically, source directivity stems from the physical extension of radiating sur-
faces due to the constructive and destructive interference of waves originating from
different positions on the surface. At high frequencies and in the farfield baffled vi-
brating surfaces can be modeled as directive point sources, as it is shown by using the
local wavenumber concept in Appendix E.1. The optimal shape of extended secondary
sources in the aspect of suppressing the mirror spectra has been studied in the related
literature [Ver97]. Here, the optimal SSD directivity is discussed within the context of
the generalized WFS framework.

The farfield approximation of an extended radiator as a directive point source is
given by (E.7). At the horizontal plane containing the source (i.e. at θ = 0) the field
reads

GΘ(x− x0, ω) = Θ(φ(x,x0), ω)G(x− x0, ω), (4.74)

4In fact, the reproduction of the mirror spectra may be avoided by applying strict anti-aliasing filtering,
by eliminating those spectral components which would be present as lateral mirror spectra after
discretization. The spectrum of the filtered driving function would be a romboid shape in Figure 4.15
(a), bandlimited to ω = kx,s

c
. This strategy is equivalent with the solution given in [Win+18a].
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with the directivity function given by Θ(·). Here, φ denotes the polar angle measured
from the main direction of the source, in case of modeling baffled planar sources given
in terms of the source-surface normal as cosφ = 〈x−x0 ·n(x0)〉

|x−x0| .

First, an asymptotical approximation of the wavenumber domain representation
of such a directive point source is presented. The wavenumber content of a directive
point source at the origin, measured along a fixed y reads as

G̃Θ(kx, y, ω) =
∫ ∞
−∞

Θ(φ(x), ω)G(x, ω) ejkxx dx. (4.75)

It is assumed that the directivity function is real-valued. In case of baffled radiators
the directivity function is the 2D Fourier transform of the surface normal velocity
distribution. Therefore, the directivity is real-valued, if the radiator is symmetrical
both to the x- and z-axes. This holds for simple geometries, e.g. for a circular piston,
which model is applied frequently for modeling a dynamic loudspeaker.

Following (D.4), by assuming a real-valued directivity the stationary point of the
integral is found where kGx (x∗(kx), y) = kx is satisfied. Around the stationary point the
directivity function is approximated by its stationary value and the integral simplifies
to

G̃Θ(kx, y, ω) = Θ(φ(x∗(kx)), ω)
∫ ∞
−∞

G(x, ω) ejkxx dx = Θ(φ(x∗(kx)), ω) G̃(kx, y, ω),
(4.76)

thus, in the wavenumber domain the directivity function acts as a spatial filter transfer
function. The Green’s function’s local wavenumber vector is given explicitly as
kGx (xref(x0)) = k sinφ(xref(x0)) = kx, i (c.f. (E.6)), with the right-hand side satisfying
in the stationary position. Therefore, as a final result, the asymptotic approximation of
the transfer function of a directive point source is given by

G̃Θ(kx, y, ω) = Θ(arcsin kx
k
, ω) · G̃(kx, y, ω), (4.77)

and the spectrum of the synthesized field by applying a discrete distribution of
directive secondary point sources can be expressed as

P̃ (kx, y, ω) = D̃S(kx, ω) ·Θ(arcsin kx
k
, ω) · G̃(kx, y, ω). (4.78)

This allows one to derive the directivity characteristics of an ideal spatial low-pass
secondary source, which suppresses lateral waves above the Nyquist wavenumber
and, therefore, avoiding the reproduction of mirror spectra. The transfer function of
the ideal anti-aliasing SSD is given as

Θ(arcsin kx
k
, ω) = 0, if kx ≥

π

∆x, (4.79)

which can be formulated in the temporal frequency domain as
Ideal anti-

aliasing SSD

directivity

Θ(φ, ω) = 0, if sinφ ≥ π

∆x
c

ω
. (4.80)

The theoretical, ideal secondary sources would only radiate within a beam with
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Figure 4.18. 2.5D synthesis of
a 3D point source, located in
xs = [1.5, 3, 0]T m, emitting a
bandlimited impulse, applying
an arbitrary shaped discrete SSD
with the secondary source spac-
ing being ∆x = 10 cm. The syn-
thesis is performed by ideal anti-
aliasing filtering of the driving
function and applying the dis-
tribution of ideally directive sec-
ondary sources.

a unit amplitude and the width of the beam decreases at increasing frequency. By
applying such ideal secondary sources, aliasing could be theoretically completely
avoided, still, ensuring full band, anti-aliased synthesis into one particular direction.
Into other directions, the synthesized wavefront is bandlimited (low-pass filtered).
Obviously, the direction of perfect synthesis is fixed towards the main lobe of the
applied secondary sources.

The result of synthesis applying secondary sources with ideal directivity can be
seen in Figure 4.18, depicting the theoretical best-case scenario when applying a
discrete SSD.

Obviously, the above defined ideal directivity is not realizable, however, the pre-
sented framework is useful for predicting the suppression factor in the wavenumber
region, once the directivity of the applied secondary sources is known. As a simple
example, the directivity of a circular piston is given by (E.10), reading

Θ(arcsin kx
k
, ω) = 2J1 (r0kx)

r0kx
, (4.81)

with J1(·) being the first order Bessel function. The circular piston, therefore, acts
as a spatial low-pass filter, with the −3 dB cut-off wavenumber being kx,c ≈ 2.22

r0
,

calculated numerically. Real-life dynamic loudspeakers with circular membranes are
often modeled as circular pistons at frequencies, at which the modal behaviour of
the diaphragm is not considerable. In a linear array the largest possible loudspeaker
radius is the half of the loudspeaker spacing (r0 = ∆x/2), hence, the lowest achievable
cut-off wavenumber is kx,c = 4.44

∆x . This is still higher than the Nyquist wavenumber
(kx,Nyq = π

∆x ), meaning that even with the closest physically possible loudspeaker
spacing in case of an in-line loudspeaker array spatial aliasing components will be
slightly present in the reproduced field.





5Synthesis of moving sound sources

In the previous chapters the description and reproduction of stationary sound
fields were discussed. The presented sound field synthesis methods, however, are not
restricted to the synthesis of stationary sound fields. In addition to the static case, the
synthesis of moving sources gained increasing interest in the related literature, rising
as an obvious need when dynamic sound fields has to be synthesized. This chapter
deals with the synthesis of the sound fields generated by moving sources of sound,
constituting a complex application example for the foregoing.

In this dynamic case, the primary challenge is the proper reconstruction of the
Doppler effect, occurring due to the constant, finite wave propagation velocity in
a homogeneous medium: Since wavefronts generated by a source under motion
propagate away from the excitation position with a finite sound speed, therefore,
in front of the source—towards the direction of the source motion—the wavefronts
are compressed, while behind the source a rarefaction of wavefronts occurs. This
phenomenon results in a modified, time dependent attenuation factor and a clearly
audible altered perceived frequency in case of a harmonic source excitation, termed as
the Doppler shift.

The proper reconstruction of the Doppler effect is inherently solved when analytical
source models are applied. Thus, first the analytical description of a sound field
generated by a moving source is investigated.

5.1 Description of moving sources

This section extends the description and the concept of high frequency/asymptotic
properties of stationary sound fields to the particular case of a moving 3D point source.
The solution obtained in the following can be applied in order to describe spatially
extended moving sources, while an inclusion of source directivity can be found in
[War76; AS11c].

5.1.1 Time domain description

First, the time domain description of the field excited by a 3D point source under
motion is examined in details [DW83; Hoo05]. Assume a point source moving along
an arbitrary trajectory with an arbitrary velocity profile, with the source location time
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x
z

y x

xs(t)xs(te)

v(t)v(te)θ

source
trajectory

Figure 5.1. Geometry for the
description of the sound field of
a moving point source moving
along an arbitrary trajectory de-
scribed by xs(t). The figure il-
lustrates a moving source emit-
ting impulses, with the position
at the emission time instants de-
noted by grey dots on the trajec-
tory. The first impulse, emitted
at te is received in the receiver
position x at the time instant t,
when the „snapshot” is taken.

history given by xs(t) = [x(t), y(t), z(t)]T. The spatio-temporal impulse response of
such a moving source, satisfying the inhomogeneous wave equation(

∇x
2 − 1

c2
∂2

∂t2

)
gm(x− xs(te), t− te) = −δ (x− xs(te)) · δ (t− te) , (5.1)

is given by the retarded Green’s function [Jac99]

gm(x− xs(te), t− te) = 1
4π

δ(t− te − |x−xs(te)|
c )

|x− xs(te)|
. (5.2)

Time instant te is referred to as the emission time, being the time instant at which
the impulse was emitted that arrives to the receiver position x at the time instant t.
Formally, the field of a moving impulsive point source is obtained from the stationary
Green’s function, by letting the source position to be the function of time. A moving
point source, therefore, radiates spherical wavefronts with the center being the source
position at the emission time. This general case is illustrated in Figure 5.1.

The field generated by a moving source with a source excitation time history s(t)
can be obtained by modeling the excitation signal as the continuous sequence of Dirac
pulses [Gir+01; Ahr12]. The weight of each source pulse in the received signal is given
by the retarded Green’s function, describing the wave propagation from the source
position at the emission time to the receiver position at the receiver time. The radiated
field, therefore, can be written as

pm(x, t) =
∫ ∞
−∞

s(te)gm(x− xs(te), t− te)dte = 1
4π

∫ ∞
−∞

s(te)
δ(t− te − |x−xs(te)|

c )
|x− xs(te)|

dte.

(5.3)
The expression describes a non-stationary convolution with the time-variant convolu-
tion kernel being the moving source impulse response [Mar98].

The convolution can be evaluated by the generalization of the Dirac delta’s sifting
property for arguments of general functions [DW83; Cri+92; Jac99], given as1

∫ ∞
−∞

f(t) δ(g(t)) dt =
∑
i

f(ti)∣∣∣ d
dtg(t)

∣∣∣
t=ti

, where g(ti) = 0. (5.4)

1Equivalently, the same result is obtained by introducing a new variable for t′(te) = te + |x− xs(te)|/c.



5.1 Description of moving sources 91

In the present case the derivative of the argument (i.e. the Jacobian) is expressed
by applying the chain rule, resulting in

d
dte

g(te) = d
dte

(
t− te −

|x− xs(te)|
c

)
= −1 + 1

c

〈
∂
∂te

xs(te) · (x− xs(te))
〉

|x− xs(te)|
. (5.5)

The temporal derivative of the source trajectory vs(te) = ∂
∂te

xs(te) can be recognized
as the source velocity vector at the emission time. Convolution with the Dirac delta
sifts out the zeros of its argument given by the emission time for which

te(t,x) = t− |x− xs(te(t,x))|
c

(5.6)

holds. Obviously, the emission time depends on the receiver position x, the receiving
time t and the source trajectory xs. With all these considerations the non-stationary
convolution (5.3) can be evaluated yielding the sound field of a moving point source

pm(x, t) = 1
4π

s(t− |x−xs(te(x,t))|
c )

|x− xs(te(x, t))| − 1
c 〈vs(te(x, t)) · (x− xs(te(x, t)))〉

, (5.7)

where te satisfies the implicit equation (5.6).

Conventionally, the radiated field is expressed in terms of the propagation time
delay τ(x, t) = t− te(x, t) defined by the implicit quadratic equation

Propagation

time delay
τ(x, t) = |x− xs(t− τ(x, t))|

c
. (5.8)

For subsonic velocities only this positive root of the quadratic equation (τ(x, t) > 0) is
taken into consideration [Hoo05]. In the present thesis exclusively subsonic velocities
are discussed. For a detailed discussion on sources moving at supersonic velocities
refer to [AS08d; Ahr12]. Introducing ∆(x, t) for the attenuation factor the radiated
field is given as

Field of a

moving source
pm(x, t) = 1

4π
s(t− τ(x, t))

∆(x, t− τ(x, t)) , (5.9)

with

∆(x, t) = |x− xs(t)| −
〈 1
c

vs(t) · (x− xs(t))
〉

= |x− xs(t)| (1−M(t) cosϑ(x, t)) ,
(5.10)

where M(t) = |vs(t)|/c is the Mach number, ϑ(x, t) is the angle between the velocity
vector and the source-receiver vector and the term (1−M(t) cosϑ(x, t))−1 is referred
to as the Doppler factor. The geometry along with the used notation is illustrated in
Figure 5.1. Equation (5.10) states that as a part of the Doppler effect, due to the com-
pression of wavefronts towards the direction of the source motion the resulting spatial
amplitude distribution of the wavefield increases compared to that of a stationary
source. Similarly, behind the moving source due to the rarefaction of the wavefronts
the amplitude of the source decreases. This relative change of the attenuation factor is
described by the Doppler factor.
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vs

(a) (b)

Figure 5.2. Sound field generated by a moving point source, oscillating at a source angular
frequency f0 = 1 kHz traveling along a straight source trajectory, described by xs(t) =
[v · t, 0, 0]T with the velocity given by v = c

2 = 171.5 m/s. Figure (a) shows the real part of the
radiated field and (b) shows the amplitude distribution in a logarithmic scale, demonstrating
the result of the Doppler effect.

The evaluation of the radiated field emitted by a moving source is not straight-
forward: It requires the determination of the emission time or the propagation time
delay by solving (5.6) or (5.8) for any receiver position and receiver time. Analytical
solutions for the general problem are barely available. For the special case of a sound
source under uniform motion—i.e. moving along a straight trajectory with constant
velocity—the quadratic equations can be solved. For a source moving parallel with the
x-axis (with the source position vector given by xs(t) = [v · t, 0, 0]T) the propagation
time delay and the attenuation factor read as

τ(x, t) = |x− xs(te(x, t))|
c

= M(x− vt) + ∆(x, t)
c (1−M2) , (5.11)

∆(x, t) =
√

(x− vt)2 + (y2 + z2)(1−M2), (5.12)

withM = v
c being the time independent Mach number. For sources moving inclined to

the x-axis, the corresponding quantities can be obtained by a rotation of the coordinate
system, as discussed in Appendix G.1 [FF15a; Ahr; FF16b].

5.1.2 Time-frequency domain description

In order to extend the asymptotic, local attributes of sound fields (introduced
for steady-state sound fields in Chapter 3) for the dynamic scenario, a mixed time-
frequency representation of moving sources is investigated next. Assume a moving
source with a harmonic excitation time dependence given by s(t) = ejω0t, oscillating
at the angular frequency ω0. The radiated field reads as

Pm(x, t, ω0) = 1
4π

ejω0(t−τ(x,t))

∆(x, t− τ(x, t)) . (5.13)
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An arbitrary non-stationary sound field can be written in a general polar form
Pm(x, t, ω0) = AP (x, t, ω0) ejφP (x,t,ω0), with AP (x, t, ω0), φP (x, t, ω0) ∈ R. For such a
harmonic field the local wavenumber vector can be defined in as the negative phase
gradient

kP (x, t) = [kPx (x, t), kPy (x, t), kPz (x, t)]T = −∇x φ
P (x, t, ω0), (5.14)

similarly to the stationary case. This vector is perpendicular to the isophase surfaces—
i.e. to the wavefront—at an arbitrary position and time instant, pointing into the local
propagation direction of the wavefront. In the case of a moving point source, the local
wavenumber vector is given by the phase gradient of (5.13), reading

Moving

source local

wavenumber

kP (x, t) = −∇x φ
P (x, t, ω0) = ω0

c

x− xs(t− τ(x, t))
∆(x, t− τ(x, t)) . (5.15)

The local dispersion relation and the attenuation over the propagation path for
a general non-stationary sound field is obtained by substituting the polar form of
sound fields into the time domain wave equation (2.5) and expanding the differential
operators. Requiring the real and imaginary parts to equal to zero results in the set of
equations

∇2
x A

P

AP
− |∇x φ

P |2 − 1
c2
AP

′′
tt

AP
+ 1
c2 |φ

P ′
t |2 = 0, (5.16)

∇2
x φ

P + 2

〈
∇x φ

P · ∇xA
P
〉

AP
− 1
c2φ

P ′′
tt −

1
c2 2A

P ′
t φ

P ′
t

AP
= 0. (5.17)

For a moving point source the above equations are singular at the source position,
following (2.38).

Under high frequency conditions (5.16) yields the local dispersion relation

Moving source

local dispersion

relation

|∇x φ
P |2 = |kP (x, t)|2 ≈ 1

c2 |φ
P ′
t |2. (5.18)

For a point source under motion the local dispersion relation holds with equality,
excluding the moving singularity. Hence, unlike for the stationary case, the length
of the local wavenumber vector is not constant2 but depends on both the receiver
position and time: The temporal derivative of the phase function can be recognized
as the generalization of the perceived angular frequency at a fixed receiver position
[MI68]. For the case of a moving virtual point source the perceived frequency can be
expressed as

Perceived

angular fre-

quency

∂

∂t
φP (x, t) = ω(x, t) = ω0

|x− xs(t− τ(x, t))|
∆(x, t− τ(x, t)) = ω0

1−M(t) cosϑ(x, t) . (5.19)

This expression is the general Doppler formula, describing the relative frequency shift
of a harmonic source signal due to the source motion[MI68]. Thus, both the perceived
frequency and amplitude distribution is altered, and the alteration is described by
the Doppler factor. According to the local dispersion relation, the normalized local

2As a result, the wavefront is not described by a normal form, as for the stationary case.
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Figure 5.3. Illustration of
the wavefronts and the local
wavenumber vector of a mov-
ing sound source. The figure
illustrates the local wavenumber
vector on an isophase surface
with the source position at
the corresponding emission
time denoted by black dot.
The generated wavefronts are
spherical ones with the local
wavenumber vector being
radially directed. The length of
the local wavenumber vector
is defined by the instantaneous
perceived angular frequency
described by the Doppler factor.

wavenumber vector—defined as being a unit vector pointing to the local propagation
direction—can be generalized as

k̂P (x, t) = − ∇x φ
P (x, t)

1
c
∂
∂tφ

P (x, t)
= kP (x, t)
ω(x, t)/c. (5.20)

For the particular case of a moving point source the normalized local wavenumber
vector is given from (5.15) and (5.19) as

Normal-

ized local

wavenumber

k̂P (x, t) = x− xs(t− τ(x, t))
|x− xs(t− τ(x, t))| , (5.21)

reflecting the fact that a moving point source radiates spherical wavefronts with the
center being the source position at the emission time instant.

Finally, in the non-stationary case, the transport equation (5.17) takes the form〈
k̂P · ∇xA

P
〉

+ 1
cA

P ′
t

AP
= 1

2
∇2

x φ
P − 1

c2φ
P ′′
tt

1
cφ

P ′
t

(5.22)

The left-hand side of the equation can be interpreted as the relative amplitude change
of the radiated wavefront over its propagation path (with the point of investigation
moving along with the wavefront). The right-hand side of the equation can be recog-
nized as the general local mean curvature of the wavefront [Gol05, p. 4.2],3 thus (5.22)
can be rewritten as

κP (x, t) = −1
2∇x · k̂P (x, t) =

−

〈
k̂P · ∇xA

P
〉

+ 1
cA

P ′
t

AP
= −1

2

(
∇2

x φ
P

ω(x, t)/c −
k̂P (x, t)T HP (x) k̂P (x, t)

ω(x, t)/c

)
. (5.23)

3As given in [Gol05], the mean curvature of a general implicit surface F is given by κF (x) =
1
2
∇x F

THF∇x F−|∇x F |2∇2
x F

|∇x F |3
. In the present case also 1

c2 φ
P ′′
tt = ∇x φ

T HP (x)∇x φ
|∇x φ|2

holds.



5.2 Wave Field Synthesis of moving sources 95

Equation (5.23) reflects that similarly to the stationary case, the relative attenuation
of the wavefront over the propagation is given by the local mean curvature of the
wavefront. Obviously, for a moving point source the mean curvature is given as

κP (x, t) = κP1/2(x, t) = 1
|x− xs(t− τ(x, t))| . (5.24)

Therefore, although the spatial distribution of the amplitude factor is altered according
to the Doppler factor, the attenuation of the individual wavefronts over the propa-
gation path is inversely proportional to the distance from the source position at the
emission time instant, just like in the stationary case. Obivously, this result exactly
coincides with the definition of the retarded Green’s function (5.2).

5.2 Wave Field Synthesis of moving sources

So far only boundary integral formulations of steady-state sound fields were
discussed merely in the frequency domain. In order to synthesize the temporally
varying sound field of a moving point source by using implicit SFS methodology, an
appropriate time domain boundary integral representation of arbitrary sound fields is
required.

Assume a source-free volume inside an enclosure Ωi, bounded by the surface ∂Ω.
Any sound field obeying the homogeneous time domain wave equation inside the
enclosure can be expressed by the time domain Kirchhoff-Helmholtz integral equation. The
formulation is obtained by the temporal inverse Fourier transform of the frequency
domain KHIE (2.56) by exploiting the Fourier convolution theorem, resulting in

Time domain

KHIE
p(x, t) =

∮
∂Ω

∫
t0
p(x0, t0) ∂

∂nin
g(x− x0, t− t0)−

∂

∂nin
p(x0, t0)g(x− x0, t− t0) dt0 d∂Ω(x0), (5.25)

with x ∈ Ωi.

For convex boundaries and with high frequency conditions—i.e. source excitation
signals with dominant high frequency content—the tangent plane approximation
(3.21) holds and the above integral can be approximated by the time domain Kirchhoff
approximation

Time domain

Kirchhoff

approx.

p(x, t) ≈ −2
∮
∂Ω

∫
t0
w(x0, t0) ∂

∂nin
p(x0, t0) g(x− x0, t− t0) dt0 d∂Ω(x0), (5.26)

obtained by the temporal inverse Fourier transform of equation (3.22). The integral
describes an arbitrary sound field in terms of a spatio-temporal convolution over the
boundary surface. The convolution kernel is the time domain Green’s function (and
in the KHIE its normal derivative), defining the spatio-temporal impulse response of
a point source on the boundary at x0, emitting an impulse at t0. The time dependent
windowing function can be defined by assuming a harmonic time dependency for
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which the local wavenumber vector is defined as (5.14). The windowing function the
given as

w(x0, t0) =

1, ∀ 〈kP (x0, t0) · nin(x0)〉 > 0
0 elsewhere,

(5.27)

being a straightforward generalization of the stationary case.

5.2.1 3D Wave Field Synthesis of a moving point source

The general sound field synthesis problem formulation can be given in the time
domain by taking the temporal inverse Fourier transform of the single layer potential
(4.1)

p(x, t) =
∮
∂Ω

∫
t0
d(x0, t0)g(x− x0, t− t0) dt0 d∂Ω(x0). (5.28)

Comparison with (5.26) reveals that similarly to the stationary case, the time
domain Kirchhoff approximation implicitly contains the required time domain driving
signals, reading

d(x0, t0) = −2w(x0, t0) ∂

∂nin
p(x0, t0). (5.29)

By assuming a harmonic source time dependency, the high frequency gradient ap-
proximation can be applied for a non-stationary sound field, reading

∇x P (x, t, ω0) ≈ −jkP (x, t)P (x, t, ω0), (5.30)

which is, again, a local plane wave approximation. The general 3D WFS driving
function can be approximated by

D(x0, t0, ω0) = 2w(x0, t0) jkPn (x0, t0)P (x0, t0, ω0), (5.31)

with kPn being the normal component of the local wavenumber vector.

Suppose that a point source moves along an arbitrary trajectory xs(t) =
[x(t), y(t), z(t)]T outside the listening volume bounded by a convex SSD. The sound
field generated by the moving point source satisfies the homogeneous wave equation
inside the listening volume, therefore, it can be described by the Kirchhoff integral,
and its sound field can be reproduced by applying the driving function above. In
case of a harmonic source excitation with the angular frequency being ω0, the driv-
ing function is obtained from (5.31) by substituting the pressure field and the local
wavenumber vector of a moving point source given by (5.13) and (5.15), respectively.
The resulting driving function reads as

3D WFS driv-

ing function
D(x0, t0, ω0) = w(x0, t0) jk0

2π
〈x0 − xs(t0 − τ(x0, t0)) · nin(x0)〉

∆(x0, t0 − τ(x0, t0))
ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ(x0, t0)) ,

(5.32)
with k0 = ω0

c , the amplitude factor given as

∆(x0, t0) = |x− xs(t0)| −
〈 1
c

vs(t0) · (x− xs(t0))
〉
, (5.33)
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(a)

(b)

Figure 5.4. 3D synthesis of a
moving 3D point source radiat-
ing at f0 = 1.5 kHz. The source
is under uniform motion with
the source trajectory given by
xs = [1.85 +vx · t, 3.2 +vy · t, 0]T
with |vs| = 150 m/s and vx =
140 m/s, vy = 98 m/s. The snap-
shot is taken at t = 0 s. The
SSD surface is chosen to be in-
dependent of the z-coordinate
as illustrated in Figure 4.3. Fig-
ure (a) depicts the real part of
the synthesized field and part
(b) presents the absolute error
of synthesis (the discrepancy be-
tween the synthesized and the
target sound field) in a logarith-
mic scale measured in the hori-
zontal plane, containing the vir-
tual point source. The active
arc of the SSD at the time instant
t = 0 s is denoted by solid black
line, and the inactive part with
dotted by black line.

and the propagation time delay satisfies

τ(x0, t0) = |x0 − xs(t0 − τ(x0, t0))|
c

. (5.34)

For sources with a wideband excitation signal with the frequency content S(ω) =∫∞
−∞ s(t)e−jωtdt the driving function is yielded by the weighted sum of the individual

spectral components

d(x0, t0)=w(x0, t0)〈x0 − xs(t0 − τ(x0, t0)) · nin(x0)〉
∆(x0, t0 − τ(x0, t0))2

∫ ∞
−∞

jω0
2πcS(ω0)ejω0(t0−τ(x0,t0))dω0,

(5.35)
describing a temporal inverse Fourier transform taken at t0 − τ(x0, t0). By realizing
that multiplication by jω0 performs the temporal differentiation of the input signal,
the time domain driving function takes the form

3D time

domain driving

function

d(x0, t0) = 〈x0 − xs(t0 − τ(x0, t0)) · nin(x0)〉
∆(t0 − τ(x0, t0))

w(x0, t0)
2πc

s′t(t0 − τ(x, t0))
∆(t0 − τ(x0, t0)) . (5.36)

Comparison with (4.6) and (4.8) indicates that the moving source driving function
coincides with that for a stationary point source with the static distances/attenuation
factors replaced with the dynamic ones.

As a simple example, Figure 5.4 shows the result of synthesizing a point source
under uniform motion. For the sake of computational simplicity, the SSD is chosen
to be invariant along the z-dimension, as it was illustrated in Figure 4.3. For sources
under uniform motion the propagation time delay and the amplitude distribution
can be expressed analytically, given by (5.11) and (5.12), respectively. Similarly to
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x

y

z

x
x0

xs(t) vs(t)

∂Ω: 3D surface

C: 2.5D contour

Figure 5.5. Geometry for the
derivation of 2.5D Kirchhoff in-
tegral. The enclosing surface
∂Ω(x0, y0) is chosen to be inde-
pendent of the z-coordinate in
order to be able to evaluate the
Kirchhoff integral with respect
to z0 by using the SPA. If the
sound field to be described is
a 2D one propagating in the di-
rection parallel to the listening
plane, then the surface can be
interpreted as a continuous set
of infinite vertical line sources
along C, capable of the perfect
description of a 2D field inside
the enclosure by a 2D countour
integral.

the stationary case, the above driving function ensures amplitude correct synthesis
over the listening area within the validity of the Kirchhoff approximation. Apart
from the errors discussed for the case of the synthesis of a stationary point source—
illustrated in Figure 5.4—in this dynamic case amplitude and phase errors arise as
the source approaches the SSD surface where the high frequency/farfield gradient
approximation does not hold.

5.2.2 The time domain 2.5D Kirchhoff approximation

In order to reproduce the sound field of a moving source by applying a contour
of secondary sources, an appropriate 2.5D integral representation is required. The
dimensionality reduction is, again, performed by the stationary phase approximation
of the Kirchhoff integral, resulting in the time domain 2.5D Kirchhoff approximation.

Assume a 3D volume bounded by a surface being invariant along the vertical
dimension, as illustrated in Figure 5.5. An arbitrary non-stationary sound sound field
inside the enclosure can be described by the time domain Kirchhoff integral (5.26),
written with separated integral variables in this particular geometry. With a harmonic
time dependency the radiated field inside the enclosure reads as

P (x, t, ω0)=
∮
C

∫
z0

∫
t0

2w(x0, t0)jkPn (x0, t0)P (x0, t0, ω0)g(x−x0, t−t0) dt0 dz0 ds(x0, y0),

(5.37)
with the integral variable ds being the arc length along the contour.

With substituting the explicit formula for the time domain 3D Green’s function, in-
tegration with respect to the boundary emission time t0 can be evaluated by exploiting
the Dirac delta sifting property, and the radiated field is given as

P (x, t, ω0)= 1
2π

∮
C

∫
z0
w(x0, t− |x−x0|

c
)jkPn (x0, t− |x−x0|

c
)P (x0, t− |x−x0|

c
, ω0)

|x− x0|
dz0 ds(x0, y0).

(5.38)
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x

y

x

x∗0(x, t)

xs(t)xs(t0)xs(te)

kP (x∗0, t0)

kG(x− x∗0)
Figure 5.6. Illustration of the sta-
tionary position for the boundary in-
tegral representation of the field of a
moving source. The snapshot is taken
at time instant t. The source posi-
tion is indicated at three time instants:
at the receiver time t, the boundary
emission time t0 = t − |x−x∗0 (x,t)|

c and
the source emission time te = t −
|x−x∗0 (x,t)|

c − τ(x∗0, t0). The stationary
position for x at time instant t is found
so that the spherical wavefront gener-
ated by the moving source at te coin-
cides at x, t with the spherical wave-
front of the stationary point source
generated at t0.

In order to reduce the formulation to a contour integral, the vertical integral is approx-
imated by the stationary phase method.

Generally speaking, in an arbitrary surface geometry the stationary point of the
integral is found where the gradient of the integrand’s phase function vanishes, i.e.

∇x0 φ
P (x0, t− |x−x0|

c
, ω0)

∣∣∣
x0=x∗0(x,t)

= 0 (5.39)

holds. The gradient can be evaluated by taking the total derivative of the phase
function, after rearrangement resulting in

−∇x0 φ
P (x∗0(x, t), t− |x−x∗0(x,t)|

c
, ω0)

1
c
∂
∂tφ

P (x∗0(x, t), t− |x−x∗0(x,t)|
c

, ω0)
= x− x∗0(x, t)
|x− x∗0(x, t)| (5.40)

in the stationary position. The left-hand side describes the normalized local wavenum-
ber vector of a general non-stationary sound field P taken at the time instant t− |x−x0|

c

(c.f. (5.20)), while the right term is recognized as the normalized local wavenumber
vector of the stationary secondary point source. Thus, he stationary position for the
Kirchhoff integral is found where

k̂P (x∗0(x, t), t− |x−x∗0(x,t)|
c

) = k̂G(x− x∗0(x, t)) (5.41)

is satisfied.

The result is the generalization of the findings presented in Section 3.3.2, stating
the following: The Kirchhoff integral represents an arbitrary primary sound field
at the receiver position x as the sum of individual spherical waves emerging from
the continuous distribution of point sources along the boundary. The stationary SSD
element for a given receiver position x, is the secondary source that’s wavefront
measured at x, t, emitted at x∗0, t −

|x−x∗0(x,t)|
c

coincides with the primary wavefront
measured at x∗0, t−

|x−x∗0(x,t)|
c

.

Since the secondary and primary wavefronts propagate together along the common
propagation direction, this requirement ensures that the stationary boundary element’s
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wavefront and the primary wavefront match at the receiver position x at the receiving
time instant t, thus

k̂P (x, t) = k̂G(x− x∗0(x, t)) (5.42)

also holds.

The concept is illustrated in Figure 5.6 with the example of the stationary point for
the field of a moving point source. For this case, the normalized local wavenumber
vector is given by (5.21) and the stationary position x∗0(x, t) is found where

Time domain

KI stat. point

x∗0(x, t)− xs(t0 − τ(x∗0, t0))
|x∗0(x, t)− xs(t0 − τ(x∗0, t0))| = x− x∗0(x, t)

|x− x∗0(x, t)| (5.43)

is satisfied. Hence, the stationary point is given where the local propagation direction
of the spherical wavefront generated by the moving source at t0 − τ(x∗0, t0) and
measured on the boundary at t0 coincides the spherical wavefront of the stationary
point source measured at position x. Geometrically, this point lies at the intersection
of the boundary and the vector pointing from the moving point source at the emission
time to the receiver position.

Having found the stationary point for the Kirchhoff integral, the vertical integra-
tion can be approximated by the SPA. Similarly to the stationary case, choosing the
plane of investigation to x = [x, y, 0]T fixes the vertical stationary position to lie at
z∗0(x, t) → z∗0 = 0. This requirement is trivially satisfied by sound sources moving
along trajectories fixed to the plane of investigation, therefore, in the following only
in-plane source trajectories xs(t) = [xs(t), ys(t), 0]T are assumed.

The required second phase derivative around the stationary point are simply given
in terms of the source-boundary and boundary-receiver distances, reading

∂2

∂z2
0
φP (x0, t− |x−x0|

c
, ω0)

∣∣∣∣∣
z0=z∗0=0

= −ω(x0, t0)
c

( 1
|x0 − xs(te)|

+ 1
|x− x0|

)
, (5.44)

with t0 = t − |x−x0|
c

being the boundary emission time, te = t − |x−x0|
c
− τ(x0, t0)

the source emission time and ω(x0, t0) the perceived angular frequency along the
boundary surface, given by (5.19). Thus, similarly to the stationary case (c.f. (4.11)),
the second phase derivative is given by the sum of the vertical curvatures of the
primary sound field and the Green’s function.

Finally—by taking the negative sign of (5.44) into consideration—the stationary
phase approximation of the integral (5.38) yields the 2.5D Kirchhoff integral for a moving
source:

Moving source

2.5D Kirchhoff

approx.

P (x, t, ω0) =
∮
C

2w(x0, t0)
√√√√ 2π

jω(x0,t0)
c

√
|x− x0| · |x0 − xs(te)|
|x− x0|+ |x0 − xs(te)|

·

jkPn (x0, t0) 1
4π

P (x0, t0, ω0)
|x− x0|

ds(x0, y0), (5.45)

now x = [x, y, 0]T and x0 = [x0, y0, 0]T denoting in-plane positions.
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5.2.3 2.5D Wave Field Synthesis of a moving point source

In order to extract the implicit driving function from the Kirchhoff integral it is
exploited that all the time variables in (5.45) are present with a constant temporal
shift t − |x−x0|

c
. The integral, therefore, can be reformulated in terms of a temporal

convolution with the 3D time domain Green’s function as

P (x, t, ω0) =
∮
C

∫
t0

2w(x0, t0)
√√√√ 2π

jω(x0,t0)
c

√
|x− x0| · |x0 − xs(t0 − τ(x0, t0))|
|x− x0|+ |x0 − xs(t0 − τ(x0, t0))| ·

jkPn (x0, t0)P (x0, t0, ω0) 1
4π

δ(t− t0 − |x−x0|
c

)
|x− x0|︸ ︷︷ ︸

g(x−x0,t−t0)

dt0 ds(x0, y0). (5.46)

Comparison with the time domain SFS problem (5.28) reveals that this formulation
implicitly contains the time domain 2.5D WFS driving function for a harmonic moving
source, still depending on the receiver position.

The dependency may be resolved by applying the same strategy as for the station-
ary case: Under the validity of the horizontal SPA each SSD element of the contour
integral dominates the synthesized field at positions for which it serves as a stationary
point. These positions are given by straight lines (rays) passing through the SSD
element into the direction of the local wavenumber vector of the virtual field. Along
this line a unique reference point xref(x0, t0) can be prescribed for each SSD element,
satisfying

k̂P (x0, t0) = k̂G(xref(x0, t0)− x0), (5.47)

x0 − xs(t0 − τ(x0, t0))
|x0 − xs(t0 − τ(x0, t0))| = xref(x0, t0)− x0

|xref(x0, t0)− x0|
. (5.48)

Geometrically, in the particular case of a moving point source, the reference position
lies on the line connecting the SSD element and the source position at the emission
time.

By substituting this reference position into the amplitude factor of (5.46), the
driving function achieving amplitude correct synthesis over the set of all reference
positions can be extracted from the contour integral. The extracted driving function
reads as

2.5D WFS

moving source

harmonic driv.

fun.

D(x0, t0, ω0)=

√√√√2π|xref(x0, t0)− x0|
jω(x0,t0)

c︸ ︷︷ ︸
SSD

compensation

√
|x0 − xs(t0 − τ(x0, t0))|

|xref(x0, t0)− x0|+ |x0 − xs(t0 − τ(x0, t0))|︸ ︷︷ ︸
virtual source
compensation

·

2w(x0, t0)jkPn (x0, t0)P (x0, t0, ω0)︸ ︷︷ ︸
2D

driving function

, (5.49)

with τ(x0, t0) being the propagation time delay from the moving source position at
the emission time to the actual SSD position.
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This driving function is the straightforward generalization of the 2.5D WFS driving
function (4.20) towards non-stationary sound fields, consisting of the ideal 2D WFS
driving function along with two dimensionality correction factors:

• The secondary source correction factor compensates the attenuation and the
frequency response of the 2D SSD contour. Again, the attenuation correction can
be optimized only at a predefined distance from each SSD element allowing the
referencing of the synthesis on a prescribed reference curve. The frequency cor-
rection term compensates for the half-integrator nature of 2D SSD which along
with the differentiation in the 2D driving function would result in enhanced
high-pass characteristics. The correction is performed by the instantaneous
perceived angular frequency altered by the Doppler shift, as measured along the
SSD.

• The virtual source correction factor corrects the synthesized field amplitude at
the receiver position from a 2D to a 3D one. As it was expressed by (5.23) and
(5.24), regardless of the instantaneous spatial amplitude distribution (which is
altered by the Doppler factor), a 3D wavefront attenuates inversely proportional
to its mean curvature along its propagation path. For the particular case of a
moving point source: the emitted wavefront attenuates inversely proportionally
with the distance from the source at the emission time and the point of investi-
gation. Hence, the virtual source compensation factor matches the amplitude
factor of the synthesized wavefront to the target wavefront by taking the wavefront
propagation dynamics into consideration.

Similarly to the stationary case, referencing the synthesis can be performed by pre-
scribing an arbitrary, time-invariant reference curve xref and expressing the SSD
and virtual source compensation factors so that the reference positions for each SSD
element xref(x0, t0) lie along the reference curve and satisfy (5.47).

The diving function (5.49) allows the synthesis of a moving source radiating on a
single source frequency component. For a wideband excitation with the frequency
content S(ω) =

∫∞
−∞ s(t)e−jωtdt, the driving function is obtained by summing the

individual spectral components, resulting in a temporal inverse Fourier integral. The
perceived frequency ω(x, t) is expressed in terms of the source’s angular frequency ω0

according to (5.19).Substituting the actual form of the moving source’s pressure field
and its local wavenumber vector explicitly results in the expression

d(x0, t0, ω0) = w(x0, t0)
√

|xref(x0, t0)− x0|
|xref(x0, t0)− x0|+ |x0 − xs(t0 − τ(x0, t0))| ·

〈x0 − xs(t0 − τ(x0, t0)) · nin〉
∫ ∞
−∞

S(ω0)

√
jω0
c

2π
ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ(x0, t0))
3
2

dω0 (5.50)

The integral can be recognized as the inverse Fourier transform of the pre-filtered
source time history taken at t0 − τ(x0, t0). Similarly to the stationary case, the source
signal is pre-equalized with a half-differentiator filter with the transfer function de-
scribed by H(ω) =

√
jω, compensating for the 2D SSD contour frequency response.



5.2 Wave Field Synthesis of moving sources 103

(a)

(b)

Figure 5.7. 2.5D synthesis of a
moving 3D point source radiat-
ing at f0 = 1.5 kHz applying an
general shaped SSD. The source
is under uniform motion with
the source trajectory given by
xs = [1.85+vx · t, 3.2+vy · t, 0]T,
with |v| = 150 m/s and vx =
140 m/s, vy = 98 m/s. The syn-
thesis is referenced on a concen-
tric reference contour denoted by
white dots. The snapshot is taken
at t = 0 s. Figure (a) depicts
the real part of the synthesized
field and (b) presents the abso-
lute error of synthesis in a loga-
rithmic scale. The active arc of
the SSD at the time instant t = 0 s
is denoted by solid black line and
the inactive part with dotted by
black line. In order to ensure a
smooth driving function, the am-
plitude correction factor was ex-
trapolated.

Finally, the time domain driving function for the synthesis of a moving point source
with a wideband excitation signal reads as

2.5D WFS

moving source

driv. fun.

d(x0, t0, ω0) = w(x0, t0)
√

|xref(x0, t0)− x0|
|xref(x0, t0)− x0|+ |x0 − xs(t0 − τ(x0, t0))| ·

〈x0 − xs(t0 − τ(x0, t0)) · nin〉
√

1
2πc

s.t(t0 − τ(x0, t0))
∆(x0, t0 − τ(x0, t0))

3
2
, (5.51)

where the prefiltered input signal is given by s.t(t) = h(t) ∗t s(t) with the pre-
equalization filter’s impulse response given by h(t) = F−1

ω {
√

jω}. Note that unlike
for the stationary case, here the order of pre-filtering and delaying of the excitation
signal is not interchangeable.

The driving function allows the synthesis of a source under motion with an arbi-
trary source trajectory and velocity profile with applying an arbitrary SSD contour and
ensuring optimized synthesis on an arbitrary shaped reference contour. The synthesis
in such a general scenario is depicted in Figure 5.7 illustrating the reproduction of a
source, moving along a straight trajectory.

The calculation of the driving function requires the knowledge of the emission time
for each SSD element at each time instant. Furthermore, in this dynamic case, due to
the source motion the reference position for an arbitrary SSD element varies with time,
thus, xref(x0, t0) has to be found for each SSD element at each time instant. Therefore,
the evaluation of the general driving functions is of a great computational complexity.
In a Section 5.4.1 it is discussed how these computational expensive problems can be
solved numerically. For more simple trajectories and synthesis geometries the required
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quantities are available analytically. Such a simple synthesis scenario is discussed in
the following.

Application example: Synthesis of a uniformly moving source
applying a linear SSD

Now the reproduction of a point source under uniform motion is investigated
by applying a linear SSD and optimizing the synthesis on a parallel reference line.
The importance of the example lies in the fact that for this geometry the analytical
explicit solution is also known—presented in the following section—allowing the
direct comparison of the implicit and explicit methodologies for this non-stationary
scenario.

For the sake of simplicity, the source is chosen to move uniformly along the x-axis
with a trajectory given by xs = [xs + v · t, ys, 0]T, oscillating at the angular frequency
ω0. The infinite linear SSD is located at x0 = [x0, 0, 0]T and the reference line is
set to xref = [x, yref , 0]T. For this geometry the windowing function is identically
w(x, t0) ≡ 1 and the driving function from (5.49) reads as

D(x0, t0, ω0)=
√

8π
jω0
c

√
|xref(x0,t0)−x0|·∆(t0−τ(x0,t0))

|xref(x0,t0)−x0|+|x0−xs(t0−τ(x0,t0))| jk
P
y (x0, t0)P (x0, t0, ω0).

(5.52)

The reference distance |xref(x0, t0) − x0| can be expressed by the definition of the
stationary position (5.47) written merely for the y-coordinates

|xref(x0, t0)− x0| = −
yref

ys(t0 − τ(x0, t0)) |x0 − xs(t0 − τ(x0, t0))|. (5.53)

Finally, expressing the radiated field and its local wavenumber vector explicitly and
exploiting that ys is constant yields the driving function

D(x0, t0, ω0) = −

√
jk0
2π

√
yref

yref − ys
ys

ejω0(t0−τ(x0,t0))

∆(x0, t0)
3
2

, (5.54)

with the propagation time delay and the attenuation factor given by (5.11) and (5.12),
respectively. The time domain driving function for a source excitation time history of
s(t) is given by the inverse Fourier transform of (5.54) with respect to ω0, reading

d(x0, t0) = −
√

1
2πc

√
yref

yref − ys
ys
s.t(t0 − τ(x0, t0))

∆(x0, t0)
3
2

, (5.55)

where s.t(t) = h(t) ∗t s(t), with h(t) = F−1
ω {
√

jω}.
The result of synthesis is illustrated in Figure 5.8, verifying that the presented

driving function optimizes the synthesis along the reference line. Comparison with
(4.25) reveals that the moving source driving function formally coincides with the
traditional WFS driving function for a stationary point source [Ver97, (2.27)], [Sta97,
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(a) (b)

Figure 5.8. 2.5D synthesis of a moving 3D point source located at xs(t) = [1.5 +v · t, −2, 0]T
with v = 3

4c, radiating at f0 = 1 kHz with the reference line set at yref = 1.5 m. Figure (a)
depicts the real part of the synthesized field, (b) shows the error of synthesis.

(3.16)&(3.17)] with the stationary distances, delays and amplitude factor changed for
the corresponding dynamic variables.

The above driving function can be easily extended for sources moving inclined to
the SSD with the substitution of a space-time dependent source position ys → ys(t0 −
τ(x0, t0)), as it is discussed in details in [FF16b]. In this case, however, the moving
source crosses the theoretically infinite SSD resulting in singular driving function at
the time instant of the crossing and converging virtual wavefronts afterwards. The
synthesis of this type of focused moving sources is not investigated in the present
thesis.

5.3 Explicit solution for the synthesis of moving
sources

So far only the time domain and a mixed time-frequency domain representations
of moving sources were discussed, applied directly for the WFS of sources under
motion. For the special case of sources under uniform motion, the frequency domain
and wavenumber domain representations of the radiated sound field can be expressed
analytically. The presented wavenumber representations afterwards can be used in
order to arrive at explicit driving function for the synthesis of a moving source.

5.3.1 Spectral representation of moving sources

Assume a harmonic source moving along a straight trajectory parallel with the
x-axis (i.e. the source position time history is given by xs(t) = [xs + v · t, 0, 0]T),
radiating with a wideband excitation time history s(t). Following (5.3), the radiated
field can be written in the form of a convolution of the source signal and the retarded
Green’s function gm, reading

pm(x, t) =
∫
te
gm(x− xs − v · te, y, z, t− te) s(te) dte, (5.56)
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(a) (b)

Figure 5.9. The time history and spectrum of a harmonic source moving on a trajectory
xs(t) = [v · t, −2, 0]T with v = c

2 , oscillating at f0. The pass-by is measured in the origin. The
spectrum is described by the Hankel function, as given by (5.58). The poles/singularities of
the spectrum are termed as the dominant frequencies of the approaching (t → −∞) and the
diverging (t→∞), given from (5.19) as ωd = ω0

1
1±M , with M = v

c being the Mach number.

with te being the emission time. Comparison with (F.1) reveals that the radiated field is
written in terms of a non-stationary convolution, for which the spectral representation
is known, given by (F.10). By applying the Fourier shift theorem (shifting by a factor of
x− xs) and the scaling theorem (rescaling by v) to (F.10) the spectrum of the radiated
field is given by

Pm(x, ω) = 1
v

∫ ∞
−∞

S(ω0) G̃(ω − ω0
v

, y, z, ω) e−jω−ω0
v

(x−xs) dω0. (5.57)

Hence, the radiated field in the spectral domain is obtained by a non-stationary
convolution as well. Since integration is performed over the frequency content of
the source input signal S(ω0), the kernel of the convolution can be recognized as
the frequency content of a moving source pass-by, radiating at a single frequency
component ω0. The field of a harmonic moving source is, therefore, given by

Moving

source in

x− ω domain

Pm(x, ω, ω0) = 1
v
G̃(ω − ω0

v
, y, z, ω) e−jω−ω0

v
(x−xs), (5.58)

with the Green’s function’s wavenumber content given in Table 2.1 as

G̃(ω − ω0
v

, y, z, ω) = − j
4H

(2)
0

√(ω
c

)2
−
(
ω − ω0
v

)2
y

 . (5.59)

The equation states that the frequency domain representation of a moving point source
pass-by at a given receiver point is completely described by its 1D spatio-temporal
spectrum G̃(kx, y, z, ω) with the substitution kx → ω−ω0

v . This is the immediate con-
sequence of the fact that in the present geometry the time history of the measured
pass-by is invariant along the x-axis up to a constant time delay. The time history
of a uniformly moving source pass-by and the corresponding angular spectrum are
illustrated in Figure 5.9.
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(a) (b)

Figure 5.10. Spectrum of a stationary (a) and moving (b) harmonic source in the kx − ω
domain. In the dynamic case the source is moving with a constant velocity, v = c

2 .

Due to the spatio-temporal invariance of the spectrum (5.58) along the x-dimension,
the spatial Fourier transform is straightforward, yielding

Moving

source in

kx− z domain

P̃m(kx, y, z, ω, ω0) = 2π
v
G̃(ω − ω0

v
, y, z, ω) ejω−ω0

v
xs δ(kx −

ω − ω0
v

). (5.60)

The angular spectrum representation (i.e. kx − y − kz representation) is given as

Moving source

in kx − kz

domain

P̃m(kx, y, kz, ω, ω0) = 2π
v
G̃(ω − ω0

v
, y, kz, ω) ejω−ω0

v
xs δ(kx −

ω − ω0
v

). (5.61)

Note that the representation does not pose any constraint on the actual form of the
Green’s function: The above equations theoretically describe the field of an arbitrary
source under uniform motion.

The kx−ω domain representation of the field of a harmonic stationary and moving
source is depicted in Figure 5.10 (a) and (b), respectively. In both cases the amplitude
distribution of the spectra are described by the wavenumber content of the Green’s
function, given by G̃(kx, y, z, ω). It is illustrated that bringing a sound source into
uniform motion will result in the rotation of its spectrum around kx = 0 and rescaling
in order to fill the propagation region. The amount of rotation is given directly by the
source velocity (the angle of rotation is π

2 ·
v
c ).

The above spectral formulations can be extended for sources moving inclined
to the x-axis, as given in Appendix G.1. These formulations may be applied for
deriving implicit and explicit driving functions for virtual sources moving uniformly
along arbitrary directed straight trajectories, as it is discussed in details in [FF15a].
Since, however, the previous section presented a more general methodology for
the reproduction of sources under arbitrary motion, it is sufficient to restrict the
investigation of the explicit SFS methodology for sources moving parallel with the
x-axis, resulting in closed form analytic formulations.

5.3.2 3D Spectral Division Method for moving sources

The spectral representations given in the foregoing allows the derivation of explicit
SFS driving function for the synthesis of moving sources. The following driving
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functions are specialized to the case of sources under uniform motion, reproduced
by planar and linear SSDs in contrary to WFS, allowing the reproduction of moving
sources in a general geometry. Still, the importance of the explicit solution is that it
constitutes a reference solution for the dynamic synthesis problem and allows the
investigation of aliasing artifacts in the following.

Assuming an infinite planar distribution of secondary sources along the plane
x0 = [x0, 0, z0]T, the explicit driving function in the kx − kz domain is obtained
by substituting given the angular spectrum representation of the moving harmonic
source field (5.61) into the general 3D explicit driving function (4.38)

D(kx, kz, ω, ω0) = 2π
v

G̃(ω−ω0
v , y − ys, kz, ω)
G̃(kx, y, kz, ω)

ejω−ω0
v

xs δ(kx −
ω − ω0
v

). (5.62)

The spatial driving function is obtained from the double inverse Fourier transform
of the wavenumber domain driving function. Integration along kx can be evaluated
analytically with the Dirac delta sifting out kx = ω−ω0

v . In the spatial domain the
driving function takes the form

D(x0, z0, ω, ω0) = 1
2π

∫ ∞
−∞

1
v

G̃(ω−ω0
v , y − ys, kz, ω)

G̃(ω−ω0
v , y, kz, ω)

e−jω−ω0
v

(x0−xs) e−jkzz0 dkz. (5.63)

Substituting the explicit formula for the 3D Green’s function’s angular spectrum

representation given by Table 2.1 allows simplification by
√(

ω
c

)2 − (ω−ω0
v

)2 − k2
z and

the division of the exponentials, making the driving function independent from the
y-coordinate.

D(x0, z0, ω, ω0) = 1
2π

∫ ∞
−∞

1
v
· e−j

√
(ωc )2−

(
ω−ω0
v

)2
−k2

z |ys|︸ ︷︷ ︸
−2 ∂

∂y
e
−j

√
(ωc )2−

(
ω−ω0
v

)2
−k2
z |y−ys|

−j

√
(ωc )2−

(
ω−ω0
v

)2
−k2
z

∣∣∣∣∣∣∣
y=0

·e−jkzz0 dkz e−jω−ω0
v

(x0−xs).

(5.64)
The integral can be recognized as the inverse spatial Fourier transform of the y-
derivative of the Green’s function taken on the SSD (cf. Table 2.1). Hence, the frequency
domain explicit driving function is given by

D(x0, z0, ω, ω0) = −2
v

∂

∂y
G̃(ω − ω0

v
, y − ys, z0, ω)

∣∣∣∣
y=0

e−jω−ω0
v

(x0−xs). (5.65)

This formulation describes the y-derivative of the field of a moving point source. From
the mixed time-frequency formulation this can be expressed as

3D SDM

driv. fun.
D(x0, z0, t, ω0) = − 1

2π
ys

∆(x0, t0)

(
1−M2

∆(x0, t0) + jk0

)
ejω0(t0−τ(x0,t0))

∆(x0, t0) , (5.66)

with τ(x0, t0) and ∆(x0, t0) given by (5.11) and (5.12), respectively.

The result of synthesis applying the above driving function is depicted in Fig-
ure 5.11, verifying that by applying an infinite planar SSD perfect synthesis can be



5.3 Explicit solution for the synthesis of moving sources 109

(a) (b)

Figure 5.11. Synthesis of a moving virtual point source using a planar SSD by applying the
SDM driving function. The SSD is located at x0 = [x0, 0, z0]T denoted by solid black line. The
virtual source is located at xs(t) = [1.5 + v · t, −2, 0]T with v = 3

4 c, oscillating at f0 = 1 khz.
The figures depict the real part of the synthesized field (a) and the deviation from the target
sound field (b) measured at z = 0.

achieved in front of the SSD. Obviously, in this SSD geometry the explicit driving
function coincides with the implicit solution without applying the high frequency
gradient approximation.

5.3.3 2.5D Spectral Division Method for moving sources

By applying the wavenumber domain description of a uniformly moving source,
the explicit driving function for an infinite linear SSD may be obtained. As discussed
in the foregoing, the application of a linear SSD allows the synthesis of a source
distribution located at the plane of the SSD and the reference line, hence, in the
following the investigation is fixed to the plane of synthesis, z = 0.

As the simplest case the virtual source moves parallel with the SSD with the source
position given by xs(t) = [v · t, ys, 0]T with ys < 0, oscillating at ω0. The SSD is a
linear set of 3D point sources, located along x0 = [x0, 0, 0]T. The general 2.5D explicit
driving function for a linear SSD is given by (4.45). In the present case the required
wavenumber content of the virtual field is given by (5.60). With substituting this
formulation, the wavenumber domain driving function optimizing the synthesis on a
reference line yref parallel with the SSD is expressed as

D̃(kx, ω, ω0) = 2π
v

G̃(ω−ω0
v , yref − ys, 0, ω)
G̃(kx, yref , 0, ω)

δ(kx −
ω − ω0
v

) ejω−ω0
v

xs . (5.67)

The spatial representation of the driving function is obtained by a spatial inverse
Fourier transform of the above expression. Unlike in the stationary case, due to the
spatial invariancy of the virtual source field (up to a phase shift) the inverse transform
may be evaluated analytically. By exploiting the Dirac delta sifting property the spatial
inverse Fourier transform results in

D(x0, ω, ω0) = 1
v

G̃(ω−ω0
v , yref − ys, 0, ω)

G̃(ω−ω0
v , yref , 0, ω)

e−jω−ω0
v

(x0−xs). (5.68)
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(a) (b)

Figure 5.12. Synthesis of a uniformly moving virtual point source employing a linear SSD
applying the 2.5D SDM driving function. The SSD is located at x0 = [x0, 0, 0]T, denoted by
a solid black line. The virtual source is located at xs(t) = [v · t + 1.5, −2, 0]T with v = 3

4c
oscillating at f0 = 1 kHz. The reference line was set to yref = 1.5 m. The figure depicts
the synthesized field at the synthesis plane (z = 0) with (a) depicting the real part of the
synthesized field, (b) depicting the error of synthesis.

Expressing G̃(kx, y, 0, ω) yields the final 2.5D SDM driving function

2.5D SDM

driving

function

D(x0, ω, ω0) = 1
v

H
(2)
0

(√(
ω
c

)2 − (ω−ω0
v

)2|yref − ys|
)

H
(2)
0

(√(
ω
c

)2 − (ω−ω0
v

)2|yref |
) e−jω−ω0

v
(x0−xs). (5.69)

The result of synthesis applying the explicit driving function in case of a harmonic
moving source is depicted in Figure (5.12). It is verified that the explicit method
theoretically ensures perfect synthesis along the reference line, therefore, it may serve
as a reference solution.

Under high frequency conditions the Hankel function can be approximated by
its asymptotic expansion, as it is given by (3.54). Substituting this approximate
formulation into (5.69), the spectral division can be carried out analytically, resulting
in the approximate driving function

Approximate

2.5D SDM

driv. fun.

D(x0, ω, ω0) = 1
v

√
yref

yref − ys
e−j
√

(ωc )2−
(
ω−ω0
v

)2
|ys| e−jω−ω0

v
(x0−xs). (5.70)

This formulation coincides with the implicit Wave Field Synthesis driving function
for a moving source, derived entirely in the spectral domain: The frequency domain
representation of a moving source (5.58) allows an alternative derivation of the 2.5D
WFS driving function by applying the stationary phase approximation entirely in the
frequency domain. The approach—described in details in [FF15a]—is not discussed
here further, since it is superseded by the time domain WFS formulation introduced
in the foregoing in Section 5.2. The coincidence of the driving functions, however,
indicates that Wave Field Synthesis is a high frequency/wavefront matching approx-
imation of the explicit solution, proven for a general stationary sound field in the
previous chapter.
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5.4 Practical aspects of the synthesis of moving
sources

So far the theoretical foundations of physically correct synthesis of source move-
ments were discussed. The practical implementation of the foregoing raises numerous
questions. Several quantities are present in the driving function that are assumed to be
known a-priori, however, their definition is not straightforward and is computation-
ally expensive, making real-time applications impossible. Furthermore, the choice of
the SSD shape, the applied referencing scheme and the applied anti-aliasing strategy
is crucial in the aspect of synthesizing dynamic sound scenes. The following section
presents several practical considerations and solutions for the challenges arising at
the synthesis of a moving point source, as discussed in [FF18b].

5.4.1 Calculation of source trajectory

The direct implementation of the moving source driving function (5.49) assumes
that the time dependent source position xs(t) is known a-priori. This is an optimistic
assumption in the aspect of practical applicability. Instead, more often a parametric
curve y(u) is given which the virtual source follows with a pre-defined velocity profile.
This requirement can be formulated as finding a reparameterization so that

y(u(t)) = xs(t),
∣∣∣∣dxs(t)

dt

∣∣∣∣ = |vs(t)| (5.71)

holds. The goal is to find the explicit parametrization u(t) so that substitution into
(5.71) yields the desired source position vector.

Differentiation of (5.71) with respect to time and applying the chain rule for du/dt
results in

du(t)
dt = |vs(t)|

|dy(u(t))/du| , (5.72)

if u(t) is assumed to be monotonically increasing. In order to express u(t), both sides
are multiplied by dt and—according the first fundamental theorem of calculus—taking
the definite integral leads to

u(t) =
∫ t

t0

|vs(s)|
|dy(u(s))/du|ds, (5.73)

with t0 being a user-defined initial time. Note that for sources moving with constant
velocity (|vs(s)| = v) the parametrization is referred to as reparametrization to arc
length.

For an arbitrary trajectory and velocity profile, the parametrization (5.73) can be
evaluated only numerically. A detailed discussion on the frequently used numerical
methods can be found in [Par12]. As a simple approach, the integral may be approxi-
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mated numerically with the forward-Euler method, approximating the integral with
the iteration scheme

Trajectory

parametriza-

tion

ui+1 = ui + dt |vs(ui)|
|dy(ui)/du|

, i ≥ 0, (5.74)

where dt = 1
fs is the sampling period of the source trajectory. Once the parametrization

ui is found, the required source trajectory vector at the time instant ti can be obtained
from xs(ti) = y(ui).

5.4.2 Calculation of propagation time delay

Having found the source trajectory, the implementation of the driving function
would still require the knowledge of the propagation time delay, i.e. the time it takes
for the wavefront to travel from the source position at the emission time to the receiver
position at the receiving time. This requires the solution of the quadratic equation
(5.8) for each SSD element at each time instant, making real-time implementation
infeasible.

The computational complexity may be considerably decreased by implementing a
further Euler iteration scheme, i.e. by approximating τ(x, t) by its first order Taylor
series

τ(x, t+ dt) ≈ τ(x, t) + dt ∂τ(x, t)
∂t

. (5.75)

The temporal derivative of τ can be obtained from the implicit differentiation of its
definition (5.8), reading as

τ derivative
∂τ(x, t)
∂t

= τ ′t(x, t) =
−1
c 〈vs(t− τ) · (x− xs(t− τ))〉

|x− xs(t)|
. (5.76)

Hence, the iteration scheme at the time instant ti becomes

τ iteration

scheme
τ(x, ti) = τ(x, ti−1) + dt · τ ′t(x, ti−1), (5.77)

with dt = 1
fs

being the sampling period of the driving function [FF17b]. Obviously,
if the trajectory is available only numerically, xs(t − τ) may be interpolated from
the trajectory vector from which the source velocity vs(t − τ) may be calculated by
numerical differentiation with respect to time.

It is important to note that the sampling frequency for the calculation of the source
trajectory and propagation time delay may be chosen significantly lower than the
actual driving signal sampling frequency. As a result, computational cost can be
decreased, besides still ensuring numerical stability.

5.4.3 Effects of the SSD discretization

Description of spatial aliasing In the following, the effects of the SSD discretiza-
tion is discussed in case of synthesizing a moving source, extending the anti-aliasing
strategy presented in Section 4.4 to non-stationary sound fields.
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(a) (b)

Figure 5.13. 2.5D synthesis of a moving 3D point source located at xs = [v · t+ 1.5, −2, 0]T
with v = c

2 , radiating at f0 = 1 kHz (a), or emitting an impulse, bandlimited to 15 kHz
(b). The screenshot is taken at t = 0. The synthesis is referenced on a reference line with
yref = 1.5 m. Synthesis is performed using a linear SSD with the secondary source spacing set
to ∆x = 10 cm.

The effects of the SSD discretization is illustrated in Figure 5.13 in case of a moving
source with a harmonic (a) or a wideband (b) excitation signal. Similarly to the
stationary case, above a certain frequency the resultant field of the secondary sources
does not form a smooth wavefront but the individual wavefronts of the secondary
sources create an interference pattern. In the time domain, spatial aliasing manifests
in spherical wavefronts emerging from the individual secondary sources, following
the intended virtual wavefront. These secondary wavefronts are high-pass filtered to
the spatial aliasing frequency.

In case of a moving point source the local perceived frequency is altered by the
Doppler effect, influencing also the spatial aliasing artifacts. Those SSD positions
where the perceived frequency is locally increased (i.e. in front of the moving source)
contribute dominantly to aliasing, while behind the virtual source aliasing waves are
less emphasized. This can be examined in Figure 5.13 (a): In case of a moving harmonic
source aliasing waves originate from in front of the moving source, radiating laterally
backwards at the angular frequency of the local perceived frequency measured at
the aliasing SSD element. This, however, means that aliasing waves arrive to a given
receiver point with a frequency, differing from the target local perceived frequency. In
the time domain this means that aliasing wavefronts following the virtual wavefront
suffer a different Doppler shift than the intended wavefront. This is illustrated in
Figure 5.13 (b). As a result, spatial aliasing artifacts are enhanced compared to the
stationary case: While for the stationary case aliasing results in the coloration of the
synthesized field, for the dynamic case undesired frequency components will be also
present in the synthesized sound, being are clearly audible in case of high virtual
source velocities.

The following section discusses the analysis and mitigation of spatial aliasing
artifacts. Again, it is exploited that WFS constitutes a high frequency approximation
for the explicit solution, and the latter allows the analytical description of spatial
aliasing. Hence, the effects of discretization is introduced via the example of the
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(a) (b)

(c)

Figure 5.14. Illustration of the aliased synthesis of a moving virtual point source, located
at xs(t) = [v · t + 1.5, −2, 0]T, emitting an impulse bandlimited to 2 kHz. Figure (a) shows
the spectrum of the discretized moving source driving function with overlapping spectral
repetition. Figure (b) shows the spectrum of the 3D Green’s function and Figure (c) shows the
spectrum of the synthesized field, both measured along the reference line.

synthesis applying a linear SSD for which the explicit solution is known. Afterwards,
the findings are generalized towards arbitrary SSDs.

Assume the synthesis of a moving source by applying a discrete, linear SSD
located at x0 = [x0, 0, 0]T with the loudspeaker spacing being ∆x. The source
moves uniformly along a straight trajectory parallel with the SSD. The effect of the
SSD discretization can be described as the sampling of the ideal continuous driving
function, resulting in the repetition of the driving function spectra on the multiples of
the sampling wavenumber. According to (4.68) the synthesized field reads as

P̃ (kx, y, z, ω) = 1
∆x

∞∑
η=−∞

D̃

(
kx − η

2π
∆x, ω

)
G̃(kx, y, z, ω), (5.78)

where the driving function spectrum is given by (5.67) for the special case of a har-
monic source signal. For a wideband excitation the driving function is obtained as
the spectral integral of the harmonic driving function w.r.t ω0, weighted by the source
excitation frequency content. The process of the synthesis of a moving source with
wideband excitation applying a discrete SSD is illustrated in the wavenumber domain
in Figure 5.14.

The spectrum of the moving source driving function is obtained by the rotation
and rescaling of the stationary driving function spectrum. It is illustrated by 5.14
(a) that in front of the moving source due to the local increase of perceived angular
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(a) (b)

Figure 5.15. Wavenumber-frequency representation of the synthesized field of a harmonic
moving source, applying a linear SSD (a) and the corresponding spectogram (b). The source
is located at xs = [v · t, −2, 0]T with v = c

2 , radiating at f0 = 1kHz. The spectrum of the
synthesized field is measured along the reference line, set to yref = 1.5 m, while the spectogram
of the pass-by is measured at x = 0 m, on the reference line.

frequency the mirror spectra are more likely to alias: In the current example in front
of the moving source even a second order aliasing component is present (i.e. η = 2
component overlaps to the baseband propagation region), while behind the source
due to the local decrease of the perceived frequency no aliasing component is present
at all (i.e. from these parts of the SSD no aliasing echoes originate).

Investigation of the aliased spectrum of the synthesized field in case of a harmonic
source excitation suggests that aliasing components are present in the radiated wave-
field with a reversed kx sign: aliasing waves propagate into the opposite direction
the the intended wavefront. As a direct consequence, in a fixed receiver position
aliasing wave emerging from in front of the moving source are perceived after the
virtual source pass-by, resulting in strong frequency distortion, as it has been reported
and investigated in numerous previous studies [Fra+07; Ahr12]. The phenomenon is
illustrated in Figure 5.15, depicting the kx − ω representation of the synthesized field
(a) and the corresponding spectogram (b): As a result of the SSD discretization, after
the virtual source pass-by aliasing waves with an undesired frequency component
are present propagating laterally backwards with the frequency determined by the
local perceived frequency at the aliasing SSD positions. With increasing source fre-
quency (or at larger SSD sampling distances) also higher order aliasing components
are present in the radiated field, resulting in multiple undesired frequency compo-
nents. Furthermore, if the perceived frequency behind the virtual source increases
above the aliasing frequency, undesired frequency components are present before the
virtual source pass-by as well.

For the case of a harmonic moving source, the frequency content of the synthesized
field can be expressed analytically. Substituting the 2.5D SDM driving function (5.67)
into (5.78) and evaluating its spatial inverse Fourier transform by exploiting the sifting
property of the Dirac delta results in

P (x, y, z, ω) = D(x, ω, ω0) ·
∞∑

η=−∞
G̃(ω − ω0

v
+ η

2π
∆x, y, z, ω) e−jη 2π

∆xx. (5.79)
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Here, η = 0 yields the unaltered, ideal synthesized field without aliasing. This
formulation allows the analytical description of the undesired frequency components:
Mathematically, the undesired frequency components are stemming from the poles of
the translated Green’s function G̃(ω−ω0

v + η 2π
∆x , y, z, ω), located where |ω−ω0

v + η 2π
∆x | =

|vc | = |M | holds. Therefore, the frequency of the aliasing waves before and after the
virtual source pass-by is given by

ω = 1
1±M

(
ω0 + η

2πv
∆x

)
, (5.80)

with for η > 0 taking the lower and for η < 0 taking the higher frequency value into
consideration. A more detailed treatise on these undesired frequency components can
be found in [FF16a].

Avoiding spectral overlapping In the foregoing it was highlighted that spatial
aliasing may result in audible artifacts due the different Doppler shifts between the
intended and the aliasing wavefronts. Hence, proper anti-aliasing strategy is crucial in
the aspect of synthesizing moving sources. As a first step, the proper choice of the SSD
shape is an important question: The strong contribution of the undesired frequency
components is the result of the theoretically infinite linear SSD with strong contribution
of lateral waves. In the aspect of avoiding aliasing, a smooth, enclosing SSD shape
should be chosen at which the virtual wavefront arrives dominantly with the normal
local propagation direction. The optimal choice fulfilling this requirement for an
arbitrary source trajectory (and due to further reasons, explained in the following) is
applying a circular SSD.

In order to avoid further aliasing artifacts, the same anti-aliasing filtering strategy
may be applied as given for a stationary virtual field in Section 4.4. From investigating
Figure 5.14 it is clear that by spatial bandlimiting the linear driving function to the
Nyquist wavenumber kx,Nyq = π

∆x , i.e. as long as

D̃(kx, ω) = 0, for |kx| >
π

∆x (5.81)

holds, the spectral overlapping after discretization could be entirely avoided. Sim-
ilarly to the stationary case, the spectrum of the linear driving function at a given
wavenumber component kx and at a given frequency ω is dominated by that part
of the SSD where kPx (x0, t) = kx and ω(x0, t) = ω is satisfied, with ω(x0, t) being the
perceived, Doppler shifted angular frequency. Since the two quantities are related by
the local dispersion relation (5.20), in the spatial domain the anti-aliasing condition
can be formulated as

D(x0, ω) = 0, for kPx (x0, t0) = ω(x0, t0)
c

· |k̂Px (x0, t0)| > π

∆x, (5.82)

where k̂Px (x0, t0) is the x-component of the normalized local wavenumber vector.
Finally, within the validity of the Kirchhoff approximation an arbitrary smooth SSD
can be considered locally linear. In this general case, the above anti-aliasing criterion
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(a) (b)

Figure 5.16. Synthesis of a source moving on an general curved trajectory applying a
circular SSD with the radius of RSSD = 2 m, sampled at ∆x = 10 cm. The source travels with
a constant velocity |v| = 3

4c emitting pulse at the positions denoted by white dots on the
trajectory. Figure (a) shows the effects of source discretization with clearly visible aliasing
echoes. The strongest contribution emerges from in front of the virtual source where the
local perceived frequency is increased by the Doppler effect. Figure (b) shows the effect of
the ideal anti-aliasing filtering. Time variant low-pass filtering of the driving function below
the instantaneous cut-off frequency (5.84) is performed in the short-time Fourier transform
domain with properly chosen window and hop sizes.

holds with the role of kPx interchanged to the tangential wavenumber component kPt ,
resulting in

D(x0, ω) = 0, for ω(x0, t0) > π

∆x
c

|k̂Pt (x0, t0)|
. (5.83)

According to (5.21), for a moving source the normalized local wavenumber vector is a
unit vector pointing into the receiver position from the source position at the emission
time. Denoting the tangent vector of the secondary sources by t(x0) this leads to the
final anti-aliasing condition for a moving point source:

Moving source

anti-aliasing

condition

D(x0, ω) = 0, for ω(x0, t0) > πc

∆x
|x0 − xs(t0 − τ(x0, t0))|

| 〈x0 − xs(t0 − τ(x0, t0)) · t(x0)〉 | . (5.84)

This means that anti-aliasing requires the implementation of a time variant low-pass
filter with the cut-off frequency given above analytically.

Similarly to the stationary case, full-band synthesis is achieved only on those
parts of the synthesized field for which the stationary SSD element’s normal vector
coincides with the local propagation direction of the virtual field. At that position the
denominator of (5.84) vanishes and the cut-off frequency is ω(x0, t0) =∞.

For the special case of a circular SSD, the normal vector always points towards the
center of the array. Hence, the SSD geometry inherently ensures that at the center of
the array a nearly full-band stationary SSD element exists. This is, again, an important
advantage of circular loudspeaker arrays. Terminology nearly full-band synthesis
refers to the fact that due to the discretization of the SSD, full-band synthesis is only
possible when at the stationary SSD position an actual SSD element is located. In
practice, when the moving source is located between two actual secondary sources,
even at the center of the array the synthesized field is slightly bandlimited (depending
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on the distance of the virtual source from the SSD). This may cause audible artifacts if
the source is close to the SSD.

The result of the proposed anti-aliasing approach with applying a circular SSD
is illustrated in Figure 5.16. In the simulation the source is traveling along a general
curved trajectory defined by a discrete set of points from which the trajectory and the
propagation time delay was calculated iteratively, as it was discussed in the previous
subsections. The simulation results verify the nearly full-band synthesis in the center
of the secondary array.

5.4.4 Choosing the referencing scheme

The evaluation of the 2.5D WFS driving function given by (5.51) requires the
definition of a reference position xref(x0, t0) for each SSD element at each time instant.
In case of a moving virtual source, this reference point is found for a given time instant
at the intersection of the reference curve and the line passing through the actual
SSD element and the source position at the corresponding emission time. Obviously,
the direct solution for the reference position is of great computational cost, making
real-time applications infeasible. Therefore, geometries with analytical solutions are
preferred.

As a possible solution, simple reference curve and SSD shapes may be used for
which the analytical solution for the reference position is available. As an example, in
case of a circular SSDs the choice of a concentric circle for the reference curve seems
to be feasible for which geometry the intersection of a parametric line and a circle is
well-known [Ebe03, Ch.7.3.2]. The solution is given by (4.30) in terms of the virtual
field’s local wavenumber vector. However, as a result, amplitude correct synthesis at
a given time instant is ensured only over an arc for which part of the reference curve a
stationary SSD element exist.

Alternatively, as the simplest solution, synthesis may be optimized to the center
of the SSD array by decreasing the radius of the concentric reference circle to zero,
e.g. the center of the SSD is chosen as a reference point xref . Simulation results
showed that this referencing strategy in case of a circular array constitutes a high
frequency approximation of Near Field Compensated Higher Order Ambisonics
[Sch+19]. In this geometry in the center of the array amplitude correct synthesis may
be achieved independently from the virtual source trajectory over the entire source
pass-by. Furthermore, as it was presented in the foregoing, in this receiver position
anti-aliased and nearly full-band synthesis can be ensured.



6Conclusion

The present thesis discussed a generalized Wave Field Synthesis theory giving an
asymptotic, ray-based solution for the general sound field synthesis problems. As
the central result of the present treatise, general 2.5-dimensional WFS loudspeaker
driving function was introduced allowing the synthesis of arbitrary virtual sound
fields by applying arbitrary shaped convex SSD contours with ensuring an optimal
synthesis along a prescribed reference curve.

The central concept of the presented work is the stationary phase approximation
(SPA), allowing the asymptotic evaluation of integrals of complex valued functions.
Adapted from classic ray tracing theory, the concept of the local wavenumber vector
and the local wavefront curvature was introduced, giving a local description of
sound fields. These quantities gave a simple, elegant physical interpretation for the
asymptotic evaluation of integrals describing radiation problems: It was demonstrated
via numerous examples how boundary integrals and spatial Fourier transforms can
be evaluated around their stationary points and how the stationary points for these
problems can be found in a simple geometric manner. All of the involved concepts
give a fair approximation for radiation problems under high frequency conditions.

It was demonstrated that the stationary phase approximation of boundary integrals
realizes wavefront matching between the target field and the field of the boundary
sources regarding both propagation direction and wavefront curvature. From the
stationary phase evaluation of the Kirchhoff integral the generalized 2.5D Wave Field
Synthesis driving function was extracted. It was shown that for a 2D boundary contour
the secondary and virtual wavefronts can be matched in amplitude only at a single
receiver position per secondary source element. The ensemble of these individual
receiver positions forms the reference curve and its shape can be controlled with
a frequency independent amplitude term in the driving function. The introduced
generalized theoretical framework contains the previous WFS approaches as special
cases, as it was demonstrated through simple examples.

Alternatively to WFS an explicit solution exists for the general sound field synthesis
scenario, solving the problem by mode-matching in the spectral domain. For an
infinite linear secondary source distribution the approach yields the driving function
in the form of a Fourier integral, while for enclosing arrays (e.g. circular and spherical
distributions) the solution is an infinite spectral sum. By applying the SPA in order
to evaluate the explicit spectral driving function for a linear SSD, a novel spatial
domain explicit driving function was introduced: The new driving function requires
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the description of the target sound field measured along the reference curve, opposed
to the WFS solution which requires the target field properties on the secondary source
array. It was verified that this new solution also realizes the wavefront matching of the
target wavefront and the secondary sources’ wavefronts on the prescribed reference
curve. Hence, the global mode-matching solution was transformed asymptotically
into a local wavefront matching approach. This solution may be generalized towards
the synthesis with arbitrary shaped secondary source distributions as long as the
contour of the loudspeaker array can be considered locally linear. Finally, it was
also demonstrated that the explicit spatial driving function is equivalent with the
generalized WFS formulation.

The high frequency equivalence of the explicit and implicit solutions can be ex-
ploited in order to discuss phenomena concerning WFS in a unified manner. As an
example, the effects of the secondary source discretization—modeling real-life loud-
speaker arrays—can be described analytically in the wavenumber domain in terms of
the explicit solution. By utilizing the introduced local wavenumber concept, a simple
anti-aliasing strategy was presented in order to suppress the aliasing wavefronts. The
presented approach can be realized by simple low-pass filtering of the driving signals.
As a result anti-aliased synthesis may be achieved along certain directions over the
listening region.

Finally, as a complex application example for the foregoing, the synthesis of
a moving point source was discussed within the context of the introduced WFS
framework. In this case the proper reproduction of the Doppler effect is of central
importance which is inherently ensured once an appropriate analytical model is
applied. It was presented how the local attributes of wavefronts can be extended
for moving sources and it was demonstrated how the introduced WFS framework
can be adapted to this dynamic scenario. For the special case of sources under
uniform motion, planar and linear explicit driving functions were derived in both
the wavenumber and in the spatial domain. Similarly to the stationary case, the
explicit driving function was found to coincide with the WFS solution under high
frequency assumptions. Based on the wavenumber domain representation, the effects
of secondary source discretization was discussed and the introduced anti-aliasing
strategy was extended for the synthesis of moving sources.

The aim of the present dissertation was to give a complete, self-contained discus-
sion on the questions concerning Wave Field Synthesis. However, several aspects were
out of the scope of the present treatise: as an example, here, only diverging fields were
discussed, i.e. the target wavefronts would originate from a sound source outside of
the listening region. Under several restrictions Wave Field Synthesis is capable of syn-
thesizing focused sources in which case the synthesized wavefront converges towards
a focal point inside the listening area. The synthesis of such a converging sound field
needs the proper manipulation of the stationary phase approximation. Although hints
were given how to adapt the presented WFS framework to focused sources, the exact
study of this focused case—even involving focused moving sources—is the subject of
future work.
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Also, the investigation of the practical aspects and the computational cost of
the presented results were out of the scope of the present dissertation. The real-
time implementation of the reproduction of static virtual fields is well-established,
even open-source implementations exist [Ahr+08]. The practical application of the
moving source driving function, however, raises several interesting questions. Possible
iteration schemes were presented for the real-time calculation of the source trajectory
and the propagation time delay. However, the efficient implementation of the involved
time-variant signal delay is still an open question.





7Theses

Thesis group I (Generalization of WFS theory)
I introduced a generalized WFS framework allowing one to synthesize 3D sound fields
with arbitrary shaped convex loudspeaker ensembles (secondary source distribution
(SSD)) and to optimize the synthesis on an arbitrary convex reference curve. The
generalized framework inherently contains the existing WFS approaches as special
cases [Fir+17].

Thesis I.1. I established a physical interpretation of the stationary phase
approximation (SPA) of boundary integrals. By defining the local wavenumber
vector of a time-harmonic sound field, I showed that the SPA ensures wave
front matching of the virtual field and the secondary sound fields at the
receiver position.

Thesis I.2. I derived WFS driving function for an arbitrary convex SSD con-
tour based on the above physical interpretation, within the validity of the
physical optics approximation of the Kirchhoff-Helmholtz integral.

Thesis I.3. I derived analytical expression for the general reference curve that
connects the points in the synthesis plane where the amplitude error is mini-
mal. I presented how the shape of the reference curve can be controlled by
applying a frequency independent amplitude correction term to the driving
function. I critically revised existing WFS solutions by the analytical charac-
terization of their reference curves.

Thesis group II (Spatial explicit driving functions and WFS equivalence)
Besides the implicit WFS technique—yielding the required driving functions as an
implicit integral kernel in a reduced surface integral—explicit solutions exist obtaining
the driving functions as a spectral integral. For a linear SSD the explicit solution is
termed as the Spectral Division Method (SDM) yielding the linear driving functions
in terms of an inverse spatial Fourier transform of the ratio of the target field spectrum
and the Green’s function spectrum measured along a reference line. So far the connec-
tion between the implicit and explicit solutions has only been investigated for special
target sound fields. By applying the SPA to the SDM driving function, I derived it’s
asymptotical spatial approximation, and I highlighted the general equivalence of the
explicit and implicit solutions in the high frequency region. [FF17a; Fir+18]

Thesis II.1. I derived analytical SDM driving functions in the spatial domain
by applying the SPA to the Fourier integral with establishing a physical
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interpretation of the stationary phase approximation of Fourier integrals.
Unlike WFS the new expicit driving functions express the SSD driving signals
in terms of the target sound field measured along the convex reference curve
[FF17a].

Thesis II.2. I proved that under high frequency assumptions the explicit
SDM and the implicit WFS driving functions are completely equivalent for an
arbitrary target sound field [Fir+18]. The proof is performed by expressing
the newly introduced driving function in terms of the target field’s gradient
measured on the SSD.

Thesis II.3. I gave a simple asymptotic anti-aliasing criterion in order to
suppress aliasing waves emerging due to the application of a discrete SSD in
practical scenarios. The derivation is based on the above equivalence of the
WFS and SDM driving function. The proposed approach can be implemented
in practice by the temporal low-pass filtering of the loudspeaker driving
signals [FF18a].

Thesis group III (Wave Field Synthesis of moving point sources)
In the aspect of synthesizing dynamic sound scenes, the synthesis of moving sources
is of primary importance. I adapted the introduced WFS framework to the synthesis
of sound fields generated by moving point sources.

Thesis III.1. I adapted the generalized 3D WFS theory to the synthesis of
the field of a point source moving along an a-priori known trajectory, and I
defined driving function for an arbitrary convex SSD surface. The solution
takes the Doppler-effect inherently into account [FF15b; FF16b; FF17b].

Thesis III.2. I derived 2.5D WFS driving functions for a 2D SSD contour in
order to synthesize 3D point sources moving along an arbitrary trajectory
in the plane of the SSD [FF17b]. The derivation relies on the adaptation of
the SPA to this dynamic scenario, allowing to optimize the amplitude correct
synthesis to a convex reference curve. I verified that for the special case of
a linear SSD and a parallel reference line the presented driving functions
coincide with the traditional WFS driving functions with the stationary source
position replaced by the source position at the emission time [FF17b].

Thesis III.3. I gave closed form WFS driving function for sources in uniform
motion for which particular case the propagation time delay can be expressed
explicitly [FF16b].

Thesis III.4. I derived frequency domain 2.5D WFS driving function for a
linear SSD by applying the SPA directly to the frequency content of a point
source under uniform motion [FF15a].

Thesis group IV (Synthesis of moving sources in the wavenumber domain)
I gave analytical expressions for the spatial Fourier transform of a source moving uni-
formly along an arbitrary directed straight trajectory. Since the SDM is not restricted
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to stationary sound fields therefore the obtained formulation can be used in order to
derive explicit driving function for the synthesis of a moving source.

Thesis IV.1. I gave the SDM driving functions for the synthesis of a source
under uniform motion in the wavenumber domain. For the special case of
a source moving parallel to the secondary source distribution I derived ana-
lytical, closed form driving function in the spatial-frequency domain [FF14b;
FF14a; FF15a]. I showed that similarly to the stationary case, the WFS solution
is the high-frequency/farfield approximation of the presented explicit driving
function for moving sources [FF15a].

Thesis IV.2. I presented an analytical investigation of the spatial aliasing
artifacts emerging from the discretization of the SSD based on the wavenum-
ber description. I connected the phenomena of frequency distortion with the
poles in the secondary sources wavenumber representation and I analytically
expressed the aliasing frequency components. I showed that the artifact can
be avoided by applying an SSD that does not exhibit poles on the receiver
curve, satisfied optimally by a circular SSD [FF16a].

Thesis IV.3. I extended the spatial anti-aliasing criterion in order to include
the synthesis of dynamic sound fields. By using the introduced formula-
tion spatial aliasing may be eliminated by simple low-pass filtering of the
loudspeaker driving signals [FF18b].
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AAppendix A

A.1 Definition and properties of the Fourier transform
and the Dirac delta

Temporal Fourier transform: Given a four dimensional function f(x, t), depend-
ing on both time and the spatial position. The forward and inverse temporal Fourier
transform, leading to the angular frequency domain, is defined as

F (x, ω) = Ft {f(x, t)} =
∫ ∞
−∞

f(x, t) e−jωtdt, (A.1)

f(x, t) = F−1
ω {F (x, ω)} = 1

2π

∫ ∞
−∞

F (x, ω) ejωt dω. (A.2)

Note that capital letter indicates that the function is taken in the angular frequency
domain, and the subscript of F indicates the transform variable.

Spatial Fourier transforms: Following the convention, given in e.g. [Ahr12] the
spatial Fourier transform, leading to the wavenumber domain, is defined as follows:

• In one dimension:

F̃ (kx, y, z, ω) = Fx {F (x, ω)} =
∫ ∞
−∞

F (x, ω) ejkxx dx, (A.3)

F (x, ω) = F−1
kx

{
F̃ (kx, y, z, ω)

}
= 1

2π

∫ ∞
−∞

F̃ (kx, y, z, ω) e−jkxx dkx. (A.4)

• In two dimensions:

F̃ (kx, y, kz, ω) =
∫∫ ∞
−∞

F (x, ω)ej(kxx+kzz) dx dz, (A.5)

F (x, ω) = 1
(2π)2

∫∫ ∞
−∞

F̃ (kx, y, kz, ω) e−j(kxx+kzz) dkx dkz. (A.6)

• In three dimensions:

F̃ (k, ω) =
∫∫∫ ∞

−∞
F (x, ω) ej〈k·x〉 dx dy dz, (A.7)
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F (x, ω) = 1
(2π)3

∫∫∫ ∞
−∞

F̃ (k, ω) e−j〈k·x〉 dkx dky dkz. (A.8)

Hence, tilde over the function symbol indicates that the function is taken in the
wavenumber domain. Note that the exponent of the spatial Fourier transform is
taken with a reversed sign, compared to the temporal transform. Writing an arbitrary
function in the form of a spatio-temporal inverse Fourier transform

f(x, t) = 1
(2π)4

∫∫∫∫ ∞
−∞

F̃ (k, ω) ej(ωt−〈k·x〉) dkx dky dkz dω (A.9)

describes the expansion of an arbitrary function into the linear combination of har-
monic plane waves, propagating into direction k. The reversed sign therefore allows
this simple physical interpretation of the Fourier transform.

Fourier transform properties: Several important properties of the Fourier trans-
form, applied frequently in the present thesis are the following:

• Shift theorem:∫ ∞
−∞

f(x− x0) ejkxx dx = Fx {f(x− x0)} = F̃ (kx) ejkxx0 . (A.10)

In case of temporal Fourier transform the right side is with reversed exponent.

• Convolution theorem:∫∫ ∞
−∞

f(x− x0) g(x0) dx0 ejkxx dx = Fx {f(x) ∗x g(x)} = F̃ (kx) · G̃(kx). (A.11)

• Differentiation property:∫ ∞
−∞

∂

∂x
f(x) ejkxx dx = Fx

{
∂

∂x
f(x)

}
= −jkx F̃ (kx). (A.12)

In case of temporal Fourier transform the right side is with reversed sign.

• Scaling property:∫ ∞
−∞

f(ax) ejkxx dx = Fx {f(ax)} = 1
|a|

F̃ (kx
a

). (A.13)

In case of temporal Fourier transform the right side is with reversed sign.

Properties of Dirac delta: The Dirac delta is a generalized function (or distribu-
tion), used frequently in order to model acoustic phenomena, defined as

δ(x) =

∞, x = 0
0, x 6= 0

, with
∫ ∞
−∞

δ(x) dx = 1. (A.14)

Several important properties of the Dirac delta, exploited in the present thesis are the
following:
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• Forward Fourier transform:

Fx {δ(x− x0)} =
∫ ∞
−∞

δ(x− x0) ejkxx dx = ejkxx0 . (A.15)

• Inverse Fourier transform:

δ(x− x0) = 1
2π

∫ ∞
−∞

e−jkx(x−x0) dkx = F−1
kx

{
ejkxx0

}
. (A.16)

• Sifting property: ∫ ∞
−∞

δ(x− x0) f(x) dx = f(x0). (A.17)

• Generalized sifting property:∫ ∞
−∞

f(x) δ(g(x)) dx =
∑
i

f(xi)∣∣∣ ∂∂xg(x)
∣∣∣
x=xi

, where g(xi) = 0. (A.18)





BAppendix B

B.1 Notes on the Hessian of the phase function

B.1.1 Definition of the principal curvatures and principal
directions

Assume a wavefield, described by the general polar form P (x, ω) =
AP (x, ω)ejφP (x,ω). Supposing that the amplitude changes slowly compared to the
phase function, the local dispersion relation |∇x φ(x, ω)| = ω

c = k holds and the equa-
tion, describing an arbitrary wavefront, i.e. φP (x, ω) − C = 0 is by definition the
normalform of the given surface [Har99; Har01]. The Hessian matrix of the function is
given by the symmetric matrix

HP (x) = ∂2

∂xi∂xj
φP (x, ω) =


φP
′′

xx (x, ω) φP
′′

xy (x, ω) φP
′′

xz (x, ω)

φP
′′

xy (x, ω) φP
′′

yy (x, ω) φP
′′

yz (x, ω)

φP
′′

xz (x, ω) φP
′′

yz (x, ω) φP
′′

zz (x, ω)

 , i, j = 1, 2, 3,

(B.1)
with the eigenvalues λ1, λ2, λ3 and the corresponding eigenvectors v1,v2,v3. Since
the function under consideration is a normalform, therefore the following properties
hold

• λ3 = 0, with the corresponding eigenvector given by v3 = − 1
k∇x φ

P (x, ω) =
k̂P (x), i.e. being the normal of the wavefront

• λ1 = −k · κP1 (x) and λ2 = −k · κP2 (x) are proportional to the main or principal
curvatures of the wavefront, where ρP1 (x) = 1

κP1 (x) and ρP2 (x) = 1
κP2 (x) are the

principal radii. The principal curvatures and radii are defined as the following:
Consider all the planes, containing the normal of the surface at the point of
investigation. The planes are defined by the surface normal and vector v, being
a tangent vector of the surface. The curvature is defined as the quadratic form

κ = vTHPv. (B.2)

The main curvatures are then defined as the minimum and maximum values
of curvature, i.e. the reciprocal of the osculating circles’ radii (the principal
radii). The corresponding eigenvectors, v1 and v2 are tangential, orthogonal
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unit vectors, pointing into the direction of the maximal and minimal curvatures.
For an illustration refer to Figure 3.2.

Finally, as the general case the Hessian matrix of an arbitrary wavefront can be
written in a spectral form, in terms of the principal curvatures and the corresponding
eigenvectors as

HP (x) = −k
(
κ1v1vT

1 + κ2v2vT
2

)
= −kVKVT, (B.3)

where V =
[
v1 v2

]
and K =

[
κ1 0
0 κ2

]
are the matrices of the eigenvectors and the

curvatures.

For the special case of the three-dimensional Green’s function positioned at the
origin, the Hessian matrix is given as

HG(x) = − k

|x|



(
1− x2

|x|2
)

xy
|x|2

xz
|x|2

yx
|x|2

(
1− y2

|x|2
)

yz
|x|2

zx
|x|2

zy
|x|2

(
1− z2

|x|2
)
 (B.4)

For this matrix only the eigenvector, corresponding to λ3 is well-defined over the
spherical/umbilical wavefront, being the normal vector of the surface. Eigenvectors
v1 and v2 may be arbitrary orthogonal vector-pair in the tangent plane of the surface,
in the point of investigation x. The corresponding principal curvatures are κG1 (x) =
κG2 (x) = 1

|x| .

In the present treatise, when dealing with 2.5D problems, it is a standard prerequi-
sition that in the plane of investigation (z = 0) all the involved wavefields propagate
along the horizontal direction (kz(x, y, 0) ≡ 0). In this special case, the Hessian of the
phase function becomes

HP (x) =


φP
′′

xx (x, ω) φP
′′

xy (x, ω) 0

φP
′′

xy (x, ω) φP
′′

yy (x, ω) 0

0 0 φP
′′

zz (x, ω)

 , (B.5)

with the trivial eigenvector/principal direction v2 = [0, 0, 1]T, and the corresponding
principal curvature κP2 (x) = − 1

kφ
P ′′
zz (x, ω). Furthermore, considering that the eigen-

vector with a zero eigenvalue is given by v3 = k̂P (x) = [k̂Px (x), k̂Py (x), 0]T, and v1 is
orthogonal to v2 and v3, therefore v1 = [k̂Py (x), k̂Px (x), 0]T holds. Applying (B.3), the
elements of the Hessian matrix can be expressed as

HP (x) = −k


k̂Py (x)2κP1 (x) k̂Px (x)k̂Py (x)κP1 (x) 0

k̂Px (x)k̂Py (x)κP1 (x) k̂Px (x)2κP1 (x) 0

0 0 κP2 (x)

 . (B.6)
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In the aspect of the present treatise, the signature and the determinant of the
Hessian in the stationary position is of importance. In the followings, these properties
will be discussed when the SPA is applied for the Rayleigh integral.

B.1.2 Hessian for the SPA applied for the Rayleigh integral

Assume that the Rayleigh integral is written on the plane y = 0 for an arbitrary
sound field P , with the high frequency gradient approximation applied, reading as

P (x, ω) = 2
∫ ∞
−∞

jkPy (x0)P (x0, ω)G(x− x0, ω) dx0 dz0. (B.7)

The elements of the 3x3 Hessian of the integrand’s phase function (with suppressing
its space dependency) are given as

HP ·G
ij = HP

ij +HG
ij = ∂2

∂x0i∂x0j

(
φP (x0, ω) + φG(x− x0, ω)

)
, i, j = 1, 2, 3. (B.8)

The eigenvalues and eigenvectors of HP and HG are the principal curvatures and the
corresponding unit vectors of the target field and the Green’s function.

By definition, the stationary position for the integral is found where

∇x0 φ
P (x0, ω) = −∇x0 φ

G(x− x0, ω). (B.9)

Geometrically speaking, the stationary position x∗0(x) is found, where the normals of
the involved wavefronts coincide on the Rayleigh plane, i.e. where the wavefront of
P is tangential with the spherical wavefront of the Green’s function. Therefore, in the
stationary position the tangent planes of the involved wavefronts coincide.

Since the principal directions for the Green’s function’s wavefront are arbitrary,
orthogonal unit vector-pair in the tangent plane, in the stationary position they can be
chosen to coincide with the principal directions of HP . Therefore, at the stationary
point the eigenvectors of HP and HG coincide and their eigenvalues are additive. The
eigenvalues of the resultant matrix are therefore simply given as

λP ·G1 (x) = λP1 (x∗0(x)) + λG1 (x− x∗0(x)) = −k
(
κP1 (x∗0(x)) + κG1 (x− x∗0(x))

)
, (B.10)

λP ·G2 (x) = λP2 (x∗0(x)) + λG2 (x− x∗0(x)) = −k
(
κP2 (x∗0(x)) + κG2 (x− x∗0(x))

)
. (B.11)

λP ·G3 (x) = λP3 (x∗0(x)) + λG3 (x− x∗0(x)) = 0. (B.12)

In the aspect of the present thesis, it is important to investigate the local principal
curvatures and the principal radii of the wavefront of P at the evaluation point x, i.e.
how these quantities change over the propagation from the Rayleigh plane. According
to the SPA, P (x, ω) is obtained from the stationary value of the Rayleigh integral.
Therefore, curvature of P , measured at x is obtained as the eigenvalues (normalized
by −k) of the integrand’s Hessian, taken at the stationary point, given by

HP (x) = ∂2

∂xi∂xj
φP (x, ω) = ∂2

∂xi∂xj

(
φP (x∗0(x), ω) + φG(x− x∗0(x), ω)

)
. (B.13)
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First, the phase Hessian at the receiver position HP (x) is expressed. By applying the
chain rule, the elements of the Hessian can be written, as

HP
ij (x) = ∂

∂xj

(
∂x0k
∂xi

∂φP (x0k, ω)
∂x0k

+ ∂(xk − x0k)
∂xi

∂φG(xk − x0k, ω)
∂(xk − x0k)

)
=

∂2x0k
∂xi∂xj

(
∂φP (x0k, ω)

∂x0k
+ ∂φG(xkl − x0kl, ω)

∂(xk − x0k)

)
︸ ︷︷ ︸

=0

+

∂x0k
∂xi

∂x0l
∂xj

∂2φP (x0k, ω)
∂x0k∂x0l︸ ︷︷ ︸

HP
kl

+∂(xk − x0k)
∂xi

∂(xl − x0l)
∂xj

∂2φG(xkl − x0kl, ω)
∂(xk − x0k)∂(xl − x0l)︸ ︷︷ ︸

HG
kl

, (B.14)

where the first underbraced part equals zero due to the definition of the stationary
position. By introducing the matrix ∇x x0 for the rate of change of the stationary
position, with respect to the change in any coordinate of the evaluation point, defined
as

[∇x x0]lj = ∂x0l
∂xj

=
[
∂x∗0(x)
∂x

∣∣∣∣ ∂x∗0(x)
∂y

∣∣∣∣ ∂x∗0(x)
∂z

]
, (B.15)

the Hessian under consideration can be written in the matrix form

HP (x) = (∇x x0)THP (x0)(∇x x0) + (I−∇x x0)T HG(x− x0) (I−∇x x0) . (B.16)

In order to express the gradient of the stationary position (B.15), its definition (B.9)
is reconsidered:

∂

∂x0k
φP (x∗0(x), ω)− ∂

∂x0k
φG(x− x∗0(x), ω) = 0. (B.17)

Taking a further derivative with respect to xj with applying the chain rule results in

∂2

∂x0l∂x0k
φP (x∗0(x), ω)︸ ︷︷ ︸
HP
kl

∂x0l
∂xj

− ∂2

∂x0l∂x0k
φG(x− x∗0(x), ω)︸ ︷︷ ︸

HG
kl

∂

∂xj
(xl − x0l)) = 0, (B.18)

or written in a matrix form

HP (x0)∇x x0 −HG(x− x0) (I−∇x x0) = 0 →
(
HP + HG

)
∇x x0 = HG. (B.19)

In order to invert the matrix HP + HG, the involved matrices are expressed in the
form, given in (B.3), i.e. by transforming it into its eigenspace:

V
(
KP + KG

)
VT · ∇x x0 = VKGVT, (B.20)

where KP and KG are 2x2 diagonal matrices of the curvatures of P and G at the sta-
tionary point, and V is a 3x2 matrix, consisting of the two corresponding eigenvectors.
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Since the two columns of V are orthonormal, and the inverse of a 2x2 diagonal matrix
can be calculated easily, therefore the gradient of the stationary position reads as

∇x x0 = V KG

KP + KG
VT = V

 κG1
κP1 +κG1

0

0 κG2
κP2 +κG2

VT, (B.21)

and obviously

I−∇x x0 = V KP

KP + KG
VT (B.22)

holds.

Finally, the Hessian at the evaluation point, given by (B.16) is expressed in the
same eigenspace with HP = −kVKPVT and HG = −kVKGVT. Exploiting that
VTV = I leads to

HP (x) = −kV KPKG

KP + KG
VT = −kV

 κP1 κ
G
1

κP1 +κG1
0

0 κP2 κ
G
2

κP2 +κG2

VT = (B.23)

= −kV

 1
ρP1 +ρG1

0

0 1
ρP2 +ρG2

VT (B.24)

This result states, that if the Rayleigh integral describes a sound field at x, then the
principal curvatures and radii of the field can be written as

Curvature

change over

propagation

κP (x) = κP (x∗0(x))κG(x− x∗0(x))
κP (x∗0(x)) + κG(x− x∗0(x) ,

ρP (x) = ρP (x∗0(x)) + ρG(x− x∗0(x)). (B.25)

Furthermore, the corresponding eigenvectors, i.e the direction of the largest and small-
est curvature on the wavefront does not change along the direction of propagation.

Finally, the signature and the determinant of the Hessian’s submatrices is investi-
gated

Evaluation of the Rayleigh integral along the xz-dimensions: In case the
Rayleigh integral is approximated by the SPA with respect to both x- and z-directions,
the Hessian for the SPA may be expressed from (B.8), by removing the rows and
columns, that contain the y derivatives, hence by forming its 2x2 principal submatrix.
By removing the same rows and columns from the spectral description, based on (B.3),
the Hessian of the integrand’s phase can be expressed in the stationary point as

HP ·G(x∗0(x)) = −k

 v2
1x

(
κP1 + κG1

)
+ v2

2x

(
κP2 + κG2

)
v1xv1z

(
κP1 + κG1

)
+ v2xv2z

(
κP2 + κG2

)
v1xv1z

(
κP1 + κG1

)
+ v2xv2z

(
κP2 + κG2

)
v2

1z

(
κP1 + κG1

)
+ v2

2z

(
κP2 + κG2

)
 ,

(B.26)
with v1 = [v1x, v1y, v1z]T, v2 = [v2x, v2y, v2z]T, κP = κP (x∗0(x)), κG = κG(x−x∗0(x)).
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The eigenvalues of this submatrix cannot be expressed in a general way, however
the interlacing inequalities of principal submatrices ensure that they have the same sign as
λ2 and λ3. The signature of the Hessian is therefore

• assuming a divergent sound field, the eigenvalues of the Hessian are negative
(the curvatures are positive) and the signature is given by (-2).

• assuming a convergent sound field with both principal curvature being negative
on the Rayleigh plane, the signature of the Hessian depends on the evaluation
position x. On the parts of the space, where the curvature of wavefront P is
greater than that of the Green’s function, the eigenvalues of the Hessian are
positive and its signature is 2. On other parts of the space, the signature is (-2).

In practice, it means that if the Rayleigh integral describes a sound field, propagating
towards a focus point, then the signature for an evaluation point between the Rayleigh
plane and the focus point is given by 2, and in other parts of the space, where the
waves already diverge after passing the focus point, the signature is -2.

The determinant of of the Hessian is given by

det HP (x∗0)(x) = −k
(
κP1 + κG1

) (
κP2 + κG2

)
(v2xv1z − v1xv2z)2 . (B.27)

By the definition of the cross product of vectors, the term (v2xv1z − v1xv2z) is the sec-
ond coordinate of the vector, being perpendicular to v1 and v2, i.e. of the normalized
local wavenumber vector:

det HP (x∗0(xref)) = −k
(
κP1 (x∗0(x)) + κG1 (x− x∗0(x))

) (
κP2 (x∗0(x)) + κG2 (x− x∗0(x))

)
k̂Py (x∗0(x))2.

(B.28)
This finding is not limited to the Rayleigh integral: if the Kirchhoff-Helmholtz inte-
gral is written onto a smooth, convex surface with the surface’s curvature being
significantly smaller than the wavefront curvature, then the surface can be con-
sidered locally plane, and the above given description holds with the substitution
k̂Py (x∗0(x))→ k̂Pn (x∗0(x)), being the normal component of the local wavenumber vector.
This statement is a consequence of the invariance of the determinant with respect to a
linear transform.

The same formulation holds for the evaluation of a 2D Fourier integral. In this case
the determinant reads as

det HP (x∗0(x)) = −1
k
κP1 (x∗0(kx, kz))κP2 (x∗0(kx, kz))k2

y. (B.29)

Evaluation of the Rayleigh integral along the z-dimension: In the specific case of
the derivation of the 2.5D Rayleigh integral, only the integration along the z-dimension
is approximated and the Hessian is simply given by φ′′zz(x0) = φP

′′
zz (x0) + φG

′′
zz (x− x0).

Requiring kz(x) ≡ 0 to be satisfied in the horizontal plane of investigation guarantees
that the second derivative is the principal curvature itself, thus around the stationary
position

φ′′zz(x∗0(x)) = −k
(
κP2 (x∗0(x)) + κG2 (x− x∗0(x))

)
. (B.30)

holds.
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C.1 Wavenumber vector of a point source pair

Given a point source pair, positioned symmetrically to the y-axis x1 = [x1, y1, 0]T,
x2 = [−x1, y1, 0]T, the radiated field reads as

P (x, ω) = A1
4π

e−jω
c
|x−x1|

|x− x1|
+ A2

4π
e−jω

c
|x−x2|

|x− x2|
, (C.1)

with the amplitude factors denoted byA1 andA2. Applying Euler’s formula the phase
function of the resultant field becomes

−φP (x, ω) = arctan
A1
r1

sin (kr1) + A1
r2

sin (kr2)
A1
r1

cos (kr1) + A2
r1

cos (kr2)
, (C.2)

with r1(x) = |x− x1| and r2(x) = |x− x2| and k = ω
c . The arguments of the distance

functions are suppressed, for the sake of brevity.

The gradient of the expression, i.e. the local wavenumber vector, can be calculated
by using that (

arctan f
g

)′
= f ′g − fg′

f2 + g2 , (C.3)

with derivatives given here by

f ′ = A1r
′
1
kr1 cos (kr1)− sin (kr1)

r2
1

+A2r
′
2
kr2 cos (kr2)− sin (kr2)

r2
2

(C.4)

g′ = A1r
′
1
−kr1 sin (kr1)− cos (kr1)

r2
1

+A2r
′
2
−kr2 sin (kr2)− cos (kr2)

r2
2

, (C.5)

Note that for sake of transparency, f ′ denotes the gradient operator, expressing both
the x- and y-derivative of the phase field. Several simplifications lead to the gradient
expression

−∇x φ
P (x) = kP (x) =

k
(
r′1A

2
1r

2
2 + r′2A

2
2r

2
1 +A1A2r1r2(r′1 + r′2) cos (k∆r)

)
−A1A2(r′1r2 − r′2r1) sin (k∆r)

r2
1r

2
2A

P (x, ω)2 ,

(C.6)
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Figure C.1. The length of
the local wavenumber vec-
tor of a stereo point source
pair, normalized by k = ω

c .
The point sources are posi-
tioned with a base angle of
φ0 = 30◦, with their dis-
tances from the origin be-
ing R0 = 2.5 m. The gain
factors A1, A2 were selected,
so that the angle of the lo-
cal wavenumber vector at
the origin would equal to
φp = 10◦.

with ∆r = r1 − r2 and AP (x, ω) denoting the amplitude of the resulting field, with
omitting the normalizing factor 1/4π reading as

AP (x, ω) =

√
A2

1r
2
2 +A2

2r
2
1 + 2A1A2r1r2 cos (k∆r)

r1r2
. (C.7)

These expressions describe the interference pattern of the point source pair over the
entire listening area. Note that the local wavenumber vector contains the amplitude
of the field in its denominator. Due to destructive interference the amplitude of the
field vanishes over particular spatial locations. At these positions the phase changes
rapidly, resulting in the increasing of the local wavenumber vector length. Also,
between the two point sources the standing waves are present. The numerator of
the local wavenumber vector expression vanishes at one particular position, where
only a standing wave component is present. Around that position the length of the
wavenumber vector decreases to zero. This phenomena can be investigated in Figure
C.1, depicting the normalized local wavenumber vector length, in a standard stereo
setup.

From the aspect of stereophonic applications, only the stereo axis is of interest,
where r1 = r2 holds. Due to the symmetry of the geometry, here ∂

∂xr1 = − ∂
∂xr2,

∂
∂y r1 = ∂

∂y r2 and ∂
∂z r1 = ∂

∂z r2 hold. finally, the derivatives of the phase function are
given along y = 0 as

−φP ′x (0, y, 0, ω) = kr′x
A1 −A2
A1 +A2

(C.8)

−φP ′y (0, y, 0, ω) = kr′y, (C.9)

and the amplitude factor reads

AP (0, y, 0, ω) = A1 +A2
r

. (C.10)
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D.1 Asymptotic approximation of the explicit driving
function

Asymptotic spectral driving function: The derivation starts from the 2.5D ex-
plicit driving function in the wavenumber domain given by (4.45),

D̃(kx, y, 0, ω) = P̃ (kx, y, 0, ω)
G̃(kx, y, 0, ω)

, (D.1)

ensuring perfect synthesis along fixed line. In the following, for the sake of brevity
and transparency ω and z dependencies are suppressed, the latter since the driving
function is defined at z = 0. By definition, the wavenumber content of the involved
quantities are obtained via a forward Fourier transform, with the involved sound
fields expressed by their polar form reading as

P̃ (kx, y) =
∞∫
−∞

AP (x, y) ejφP (x,y) ejkxxdx, (D.2)

G̃(kx, y) =
∞∫
−∞

AG(x, y) ejφG(x,y) ejkxxdx. (D.3)

The spectra can be approximated by using the SPA: Under high frequency assumptions
the Fourier integrals may be approximated by evaluation around their stationary point
x∗P (kx) and x∗G(kx) where their phase derivatives vanish. The stationary positions are
defined as

∂

∂x

(
φP (x, y) + kxx

)∣∣∣∣
x=x∗P (kx)

= 0 → kPx (x∗P (kx), y) = kx

∂

∂x

(
φG(x, y) + kxx

)∣∣∣∣
x=x∗G(kx)

= 0 → kGx (x∗G(kx), y) = kx. (D.4)

Since it is assumed that kPz (x, y) = kGz (x, y) = kz = 0 holds in the plane of investiga-
tion, therefore, the stationary positions are found where the local propagation direction
of the virtual field and the Green’s function matches to that of a plane wave, defined
by kx. The properties of the involved wavefields at these positions will dominate the
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corresponding Fourier integrals. Hence, the forward transform defines two particular
positions in the space, linked together via the common spectral wavenumber.

Having defined the stationary positions, the forward Fourier transforms can be
evaluated by the SPA. With accounting for the negative second phase-derivatives—
since both the virtual sound field and the Green’s function are diverging—their spectra
can be approximated as [Tra+14, Ch. 5]

P̃ (kx, y) ≈
√

2π
j |φP ′′xx (x∗P (kx), y)|A

P (x∗P (kx), y) ejφP (x∗P (kx),y) ejkx·x∗P (kx), (D.5)

G̃(kx, y) ≈
√

2π
j |φG′′xx (x∗G(kx), y)|A

G(x∗G(kx), y) ejφG(x∗G(kx),y) ejkx·x∗G(kx), (D.6)

and the asymptotic approximation of the explicit driving function on a given spectral
component reads as

Asymptotic

spectral driv-

ing function

D̃(kx, y) ≈
√
φG′′xx (x∗G(kx), y)
φP ′′xx (x∗P (kx), y)

P (x∗P (kx), y)
G(x∗G(kx), y) ejkx(x∗P (kx)−x∗G(kx)). (D.7)

Hence, the spectrum can be be expressed by evaluating the target pressure and the
Green’s function at evaluation points where the local propagation direction of the
involved fields coincides with that of the actual spectral plane wave.

SPA of the inverse Fourier transform: In order to express the driving function
in the spatial domain the inverse Fourier transform of the asymptotic spectrum (D.7),
reading

D(x0, y) = 1
2π

∞∫
−∞

√
φG′′xx (x∗G(kx), y)
φP ′′xx (x∗P (kx), y)

P (x∗P (kx), y)
G(x∗G(kx), y) ejkx(x∗P (kx)−x∗G(kx)) e−jkxx0dkx (D.8)

is approximated by the stationary phase method, with the phase function under
investigation given by

Φ(kx) = φP (x∗P (kx), y)− φG(x∗G(kx), y) + kx x
∗
P (kx)− kx x∗G(kx)− kxx0. (D.9)

As it was discussed in Section 3.3.3, in the spatial inverse Fourier transform of an
arbitrary wavefield spectrum P̃ each wavenumber component kx will dominate one
spatial position x0, where the actual wavenumber component kx(x0) coincides with
the local wavenumber of the sound field kPx (x0). For the present case this wavenumber
is found as the stationary phase wavenumber k∗x(x0) of the integral (D.8) [Tra+14].

The derivative of the spectral phase function (D.9) can be evaluated by applying
the chain rule, resulting in

∂

∂kx
Φ(kx) = x∗

′
P,kx(kx)

(
φP
′

x (x∗P (kx), y) + kx
)

︸ ︷︷ ︸
=0

−

− x∗′G,kx(kx)
(
φG
′

x (x∗G(kx), y) + kx
)

︸ ︷︷ ︸
=0

+x∗P (kx)− x∗G(kx)− x0, (D.10)
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x

y

x0

kP (x∗P , y) =
kG(x∗P − x0, y)

x∗P (x0)

Figure D.1. Illustration of the eval-
uation position x∗P (x0) (and x∗G(x0))
as the function of x0. For a given
SSD position x0 the stationary posi-
tion is found on a given reference line
y = const where the virtual field prop-
agation direction coincides with that
of the Green’s function, translated
into x0. Furthermore, at x∗P (x0) the lo-
cal principle radii of the Green’s func-
tion positioned at y = 0, is always
smaller, than that of a field, generated
by a source distribution at y < 0, i.e.
that of the virtual field.

where x∗
′
kx

(kx) is the rate of change of the forward transform stationary positions with
respect to the change of the spectral wavenumber. The bracketed terms cancel out
due to the definition of the stationary points for the forward transform (D.4). The
stationary wavenumber k∗x(x0) is then found where

∂

∂kx
Φ(kx)

∣∣∣∣
kx=k∗x(x0)

= x∗P (k∗x(x0))− x∗G(k∗x(x0))− x0 = 0 (D.11)

holds. This definition relates the evaluation points x∗P and x∗G directly to the actual SSD
coordinate x0, therefore, the dependency on the intermediate stationary wavenumber
k∗x may be omitted (i.e., x∗P (k∗x(x0)) → x∗P (x0) and x∗G(k∗x(x0)) → x∗G(x0) may be
written).

The definitions for the forward and inverse transform stationary points completely
define the evaluation points x∗P , x∗G for a given SSD position x0 independently of the
spectral wavenumber: combining (D.4) with (D.11), for an arbitrary position x0 the
evaluation points along a fixed y are found, where

2.5D SDM

evaluation

position

kPx (x∗P (x0), y) = kGx (x∗P (x0)− x0, y) (D.12)

is satisfied.

This result states that for a given SSD coordinate x0 the evaluation point x∗P is
found on the reference line where the local propagation direction of the target field
P coincides with that of a point source positioned at [x0, 0, 0]T. This principle is
depicted in Figure D.1.

Having found the stationary position for (D.8) one still needs the phase function’s
second derivative and its sign around the stationary position in order to apply the SPA.
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The second derivative is obtained by a further differentiation of (D.10) with respect to
kx

∂2

∂k2
x

Φ(kx) =

x∗
′′
P,kxkx(kx) ·

(
φP
′

x (x∗P (kx), y) + kx
)

︸ ︷︷ ︸
=0

+x∗′P,kx(kx) ·
(
x∗
′
P,kx(kx)φP ′′xx (x∗P (kx), y) + 2

)
−

x∗
′′
G,kxkx(kx) ·

(
φG
′

x (x∗G(kx), y) + kx
)

︸ ︷︷ ︸
=0

−x∗′G,kx(kx) ·
(
x∗
′
G,kx(kx)φG′′xx (x∗G(kx), y) + 2

)
.

(D.13)

The required rate of change of the stationary positions x∗
′
P,kx

(kx) and x∗
′
G,kx

(kx) can be
obtained by differentiating their definition (D.4) with respect to kx, yielding

x∗
′
P,kx(kx) = − 1

φP ′′xx (x∗P (kx), y) , x∗
′
G,kx(kx) = − 1

φG′′xx (x∗G(kx), y) . (D.14)

Thus the required second derivative is given by

∂2

∂k2
x

Φ(kx) = φP
′′

xx (x∗P (kx), y)− φG′′xx (x∗G(kx), y)
φP ′′xx (x∗P (kx), y) · φG′′xx (x∗G(kx), y) = ρPh (x∗P (kx), y)− ρGh (x∗G(kx), y)

k k̂P2
y (x∗P (kx), y)

, (D.15)

with ρPh and ρGh being the horizontal principal radii of the target field and the Green’s
function, expressed by applying (B.6). Obviously, for any source distribution behind
the SSD its horizontal principal radius is larger at y > 0 than that of the stationary
secondary point source and the sign of (D.15) is positive.

These results now may be substituted back into the SPA (3.28) of the inverse
transform (D.8). For the sake of brevity in the following the evaluation point is
denoted by x∗P → x∗. Denoting the stationary position by xref(x0) = [x∗(x0), y, 0]T

the resulting driving function is formulated as

D(x0, ω) ≈

√√√√ |φG′′xx (xref(x0)− x0, ω)|2

|φP ′′xx (xref(x0), ω)− φG′′xx (xref(x0)− x0, ω)|

√
j

2π
P (xref(x0), ω)

G(xref(x0)− x0, ω) ,

(D.16)
where kPx (xref(x0)) = kGx (xref(x0)− x0) holds.
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E.1 Farfield approximation of planar radiators

Assume an infinite rigid surface, located along the y = 0 plane. Over the surface
only a small extent ∂Ωp moves/vibrates with a pre-defined normal velocity profile
Vy(x, 0, z, ω), while on other parts of the plane the surface velocity is identically zero.
This geometry is termed as a baffled radiator. The radiated field at an arbitrary receiver
position x = [x, y > 0, z]T is given by the Rayleigh I integral 2.66 written in terms of
the normal velocity

P (x, ω) =
∫∫ ∞
−∞

2jωρ0Vy(x0, ω)G(x− x0, ω) dx0 dz0, (E.1)

with the surface point being x0 = [x0, 0, z0]T.

Let xc be the geometric center of the radiator and approximate the Green’s function
by it’s local plane wave approximation around this center, as introduced by (3.15).
The asymptotic approximation of the Green’s function reads as

G(x− x0, ω) ≈ G(x− xc, ω)e−j〈kG(x−xc)·(x0−xc)〉. (E.2)

x y

z

x

∂Ωp

θ φ

Figure E.1. Geometry for the
derivation of the field generated
by a baffled radiator. A small
extent of the radiator vibrates
with a prescribed normal veloc-
ity given by Vy(x, 0, z, ω). The
center of the radiator is chosen
to be the origin.
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With substituting this expression into the Rayleigh integral the Green’s function can
be collected from the integral, yielding

P (x, ω) = G(x− xc, ω)
∫∫ ∞
−∞

2jωρ0Vy(x0, ω)e−j〈kG(x−xc)·(x0−xc)〉 dx0 dz0. (E.3)

For the sake of simplicity, the center of the radiator is chosen to be the origin (xc =
[0, 0, 0]T). By expanding the inner product the integrand takes the form

P (x, ω) = 2jωρ0G(x, ω)
∫∫ ∞
−∞

Vy(x0, ω)e−j(kGx (x)·x0+kGz (x)·z0) dx0 dz0. (E.4)

The right side can be recognized as a double spatial Fourier integral of the surface
velocity distribution taken at kGx (x), kGz (x), multiplied by the field of a point source at
the center of the radiator. Hence, the radiated field can be written as

P (x, ω) = 2jωρ0 · Ṽy(kGx (x), 0, kGz (x), ω) ·G(x, ω) (E.5)

The planar radiator is, therefore, modeled in its farfield as a directive point source.
Once the 2D spectrum of the velocity distribution is known, the directivity character-
istics can be obtained by evaluating the spectrum at the local wavenumber vector of a
point source located at the center of the radiator, measured at the given receiver point.

The local wavenumber vector of the point source in Descartes and spherical coor-
dinates are given as

kG(x) = k ·


x
|x|

y
|x|

z
|x|

 = k ·


sinφ cos θ

cosφ

sinφ sin θ

 , (E.6)

with the spherical angles illustrated in Figure E.1. The spherical form of the planar
radiator’s field reads as

P (r, φ, θ, ω) = 2jωρ0 · Ṽy(k sinφ cos θ, 0, k sinφ sin θ, ω)︸ ︷︷ ︸
Θ(φ,θ,ω)

·G(r, φ, θ, ω) (E.7)

where Θ(φ, θ, ω) is termed the directivity function.

As a simple example, dynamic loudspeakers are often modeled as baffled circular
pistons with the velocity distribution given as

Vy(x, 0, z, ω) =

V0 if x2 + z2 ≤ r2
0

0 everywhere else,
(E.8)

where r0 is the radius of the piston. Hence, each point over the rigid piston’s surface
moves in-phase, which is a fair approximation for loudspeakers at frequencies at
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which the modal behaviour of the membrane is negligible.1 The 2D Fourier transform
of this unit circular disk with radius r0 is given by

Ṽy(kx, 0, kz, ω) = 2
J1
(
r0
√
k2
x + k2

z

)
r0
√
k2
x + k2

z

, (E.9)

with J1(·) being the first order Bessel function. Since kGx (x)2 + kGz (x)2 =
k2 (sin2 φ cos2 θ + sin2 φ sin2 θ

)
= k2 sin2 φ, the field generated by the circular piston is

then approximated by the formula

P (r, φ, θ, ω) = 2jωρ0 · 2
J1 (kr0 sinφ)
kr0 sinφ︸ ︷︷ ︸
Θ(φ,ω)

G(r, φ, θ, ω). (E.10)

Obviously, a radiator with circular symmetry radiates with a circularly symmetric
directivity pattern as well, being independent of theta θ.

In the aspect of sound field synthesis, the directivity function in the horizontal
plane containing the directive point source (i.e. at θ = 0) is of special interest. In this
plane the directivity yields

Θ(φ, ω) = Ṽy(kGx (x), 0, kGz (x) ≡ 0, ω) = Fx
{∫ ∞
−∞

Vy(x, 0, z, ω)dz
}
kx=k sinφ

, (E.11)

hence a horizontal „strength function” may be defined as
∫∞
−∞ Vy(x, 0, z, ω)dz charac-

terizing the directivtiy in the horizontal plane. This fact has been exploited in order to
design spatial low-pass filters in previous studies [Ver97].

1At high frequencies mode shapes of a circular membrane can be expanded into a Fourier-Bessel series
from which the directivity function can be directly expressed. The present result is the zeroth order
term of this expansion [Wil99].
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F.1 Spectral representation of non-stationary
convolutions

Assume the following non-stationary convolution

g(t) =
∫ ∞
−∞

h(t0, t− t0) f(t0) dt0, (F.1)

with h(t0, t − t0) denoting the time-variant convolution kernel. Terms f(t0) and
h(t0, t− t0) can be expressed in terms of the inverse transform of their spectra, given
as

f(t0) = 1
2π

∫ ∞
−∞

F (ω0) ejω0t0 dω0, (F.2)

h(t0, t− t0) = 1
2π

∫ ∞
−∞

H(t0, ω1) ejω1(t−t0) dω1. (F.3)

Note that in case of applying the non-stationary convolution in order to calculate the
field of a moving source as presented in Chapter 5, ω0 represents the source frequency,
while ω1 will turn out to represent the perceived angular frequency.

By substituting the above formulations into (F.1), the non-stationary convolution
can be rewritten into the form

g(t) = 1
2π

∫∫ ∞
−∞

H(t0, ω1) ejω1(t−t0) dω1f(t0)dt0, (F.4)

g(t) = 1
(2π)2

∫∫∫ ∞
−∞

H(t0, ω1)ejω1(t−t0) dω1 F (ω0) ejω0t0 dω0 dt0. (F.5)

Taking the temporal forward Fourier transform of the latter expression yields

G(ω) = 1
(2π)2

∫∫∫ ∞
−∞

H(t0, ω1)ejω1(t−t0) dω1

∫ ∞
−∞

F (ω0) ejω0t0 dω0 dt0 e−jωt dt. (F.6)

Reversing the order of integration and rearrangement results in

G(ω) = 1
(2π)2

∫∫∫ ∞
−∞

H(t0, ω1)F (ω0)e−j(ω1−ω0)t0
∫ ∞
−∞

e−j(ω−ω1)tdt︸ ︷︷ ︸
2πδ(ω−ω1)

dω1 dω0 dt0. (F.7)
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Integration with respect to ω1 sifts out ω1 = ω:

G(ω) =
∫∫ ∞
−∞

H(t0, ω)F (ω0) e−j(ω−ω0)t0 dω0 dt0. (F.8)

Finally, it is exploited that in (F.8)

H̃(ω − ω0, ω) =
∫ ∞
−∞

H(t0, ω) e−j(ω−ω0)t0 dt0, (F.9)

describes the 2D spectrum of the 2D impulse response, where H̃(w1, w2) =
Ft1,t2 {h(t1, t2)}. Therefore, as a final result

G(ω) =
∫ ∞
−∞

H(ω − ω0, ω)F (ω0)dω0 (F.10)

is obtained. Hence, a non-stationary convolution with respect to the second variable of
the time domain yields a non-stationary convolution in the first variable of its spectral
representation.
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G.1 Representation of sources, moving on straight
trajectories

In the body text of this dissertation only the wavenumber description of source
moving uniformly parallel with the x-axis is discussed. Here closed form expression
are given in the spatio-temporal, time-frequency and in the wavenumber domain
for the sound field generated by a source moving uniformly along arbitrary directed
straight trajectories. The formulations utilize the analytical expression for a source
moving parallel with the x-axis with a corresponding rotation of coordinate system.

Assume a source with the trajectory time history given by xs(t) = [v · t, 0, 0]T, i.e.
moving along the x-axis, oscillating at the angular frequency ω0. The generated sound
field in the spatio-temporal domain reads

Pm(x, t, ω0) = 1
4π

ejω0(t−τ(x,t)))

∆(x, t) , (G.1)

with

∆(x, t) =
√

(x− v · t)2 + (y2 + z2)(1−M2), (G.2)

τ(x, t) = 1
c

M(x− v · t) + ∆(x, t)
(1−M2) . (G.3)

The angular frequency content of the radiated field is given by (5.58), reading

Pm(x, ω, ω0) = 1
v
G̃(ω − ω0

v
, y, z, ω)e−jω−ω0

v
x. (G.4)

These formulations can be applied in order to express the corresponding repre-
sentations of sources moving parallel with the z = 0 plane and arriving to the x-axis
under an angle of inclination ϕ. This is performed by the rotation of the receiver
coordinate system so that the new coordinate system x′ = [x′, y′, z′]T is defined by
the transform

x′(x) =


x′

y′

z′

 =


cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1



x− xs

y − ys

z − zs

 . (G.5)
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(a) (b)

vs

x
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ϕ ϕ

vs

x

y

x′

y′

Figure G.1. Receiver coordinate transform in order to derive the field of a point source
moving along an arbitrary directed straight trajectory.

As it is illustrated in Figure G.1, in the shifted and rotated coordinate system the
source is located in the origin at t = 0 and travels parallel to the x′-axis, thus the
radiated field is written in the time domain as

Pm(x, t, ω0) = 1
4π

ejω0(t−τ(x′,t))

∆(x′, t) . (G.6)

This description of sources with arbitrary linear trajectories is equivalent with the
approach proposed in [AS08c].

The corresponding frequency domain formulation is obtained with the same
rotation as

Pm(x, ω, ω0) = 1
v
G̃(ω − ω0

v
, y′, z′, ω)e−jω−ω0

v
x′ . (G.7)

The wavenumber domain representation is obtained by the spatial Fourier trans-
form of (G.7), taken along the x-axis. According to the convolution theorem the
wavenumber content is written as a spectral convolution

P̃m(kx, y, z, ω, ω0) = 1
v
Fx
{
G̃(ω − ω0

v
, y′, z′, ω)

}
∗kx Fx

{
e−jω−ω0

v
x′
}
, (G.8)

All x′, y′ and z′ depend on the x-coordinate, as it is given by (G.5). For the sake
of simplicity, the spectrum is only investigated in the most relevant plane, at z =
0. The first term on the right-hand side may be either evaluated by making use
of the expression [GR07, (6.677,9.)], or by applying directly the angular spectrum
representation of the Green’s function given in (2.1) together with the Fourier similarity
and the shift theorems, yielding

Fx
{
G̃(ω − ω0

v
, y′, z′, ω)

}
= 1
| sinϕ|G̃(ω − ω0

v
,− kx

sinϕ, z) ejkx sinϕxs+cosϕ(y−ys)
sinϕ . (G.9)

The right term in the spectral convolution is obtained from the spectrum of an expo-
nential using the shift theorem, resulting in

Fx
{

e−jω−ω0
v

x′(x)
}

= 2π δ(kx − cosϕω − ω0
v

) e−jω−ω0
v

(sinϕ(y−ys)−cosϕxs). (G.10)
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The convolution of the two expressions sifts out kx = kx − cosϕω−ω0
v , resulting in the

final expression for the wavenumber content of the moving source

P̃m(kx, y, z, ω, ω0) =

= 2π
v| sinϕ|G̃(ω − ω0

v
,
cosϕω−ω0

v − kx
sinϕ , z) ejkx sinϕxs+cosϕ(y−ys)

sinϕ e−jω−ω0
v

y−ys
sinϕ . (G.11)

The angular spectrum representation is given by a further Fourier transform of the
Green’s function with respect to the z-dimension

P̃m(kx, y, kz, ω, ω0) =

= 2π
v| sinϕ|G̃(ω − ω0

v
,
cosϕω−ω0

v − kx
sinϕ , kz) ejkx sinϕxs+cosϕ(y−ys)

sinϕ e−jω−ω0
v

y−ys
sinϕ . (G.12)

These latter two wavenumber representations can be proven to converge into a Dirac
distribution in kx as the inclination angle converges to zero ϕ→ 0, as given by (5.60)
and (5.61).
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