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The Acoustical Society of America

On 27 December 1928 a group of scientists and engineers met at Bell Telephone
Laboratories in New York City to discuss organizing a society dedicated to the field
of acoustics. Plans developed rapidly, and the Acoustical Society of America (ASA)
held its first meeting on 10–11 May 1929 with a charter membership of about 450.
Today, ASA has a worldwide membership of 7000.

The scope of this new society incorporated a broad range of technical areas
that continues to be reflected in ASA’s present-day endeavors. Today, ASA serves
the interests of its members and the acoustics community in all branches of
acoustics, both theoretical and applied. To achieve this goal, ASA has established
technical committees charged with keeping abreast of the developments and needs
of membership in specialized fields, as well as identifying new ones as they develop.

The Technical Committees include acoustical oceanography, animal bioacous-
tics, architectural acoustics, biomedical acoustics, engineering acoustics, musical
acoustics, noise, physical acoustics, psychological and physiological acoustics,
signal processing in acoustics, speech communication, structural acoustics and
vibration, and underwater acoustics. This diversity is one of the Society’s unique
and strongest assets since it so strongly fosters and encourages cross-disciplinary
learning, collaboration, and interactions.

ASA publications and meetings incorporate the diversity of these Technical
Committees. In particular, publications play a major role in the Society. The Journal
of the Acoustical Society of America (JASA) includes contributed papers and
patent reviews. JASA Express Letters (JASA-EL) and Proceedings of Meetings on
Acoustics (POMA) are online, open-access publications, offering rapid publication.
Acoustics Today, published quarterly, is a popular open-access magazine. Other key
features of ASA’s publishing program include books, reprints of classic acoustics
texts, and videos. ASA’s biannual meetings offer opportunities for attendees to share
information, with strong support throughout the career continuum, from students
to retirees. Meetings incorporate many opportunities for professional and social
interactions, and attendees find the personal contacts a rewarding experience. These
experiences result in building a robust network of fellow scientists and engineers,
many of whom become lifelong friends and colleagues.

From the Society’s inception, members recognized the importance of developing
acoustical standards with a focus on terminology, measurement procedures, and
criteria for determining the effects of noise and vibration. The ASA Standards
Program serves as the Secretariat for four American National Standards Institute
Committees and provides administrative support for several international standards
committees.

Throughout its history to present day, ASA’s strength resides in attracting the
interest and commitment of scholars devoted to promoting the knowledge and
practical applications of acoustics. The unselfish activity of these individuals in the
development of the Society is largely responsible for ASA’s growth and present
stature.



To my wife,
Penelope



Foreword

The first edition of Acoustics: An Introduction to Its Physical Principles and
Applications by Allan D. Pierce was published by McGraw-Hill in 1981. I was
in my third year of graduate school at the time, and my research was becoming
increasingly focused in the area of physical acoustics. Even as a neophyte, I
recognized that Pierce’s book was something special. While decades later my
teaching and research continue to be influenced by his scholarly presentation of
the subject matter—and continuously more so with time as I am able to more
fully appreciate the nuances of his physical insights and mathematical rigor—what
attracted my attention as a graduate student were the ubiquitous and extended
footnotes in his book calling attention to seminal work. Pierce explains in the
preface to his first edition that “Few readers will have the time to browse through
the early archival literature on the subject” and then adds that “often (especially so
with Rayleigh) the person who conceived an idea and who said it first said it best.”
So very true, on both counts.

Indeed, R. Bruce Lindsay, one of the premier historians in acoustics, went one
step further when he argued in his excellent review of the first edition [J. Acoust.
Soc. Am. 70, 1548 (1981)] that “Students have a right and probably an obligation
to know the historical origins of the basic acoustical principles discussed in a
book of this kind, and the author has answered this with a profusion of historical
references, mainly in the form of footnotes closely connected with the subjects
in question, rather than using the more customary device of a bibliography at the
end of each chapter.” Pierce is the consummate scholar, and his commitment to
providing historical context comes as no surprise to anyone who has attended his
presentations at meetings of the Acoustical Society of America (ASA). Virtually
without exception they contain photographs of pioneers in the field, often with
cartoons and speech balloons memorably highlighting their contributions to science.

Subsequently as a young assistant professor what attracted my attention to the
second edition of Pierce’s book, published by the ASA in 1989, was the addition
of an appendix providing hints and answers to the problems. Pierce notes in the
preface to the first edition that “None of the problems are of the ‘plug-in’ variety,”
which is something of an understatement. Prior to the publication of the second
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x Foreword

edition, I approached Pierce at an ASA meeting and started to ask if he would
consider making his homework solutions available. He interrupted me before I could
complete my question, remarking that he was becoming disappointed by faculty
he felt should be capable of solving the problems themselves, after which he said
“What was it you wanted to ask me?” I quickly changed the subject!

Pierce thus has very high standards, and the second edition of his book soon
became the best seller among numerous books on acoustics that were reprinted
by the ASA, many of which are considered classics. The present third edition
has been reformatted, but apart from minor corrections, the content is unaltered.
Since in recent years Pierce’s book may well be the best seller in physical
acoustics worldwide, it seems fitting that his third edition, 38 years after his first
edition, would be published on the centennial of Lord Rayleigh’s passing in 1919.
Rayleigh’s book, The Theory of Sound, is the gold standard for physical acoustics.

Producing a treatise on physical acoustics such as Pierce’s scholarly opus does
not, like sound itself, occur in a vacuum. He has distinguished himself as an
extraordinary researcher in acoustics, despite the fact that he was not originally
trained in acoustics. His doctoral research at MIT was in the field of quantum
mechanics. Not until after he graduated from MIT, when he went to work for the
prestigious RAND Corporation, was he introduced to acoustics when tasked with
modeling atmospheric propagation of infrasound produced by nuclear explosions.
That happenstance but fortuitous circumstance launched an intense, lifelong passion
for acoustics that continues to this day.

Pierce’s contributions to the theory of acoustics span at least half of the currently
14 subdisciplines of acoustics for which the ASA has established individual
technical committees. In general, he is known for his fundamental research on
the mechanics of waves, acoustics, and structural vibrations. Specific areas of
research have included atmospheric acoustics, sonic booms, interaction of sound
with structures, waves on shells immersed in fluid, diffraction and scattering of
sound, mechanics of marine sediments, and noise control. Particularly influential
contributions to the theory of sound include his adiabatic approximation for
propagation in modes of range-dependent waveguides, models for diffraction over
barriers with finite impedance, and variational methods in acoustics, to name just
a few. His breadth of research experience contributes substantially to the physical
intuition communicated to readers of his book. Yet despite citing more than 700
different authors in his book, Pierce did not refer to a single publication with his
own name on it.

Within academia, Pierce may be unique in having as a large part of his legacy
the considerable expansion of not just one but two prominent acoustics programs at
major universities. One is in the George W. Woodruff School of Mechanical Engi-
neering at Georgia Tech, which Pierce joined in 1973 and where he was Regents’
Professor from 1976 until 1988, and the other is in the Department of Mechanical
Engineering at Boston University, where he was department chair from 1993 to
1999. He retired from Boston University in 2012 as emeritus professor. Other
academic appointments held by Pierce include assistant and associate professor
of Mechanical Engineering at MIT between 1966 and 1973, and Leonhard Chair
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in Engineering at Penn State from 1988 to 1993 with joint appointments in the
Department of Mechanical Engineering and the Graduate Program in Acoustics.

In addition to building academic programs in acoustics, Pierce has compiled an
extraordinary record of service to the acoustics community, particularly in the realm
of publishing. In 1992 he cofounded the Journal of Computational Acoustics, and
from 1987 until 2000 he was coeditor of the prestigious Academic Press series
of volumes titled “Physical Acoustics.” Most prominently, from 1999 to 2015 he
served as editor-in-chief for the ASA. As well as managing the Journal of the
Acoustical Society of America (JASA), JASA Express Letters, and Acoustics Today,
he also launched Proceedings of Meetings on Acoustics (POMA), which has grown
to become a popular means of rapid publication and open access. He has chaired and
served on professional society committees, editorial boards, and executive boards
too numerous to list here.

Pierce has thus made outstanding contributions to acoustics in each of the three
areas in which faculty are normally evaluated at leading research universities:
teaching, research, and service. In recognition of such a rare combination of
achievements, the ASA has bestowed upon him every one of its major awards:
the Silver Medal in Physical Acoustics in 1991 “for many significant contributions
to acoustics: Its basic physical principles and applications”; the Rossing Prize in
Acoustics Education in 2004; the Gold Medal in 2005 “for contributions to physical,
environmental, and structural acoustics, acoustics education, and leadership as
Editor-in-Chief of the Society”; and the Distinguished Service Citation in 2015 “for
his excellent service to the Acoustical Society of America, and especially for his
15 years of service as Editor-in-Chief.” Honors apart from the ASA include, among
others, the ASME Per Brüel Gold Medal for Noise Control, and Acoustics, and the
Gold Medal of the Acoustical Foundation of India.

Physical acoustics underlies all areas of applied acoustics, and the present text
is an excellent exposition of the fundamental science and mathematical techniques
used to describe sound in fluids. Pierce alerts potential readers in the preface to his
first edition that “a deep understanding of acoustical principles is not acquired by
superficial efforts.” While introductory, his text is indeed reasonably advanced, and
it will serve admirably even the leading researchers in acoustics throughout their
careers.

W.A. (Bill) Cunningham Professor in Engineering Mark F. Hamilton
The University of Texas at Austin
Austin, TX, USA



Preface to the First and Second Editions

This book introduces the physical principles of acoustics. The predominant objec-
tive is to develop those concepts and points of view that have proven most useful
in traditional realms of application such as noise control, underwater acoustics,
architectural acoustics, audio engineering, nondestructive testing, remote sensing,
and medical ultrasonics. The book is suitable as a text or as supplementary reading
for senior and first-year graduate students in engineering, physics, and mathematics.

Preliminary versions of the book in the form of class notes have been used in a
three-term (one academic year) introductory course in acoustics taken by graduate
students in electrical engineering, aerospace engineering, mechanical engineering,
engineering mechanics, and physics at the Georgia Institute of Technology. Portions
of the presentation evolved from a graduate course on wave propagation previously
taught at MIT to students from the departments of mechanical engineering, ocean
engineering, and earth and planetary sciences. The mathematical developments
and the assumptions concerning the prior academic experiences of the readers are
such that no one with any of the backgrounds just mentioned should be precluded
from taking a course in which this book is used as a text or as principal outside
reading. The text, however, is intended to be at a level of mathematical sophistication
and intellectual challenge comparable to distinguished graduate texts in the basic
engineering sciences (such as fluid dynamics, solid mechanics, thermodynamics,
and electromagnetic theory); a deep understanding of acoustical principles is not
acquired by superficial efforts.

Graduate courses rarely follow a text closely; the instructor is invariably deeply
involved in research or in the applications of the subject and shapes the course
content to conform with what appears timely, with the research programs at the
institution, and with the common interests of the students. This book is intended
to facilitate such flexibility. The common ground of introductory acoustics courses
is covered thoroughly, so the student can fill in whatever gaps result because of the
pace of the lectures. Since the text derives almost all of the equations frequently used
in acoustics, the instructor can relegate to outside reading whatever derivations seem
too time consuming for the lectures and can thereby concentrate on the physical
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implications and on the applications of the results without sacrificing the course’s
level of rigor.

Portions of the text’s material have also been used in senior elective courses for
engineering and physics students. This book is suitable for such a course, provided
the instructor exercises good judgment in the selection of topics and the course
does not cater to the handbook-oriented student. A possible path through the text
for a one-term undergraduate course begins with Chap. 1, but omits Sect. 1.10; the
course then continues with Chap. 2 through Sect. 2.6, with an extraction of results
from Sects. 2.7 to 2.8. Section 3.1 is terminated with the derivation of Eq. (3.2.1).
Sections 3.2 and 3.3 are then covered, with a subsequent jump to Sects. 4.1 through
4.4. Then, a possibility is the discussion of reciprocity and transducers in Sects. 4.9
and 4.10; Sect. 5.1 on sources near walls should always be included. If the students
are interested in noise control or architectural acoustics, the first half of Chap. 6,
through Sect. 6.4, possibly without Sect. 6.2, should be covered. Sections 7.2,
7.3, 7.4, 7.6, 7.7, and 7.8 should be palatable with careful circumnavigation of
the more mathematical paragraphs. Students oriented toward underwater sound,
remote sensing, or medical ultrasonics may be guided through Sects. 8.1 through
8.5, followed by Sects. 9.1 through 9.3. Other possibilities should be evident to an
astute instructor.

Many of the exercises at the ends of the individual chapters come from
examinations the author has given in either graduate or undergraduate courses and
can be briefly carried through, once the pertinent concepts are understood. Others
are more challenging and, in some cases, will require hints from the instructor if
they are to be solved in a reasonable period of time by the average student. None of
the problems are of the “plug-in” variety, but there should be a sufficient quantity
at various levels of difficulty that the instructor can tailor homework assignments to
the abilities of the students.

The footnotes scattered throughout the book embody the author’s opinion that a
textbook at this level should accurately cite the original sources of the basic concepts
and principles. Many citations lead us back to Rayleigh and earlier, but this does not
mean that the principles are any less applicable today. Few readers will have the time
to browse through the early archival literature on the subject. Indeed, one reason why
textbooks are written is to obviate doing such a thing—although often (especially
so with Rayleigh) the person who conceived an idea and who said it first said it
best. Eloquent defenses of the value to the practicing professional of the history of
the profession’s current stock of knowledge may be found within the works cited in
Sect. 1.1 by Hunt and by Lindsay. In any event, the citations in the footnotes should
be harmless to the recalcitrant pragmatic reader. The book is intended to be self-
contained; whatever omissions in background material the reader encounters can be
filled by consulting contemporary textbooks on mathematics and basic physics.

The more recent citations include most of the author’s favorite references
on acoustics; these are recommended reading for anyone who desires further
elaboration on the subject matter. The author regrets that the pedagogical objectives
of the book and the constraint that the book be of manageable length precluded the
inclusion of some of the more important topics in modern acoustics (e.g. jet noise,



Preface to the First and Second Editions xv

acoustic emissions, cavitation, streaming, radiation pressure and levitation, com-
bustion noise, parametric arrays, propagation through turbulence, sound-structural
interaction, surface waves, and acoustical imaging). A consequence is that many
works that the author esteems highly are not mentioned here. An introductory text
with the objective of inculcating a deep understanding of the basic principles cannot,
however, be encyclopedic, and some hard decisions had to be made. The student
should be able to proceed rapidly, once these basic principles are understood, toward
any of the current frontiers of acoustics.

Along with the writings of Rayleigh and of other past contributors to the field, the
style and content of this book have been influenced by the author’s early teachers,
Richard H. Duncan and Laszlo Tisza, and by his past associations with Albert
Latter, Elisabeth Iliff, Charles A. Moo, S. H. Crandall, J. P. Den Hartog, Huw
G. Davies, Y. K. Lin, T.-Y. Toong, Patrick Leehey, Richard Lyon, P. P. Lele, Joe
W. Posey, Wayne A. Kinney, Warren Strahle, W. James Hadden, Jr., E.-A. Müller,
W. Möhring, and F. Obermeier. The writing of the book has also been affected by
conversations or correspondence with John Snowdon, Herbert S. Ribner, Dominic
Maglieri, Lucio Maestrello, Richard K. Cook, R. Bruce Lindsay, Geoffrey Main,
David T. Blackstock, K. Uno Ingard, David G. Crighton, Hugh G. Flynn, T. F. W.
Embleton, Robert Waag, Robert E. Apfel, Robert W. Young, Jiri Tichy, Donald
Lansing, M. C. Junger, H. M. Überall, C.-H. Chew, Edmund H. Brown, Prateen
Desai, T. J. Lardner, Preston W. Smith, Jr., Michael Howe, Phillip A. Thompson,
Joseph E. Piercy, Walter Soroka, Sigalia Dostrovsky, Wesley Cobb, Lawrence A.
Crum, Henry E. Bass, Bill D. Cook, and Steven D. Pettyjohn. Thanks must also
be expressed to the many students who pointed out weaknesses in the earlier class
notes and who suggested improvements.

Although the writing of this book has extended over many years, the author’s
ideas concerning its substance crystallized during a year’s sojourn (1976–1977)
with the Max-Planck-Institut für Strömungsforschung in Göttingen. The Institute’s
research objectives and atmosphere were conducive to a sustained contemplation
of the principles of acoustics, of their interconnections, and of their mechanical,
thermodynamic, and mathematical foundations. The author is grateful to Professor
E.-A. Müller and his colleagues for their hospitality and rapport and to the
Alexander von Humboldt Foundation for the generous award that made the stay
in Göttingen possible.

The author thanks the staff of the School of Mechanical Engineering at Georgia
Tech for their forbearance throughout this long, seemingly interminable, project.
The empathy and encouragement of S. Peter Kezios, the school’s director, is very
much appreciated.

The author is also grateful to the library personnel who helped him in this
endeavor; he especially thanks Robert Perrault for advice and for facilitating the
procurement of rare bibliographic materials.

It was the author’s extreme good fortune to have the collaboration of Rosie
Atkins, an outstanding technical typist and manuscript stylist. Throughout several
generations of manuscripts, Mrs. Atkins patiently and accurately interpreted and
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translated heavily scored, barely legible handscripts, laden with equations and
symbols, into attractive and readable typescripts.

The author’s largest debt of thanks is owed to his wife Penny and to his children,
Jennifer and Bradford. Their loyalty, encouragement, cheerfulness, and willingness
to sacrifice have contributed immeasurably to the successful completion of this
book.

Atlanta, GA, USA Allan D. Pierce
September 1980



Preface to the Third Edition

The first edition of this book was published in late 1980 by McGraw-Hill Book
Company with a copyright date of 1981. The original motivations for writing the
book are described in the accompanying preface to the first edition, and I believe
that those reasons continue to apply today. The book was very well received, and
complimentary reviews were published by Bruce Lindsay, David Crighton, Preston
Smith, Michael Howe, and several other eminent acousticians. It was also used as a
graduate-level text in a number of universities. Bruce Lindsay was at that time the
editor-in-chief of the Acoustical Society of America (ASA) and a highly respected
author and editor of several substantial books related to acoustics. He made the
unusual decision to personally review the book for the Journal of the Acoustical
Society of America (JASA), and his review contained the forecast:

Without question this volume will take its place among the more prominent texts for
advanced courses in fundamental acoustical theory and applications. The student who
masters it should have no difficulty facing with assurance the current problems in acoustical
technology.

However, in 1988, I received a phone call from a professor at the University of
Illinois, who had been using the book for a number of years as a text for a course,
but had found that the bookstore could no longer obtain copies. McGraw-Hill had
chosen not to pursue a second printing.

Shortly thereafter, Robert Beyer and William Hartmann approached me to ask
if the Acoustical Society of America (ASA) could reprint the book. As it turned
out, the agreement with McGraw-Hill gave me the right to take back the copyright
if the book should fall out of print. The ASA had initiated a book reprinting
program somewhat earlier (1983) because it was concerned by the choice of US
publishers to let leading acoustics books go out of print. The ASA had set up a Books
(later, Books+) Committee to advise the ASA Executive Council as to which books
should be reprinted. The ASA published a reprint of my book, using a photo-offset
technique, in 1989. The reprinting process was handled by the American Institute of
Physics, and most of the original typographical errors in the McGraw-Hill edition

xvii
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were corrected. The ASA edition also included a 30-page appendix giving answers
and solution hints for the problems in the book.

Over the subsequent years, the ASA published around 40 books, mostly reprints
of classic titles that had gone out of print, but also selected new titles. My textbook
was reprinted several times and was persistently the ASA’s all-time best seller. The
book emerged as arguably the most highly cited graduate-level text on acoustics. As
of the date of this writing, Google Scholar lists 4548 articles and books that cite the
book.

About a decade or so ago, technology evolved to the point where publishers
rarely allowed their better-selling books to go out of print. The ASA books
publishing program became cumbersome for the Society to administer, and few
new titles were published. To remedy this, the Society sought a new mechanism
for encouraging the publication of scholarly books in acoustics. After extensive
research and subsequent discussions within its Executive Council, the ASA even-
tually decided to partner with Springer so that suitable books might be published
under a newly established imprint, the ASA Press.

When the copies of the last ASA printing of my book were exhausted, publication
through the ASA Press collaboration seemed like the natural route. Springer was at
first not regarded as an option, because it did not ordinarily do reprints, especially
of the photo-offset type. As it turned out, Springer had developed a new technology
that enabled them to utilize a pdf scan of a previous edition, employing optical
character recognition, some special additional software, and knowledgeable human
oversight to produce complete and reasonably accurate LaTeX source code for the
entire book. This achievement enabled Springer to publish the book afresh as if
it were a freshly typed book. This appealed greatly to me and the result is what
you see here. Working from the somewhat raw LaTeX source code enabled me to
make extensive changes in format and in the configuring of equations. The result, I
believe, is a book that is considerably more readable than was the original McGraw-
Hill edition, and certainly more readable than the photo-offset edition published by
the ASA. Publication by Springer was additionally attractive because it had emerged
as the world’s premier publisher of books on acoustics and because of its unique
partnership with the ASA.

East Sandwich, MA, USA Allan D. Pierce
December 2018
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Chapter 1
The Wave Theory of Sound

Acoustics is the science of sound, including its production, transmission, and
effects.1 (In present usage, the term sound implies not only the phenomena in
air responsible for the sensation of hearing but also whatever else is governed
by analogous physical principles. Thus, disturbances with frequencies too low
(infrasound) or too high (ultrasound) to be heard by a normal person are also
regarded as sound. One may speak of underwater sound, sound in solids, or
structure-borne sound. Acoustics is distinguished from optics in that sound is a
mechanical, rather than an electromagnetic, wave motion.

The broad scope of acoustics as an area of interest and endeavor can be ascribed
to a variety of reasons. First, there is the ubiquitous nature of mechanical radiation,
generated by natural causes and by human activity. Then, there is the existence of
the sensation of hearing, of the human vocal ability, of communication via sound,
along with the variety of psychological influences sound has on those who hear it.
Such areas as speech, music, sound recording and reproduction, telephony, sound
reinforcement, audiology, architectural acoustics, and noise control have strong
association with the sensation of hearing. That sound is a means of transmitting
information, irrespective of our natural ability to hear, is also a significant factor,
especially in underwater acoustics. A variety of applications, in basic research and
in technology, exploit the fact that the transmission of sound is affected by, and
consequently gives information concerning, the medium through which it passes
and intervening bodies and inhomogeneities. The physical effects of sound on
substances and bodies with which it interacts present other areas of concern and
of technical application.

Some indication of the scope of acoustics and of the disciplines with which it is
associated can be found in Fig. 1.1. The first annular ring depicts the traditional

1Definitions in the present text conform to ANSI/ASA S1.1, 2013 Edition, American National
Standard Acoustical Terminology (Acoustical Society of America Standards Store, online site).
Selected symbols for physical quantities conform to American National Standard Letter Symbols
and Abbreviations for Acoustics (IEEE Xplore, 260.4–1996, online site).

© Springer Nature Switzerland AG 2019
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1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11214-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-11214-1_1


2 1 The Wave Theory of Sound

Fig. 1.1 Circular chart illustrating the scope and ramifications of acoustics [Adapted from R. B.
Lindsay, J. Acoust. Soc. Am. 36:2242 (1964)]

subdivisions of acoustics, and the outer ring names technical and artistic fields
to which acoustics may be applied. (The chart is not intended to be complete,
nor should any rigid interpretation be placed on the depicted proximity of any
subdivision to a technical field. An extensive survey of the scope of acoustics can
be found in (T. Rossing, editor) Springer Handbook of Acoustics (2nd Edition,
Springer, 2014).

The present text, while intended as an introduction to acoustics, is concerned
primarily with the physical principles underlying the discipline rather than with a
summary of the current state of knowledge and technology in its many subfields.
The general and specialized principles chosen for discussion are those which have
found application in one or more of the following subfields: atmospheric acous-
tics, underwater acoustics, musical acoustics, ultrasonics, architectural acoustics,
aeroacoustics, nonlinear acoustics, environmental acoustics, and noise control. For
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the most part, the selected subject matter is limited to sound in fluids, e.g., air and
water.

We begin with a discussion of the wave theory of sound.

1.1 A Little History

The speculation that sound is a wave phenomenon grew out of observations of water
waves. The rudimentary notion of a wave is an oscillatory disturbance that moves
away from some source and transports no discernible amount of matter over large
distances of propagation. The possibility that sound exhibits analogous behavior
was emphasized, for example, by the Greek philosopher Chrysippus (c. 240 BC),
by the Roman architect and engineer Vitruvius (c. 25 BC), and by the Roman
philosopher Boethius (AD 480–524). The wave interpretation was also consistent
with Aristotle’s (384–322 BC) statement2 to the effect that air motion is generated
by a source, “thrusting forward in like manner the adjoining air, so that the sound
travels unaltered in quality as far as the disturbance of the air manages to reach.”

A pertinent experimental result, inferred with reasonable conclusiveness by the
early seventeenth century, with antecedents dating back to Pythagoras (c. 550
BC) and perhaps farther, is that the air motion generated by a vibrating body
sounding a single musical note is also vibratory and of the same frequency as
the body. The history of this is intertwined with the development of the laws for
the natural frequencies of vibrating strings and of the physical interpretation of
musical consonances.3 Principal roles were played by Marin Mersenne (1588–
1648), a French natural philosopher often referred to as the “father of acoustics,”
and by Galileo Galilei (1564–1642), whose Mathematical Discourses Concerning
Two New Sciences (1638) contained4 the most lucid statement and discussion given
up until then of the frequency equivalence.

Mersenne’s description in his Harmonie universelle (1636) of the first absolute
determination of the frequency of an audible tone (at 84 Hz) implies that he had
already demonstrated that the absolute-frequency ratio of two vibrating strings,
radiating a musical note and its octave, is as 1:2. The perceived harmony (con-
sonance) of two such notes would be explained if the ratio of the air oscillation

2M. R. Cohen and I. E. Drabkin, A Source Book in Greek Science, Harvard University Press,
Cambridge, Mass., 1948, pp. 289, 293–294, 307–308. Aristotle’s statements on acoustics are also
reprinted by R. B. Lindsay (ed.), Acoustics: Historical and Philosophical Development, Dowden,
Hutchinson, and Ross, Stroudsburg, Penn., 1972, pp. 22–24. For a detailed account of the early
history of acoustics, see F. V. Hunt, Origins of Acoustics, Yale University Press, New Haven, Conn.,
1978. Hunt, p. 26, states that the above-cited aristotelian statement was probably written by Straton
of Lampsacus (c. 340–269 BC).
3S. Dostrovsky, “Early vibration theory: physics and music in the Seventeenth Century,” Arch.
Hist. Exact Sci. 14:169–218 (1975).
4The pertinent passages are reprinted in Lindsay, Acoustics, pp. 42–61, especially p. 48.
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frequencies is also 1:2, which in turn is consistent with the source-air-motion-
frequency-equivalence hypothesis.

The analogy with water waves was strengthened by the belief that air motion
associated with musical sounds is oscillatory and by the observation that sound
travels with a finite speed. Another matter of common knowledge was that sound
bends around corners, which suggested diffraction, a phenomenon often observed
in water waves. Also, Robert Boyle’s (1660) classic experiment5 on the sound
radiation by a ticking watch in a partially evacuated glass vessel provided evidence
that air is necessary, either for the production or transmission of sound.

The wave viewpoint was not unanimous, however. Gassendi6 (a contemporary of
Mersenne and Galileo), for example, argued that sound is due to a stream of “atoms”
emitted by the sounding body; velocity of sound is speed of atoms; frequency is
number emitted per unit time.

The apparent conflict7 between ray and wave theories played a major role in the
history of the sister science optics, but the theory of sound developed almost from
its beginning as a wave theory. When ray concepts were used to explain acoustic
phenomena, as was done, for example, by Reynolds and Rayleigh8 in the nine-
teenth century, they were regarded, either implicitly or explicitly, as mathematical
approximations to a then well-developed wave theory; the successful incorporation
of geometrical optics into a more comprehensive wave theory had demonstrated that
viable approximate models of complicated wave phenomena could be expressed in
terms of ray concepts. (This recognition has strongly influenced twentieth-century
developments in architectural acoustics, underwater acoustics, and noise control.)

The mathematical theory of sound propagation began with Isaac Newton (1642–
1727), whose Principia9 (1686) included a mechanical interpretation of sound as
being “pressure” pulses transmitted through neighboring fluid particles. Accompa-
nying diagrams (see Fig. 1.2) illustrated the diverging of wavefronts after passage
through a slit. The mathematical analysis was limited to waves of constant fre-

5R. Boyle, New Experiments, Physico-Mechanical, Touching the Spring of the Air, 2d ed., 1662,
Experiment 27, reprinted by Lindsay, pp. 68–73. Lindsay gives a modern interpretation of Boyle’s
experiment in “Transmission of sound through air at low pressure,” Am. J. Phys. 16:371–377
(1948).
6R. B. Lindsay, “Pierre Gassendi and the revival of atomism in the Renaissance,” Am. J. Phys.
13:235–242 (1945).
7A. E. Shapiro, “Kinematic optics: A study of the wave theory of light in the Seventeenth Century,”
Arch. Hist. Exact Sci. 11:134–266 (1973).
8O. Reynolds, “On the refraction of sound by the atmosphere,” Proc. R. Soc. Lond. 22: 531–548
(1874); J. W. Strutt, Baron Rayleigh, The Theory of Sound, vol. 2, 1878; 2d ed., 1896; reprinted by
Dover, New York, 1945, secs. 286–290.
9There are several editions and translations. One generally available is the revision by F. Cajori of
Andrew Motte’s translation (1729), from Latin into English, of the third edition (1726): Newton’s
Principia: Motte’s Translation Revised, University of California Press, Berkeley, 1934, reprinted
1947. Lindsay reprints passages from an 1848 edition of Motte’s translation. Dostrovsky, “Early
vibration theory,” gives a detailed deciphering of Newton’s analysis. The first such was given by
Euler (1744).
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Fig. 1.2 Sketch in Newton’s Principia (1686) of the passage of waves through a hole. The source
is at point A; the hole is described by points B and C; de, fg, hi, etc., describe the ‘’tops of
several waves, divided from each other by as many intermediate valleys or hollows” (Adapted
from Sir Isaac Newton’s Principia, 4th ed., 1726, reprinted 1871, by MacLehose, Glasgow, p. 359)

quency, employed a number of circuitous devices and approximations, and suffered
from an incomplete definition of terminology and concepts. It was universally
acknowledged by his successors as difficult to decipher, but, once deciphered,
it is recognizable as a development consistent with more modern treatments.
Some textbook writers, perhaps for pedagogical reasons, stress that Newton’s one
quantitative result10 that could then be compared with experiment, i.e., the speed
of sound, was too low by about 16%. The reason for the discrepancy and how it
was resolved is discussed below (Sect. 1.4), but it is a relatively minor aspect of
the overall theory, whose resolution required concepts and experimental results that
came much later.

Substantial progress toward the development of a viable theory of sound
propagation resting on firmer mathematical and physical concepts was made
during the eighteenth century11 by Euler (1707–1783), Lagrange (1736–1813),

10Quotations from textbooks and a defense are given by H. Whiteside, “Newton’s derivation of the
velocity of sound,” Am. J. Phys. 32:384 (1964).
11A detailed commentary on the Euler era is given in a sequence of articles by C. A. Truesdell that
appear as editor’s introductions to volumes of Leonhardi Euleri Opera Omnia, ser. 2, Orell Füssli,
Lausanne and Zurich, 1954, 1955, and 1960: “Rational fluid mechanics, 1687–1765,” vol. 12,
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and d’Alembert (1717–1783). During this era, continuum physics, or field theory,
began to receive a definite mathematical structure. The wave equation emerged
in a number of contexts, including the propagation of sound in air. The theory
ultimately proposed for sound in the eighteenth century was incomplete from many
standpoints, but the modern theories of today can be regarded for the most part as
refinements of that developed by Euler and his contemporaries.

In Sects. 1.2 to 1.5 the basic equations for the simplest realistic model of sound
propagation in fluids are described. Two of them, the conservation-of-mass equation
and Euler’s equation of motion for a fluid come without alterations from the
eighteenth century; the third, which relates pressure and density, is a nineteenth-
century development. The model leads to the same wave equation as developed
in the eighteenth century but gives a value for the sound speed that in most
contexts of interest agrees satisfactorily with experiment. Although this model is
approximate and gives no account of sound absorption, its predictions are often a
good approximation to reality. Because of its simplicity, it is the one most often
used unless there is some positive indication that the refinements contained in more
complicated models are necessary for the problem at hand.

1.2 The Conservation of Mass

For a fixed volume V (see Fig. 1.3a) inside a fluid (e.g., air or water), the net mass in
V at any time t can be taken as the volume integral of a density ρ(x, t), representing
a local average (or expected value) of mass per unit volume in the vicinity of a
spatial12 point x. Conservation of mass requires the time rate of change of this mass
to equal the net mass per unit time entering (minus that leaving) the volume V

through the confining surface S. The net mass per unit time leaving through a small
area element ΔS with outward unit normal vector n(xS) and centered at point xS

on S is identified as

ρ(xS, t)v(xS, t) ·n(xS)ΔS.

Here v(x, t) is the fluid velocity at x, defined as the mass-weighted local average
particle velocity or, equivalently, as the average momentum per unit mass in the
vicinity of x. (The subscript S on xS refers to a point on the surface.)

pp. IX–CXXV; “The theory of aerial sound, 1687–1788,” vol. 13, pp. XIX–LXXII; “Rational fluid
mechanics, 1765–1788,” vol. 13, pp. LXXIII-CII; “The rational mechanics of flexible or elastic
bodies, 1638–1788,” vol. 11, pt. 2.
12The text uses the spatial (Eulerian) description rather than the material (lagrangian) description
(in which fluid dynamic variables are considered as functions of material or initial coordinates and
time). Both descriptions originated with Euler; the terminology Eulerian and lagrangian originated
with Dirichlet (1860). (Truesdell, “Rational Fluid Mechanics, 1687–1765,” p. CXX.)
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Fig. 1.3 (a) Nonmoving volume V within a moving fluid; time rate of change of mass within
V equals mass flowing through surface S (outward unit normal n) into V per unit time. (b) Mass
leaving through area element ΔS in time Δt equals mass in slanted cylinder of length |vΔt |, height
v ·nΔt , and base area ΔS

The validity of the above identification for v · nΔS is demonstrated if one
considers all particles in the vicinity of ΔS to be moving identically with velocity
v. All the fluid within a slanted cylinder (see Fig. 1.3b) with ends of area ΔS, sides
parallel to v, and length |v|Δt will pass through ΔS in time Δt . Since the volume of
this cylinder is height v·nΔt times base area ΔS, it contains mass ρv·nΔt ΔS. The
mass passing out through ΔS per unit time is this mass divided by Δt , or ρv ·nΔS.

The net mass leaving V per unit time is accordingly the surface integral over S
of ρv ·n, and so the conservation of mass requires

d

dt

∫∫∫
V

ρ dV = −
∫∫

S

ρv·n dS. (1.2.1)

The right side can be reexpressed as a volume integral by means of Gauss’s
theorem,13 i.e.,

∫∫
S

A·n dS =
∫∫∫

V

∇ ·A dV, (1.2.2)

where A(x, t) is a vector field and ∇·A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z is its
divergence. (This is a generalization of

13This, also known as the divergence theorem, originated in a restricted sense with Laplace (1760–
1761) but was enunciated in a form equivalent to that above by C. F. Gauss (1813). Related
statements were given by George Green (1828). For references and precise statements concerning
conditions that ensure its validity, see O. D. Kellogg, Foundations of Potential Theory, 1929,
reprinted by Dover, New York, 1953, pp. 38, 84–121.
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f (x2) − f (x1) =
∫ x2

x1

df

dx
dx

to three dimensions.) With the aid of Eq. (2) and with A taken as ρv, the mass-
conservation relation becomes

∫∫∫
V

[
∂ρ

∂t
+ ∇ · (ρv)

]
dV = 0. (1.2.3)

The time derivative has here been taken inside the integral, and the two volume
integrals have been combined into a single integral.

Since Eq. (3) implies that the average value of the integrand is zero for an
arbitrary volume V , the integrand itself must be zero, so

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.2.4)

gives the differential equation14 for conservation of mass in a fluid.

1.3 Euler’s Equation for a Fluid

A general law of classical continuum mechanics is that the mass times acceleration
of center of mass of a fluid particle equals the net apparent force exerted on it by
its environment and by external bodies. A fluid particle consists of all fluid within
some moving volume V ∗(t) (see Fig. 1.4), each point on the surface of which is
moving with the local fluid velocity v(xS, t). Since the mass in such a fluid particle
is constant, mass times center-of-mass acceleration is just the time rate of change
of momentum (volume integral of ρv) within the particle, so one has

d

dt

∫∫∫
V ∗

ρv dV =
∫∫

S∗
f S dS +

∫∫∫
V ∗

f B dV. (1.3.1)

Here f S represents apparent surface force per unit area exerted by the particle’s
immediate environment; f B is body force, e.g., that due to gravity, per unit volume.
From a microscopic standpoint,15 f S includes the momentum transferred, per unit
time and area, into V ∗ by random molecular motion across the surface S∗ as well as
the short-range intermolecular force per unit area exerted on molecules within the

14The relation is due to Euler and is derived in his “General principles of the motion of fluids,”
1755 (Truesdell, “Rational fluid mechanics, 1687–1765,” pp. LXXXIV–LXXXIX, eq. 99).
15J. G. Kirkwood, “The statistical mechanical theory of transport processes, I: General theory,” J.
Chem. Phys. 14:180–201 (1946).
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Fig. 1.4 Forces acting on
fluid particle occupying
volume V ∗(t), each point on
the surface of which moves
with the local fluid velocity
v(xS, t). Here f S is surface
force per unit area; f B is
body force per unit volume

volume by molecules outside it. For a gas, the former dominates overwhelmingly,
but the continuum-mechanical model makes no distinction between the two.

Although gravity is always present, it has negligible influence16 on acoustic
disturbances of all but extremely low frequencies, e.g., those of order or less than
g/c, where g is acceleration due to gravity and c is the speed of sound; so, for
simplicity, the body force term is here neglected at the outset. Acoustic-gravity
waves (infrasonic waves with frequencies so low as to be strongly affected by
gravity) is a major topic of research in atmospheric acoustics but falls outside the
scope of an introductory discussion.

The classical assumption regarding f S is that it is directed normally into the
surface S∗, that is,

f S = −np, (1.3.2)

with the magnitude p of this force per unit area identified as the pressure. The
adoption of this relation, holding ideally for static equilibrium (hydrostatics),
implies a neglect of viscosity. The lack of dependence of the pressure p(x, t) on the
orientation of ΔS, that is, the direction of n, may be regarded as a hypothesis but

16P. G. Bergmann, “The wave equation in a medium with a variable index of refraction,” J. Acoust.
Soc. Am. 17:329–333 (1946); N. A. Haskell, “Asymptotic approximation for the normal modes in
sound channel wave propagation,” J. Appl. Phys. 22:157–168 (1951); C. O. Hines, “Atmospheric
gravity waves: A new toy for the wave theorist,” Radio Sci. 69D:375–380 (1965); E. E. Gossard
and W. H. Hooke, Waves in the Atmosphere, Elsevier, Amsterdam, 1975.
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also follows17 from a fundamental requirement that the net surface force divided by
the mass of the fluid particle on which it acts should remain finite in the limit as the
particle volume goes to zero. That f S reverses direction when n reverses direction
is consistent with Newton’s third law.

If p should be independent of position, the net surface force on a fluid particle
integrates to zero, but otherwise it tends to be toward the direction of lower pressure.
Mathematical substantiation of this comes from an application of Gauss’s theorem
to the surface integral of −pn. The x component of this integral is of the form in
Eq. (1.2.2) with A identified as −pex . (Here ex represents the unit vector in the
direction of increasing x.) Since the divergence ∇ · (−pex) is just −∂p/∂x, and
since this is the x component of −∇p, Gauss’s theorem implies

∫∫
S∗

f S dA = −
∫∫∫

V ∗
∇p dV, (1.3.3)

when f S = −pn, as in Eq. (2). Thus −∇p is the equivalent force per unit volume
due to pressure.

The time-rate-of-change-of-momentum term in Eq. (1) can similarly be
expressed as a volume integral, without a time derivative operator outside the
integral sign. A fluid particle is regarded as an aggregate of many “infinitesimal”
fluid particles, each so small that the fluid velocity within it is everywhere nearly
the same as the velocity of its center of mass. Since the mass of each fluid
particle is constant, the time rate of change of momentum of a subparticle is
(ρΔV ∗)(d/dt)v(xP (t), t), where xP (t) is its position at time t . With help from the
chain rule for differentiation, the acceleration factor becomes

d

dt
v(xP (t), yP (t), zP (t), t) = ∂v

∂t
+ ∂v

∂x

dxP

dt
+ ∂v

∂y

dyP

dt
+ ∂v

∂z

dzP

dt

= ∂v

∂t
+ (v ·∇)v = Dv

Dt
(1.3.4)

since dxP /dt is just v(xP (t), t). (The operator ∂/∂t + v · ∇ is here abbreviated18

D/Dt and represents the time rate of change as measured by someone moving with
the fluid.) The resulting sum of infinitesimal masses times accelerations is equivalent
to an integral, and so one obtains

17H. Lamb, Hydrodynamics, 1879, 6th ed., 1932, reprinted by Dover, New York, 1945, pp. 1–2.
The proof originated with A.-L. Cauchy, “On pressure within a fluid,” 1827, reprinted in Oeuvres
complètes d’ Augustin Cauchy, ser. 2, vol. 7, Gauthier-Villars, Paris, 1889, pp. 37–39. (Here, and
throughout the balance of the present book, titles of articles cited are given in translation when the
original is not in English.)
18This notation originated with G. G. Stokes, “On the theories of the internal friction of fluids in
motion, and of the equilibrium and motion of elastic fluids,” Trans. Camb. Phil. Soc. 8:287–319
(1845), especially sec. 5. Most of the article is reprinted in Lindsay, Acoustics, pp. 262–289.
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d

dt

∫∫∫
V ∗

ρv dV =
∫∫∫

V ∗
ρ
Dv

Dt
dV, (1.3.5)

which represents an instance of Reynolds’ transport theorem.19

The insertion of Eqs. (3) and (5) into Eq. (1) with the neglect of the body force
term gives

∫∫∫
V ∗

(
ρ
Dv

Dt
+ ∇p

)
dV = 0. (1.3.6)

Consequently, one concludes, as in the derivation of the mass-conservation equation,
that the integrand is zero; one therefore has

ρ
Dv

Dt
= −∇p (1.3.7)

for an ideal (no viscosity) fluid.20 The left side is mass per unit volume times
acceleration; the right side is the apparent force per unit volume caused by spatial
variation of the pressure. Because ∇p points in the direction of increasing pressure,
acceleration is toward decreasing pressure.

1.4 Pressure–Density Relations

The classical model of a compressible fluid presumes the existence of some definite
relation

p = p(ρ) (1.4.1)

between density and pressure. In the early literature, the assumption invariably
made was that p = Kρ, where K is a constant (ambient pressure divided
by ambient density), a notable exception being Lagrange’s second memoir21

(1759–1761) on sound, which considered the general relation p = Kρm, with m

being also constant. The choice of a direct proportionality agrees in the case of air

19O. Reynolds, Papers on Mathematical and Physical Subjects, vol. 3, The Sub-Mechanics of the
Universe, Cambridge University Press, London, 1903, secs. 13 and 14. A general statement of the
transport theorem is

d

dt

∫∫∫
V ∗

ρf (x, t)dV =
∫∫∫

V ∗
ρ
Df

Dt
dV,

where f (x, t) is an arbitrary function.
20L. Euler, “Principles of the motion of fluids,” 1752; see Truesdell, “Rational Fluid Mechanics,
1687–1765,” pp. LXII–LXXV, eq. 60.
21J. L. Lagrange, “New research on the nature and propagation of sound,” reprinted in Oeuvres de
Lagrange, Gauthier-Villars, Paris, 1867, vol. 1, pp. 151–316. For a discussion, see Truesdell, “The
theory of aerial sound, 1687–1788,” pp. 51–54.
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with Boyle’s law22; the volume of a confined amount of air should be in inverse
proportion to externally applied pressure under conditions now characterized as
isothermal. It leads, however, to a prediction of the speed of sound about 16% lower
than actually measured.

1.4.1 Laplace’s Hypothesis

Elements of a correct explanation of the discrepancy appeared in the early
nineteenth-century writings23 of Biot, Brandes, Poisson, and Laplace. It was the
last who first effectively applied the simple principle that sound propagation occurs
with negligible internal heat flow, to derive in terms of fundamental thermodynamic
quantities an expression for the speed of sound in air that satisfactorily agreed
with experiment. For a gas (e.g., air) with constant specific (per unit mass) heat
coefficients cp and cv at constant pressure and volume, respectively, and for which
p is proportional to ρ at constant temperature, this principle leads to the relation

p = Kργ , (1.4.2)

where γ = cp/cv is the specific-heat ratio (1.4 for air). According to Laplace’s
hypothesis, K should remain constant in time.

A simple derivation of Eq. (2) regards an adiabatic (no heat flow) variation
(δp, δρ) in unit mass of fluid as composed of two processes:

1. p → p + δp, ρ → ρ, T → T + (δT )1,

2. p + δp → p + δp, ρ → ρ + δρ, T + (δT )1 → T + (δT )1 + (δT )2.

In process 1, the specific volume is constant and heat (δQ)1 = cv(δT )1 is added,
and in process 2, the pressure is constant and a (negative) amount (δQ)2 =
cp(δT )2 is added. Since (δQ)1 + (δQ)2 = 0, one has (δT )1 = −γ (δT )2.

The gas relation p/ρ = F(T ) gives δp/p = [F ′(T )/F (T )](δT )1 and δρ/ρ =
−[F ′(T )/F (T )](δT )2. Consequently, one has (δp/p)/(δρ/ρ) = γ , which inte-

22The law is often associated with various combinations of the names Boyle, Hooke, Marriotte,
and Towneley. For history and references, see C. Webster, “The discovery of Boyle’s law, and
the concept of the elasticity of air in the Seventeenth Century,” Arch. Hist. Exact Sci. 2:441–502
(1965).
23J. B. Biot, “On the theory of sound,” J. Phys. Chim. 55:173–182 (1802). W. Brandes, Die
Gesctze des Gleichgewichts und der Bewegung Flüssiger Körper . . . (The Laws of Equilibrium
and of Motion of Fluids, according to Leonhard Euler), Leipzig, 1805, summarized by Truesdell,
in Leonhardi Euleri Opera Omnia, ser. 2, vol. 13, pp. CIII–CV, S. D. Poisson, “Memoir on the
theory of sound,” J. Ec. Polytech. 7:319–392 (1808), trans. of pp. 319–329 in Lindsay: Acoustics,
pp. 173–179. (Poisson refers to a theory developed by Laplace, but it is not clear whether Laplace
had then developed his concepts to the point described in his 1816 paper.) P. S. Laplace, “On the
velocity of sound through air and through water,” Ann. Chim. Phys. (2)3:238–241 (1816), trans. in
Lindsay, pp. 181–182. For a historical appraisal, see B. S. Finn, “Laplace and the speed of sound,”
Isis 55:7–19 (1964).
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grates to Eq. (2). The function F(T ) is here not explicitly identified as RT ,
to demonstrate that the result is independent of temperature scale and does not
explicitly require the concept of an absolute zero of temperature.

1.4.2 Interpretation in Terms of Entropy

The modern statement of Laplace’s hypothesis is that the specific24entropy s

remains constant for any given fluid particle, i.e.,

Ds

Dt
= 0. (1.4.3)

The specific entropy can be considered a function25 s(u, 1/ρ) of specific internal
energy u and specific volume 1/ρ, whose total differential satisfies

T dS = du + p dρ−1, (1.4.4)

so absolute temperature T and pressure p can also be regarded as functions of u

and 1/ρ. Consequently, s can be regarded as a function of any two of the variables,
T , p, ρ, u, and in particular one can write26

p = p(ρ, s) (1.4.5)

as the replacement of p = p(ρ) in Eq. (1) above. If s is initially everywhere the
same (isentropic medium), and if the fluid is of homogeneous composition (so that
each fluid particle has same equation of state), then Eq. (1) is a direct consequence

24The adjective “specific” in general implies per unit amount; in the present context it implies per
unit mass. The International Commission on Pure and Applied Physics recommends (Phys. Today,
June 1962, p. 23) that it be restricted to the meaning “divided by mass,” but there are a number
of standard terms (specific acoustic impedance, mobility, resistance, reactance) used in acoustics
where the implication is different.
25The existence of such a function s(u, 1/ρ) is a consequence of the second law of thermody-
namics; s has the property that, for a reversible process, T dS is the incremental heat added per
unit mass, where T is temperature in (SI units) kelvins, that is, degrees Celsius plus 273.16. The
differential relation (4), given this interpretation of s, is then a statement of conservation of energy
for an infinitesimal change in a reversible process. For a fuller discussion, see, for example, A. H.
Wilson, Thermodynamics and Statistical Mechanics, Cambridge University Press, London, 1957,
pp. 3–11, 17–23, 32.
26In seawater, pressure also depends on salt content or salinity (see Sect. 1.9), and the customary
assumption is that salinity of a fluid particle is constant in time; that is, D/Dt of salinity is
zero. This presumes that diffusion of dissolved salts is negligible in an acoustic disturbance. A
generalization is that the relation between p and ρ stays the same throughout a particle’s motion,
even though the relation may be different for different particles and even though, at a given fixed
point, there may be no unique relation between the two.
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of Eqs. (3) and (5); the dependence of p on s need not be explicitly considered
because s has the same value at all points and times.

The assumption of negligible heat flow is consistent with Ds/Dt = 0 since
conservation of energy (heat added equals change in internal energy plus work
done against external forces), in conjunction with Eq. (4), implies that T δs equals
incremental heat added per unit mass during a quasi-static process; so T dS/Dt

is the time rate at which heat is added per unit mass. An additional assumption
tacitly made is that the fluid is always in local thermodynamic equilibrium, i.e.,
that the relation of the pressure appearing in Euler’s equation of motion to other
thermodynamic quantities is the same as that holding in quasi-static processes.

1.4.3 Incorporation of Heat Conduction into Fluid Dynamics

That sound should be an adiabatic rather than an isothermal process27 follows
from consideration of heat conduction processes within a fluid. The flux q of heat,
according to Fourier’s law,28 equals −κ∇T , where κ is the coefficient of thermal
conduction (here idealized as a constant). The net heat added per unit time to a fluid
particle is the integral of −q ·n over its surface or, from Gauss’s theorem, the integral
of −∇ · q over its volume; so κ∇2T is heat added per unit volume and time. One
may accordingly argue29 that

ρT
Ds

Dt
= κ∇2T (1.4.6)

should be an appropriate generalization of Ds/Dt = 0 to take thermal conduction
into account. If conduction dominates, an approximation to this is ∇2T = 0; if it is
negligible, one takes Ds/Dt = 0. The first leads to an isothermal idealization for
sound, the second to an adiabatic idealization. Neither is exactly true, but for freely
propagating acoustic waves with typical frequencies of interest, the numbers work

27The question was first considered by G. G. Stokes, “An examination of the possible effect of
radiation of heat on the propagation of sound,” Phil. Mag. (4)1:305–317 (1851). The transfer of
heat by radiation in a sound wave is now believed to be of extremely small significance. See, for
example, J. B. Calvert, J. W. Coffman, and C. W. Querfeld, “Radiative absorption of sound by
water vapor in the atmosphere,” J. Acoust. Soc. Am.39:532–536 (1966). The explanation in terms
of thermal conduction is due to Rayleigh, Theory of Sound, sec. 247.
28J. Fourier, Analytical Theory of Heat, 1822, trans. by A. Freeman, 1878; reprinted by Dover,
New York, 1955, p. 52.
29An equivalent statement was given in linearized form for the case of an ideal gas and without
explicit mention of entropy by G. Kirchhoff, “On the influence of heat conduction in a gas
on sound propagation,” Ann. Phys. Chem. 134:177–193 (1868), trans. in R. B. Lindsay (ed.):
Physical Acoustics, Dowden, Hutchinson, and Ross, Stroudsburg, Pa., 1974, pp. 7–19. In some
circumstances the factor T Ds/Dt here can be replaced by cp∂T /∂t , and the equation becomes
the thermal diffusion equation first given by Fourier, Analytical Theory of Heat, p. 102.
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out such that the implications of Eq. (6) are nearly the same as those of Ds/Dt = 0.
The details are given in Sect. 1.10.

1.5 Equations of Linear Acoustics

Acoustic disturbances can usually be regarded as small-amplitude perturbations
to an ambient state. For a fluid, the ambient state is characterized by those
values (po, ρo, vo) which the pressure, density, and fluid velocity have when
the perturbation is absent. These ambient-field variables satisfy the fluid-dynamic
equations, but when the disturbance is present, one has

p = po + p′, ρ = ρo + ρ′, (1.5.1)

etc., where p′ and ρ′ represent the acoustic contributions to the overall pressure and
density fields.

The ambient state defines the medium through which sound propagates. A
homogeneous medium is one in which all ambient quantities are independent of
position; a quiescent medium is one in which they are independent of time and
for which vo is zero. In many cases, the idealization of a homogeneous quiescent
medium is satisfactory for the quantitative description of acoustic phenomena. Its
inherent simplicity, moreover, allows an unencumbered introduction to a number of
fundamental concepts. (In subsequent sections the primes on p′ and v′ are deleted if
the context is such that there is negligible possibility of confusing acoustic pressure
with total pressure or of confusing acoustic fluid velocity with some other velocity.)

The equations discussed in the previous sections [mass conservation, Euler’s
equation, and the equation,30 p = p(ρ, s) with s = so, a constant] can be written in
terms of the substitution (1) as

∂

∂t
(ρo + ρ′) + ∇ · [(ρo + ρ′)v′] = 0, (1.5.2a)

(ρo + ρ′)
(

∂

∂t
+ v′ ·∇

)
v′ = −∇(po + p′), (1.5.2b)

po + p′ = p(ρo + ρ′, so). (1.5.2c)

30If the ambient state is inhomogeneous, p = p(ρ, so) cannot be used and one falls back on
p = p(ρ, s), Ds/Dt = 0 as a starting point. If po(x) and ρo(x) are independent of t , these lead to

∂p′

∂t
+ v′ ·∇po = c2

(
∂ρ′

∂t
+ v′ ·∇ρo

)

as the linear equation that replaces (3c).
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Here vo = 0, while po, and ρo are constants related by po = p(ρo, so). The terms in
Eqs. (2a) and (2b) can be grouped into zero-order terms (all here identically zero),
first-order [just one primed variable, for example, ∇ · (ρov′)], second-order [two
primed variables, for example, ∇·(ρ′v′)], etc. In Eq. (2c), the grouping results from
a Taylor-series expansion in ρ′, that is,

p′ =
(
∂p

∂ρ

)
o

ρ′ + 1

2

(
∂2p

∂ρ2

)
o

(ρ′)2 + · · · , (1.5.2c’)

where the indicated derivatives are evaluated at constant entropy and with density
subsequently set to ρo.

The linear approximation (sometimes called the acoustic approximation)
neglects second- and higher-order terms, so the linear acoustic equations31 take the
form

∂ρ′

∂t
+ ρo∇ · v′ = 0, (1.5.3a)

ρo
∂v′

∂t
= −∇p′, (1.5.3b)

p′ = c2ρ′, c2 =
(
∂p

∂ρ

)
o

. (1.5.3c)

(Thermodynamic considerations require32 that c2 always be positive.) For reasons
made apparent in Sect. 1.7, c is referred to as the speed of sound.

Some criteria for the validity of the linear approximation result from the
requirement, for a representative solution, that each nonlinear term be almost
everywhere and almost always much less than each of the dominant retained linear
terms appearing in the same equation. A rough a priori estimate33 of ratios of various
terms ensues if one assigns a characteristic time T and a characteristic length L to
the disturbance such that the order of magnitude of ∂ψ ′/∂t (or ∂ψ ′/∂x) is 1/T (or
1/L) times the order of magnitude of ψ ′ for any acoustic field quantity ψ ′. This
yields the related criteria

31These particular equations (spatial or Eulerian description, linearized, with p′, ρ′, v′ as depen-
dent variables, only with additional viscous terms) are given by Stokes (“Internal friction of
fluids”). Equivalent formulations given by earlier authors differ from that above, either because
of the use of the material description or because the authors chose to postpone the linearization to
a later stage of the calculations, e.g., after the introduction of the velocity potential.
32This is a special case of Le Châtelier’s principle: “Experimental and theoretical research on
chemical equilibrium,” Ann. Mines Carburants (8)13:157–380 (1888); L. D. Landau and E. M.
Lifshitz, Statistical Physics, Addison-Wesley, Reading, Mass., 1959, pp. 32–66.
33C. Eckart, “Vortices and streams caused by sound waves,” Phys. Rev. 73:68–76 (1948).
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|p′| 
 ρo

(
L

T

)2

, |v′| 
 L

T
,

|ρ′| 
 ρo,
|ρ′|
ρo


 2c2

ρo|(∂2p/∂ρ2)o| . (1.5.4)

For plane-wave propagation at constant frequency (discussed in Secs. 1.7 and 1.8)
the identifications for T and L (period divided by 2π and wavelength divided by 2π)
are such that L/T is c. Criteria based on this substitution, however, are not valid in
the immediate vicinity of localized sources or in regions of wave focusing, since
L can then be much smaller than cT . Also, even when the general criteria above
are satisfied and nonlinear terms are all small, such terms can have an accumulative
effect over large time intervals or large distances of propagation. For plane-wave
propagation at constant frequency, these accumulative effects are significant when
the ratio of propagation distance to wavelength becomes comparable to ρoc

2 divided
by a representative acoustic-pressure amplitude. There are in addition certain
acoustic phenomena (e.g., acoustic streaming) that cannot be explained unless
nonlinear effects are taken into account.

To the linear acoustic equations (3) can be added one for the temperature
perturbation T ′. From the thermodynamic relation T = T (p, s), with s = so
constant, one has T ′ = (∂T /∂p)op

′ in the linear approximation. The coefficient
can be reexpressed by means of thermodynamic identities34 as (βT /ρcp)o in terms
of the coefficient of thermal (volume) expansion β = −(1/ρ)(∂ρ/∂T )p and the
coefficient of specific heat at constant pressure cp = T (∂s/∂T )p. Thus one has

34The stated relation follows from the mathematical identity
(
∂T

∂p

)
s

= − (∂s/∂p)T

(∂s/∂T )p
,

and from the version of the second law of thermodynamics that states that

d

(
u − T s + p

ρ

)
= −s dT + 1

ρ
dp,

which implies the Maxwell relation
(
∂s

∂p

)
T

= −
(

∂

∂T

1

ρ

)
p

= +ρ−2
(
∂p

∂T

)
p

.

Thus
(
∂T

∂p

)
s

= −ρ−1(∂ρ/∂T )p

ρT −1[T (∂s/∂T )p] = βT

ρcp

Here (∂s/∂p)T is an abbreviation for ∂s(p, T )/∂p, etc. For more detailed discussions, see, for
example, K. Wark, Thermodynamics, 3d ed., McGraw-Hill, New York, 1977, pp. 552–562; J. H.
Keenan, Thermodynamics, M.I.T. Press, Cambridge, Mass., 1941, 1970, pp. 341–347; M. Tribus,
Thermostatics and Thermodynamics, Van Nostrand, Princeton, N.J., 1961, pp. 243–256.
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T ′ =
(
βT

ρcp

)
o

p′. (1.5.5)

Typically, β is positive (distilled water near freezing temperature being an excep-
tion), and temperature peaks coincide with pressure peaks in a sound disturbance.

1.6 The Wave Equation

The wave equation results from the linear acoustic equations given above if one first
uses (1.5.3c) to eliminate ρ′ from the mass-conservation equation and then takes the
time derivative of the resulting equation. If the order of time differentiation and the
divergence operation35 are interchanged in the second term, it then takes the form
∇ · (ρo ∂v/∂t), which is −∇2p because of (3b). (Here we delete the primes on p′
and v′.) This sequence of steps yields

∇2p − 1

c2

∂2p

∂t2 = 0, (1.6.1)

where the operator ∇2 is the Laplacian: sum of the second derivatives with respect
to the three Cartesian coordinates, i.e., the divergence of the gradient.

The one-dimensional version of this wave equation was first derived in 1747
by d’Alembert36 for the case of the vibrating string. He subsequently recognized
its possible applicability to sound in air but chose not to publish his derivation,
presumably because of his strong reservations about the physical admissibility of
its solutions. Euler (1747–1748, 1750) and Lagrange (1759) both treated the case
of a sonorous line (see Fig. 1.5), a line of discrete masses connected by linear
springs, and suggested its applicability to sound, although these early papers do not
exhibit the wave equation per se. For reasons not completely understood, Lagrange’s
analysis37 was the catalyst that enabled Euler, within only a few days after first
seeing Lagrange’s paper, to develop the first theory of sound genuinely based on

35The use of vector notation in the derivation of the wave equation was considered novel as
recently as 1950. See, for example, W. J. Cunningham, “Application of vector analysis to the wave
equation,” J. Acoust. Soc. Am. 22:61 (1950); R. V. L. Hartley, “Note on the ‘application of vector
analysis to the wave equation’ ”, ibid., 511.
36J.-le-Rond d’Alembert, “Investigation of the curve formed by a vibrating string,” 1747, trans. in
Lindsay, Acoustics, pp. 119–130. For commentary, see Truesdell, “The theory of aerial sound,” p.
XXXVII.
37J. L. Lagrange, “Research on the nature and propagation of sound,” 1759, reprinted in Oeuvres
de Lagrange, vol. 1, pp. 39–148; L. Euler, letter to J. L. Lagrange, dated Oct. 23, 1759; L. Euler,
“On the propagation of sound,” 1759, 1766, commentary by Truesdell, “Rational fluid mechanics,
1687–1765,” pp. CXIX–CXXI; L. Euler, “Supplement to research on the propagation of sound,”
1759, 1766, commentary by Truesdell, “Rational fluid mechanics, 1687–1765,” pp. CXXII–CXXIII,
“The theory of aerial sound,” pp. XLV–XLVII; J. L. Lagrange, “New research on the nature and
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Fig. 1.5 (a) Sonorous-line model used in the early theories of sound propagation. A line of masses,
each of mass M , separated at nominal intervals h and coupled by linear springs of spring constant
k vibrates longitudinally. (b) Free-body diagram for the motion of the nth mass, corresponding to
the equation Mẍn = k(xn+1 + xn−1 − 2xn)

fluid-dynamic principles. The first derivation of the wave equation in one dimension
for sound appeared in a paper submitted in 1759 by Euler; a derivation of the three-
dimensional wave equation (with use of the material description) appeared in a
second paper. Lagrange (1760, 1762) gave a subsequent derivation more nearly akin
to that above, in which the linear approximation was made at an earlier stage.

This same wave equation occurs (although, generally also as an approximation)
in a variety of other contexts: electromagnetic theory, gravity waves in shallow
water, dilatational and shear elastic waves in solids, transverse vibrations in
stretched membranes, Alfvén waves in magnetohydrodynamics, pressure surges
in liquid-filled tubes with elastic walls, e.g., blood vessels, and electromagnetic
transmission lines.

The derivation above was with acoustic pressure as the dependent field variable.
The same equation (with change of dependent variable), however, holds for ρ′, T ′,
and ∇ · v, given the assumption that the ambient medium is homogeneous and
quiescent. (The Cartesian components of v also satisfy the wave equation if
∇ × v = 0.)

Two simple aspects of the wave equation may help one recall its form. First, since
c has the units of velocity, ct has the units of length, so (1/c2)(∂2/∂t2) has the same
units (1 over length squared) as ∇2 and the equation is dimensionally consistent, as
any relation between physical quantities should be. Second, the minus sign in the
equation implies that, at any point where p is a maximum (so ∂2p/∂x2 < 0, ∇2p <

0)), the value of p should be accelerated toward decreasing p (∂2p/∂t2 < 0). If
the sign were positive, the acoustic pressure at the point under consideration would
grow without limit and the medium would be instable.

propagation of sound,” 1760, 1762. Lindsay, Acoustics, gives translations of the second and third
and of the introductory section of the first of these articles.
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1.6.1 The Velocity Potential

An alternate formulation that leads to the wave equation is in terms of a velocity
potential.38 Taking the curl of both sides of the linear version of Euler’s equation
and noting that ∇ × ∇p is zero39 yields

∂

∂t
(∇ × v) = 0, (1.6.2)

so the vorticity ∇ × v is constant in time. In most instances one considers the initial
value ∇ × v to be identically zero, and so it will always be zero. In this case, one
can consider v to be the gradient40 of a scalar Φ(x, t). The linear version of Euler’s
equation of motion for a fluid would consequently require that ρo∂Φ/∂t + p have
zero gradient and thus be a function of t only. If the velocity potential Φ is further
restricted so that this function of t is zero, then

v = ∇Φ, p = −ρo
∂Φ

∂t
. (1.6.3)

The linear version of Euler’s equation is identically satisfied, and the mass-
conservation equation, ∇ · v + ρ−1

o ∂ρ′/∂t = 0, with ρ′ = p/c2, gives

∇2� − 1

c2

∂2Φ

∂t2
= 0, (1.6.4)

38The velocity potential was introduced by Euler in his “Principles of the Motion of Fluids,” 1752.
Its first appearance in the context of sound, however, is in J. L. Lagrange, Méchanique analitique,
1788, which includes a proof that the velocity potential satisfies the wave equation.
39A proof (in Cartesian coordinates) follows from

(∇ × ∇p) · ez = ∂

∂x
(∇p)y − ∂

∂y
(∇p)x = ∂2p

∂x ∂y
− ∂2p

∂y∂x
= 0.

40To construct a velocity-potential field, given an irrotational velocity field v(x, t), choose any
surface in the fluid that is everywhere perpendicular to v and assign some value Φo to the velocity
potential along that surface. Since v = ∇Φ, the velocity potential at any other point x is

Φ(x, t) = Φo +
∫ x

xo

v · d�,

where xo is any point on the original surface and the line integral is along any path connecting
xo and x. Stokes’ theorem (which requires the line integral of v around a closed path to vanish if
∇ × v = 0) guarantees that the value of Φ(x, t) will be independent of the choice of path if the
region is simply connected. See, for example, I. S. Sokolnikoff and R. M. Redheffer, Mathematics
of Physics and Modern Engineering, 2d ed., McGraw-Hill, New York, 1966, pp. 404–407.
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which again is the wave equation. Although the velocity potential is somewhat of an
abstraction, it is often convenient to describe an acoustic field in terms of a single
function from which all field quantities can be derived.

1.7 Plane Traveling Waves

The hypothesis that sound is a wave phenomenon is supported by the fact that the
linear acoustic equations and therefore the wave equation have solutions conforming
to the notion of a wave as a disturbance traveling through a medium with little or no
net transport of matter.

One simple solution exhibiting this feature that plays a central role in many
acoustical concepts is a plane traveling wave, which is such that all acoustic field
quantities vary with time and with some Cartesian coordinate s but are independent
of position along planes normal to the s direction. Thus p = p(s, t), etc. Because
∇p has only an s component, the fluid acceleration ∂v/∂t must be in the ±s

direction and if v is initially zero within the region of interest at some early time,
components of v transverse to the s direction will always be zero. Thus one writes
v = v(s, t)n, where n is the unit vector in the direction of increasing distance
s. (The primes on p′ and v′ are deleted because po does not appear in the linear
acoustic equations and because vo is zero.)

With the simplifications described, Eqs. (1.5.3) reduce to

∂p

∂t
+ ρoc

2 ∂v

∂s
= 0, ρo

∂v

∂t
= −∂p

∂s
, (1.7.1)

while the wave equation reduces to its one-dimensional form:

∂2p

∂s2 − 1

c2

∂2p

∂t2 = 0, (1.7.2a)

or
(

∂

∂s
− 1

c

∂

∂t

)(
∂

∂s
+ 1

c

∂

∂t

)
p = 0. (1.7.2b)

The latter follows because commutable operators can be manipulated like algebraic
quantities and because (a − b)(a + b) = a2 − b2.

The factored version (2b) suggests that writing its solution might be facilitated if
p were considered as a function of ξ = t − (1/c)s and η = t + (1/c)s. This choice
gives ∂/∂t = ∂/∂ξ + ∂/∂η, ∂/∂s = −(1/c)(∂/∂ξ − ∂/∂η); so ∂/∂t ∓ c∂/∂s is
2∂/∂ξ or 2∂/∂η, and the wave equation consequently becomes

− 4

c2

∂

∂ξ

∂

∂η
p = 0. (1.7.3)
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The general solution of this is a sum of a function of ξ = t − s/c and of a function
of η = t + s/c, that is,

p = f (t − c−1s) + g(t + c−1s), (1.7.4)

where the functions f and g are arbitrary.41

To obtain the relation between the solutions for p and v, note that Eqs. (1) imply

ρc

(
∂

∂t
± c

∂

∂s

)
v = ∓

(
∂

∂t
± c

∂

∂s

)
p, (1.7.5a)

or

∂

∂η
(ρcv + p) = 0,

∂

∂ξ
(ρcv − p) = 0, (1.7.5b)

so p + ρcv and p − ρcv are, respectively, functions of ξ and η, which we denote by
2f (ξ) and 2g(η). This choice of notation reproduces Eq. (4) and, moreover, gives

v = (ρc)−1
[
f (t − c−1s) − g(t + c−1s)

]
, (1.7.6)

where the functions f and g are the same as in Eq. (4). (Here we introduce an
additional notational simplification by deleting the subscript on ρo, so that ρ is here
the ambient density.)

The wave interpretation of the solution follows since f (t−c−1s) and g(t+c−1s)

describe waves moving in the +s and −s directions, respectively, with a speed c. If
f (t − c−1s) is plotted versus s for two fixed successive values of t (see Fig. 1.6),
the two wave shapes are identical but the second is displaced a distance c(t2 − t1) to
the right, i.e.,

f (t2 − c−1s) = f (t1 − c−1[s − (t2 − t1)c]).

To evaluate f (t2 − c−1s) for a given value s′′ of s, one might, for example, look at
a plot or tabulation of f (t1 − c−1s) at a value s′ of s, where s′ = s′′ − c(t2 − t1).
Similarly, g(t+c−1s) is interpreted as a wave moving without change of form in the
−s direction. Since c is the speed at which the two waveforms move, we identify c

as the speed of sound.
In many instances, there is just one traveling wave in a given spatial region,

namely the wave traveling away from the source. If we take this direction as the +s

41The solution is due to d’Alembert (“. . . curve formed by a vibrating string,” 1747), but its wave
implications first appeared in Euler’s “On the propagation of sound,” 1759, 1766. That the functions
f and g need not necessarily be analytic touched off one of the longest and bitterest controversies
in the history of mathematical physics. For a discussion, see Truesdell, “The rational mechanics of
flexible or elastic bodies, 1638–1788,” pp. 237–300.
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Fig. 1.6 A function f (t − c−1s) describing a plane wave traveling in the +s direction, sketched
for two successive times

direction, we would accordingly set g(t + c−1s) = 0 and have p = f (t − c−1s). If
n is the unit vector in the direction of increasing s, one can write s = n · x as the
Cartesian component along the propagation direction of the vector x going from the
origin to the point of measurement. It can also be assumed that, for all values of s
of interest (some finite range), there is a time to in the remote past before which the
wave has not yet arrived and consequently, before which, the acoustic field variables,
p, ρ′, v, and T ′, are all identically zero. Then one has42

p = f (t − c−1n · x), (1.7.7)

v = n

ρc
p, ρ′ = p

c2 , T ′ =
(

Tβ

ρcp

)
0
p, (1.7.8)

as characterizing the various acoustic-field quantities for a traveling plane wave
advancing in arbitrary direction n with speed c. The first of Eqs. (8) follows from
(6) and from the assumptions described, while the second and third are a rewriting
of Eqs. (1.5.3c) and (1.5.5). The velocity–pressure relation is not true for a standing
wave or for superpositions of plane waves, but it holds for the pressure and fluid
velocity associated with each individual traveling plane wave contributing to the
overall wave disturbance. The fluid velocity v is toward the direction (+n) of
propagation if p is positive and away from it if p is negative.

The factor of proportionality ρc is called the characteristic impedance of the
medium. For air its value is typically (with ρ = 1.2 kg/m3, c = 333 m/s)
about 400 kg/(m2·s), the unit occasionally referred to as the mks rayl [in honor of

42The solution for plane waves propagating in an arbitrary direction not necessarily coinciding
with a coordinate axis is due to Euler, “Supplement to research on the propagation of sound,”
1759, 1766.
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Rayleigh, 1 mks rayl = 1 kg/(m2·s)]. For water, a typical value (ρ = 103 kg/m3,
c = 1500 m/s) is 1.5 × 106 kg/(m2·s).

1.7.1 Processes Occurring During Passage of a Sound Wave

An example exhibiting some of the phenomena accompanying the propagation of
sound is that for which f (t) is zero for t < 0, then is ppk sinωt for 0 < t < 2π/ω,
then is zero again for t > 2π/ω (see Fig. 1.7), so that the waveform is a single
cycle of a sinusoidal function. (Here ω and ppk are positive constants.) At a given
measurement site (coordinate s) there is no wave disturbance until t = s/c.
Immediately before that time, the fluid particles just to the left of point s have an
average velocity in the +s direction, so the fluid starts to be compressed after the
wave arrives and ρ′ starts to increase with time. This compression in turn causes
the pressure to increase. Since the pressure is temporarily larger to the left of s,
the pressure gradient is in the −s direction, and fluid particles are accordingly
accelerated in the +s direction. This acceleration and compression continue until the
pressure peak arrives (one-quarter of a period later). After this, the compression and
overpressure start to diminish, although v, p, and ρ′ are still positive. By the time the
pressure node (one-half period after onset) arrives, the density is back to ambient,
the fluid velocity has slowed to zero, and the net displacement of fluid particles to
the right has reached its maximum value. However, the negative acceleration is still
nonzero as there is a positive pressure gradient. Consequently, the fluid velocity goes
negative, the density and pressure decrease to values below ambient, and the fluid

Fig. 1.7 Fluid-particle positions during passage of one cycle of a sinusoidal plane traveling wave
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is rarefacted. When the peak underpressure arrives, the fluid has attained its peak
backward velocity. In the final quarter of the cycle, the acceleration is once again
positive, the backward-moving fluid particles are slowed until, at the termination of
the passage of the pulse, they are again motionless.

If the time integral of f (t) is zero (as for the example discussed), the net
displacement of the fluid particles is zero. The wave disturbance moved them
temporarily to the right, but then moved them back to their original positions.

One can infer (as originally hypothesized by Newton) that compression and
rarefaction play an important role in sound propagation. In the example above, the
disturbance is a moving region of compression followed by a moving region of
rarefaction. Because of the presence of such density fluctuations, sound waves are
compressional waves.

They are also longitudinal waves (as opposed to transverse waves) because the
fluid velocity is parallel or antiparallel to the direction of propagation. This is a
consequence of the vorticity’s being zero. If v were of the form of a constant vector
V times a scalar function of t − n · x/c, the relation ∇ × v = 0 would require
n × V = 0, so n and the fluid velocity direction would have to be parallel or
antiparallel.

The prediction of a zero net fluid displacement over a wave cycle demonstrates
that it is the disturbance rather than the fluid itself that is moving with the sound
speed. The disturbance may propagate over great distances, but the fluid particles
themselves remain at all times close to their original positions.

1.8 Waves of Constant Frequency

An acoustic disturbance is of constant frequency if the field variables oscillate
sinusoidally with time, such that (for the acoustic pressure p), at any given point,

p = ppk cos(ωt − φ) = ppk sin(ωt − φ′) = Re{p̂e−iωt }, (1.8.1)

where ppk (the amplitude or peak pressure), ω (the angular frequency), p̂ (the
complex pressure amplitude), and φ (the phase constant) are independent of time
t. (Re denotes “real part.”) These three expressions above are equivalent, given the
identifications

φ′ = φ − π

2
, p̂ = ppke

iφ, (1.8.2)

since

sin
(
α + π

2

)
= cosα, eiα = cosα + i sinα. (1.8.3)
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[The validity of the latter (Euler’s formula) follows from a comparison of the power-
series expansions of the two sides.]

The expressions in Eq. (1) oscillate between positive and negative values and
repeat themselves whenever their arguments ωt − φ or ωt − φ′ are changed by 2π .
Thus the time per cycle (period) is 2π/ω, and the number of cycles per unit time
(frequency) is

f = ω

2π
. (1.8.4)

The units of frequency are hertz (Hz), where 1 Hz equals43 1 cycle per second (or
s−1). The units of angular frequency (sometimes referred to simply as frequency
without the qualifying adjective) are radians per second. Frequencies audible to a
normal human ear are roughly between 20 and 20,000 Hz. As mentioned in Sect. 1.1,
constant-frequency disturbances correspond to musical notes. A piano, for example,
sounds a range of frequencies between 55 and 8360 Hz. Middle C corresponds to
262 Hz.

The complex-number representation in Eq. (1) is convenient44 in theoretical
studies; in particular, it replaces the amplitude and phase by a single complex
number and condenses the writing of mathematical relations. One could take the
time-dependent factor to be e+iωt instead of e−iωt , but the latter is traditional45 in
wave-propagation studies and is advantageous for the description of traveling waves.

Although every wave disturbance, strictly speaking, has a beginning and an end
and should therefore be regarded as a transient, some long-duration sounds can be
idealized as being of constant frequency. [The terms “steady wave” and “continuous
wave” (cw) are also used in the literature to denote the same property.] Also, even
if not pure tones, persistent sounds may be superpositions of independently prop-
agating constant-frequency disturbances. The mathematical apparatus of Fourier
transforms, moreover, allows transients to be considered as a superposition of a
continuous smear of constant-frequency components.

For disturbances like those described by Eq. (1), the mean squared pressure
(p2)av and root-mean-squared (rms) pressure prms are defined so that

(p2)av = 1

T

∫ to+T

to

p2 dt = p2
rms, (1.8.5)

43That the hertz is a superfluous unit has not escaped commentary. See, for example, H. M.
Fitzpatrick, “The hertz,” J. Acoust. Soc. Am. 42:1098 (1967); R. W. Young, “On the hertz,” ibid.;
M. Strasberg, “Name for unit radian frequency” (the avis), ibid., 41:1367 (1967); F. Collins,
“The Fitzpatrick method,” ibid., 43: 1460 (1968); L. G. Copley, “Angular velocity,” ibid.; H. M.
Fitzpatrick, “Some relevant fundamentals,” ibid., 1460–1461.
44This device was introduced into the acoustical literature by Rayleigh, Theory of Sound, vol. 1,
sec. 104.
45The reasons for the choice are discussed by C. J. Bouwkamp: “A contribution to the theory of
acoustic radiation,” Philips Res. Rep. 1:251–277 (1946).
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where T is either an integral number of half-wave periods or an interminably long
time interval. Because of the trigonometric identity

cos2 α = 1
2 + 1

2 cos 2α, (1.8.6)

the square of cos(ωt − φ) oscillates about an average value of 1
2 with a period of

1/(2f ). Thus, Eqs. (1) and (5) lead to

(p2)av = 1
2p

2
pk = 1

2 |p̂|2. (1.8.7)

1.8.1 Time Average of a Product

A related identity, stated here for future reference, concerns the time average of the
product of two field quantities, each oscillating with the same frequency but not
necessarily in phase. If one writes

X = Re
{
X̂e−iωt

}
Y = Re

{
Ŷ e−iωt

}
, (1.8.8)

then

(XY )av = 1
2 Re

{
X̂Ŷ ∗} , (1.8.9)

where Ŷ ∗ is the complex conjugate of Ŷ . The derivation rests on the trigonometric
identity [of which Eq. (6) is a special case]:

cosα cosβ = 1
2 cos(α − β) + 1

2 cos(α + β). (1.8.10)

If α = ωt − φX and β = ωt − φY , the second term averages out to zero while the
first term has an average equal to 1

2 cos(φY − φX). Since

|X̂| · |Ŷ | cos (φY − φX) = Re
{
|X̂| · |Ŷ |e±i(φY −φX)

}
,

relation (9) follows.
For sound in air, the lowest audible rms pressure amplitude is typically 2 × 10−5

Pa; a very loud sound would be one with prms = 2 Pa; one causing pain, with
prms = 60 Pa, although these numbers vary with frequency and from individual to
individual. (Here Pa is the unit symbol for the pascal, equal to 1 N/m2.) In contrast,
the ambient pressure at sea level is 105 Pa, so that the pressure amplitude in a sound
wave is generally much less than po.
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1.8.2 Spatially Dependent Complex Amplitudes

Since the field equations of Sect. 1.5 are (by design) linear and have time-
independent coefficients, it is possible for the field variables to oscillate at each
and every point with the same frequency. Thus ω may be considered independent of
position. Equations governing the spatial dependences of the complex amplitudes
can be developed by substituting expressions like Re{p̂(x)e−iωt } into the linear
acoustic equations. Because (1) the derivative (with respect to time or a spatial
coordinate) commutes with the operation of taking the real part (so ∂/∂t → −iω),
(2) the product of a real number with the real part of a complex number is the real
part of the product, and (3) the sum of the real parts of several complex numbers is
the real part of the sum, one obtains, for the mass-conservation equation,

Re
{
(−iωρ̂ + ρo∇ · v̂)e−iωt

}
= 0. (1.8.11)

This will be satisfied if both the real and imaginary parts of the quantity in braces are
zero or, equivalently, if the quantity in parentheses is zero. That the latter should be
zero follows since the above should be satisfied for all values of time (in particular,
when e−iωt has the values 1 or −i).

Thus, one arrives at the prescription that the equations for the complex spatially
dependent amplitudes can be obtained from the linear acoustic equations by
(1) replacing the actual field variables by the corresponding amplitudes and (2)
replacing the operator ∂/∂t by the quantity −iω. Doing this gives

− iωp̂ + ρc2∇ · v̂ = 0 − iωρv̂ = −∇p̂. (1.8.12)

(Here we again delete the subscript on the ambient density ρo.)
In a similar manner, the wave equation is transformed into the Helmholtz

equation46

∇2p̂ + k2p̂ = 0, (1.8.13)

where the wave number k is ω/c. This can also be derived directly from Eqs. (12).
An advantage of such equations is that the number of independent variables is
reduced by 1.

46H. Helmholtz, “Theory of air oscillations in tubes with open ends,” J. Reine Angew. Math.
57: 1–72 (1860), especially p. 15. The equation was first given (in vector form for the particle
displacement) by Euler in his “Continuation of the research on the propagation of sound,” 1759,
1766 (Truesdell, “The theory of aerial sound, 1687–1788,” p. IL).



1.8 Waves of Constant Frequency 29

1.8.3 Plane Waves of Constant Frequency

For a plane traveling wave of constant frequency, the acoustic-pressure waveform
function f (t) in Eqs. (1.7.4) and (1.7.7) is ppk cos (ωt − φo), where ppk and φo are
constants. Therefore one has

p = ppk cos[ω(t − c−1s) − φo] = ppk cos(ωt − ks − φo)

= ppk cos(ωt − k · x − φo) = Re
{
ppke

iφoeik·xe−iωt
}
, (1.8.14)

where k = ω/c, as before, and

k = ω

c
n = kn (1.8.15)

is the wave-number vector. Also used is the identification of s as n · x, where n is
the unit vector in the direction of propagation. The corresponding expressions for v,
ρ′, and T ′ are np/ρc, etc., as in Eqs. (1.7.8). One would also identify, from Eqs. (1)
and (14), the complex pressure amplitude as

p̂(x) = ppke
iφoeiks = ppke

iφoeik·x, (1.8.16)

which is a solution of the Helmholtz equation.
Equations (14) demonstrate that, in addition to being cyclic in time with a period

1/f (where f denotes frequency), a constant-frequency traveling plane wave is also
cyclic with distance of propagation, the repetition length being λ = 2π/k (the
wavelength). Since k = ω/c and ω = 2πf , one has the fundamental relation [dating
back47 as far as Newton’s Principia (1686)] that

λf = c. (1.8.17)

Thus, if the speed of sound in air is 340 m/s, the wavelength corresponding to
a frequency of 262 Hz (middle C on the piano) is 1.3 m. In terms of human
dimensions, typical sound wavelengths are neither very long nor very short.

47The relation was implicitly used in an unpublished note (c. 1682) by Huygens. The concept of
a wavelength that decreases with increasing frequency is also evident in Galileo’s Mathematical
Discourses, 1638. (See Dostrovsky, “Early vibration theory,” pp. 180, 192.)
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1.9 Speed of Sound and Ambient Density

The first measurement of the sound speed c in air was evidently48 made by Marin
Mersenne and is reported in works published in 1635 and 1644. The time lapse
was measured from the visual sighting of a source excitation (e.g., the firing of a
cannon) to the reception of the (transient) sound pulse; dividing the known distance
from the listener to the source by the time interval gave the sound speed. Numerous
measurements49 have been made since Mersenne’s time by a variety of methods;
the now accepted value for the speed of sound in dry air at 0 ◦C is 331.5 m/s.

1.9.1 Speed of Sound in Gases

The value of c, according to Laplace’s adiabatic assumption for an ideal gas (a valid
idealization for air) with temperature-independent specific-heat ratio γ , should be
[see Eq. (1.4.2)] such that

c2 = ∂

∂ρ
Kργ = γKργ−1 = γp

ρ
, (1.9.1)

where p and ρ denote ambient pressure and density. Since p = ρRT (the ideal-gas
equation resulting from Boyle’s law and from the definition of absolute temperature
T ), one accordingly has

c = (γRT )1/2. (1.9.2)

Both Eqs. (1) and (2) can be derived without assuming that γ is independent of
temperature, but for the temperature range of typical interest the variation of γ

is negligible. For most ordinary purposes γ can be taken as constant and, for air,
equal to 1.4. This value is consistent with the notion that the diatomic molecules
O2 and N2 (the primary atmospheric constituents) have five fully excited degrees
of freedom, three translational and two rotational; internal vibrations and rotation
about the symmetry axis are nearly “frozen” at room temperatures. The incomplete
freezing of the vibrational degree of freedom is important for the attenuation of
sound but has very small effect on the sound speed. (This is explained in Sect. 10.8.)
Basic kinetic-theory considerations50 for rigid molecules give γ = (d+2)/d, where

48J. M. A. Lenihan, “Mersenne and Gassendi: An early chapter in the theory of sound,” Acustica
2:96–99 (1951). Translated excerpts from Mersenne’s Cogitata Physico-Mathematica, Paris, 1644,
are given in Lindsay, Acoustics, pp. 64–66.
49J. M. A. Lenihan, “The velocity of sound in air,” Acustica 2:205–212 (1952).
50A principal result dating back to Daniel Bernoulli (1738) is that pressure equals two-thirds
the random molecular translational energy per unit volume. The equipartition theorem requires
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d is the number of excited degrees of freedom, and with d = 5 this does lead to
γ = 1.4.

Kinetic theory also gives the ideal-gas equation in the form p = NkBT , where
N is the number of molecules per unit volume and kB = 1.381 × 10−23 J/K is
Boltzmann’s constant. Thus R in the relation p = ρRT is kB/mav, where mav is
the average mass per molecule. Alternately, one can write

R = Ro

M
, (1.9.3)

where Ro = kB/mamu = 8314 J/(kg · K) is the universal gas constant, mamu =
1.661 × 10−27 kg being the mass corresponding to 1 atomic mass unit (amu). The
quantity M = mav/mamu is the average molecular weight of the different types of
molecules in the gas, the weighting being the corresponding fraction (by volume) of
total number of molecules. Air is a mixture of gases, but except for water vapor, the
fractions by volume of its major constituents are nearly constant. Dry air (no H2O)
is made up of approximately 78% N2 (molecular weight 28), 21% O2 (molecular
weight 32), and 1% argon (molecular weight 40) by volume, so that its average
molecular weight is the sum of (0.78)(28), (0.21)(32), and (0.01)(40), or 29.0. The
corresponding value of R is 8314/29 = 287 J/(kg · K).

With the numbers just cited, the theoretical estimate of the speed of
sound in dry air at 0 ◦C (273.16 K), according to Eq. (2) above, would be
[(1.4)(287)(273.16)]1/2 = 331 m/s, in accord with the accepted experimental
value. For other temperatures of normal interest, it may be sufficient to expand c

in a Taylor series about 273.16 K. Since dc/dT = ( 1
2 )(c/T ) or 0.61 (m/s)/K at

0 ◦C with the value of c just computed, one has approximately (for dry air) that (c
in meters per second, TC in degrees Celsius)

c = 331 + 0.6TC. (1.9.4)

The presence of H2O (with 6 degrees of freedom and a molecular weight of 18)
causes the average number of degrees of freedom per molecule to increase to 5 + h

and M to decrease to 29 − (29 − 18)h, where h is the fraction of the molecules that
are H2O. The first effect decreases γ = (d+2)/d and therefore tends to decrease the
sound speed; the second tends to increase it. The second dominates, so c increases.
The resulting expansion of the expression (γRT )1/2 to first order in h is

an average amount 1
2 kBT of energy per degree of freedom. Since there are three translational

degrees of freedom, the average translational energy per unit volume is 3
2NkBT ; hence p =

NkBT . The average total energy per molecule is (d/2)kBT , so the specific internal energy is
u = (d/2)kBT /mav. From T ds = du + p d(1/ρ) and p = (kB/mav)ρT one derives cv = du/dT
and cp = du/dT + kB/mav. But du/dT is (d/2)kB/mav, so that cp/cv = (d + 2)/d. For a more
detailed but still elementary discussion, see D. Halliday and R. Resnick, Fundamentals of Physics,
Wiley, New York, 1970, pp. 378–390. A general proof of the equipartition theorem is given by D.
ter Haar, Elements of Statistical Mechanics, Rinehart, New York, 1954, pp. 30–32.
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cwet = [1 + 0.16h]cdry. (1.9.5)

The water-vapor correction is typically less than 1.5% since h rarely exceeds 0.07
(100% humidity at 40 ◦C), although still measurable.

The ambient density of air can be calculated from the ideal-gas equation,
ρ = p/RT . Atmospheric pressure at sea level can be taken at 105 Pa, so when
temperature varies from 0 to 40 ◦C, ρ varies from 1.27 down to 1.11 kg/m3. For
general estimates, ρ = 1.2 kg/m3 suffices.

As regards the proportionality between T ′ and acoustic pressure p′ for an ideal
gas,51 one has cp − cv = R, β = 1/T . Since cp/cv = γ , one has cp = [γ /(γ −
1)]R. Thus, Eq. (1.5.5) gives

T ′

To
= γ − 1

γ

p′

po

, (1.9.6)

where (γ − 1)/γ is 2
7 for air.

1.9.2 Acoustic Properties of Liquids

For liquids, such as water, the expression [∂p(ρ, s)/∂ρ]1/2 for the sound speed is
often written as

c =
(
Ks

ρ

)1/2

, (1.9.7)

where

Ks = ρ
∂

∂ρ
p(ρ, s) (1.9.8)

is the adiabatic bulk modulus. The reciprocal 1/Ks is the adiabatic compressibility.
(For an ideal gas, Ks is γ p.) For a liquid, little error would be introduced into
the computation of c if Ks (which is difficult to measure directly) were replaced
by the isothermal bulk modulus KT and the propagation accordingly considered
to be isothermal rather than adiabatic. The discrepancy can be computed from the
thermodynamic identity52

51See the preceding footnote.
52A derivation starting from s = s(T , p(ρ, T )) leads to the mathematical identity

(
∂s

∂T

)
ρ

=
(

∂s

∂T

)
p

+
(
∂s

∂p

)
T

(
∂p

∂T

)
ρ

, cp − cv = −T

(
∂s

∂p

)
T

(
∂p

∂T

)
ρ

.
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Ks − KT

Ks

= Tβ2KT

ρcp
= Tβ2c2

γ cp
= γ − 1

γ
. (1.9.9)

where β is the coefficient of volume (thermal) expansion. The number (γ −1)/γ is,
as remarked above, equal to 2

7 for air but turns out to be only of the order of 0.001
for water at 10 ◦C and atmospheric pressure.

The earliest measurements (see Fig. 1.8) of sound speed in water were made by
J.-D. Colladon53 at Lake Geneva in 1826; the value derived was c = 1435 m/s
at a time when the water temperature was 8 ◦C. For the same temperature (and
atmospheric pressure), the present accepted value54 is 1439.1 m/s; the general
dependence (for c in distilled water) on temperature and pressure is as depicted
in Fig. 1.9. For fixed T , c increases nearly linearly with pressure, but for fixed p, it
rises to a maximum and subsequently decreases with increasing temperature. One
is often only interested in water temperatures between 0 and 20 ◦C and in pressures
between 1 and 100 atm (105 and 107 Pa), and, with these limitations, the following
empirical formula may suffice:

c = 1447 + 4.0ΔT + (1.6 × 10−6)p. (1.9.10)

Here c is in meters per second, ΔT is T − 283.16 (temperature relative to 10 ◦C),
and p is absolute pressure in pascals. A value of c sufficient for rough numerical
estimates would be 1500 m/s.

The presence of dissolved salts in seawater causes c to be of the order of 40
m/s higher. The salt content is described55 in terms of a salinity S (units of grams
per kilogram or, in common notation, �) that is approximately the total amount of
(originally) solid material in grams contained in a kilogram of water. The salinity

Then, since (∂p/∂T )ρ = −(∂p/∂ρ)T (∂ρ/∂T )p (a fundamental mathematical relation between
partial derivatives) and since (∂s/∂p)T = −[∂(1/ρ)/∂T ]p (one of the Maxwell relations), one
derives

cp − cv = T

ρ

[
− 1

ρ

(
∂ρ

∂T

)
p

]2 [
ρ

(
∂p

∂ρ

)
T

]
= Tβ2KT

ρ
.

A relation for Ks −KT is derived similarly, starting from p(ρ, s(ρ, T )). See p. 17n and the texts
cited there on thermodynamics.
53J.-D. Colladon and J. C. F. Sturm, “Memoir on the compression of liquids,” Ann. Chim. Phys.
(2)36:225–257 (1827), especially p. 248. A translated extract from Colladon’s autobiography is
given in Lindsay, Acoustics, pp. 195–201.
54M. Greenspan and C. E. Tshiegg, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.
31:75–76 (1959); J. R. Lovett, “Comments concerning the determination of absolute sound speeds
in distilled and seawater and Pacific sofar Speeds,” ibid., 45: 1051–1053 (1969); W. D. Wilson,
“Speed of sound in distilled water as a function of temperature and pressure,” ibid., 31:1067–1072
(1959); “Speed of sound in sea water as a function of temperature, pressure, and salinity,” ibid.,
32:641–644 (1960); “Equation for the speed of sound in sea water,” ibid., 1357.
55R. A. Horne, Marine Chemistry, Wiley-Interscience, New York, 1969, pp. 146, 151.
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Fig. 1.8 Earliest measurement of the speed of sound in water. “I had my station at Thonon, my ear
attached to the extremity of an acoustic tube. The boat was oriented so that my face was turned in
the direction of Rolle. I was thus able to see the light accompanying the striking of the bell and to
hold the watch which served to measure the time taken by the sound to reach me” (J.-D. Colladon,
Souvenirs et mémoires, Aubert-Schuchardt, Geneva, 1893, plate facing page 138)
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Fig. 1.9 Temperature and pressure dependence of the sound speed in distilled water [Adapted
from W. D. Wilson, J. Acoust. Soc. Am. 31:1070 (1959)]

suffices as a single-parameter description of the chemical composition because
(Mercet’s principle) the relative (to each other) proportions of different types of
salts in seawater are nearly the same all over the world. Empirical formulas for
c(p, T , S) have been developed by Wilson; an approximate version applicable for
the same circumstances as in Eq. (10) and for S near 35� is

c = 1490 + 3.6ΔT + (1.6 × 10−6)p + 1.3ΔS, (1.9.11)

where ΔT and p are defined as before and ΔS = S − 35. The reason for the
expansion about 35� is that 99.5% of all seawater has a salinity between 33 and
37�.
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Other thermodynamic properties of water can also approximately be expressed
in a form analogous to the equations above. For fresh (distilled) water, one has56

ρ = 999.7 + 0.048 × 10−5p − 0.088ΔT − 0.007(ΔT )2, (1.9.12a)

β = (8.8 + 0.022 × 10−5p + 1.4ΔT ) × 10−5, (1.9.12b)

cp = 4192 − 0.40 × 10−5p − 1.6ΔT, (1.9.12c)

KT = (20.9 + 0.0058 × 10−5p + 0.10ΔT ) × 108, (1.9.12d)

βT

ρcp
= (6.0 × 10−9)

(
1 + ΔT

6
+ 0.0024 × 10−5p

)
, (1.9.12e)

γ − 1

γ
= 0.0011

(
1 + ΔT

6
+ 0.0024 × 10−5p

)2

, (1.9.12f)

while the analogous expressions for seawater are

ρ = 1027 + 0.043 × 10−5p − 0.16ΔT − 0.004(ΔT )2 + 0.75ΔS, (1.9.13a)

β = (16.3 + 0.019 × 10−5p + 0.81ΔT + 0.2ΔS) × 10−5, (1.9.13b)

cp = 3988 − 0.23 × 10−5p + 0.54ΔT − 5.4ΔS, (1.9.13c)

KT = (22.6 + 0.0062 × 10−5p + 0.10ΔT + 0.051ΔS) × 108 , (1.9.13d)

βT

ρcp
= (1.1 × 10−8)

(
1 + ΔT

20
+ 0.0012 × 10−5p + 0.012ΔS

)
, (1.9.13e)

γ − 1

γ
= 0.0041

(
1 + ΔT

20
+ 0.0012 × 10−5p + 0.012ΔS

)2

. (1.9.13f)

Here all the indicated quantities are in SI units: ρ in kg/m3, β in K−1, cp in J/(kg·K),
KT in Pa; γ is dimensionless. The temperature dependence of β is strong, β being
negative for distilled water near 0 ◦C.

56The data from which these are derived come from various tables collected by Horne, Marine
Chemistry, and the Handbook of Chemistry and Physics, Chemical Rubber Publishing Co.,
Cleveland, issued annually. Some judicious application has also been made of such thermodynamic
identities as

(
∂cp

∂p

)
T

= −T

ρ

[
β2 +

(
∂β

∂T

)
p

] (
∂β

∂p

)
T

= 1

K2
T

(
∂KT

∂T

)
p

.
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1.10 Adiabatic Versus Isothermal Speeds

Whether sound disturbances should be idealized as adiabatic or as isothermal can
be investigated with the help of the linearized versions of the mass-conservation
equation, of Euler’s equation, and of the Fourier–Kirchhoff equation (1.4.6).
Elimination of the fluid velocity from the first two (in a manner similar to that in the
derivation of the wave equation) gives

∂2ρ′

∂t2
− ∇2p = 0, (1.10.1)

while the third can be reexpressed as

ρocp
∂

∂t

(
ρ′ − p

c2

)
= κ∇2

(
ρ′ − p

c2
T

)
, (1.10.2)

where c2
T = (∂p/∂ρ)T ,o = c2/γ . (If the propagation is isothermal, the sound speed

is cT .) The latter equation results with the help of the thermodynamic relations

s′ =
(
∂s

∂ρ

)
p,o

(
ρ′ − p

c2

)
, T ′ =

(
∂T

∂ρ

)
p,o

(
ρ′ − p

c2
T

)
,

(
∂s

∂ρ

)
p

=
(
∂s

∂T

)
p

(
∂T

∂ρ

)
p

,

along with the definition T (∂s/∂T )p for cp.
A single wave equation for just one dependent variable is obtained from Eqs. (1)

and (2) by taking the second time derivative of Eq. (2), commuting various operators
and constants, and subsequently replacing ∂2ρ′/∂t2 by ∇2p in accord with Eq. (1).
Doing this gives

∂

∂t

(
∇2 − 1

c2

∂2

∂t2

)
p =

(
κ

ρcp

)
∇2

(
∇2 − 1

c2
T

∂2

∂t2

)
p, (1.10.3)

which is the generalization of the wave equation when thermal conduction is taken
into account.

The implications of Eq. (3) for plane-wave propagation at constant frequency ω

can be explored with the substitution

p = Re
{
Ae−iωt eiks

}
, (1.10.4)

where A and k are independent of time and position. The same reasoning applies
as in the derivation of Eqs. (1.8.12), so the “equation” for A results with the
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replacement of p by A in Eq. (3) and with the replacement of the differentiation
operators ∂/∂t and ∇2 by −iω and −k2. This gives a homogeneous linear algebraic
equation whose solution for A is zero unless k is such that

k2 − (ω/c)2

k2 − (ω/cT )2
= κ

ρcp

k2

iω
. (1.10.5)

(Any such relation between wave number k and angular frequency ω is termed a
dispersion relation.) For fixed ω, this determines the values of k2 such that plane-
wave solutions are possible; the imaginary part of k corresponds to attenuation.
Although this is a quadratic equation for k2, we here limit our attention to the root
closest in value to either (ω/cT )2 or (ω/c)2.

If the adiabatic assumption is substantially better than the isothermal assumption,
there is a root k2 for which the right side of (5) has a magnitude much smaller than
1. In this case k2 is approximately (ω/c)2 and the right side becomes −iω/ωTC or
−if/fTC, where

ωTC = ρcpc
2

κ
= 2πfTC (1.10.6)

is a characteristic number (units of s−1) associated with thermal conduction (TC).
From this, one can infer that the adiabatic approximation is valid if ω 
 ωTC. In
contrast, if ω � ωTC, the propagation might be considered as isothermal (although
in such circumstances the hitherto neglected viscosity would be expected to result in
a high attenuation of sound). For angular frequencies between these limits, neither
idealization is necessarily preferable, although nearly unattenuated propagation may
still result if cT and c are close to each other in value.

The frequencies of interest in acoustical studies are always much less than fTC.
For example, for air, ρcpc2 = γ 2Rpo/(γ − 1) has the value 1.4 × 108 W/(m·s·kg)
at atmospheric pressure. The thermal conductivity varies from 2.4 × 10−2 to
2.7 × 10−2W/(m · K) as the temperature ranges from 0 to 40 ◦C. Consequently,
fTC is of the order of 109 Hz. Also, for water, with the values given in the preceding
section, ρcpc2 = 9×1012 W/(m·K) at 10 ◦C and atmospheric pressure. The thermal
conductivity varies from 0.56 to 0.60 W/(m·K) as the temperature ranges from 0 to
20 ◦C. Thus, for water, fTC is of the order of 2 ×1012 Hz. In contrast, the highest
known frequency in air detectable by animal life (bats and moths) is of the order
of 1.5 × 105 Hz. Frequencies used in ultrasonic-propagation studies in water are
typically less than 109 Hz; those used in underwater systems are typically less than
105 Hz.

The adiabatic approximation is better at lower frequencies than at higher
frequencies because the heat production due to conduction is weaker when the
wavelengths (varying inversely with frequency) are longer. For fixed amplitude A,
the magnitude of the term κ∇2T ′ in the linear version of the Fourier–Kirchhoff
equation (1.4.6) decreases with decreasing ω as ω2; the term ρTo∂s

′/∂t decreases
as ω. Since the thermal-conduction term decreases more rapidly, the lower the
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frequency, the more nearly valid the premise that the implication of the overall
equation is ∂s′/∂t = 0. (The often stated explanation that oscillations in a sound
wave are too rapid to allow appreciable conduction of heat is wrong.)

1.11 Energy, Intensity, and Source Power

1.11.1 Acoustic-Energy Corollary

The linear acoustic equations have a corollary (derived by Kirchhoff57 in 1876)
which resembles a statement of energy conservation for an acoustic field and
which can be regarded as the acoustic counterpart of Poynting’s theorem58 for
electromagnetic fields. To derive it, one takes the dot product of v with the linear
version of Euler’s equation (with the deletion of the primes on p′ and v′), i.e.,

v ·
(
ρo

∂v

∂t

)
= −v ·∇p = −∇ · (vp) + p∇ · v

= −∇ · (pv) − pρ−1
o

∂ρ′

∂t
. (1.11.1)

Here the indicated mathematical steps follow from a vector identity and from the
linear version of the mass-conservation equation. The term on the left can be alter-
nately written as (∂/∂t)( 1

2ρov
2). Similarly, since ρ′ = p/c2, the expression pρ−1

o

∂ρ′/∂t can be written (∂/∂t)( 1
2p

2/ρoc
2). Therefore, Eq. (1) can be reexpressed as59

57G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik, 2d ed., Teubner, Leipzig,
1877, pp. 311, 336 (subsequently cited as Mechanik); Rayleigh, The Theory of Sound, vol. 2, sec.
295.
58Poynting’s theorem is a corollary of Maxwell’s equations; for electromagnetic fields in free space
it takes the form of Eq. (2) with w = 1

2 εE
2 + 1

2μH
2 and I = E × H . The theorem was derived

in integral form by J. Poynting in 1884 and again in the same year by O. Heaviside. For a full
discussion, see J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, pp. 131–
133.
59Various generalizations (corresponding to alternate versions of the linear acoustic equations) are
discussed in Chaps. 8 and 10. Another, of importance for very-low-frequency propagation in the
atmosphere and oceans, results when ρo, po, and c are considered to be functions only of height z
(or depth) under the influence of gravity, such that dpo/dz = −gρo. The linear acoustic equations
with the gravitational-force term included lead to Eqs. (2) to (4), but w has an additional term

(Δw)gravity = 1
2ρoω

2
BVξ

2
z ,

where

ωBV =
(

−g2

c2 − g

ρo

dρo

dz

)1/2

,
[
ω2

BV > 0, for stability
]
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∂w

∂t
+ ∇ · I = 0, (1.11.2)

where

w = 1
2ρov

2 + 1

2

p2

ρoc2 , I = pv. (1.11.3)

The interpretation of (2) as a conservation law follows if we integrate it over an
arbitrary fixed volume V within the fluid and reexpress the volume integral of ∇ ·I
as a surface integral by means of Gauss’s theorem. Doing this gives

d

dt

∫∫∫
V

w dV +
∫∫

S

I ·n dA = 0, (1.11.4)

where n is the unit normal vector pointing out of the surface S enclosing V . The
form of this might be compared, for example, with the equation for conservation of
mass, given in integral form by Eq. (1.2.1).

1.11.2 Energy Conservation in Fluids

The above corollary resembles60 the energy-conservation law that can be derived
from the original nonlinear fluid-dynamic equations [conservation of mass, Euler’s
equation, and p = p(ρ, s) with s constant], i.e.,

∂E

∂t
+ ∇ · (Ev + pv) = 0, (1.11.5a)

d

dt

∫∫∫
V

E dV +
∫∫

S

Ev ·n dA +
∫∫

S

pv ·n dA = 0, (1.11.5b)

ξz = −s′

dso/dz
, vz = ∂ξz

∂t
,

are identified as the Brunt–Vaisala frequency and vertical particle displacement. For a derivation
and discussion, see C. Eckart, Hydrodynamics of Oceans and Atmospheres, Pergamon, New York,
1960, pp. 53–60.
60N. Andrejev, “On the energy expression in acoustics,” J. Phys. (Moscow) 2:305–312 (1940);
J. J. Markham, “Second-order acoustic fields: Energy relations,” Phys. Rev. 86:712–714 (1952);
“Second-order acoustic fields: Relations between energy and intensity,” ibid., 89:972-977 (1953);
A. Schoch, “Remarks on the concept of acoustic energy,” Acustica 3: 181–184 (1953); N. Andrejev,
“Concerning Certain Second-Order Quantities in Acoustics,” Akust. Zh. 1:2–11 (1955), trans. in
Sov. Phys.: Acoust.1:2–11 (1955). For a derivation of Eqs. (5), see Lamb, Hydrodynamics, sec. 10.
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E = 1
2ρv

2 + ρUP (ρ, s) UP =
∫ 1/ρo

1/ρ
p d

1

ρ
. (1.11.6)

Here p is total pressure, E is energy per unit volume, and UP is the potential
energy per unit mass relative to the ambient state. [This last identification results
from consideration of unit mass of fluid in a cylindrical vessel (cross-sectional area
A) with a movable piston at its top. When the piston moves down a distance δh,
the specific volume 1/ρ decreases by A δh. The work done by the force pA is
pA δh, so −p δ(1/ρ) is the increase of potential energy.] In the integral form of the
conservation law (5b), Ev ·n is energy convected out of the volume per unit surface
area and time due to fluid motion; pv · n is rate of work done per unit area and by
the fluid in V on its surroundings.

The resemblance mentioned above becomes apparent if E and (E + p)v are
expanded to second order in ρ − ρo, p − po, and v. To this order, one has

ρUP ≈ po

ρo
(ρ − ρo) + 1

2

c2

ρo
(ρ − ρo)

2, (1.11.7)

where ρ −ρo can be replaced by its first-order equivalent (p−po)/c
2 in the second

term. Thus one has

E ≈ 1
2ρov

2 +
[
po

ρo
(ρ − ρo)

]
+ 1

2

(p − po)
2

ρoc2
, (1.11.8a)

(E + p)v ≈
[
po

ρo
ρv

]
+ (p − po)v., (1.11.8b)

so, if po were identically zero, one would have w ≈ E and I ≈ (E + p)v. Also,
if these second-order expressions for E and (E + p)v are inserted into Eq. (5a),
the terms in brackets drop out because of the mass-conservation equation, and one
obtains

∂

∂t

[
1
2ρov

2 + 1

2

(p − po)
2

ρoc2

]
+ ∇ · [(p − po)v] = 0 (1.11.9)

as a relation holding to second order for any solution of the original nonlinear
equations.

One can conclude that the relation ∂w/∂t + ∇ · I = 0 is consistent with the
requirement of energy conservation in a fluid to second order. With the reservations
indicated above, we refer to 1

2ρov
2 as the acoustic kinetic-energy density, to

1
2p

2/ρoc
2 as the acoustic potential-energy density, and to I = pv as the acoustic

energy flux or acoustic intensity. (Here p represents the acoustic pressure.)
For plane traveling waves, the expressions for w and I simplify because v =

np/ρc, so one has (with the subscript deleted on ρo)
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1
2ρv

2 = 1

2

p2

ρc2
= w

2
, (1.11.10a)

I = np2

ρc
= cnw. (1.11.10b)

The kinetic and potential energies are therefore equal61 for such a wave. Since
I represents energy transported per unit area and time in the direction n of
propagation, the relation I/w = cn is consistent with the assertion that the acoustic
energy moves as a unit with speed c in the propagation direction n, so c is the speed
with which acoustic energy travels.

1.11.3 Acoustic Power of Sources

Although the energy corollary adds nothing beyond what is already contained in
the fundamental acoustic equations, its existence facilitates the description of gross
properties of sound fields and their sources. It is also a useful point of departure for
the formulation of approximate acoustical theories (e.g., the reverberation model
of room acoustics). One important consequence is that it enables one to define an
acoustic power output of a source.

We assume, for simplicity, that the nature of the source is such that the wave
disturbance is of constant frequency, so the field variables p and v are of the form
Re{(p̂ or v̂)e−iωt } at any given point outside the source; the complex amplitudes p̂

and v̂ vary from point to point. Since w and I are quadratic in the field variables, it
follows from the trigonometric identity (1.8.10) that each must be of the form of the
sum of a time-independent quantity plus a quantity oscillating in time with angular
frequency 2ω. Their time averages can be expressed by means of the theorem (1.8.9)
as

wav = 1
4ρv̂ · v̂∗ + 1

4

|p̂2|
ρc2 , (1.11.11a)

I av = Re 1
2 p̂

∗v̂. (1.11.11b)

Because any such time average of ∂w/∂t is zero (given that the averaging time is
either an integral number of half periods or a very large interval), the time average
of Eq. (2) requires that the spatial variation of I av be such that

∇ · I av = 0. (1.11.12)

61This was first pointed out by Rayleigh, “On waves,” Phil. Mag. (5) 1:257–279 (1876).
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Similarly, the time average of Eq. (4) gives

∫∫
S

I av · n dS = 0 (1.11.13)

for any surface S not enclosing a source. [This can also be derived from Eq. (12).]
The derivation of the latter equation does not apply if S encloses a source, e.g., a

vibrating solid, and so we write instead (see Fig. 1.10a)

Pav =
∫∫

S

I av ·nout dS (1.11.14)

and identify Pav as the average acoustic power radiated by the source. Here S lies
within the region where the acoustic field equations are valid; nout is the unit normal
pointing out of the volume containing the source.

As long as S encloses the same sources, the power Pav computed according to
Eq. (14) is independent of the shape and size of S. To demonstrate this, let S1 and S2
be two such surfaces (see Fig. 1.10b). Within the volume between the two surfaces,
∇ · I av = 0; so Eq. (13) holds with S consisting of the combination of S1 and S2
and with n pointing out of the volume between the surfaces. On the inner surface,
n = −nout; on the outer, n = nout. Then for S2 lying outside S1 (13) reduces to

∫∫
S

I av · n dS =
∫∫

S2

I av · nout dS2 −
∫∫

S1

I av · nout dS1 = 0,

which confirms the statement. An equivalent reason for this invariance property is
that, since the acoustic energy is conserved and the net acoustic energy in any fixed
volume should be a constant plus an oscillating part, the average power passing
through any given surface enclosing the source should equal the average power
passing through any other such surface.

Another consequence of the relation ∇ ·I av = 0 is that the net power radiated by
a collection of sources is the sum of the powers radiated by the individual sources,
i.e.,

Pav =
∑
i

Pav,i =
∑
i

∫∫
Si

I av ·nout dSi, (1.11.15)

where Si is any surface enclosing just the ith source of sound. This relationship
results (see Fig. 1.10c) if one applies Eq. (13) to any volume bounded externally by
any surface Sentire closing the entire collection of sources and internally by the Si .
The value of any Pav,i should not be construed to be independent of the presence or
strength of the other sources or independent of the nature of its environment. These
may be good assumptions, however, if the source is many wavelengths away from
other sources or from solid boundaries.
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Fig. 1.10 (a) Surface S used for definition of acoustic power P radiated by a source. (b) Two-
surface geometry for proof that computed P is independent of size and shape of the control-
volume surface. (c) Geometry for proof that total power radiated is the sum of powers radiated by
the component sources

1.12 Spherical Waves

In addition to that of a plane wave, another common idealization of an acoustic
disturbance is a spherically symmetric wave spreading out from a source in an
unbounded fluid medium (see Fig. 1.11). The source is considered to be centered
at the origin and to have complete spherical symmetry insofar as the excitation of
sound is concerned.

1.12.1 Spherical Spreading of Acoustic Energy

The symmetry of the excitation and of the environment requires that the acoustic
intensity I have only a radial component Ir and that its time average Ir,av (for
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Fig. 1.11 Definition of spherical coordinates r , θ , φ. For spherically symmetric waves from a
source at the origin, the acoustic field variables depend only on r and t; v is radially outward. Here
xL, yL, zL are listener coordinates

example, for a constant frequency disturbance) be dependent only on the radial
distance r from the source center. (For the concept of a time average to be
meaningful, the source should be idealized as one with continuous excitation, a
steady source.) To determine the radial dependence one applies the acoustic-energy-
conservation principle (1.11.14) with S taken as a spherical surface of radius r , with
n = er , and with I av · n = Ir,av. The surface integral defining the average power
Pav is Ir,av times the area 4πr2 of a spherical surface of radius r , so one has

Ir,av = Pav

4πr2
. (1.12.1)

This prediction, that intensity decreases as the inverse square of radial distance r , is
known as the spherical spreading law.62

62Euler’s Physical Dissertation on Sound (1727, as translated by Lindsay, Acoustics, p. 106) has a
statement: “When sound produced by a vibrating globule is propagated by the communication of
its compression with the globules arranged in the sphere around it, the number of the latter globules
increases as the square of the distance from the given globule; hence the strength or loudness of
the sound decreases as the inverse square of the distance from the source. . . .” In his “Sequel
to the research on the propagation of sound,” 1759, “force of sound” (presumably intensity) was
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1.12.2 Spherically Symmetric Solution of the Wave Equation

As regards the detailed variation of the acoustic pressure p and the fluid velocity v

in such a wave, symmetry requires v to have only an r component and also requires
p and vr to depend only on r and t . The wave equation for p(r, t) is reexpressed in
spherical coordinates (r, θ, φ) if one notes (with r2 = x2

1 +x2
2 +x2

3 and 2r∂r/∂xi =
2xi) that

∂

∂xi
p(r, t) = ∂p

∂r

∂r

∂xi
= xi

r

∂p

∂r
,

∂2

∂x2
i

p(r, t) = 1

r

∂p

∂r
+ x2

i

r

∂

∂r

(
1

r

∂p

∂r

)
,

∇2p(r, t) = 3

r

∂p

∂r
+ r

∂

∂r

(
1

r

∂p

∂r

)
= ∂2p

∂r2 + 2

r

∂p

∂r
= 1

r

∂2

∂r2 (rp),

given that p has no φ or θ dependence. Consequently, the wave equation becomes63

1

r

∂2

∂r2
(rp) − 1

c2

∂2p

∂t2
= 0. (1.12.2)

Multiplication of this by r [note that r ∂2p/∂t2 = ∂2(rp)/∂t2] produces the
same one-dimensional wave equation that governs plane-wave propagation, i.e.,
Eq. (1.7.2a), only here the dependent variable is rp. We can conclude, from the
form of the plane-wave solution, that Eq. (2) has the solution

p(r, t) = 1

r
f (t − c−1r) + 1

r
g(t + c−1r), (1.12.3)

where f and g are a priori arbitrary functions.

considered as being proportional to the product of particle displacement and particle velocity, each
of which decreases at large r as 1/r . (Truesdell, “The theory of aerial sound, 1687–1788,” p.
XLVIII.)
63A briefer but less direct derivation of Eq. (2) is to integrate ∇2p over the volume of a
spherical shell of outer radius r and inner radius ro and equate the integral (via application of
Gauss’s theorem, a recognition that the radial component of ∇p is ∂p/∂r , and the requirement
of spherical symmetry) to 4πr2 ∂p/∂r minus the same quantity evaluated at ro. A differentiation
of both sides of the resulting equation with respect to r then gives 4πr2∇2p as being equal to
4π(∂/∂r)(r2 ∂p/∂r). Consequently, one concludes that ∇2p is r−2(∂/∂r)(r2 ∂p/∂r). The latter,
however, is equivalent to r−1(∂2/∂r2)rp. The full version of the Laplacian in spherical coordinates
when p also depends on θ and φ is given in Sect. 4.5; for the applicable expression for the Laplacian
in any orthogonal curvilinear coordinate system see the footnote referred to just above Eq. (4.5.3).
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Outside the region of initial excitation and if there are no sources except that
centered at the origin, waves move only in the direction of positive r (away from the
source) and consequently the function g(t + c−1r) is zero. An equivalent rationale
for this is that of causality. If the source is first turned on at some remote time to in
the past, p(r, t) should be zero for t < to and for any positive r outside the source. If
g(t +c−1r) is ever nonzero for some time t1 (where t1 > to) and at some value r1 of
r , then it will also be nonzero at a positive radius r1 +c(t1 − to+Δt) at time to−Δt ,
where Δt > 0. Consequently, a nonzero disturbance in the external fluid would be
present before the source is turned on, in violation of the premise (causality) that
the disturbance is caused by the source. The function f (t − c−1r), however, will
conform to the causality requirement if f is identically zero whenever its argument
t − c−1r is less than to − c−1a, where a is the radius of the source. Thus, at a distant
point r , an acoustic disturbance does not appear until time t = to + c−1(r − a). A
wave moving out from the source with speed c takes a time (r − a)/c to traverse
distance r − a.

The expression f (t−c−1r)/r describing p in an outgoing spherically symmetric
wave implies that similar waveforms will be received by listeners at different
radii. In addition to the shift Δr/c in reception time of similar waveform features,
waveforms received at larger distances will be reduced in amplitude as 1/r . Thus,
if the maximum value of p received at 1 m from the source center is, say, 1 Pa, then
that received at 10 m will be 0.1 Pa.

1.12.3 Fluid Velocity in a Spherically Symmetric Wave

To derive an expression for the fluid velocity v (which has only a radial component
vr ) in a spherically symmetric wave, it is convenient to use the velocity potential Φ
introduced in Sect. 1.6. Since � should also be a function of only r and t , and since
it also satisfies the wave equation, it is also 1/r times a sum of a function of t−c−1r

and a function of t + c−1r . Causality considerations rule out the second function, so
Φ is any conveniently chosen constant times F(t − c−1r)/r , where F is an a priori
arbitrary function. Equation (1.6.3) suggests that we take the “conveniently chosen
constant” as −ρ−1. Then one has

vr = − 1

ρ

∂

∂r

F (t − c−1r)

r
p = ∂

∂t

F (t − c−1r)

r
. (1.12.4)

This agrees with the previously derived expression f (t − c−1r)/r for the acoustic
pressure in an outgoing spherical wave if f (t) = dF(t)/dt.

Here the quantities vr and p are not directly proportional to each other, as the
corresponding quantities in a plane traveling wave are. The indicated differentiation
in (4) gives instead
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vr = p

ρc
+ F(t − c−1r)

ρr2
, (1.12.5)

which can be contrasted with the traveling-plane-wave relation v = np/ρc.

However, because the peak values in time of the second term decrease with distance
as 1/r2 while those of the first term decrease as 1/r , the second term at large r

may be relatively unimportant compared with the first, so the asymptotic relation
between p and v would be the same as for a plane wave. For waves of constant
frequency, this will be so if r is much larger than a wavelength.

1.12.4 Intensity and Energy Density

The intensity Ir = pvr of a spherical wave, in accord with Eqs. (4) and (5), becomes

Ir = p2

ρc
+ ∂

∂t

[
F 2(t − c−1r)

2ρr3

]
, (1.12.6)

so that if F(t) is periodic in time, and if Ir is averaged over an integral number of
half periods, one has

Ir,av = (p2)av

ρc
. (1.12.7)

This is the same as the expression (1.11.10b) holding for a plane traveling wave; it is
also consistent with the decrease of pressure amplitude as 1/r and with the decrease
of time-averaged intensity as 1/r2.

For a constant-frequency disturbance, both p and vr and consequently also f (t)

and F(t) oscillate sinusoidally with time. One can write f (t) as |A| cos (ωt−φA) or
Re{Ae−iωt }, where A = |A|eiφA . Then, since F(t) is an oscillating function whose
derivative is f (t), it should be given by ω−1|A| sin(ωt − φA) = Re [(iA/ω)e−iωt ].
These expressions inserted into Eqs. (4b) and (5) yield

p = |A|r−1 cos (ωt − kr − φA) = 1

r
Re
{
Ae−iωt eikr

}
, (1.12.8a)

ρcvr = |A|r−1 cos (ωt − kr − φA) + |A|k−1r−2 sin (ωt − kr − φA)

= 1

r
Re

{(
1 + i

kr

)
Ae−iωt eikr

}
(1.12.8b)

where we use the abbreviation k = ω/c. The second term in (8b) dominates if
kr 
 1; the first term if kr � 1. Since the time average of the cosine squared or of



1.12 Spherical Waves 49

the sine squared is just 1
2 while the time average of the cosine times the sine is zero,

the following time averages result from the above relations:

Ir,av = |A|2
2ρcr2

, (1.12.9a)

1

2

(p2)av

ρc2
= |A|2

4ρc2r2
= Ir,av

2c
, (1.12.9b)

1
2ρ(v

2
r )av = |A|2

4ρc2r2

[
1 + 1

(kr)2

]
, (1.12.9c)

for the intensity, potential energy density, and kinetic energy density. The average
acoustic energy density wav is the sum of the last two. In the limit kr 
 1, the
energy is predominantly kinetic, and the ratio Ir,av to wav is considerably less than
the sound speed, but in the limit kr � 1 the intensity is cw and the potential and
kinetic energy densities are the same.

1.12.5 Field at Large Distances from Source of Finite Extent

If the source is not spherically symmetric but is of limited size, the disturbance at
large r locally resembles a plane wave propagating with speed c away from the
source. Thus we can write p ≈ Bf (t − c−1r, θ, φ) and v ≈ per/ρc, where
θ and φ denote the polar and azimuthal angles in spherical coordinates and B is
some function slowly varying over distances (radial and transverse) comparable to
a wavelength. To determine the general form of the dependence of B on r, θ, φ,

let f be a sinusoidal function of time, so that the time-averaged intensity is
B2(f 2)aver/ρc, with (f 2)av independent of r . The relation ∇ · I av = 0 would
then require, via Gauss’s theorem (see Fig. 1.12), that the integral of I av · n over
any conical segment pointing radially away from the source vanish; so since the
approximate I av has only a radial component, the product Ir,avΔS of intensity times
cone cross-sectional area ΔS should be independent of radial distance r. But the
area ΔS is r2 Δ�, where Δ� is the solid angle subtended by the cone. This solid
angle is constant along the cone, and (f 2)av and ρc are independent of r , so r2B2 is
independent of r . Hence B varies inversely with r . Since any θ and φ dependence
of B can be absorbed in the function f , we take B to be identically 1/r.

The above reasoning leads to the following approximate expressions for the
acoustic field at large distances from any source of finite extent:

p = 1

r
f (t − c−1r, θ, φ), v = per

ρc
, (1.12.10a)
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Fig. 1.12 Segment of a cone of solid angle Δ� with apex at central point in an asymmetric source.
The indicated geometry is used to show that intensity along any radial line decreases as 1/r2 at
large r from a finite-sized source

I av = J (θ, φ)

r2 er , J (θ, φ) = 1

ρcT

∫ to+T

to

f 2(t, θ, φ)dt, (1.12.10b)

with T being a suitably chosen (very long or an integral number of half periods)
averaging time. The first two expressions are not restricted to periodic signals,
but the association of a time average with I normally implies that J should be
independent of to.

The function J (θ, φ) describes the radiation pattern of the source, acoustic
power radiated per unit solid angle. The acoustic power radiated by the source is
given by

Pav =
∫∫

S

I av · nout dS =
∫ 2π

o

∫ π

o

J (θ, φ) sin θ dθ dφ (1.12.11)

since r2 sin θ dθ dφ is the differential element of area for a spherical surface
(sin θ dθ dφ is the differential of solid angle).
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Equation (10b) indicates that the spherical spreading law is not restricted to
spherically symmetric sources. The analysis assumes, however, an absence of
reflections from external boundaries and ignores the absorption (loss of energy) of
sound.

1.13 Problems

1.1 In an experiment pertaining to the anomalous effects of the atmosphere on
sonic booms, B. A. Davy and D. T. Blackstock, J. Acoust. Soc. Am. 49:732–
737 (1971) studied the propagation of transient acoustic pulses around and
through a soap bubble filled with gaseous helium (monatomic with molecular
weight 4). Verify from fundamental principles the authors’ statement that the
speed of sound in helium is about 1/0.34 times that in air.

1.2 Prove by any convenient method that the time rate of change of the volume
V ∗(t) of a moving fluid particle is equal to the volume integral of the
divergence of the fluid velocity.

1.3 Give an alternate derivation of the conservation-of-mass equation starting
from the requirement that the mass in any moving fluid particle be constant.

1.4 Show that if gravity is taken into account, Euler’s equation of motion for a
fluid can be written as

ρ
Dv

Dt
= −∇p − gρez,

where g is the acceleration due to gravity and ez is the unit vector in the
vertical direction.

1.5 (a) Given an ideal gas for which p = ρRT with temperature-independent
specific-heat coefficients cp and cv , where γ = cp/cv and cp − cv = R,
show that the entropy s per unit mass can be written as

s = so + cv ln

(
u

uo

)
− R ln

(
ρ

ρo

)
.

Here so (a constant) is the specific entropy when the specific internal
energy u and the density ρ have the values uo and ρo, respectively; u is
defined so that it vanishes at T = 0.

(b) Derive an expression for the pressure p in terms of the specific entropy
s and the density ρ. Compare your result with Eq. (1.4.2).

1.6 A common model for acoustic waves in inhomogeneous quiescent media is
one in which gravity is neglected and po is considered constant, but ρo and
therefore also c vary with position (although not with time).

(a) Show that such a choice of ambient variables automatically satisfies the
fluid-dynamic equations.
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(b) Show that the linear acoustic equations for such a model can be written
as

∂p

∂t
+ ρoc

2∇ · v = 0, ρo
∂v

∂t
= −∇p.

Is it necessarily still true that p = ρ′c2?
(c) Show that the resulting wave equation for the acoustic pressure is

ρo∇ ·
(

1

ρo
∇p

)
− 1

c2

∂2p

∂t2
= 0.

1.7 Consider vertical (z) propagation (no horizontal coordinate dependence) in
an isothermal (c constant) quiescent (vo = 0) atmosphere with gravity taken
into account.

(a) Show that Euler’s equation of motion as in Problem 1.4 and the ideal-gas
equation imply that po and ρo both decrease exponentially with height.

(b) Derive the linear acoustic equations for such a model and show in
particular that they include the relation

∂p′

∂t
+ (γ − 1)gρovz = c2 ∂ρ

′

∂t
.

(c) Show that the resulting one-dimensional wave equation for vertical
propagation can be written in the form

[
∂2

∂z2
− 1

c2

(
∂2

∂t2
+ ω2

A

)]
p

ρ
1/2
o

= 0,

where ωA = (γ /2)g/c is a constant. [H. Lamb, Proc. Lond. Math. Soc.
7: 122–141 (1908).]

1.8 Given that the vapor pressure of water at 30 ◦C is 4.24 × 103 Pa, what is the
speed of sound in air at 30 ◦C when the relative humidity is 80%?

1.9 The acoustic pressure in a standing-wave pattern in an enclosed rectangular
space in idealized cases may be of the form

p = A cosωt cos kxx cos kyy cos kzz,

where kx, ky, kz are constants depending on the dimensions of the enclosure.
What would the angular frequency ω have to be if this expression is to satisfy
the wave equation?

1.10 Show that Reynolds’ transport theorem and Euler’s equation of motion
(without gravity) lead for any given fluid particle to the angular-momentum
conservation law
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d

dt

∫∫∫
V ∗

ρxx × v dV = −
∫∫∫

S∗
x × pn dS,

where x is a vector from a fixed point or from the center of mass of the fluid
particle. Hint: You will need a number of vector identities and a version of
Gauss’s theorem that transforms the volume integral of the curl of a vector
into a surface integral.

1.11 Starting from the relations p = ρRT , pρ−γ = const, for adiabatic
disturbances in an ideal gas, show that the relation between temperature
fluctuations and pressure fluctuations in a sound wave is given by T ′/To =
[(γ − 1)/γ ]p′/po.

1.12 (a) Verify that

p = A cos ωt sin kx

is a solution of the one-dimensional wave equation provided that ω = ck.

(b) Determine functions f (t − c−1x) and g(t + c−1x) such that their sum is
equal to the expression above.

(c) What is the (x-component) fluid velocity associated with this acoustic
pressure?

1.13 A longitudinal compressional wave of very long wavelength compared with
h is propagating along the sonorous line sketched in Fig. 1.5. In terms of
M, k, and h, what is the speed of such a wave in the limit λ � h? (L.
Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1953,
pp. 1–33.)

1.14 A transient plane wave propagates in the +x direction through an initially
undisturbed region. The acoustic pressure at a given point is zero for t < 0,
is equal to ppk sinωt for 0 < t < 2π/ω, and is equal to 0 for t > 2π/ω.
Give an expression in terms of ppk, ω, ρo, and c for the peak displacement
of any given fluid particle to the right.

1.15 The speed of sound in pure water is nominally about 1500 m/s; the mass
per unit volume is 103 kg/m3. A possible model for muddy water might be
water with many small rigid particles (idealized as having the same density
as water) suspended in it. Let f represent the fraction of any given volume
normally occupied by such particles. In terms of f , what would you estimate
for the velocity of sound in muddy water?

1.16 A plane sound wave propagating parallel to the ground has a waveform with
one pronounced pressure peak. Microphone 1 at the origin receives this peak
at time t1 = 0.0 s; microphone 2 at x = 1 m, y = 0 receives it at time t2 =
0.00255 s; microphone 3 at x = 0, y = 1 m receives it at time t3 = 0.00147 s.
What is the speed of the wave, and in what direction is it traveling?

1.17 If the oceans were isothermal and of constant salinity below a certain depth,
how would the sound speed vary with further increase in depth?

1.18 The acoustic pressure in a standing wave within a narrow pipe closed at the
end x = 0 and open at the end x = L is



54 1 The Wave Theory of Sound

p = A cos
cπt

2L
cos

πx

2L
.

What is the time-averaged energy density (in terms of A, c, L, and ρo) of
this disturbance as a function of x?

1.19 A hypothetical instrument computes the rms pressure amplitude of an
acoustic wave by averaging p2 over a fixed time interval T and subsequently
taking the square root. Given that the possible frequencies of the wave are
greater than 1000 Hz, what is the smallest choice for T one should pick to
ensure that the error in prms will not exceed 10%?

1.20 An initial-value problem for one-dimensional acoustic propagation in an
unbounded space is posed when the values pin, ρ′

in, vx,in (at t = 0) are
specified for acoustic pressure, density, and fluid velocity as functions of x.

(a) Show that the general solution of the linear acoustic equations in one
dimension for such an initial-value problem is

p = f (t − c−1x) + g(t + c−1x), ρ′ = p

c2 +
[
ρ′

in(x) − pin(x)

c2

]
,

vx = 1

ρc
[f (t − c−1x) − g(t + c−1x)],

where

2f (t − c−1x) = pin(x − ct) + ρcvx,in(x − ct),

2g(t + c−1x) = pin(x + ct) − ρcvx,in(x + ct).

(b) Given that, at t = 0, p = A for −L/2 < x < L/2, while p = 0 for
x > L/2 or for x < −L/2, sketch p, vx , and ρ′ versus x for t = 3L/2c.
Assume that the initial values of ρ′ and vx are zero for all x.

(c) Derive expressions for the total acoustic kinetic and potential energies
(densities integrated over x) per unit area transverse to the x axis at times
t = 0 and t = 3L/2c for the example above.

(d) After time t = L/c, the solution should exhibit less mass in the region
−L/2 < x < L/2 than originally. What happened to this mass?

1.21 The rms acoustic pressure (in pascals) at a distance of 2 m from a small
appliance suspended in an anechoic chamber filled with air is found to
be prms = 0.20| cos θ |, where θ is the angle with respect to the vertical.
Given that the acoustic disturbance at such a distance from the source locally
resembles a plane wave propagating away from the source, what would you
estimate for the sound power output of this appliance?
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1.22 The acoustic pressure of an acoustic disturbance in a medium with ambient
density ρ and sound speed c is given by

p = A cos [ω(t − c−1x)] + B sin [ω(t − c−1y)].

(a) Express p in the form Re{p̂(x)e−iωt } and determine the complex
pressure amplitude p̂(x).

(b) Derive expressions for the time-averaged acoustic energy density and
acoustic intensity as functions of x and y.

(c) Verify by direct substitution that ∇ · I av = 0.

1.23 Suppose the ambient density and sound speed vary with position x (as in
Prob. 1.6), although the ambient pressure po is constant. What modifications
would this spatial variation require in the expressions given in the text for
acoustic energy density and acoustic intensity?

1.24 The acoustic pressure in a spherically symmetric wave is given by

p = A

r
cos [ω(t − c−1r)],

where A is a constant. In terms of A,ω, c, ρo, and t , how much mass ṁ

passes per unit time out through a fixed spherical surface of radius Ro in the
limit Ro 
 c/ω? Assume that Ro is larger than the radius of the source and
that A is sufficiently small for nonlinear effects to be negligible.

1.25 Derive an explicit partial-differential equation for the radial component of
the acoustic fluid velocity vr(r, t) in a spherically symmetric sound wave.

1.26 A spherically symmetric sound wave in water has an acoustic fluid velocity
at a distance of 1/(2π) wavelengths from the source center given by

vr(t) = (0.1)(2π) sinωt m/s.

(a) What is the acoustic-pressure amplitude at a distance of 10 wavelengths
from the source center?

(b) If the wavelength is 0.1 m, what is the average acoustic power output of
the source?

1.27 A plane sound wave with frequency 2000 Hz is propagating through air along
the axis of a duct of 0.1 m2 cross-sectional area. What is the time average of
the acoustic power transmitted by this wave if the fluid-velocity amplitude is
0.001 m/s?

1.28 A simple method of modifying the linear acoustic equations to simulate
sound absorption introduced by Rayleigh (1877) is to add a term ρoαv to
the left side of the linearized version of Euler’s equation of motion. Here α

is some positive constant with units of reciprocal time.
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(a) What is the resulting form of the wave equation if such a term is taken
into account?

(b) The energy-conservation corollary should be modified to

∂w

∂t
+ ∇ · I = −D,

where D is always nonnegative. Determine the expressions for w, I , and
D .

(c) If plane waves of the form p = Re{Ae−iωt eikx} are to satisfy the wave
equation derived in (a), what should the complex wave number k be?

1.29 An idealized sonic-boom pressure waveform (acoustic pressure versus time)
is shown in the figure. Assume that such a wave is propagating freely through
air (sound speed c, ambient density ρ) and derive an expression in terms of
P, T , ρ, and c for the total acoustic energy carried across unit area normal to
the wavefront during passage of the sonic boom.

Problem 1.29 Sonic-boom
pressure waveform

1.30 Verify that the fluid-dynamic energy-conservation equation (1.11.5a) follows
from the equation of mass conservation, from Euler’s equation of motion,
and from the assumption p = p(ρ). Verify also that the expressions in
Eqs. (1.11.8) are valid second-order approximations for E and (E + p)V .

1.31 Show that if Φ(x, y, z, t) is a solution of the wave equation, then
∂Φ/∂x, ∂2Φ/(∂x∂y), ∂2Φ/∂x2 are also solutions. If Φ is taken as
F(t−r/c)/r , what forms do these solutions take when expressed in spherical
coordinates?

1.32 (a) Derive an expression for ∇2p in spherical coordinates when p is a
general function of r, θ, and φ.

(b) Show that one possible solution of the wave equation in spherical
coordinates is

p = Re
{
Ae−iωt (3 cos2 θ − 1)(−k2 − 3 ikr−1 + 3r−2)r−1eikr

}
,

where A is an arbitrary complex constant. [If you have difficulty with
part (a), consult the derivation outlined in Sect. 4.5.]



1.13 Problems 57

1.33 What is the time-averaged acoustic power output of an isolated source that
generates the wave in Problem 1.32?

1.34 Derive approximate two-term expressions in which each term is proportional
to some power (not necessarily integer or positive) of ω/ωTC for all of the
roots of the dispersion relation (1.10.5) for complex wave number k in the
limit ω/ωTC 
 1. Give a physical interpretation for each of the roots.

1.35 For a freely propagating plane acoustic wave of constant frequency, what is
the relation between the time average of the square of the acoustic intensity
and the square of the time average of the acoustic intensity?

1.36 Derive the relation ∇ · I av = 0 with I av = 1
2 Re p̂∗v̂ from Eqs. (1.8.12).

1.37 Sound is propagating through an ideal gas for which p = ρRT , where R is a
constant, but for which du/dT and the specific-heat ratio γ are functions of
temperature. Prove that even though γ is not constant, one still has the sound
speed given by (γRT )1/2 or by (γp/ρ)1/2.

1.38 Starting from the second law of thermodynamics and the definitions of cp, β,
and KT , show that

(
∂cp

∂p

)
T

= −T

ρ

[
β2 +

(
∂β

∂T

)
p

]
,

(
∂β

∂p

)
T

= 1

K2
T

(
∂KT

∂T

)
p

.

Are the coefficients in Eqs. (1.9.12) consistent with these identities?
1.39 A cylindrically symmetric (independent of z and azimuthal angle φ) wave

is spreading out from a source extending along the z axis. From energy-
conservation considerations, determine how the time average of the intensity
pointing away from the source should vary with the radial distance r =
(x2 + y2)1/2. How is I r,av at a given value of r related to the average power
(dP/dz)av per unit length generated by the source?

1.40 A set of linear acoustic equations obtained by Stokes (1845), which includes
the effects of viscosity and applies to sound waves at points substantially
removed from solid surfaces, can be taken as

∂p

∂t
+ ρc2∇ · v = 0, ∇ × v = 0. ρ

∂v

∂t
= −∇p + 4

3μ∇2u.

Here μ is the viscosity and may be considered constant.

(a) What are the corresponding partial-differential equations for the spatially
dependent complex amplitudes p̂(x) and v̂(x)?

(b) Derive a single partial-differential equation for p(x, t) that does not
involve v(x, t).

(c) If one were to define a velocity potential Φ such that v = ∇Φ, what
would be an appropriate relation between p and Φ to replace the relation
p = −ρ∂Φ/∂t used in the inviscid case?
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(d) If p(x, t) = Re{Ae−iωt eikx}, what relation should hold between k and
ω? What are the real and imaginary parts of k (given that the real part is
positive) to lowest order in ω?

1.41 (a) Show that for a homogeneous medium with constant ambient velocity
vo, the linear acoustic equations take the form

(
∂

∂t
+ vo ·∇

)
p + ρc2∇ ·v′ = 0, ρ

[
∂v′

∂t
+ (vo ·∇)v′

]
= −∇p.

(b) Show that the corresponding wave equation for p is

∇2p − 1

c2

(
∂

∂t
+ vo ·∇

)2

p = 0.

(c) If vo = voex and if pNF(x, y, z, t) and v′
NF(x, y, z, t), where NF

stands for “no flow,” are a solution of the equations when vo = 0,
show that a solution when vo �= 0 can be taken as pNF(x

∗, y∗, z∗, t∗),
v′

NF(x
∗, y∗, z∗, t∗), where x∗ = x − vot , y∗ = y, z∗ = z, t∗ = t . (This

is known as a Galilean transformation.) What is your interpretation of
this result?

(d) Suppose one has a plane wave of the form p = f (t − n · x/vph), where
the phase velocity vph is some positive constant and n is the unit normal
to surfaces of constant phase. What is vph in terms of c, vo and the angle
θ between n and vo? Show that the corresponding expression for v′ is
np/ρc regardless of the directions of n and vo. Hint: Use the result of
part (b).

(e) Verify that the energy corollary of the equations in (a) is

∂w

∂t
+ ∇ · (vow + I ) = 0,

where w and I are the expressions that apply for a medium at rest. Show
that this leads to the prediction that

vw = vo + nc

is the velocity with which the energy is moving for a plane wave with
unit vector n pointing normal to surfaces of constant phase. Give a
simple interpretation of this result.

1.42 For a constant-frequency spherical wave propagating out from the origin,
what is the ratio (p4)av/(p

2)2
av? What is the ratio (I 2

r )av/(Ir )
2
av? What would

be the corresponding ratios for a plane wave?
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1.43 A gas mixture is made up of equal parts (in terms of numbers of molecules)
of O2,NH3, and CO2 (a linear molecule). What would you estimate to be the
specific-heat ratio γ , gas constant R, and sound speed of this gas at 0 ◦C?

1.44 For an acoustic disturbance of constant angular frequency ω, how is
[(∂p/∂t)2]av related to (p2)av? If the disturbance is a plane wave, how
is [(∇p)2]av related to (p2)av? How is [(∂p/∂t)∇p]av related to I av?

1.45 Two superimposed plane waves are propagating in the +x and −x directions,
such that

p = Re{Ae−iω(t−x/c)} + Re{Be−iω(t+x/c)}.

What is the time average Iav,x of the net intensity in the +x direction? How
does Iav,x vary with x?

1.46 The acoustic pressure in a disturbance is of the form

p = Re
{
Ae−iω(t−z/c)

}
+ Re

{
Br−1e−iω(t−r/c)

}
,

which consists of a plane wave and of a spherical wave propagating out from
the origin. What is the net time-averaged acoustic power passing out through
any surface enclosing the origin?

1.47 The velocity potential associated with an acoustic disturbance is of the form

Φ = ∂2

∂x ∂y
Re
{
Ae−iωt r−1eikr

}
.

(a) Express p̂, v̂r , v̂θ , v̂φ in terms of the spherical coordinates r, θ, φ.
(b) Prove that Iθ,av = Iφ,av = 0.
(c) How does Ir,av vary with r?
(d) Is it necessarily true that Ir,av = (p2)av/ρc?
(e) How will your answers to (b), (c), and (d) be altered, if the operator

∂2/(∂x ∂y) is replaced by ∂2/∂z2? By ∂3/(∂x ∂y ∂z)? What broad
conclusions can you draw concerning acoustic fields of this general type?

1.48 Variational principles are of frequent use in acoustics. A simple example
would be what results from multiplying both sides of the Helmholtz equation
by εf (x), where f (x) is an arbitrary function and ε is some very small
quantity.

(a) Show that for any volume V enclosed by surface S, given that p̂(x)

satisfies the Helmholtz equation, one must have

∫∫
S

εf∇p̂ · n dS +
∫∫∫

V

(k2p̂εf − ε∇f ·∇p̂)dV = 0.
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(b) Also show that if p̂(x) is required to satisfy either p̂ = 0 or ∇p̂ · n = 0
on S, then any value of k2 for which a nonzero solution p̂(x) of the
Helmholtz equation exists that satisfies this boundary condition must be
related to the corresponding function p̂(x), such that

k2 =
∫∫∫

V
(∇p̂)2dV∫∫∫
V
(p̂)2dV

.

(c) Consequently, show for the k2 and p̂(x) described above that

k2 =
∫∫∫

V
[∇(p̂ + εf )]2 dV − ε2

∫∫∫
V
(∇f )2 dV∫∫∫

V
(p̂ + εf )2dV − ε2

∫∫∫
V
f 2 dV

,

where, if the boundary condition is p̂ = 0 on S, the function f (x) is
restricted to functions that vanish on S.

(d) If one did not know p̂ in advance, but had a “good guess” for its general
form, show that the corresponding estimate of k2 from the equation in (b)
would be a very good estimate in the sense that it deviates from the actual
value of k2 by a quantity proportional to the square of the deviation of the
guessed p̂ from the actual p̂. (If p̂ = 0 on S is prescribed, the guess must
also satisfy this boundary condition.) The above is a simplified version
of Rayleigh’s principle that a natural constant-frequency mode of motion
of a vibrating system is such that the maximum kinetic energy times
frequency-squared, divided by the maximum potential energy, must be
stationary for all admissible variations of the mode’s spatial dependence
(Theory of Sound, vol. 1, sec. 88).



Chapter 2
Quantitative Measures of Sound

The sound field near any point in a fluid (such as air or water) is characterized by the
acoustic pressure p(t) versus time. For typical sounds, this function may be quite
complicated, with many oscillations of varying amplitude and duration and with
no distinct pattern. A single-frequency sound is an exception but an idealization
not always realized. A plot or tabulation of p versus t is often impractical to
obtain, is often irreproducible in successive “identical” experiments, and is often
an awkward way of describing the nature of the sound. Commonly used instead are
various averages that measure approximately the “magnitude” of the sound and its
frequency content.

2.1 Frequency Content of Sounds

2.1.1 Frequency Bands

The partitioning of a sound into frequency bands is most conveniently explained if
one presumes at the outset that p(t) is a sum of constant-frequency waveforms, i.e.,

p(t) =
N∑

n=1

pn(t), (2.1.1)

where the nth frequency component is

pn(t) = An cos (ωnt − φn) = Re
{
p̂ne

−iωnt ,
}
, (2.1.2)

where An = absolute amplitude
ωn = angular frequency (fn = ωn/2π = frequency, Hz)
φn = phase constant
p̂n = Ane

iφn = complex amplitude
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It is assumed that no two ωn are the same and that they are in the ascending order,
so that ω1 < ω2, etc. (Two waveforms of the same frequency combine into a single
waveform with an amplitude equal to the sum of the complex amplitudes of the
original waveforms.)

With the representation just described, the contribution to p(t) from the b-th
frequency band, consisting of frequencies between a lower frequency f1(b) and an
upper frequency f2(b), is that part pb(t) of the overall sum which includes only
terms for which fn is between f1(b) and f2(b). If the range of possible frequencies
is divided into contiguous frequency bands, b = 1, 2, 3, . . ., such that f2(1) =
f1(2), f2(2) = f1(3), etc., it follows that

p(t) =
∑
b

pb(t). (2.1.3)

Since each single-frequency term in the original sum of Eq. (1) occurs in one and
only one of the partial sums defining the pb(t), Eq. (3) gives the same p(t) as Eq. (1).

2.1.2 Frequency Partitioning of Mean Squared Pressure

The time averages of the squares of p(t) and of its frequency-band components
pb(t) describe a multifrequency sound. Even though p(t) and the pb(t) are not
necessarily periodic, one can define their mean squared values as in Eq. (1.8.5), but
the averaging time T should be considered large, i.e.,

(p2)av = lim
T→∞

{
1

T

∫ tc+T/2

tc−T/2
p2(t) dt

}
, (2.1.4)

where tc is any arbitrarily chosen center time of the averaging interval. That this
average approaches a limit for T large which is independent of tc follows from a
substitution of Eq. (1) into the above definition and from a term-by-term evaluation
of the resulting integral.

We demonstrate the above assertion for a waveform with two frequency compo-
nents (N = 2). For this special case, one has

(p2)av = (p2
1)av + (p2

2)av + 2(p1p2)av (2.1.5)

since the average of a sum is the sum of the averages of the individual terms. The
averages (p2

1)av and (p2
2)av pertain to constant-frequency waveforms and, in accord

with Eqs. (2) and (1.8.7), are A2
1/2 and A2

2/2. (It is assumed that none of the ωn’s are
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identically zero.) The cross-term average (p1p2)av, with the trigonometric identity
(1.8.10) for cosα cosβ, becomes

(p1p2)av = 1
2A1A2

(
{cos [(ω1 + ω2)t − φ1 − φ2]}av

+ {cos [(ω2 − ω1)t − φ2 + φ1]}av

)
. (2.1.6)

Because the indicated trigonometric functions in this latter expression (given that
ω2 −ω1 �= 0) oscillate between 1 and −1 with constant angular frequencies ω1 +ω2
and ω2 − ω1, the integrals under the peaks tend to cancel those over the troughs.
The two averages over a finite time T are bounded in magnitude by 2/[(ω1 +ω2)T ]
and 2/[(ω2 − ω1)T ]; they consequently approach 0 in the limit of large T . Thus,
(p1p2)av = 0, and the third term in Eq. (5) vanishes.

Generalization of this reasoning to arbitrary values of N requires (pbpb′)av = 0
for any two nonoverlapping frequency bands, so one has

(p2)av =
N∑

n=1

(p2
n)av =

∑
b

(p2
b)av. (2.1.7)

Thus, (p2
b)av is an additive measure of the sound associated with the frequencies

within band b.

2.1.3 Frequency Partitioning of Intensity, Acoustic Power,
and Energy Density

A partitioning into frequency bands analogous to that discussed above for (p2)av
also holds for the average acoustic intensity Iav and for the average acoustic
power Pav radiated by a source. The acoustic field equations are linear with time-
independent coefficients, and so Eq. (1) implies that the acoustic fluid velocity v
at any given point can also be written either as a sum of frequency components
vn(t) or of band components vb(t), where vn(t) is sinusoidal in time with the same
frequency as is pn(t) and the contribution vb(t) from frequency band b is defined
analogously to pb(t). Since averages of products of different frequency components
vanish, (pnvm)av is zero if n �= m, so

Iav =
∑
n

[pn(t)vn(t)]av =
∑
n

In,av =
∑
b

Ib,av, (2.1.8)

where Ib,av = (pbvb)av is identified as the contribution to the average intensity from
band b.
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The functions pn(x, t), vn(x, t) for any given angular frequency ωn them-
selves satisfy the linear acoustic equations, so they satisfy the acoustic-energy-
conservation corollary (1.11.2), only with w replaced by wn(x, t) and with I
replaced by In(x, t). Here wn and In are as given by Eqs. (1.11.3) with v and
p replaced by vn and pn. It follows (from reasoning analogous to that leading to
∇·Iav = 0 for constant-frequency waves) that ∇·Ib,av = 0 for any given band. This
leads to the definition of a source’s (time-averaged) acoustic power output Pb,av
from frequencies in band b as the surface integral of Ib,av · n over any surface S

enclosing the source, where n is the unit outward normal to S. (The value Pb,av is
independent of the size and shape of S.) It then follows from Eq. (1.11.14) and (8)
that Pav is the sum of the Pb,av, so the total acoustic power is partitioned among
the frequency bands.

A similar result is that the time average wav of the acoustic energy density
is a sum of the wb,av, where wb is the acoustic energy density computed as in
Eq. (1.11.3), only with v and p replaced by vb and pb. (It is not necessarily true
that at any instant w is the sum of the wb, even though v is always the sum of the vb
and p is always the sum of the pb.)

2.2 Proportional Frequency Bands

If the frequency scale is divided into contiguous bands, the b-th band having lower
frequency f1(b) and upper frequency f2(b), the partitioning is said to be into
proportional frequency bands if f2(b)/f1(b) is the same for each band. The center
frequency fo of any such band is defined as the geometric mean (f1f2)

1/2, which is
always less than the arithmetic average 1

2 (f1 + f2). The ratio of center frequencies
of successive proportional bands is the same as f2/f1 for any one band; in addition,
one has

fo

f1
= f2

fo
=
(
f2

f1

)1/2

. (2.2.1)

An octave band is a band for which f2 = 2f1; a 1
3 -octave band is one for

which f2 = 21/3f1; a (1/N)-th-octave band is one for which f2 = 21/Nf1. Three
contiguous 1

3 -octave bands or N contiguous (1/N)th-octave bands are equivalent
to an octave band. For example, the octave band (1000, 2000 Hz) is made up
of the 1

3 -octave bands (1000, 21/3 × 1000), (21/3 × 1000, 22/3 × 1000), and
(22/3 × 1000, 2000). For a (1/N)-th-octave band, Eq. (1) above shows that fo is
(1/2N)-th octave above f1 and below f2, so

f1 = 2−1/2Nfo, f2 = 21/2Nfo. (2.2.2)
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Consequently, any proportional frequency band is defined by its center frequency
and by N . An octave band (N = 1) with center frequency 1000 Hz, for example,
would have f1 = 707 Hz and f2 = 1414 Hz.

2.2.1 Standard Frequencies and Bands

In some areas of acoustics (especially noise control) a standard compromised
octave and 1

3 -octave frequency-partitioning scheme1 uses the numerical accident
that 210/3 = 10.079 is nearly 10. (Ten 1

3 -octaves are nearly a decade.) Since
round numbers are convenient, center frequencies of the standard 1

3 -octave bands
are chosen so that the (b + 10)th center frequency is 10 times the bth. Thus, given
that 1000 Hz is the center frequency of a standard 1

3 -octave band, the scheme (see
Table 2.1) is such that 1, 10, 100, 1000, 10,000 Hz, etc., are also standard 1

3 -octave-
band fo’s. The numerical values of the other center frequencies are simple numerical
approximations to the integer powers of 101/10 = 1.25893, these approximations
being.

n 1 2 3 4 5 6 7 8 9

10n/10 ≈ 1.25 1.6 2 2.5 3.15 4 5 6.3 8

Thus there are standard octave-band center frequencies at 16, 31.5, 63, 125, 250,
500, 1000, 2000, 4000, 8000, 16,000, and 31,500 Hz; a compromise has been made
because 2 × 16 �= 31.5 and 2 × 63 �= 125. A rule of thumb is that successive 1

3 -
octave-band center frequencies have ratios of 5:4. (The standard octave and 1

3 -octave-
band center frequencies also serve as preferred frequencies for constant-frequency
acoustical measurements.)

2.2.2 Equally Tempered Musical Scales

The concept of fixed frequency ratios (like those defining proportional frequency
bands) also occurs in the theory of musical temperament. Certain instruments,
e.g., the piano and stringed fretted instruments, once they are tuned, sound only
a discrete set of notes. Temperament refers to the system by which these notes are
systematically slightly mistuned (tempered) so that a larger variety of melodious
combinations are possible.

1ANSI S1.6-1967 (R1976), American National Standard Preferred Frequencies and Band Num-
bers for Acoustical Measurements, American National Standards Institute, New York, 1976.
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Table 2.1 Center, lower, and
upper frequencies for
1
3 -octave bands

Frequency, Hz

Band no. Center Lower Upper

12 16a 14.0 18.0

13 20 18.0 22.4a

14 25 22.4a 28.0

15 31.5a 28.0 35.5

16 40 35.5 45a

17 50 45a 56

18 63a 56 71

19 80 71 90a

20 100 90a 112

21 125a 112 140

22 160 140 180a

23 200 180a 224

24 250a 224 280

25 315 280 355a

26 400 355a 450

27 500a 450 560

28 630 560 710a

29 800 710a 900

30 1,000a 900 1,120

31 1,250 1,120 1,400a

32 1,600 1,400a 1,800

33 2,000a 1,800 2,240

34 2,500 2,240 2,800a

35 3,150 2,800a 3,550

36 4,000a 3,550 4,500

37 5,000 4,500 5,600a

38 6,300 5,600a 7,100

39 8,000a 7,100 9,000

40 10,000 9,000 11,200a

41 12,500 11,200a 14,000

42 16,000a 14,000 18,000

43 20,000 18,000 22,400a

44 25,000 22,400a 28,000

45 35,500a 28,000 35,500
aAlso an appropriate quantity for an
octave band. The 1000-Hz octave band,
for example, has lower and upper frequen-
cies of 710 and 1400 Hz
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Fig. 2.1 Segment of a piano keyboard showing letter designations of white keys and correspond-
ing notes on the great staff (treble and bass clefs) (From Beginning Piano Book for Older Students,
Copyright © 1932, Clayton F. Summy Company. Used by permission. All rights reserved)

When two notes are played together or in succession, the resulting sound is
generally more harmonious to the ear when the corresponding frequencies are in
simple ratios, and much music takes advantage of this fact. Classic musical intervals
correspond to frequency ratios; particular intervals sounding especially harmonious
are those with frequency ratios of 2 : 1 (octave), 3 : 2 (perfect fifth), 4 : 3
(perfect fourth), and 5 : 4 (major third). The terms, third, fourth, fifth, here refer
to where the higher note falls in a musical scale (do, re, mi, fa, so, la, ti, do) when
the lower note is the keynote do. Such a scale is approximately realized by the
notes C, D, E, F, G, A, B, C, represented by the white keys (starting with C as
indicated in Fig. 2.1) on a piano keyboard. In just intonation (mathematically exact
intervals) for a major key of C, the frequencies corresponding to D, E, F, G, A, B,
and C are tuned to 9/8 (major interval), 5/4 (major third), 4/3 (fourth), 3/2 (fifth),
5/3 (sixth), 15/8 (seventh), and 2 (octave) times the frequency of the first C.

The option of playing all notes that can be reached by any succession of
melodious intervals, e.g., fourths, fifths, and octaves, starting from a given keynote
ideally requires a large number of notes within any given octave. The most common
tuning system alleviating this problem is equal temperament2 with a 12-note-per-
octave scale in which successive notes are (1/12)-octave apart. An interval with
a frequency ratio of 21/12 = 1.0595 is called a half step. Any two half steps

2This topic is discussed by J. W. S. Rayleigh, Theory of Sound, vol. 1, 1877; Dover, New York,
1945, secs. 15–20. See also A. J. Ellis, “On temperament,” sec. A of appendix 20 to his translation
(1885) of H. Helmholtz, On the Sensations of Tone, 2d ed., 1885; Dover, New York, 1954, pp.
430–441, 548. According to Ellis, the concept may have originated in China long before the time
of Pythagoras (c. 540 BC). M. Mersenne, Harmonie universelle, 1636, however, was the first to
give the correct frequency ratios for equal temperament. Although there is controversy whether J.
S. Bach ever played on an instrument tuned according to equal temperament, his Well-Tempered
Clavier (1722) had considerable influence on the use of the system.
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approximate a major interval, any four a major third, any five a fourth, any seven a
fifth, any nine a sixth, and any eleven a seventh. (Any twelve is exactly an octave.)
Note that

22/12 = 1.1225 ≈ 9/8 = 1.1250 27/12 = 1.4893 ≈ 3/2 = 1.5000
24/12 = 1.2599 ≈ 5/4 = 1.2500 29/12 = 1.6818 ≈ 5/3 = 1.6667
25/12 = 1.3348 ≈ 4/3 = 1.3333 211/12 = 1.8877 ≈ 15/8 = 1.8750

A piano keyboard has 7 white keys and 5 black keys (12 in all) per octave and
can be tuned with such a scheme. Insofar as the human ear cannot perceive the
discords caused by the deviations of the tempered ratios for fifths and fourths from
their ideal values, the scheme is satisfactory, although to some trained listeners the
discord in the major third is on the limit of unpleasantness. The scheme has the
virtues of simplicity and of not requiring the instrument to be retuned whenever the
key is changed. The interval G to the next higher D, for example, is as close to a
perfect fifth as the interval from C to G.

2.3 Levels and the Decibel

2.3.1 Sound-Pressure Levels

Although sound-pressure amplitudes or rms pressures (corresponding to a given
frequency component, a frequency band, or the acoustic pressure) can be measured
in terms of pascals (or any other physical unit of pressure), it is customary in many
contexts to measure and report a quantity varying linearly as the logarithm, base 10,
of the mean squared pressure. This quantity is said to be a sound-pressure level and
is defined generically by

Lp = 10 log

(
(p2

s )av

p2
ref

)
, (2.3.1)

the resulting number having the units of decibels (dB). The subscript s (abbreviation
for “sample type”) indicates that the mean squared pressure (p2

s )av appearing in
the argument may correspond to the acoustic pressure, to that of one frequency
component, to that of a band of frequencies, or (as discussed below) to a weighted
sum of (p2

n)av corresponding to different frequency components. The denominator
factor pref represents a reference3 pressure, which is usually taken as 2 × 10−5 Pa
for airborne sound and 10−6 Pa for underwater sound. It is customary to specify

3ANSI S1.8-1969 (R1974), American National Standard Preferred Reference Quantities for
Acoustical Levels, American National Standards Institute, New York, 1974.
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pref when reporting data in an isolated context, for example, 100 dB (re 1 μPa) or
Lp/1 μPa = 100 dB, but the specification need not be made every time a numerical
value for a sound-pressure level is given.

The correspondence between the sound-pressure level Lp and the rms pressure
prms for the sample is such that

prms = pref 10Lp/20, (2.3.2)

which follows from the definition of a logarithm. A level of 0 dB (re 20 μPa)
corresponds to prms = 2 × 10−5 Pa, 20 dB to 2 × 10−4 Pa, 40 dB to 2 × 10−3 Pa,
etc.; increasing Lp by 20 dB implies increasing prms by a factor of 10.

2.3.2 Levels and Sound-Pressure Ratios

The ratio of two mean squared pressures corresponds to a difference in sound-
pressure levels, i.e.,

Lp2 − Lp1 = 10 log

(
(p2

2)av

(p2
1)av

)
, (2.3.3)

the difference Lp2 − Lp1 being independent of the choice of pref. If (p2
2)av is N

times (p2
1)av, then Lp2 exceeds Lp1 by 10 logN dB. (Recall that the logarithm of a

ratio is the difference of the logarithms of numerator and denominator.)

2.3.3 Logarithms and Antilogarithms

The routine tasks of evaluating a logarithm and of raising 10 to a noninteger power
are facilitated if one writes the argument of the logarithm as A × 10M and the
exponent as M + B (M integer, 1 ≤ A ≤ 10 , 0 ≤ B ≤ 1); one can then use

log (A × 10M) = logA + M; 10B+M = 10B × 10M. (2.3.4)

(The first relation follows since the logarithm of a product is the sum of the
logarithms, the logarithm of any number raised to a power is the power times
the logarithm of the number, and log 10 is 1.) If A = 10B , then B is logA.
Consequently, either logA or 10B can be evaluated with reference to a logarithm
table giving B = logA versus A for values of A between 1 and 10. When only one
significant figure is needed, the abbreviated Table 2.2 should suffice. It is convenient
to remember that 10 log 2 is nearly 3, 10 log 4 is nearly 6, 10 log 8 is nearly 9 (since
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Table 2.2 Abbreviated logarithm (base 10) table

A = 10B B = logA A = 10B B = logA A = 10B B = logA

1.00 0.00 3.00 0.48 6.31 0.80

1.26 0.10 3.16 0.50 7.00 0.85

1.58 0.20 4.00 0.60 8.00 0.90

2.00 0.30 5.00 0.70 9.00 0.95

2.51 0.40 6.00 0.78 10.00 1.00

Table 2.3 Examples of sounds whose sound level might correspond to a given valuea

Level, dB (re 20 μPa) Examples

140 Near jet engine (at 3 m)

130 Threshold of pain

120 Rock concert

110 Accelerating motorcycle (at 5 m)

100 Pneumatic hammer (at 2 m)

90 Noisy factory

80 Vacuum cleaner

70 Busy traffic

60 Two-person conversation

50 Quiet restaurant

40 Residential area at night

30 Empty movie house

20 Rustling of leaves

10 Human breathing (at 3 m)

0 Hearing threshold for person with acute hearing
aAdapted from S. S. Stevens, Fred Warshofsky, and the Editors of Time-Life Books, Sound and
Hearing, Life Science Library, Time-Life Books, Alexandria, Virginia, 1965, p. 173

22 = 4, 23 = 8, log 2M = M log 2), as well as the basic definitions, log 1 = 0,
log 10 = 1.

The decibel scale is analogous to the Celsius and Fahrenheit temperature scales
in thermodynamics because it places commonly encountered airborne acoustical
amplitudes on a scale of 0–100. A sound in air with a level of 0 dB is at best barely
audible; one of 100 dB, for at least the middle frequency ranges (say, 250–4000 Hz),
would be very loud. The qualitative listing in Table 2.3 gives an indication of the
degree of loudness associated with various sound levels.

Ranges of sound-pressure levels and of frequencies of interest in the acoustics of
audible sounds are circumscribed by the empirically derived curves (see Fig. 2.2)
of the threshold of audibility Lp,min(f ) and the threshold of feeling Lp,feel(f )

versus frequency f . The first gives the minimum sound-pressure level of a pure
tone that can just barely be “heard”; the second gives the threshold for detection of
some sensation different from sound, e.g., a tingling in the ear. These frequency-
dependent pure-tone thresholds vary from person to person and vary somewhat with
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Fig. 2.2 Frequency-dependent thresholds of hearing and feeling for people with acute hearing
[Adapted from H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12:47 (1940)]

methods of measurement and with time and circumstances; values shown in Fig. 2.2
are representative of a person with very acute hearing (1% of population of the
USA).

2.3.4 History of the Decibel4

During the early 1920s, when routine measurements of sound amplitudes first
became practical, the wide range of magnitudes made it customary to plot data

4R. Huntley, “A bel Is ten decibels,” Sound Vib. 4(1):22 (January 1970).
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on a logarithmic scale. Harvey Fletcher5 and his colleagues in the Bell System
introduced (c. 1923) a term sensation unit for an incremental change of 0.1 in the
logarithm, base 10, of the mean squared pressure; a second sound exceeded the first
by 1 sensation unit if (p2

2)av/(p
2
1)av = 101/10 or 1.2589. This unit was roughly

the same (within, say, a factor of 2) as the minimum increment necessary for a
noticeably louder sound.

Another term in use somewhat before that time was the mile of standard cable.
Because electric power P along a transmission line falls off exponentially with
distance, log P would decrease by qL after transmission over L miles, q being
a frequency-dependent property of the cable; any fractional drop in power was an
attenuation equivalent to L mi of cable if the decrease in log P divided by q was
equal to L. Thus, in general,

P2 = P1 × 10−qL,

where L is attenuation in miles cable. While q depended on frequency, it was
numerically close to 0.1 mi−1 for the cables used and for frequencies originally
of interest. This plus the wish to have a unit independent of frequency led to
definition6 of a transmission unit, in which the relation above would hold when q

was identically 1
10 and when L was the number of transmission units (L now being

dimensionless).
Since the voltage induced in a telephone receiver is proportional to the sound

pressure incident on it, the electric power is proportional to (p2)av. Consequently,
the sensation unit and the transmission unit were recognized as being essentially the
same quantity; 1 unit corresponds to a multiplicative change of 101/10 in a power-
like quantity.

Also in use in Europe during the 1920s was the natural logarithm, base e

(Euler’s constant, 2.71828, etc.), of the multiplicative drop in voltage (rather than
power); if voltage dropped by e−N , the attenuation was reported as N units.
The International Advisory Committee on Long Distance Telephony in Europe
(organized in 1924) sought to standardize the various measures of attenuation then in
use. Representatives from the USA attended the meetings, and there was apparently
considerable discussion of the relative merits of the two units described above.
Although unanimous adoption of either system appeared impossible, the committee
noted that e2 = 7.389 was “close” to 10, so a multiplication of voltage by 1/e is
roughly equivalent to a multiplication of power by one-tenth. They suggested the
term neper (after John Napier, the inventor of logarithms) for the unit of attenuation
in natural logarithms of voltage and the term bel (after Alexander Graham Bell) for

5H. Fletcher, “Physical measurements of audition and their bearing on the theory of hearing,” Bell
Syst. Tech. J. 2(4):145–173 (October 1923), especially p. 153. In this paper what was later termed
the sensation unit was introduced and called a loudness unit.
6W. H. Martin, “The transmission Unit and telephone transmission reference systems,” Bell Syst.
Tech. J. 3:400–408 (1924); “Decibel: the name for the Transmission Unit,” ibid. 8:1–2 (1929).
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the unit of attenuation in base-10 logarithms of power. Thus, 1 neper (Np) is roughly
1 bel (B). The exact relation is 1 Np = 2 log e B = 0.869 B. The transmission unit
of the Bell System, identified as 1

10 B, was given the name decibel; the sensation unit
of the Bell System acousticians became the decibel. (The bel has rarely been used.)
The subsequent widespread adoption7 outside the Bell System of the decibel can be
attributed to the inherent attractiveness of a logarithmic scale and to the prominence
in the 1920s and 1930s of the Bell System’s acoustical research staff. The choice of
reference pressure (for sound in air) stems from the practice of plotting acoustical
magnitudes in “units above auditory threshold”; note (from Fig. 2.2) that 0 dB is
roughly the same as the auditory threshold in the midfrequency range.

2.3.5 Intensity and Power Levels

The decibel also occasionally describes average acoustic intensity and power. The
intensity level LI and the power level LP are defined,8 respectively, by

LI = 10 log
|Iav|
Iref

; LP = 10 log
Pav

Pref
. (2.3.5)

The preferred values for Iref and Pref are 10−12 W/m2 and 10−12 W (1 picowatt),
respectively. As with sound-pressure levels, one can also speak of intensity and
power levels for a given frequency band.

In the earlier literature, the term “intensity level” is occasionally used for sound-
pressure level, but this is now discouraged because there is in general no simple
relation between pressure and intensity and because acoustical standards assign
a precise meaning to the term “intensity.” (Intensity level is now rarely used.)
However, for plane or spherical waves (see Sects. 1.11 and 1.12), |Iav| is (p2)av/ρc,
so in these cases

Lp = 10 log

(
|Iav|

p2
ref/ρc

)
. (2.3.6)

7The first issue of the Journal of the Acoustical Society of America (1929) has perhaps the first
article by someone outside the Bell System in which the term decibel is used in an acoustical
context: V. O. Knudsen, “The hearing of speech in auditoriums,” J. Acoust. Soc. Am. 1:56–82
(1929). Knudsen defines the decibel on p. 58, n 4.
8ANSI S1.1-1960 (R1976), American National Standard Acoustical Terminology (1976); ANSI
S1.21-1972, American National Standard Methods for the Determination of Sound Power Levels
of Small Sources in Reverberation Rooms (1972), American National Standards Institute, New
York.



74 2 Quantitative Measures of Sound

For air under normal conditions ρc ≈ 400 kg/(m2 · s), and so p2
ref/ρc ≈

10−12 W/m2 when pref is taken as the preferred (for gases) value of 20 μPa.
Consequently, for plane and spherical waves in air, sound-pressure level and
intensity level are approximately the same.

2.4 Frequency Weighting and Filters

2.4.1 Frequency Weighting Functions

In many contexts, a frequency-weighted mean squared pressure (p2)av,W is used
rather than the mean squared acoustic pressure (p2)av. The weighted version is
defined by a frequency-dependent weighting function W(f ) such that if p(t) is a
sum of discrete frequency components, then

(p2)av,W =
∑
n

W(fn)(p
2
n)av. (2.4.1)

If the W(fn) are all 1 (no weighting, or flat response), this reduces to Eq. (2.1.7). A
decibel description of the weighting results with the substitution

W(f ) = 10�LW (f )/10, (2.4.2)

where �LW(f ) is the relative response (usually negative) in decibels. The weighted
sound-pressure level results from Eq. (2.3.1) with (p2

s )av replaced by (p2)av,W ; for
a single-frequency waveform, the expressions above and the definition of a sound-
pressure level imply that

Lp,W = Lp + �LW(f ). (2.4.3)

Three common weightings correspond to the A, B, and C relative response func-
tions,9 incorporated, for example, into commercially marketed sound-level meters
(see Fig. 2.3). The A weighting is the most commonly used; the corresponding
sound-pressure level is referred to as the sound level and denoted by LpA (or
LA). This weighting was originally intended to be such that sounds of different
frequencies giving the same decibel reading with A weighting would be equally
loud. A sound having a higher sound level than a second sound (of different spectral
content) would not always be louder, but it often is; from this standpoint, the
sound level is an improvement over the unweighted sound-pressure level in that
frequencies to which the human ear is less sensitive are weighted less than those

9ANSI S1.4-1971 (R1976), American National Standard Specifications for Sound Level Meters,
1976.
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Fig. 2.3 Relative response functions for A, B, and C weightings

to which the ear is more sensitive. Note that �LA(f ) is roughly the same as the
negative of the threshold of audibility curve Lp,min(f ) given in Fig. 2.2.

Sound-pressure levels associated with frequency bands can also be regarded as
weighted sound-pressure levels. The mean squared pressure (p2

b)av associated with
frequency band b results from Eq. (1) with W(f ) = 1 (ΔLW = 0) for frequencies
within the band, and W(f ) = 0 (ΔLW = −∞) for frequencies outside the
band. An octave-band sound-pressure level (OBSPL) is denoted by Lp,1/1 (or L1/1),
while a 1

3 octave-band sound-pressure level (OBSPL) is denoted by Lp,1/3 (or L1/3).
The first subscript corresponds to the physical quantity measured, but it is usually
omitted for sound pressure.

2.4.2 Linear Filters

Passing p(t) through an appropriately designed filter, squaring the output, then
averaging over time gives a measurement of (p2)av,W . The filter (see Fig. 2.4a)
transforms p(t) at its input terminal into pF (t) = L {p(t)} at its output terminal,
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Fig. 2.4 (a) Concept of a linear filter that transforms input into output function. (b) Electric-circuit
representation; open-circuit voltage across output terminals is L {f (t)} when applied voltage
across input is f (t)

where L is a linear operator characteristic of the filter. The sequence of operations
just described therefore yields

(p2)av,W =
[
(L {p})2

]
av

= (p2
F )av. (2.4.4)

A possible realization of a linear filter is an electric circuit (see Fig. 2.4b) with two
wires leading in and two leading out. If the voltage across the input terminal is f (t),
the voltage across the output terminal when it is open (or terminated by an extremely
high electric impedance) is L {f (t)}.

Properties of the mathematical operator associated with a linear filter are such
that

L {af (t)} = aL {f (t)}, (2.4.5a)

L {f1(t) + f2(t)} = L {f1(t)} + L {f2(t)}, (2.4.5b)

L

{
d

dt
f (t)

}
= d

dt
L {f (t)}, (2.4.5c)

Re L {f (t)} = L {Ref (t)}. (2.4.5d)

Equation (5c) implies that the operation L is intrinsically time-invariant, and
Eq. (5d) guarantees that the filtered function will be real if the input is real.
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A corollary of the above relations is that, for any angular frequency ω,

L

{(
d2

dt2 + ω2
)
f (t)

}
=
(

d2

dt2 + ω2
)

L {f (t)}. (2.4.6)

Therefore if f (t) is sinusoidal with angular frequency ω (such that the left side of
the equation vanishes), L {f (t)} must satisfy the differential equation obtained by
setting the right side to 0 and must therefore also be sinusoidal in time with the same
angular frequency ω. Thus, if one writes Re{f̂ e−iωt } for f (t), L {f (t)} must be of
the general form

L {f (t)} = Re
{
H(ω)f̂ e−iωt

}
, (2.4.7)

where the filter transfer function H(ω) is a complex number independent of the
amplitude |f̂ | and phase of the input function but dependent on ω.

The considerations just stated plus the superposition property (5b) of a linear
filter imply that, if p(t) is a multifrequency waveform of the general form of
Eq. (2.1.1), the filtered waveform pF (t) = L {p(t)} should be given by a similar
expression with p̂n replaced by p̂Fn = H(ωn)p̂n. Consequently, it follows from
Eq. (2.1.7) that the mean square of pF (t) is

(p2
F )av =

∑
n

|H(ωn)|2 (p2
n)av. (2.4.8)

A comparison of the above with Eq. (1) indicates that the frequency weighting
function W(f ) is given by |H(2πf )|2. Since this is independent of the phase of
H(ω), the filter phase shifts are of no consequence insofar as the evaluation of the
weighted mean squared pressure is concerned. Thus, one has some latitude in the
detailed design of the filter.

2.5 Combining of Levels

If a mean squared pressure (p2)av is a sum of (p2
n)av (not necessarily discrete)

frequency components, the sound-pressure level L corresponding to the sum is
related to the levels Ln of the individual components by [see Eq. (2.3.2)]

L = 10 log

(∑
n

10Ln/10

)
, (2.5.1)

which can be schematically denoted by

L = L1 ⊕ L2 ⊕ L3 ⊕ · · · ⊕ LN. (2.5.2)
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The routine evaluation of expressions like Eq. (1) is facilitated by the commuta-
tive and associative properties

L1 ⊕ L2 = L2 ⊕ L1 (2.5.3a)

L1 ⊕ L2 ⊕ L3 = (L1 ⊕ L2) ⊕ L3 = L1 ⊕ (L2 ⊕ L3), (2.5.3b)

so the summation in (2) decomposes into pairwise sequences of “sum” operations.
For the combination of two levels, Eq. (1) implies

L1 ⊕ L2 = L2 + C+(L2 − L1), (2.5.4)

where the decibel addition function C+(ΔL) is

C+(ΔL) = 10 log (1 + 10−ΔL/10). (2.5.5)

Since L2 can always be considered larger than L1 (if necessary, interchange L2 and
L1), one need only to consider C+(�L) for positive values of �L.

The function C+(�L) is 10 log 2 ≈ 3 dB when �L = 0 and decreases
monotonically to 0 as �L− → ∞ (see Fig. 2.5). For applications requiring only
integer decibel accuracy, a convenient approximation10 is

C+(ΔL) =

⎧⎪⎪⎨
⎪⎪⎩

3 ΔL = 0, 1
2 ΔL = 2, 3
1 ΔL = 4, 5, 6, 7, 8, 9
0 ΔL = 10 or greater

Example The octave-band sound-pressure levels measured at a point near a textile
loom are as tabulated below:

dB center freq (Hz) dB center freq (Hz)

67 31.5 86 1,000

72 63 90 2,000

77 125 87 4,000

77 250 82 8,000

82 500 73 16,000

Estimate the A-weighted sound level.

10This scheme is suggested, for example, by M. D. Egan, Concepts in Architectural Acoustics,
McGraw-Hill, New York, 1972, p. 16.
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Fig. 2.5 Decibel addition function C+(ΔL); solid line gives function for �L between 0 and 16
dB; dashed lines give 10C+(ΔL + 10) and 1

10C+(ΔL − 10), both of which approach C+(ΔL) in
limit of large ΔL. Dots are the integer-decibel approximation to C+(ΔL)

Solution Since we do not know how the individual band components are parti-
tioned among frequencies, we correct for A weighting of each band by using the
correction appropriate to the band’s center frequency. This gives (see Fig. 2.3) in
integer decibels 67 − 39, 72 − 26, 77 − 16, 77 − 9, 82 − 3, 86 − 0, 90 + 1, 87 + 1,
82−1, 73−7 for the A-weighted octave-band sound-pressure levels. The composite
estimate is then

LA = (28 ⊕ 46) ⊕ (61 ⊕ 68) ⊕ (79 ⊕ 86) ⊕ (91 ⊕ 88) ⊕ (81 ⊕ 66)

= [46 + C+(18)] ⊕ [68 + C+(7)] ⊕ [86 + C+(7)] ⊕ [91 + C+(3)]
⊕ [81 + C+(15)]

≈ (46 ⊕ 69) ⊕ (87 ⊕ 93) ⊕ 81

≈ [69 + C+(23)] ⊕ [93 + C+(6)] ⊕ 81

≈ [94 + C+(25)] ⊕ 81 ≈ 94 ⊕ 81 ≈ 94 dB.
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Fig. 2.6 Computation of decibel sum with the integer-decibel approximation: (a) pairwise
addition; (b) scheme whereby the smallest two values of each successive set of levels are combined

Such a computation (see Fig. 2.6a) is quickly done by hand. Although the order in
which one combines pairs is unimportant, one common procedure (see Fig. 2.6b)
is first to combine the smallest two, then combine the smallest two of the new set,
etc. This may give a more accurate result when the integer-decibel approximation
for C+(�L) is used, particularly if the set of levels consists of one high value and a
large number of low values. In this example, the result is still 94 dB.

2.6 Mutually Incoherent Sound Sources

For a sound field excited by a number of sources, the acoustic pressure p(t) at a
given point is a sum of waveforms ps(t) (s = 1, 2, . . .) caused by the individual
sources. The assumption is here made that, if only source s is modified, only the
term ps(t) will change. When only one source is of interest, all other sources (which
need not be identified) are considered as background-noise sources and one can
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write p(t) as ps(t) + pbg(t), where pbg(t) is the acoustic pressure associated with
background noise.

Two sources, s1 and s2, are mutually incoherent if at any given point and for any
frequency band

[
ps1,b(t)ps2,b(t)

]
av = 0. (2.6.1)

This would be so, for example, if ps1(t) and ps2(t) were each a superposition
of discrete frequency components and if any frequency present in ps1(t) were
absent from ps2(t). If the sources are genuinely independent, it is invariably a good
approximation that they are mutually incoherent. If the individual terms ps(t) are
caused by mutually incoherent sources, it follows that the mean squared pressures
due to individual sources are additive; that is, (p2)av is the sum of the (p2

s )av. The
same decomposition holds for any given frequency band and for any frequency
weighting simultaneously applied to the individual ps(t).

An application of such considerations is the calculation of a sound-pressure level
due to a number of independent sources when the level due to the sole presence
of each source is known. For example, suppose that when just source 1 is turned
on, Lp = 97 dB, but when just source 2 is on, Lp = 98 dB. When both are
simultaneously on, one would expect Lp = 97 ⊕ 98 or 98 + C+(1) ≈ 101 dB.

Another application is the determination of the sound-pressure level due to a
given source alone from measurements taken in the presence of background noise.
If Lbg is the sound-pressure level due to background noise alone and Lcomb is the
combined level due to source plus background, the level Ls due to the source alone
should be such that

10Ls/10 = 10Lcomb/10 − 10Lbg/10,

or

Ls = Lcomb − Cbg(Lcomb − Lbg), (2.6.2)

where the background correction function Cbg(ΔL) is defined as

Cbg(ΔL) = −10 log(1 − 10−ΔL/10). (2.6.3)

The assumption of mutually incoherent sources requires ΔL = Lcomb − Lbg be
positive, so the argument of the logarithm in (3) is positive and less than 1. The
logarithm is consequently negative and Cbg is positive.

The function Cbg(ΔL) (plotted in Fig. 2.7) is large for small ΔL, decreases to 3
for �L = 3, to 1 for ΔL = 6.9, to 0.5 for �L = 9.7, and to 0.1 for ΔL = 16.5.
If the expected error in Cbg is to be no greater than that of ΔL (or approximately
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Fig. 2.7 Background correction function Cbg(ΔL). Solid curve is such that if �L < 3, Cbg and
ΔL correspond to horizontal and vertical axes, respectively; axes are interchanged if ΔL > 3. Dots
are integer-decibel approximations for ΔL > 3. Note that Cbg(ΔL) has the asymptotic property
of decreasing by a multiplicative factor of 1

10 when ΔL increases by 10

the accuracy in the derived value of Ls is to be no less than that in the measured
values of Lcomb, and Lbg), ΔL must be sufficiently large for |dCbg/d(ΔL)| to be
less than 1. This leads to the requirement that Lcomb exceed Lbg by at least 3 dB;
estimates of Ls when this requirement is not met are expected to be less accurate
than the measured levels. To the nearest integer decibel, the background correction
function simplifies to

Cbg(ΔL) =

⎧⎪⎪⎨
⎪⎪⎩

3 ΔL = 3
2 ΔL = 4, 5
1 ΔL = 6, 7, 8, 9
0 ΔL = 10 or greater
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Even though the sound level due to background noise may be much larger than
that due to the source, an individual frequency-band sound-pressure level due to the
acoustic wave from the source can be accurately estimated if, within that frequency
band, the signal’s band sound-pressure level is comparable to or exceeds that caused
by background.

2.7 Fourier Series and Long-Duration Sounds

If a given waveform p(t) is of interminably long duration but is not immediately
recognizable as a superposition of discrete frequency components, one way of
describing it as such within a time segment of duration T is with a Fourier
series, i.e.,

p(t) =
n=∞∑
n=−∞

q̂ne
−iωnt = Re

( ∞∑
n=0

p̂ne
−iωnt

)
, (2.7.1)

where ωn = (2π/T )n and the complex coefficients q̂n are chosen so that the
series reproduces p(t) in the selected time interval. Because p(t) is real, the two
representations in Eq. (1) are equivalent, given the identifications

q̂n =
⎧⎨
⎩

1
2 p̂n n > 0
p̂o n = 0

1
2 p̂

∗−n n < 0
(2.7.2)

The value of the nth Fourier coefficient q̂n results from multiplying both sides of
Eq. (1) by exp iωnt and subsequently integrating over the time segment. Then, since
exp [i(ωn − ωm)t] integrates to 0 for n �= m and to T for n = m, one finds

q̂n =
[
p(t)eiωnt

]
av

= 1

T

∫
p(t)eiωnt dt, (2.7.3)

the average being over the selected interval (−T/2 + tc, T /2 + tc).
That the series (1) with the coefficients q̂n given by (3) reproduces p(t) within

the interval can be proved,11 given some minor restrictions on the mathematical
properties of p(t). However, unless p(t) is periodic with period T , such that p(t +
T ) = p(t), the series will not describe p(t) outside the interval.

11See, for example, R. Courant, Differential and Integral Calculus, 2d ed., vol. 1, Interscience-
Wiley, New York, 1940, pp. 447–455. Courant’s proof is for a sectionally smooth function
(derivative exists and is bounded except at discontinuities, derivative continuous otherwise except
for finite number of discontinuities).
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An important property of the Fourier-series representation is given by Parseval’s
theorem,12 which states that the time average of p2(t) over the interval is given by

[p2(t)]av = [p(t)p∗(t)]av =
∞∑

n=−∞

∞∑
m=−∞

q̂nq̂
∗
m(e

−i(ωn−ωm)t )av

=
∞∑

n=−∞

∣∣q̂n∣∣2 =
∞∑
n=0

(p2
n)av for p(t) real. (2.7.4)

Our previous deductions concerning multifrequency signals therefore apply to any
p(t), providing one restricts one’s attention to a definite time segment and computes
all averages with respect to this segment.

If one does not have a periodic waveform, a natural question is: Which numbers
associated with the Fourier-series representation are insensitive to the choices of
tc and T ? In this respect, many sounds of long duration are such that if p(t) is
passed through a filter designed to pass only frequencies (without alteration of
amplitude) falling within some passband b, then long-term averages of the square of
the filtered function will be insensitive to the duration and center of the time segment
selected.13 A sound satisfying this criterion may be called a steady sound. Given
such a supposition (which can be checked by experiment), the Fourier coefficients
should yield a meaningful estimate of (p2

b)av for any given band provided T is
sufficiently long. For bands with nonzero lower frequency, this supposition leads to

(p2
b)av = lim

T→∞

⎛
⎝ (b)∑

n>0

2

∣∣∣∣ 1

T

∫
p(t)ei2πnt/T dt

∣∣∣∣
2
⎞
⎠ , (2.7.5)

where the sum extends over positive n such that fn = ωn/2π = n/T falls within the
band. (As before, the limits of integration are −T/2+ tc and T/2+ tc.) The number
of terms included in the sum increases with increasing T and is approximately
T (Δf )b, where (Δf )b is the width of band b. The sum should be close to its limiting
value when T (Δf )b � 1.

12Named after Marc-Antoine Parseval des Chênes (1755–1836). Parseval’s original statement
(1799) was

∞∑
n=0

Anan = 1

2π

∫ π

0

[( ∞∑
n=0

Ane
inu

)( ∞∑
m=0

ame
−imu

)
+
( ∞∑
n=0

Ane
−inu

)( ∞∑
m=0

ame
imu

)]
du,

and was phrased without reference to the notion of a Fourier series. For a discussion, see the entry
on Parseval by H. C. Kennedy in C. S. Gillispie (ed.), Dictionary of Scientific Biography, vol. 10,
Scribner’s Sons, New York, 1974, pp. 327–328. Note the statement that “dozens of equations have
been called Parseval’s equations, although some only remotely resemble the original.”
13See, for example, C. T. Morrow, “Averaging time and data reduction time for random vibration
spectra, I,” J. Acoust. Soc. Am. 30:456–461 (1958).
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2.7.1 Spectral Density

The band contribution (p2
b)av can be regarded as being due to a continuous smear

of frequency components; (p2
b)av/(�f )b is then an average contribution per unit

bandwidth to the mean squared acoustic pressure. Consequently, one conceives of a
second limit in which the bandwidth becomes progressively smaller; the limit is the
spectral density p2

f (f ) of p(t), that is,

p2
f (f ) = lim

(Δf )b→0

{
(p2

b)av

(Δf )b

}
, (2.7.6)

f denoting the center frequency of the band. Thus, with this double-limit process
(finite bandwidth, T → ∞, then bandwidth → 0, the order of taking limits being
fixed), we have the concept of a spectral-density function p2

f (f ), where

(p2
b)av =

∫ f2

f1

p2
f (f ) df (2.7.7)

gives the contribution to (p2)av from a band of frequencies between f1 and f2.

2.7.2 Levels and Spectral Density

As discussed in the previous sections for waveforms composed of a finite number of
frequencies, one associates frequency-band sound-pressure levels (fixed frequency
intervals, octaves, 1

3 -octaves, etc.) in decibels with any function p(t) for which the
concept of a spectral density is applicable (see Fig. 2.8). Levels of weighted sound
pressure can be calculated by taking the weighted mean squared sound pressure as

(p2)av,W =
∫ ∞

0
W(f )p2

f (f ) df ≈
∑
b

W(fo,b)(p
2
b)av, (2.7.8)

where W(f ) is the weighting function and fo,b is the center frequency for band b.
For a description of the spectral density in terms of decibels, the natural definition

is that of the sound-pressure spectrum level,

Lps(f ) = 10 log

(
p2
f (f )(�f )ref

p2
ref

)
≈ 10 log

(
(p2

b)av(�f )ref/(�f )b

p2
ref

)
,

(2.7.9)
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Fig. 2.8 Dependence of
refrigerator noise-spectrum
analysis on bandwidth
selection: (a) 1

3 -octave
analysis for standard
contiguous bands; (b) band
sound-pressure level versus
center frequency with
bandwidth equal to 5% of
center frequency; (c) band
sound-pressure level versus
center frequency with 2 Hz
bandwidth (F. N. Fieldhouse,
“Techniques for identifying
sources of noise and
vibration,” Sound Vib.
4(12):16–17, December
1970)
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where (�f )ref is a reference bandwidth, usually taken as 1 Hz. In the second
(approximate) expression, (p2

b)av is the contribution to the mean squared pressure
from a band of width (�f )b centered at the frequency f .

2.7.3 White and Pink Noise

Two idealizations of the frequency dependence of the spectral density are p2
f (f )

constant over the band of interest and p2
f (f ) proportional to 1/f . The first is called

white noise, by analogy with white light, which is presumed composed uniformly of
all optical frequencies. The second is called pink noise because the low frequencies
are more prevalent. (Red light is lower-frequency light.)

White noise has the property that (p2
b)av for any band is (�f )bp

2
f . Since

(�f )b = (21/2N − 2−1/2N)fo(b) for a (1/N)th-octave band, (p2
b)av varies as the

center frequency for proportional frequency bands. Thus the band sound-pressure
levels for successive bands increase as

Lb+1 − Lb = 10 log

(
fo(b + 1)

fo(b)

)
= 1

N
10 log 2 ≈ 3

N
. (2.7.10)

The difference is 3 dB for successive octave bands and 1 dB for successive 1
3 -octave

bands.
Pink noise has the property that (p2

b)av is the same for all (1/N)-th octave bands.
This becomes evident if one sets p2

f (f ) = K/f , calculates

(p2
b)av =

∫ f2

f1

K

f
df = K ln 21/N (2.7.11)

and notes that this is independent of center frequency. Thus, if one has pink noise
over the range of, say, 31.5–31,500 Hz and the 500-Hz-octave-band sound-pressure
level is 90 dB, then the 8000-Hz-octave-band sound-pressure level is also 90 dB.

2.8 Transient Waveforms

A transient waveform is one where p(t) is zero before some onset time and after
some termination time. All waveforms are transients (there is always a beginning
and an ending), although it may not be appropriate to consider them as such. Exam-
ples of waveforms whose transitory features may be an important consideration are
sonic booms generated by supersonic aircraft and sounds generated by the impact
of solids.
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The frequency content of a transient waveform is described by its Fourier
transform p̂(ω). The basic concept follows from that of a Fourier series if one
sets tc = 0, q̂nT = 2πp̂(ωn), and then formally takes the limit as T → ∞.
The successive ωn then become close together and can be considered as values of
a continuous variable ω. The sum over n in Eq. (2.7.1) becomes an integral over
n = (T /2π)ω, or T/2π times an integral over ω. The net result is

p(t) =
∫ ∞

−∞
p̂(ω)e−iωt dω, (2.8.1)

while the corresponding expression (2.7.3) for q̂n gives

p̂(ω) = 1

2π

∫ ∞

−∞
p(t)eiωt dt. (2.8.2)

[If p(t) is real, then p̂(−ω) = p̂(ω)∗ and
∣∣p̂(−ω)

∣∣ = ∣∣p̂(ω)∣∣.] Similarly, Parseval’s
theorem, Eq. (2.7.4), in the same limit, gives

E =
∫ ∞

−∞
|p(t)|2 dt = 2π

∫ ∞

−∞
∣∣p̂(ω)∣∣2 dω, (2.8.3)

sometimes referred to as Rayleigh’s theorem.14 The indicated integral E is called
the sound exposure.

The expression (2) for p̂(ω) is the definition of a Fourier transform used
throughout this text. Other definitions15 are also in the literature, but Eq. (2)
minimizes writing factors of 2π in the solution of problems. All definitions of the
Fourier transform and of its inverse conform to the Fourier integral identity

p(t) = 1

2π

∫ ∞

−∞
e−iωt

[∫ ∞

−∞
p(t ′)eiωt ′ dt ′

]
dω, (2.8.4)

which follows from the substitution of the expression for p̂(ω) into the inverse
relation that gives p(t) in terms of p̂(ω).

14The generalization of Parseval’s theorem to Fourier transforms was given by Rayleigh, “On the
character of the complete radiation at a given temperature,” Phil. Mag. (5)27:460–469 (1889).
The common practice of referring to the generalization also as Parseval’s theorem is followed
throughout the present text.
15A common definition (due to Cauchy) is with the coefficients outside the integrals defining p̂(ω)

and the inverse transform both being 1/(2π)1/2 rather than 1 and 1/2π .
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Rigorous examination16 indicates that a Fourier transform exists if p(t) has at
most a finite number of discontinuities, is bounded, and is such that both it and
its square are absolutely integrable. (These are sufficient conditions, not necessary
conditions, but they suffice for our present purposes.) The inverse transform then
converges to p(t) in the mean (average before and after at a discontinuity).
Furthermore, |p̂(ω)| and |p̂(ω)|2 are both integrable.

2.8.1 Dirac Delta Function

A rudimentary proof that the inverse transform reproduces p(t) is given here. Let us
denote the right side of Eq. (4) by (p?); we seek to demonstrate that (p?) = p(t).
We first replace the factor e−iωt by e−iωt e−ω2τ 2

, with the understanding that we take
the limit as τ → 0 after the ω integration has been performed. (Note that e−ω2τ 2

approaches 1 as τ → 0.) The added factor ensures that the double integral for finite
τ will be independent of the order of integration, so that one has

(p?) = lim
τ→0

(∫ ∞

−∞
p(t ′)δτ (t − t ′) dt ′

)
, (2.8.5)

with the abbreviation

δτ (t − t ′) = 1

2π

∫ ∞

−∞
e−iω(t−t ′)e−ω2τ 2

dω

= 1

2π
e−(1/4)(t−t ′)2/τ 2

∫ ∞

−∞
e−τ 2�2

dω, (2.8.6)

where � = ω + (i/2)(t − t ′)/τ 2. The definite integral in the second expression
is evaluated by shifting the contour (permissible by Cauchy’s theorem17) to the
line along which � is real [where the imaginary part of ω is − 1

2 (t − t ′)/τ 2], then

16Possible sufficient conditions are given in summary form by G. E. Latta, “Transform methods,” in
C. E. Pearson (ed.), Handbook of Applied Mathematics, Van Nostrand Reinhold, New York, 1974,
chap. 11, pp. 585–592. The conditions stated in the present text are sufficient to be covered under
the hypotheses of Plancherel’s (1915) theorem, discussed and proved by N. Wiener, “Generalized
harmonic analysis,” Acta Math. 55:117–258 (1930). A proof for rather broad conditions is given
by E. C. Titchmarsh, “A contribution to the theory of Fourier transforms,” Proc. Lond. Math. Soc.
23:279–289 (1925). An uncomplicated proof [for the case when p(t) has only a finite number
of minima and maxima and only a finite number of discontinuities (Dirichlet conditions) and the
integral of p(t) over infinite limits exists] is given by I. N. Sneddon, Fourier Transforms, McGraw-
Hill, New York, 1951, pp. 9–19.
17See, for example, E. T. Copson, Theory of Functions of a Complex Variable, Oxford, 1935, pp.
59–60.
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Fig. 2.9 The function
δτ (t − t ′) when τ equals 0.5,
0.2, and 0.1. The sequence as
τ → 0 defines the Dirac delta
function

changing the variable of integration to x = �τ . Since the integral over x of e−x2

from −∞ to ∞ is π1/2, the result is

δτ (t − t ′) = 1

2τπ1/2 e−(1/4)(t−t ′)2/τ 2
. (2.8.7)

The function defined by Eq. (7) (see Fig. 2.9) has the property, regardless of the
value of τ , that

∫ ∞

−∞
δτ (t − t ′) dt ′ = 1. (2.8.8)

Furthermore, when τ becomes progressively smaller, the function becomes more
and more concentrated near t − t ′ = 0. Thus, in the limit of small but not zero τ ,
the integral (p?) in Eq. (5) is approximately the same as that resulting when p(t ′)
is set to p(t) in the integrand, the approximation becoming progressively better the
smaller one takes τ . Consequently, from Eq. (8), one has (p?) = p(t), and the
assertion is verified.

The above sequence of operations is facilitated by the concept of a Dirac delta
function, one of a class of generalized functions18 frequently encountered in modern

18A readable account is given by M. J. Lighthill, Fourier Analysis and Generalized Functions,
Cambridge University Press, London, 1964, p. 17. Note Lighthill’s dedication “to Paul Dirac who
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applied mathematics. We formally conceive of a function δ(t − t ′) as the limit of
δτ (t − t ′) when τ → 0; this function is 0 unless t = t ′, but infinite at that point, the
infinity being such that the integral over the function is unity. Thus, for any function
f (t) continuous at t ′ = t , one has

∫ ∞

−∞
f (t ′)δ(t − t ′) dt ′ = f (t). (2.8.9)

Strictly speaking, the delta function has meaning only under the integral sign; an
integral like that above is a shorthand notation for the limit as τ → 0 of the integral
with δ(t − t ′) replaced by δτ (t − t ′).

The sequence of functions δτ (t − t ′) (varying τ ) represented by Eq. (7) is not the
only sequence19 for which the limit of an integral like that in Eq. (5) should approach
p(t) for any continuous function p(t ′). One could, for example, take δτ (t− t ′) equal
to 0 for |t − t ′| > τ and equal to 1/2τ for |t − t ′| < τ , and the limit would be
the same. Insofar as the net result is the same, all such sequences are equivalent.
However, we require δτ (t − t ′) to be an even function of its argument to avoid
ambiguity when f (t ′) is discontinuous at t ′ = t . With this restriction, the integral
over t ′ of f (t ′)δ(t ′ − t) is the average of the values of f (t + ε) and f (t − ε) in the
limit as ε → 0.

2.8.2 Sound-Exposure Spectral Density

The inverse Fourier transform (or Fourier integral) depicts a transient waveform as
composed not of a discrete set of frequency components (as for a Fourier series) but
of a continuous smear of frequencies. It is inappropriate to speak of a time average
of p2(t) (unless the averaging time interval is fixed and carefully specified) since,
for large T , the average will change with increasing T , the average going to 0 as

saw that it must be true, Laurent Schwartz who proved it, and George Temple who showed how
simple it could be made.” The modern use of the Dirac delta function stems from P. A. M. Dirac,
“The physical interpretation of the quantum dynamics,” Proc. R. Soc. Lond. A113:621–641 (1927).
According to D. S. Jones, The Theory of Electromagnetism, Pergamon, London, 1964, p. 35, the
symbol had been used considerably earlier by G. Kirchhoff. An analogous concept was also used in
1922 by J. R. Carson, “The Heaviside operator calculus,” Bell Syst. Tech. J. 1(2):43–55 (November
1922).
19Another common representation is

δ(t − t ′) = lim
g→∞

(
sin g(t − t ′)
(t − t ′)π

)

discussed, for example, by L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1955, pp.
50–51. The representation given in the present text is due to E. A. Hylleraas, Die Grundlagen der
Quantenmechanik, Oslo, 1932, reprinted in Selected Scientific Papers of Egil A. Hylleraas, vol. 1,
NTH-Press, Trondheim, 1968, p. 261.
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T → ∞. It is possible, however, to speak of the total integral E (for exposure) over
all time of p2(t); this, according to Parseval’s theorem, Eq. (3), is (with ω = 2πf )

the integral over f from −∞ to ∞ of 4π2|p̂(2πf )|2, or, since the integrand is even
in f , it is the integral over f from 0 to ∞ of Ef = 8π2|p̂(2πf )|2. The sound-
exposure spectral density Ef serves as a measure of the frequency distribution of a
transient signal; the contribution to the time integral of p2 from any frequency band
is the integral of Ef over that band.

To have the decibel as a measure of a transient signal, one can define20 the sound-
exposure level or time-integrated sound-pressure-squared level as

LE = 10 log

(
E

p2
reftref

)
, (2.8.10)

where the reference time tref is 1 s. A time-integrated band sound-pressure level
LEb is similarly defined but with the integral of Ef over the band replacing E

in the above. A Fourier sound-pressure (squared) spectrum level LFps (or sound-
exposure spectrum level LEs) is defined similarly, with the integral over Ef replaced
by Ef �fref; the reference frequency bandwidth is 1 Hz.

2.9 Transfer Functions

The concept of a transfer function (discussed in Sect. 2.4 for linear filters) is useful in
the description of relationships between waveforms. Let pa(t) and F(t) describe the
histories of two linearly related quantities, e.g., acoustic pressures at two different
points, pressure at one point and an applied voltage on an electromechanical
transducer radiating a sound field, or some acoustic field variable at a given point
and an elastic-strain component somewhere on a vibrating body radiating sound.
The existence of a linear relationship between the two functions implies that the
operation of computing pa(t) from F(t) can be regarded as that of passing F(t)

through a linear filter, so that there is some linear operator La that gives pa(t) when
applied to F(t). The operator La has the properties listed in Eqs. (2.4.5) and is
described by its transfer function Ha(ω), defined such that La applied to e−iωt is
Ha(ω)e

−iωt . Consequently, if F(t) is a sum of discrete frequency components, one
has

pa(t) =
∑
n

Re
{
Ha(ωn)F̂ne

−iωnt
}
, (2.9.1)

20R. W. Young, “On the energy transported with a sound pulse,” J. Acoust. Soc. Am. 47:441–442
(1970).
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while, if F(t) is described by a Fourier integral, one has21

pa(t) =
∫ ∞

−∞
Ha(ω)F̂ (ω)e−iωt dω. (2.9.2)

In Eq. (1), p̂a,n = Ha(ωn)F̂n is identified as the complex amplitude associated with
the nth frequency component of pa(t); in Eq. (2), Ha(ω)F̂ (ω) is identified as the
Fourier transform p̂a(ω) of pa(t).

A consequence of such relations is that, if a second function pb(t) is also linearly
related to F(t), then pb(t) is related to pa(t) by an operator Lab whose transfer
function is Hab(ω) = Hb(ω)/Ha(ω). Consequently,

p̂b,n = Hab(ωn)p̂a,n, p̂b(ω) = Hab(ω)p̂a(ω), (2.9.3)

for the cases corresponding to Eqs. (1) and (2), respectively.
If pa(t) and pb(t) have spectral densities, p2

f,a(f ) and p2
f,b(f ), the densities

can be computed in terms of Fourier series representations, with the double-limit
process described by Eq. (2.7.6). The limit with p̂b,n replaced by Hab(ω)p̂a,n, as in
Eq. (3), yields

p2
f,b(f ) = |Hab(2πf )|2 p2

f,a(f ). (2.9.4)

An application of these relations is the prediction of the pressure spectral density
of a signal at a point xb given the spectral density at xa . By either experimental or
analytical means, one determines for the same physical system the acoustic-pressure
amplitudes at xa and xb when the source is radiating a single angular frequency
ω. The ratio (p2

b)av/(p
2
a)av for this constant-frequency case then gives |Hab(ω)|2.

Then, for the prediction of p2
f,b(f ), given p2

f,a(f ), one need only multiply p2
f,a(f )

by the previously derived |Hab(2πf )|2.

21Alternatively, if one uses the Fourier integral theorem to replace F̂ (ω) by

F̂ (ω) = 1

2π

∫ ∞

−∞
F(τ)eiωτ dτ

and interchanges the order of integration, the result is

pa(t) = 1

2π

∫ ∞

−∞
ha(t − τ)F (τ) dτ,

where

ha(t) =
∫ ∞

−∞
Ha(ω)e

−iωt dω

is the inverse Fourier transform of Ha(ω). The quantity ha(t)/2π is called the unit impulse
response function since it describes pa(t) when F(t) is the delta function δ(t).
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Another application (and also Parseval’s theorem) is in the measurement of
relative transfer functions using transient sources.22 Suppose pa(t) is the transient
response (see Fig. 2.10) obtained in some control experiment and pb(t) is the
transient response in a second experiment and it is known that pb(t) and pa(t)

are linearly related; we wish to derive the function |Hab(ω)|2 from the data. The
procedure used is to pass both pa(t) and pb(t) through the same narrow-band filter,
whose passband is centered at a given frequency fo of interest. Then the estimate of
|Hab(2πfo)|2 is

|Hab(2πfo)|2 =
∫∞
−∞ p2

bF (t) dt∫∞
−∞ p2

aF (t) dt
, (2.9.5)

where pbF (t) and paF (t) are the responses of the filter to pb(t) and pa(t).
That Eq. (5) affords an estimate of |Hab|2 follows from Parseval’s theorem,

Eq. (2.8.3), and from Eq. (2). If HF (ω) is the frequency-response function of the
filter, then

∫ ∞

−∞
p2
bF (t) dt = 2π

∫ ∞

−∞
|p̂b(ω)|2|HF (ω)|2 dω

≈ 4π |p̂b(2πfo)|2
∫ ∞

0
|HF (ω)|2 dω, (2.9.6)

since the magnitude of the filter’s frequency-response function is presumed sharply
peaked near ω = 2πfo. A similar approximate expression holds for the integral over
p2
aF (t). Consequently, the ratio of the two integrals is approximately |p̂b|2/|p̂a|2

evaluated at ω = 2πfo. But the latter ratio is |Hab(2πfo)|2, so the assertion follows.
The technique just described circumvents wall-reflection problems in rooms with

reflecting walls. The estimated |Hab(ω)|2 will be representative of what will be
obtained in an open space if the time-integration upper limit is truncated before
the first reflection arrives. This assumes that the duration of the first arrival after
filtering is shorter than the time lag before the first reflected arrival. The narrower
the bandwidth of the filter, the more difficult this is to achieve, but the assumption
can be checked by looking at oscilloscope traces of pbF (t) and paF (t).

22The technique has been applied in acoustical model experiments on urban sound propagation by
R. H. Lyon, “Role of multiple reflections and reverberation in urban noise propagation,” J. Acoust.
Soc. Am. 55:493–503 (1974); Lectures in Transportation Noise, Grozier, Cambridge, Mass., 1973,
pp. 64–70.
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Fig. 2.10 Measurement of transfer functions in experiment with transient source. A spark-gap
source generates sound pressure at the microphone; the resulting electric signal p(t) passes through
the 1

3 -octave-band filter. The measuring amplifier computes a running time average (p2
F )rta of the

square of the filtered transient pF (t). The resulting oscilloscope display is of 10 log(p2
F )rta versus

center time of averaging interval. In the example shown, the averaging time T is 0.3 ms, and it is
assumed pF (t) is made up of discrete pulses each of duration less than T ; the height of any peak in
the display corresponds to an integral of p2

F over the entire duration of the corresponding discrete
pulse. The integral of p2

F over all time is the sum of all peak values of (p2
F )rta (Adapted from L.

Pande, M.S. thesis, Massachusetts Institute of Technology, 1972)

2.10 Stationary Ergodic Processes

Steady sounds are often described in statistical terms; a given p(t) is regarded as
one member of a family (ensemble) of possible outcomes of an experiment (see
Fig. 2.11). The overall set of time-dependent functions with regard to its statistical
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Fig. 2.11 Possible waveforms p(t) that are members of an ensemble of possible outcomes to an
experiment

properties is called a stochastic process; a process is stationary23 if averages
(denoted by angle brackets) over the ensemble are independent of the choice of
time origin and ergodic if such averages are equivalent to time averages over a
single sample. In what follows, we assume that p(t) is a member of a stationary
ergodic process.

23Precise definitions are given by A. Papoulis, Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, New York, 1965, pp. 279–335.
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A principal statistical descriptor of a stochastic process is its autocorrelation
function Rp(τ), defined as 〈p(t)p(t + τ)〉 or, equivalently (for an ergodic process),
as

Rp(τ) = lim
T→∞

{
1

T

∫ T/2

−T/2
p(t)p(t + τ) dt

}
. (2.10.1)

Since the process is stationary, 〈p(t)p(t + τ)〉 is independent of t and depends on
only the time shift τ . Also, since the limit is unchanged if the integration variable is
changed to t + τ , it follows that Rp(τ) = Rp(−τ). The ergodic property ensures
that Eq. (1) gives the same Rp(τ) as the ensemble average, regardless of the choice
of time origin.

For a stationary ergodic function, the mean μ = 〈p(t)〉 is also independent of
time; the autocovariance

Dp(t − t ′) = 〈[p(t) − μ][p(t ′) − μ]〉 = Rp(t − t ′) − μ2 (2.10.2)

depends only on t−t ′ and moreover is even in t−t ′. The second relation results when
one writes the product in angle brackets as a sum of four terms and subsequently
recognizes that 〈p(t)p(t ′)〉 and 〈μp(t)〉 are Rp(t − t ′) and μ2. If the correlation is
negligible for large separation intervals, Dp(τ) should vanish in the limit of large
τ ; the autocorrelation function must therefore be such that Rp(τ) in the limit of
large τ is μ2, and Dp(τ) can therefore be obtained from Rp(τ) without explicitly
measuring 〈p〉.

2.10.1 Wiener–Khintchine Theorem

The spectral density p2
f (f ) can be derived from the autocovariance. The rela-

tion between the two functions results from the definition previously given by
Eqs. (2.7.5) and (2.7.6), which for a stationary ergodic process leads to

p2
f (f ) = lim

(Δf )b→0

⎧⎨
⎩ lim

T→∞

⎛
⎝ 2

(Δf )b

(b)∑
n>0

〈|q̂n|2〉
⎞
⎠
⎫⎬
⎭ . (2.10.3)

Here 〈|q̂n|2〉 is the ensemble average of the square of the magnitude of the Fourier
coefficient q̂n corresponding to a positive frequency n/T lying within a band of
width (Δf )b centered at frequency f . (The spectral density should be independent
of the choice of time origin, so the expression computed with a definite value of
center time tc can be replaced by an average over tc, but the latter is equivalent to an
ensemble average.)

Any particular q̂n is calculable from Eq. (2.7.3) or, equivalently, is the time
average of p(t + tc)e

iωn(t−tc) over the interval −T/2 to T/2. Also, since the integral
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over t of any constant times ei2πnt/T is zero when n �= 0, one can replace p(t + tc)

by p(t + tc) − μ. Consequently, the ensemble average of |q̂n|2 becomes

〈|q̂n|2〉 = 1

T 2

∫ T/2

−T/2

∫ 〈[p(t ′ + tc) − μ][p(t + tc) − μ]〉 eiωn(t−t ′)dt dt ′

= 1

T 2

∫ T/2

−T/2

∫
Dp(t − t ′)eiωn(t−t ′) dt dt ′. (2.10.4)

The appearance of the autocovariance Dp(t − t ′) in the latter expression follows
from Eq. (2). Note that the integrand depends only on the difference t − t ′ (which
ranges from −T to T ). Also note that the area dA(τ) of the portion of the integration
square bounded by the lines t − t ′ = τ and t − t ′ = τ + dτ is the same as that of a
strip of length 21/2(T − |τ |) and width dτ/21/2 (see Fig. 2.12). Thus, Eq. (4) yields

〈|q̂n|2〉 = 1

T

∫ T

−T

(
1 − |τ |

T

)
Dp(τ)e

iωnτ dτ. (2.10.5)

Fig. 2.12 Integration over a square region of the t t ′ plane for a function depending on the
difference t − t ′
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It is assumed that Dp(τ) and |τ |Dp(τ) are absolutely integrable (which is
consistent with the assumption that Dp(τ) goes to 0 as τ → ∞), so, if T is large,
one can approximate (5) by neglecting the term |τ |/T and by letting the integration
limits be infinite. If the resulting approximate integral is considered a function of ω
(where ωn = 2πfn = 2πn/T is replaced by a continuous variable), the so-defined
function will be continuous. Consequently, if the bandwidth (Δf )b is sufficiently
narrow, all of the 〈|q̂n|2〉 corresponding to fn’s within the band are approximately
the same, so the sum in Eq. (3) becomes

(b)∑
n>0

〈|q̂n|2〉 ≈ N

T

∫ ∞

−∞
Dp(τ)e

i2πf τ dτ, (2.10.6)

where f is a central frequency within the band. Here N is the number of positive
fn’s within the band and may be taken as (Δf )bT . The insertion of (6) into (3) then
yields the Wiener–Khintchine theorem24

p2
f (f ) = 2

∫ ∞

−∞
Dp(τ)e

i2πf τ dτ = 4
∫ ∞

0
Dp(τ) cos(2πf τ)dτ, (2.10.7)

which gives the spectral density as the Fourier transform [as in Eq. (2.8.2)] of 4π
times the autocovariance. [The second version follows from the first because Dp(τ)

is even in τ .]
Although p2

f (f ) has meaning only for positive frequencies, one can define it for

f = 0 and f < 0 by Eq. (7), such that p2
f (f ) is even in f . Then the Fourier integral

theorem would give (ω = 2πf )

Dp(τ) = 1

2

∫ ∞

−∞
p2
f (f )e−i2πf τ df =

∫ ∞

0
p2
f (f ) cos(2πf τ)df, (2.10.8)

i.e., the inverse transform [see Eq. (2.8.1)] of (4π)−1p2
f (f ). The spectral density as

defined above is finite at f = 0 and therefore does not contain the zero-frequency
portion of p(t), this portion corresponding to μ = pav. The p2

f (f ) in Eq. (8) is the
spectral density of p(t)−μ, not of p(t), but the two spectral densities are the same
for nonzero frequencies. Thus, in the limit τ → 0, Eq. (8) is consistent with the
requirement (2.7.7) that the contribution to (p2)av from any frequency band with
positive lower frequency be the integral of the spectral density over the band.

24N. Wiener, “Generalized harmonic analysis,” Acta Math. 55:117–258 (1930); A. Khintchine,
“Correlation theory of stationary stochastic processes,” Math. Ann. 109:604–615 (1934).
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2.11 Bias and Variance

Although the expressions discussed in the previous sections for the mean squared
band-filtered sound pressure (p2

b)av and for the spectral density p2
f (f ) involve

taking one or more limits, in the real world we must work with just one or a limited
number of data segments. Two questions should always be asked concerning data
processing schemes for estimation of spectral quantities. First, if one were to repeat
the same sequence of measurements and data processing a large number of times,
would the numerical average of the individual estimates agree with the desired
spectral quantity’s actual value? If not, the estimating scheme has a bias, whose
value is the difference between the average and the quantity’s true value. Second,
what is the mean squared deviation (variance) of the measured numbers from their
average?

Perspective on the possible values of bias and variance can be obtained by
consideration of a prototype analog25 method (see Fig. 2.13) for measuring spectral
quantities. The pressure signal passes continuously through a filter for which the
magnitude of the frequency-response function squared (or frequency weighting
function) is W(f |Q), the dependence on frequency f being selected to facilitate
the measurement of some spectral quantity Q. The filtered output is squared, and a
weighted average over time, e.g., as by a measuring amplifier, is computed. If t = 0
is taken as the end of the averaging interval, the estimate EQ for Q can be written

EQ = 1

T

∫ 0

−∞
A(t/T )p2

F (t) dt (2.11.1)

Here pF (t) is the output of the filter, and A(t/T ) is a weighting function
characteristic26 of the instrumentation, trailing off at large −t (so the lower limit of
integration is really finite), having a characteristic duration T , and being normalized
such that its integral over t/T from −∞ to 0 is 1. A possible A(t/T ) might be
e−|t |/T ; the exact expression is not important in what follows, providing A(t/T ) is
slowly varying with t over intervals of 1/f , where f is a representative frequency
of either the signal or of the filter’s passband; i.e., we assume f T � 1.

Let us first examine how the variance of the estimate EQ depends on the
functions W(f |Q) and A(t/T ) and on the characteristic duration T . If the pressure

25For a discussion of bias and variance associated with digital-computer estimation of spectral
density from records of finite length, see R. B. Blackman and J. W. Tukey, The Measurement of
Power Spectra, Dover, New York, 1958, pp. 11–25, 100–112. The above discussion of the analog
case is similar to that given in Blackman and Tukey, pp. 25–28 and 112–116.
26Of some interest is what may be considered to be the characteristic averaging time of commercial
sound-level meters. Taking the standard specifications [ANSI S1.4-1971 (R1976), p. 16] for such
meters and assuming A(t/T ) is exp(−|t |/T ), one can derive for the fast dynamic characteristic
that 0 < T < 0.2 s for type 1 instruments and 0 < T < 0.4 s for type 2 and 3 instruments. For the
slow dynamic characteristic, the corresponding ranges are 0.7 < T < 1.3 and 0.5 < T < 1.7 s.
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Fig. 2.13 Sequence of
operations forming basis for
common analog method of
spectral analysis

signal is a stationary ergodic function, the ensemble average of EQ is the (time-
independent) ensemble average of p2

F . The spectral density p2
f,F (f ) of pF (t),

according to Eq. (2.9.4), is W(f |Q) times the spectral density p2
f (f ) of the

unfiltered signal. Because the average of the square of a function with zero mean
is the integral over frequency of the corresponding spectral density, the ensemble
average 〈EQ〉 is given by the integral over f of p2

f,F (f ), where it is assumed that
the integrand goes to 0 as f → 0.

The difference between a given estimate EQ and its ensemble average results
from Eq. (1) when p2

F (t) is replaced by p2
F − 〈p2

F 〉, the averaging brackets here
implying an average over the ensemble. The variance is the expected square of the
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resulting integral expression. The product of the two integrals can be regarded as a
double integral over t1 and t2, and so the variance becomes

1

T 2

∫ 0

−∞

∫
A(t1/T )A(t2/T )L(t1, t2) dt1 dt2 (2.11.2)

L(t1, t2) = 〈[p2
F (t1) − 〈p2

F 〉][p2
F (t2) − 〈p2

F 〉]〉 ≈ 2[Dp,F (t1 − t2)]2 (2.11.3)

Here the latter identification in terms of the autocovariance results (after some
algebra) because the autocorrelation function and the autocovariance of pF (t) are
the same (the filtered function has no zero-frequency component) and from the
assumption that the incoming signal obeys Gaussian statistics,27 such that

〈p2
F (t1)p

2
F (t2)〉 = 〈p2

F (t1)〉〈p2
F (t2)〉 + 2〈pF (t1)pF (t2)〉2 (2.11.4)

With an application of the Wiener–Khintchine theorem, we can write Dp,F (t1 −
t2) in the form of Eq. (2.10.8); then, after an insertion of Eq. (3) into Eq. (2), the
variance of EQ becomes

∫ ∞

0

∫
p2
f,F (f1)p

2
f,F (f2)M(f1, f2, T ) df1 df2 (2.11.5)

with

M(f1, f2, T ) = 2

T 2

∫ 0

−∞

∫
A(t1/T )A(t2/T ) cos [2πf1(t1 − t2)]

cos [2πf2(t1 − t2)] dt1 dt2 (2.11.6)

An application of the trigonometric identity (1.8.10) for the product of two
cosines transforms Eq. (6) to the form

M(f1, f2, T ) =
∑
+,−

ā([f1 ± f2]T ), ā(x) =
∣∣∣∣
∫ 0

−∞
A(ξ)ei2πxξ dξ

∣∣∣∣
2

(2.11.7)
where the quantity ā(x) is (apart from a numerical constant) equal to the magnitude
squared of the Fourier transform of A(ξ); the normalization of A(t/T ) is such that
ā(x) should be 1 when x = 0. For example, ā(x) = [1 + (2πx)2]−1 if A(t/T ) =
e−|t |/T for t < 0.

27See, for example, Y. K. Lin, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New
York, 1967, pp. 82–83; S. H. Crandall and W. D. Mark, Random Vibration in Mechanical Systems,
Academic, New York, 1963, pp. 34–38; Papoulis, Probability, p. 477.
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The variance of the estimate EQ, given by Eq. (5) above, simplifies for larger
values of T if p2

f,F (f ) is slowly varying with frequency f over intervals of, say,
30/T . Because ā((f1 ± f2)T ) is down from its peak value of 1 by a factor of the
order of 5×10−4 when |f1 ±f2| is of the order of 15/T , the dominant contribution
to the f2 integration in (5) comes from the ā((f1 − f2)T ) term and, moreover, from
only those values of f2 sufficiently close to f1 for p2

f,F (f2) to be approximately

p2
f,F (f1). Thus, the variance reduces to

∫ ∞

0
[p2

f,F (f1)]2
[∫ ∞

0
ā((f2 − f1)T ) df2

]
df1.

The indicated integral on f2, with an application of Parseval’s theorem, Eq. (2.8.3),
becomes 1/KT , where

1

K
=
∫ 0

−∞
A2(ξ) dξ, (2.11.8)

so the variance in the limit of large T further simplifies to

〈(EQ − 〈EQ〉)2〉 = 1

KT

∫ ∞

0
[p2

f,F (f )]2 df. (2.11.9)

Note that the dimensionless parameter K is greater than or equal28 to 1. [It is 1 if
A(ξ) = 1 between 0 and −1; it is 2 if A(ξ) = e−|ξ |.]

An application of Eq. (9) is when the quantity to be estimated is the contribution
(p2

b)av to the mean squared pressure from the band b of frequencies between f1 and
f2. Then W(f |Q) would ideally be 1 if f is between f1 and f2 and would be zero
otherwise. If the frequency spectrum of the sound is white noise over the band, then
p2
f (f ) = (p2

b)av/(Δf )b for frequencies within the band, 〈EQ〉 is (p2
b)av, and Eq. (9)

reduces to

〈(EQ − 〈EQ〉)2〉
〈EQ〉2 = 1

KT (Δf )b
(2.11.10)

for the mean squared fractional error in the estimate of (p2
b)av. The rms fractional

error is [KT (Δf )b]−1/2.
The error in the corresponding sound-pressure level will be less than N dB

(where N is of the order of 1 or less) if
〈(

10 log
EQ

〈EQ〉
)2
〉

≤ N2, (2.11.11)

28The statement is a consequence of the Schwarz inequality (due originally to Cauchy). See, for
example, R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience, New
York, 1953, p. 2.
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where EQ is the estimate of (p2
b)av. If EQ/〈EQ〉 is close to 1, the logarithm can be

approximated by its lowest order nonzero term in a Taylor-series expansion; then
the above criterion reduces to

〈(EQ − 〈EQ〉)2〉
〈EQ〉2 ≤

(
ln 10

10

)2

N2 = 0.053N2,

so, with reference to Eq. (10), the requirement is

KT (Δf )b ≥ 18.86

N2 . (2.11.12)

Thus, for 1-dB accuracy, the characteristic averaging time T should be of the order
of 20 divided by the bandwidth; for 0.1-dB accuracy, it should be of the order of
2000 divided by the bandwidth.

Bias is a more insidious quantity than variance, since the latter can be estimated
by performing the experiment a large number of times. In principle, the method
of measurement should be such that the bias is zero, regardless of the signal to
be analyzed, but this is impractical to achieve. For the analog method described
above, bias arises because of the deviation of the filter’s transfer function from what
is ideally desired. In digital data processing, it arises when, to reduce variance,
one multiplies the data segment by a smooth window function that vanishes at
both ends of the segment; so there is a trade-off between bias and variance. The
usual procedure is to design the measurement process to be such that the estimate’s
ensemble average 〈EQ〉 will be the desired spectral quantity Q if the spectral density
is a slowly varying function of frequency. This implies, however, that, to assign a
numerical value to the bias one must know the spectral density, which of course one
does not know in advance.

As an example, suppose we want to measure (p2
b)av for a 1

3 -octave band by the
analog method described above. The bias B is given in general by

B =
∫ ∞

0

[
Wactual(f |Q) − Wideal(f |Q)

]
p2
f (f ) df. (2.11.13)

In this case, Wideal is 1 if f lies within the 1
3 -octave band and 0 if it is outside;

Wactual is the actual response function of the filter in the analog system. A high-
performance filter can be expected to meet the American Standard specification29

for a class III 1
3 -octave-band filter. Figure 2.14 gives the minimum and maximum

limits of the transmission loss (−10 logW) of such a filter. The standard also
specifies that, when p2

f (f ) is constant (white-noise) with frequency, the bias should

29American National Standard S1.11-1966 (R1976), American National Standard Specification for
Octave, Half-Octave, and Third-Octave Band Filter Sets, American National Standards Institute,
New York, 1976.
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Fig. 2.14 Transmission-loss
maxima in decibels for a class
III 1

3 -octave band filter versus
ratio of frequency f to the
band’s center frequency fc.
Transmission loss here
represents 10 times logarithm,
base 10, of the ratio of square
of amplitude of input signal
to that of output signal

not be greater in magnitude than 0.1 times the integral of the (constant) p2
f (f ) over

the ideal frequency band. However, if the actual p2
f (f ) is not constant, the bias may

be considerably larger.
If the actual sound is a pure tone (or very narrow band noise) centered at 400 Hz,

with a sound-pressure level of 80 dB (re 20 μPa), so (p2)av = 0.04 Pa2, the sound
is entirely in the 1

3 -octave band centered at 400 Hz, but a measurement using a class
III filter would give a nonzero contribution from the 1

3 -octave band centered at 500
Hz. The sound-pressure level from the 500-Hz band could appear to be as high as
70 dB, that is, 80 − 10, even though it should ideally be −∞ dB. The bias for the
500-Hz band would be 0.1 times 0.04 = 0.004 Pa2.

This example suggests that appreciable biases may exist in measured band pres-
sure levels when the actual waveform is dominated substantially by contributions
from other bands. If bias is a concern, one can often check for its presence after the
fact by estimating p2

f (f ) as best as one can from the data and then estimating the
bias from Eq. (13). If this indicates the bias is significant, the correction of the data
for bias is uncertain because of the imprecise a priori knowledge of p2

f (f ). It would
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be preferable to refine the measurement technique so that Wactual(f |Q) is closer to
Wideal(f |Q) or perhaps to analyze the data in narrower frequency bands.

2.12 Problems

2.1 An omnidirectional (radiates in all directions equally) source in an open
space in air (ρc = 400 Pa s/m) radiates sound comprising frequencies of
120, 240, 360, 480, 600, and 720 Hz. At a distance of 2 m from the center
of this source, the acoustic-pressure amplitude of each of the six frequency
components is 1 Pa. What are the time averages of the acoustic powers
generated by this source for the octave bands with center frequencies 125,
250, 500, and 1000 Hz?

2.2 The sound level LA in the weaving room of a textile mill when only one
loom is running is 80 dB (re 20 μPa).

(a) Estimate the expected sound level when 10 looms are running simulta-
neously.

(b) How many additional looms would be required to produce a further
increase of the sound level by the same number of decibels?

2.3 Suppose five sounds of frequencies 100, 200, 300, 400, and 500 Hz and of
sound-pressure levels of 0, 0, 0, 0, and 1 dB, respectively, are simultaneously
received.

(a) What is the sound-pressure level of the overall signal?
(b) What is the octave-band sound-pressure level for the octave centered at

250 Hz?
(c) What is the A-weighted sound level?

2.4 Octave-band sound-pressure-level data on the noise generated by an electric
shaver at 40 cm list levels versus band center frequencies as follows:

Hz 63 125 250 500 1000 2000 4000 8000

dB 60 60 50 65 60 65 60 55

Estimate what the A-weighted sound level would be under the same circum-
stances.

2.5 If a small compact source is radiating sound into an unbounded region,
how would one expect the various sound-pressure levels associated with
the source’s acoustic-pressure field to vary with distance along any given
radial line extending out from the source? By how many decibels does the
sound-pressure level drop when such a distance is doubled? [Assume that
the distances of interest are sufficiently large to permit Eq. (1.12.10a) to be
considered valid.]
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2.6 The sound level at a distance of 20 m from a single car is 70 dB. What
would you estimate for the sound level at a distance of 60 m from a highway
containing 1 car every 10 m of highway length? (Assume the acoustic-
pressure contribution from any single compact source varies with radial
distance as in spherical spreading and approximate the sum over sources by
an appropriate integral.)

2.7 An acoustic-pressure signal is of the form of a periodic square wave: p =
+A for a time interval T/2, then p = −A for a time interval T/2, then
p = +A for another time interval T/2, etc., there A is a constant. If the
period T is 0.001 s and the amplitude A is 1 Pa, what would the octave-
band sound-pressure level (re 20 μPa) of this signal be for the octave band
centered at 1000 Hz? By how many decibels (to the nearest 0.1 dB) is this
less than the flat-response sound-pressure level of the signal?

2.8 The acoustic pressure p in a sonic boom (see Problem 1.29) is given by

p =
{−Ppk

t
T

−T < t < T

0 t < −T or t > T

Here T is the duration of the waveform’s positive phase, and Ppk is the peak
boom overpressure; the time origin is chosen to coincide with the arrival of
the node between the positive and negative phases of the boom. Derive an
expression (and sketch versus frequency) for the acoustic energy per unit
frequency bandwidth and per unit area transverse to propagation direction
carried by the boom.

2.9 The spectral density of the acoustic pressure of a particular noise is uniform
over the octave band centered at 1000 Hz and is such that the sound-pressure
level for this band is 75 dB (re 20 μPa).

(a) What is the value of p2
f (f ) for frequencies within this band?

(b) What would the sound-pressure level be for the band of frequencies
between 1000 and 1001 Hz?

2.10 A sound is idealized as pink noise over the range of 100–2000 Hz. The sound-
pressure level for the 1

3 -octave band with center frequency 1000 Hz is 80 dB.
What would you expect for the sound-pressure level for the octave band with
center frequency 250 Hz?

2.11 The background sound level when no machines are running in a factory is 80
dB. When one machine is running, the sound level goes up to 84 dB. What
would you estimate as the sound level in this factory when two machines are
running?

2.12 Derive a simple approximate expression for the function C+(�L) for the
addition of decibels in the limit of large �L and verify the assertion that
C+(�L + 10) is nearly 1

10C+(�L) when �L is large.
2.13 Verify that the decibel-addition function C+(�L) and the background-

correction function Cbg(�L) are equal in the limit of large �L.
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2.14 An acoustic-pressure waveform consists of a superposition of two constant-
frequency signals, both with peak amplitude of 1 Pa, the first having a
frequency 999 Hz and the second a frequency 1001 Hz. The sound-pressure
level of this composite signal is estimated by averaging p2 over a time
interval of 0.1 s and by subsequently calculating 10 log [(p2)av/p

2
ref], where

pref = 20 μPa. If this estimate were computed continuously, it could be
regarded as a function of the center time tc of the averaging interval. Discuss
the general nature of the resulting plot of estimated “instantaneous” sound-
pressure level versus center time tc. If the plot is nearly periodic, give the
period and the maximum and minimum levels to the nearest integer decibel.

2.15 Some inexpensive instrumentations substitute a measurement of (p2)av by
one of K|p|av, where |p| is the rectified signal (magnitude) and the constant
K is chosen so that the two numbers agree when p(t) has only one frequency
component.

(a) What is K?
(b) Suppose p(t) is of the form A cosωt +A cos 2ωt . What would the error

in decibels be if such an instrument was used to measure the sound-
pressure level?

2.16 What key on a piano keyboard has a frequency closest to 7 times that of
middle C?

2.17 The nature of a particular filter is such that, for any given input p(t), the
output L {p(t)} is

L {p(t)} = 1

2π

∫ t

−∞
h(t − τ)p(τ) dτ

Here h(t − τ) is a real function which is integrable and which has an
integrable square. Verify that this filter satisfies all the criteria discussed in
Sect. 2.4. If p(t) is 0 for t < 0 and is Re{Ae−iωt } for t > 0, verify that, in
the limit of large t , L {p(t)} approaches Re{H(ω)Ae−iωt }.

2.18 In monatomic gases if sound absorption is taken into account, the amplitudes
of constant-frequency plane traveling waves decrease exponentially with
propagation distance x as exp(−βf 2x), where β is a constant. Suppose the
sound received at x = 0 is white noise over the octave band centered at
frequency fo. Derive a general expression for the decrease in decibels of
the sound level for this same octave band as a function of the dimensionless
parameter βf 2

o x and give approximate simple expressions valid in the limit
when this parameter is either very small or very large. Hint: The “exact”
answer involves the error function tabulated in many reference books.

2.19 The spectral density of a signal is constant and equal to So within the
frequency band f1 < f < f2; outside this band it is zero. What is the
autocorrelation function for this signal?

2.20 It is desired to estimate the contribution to the mean squared pressure of a
sound from a narrow frequency band of width Δf . You have the option of



2.12 Problems 109

basing your estimate on a single sample using an averaging time of 5T or
of taking the arithmetic average of estimates from five different uncorrelated
samples using an averaging time of T in each case. Which option should
you select? [Assume (Δf )T � 1 and make whatever assumptions seem
necessary and reasonable concerning the statistical properties of the signal.
If you conclude that both options are equally good, justify your conclusion.]

2.21 A multifrequency sound is known to be made up of the frequencies 125
and 400 Hz. A sound-level meter gives sound-pressure levels of LA dB and
LC dB with the A and C weightings, respectively. Describe how one might
use the numbers LA and LC to obtain estimates of the sound-pressure levels
due to each of the two individual frequency components. Give a numerical
example.

2.22 A long time segment of noise from a machine is recorded and subsequently
digitized and fed into a computer. The Fourier analysis of the data between
t = 0 and t = 10 s suggests that the appropriate Fourier series for this time
interval is

p(t) =
∞∑

n=−∞
An2e−αn2

e−i2π nt/T eiφn

where α = 10−8, A = 10−10 Pa, φn = −φ−n is real and independent of
time t , and T = 10 s.

(a) Derive and plot the corresponding extrapolated expression for the
continuous spectral density p2

f (f ) in square pascals per hertz.
(b) Estimate to within 3 dB what the A-weighted sound level (re 20 μPa)

would be.
(c) Derive and sketch the autocorrelation function versus delay time τ .

2.23 The A-weighted sound level near a thoroughfare leading into a major city is
monitored on a continuous basis over a 3-month period. If sound levels are
computed continuously using an averaging time T and are plotted against
time, what would you expect to be major causes of time fluctuations in the
sound level when (a) T = 1 s, (b) T = 1 h, and (c) T = 24 h?

2.24 The average acoustic-power output of a normal human voice is of the order
of 50 μW [V. O. Knudsen, J. Acoust. Soc. Am. 1:56–82 (1929)]. How close
must one be to a person in order to be assured that the received sound level
is at least 70 dB?

2.25 If a wave is spreading cylindrically rather than spherically, by how many
decibels does the sound-pressure level drop for each doubling of distance?

2.26 An approximate model for the statistical variations of a measured waveform
sample of duration T is that the real and imaginary parts of all the Fourier
components (n ≥ 0) corresponding to a given frequency band are statistically
independent and that 〈Re p̂n〉 = 0, 〈(Re p̂n)

2〉 = σ 2, and 〈(Re p̂n)
4〉 = 3σ 4,

where σ 2 is independent of n and the same relations hold for ensemble
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averages of the powers of Im p̂n. From this model, what would you estimate
to be the ratio of the variance to the square of the expected value for the
segment’s prediction of the mean squared value of the pressure signal’s
contribution from a frequency band of width Δf , where Δf is substantially
larger than 1/T ?

2.27 A transient acoustic-pressure waveform, zero for t < 0, has the form
ppk sinωt for 0 < t < 27πN/ω and is thereafter zero, where N is an integer.
Estimate how large N must be to ensure that at least 90% of the “energy”
associated with the signal is carried by (angular) frequencies between 0.99ω
and 1.01ω. Make whatever approximations seem appropriate.

2.28 Evaluate the integral

∫ 1

0
(sin−1 x) δ(4x2 − 3) dx

where δ(y) is the Dirac delta function.
2.29 In the usual equally tempered scale, the octave is divided into 12 parts, the

choice of the number 12 being such that certain integer numbers of 1
12 -octave

intervals correspond closely to frequency ratios of 3 : 2, 4 : 3, and 5 : 4. Is
there any other choice between 12 and 24 for the number of intervals per
octave that would accomplish the same purpose?

2.30 Suppose one took the definition of the spectral density p2
f (f ) to be 4π times

the Fourier transform of the autocovariance, as in Eq. (2.10.7). Show that this
leads (with various assumptions that you should state) to the prediction that
this spectral density is the same as would be obtained if one passed the signal
through a filter of some narrow bandwidth Δf centered at f , took the time
average of the square of the output, and divided the result by Δf .

2.31 Verify (with mathematical detail stating all pertinent assumptions) the
assertion made in the legend of Fig. 2.10 that for a filtered signal made up
of a sequence of discrete pulses the sum of successive peak values of the
running time average of the square of the output is the contribution from
frequencies within the filter’s passband to the total time integral of the square
of the original signal.

2.32 Nonlinear effects may distort an originally sinusoidal waveform into one
of sawtooth shape, so that the time history of p at a given point would be
approximately described by a periodic function f (t) = f (t + T ), where
f (t) = (P )(1 − 2t/T ) for 0 < t < T . For such a waveform, what fraction
of the average value of p2 is attributable to higher-order harmonics, i.e.,
frequencies other than 1/T ?

2.33 A generalization of Parseval’s theorem for Fourier transforms is that, if f (t)

and g(t) are two real functions having Fourier transforms f̂ (ω) and ĝ(ω),
then

∫ ∞

−∞
f (t)g(t + τ) dt = 2π

∫ ∞

−∞
f̂ ∗(ω)ĝ(ω)eiωτ dω
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for any time shift τ . Give a proof of this, making use of the Dirac delta
function.

2.34 Suppose that one has a stationary ergodic function p(t), chooses a segment
extending from t = 0 to t = T , and defines a function g(t) as being equal
to p(t) for times within this interval and 0 outside this interval. The Fourier
transform ĝ(ω) of g(t) is then derived. How would one estimate the average
spectral density p2

f of p(t) over a band of frequencies (in hertz) extending
from 100/T to 200/T from a knowledge of ĝ(ω)? Given that the actual
spectral density is uniform over the band, to within how many decibels would
you expect the derived octave-band sound-pressure level to be accurate?

2.35 A hypothetical ideal filter is designed so that its transfer function H(ω) is
eiωτ for frequencies within an octave band consisting of angular frequencies
between 2−1/2ωo and 21/2ωo. The function H(ω) is equal to zero for positive
frequencies outside that band. [Recall that, for “negative” frequencies, H(ω)

is defined such that H(−ω) = H ∗(ω).] Here τ is some relatively large delay
time. What will the output of the filter be if the input signal equals 0 for t < 0
and equals ppke

−αt for t > 0? Give your result in the limit α → 0. What
fraction of the “energy” of the output is concentrated within an interval of
duration 20π/ωo, that is, 10 periods, centered at time t = τ?

2.36 A harmonic oscillator of mass m is acted upon by a time-varying force F(t),
and its motion is influenced by a spring with spring constant k and by a
dashpot (constant b), such that its displacement x(t) satisfies the differential
equation

mẍ + bẋ + kx = F(t)

The function F(t) is a stationary ergodic time series characterized by a
spectral density F 2

f (f ).

(a) What is the spectral density v2
f (f ) of the velocity v = ẋ of the oscillator?

(b) Assuming that F 2
f (f ) varies negligibly over a broad band of frequencies

centered at the resonance frequency [ωr = (k/m)1/2] of the oscillator
and that the oscillator is lightly damped [b 
 (km)1/2], derive a
simple approximate expression for (v2)av. With what frequency would
the oscillator appear to be predominantly vibrating?

2.37 Give an explicit proof that the operator ⊕ introduced in Sect. 2.5 to describe
the addition of decibels satisfies the properties (2.5.3) and that Eqs. (2.5.4)
and (2.5.5) ensure that

L1 ⊕ L2 ⊕ L3 = 10 log(10L1/10 + 10L2/10 + 10L3/10).

What changes in these formulas would be necessitated if one chose to
measure sound-pressure levels in nepers rather than decibels?
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2.38 The autocovariance of a stationary ergodic time series must correspond to a
spectral density that is nonnegative for all frequencies. Given this criterion,
check whether each of the following is an admissible autocovariance (a >

0, b > 0):

(a) Dp(τ) = e−aτ 2

(b) Dp(τ) = 1

1 + aτ 2

(c) Dp(τ) = (1 − bτ 2)e−aτ 2

2.39 A pressure signal is of the form of a sudden jump followed by a very slow
exponential decrease, that is, p(t) = 0 if t < 0 and p(t) = ppke

−αt if
t > 0. In the limit α → 0 determine an expression for the integrated octave-
band sound-pressure level for an octave band centered at frequency fo. By
how many decibels does the integrated-band sound-pressure level differ for
successive contiguous octave bands?

2.40 Suppose p(t) is a function that goes to zero at least as fast as e−a|t | (for some
positive value of a) when t → ∞. We wish to know the asymptotic form of
its Fourier transform p̂(ω) without an explicit knowledge of p(t).

(a) Show that if p(t) has a positive discontinuity of �p at t = to and is
otherwise continuous, then

p̂(ω) → i�p

2πω
eiωto ω → ∞.

(b) Show that if p(t) is everywhere continuous but dp(t)/dt has a disconti-
nuity of Δṗ at t = to and is otherwise continuous, then

p̂(ω) → −�ṗ

2πω2 e
iωto ω → ∞

(Lighthill, Fourier Analysis and Generalized Functions, pp. 43, 46–57.)

2.41 Suppose the signals corresponding to the acoustic pressure and the three
Cartesian components of v are each passed through identical linear filters,
such that one obtains functions pF (x, t) and vF (x, t).

(a) Show that pF and vF satisfy the same linear acoustic equations as the
original unfiltered functions, that is, ∂pF /∂t + ρc2∇ · vF = 0 and
ρ ∂vF /∂t = −∇pF .

(b) Show that if an acoustic energy density wF and intensity IF are
constructed according to Eqs. (1.11.3) from these filtered functions, the
acoustic-energy corollary (1.11.2) will still be valid.
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(c) Show in addition that this corollary holds for running time averages (rta),
defined by

wF,rta(x, t) =
∫ t

−∞
A(t − t ′)wF (t

′, x) dt ′,

with a function A(t) whose integral from 0 to ∞ is 1, the function A(t)

being the same for the computation of both wF,rta and IF,rta.



Chapter 3
Reflection, Transmission, and Excitation
of Plane Waves

When a sound wave strikes a surface (an interface between two substances), a
reflected wave, or echo, results whose nature depends on the characteristics of the
surface and of the adjoining substances. In some instances, one may be interested in
the acoustic disturbance produced on the other side of the surface. A related topic is
the generation of sound by a vibrating surface. Many acoustical phenomena involve
such interactions of sound and surfaces, and we accordingly here examine the
principles pertaining to them. For the most part, attention is restricted to situations
where the plane-wave idealization is applicable, although certain concepts such as
boundary conditions, causality, and specific acoustic impedance are introduced in
more general terms.

3.1 Boundary Conditions at Impenetrable Surfaces

A vibrating or stationary surface S adjacent to a fluid imposes constraints, or
boundary conditions, on the possible solutions of the fluid-dynamic equations. We
here consider S to separate a solid material from a fluid, although much of the
following discussion applies equally to an interface between two fluids, e.g., air
and water. The surface S (see Fig. 3.1) is also regarded as smooth, so that, with any
given (moving with the material in the solid) point xS on S, we can associate a unit
normal vector nS pointing out of the solid into the fluid. One also associates with
xS a surface velocity vS = dxS/dt , representing the local average velocity of the
solid particles near xS .
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Fig. 3.1 Idealized fluid–solid
interface (surface S with unit
normal nS ). The position
xS(t) describes a material
point in the solid; vS(t) is its
velocity; v(xS, t) is the
velocity of a fluid particle
adjacent to xS(t) at time t

If the surface is impenetrable (not porous), a fluid particle adjacent to the surface
S at a time to must be adjacent to it at to+Δt . During a short interval Δt , the surface
S moves normal to itself a distance (vSΔt) · nS = vnΔt , where vn = vS · nS is the
normal velocity of the surface. If one ignores viscosity or considers fluid particles
that are close to, but not exactly at, the solid surface, e.g., just outside1 a viscous
boundary layer, the fluid may slip relative to the solid surface but nevertheless has
the same normal displacement in time Δt as a solid particle in its immediate vicinity
does. Otherwise, the fluid mass density would locally be anomalously very high or
very small; both possibilities are implausible. Consequently, the normal component

1The thickness of the viscous boundary layer in typical cases of acoustical interest is of the order of
(2μ/ρω)1/2, where μ [∼ 2 × 10−5 kg/(m s) for air and ∼ 10−3 kg /(m s) for water at 20 ◦C] is the
viscosity. This thickness is invariably much less than a wavelength for any frequency of interest.
(Acoustic boundary layers are discussed in Sect. 10.4.)
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of the fluid velocity at the surface should be the same as that of the surface proper,
so one has2

v ·nS = vS ·nS = vn (3.1.1)

at any point xS on S.

3.1.1 Stationary Surfaces

If the surface S is stationary (vS = 0) though the fluid outside it may be moving,
Eq. (1) reduces to v ·nS = 0. If the linear acoustic equations (1.5.3) hold within the
fluid, then Eq. (1) and the linear version of Euler’s equation imply nS · ∇p = 0 on
the surface.

3.1.2 Vibrating Surfaces

If the surface is vibrating, the application of Eq. (1) can be complicated because
it applies at a moving rather than a fixed surface and because the unit normal nS

may be changing with time. However, if the surface-vibration amplitude is small
compared with a representative acoustic wavelength and representative dimensions
describing the surface, and if there is no ambient flow (vo = 0), then it is consistent
with the use of the linear acoustic equations to require instead that

v ·no = vS ·no (3.1.2)

hold at a nonmoving surface So whose location is the average or nominal location of
S. The unit vector no is normal to So and therefore independent of time. The velocity
vS is the velocity (assumed small) of that point on the solid nominally at the same
point on So. The premise is that the acoustic field within the fluid, predicted subject
to specified normal component v · no of acoustic fluid velocity on a fixed surface,
is very nearly the same as would be predicted if v · nS were specified on the actual
moving surface.

Example A rigid sphere of radius a rocks back and forth about an axle (Fig. 3.2)
located a distance b from its center. The peak angular displacement is substantially
less than π/2, so the motion of the center of the sphere is very nearly along a straight

2This condition may be recognized in early works by Euler, Lagrange, and Poisson. A statement
similar in form to that in the text is given by G. G. Stokes, “On some cases of fluid motion,”
Trans. Camb. Phil. Soc. 8:105 (read May 29, 1843); Mathematical and Physical Papers, vol. 1,
Cambridge University Press, Cambridge, 1880, pp. 17–68, especially p. 22.
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Fig. 3.2 A rigid sphere of
radius a pivoted about an axle
displaced a distance b from
its center. The angular
velocity Ω(t) oscillates with
a small amplitude, such that
the sphere’s center is always
close to the origin

line. What boundary condition would one place on the linear acoustic equations to
account for the presence of the oscillating sphere?

Solution The axle is parallel to the y axis, with its center at x = b, z = 0. The
angular velocity vector Ω is accordingly in the y direction and can be denoted Ω =
Ω(t)ey . The velocity vS of any point xS of the surface is the vector cross product
of angular velocity with a vector from any point on the axle to xS , so one has3

vS = Ωey × (xS − bex) = Ω(ey × xS) + Ωbez. (3.1.3)

To the approximation implied by Eq. (2), only an expression of first order in Ω(t)

is desired, so the vector xS in (3) can be replaced by the vector aer . However, since
the nominal boundary surface So is a sphere of radius a centered at the origin, no is
er . Also, ey × er is perpendicular to er , so one obtains (ey × aer ) ·no = 0 and

vS ·no = Ωbez ·no = Ωb cos θ, (3.1.4)

3See, for example, S. H. Crandall, D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown,
Dynamics of Mechanical and Electromechanical Systems, McGraw-Hill, New York, 1968, pp. 61–
78. The general relation

d

dt
(xA − xB) = Ω × (xA − xB)

for any two points fixed in a rigid body with angular velocity Ω is sometimes referred to as Euler’s
velocity equation and stems from a 1776 paper by Euler.
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where θ is the polar angle in spherical coordinates. This result is the same as would
have been obtained if the sphere were translating without rotation back and forth
in the z direction with a velocity vC = Ωbez. The remaining motion, which is
described by the term Ω(ey × aer ) and which can be regarded as a rotation about
the origin, gives no contribution to the acoustic boundary condition (2) because it
describes a motion tangential to the surface.

The result (4) allows the boundary condition (2) to be taken as vr = Ωb cos θ
at r = a. Alternatively, since er · ∇p = ∂p/∂r , the radial component of the linear
version of Euler’s equation of motion would require ∂p/∂r to be −ρΩ̇b cos θ at
r = a.

A generalization to this example is a moving rigid sphere of radius a whose
center at time t is at xC(t), where |xC | 
 a; the appropriate boundary condition is
vr = ẋC · er at r = a.

3.1.3 Continuity of Normal Component of Displacement

Boundary condition (2) raises conceptual difficulties when one seeks to understand
phenomena in the near vicinity of the surface and moreover may be inappropriate4 if
there is an ambient flow. One way to resolve such difficulties is to regard the acoustic
variables as functions5 of xo, yo, zo, t rather than x, y, z, t , where xo, yo, zo denote
the Cartesian coordinates a fluid particle would have had if there were no surface
vibration or acoustic disturbance. Thus v′

x(xo, yo, zo, t) denotes the x component of
acoustic fluid velocity for the fluid particle ordinarily at xo, yo, zo at that same time.
Since v′

x(x, y, z, t)−v′
x(xo, yo, zo, t) and analogous differences are second order in

acoustic amplitudes, the xo, yo, zo description necessitates no change in the linear
equations of acoustics (with or without ambient flow). A vibrating impenetrable
surface is then one whose mathematical description does not change with t when
xo, yo, zo, t are the independent variables. With the xo, yo, zo, t description, all such
surfaces formally appear stationary.

If there is an ambient flow past the surface, the appropriate principle replacing
Eq. (2) is continuity of normal displacement. Consider a fluid particle P adjacent
to the surface whose nominal location is xo(P, t) and whose actual location is
x(xo(P, t), t) = xo(P, t) + Δξ(P, t). A second fluid particle Q adjacent to the
surface is selected such that x(xo(P, t), t) − xo(Q, t) is parallel to the unit normal
no(P, t) to the ambient surface So at xo(P, t); that is, at time t particle P is

4An example when Eq. (2) is inappropriate is propagation across an interface (vortex sheet)
between two fluids with different ambient fluid velocities. The proper boundary condition was
pointed out by H. S. Ribner, “Reflection, transmission, and amplification of sound by a moving
medium,” J. Acoust. Soc. Am. 29:435–441 (1957).
5C. Eckart, “Some transformations of the hydrodynamic equations,” Phys. Fluids 6:1037–1041
(1963); F. P. Bretherton and C. J. R. Garrett, “Wavetrains in inhomogeneous moving media,” Proc.
R. Soc. Lond. A302:529–554 (1969).
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on the same line extending out from the surface that passes through the nominal
location of Q. The displacement of P from the nominal location of particle Q is
Δξn(P, t)no(P, t), where Δξn(P, t) ≈ Δξn(Q, t) is the normal displacement of
the surface in the vicinity of particles P and Q at time t . Then, since x = xo +Δξ ,
one can write

xo(P, t) − xo(Q, t) + Δξ(xo(P, t), t) = Δξn(P, t)no(P, t). (3.1.5)

Because the particles P and Q are close to each other for a typical small-amplitude
acoustic disturbance, the difference xo(P, t) − xo(Q, t) is nearly tangential to So,
so [xo(P, t) − xo(Q, t)] · no is much smaller than Δξn or Δξ · no. Consequently,
to first order in acoustic amplitudes, Eq. (5) requires that the normal component of
displacement of a fluid particle at the surface be the same as that of the adjacent
element of surface. This condition, Δξ · no = Δξn, leads to Eq. (2) when there is
no ambient flow, as can be demonstrated by a differentiation with respect to time.

3.2 Plane-Wave Reflection at a Flat Rigid Surface

An application of Eq. (1) in the previous section is the reflection of a plane wave
from a flat rigid surface.6 The surface is taken as the y = 0 plane (see Fig. 3.3) with
the unit normal nS as ey . The incident plane wave, in accord with Eqs. (1.7.7) and
(1.7.8), can be written as

pI = f (t − c−1nI · x) vI = nI

ρc
pI . (3.2.1)

The incident wave’s direction of propagation (unit vector nI ) can be considered to
have no z component, so

nI = ex sin θI − ey cos θI , (3.2.2)

where θI , the angle of incidence, is the angle nI makes with the unit vector −ey
pointing into the surface.

If the incident wave is a solution (throughout the spatial region of interest) of the
linear acoustic equations (1.5.3) when the solid surface at y = 0 is not present, then
the solution with the surface present, written as pI +pR , vI +vR , must be such that

6S. D. Poisson, “Memoir on the theory of sound,” J. Ec. Polytech. 7:319–392 (April 1908),
especially p. 351. The discussion in the present text derives in major part from that of George
Green, “On the reflexion and refraction of sound,” Trans. Camb. Phil. Soc. 6:403–412 (1838),
reprinted in R. P. Lindsay (ed.), Acoustics: Historical and Philosophical Development, Dowden,
Hutchinson and Ross, Stroudsburg, Pa., 1972, pp. 231–241.
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Fig. 3.3 Reflection of a plane wave with angle of incidence θI at a flat rigid surface

the pair pR , vR are themselves a solution of the linear acoustic equations. Moreover,
the boundary condition v ·nS = 0 at y = 0 requires (vI + vR) · ey = 0 at y = 0.

In this particular case, the solution for the reflected wave is easily obtained from
the alternate boundary condition, ∂p/∂y = 0 at y = 0, which will be satisfied if

pR(x, y, z, t) = pI (x,−y, z, t). (3.2.3)

(This represents an example of the method of images.7) Here, for positive y, the
quantity pI (x,−y, z, t) is the mirror extension of the acoustic pressure in the
incident wave to negative values of y. If Eq. (3) is satisfied, the sum pI + pR will
be even in y and will therefore have zero y derivative at y = 0. Since pI (x, y, z, t)

is given by Eq. (1), pR becomes f (t − c−1nR · x), where nR differs from nI in
that its y (normal) component is of opposite sign; that is, nR is ex sin θI + ey cos θI .
That the angle between nR and ey is also θI is the law of mirrors: angle of incidence
equals angle of reflection.

7This dates back to Euler’s “On the propagation of sound” (1759, 1766) and to his “More detailed
enlightenment on the generation and propagation of sound and on the formation of echoes” (1765,
1767). The first paper is in Lindsay, Acoustics, pp. 136–154. The mathematical statement given in
the text can be recognized in the previously cited paper by Poisson.
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Because f (t − c−1nR · x) describes a plane wave propagating in the direction
nR , and because the fluid velocity in a plane traveling wave is v = np/ρc [see Eq.
(1.7.8)], one has

vR = nR

ρc
f (t − c−1nR · x) = nR

ρc
pR, (3.2.4)

which satisfies the boundary condition (vR + vI ) · ey = 0 at y = 0.
A consequence of the above solution is that, at y = 0, the acoustic pressure and

the tangential component of the fluid velocity for the total wave disturbance are both
exactly twice (or 10 log 4 ≈ 6 dB higher than) the corresponding quantities for the
incident wave alone. If the incident wave is of constant frequency, then

pI + pR = Re[Ae−iωt eikxx(e−ikyy + eikyy)]
= 2 cos(ky cos θI )f (t − c−1x sin θI ) (3.2.5)

so the incident and reflected waves cancel whenever ky cos θI is an odd multiple
of π/2. (Here we use the abbreviations k = ω/c, kx = k sin θI , ky = k cos θI .)
Similarly, if the incident wave is a stationary ergodic time series with spectral
density p2

f,I (f ), the resulting acoustic pressure due to the combined incident and
reflected waves will have a spectral density [see Eq. (2.9.4)]

p2
f (f ) = 4 cos2

(
2πf

c
y cos θI

)
p2
f,I (f ). (3.2.6)

Consequently, if p2
f,I (f ) is slowly varying over a frequency interval of width Δf =

c/(2y cos θI ), then an average of p2
f (f ) over an interval somewhat larger thanΔf

will be twice the corresponding average of p2
f,I (f ). This leads to the rule of thumb

that sound-pressure levels due to higher (and broad) frequency bands at points near
(but not on) a rigid surface are 10 log 2 ≈ 3 dB higher than would be obtained if
there were no reflection from the surface. The sound level exactly at the surface is 3
dB higher than at moderate distances from the surface.8

3.3 Specific Acoustic Impedance

The concept of specific acoustic impedance leads to a boundary condition describing
a surface, e.g., a porous wall, that is not necessarily impenetrable or rigid. To
introduce the concept, we assume a linear relation (doubling one causes the other to

8E. W. Kellogg, “Estimating Room Errors in Loudspeaker Tests,” J. Acoust. Soc. Am. 4:56–62
(1932).
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double) between the acoustic pressure p and the inward normal component (into the
surface and out of the fluid) v · nin of the fluid velocity along a nonmoving surface
So. If the surface vibrates under the influence of an acoustic disturbance, So should
represent the surface’s nominal location, as described in Sect. 3.1.

If the properties of the environment on the other side of the surface So are time-
dependent, the existence of such a linear relation implies that different frequency
components of p and v · nin = vin are uncoupled, so one need only to specify
the linear dependence for individual frequency components. For certain idealized
situations, e.g., the reflection of a plane wave from a nominally flat surface of
unlimited extent bounding a “wall” of uniform composition, the invariance of the
overall model under translation parallel to the surface requires, moreover, that the
ratio

(
p̂

v̂in

)
onS0

= Zs(ω) = ρcζ(ω) (3.3.1)

be independent of position along So. Here p̂ is the complex amplitude of a single-
frequency component of p (the latter being Re{p̂e−iωt }) at any given point on So,
while v̂in is the corresponding complex amplitude of the same frequency component
of vin at the same point. That a linear relation between p̂ and v̂in should be
expressible in the above form is in accord with the expectation that when p̂ vanishes,
v̂in should also, and conversely. The ratio Zs(ω) is referred to as the specific acoustic
impedance (or unit area acoustic impedance) of the surface So; the ratio ζ(ω) of
specific impedance Zs(ω) to the characteristic impedance Zc = ρc of the fluid is a
convenient dimensionless quantity that simplifies writing mathematical relations.
The real Rs and imaginary Xs parts of Zs are the specific acoustic resistance
and reactance, respectively. (In literature where the time dependence of oscillating
quantities is described by ejωt , where j2 = −1, the reactance is the negative of
what the definition adopted here would give.) Units of specific acoustic impedance
are Pa s/m or kg/ m2 s.

In mechanics, a ratio of a force amplitude to a velocity amplitude is referred to
as an impedance. The term, although having an evident mechanical connotation
(something impeding motion), was introduced first into electric-circuit theory
as a ratio of voltage amplitude to current amplitude by Heaviside9 in the late
nineteenth century as a generalization of the concept of electrical resistance for ac
applications. Impedance was introduced into acoustics10 by A. G. Webster in 1914

9“Let us call the ratio of the impressed force to the current in a line when electrostatic induction is
ignorable the Impedance of the line, from the verb impede. It seems as good a term as Resistance,
from resist,” O. Heaviside, “Electromagnetic induction and Its propagation,” Electrician (Lond.)
17: July 23, 1886, pp. 212–213, reprinted in Electrical Papers, vol. 2, Copley, Boston, 1925, p. 64.
Heaviside’s definition has since been extended to imply the ratio of complex voltage amplitude to
complex current amplitude.
10A. G. Webster, “Acoustical impedance and the theory of horns and of the phonograph,” Proc.
Natl. Acad. Sci. (USA) 5:275–282 (1919) (originally presented in 1914 at an American Physical
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and independently in a context similar to that of Eq. (1) by Kennelly and Kurokawa
in 1921. Since pressure is force per unit area, the ratio p̂/v̂in is an impedance per
unit area or, since “specific” implies “per unit amount” (area in this instance), it is a
specific impedance.11

3.3.1 Plane Traveling Waves and Specific Acoustic Impedance

An instance to which Eq. (1) applies is a plane traveling wave, with p = f (t − nI ·
x/c) and with v = nI p/ρc, propagating in a direction of incidence nI . If So is a
plane surface, and if a choice is made for the sense (toward which side) of nin, the
impedance Zs(ω) associated with So in this context is f/(nI ·ninf/ρc) or

Zs(ω) = ρc

nI ·nin
= ρc

cos θI
, (3.3.2)

where θI is the angle between the propagation direction nI and the inward normal
nin. Although Zs(ω) is independent of ω in this instance, it does depend on angle of
incidence, so one could not consider Zs to be an intrinsic property of the surface So.
Another implication of this relation is that ζ(ω) should be unity for a plane traveling
wave passing at normal incidence through So.

3.3.2 Plane-Wave Reflection at a Surface with Finite Specific
Impedance

The example (Sect. 3.2 and Fig. 3.3) of plane-wave reflection at a rigid surface can
be generalized to reflection from a surface with finite specific impedance Z (possibly
depending on the angle of incidence). (Here and in what follows the subscript s is
omitted for brevity.) One takes the incident wave as given by Eqs. (3.2.1), with nI as
given by Eq. (3.2.2). The total disturbance consists of incident and reflected plane
waves; the reflected wave pressure pR , however, is g(t − c−1nR · x), where the
function g(t) is not necessarily the same as the incident waveform f (t).

If one considers f (t) to be a superposition, e.g., Fourier series, of constant-
frequency components, any one such component is of the form Re{f̂ e−iωt }. The
pressure-amplitude reflection coefficient R(θI , ω) is defined such that the quantity
Re R(θI , ω)f̂ e−iωt is the corresponding component of g(t), so ĝ = R(θI , ω)f̂ .

Society Meeting); A. E. Kennelly and K. Kurokawa, “Acoustic impedance and its measurement,”
Proc. Am. Acad. Arts Sci. 61:3–37 (1921).
11However, what is called acoustic impedance without the adjective “specific” has units of specific
impedance divided by area rather than of specific impedance times area; see Sect. 7.2.
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Alternatively, if f (t) and g(t) are transient waveforms, R(θI , ω) is the ratio of the
Fourier transform of g(t) to that of f (t). In either event, we can write

p̂ = f̂ eikxx[e−ikyy + R(θI , ω)eikyy], (3.3.3a)

v̂y = cos θI
ρc

f̂ eikxx[−e−ikyy + R(θI , ω)eikyy], (3.3.3b)

where kx = (ω/c) sin θI , ky = (ω/c) cos θI .
The boundary condition at y = 0 that p̂/v̂in = Z(ω) leads in this case (v̂in =

−v̂y) to

Z(ω) cos θI
ρc

= 1 + R(θI , ω)

1 − R(θI , ω)
R(θI , ω) = ζ(ω) cos θI − 1

ζ(ω) cos θI + 1
. (3.3.4)

The magnitude of R is less than 1 if and only if the real part of Z is positive. Any
surface having this property absorbs acoustic energy. The time-averaged acoustic
power flowing into the surface per unit area of surface equals (for a single-frequency
component)

(pvin)av = 1
2 Re

{
p̂v̂∗

in

} = 1
2 |v̂in|2Re{Z(ω)} (3.3.5)

from Eq. (1) [and with the mathematical theorem of Eq. (1.8.9)]. The same quantity
[with Eqs. (3) and v̂in = −v̂y at y = 0] becomes

(pvin)av = 1

2

cos θI
ρc

|f̂ |2(1 − |R|2), (3.3.6)

since the real part of (1 + R)(1 − R∗) is 1 − |R|2. The surface absorbs energy if
Re{Z(ω)} > 0 or, equivalently, if |R| < 1. This is so for a passive surface (one
with no sound sources on its −y side) that produces a reflected wave only when an
incident wave is present.

The expression 1
2 |f̂ |2(cos θI )/ρc gives the energy carried per unit time by the

incident wave into the surface So (per unit area of So), while the same quantity
multiplied by |R|2 gives the energy carried away per unit time and area by the
reflected wave. Thus, Eq. (6) yields the following principle: On a time-averaged
basis, the acoustic energy incident equals the acoustic energy reflected plus the
acoustic energy absorbed. The fraction absorbed is the absorption coefficient
α(θI , ω); its value is here (pvin)av divided by 1

2 |f̂ |2(cos θI )/ρc or, equivalently,
is 1−ρE , where ρE = |R|2 (energy reflection coefficient) is the fraction of incident
energy that is reflected.

If the pressure-amplitude reflection coefficient R is 1, then the expression for
the reflected wave given above is such that v̂y = 0 at y = 0 and is the same
as for reflection from a rigid surface. Since R = 1 corresponds to |Z| → ∞,
the infinite specific-acoustic-impedance limit corresponds to a rigid surface. The
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limit Z → 0 gives R = −1 and requires p̂ = 0 on So regardless of the value
of v̂in, so, in this limit, the surface So is said to be a pressure-release surface.
[A circumstance discussed further below (Sect. 3.6) in which the latter idealization
may be appropriate is when a wave propagating in water reflects from a water–air
interface.]

3.3.3 Locally Reacting Surfaces

The pressure-amplitude reflection coefficient R varies with angle of incidence
for surfaces not idealizable as rigid or as pressure-release surfaces, but in some
cases, the specific acoustic impedance Z is very nearly independent of angle of
incidence.12 Such cases include, for example, surfaces of some typical thick and
thin porous materials, surfaces of typical porous materials with air backing, with
or without stiff impervious covering, with or without spaced supports. The premise
would be that, if Z(ω) is computed from Eq. (4), given θI and realistic R(θI , ω),
the result will be very nearly independent of θI for fixed frequency. The value of
Z determined from R(θI , ω) when θI = 0, termed the normal-incidence surface
impedance (or the specific acoustic impedance of the surface for normal-incidence
reflection), thus suffices to determine R(θI , ω) via Eq. (4) for any value of θI . A
consequence is that if Z is finite, R(θI , ω) approaches −1 (as for a pressure-release
surface) in the limit θI → π/2 (grazing incidence).

That Z should be independent of θI is consistent with the assumption that the
value of vin at a given point on So depends on the acoustic pressure p at only the
same point; i.e., pushing the surface at one point does not move it elsewhere. Thus,
one can conceive of a locally reacting surface on which Eq. (1), p̂ = Zv̂in, holds
at each and every point with fixed Z(ω) regardless of the nature of the acoustic
field outside the surface. The model allows the possibility of the surface’s being
curved and, moreover, of Z’s varying from point to point along the surface, e.g., a
concrete-block wall partially covered with patches of corkboard.

The locally reacting model approximately accounts for passive wall vibrations
caused by an external acoustic pressure. It can also approximately account for fluid
being forced into, or sucked out of, the pores in the wall (leading to changes in
normal fluid velocity on So) by pressure fluctuations outside the surface. It ignores
the effect pressure at one point may have on fluid velocity at another point on the
wall but has considerable advantage in simplicity over models that take explicit
account of the mechanical properties of the wall.

12For a review, see P. M. Morse and R. H. Bolt, “Sound waves in rooms,” Rev. Mod. Phys. 16:69–
150 (1944).
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Extensive measurements of the frequency dependence of the real and imaginary
parts of ζ(ω) = Z(ω)/ρc for commercial materials that might be idealized as
locally reacting have been given by Beranek,13 and an example from his paper is
reproduced here (see Fig. 3.4). (Typically, such materials and backing combinations
are stiffness-controlled at sufficiently low frequencies such that the specific acoustic
reactance X is large and positive for small ω.) The locally reacting model is also
commonly applied to ground surfaces14 (see Fig. 3.5).

3.3.4 Theory of the Impedance Tube

Values of Z(ω) are frequently deduced15 from the standing-wave pattern resulting
outside a surface when a plane wave is incident upon it. The incident and reflected
waves propagate along a cylindrical tube (impedance tube) with the sample surface
at one end (see Fig. 3.6). The mean squared amplitude of the total acoustic pressure,
in accord with Eq. (3a), varies with y as

(p2)av = 1
2 |f̂ |2|1 + Rei2ky |2

= 1
2 |f̂ |2[1 + |R|2 + 2|R| cos(2ky + δR)] (3.3.7)

where δR is the phase of R. Thus, (p2)av has a maximum of 1
2 |f̂ |2(1 + |R|)2

whenever 2ky+δR is an even multiple of π (so successive maxima are 1
2 wavelength

apart); it has its minimum value of 1
2 |f̂ |2(1 − |R|)2 whenever 2ky + δR is an odd

multiple of π (so successive minima are also 1
2 wavelength apart). It follows that the

ratio s2 of maximum to minimum values is given by

13L. L. Beranek, “Acoustic impedance of commercial materials and the performance of rectangular
rooms with one treated surface,” J. Acoust. Soc. Am. 12:14–23 (1940).
14T. F. W. Embleton, J. E. Piercy, and N. Olson, “Outdoor Sound Propagation over Ground of
Finite Impedance,” J. Acoust. Soc. Am., 59:267–277 (1976); J. E. Piercy, T. F. W. Embleton, and L.
C. Sutherland, “Review of noise propagation in the atmosphere,” ibid., 61:1403–1418 (1977); P. J.
Dickinson and P. E. Doak, “Measurements of the normal acoustic impedance of ground surfaces,.”
J. Sound Vib. 13:309–322 (1970).
15Detailed specifications for conducting such measurements are given in the ASTM standard C384-
58, Impedance and Absorption of Acoustical Materials by the Tube Method, American Society for
Testing and Materials, Philadelphia, 1958. The method dates back to J. Tuma (1902), F. Weisbach
(1910), Hawley Taylor (1913), and E. T. Paris (1927). The earlier references are cited in E. T.
Paris, “On the stationary wave method of measuring sound-absorption at normal incidence,” Proc.
Phys. Soc. (Lond.) 39:269–295 (1927). An early explicit use of the method to determine impedance
rather than absorption coefficient was in W. M. Hall, “An acoustic transmission line for impedance
measurement,” J. Acoust. Soc. Am. 11:140–146 (1939).
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Fig. 3.4 Specific acoustic impedance Z of small samples with a rigid wall backing. Plotted are
R/ρc and −X/ρc, where Z = R + iX. (a) Celotex C-4, 3.2 cm thickness. (b) Johns-Manville
Permacoustic, 2.5 cm thickness. (c) Johns-Manville Acoustex, 2.2 cm thickness [L. L. Beranek, J.
Acoust. Soc. Am., 12:14 (1940)]

s2 = (p2)av,max

(p2)av,min
= (1 + |R|)2

(1 − |R|)2 (3.3.8)

and that δR = −2kymax,1 + 2mπ = −2kymin,1 + (2n + 1)π (3.3.9)

Here ymax,1 is the smallest distance y from the surface at which (p2)av attains
a maximum; ymin,1 is the smallest distance at which it attains a minimum. The



3.3 Specific Acoustic Impedance 129

Fig. 3.5 Real and imaginary components of the specific acoustic impedance of different samples
of grass-covered ground from two sites in Ottawa. The agreement of the inclined-track data
(derived from reflection at two different angles of oblique incidence) with impedance-tube data
for normal incidence supports the locally reacting hypothesis [T. F. W. Embleton, J. E. Piercy, and
N. Olson, J. Acoust. Soc. Am., 59:272 (1976)]

quantities n and m are arbitrary integers whose values are immaterial insofar as
the determination of the real and imaginary parts of the reflection coefficient R is
concerned.

Once R = |R|eiδR has been determined from the above equations, the normal-
incidence surface impedance can be determined from Eq. (4) (with θI set to 0).
Thus, for example, if s2 = 4 and ymax,1 = λ/8, one has |R| = 1

3 and δR = −π/2,
so ζ(ω) is (1 − i/3)/(1 + i/3) or 0.8 − 0.6i.

The plane-wave absorption coefficient α (equal to 1−|R|2) is found from Eq. (8)
to be 4s/(s + 1)2. The same relations suffice to determine |R| and α when the
wave pattern results from partial reflection of an obliquely incident (θI not 0) plane
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Fig. 3.6 Theory of the impedance tube. The incident wave undergoes amplitude change and phase
shift when reflected by sample. The resulting interference and reinforcement of reflected and
incident waves causes (p2)av along the tube to have successive maxima and minima whose ratios
and locations determine Z

wave.16 In the determination of δR from Eqs. (9), however, k should be replaced by
k cos θI .

3.4 Radiation of Sound by a Vibrating Piston Within a Tube

Some key concepts associated with the generation of sound by vibrating bodies are
exemplified by the model17 of a piston (see Fig. 3.7) that fits snugly inside a hollow
rigid tube of cross-sectional area A filled with fluid; the piston oscillates back and
forth due to some external cause, making sound waves that propagate in the fluid.

16L. Cremer, “Determination of the degree of absorption in the case of oblique sound incidence
with the help of standing waves,” Elektr. Nachrichtentech. 10:302–315 (1933).
17This example was considered by S. D. Poisson, “Memoir on the movement of an elastic fluid
through a cylindrical tube, and on the theory of wind instruments,” Mem. Acad. Sci. Paris 2:305–
402 (1819). It is also discussed by Rayleigh, The Theory of Sound, vol. 2, Dover, 1945, secs.
255–259.



3.4 Radiation of Sound by a Vibrating Piston Within a Tube 131

Fig. 3.7 Vibrating piston at one end of a rigid-walled tube. The face of the piston at xp(t) oscillates
about x = 0

The +x face of the piston is flat and transverse to the (x) tube axis; the cross section
of the tube is independent of x, so the acoustic field in the tube is independent of the
other coordinates y and z. (We neglect viscosity and thermal conductivity.)

Inside the tube on the +x side of the piston, the acoustic field variables, satisfying
Eqs. (1.5.3), can be taken to be of the form (1.7.4) and (1.7.6) as a superposition of
left- and right-traveling plane waves, i.e.,

{
p/ρc

vx

}
= U(t − c−1x) ± W(t + c−1x), (3.4.1)

where the functions U and W remain to be determined. If the +x face of the piston
is oscillating with small amplitude about x = 0 so that its position is given by xp(t),
the (approximate) boundary condition (3.1.2) gives U(t) − W(t) for dxp/dt .

3.4.1 Causality

Other relations relevant to the determination of U and W come from considerations
of causality; e.g., the piston’s oscillations cause the sound field. If the piston does
not start to oscillate until t = 0, and if the tube is of length L, the expressions on
the right side of Eqs. (1) should be 0 if one has both t less than 0 and x between 0
and L, so U(τ) = 0 if τ < 0 and W(τ) = 0 if τ < L/c. If the far end of the tube is
passive, one expects, moreover (causality again), that no disturbance will originate
at that end until the wave generated by the piston reaches it. Since U(t − c−1x)

does not become nonzero at x = L until t = L/c, one accordingly does not expect
W(t + c−1x) to become nonzero until t + c−1x exceeds L/c + c−1L or 2L/c, so
W(τ) is 0 if τ < 2L/c.
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The analysis just given allows one to take

p

ρc
= vx = vp(t − c−1x) (3.4.2)

for values of x between 0 and L and for times t up to (2L − x)/c, that is, until the
echo from the far end of the tube first comes back to x. Here vp(t) = dxp/dt is
the velocity of the piston at time t , so vp(t − x/c) is the velocity of the piston at
a retarded time t − x/c which in x/c earlier than the time at which the acoustic
disturbance is currently being sensed at x.

Equations (2) will still describe the acoustic field in the tube at later times if
the echo from the far end is weak compared with the primary wave generated
by the piston. Attenuating mechanisms (discussed in Chap. 10 of the present text)
may cause the amplitude of the generated wave to decrease exponentially as e−αx

with increasing propagation distance x, where α is a positive frequency-dependent
quantity. If L is sufficiently large to ensure that e−αL 
 1 for all frequencies of
interest in the generated wave, the echo will be negligible. Moreover, if αλ/2π 
 1,
and if one limits one’s attention to (not large) values of x such that e−αx is not
appreciably different from 1, although e−2αL 
 1, Eqs. (2) may still give an
adequate description of the acoustic field, even for times larger than 2L/c. Thus,
the concept of an infinitely long tube, while an idealization, applies if there is a
small amount of attenuation in a long tube.

A common technique for anechoic (without echo) termination is to design the
tube and its lining so that the attenuation per unit length increases slowly (to avoid
partial reflection) but steadily from a small value near the source end to a large value
at the far end such that

exp

(
−2

∫ L

o

α dx

)

 1. (3.4.3)

The use of wedges of absorbing material on the walls of anechoic chambers18

(rooms without echoes) is based on a similar principle.

3.4.2 Tube with Rigid End: Resonance

If the attenuation within the tube is idealized as zero, and if the far end of the tube is
a rigid plane reflector, the incident wave of Eqs. (2) upon reflection at x = L gives
rise to a similar wave traveling in the −x direction; the pressure in this wave must
be ρcvp(t − (2L − x)/c) for the sum of the two pressure terms to be symmetric

18L. L. Beranek and H. P. Sleeper, Jr., “Design and construction of anechoic sound chambers,” J.
Acoust. Soc. Am. 18:140–150 (1946); W. Koidan, G. R. Hruska, and M. A. Pickett, “Wedge design
for National Bureau of Standards anechoic chamber,” ibid. 52:1071–1076 (1972).
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about x = L. [This is an application of the method of images; replacing L − x by
−(L− x) is the same as replacing x by 2L− x.] This reflected wave in turn reflects
at x = 0, giving rise to a wave with acoustic pressure ρcvp(t − (2L+ x)/c), so the
fluid-velocity contributions at x = 0 from the second and third terms cancel each
other. [The solution is such that the first term alone satisfies the boundary condition
at x = 0 of vx = vp(t), so the sum of all successive terms must give a contribution
to vx that vanishes at x = 0.] If one extends the reasoning just described,19 whereby
each reflected wave successively generates another reflected wave at the opposite
end of the tube, the net result is

vx = vp

(
t − x

c

)
− vp

(
t − 2L − x

c

)
+ vp

(
t − 2L + x

c

)

− vp

(
t − 4L − x

c

)
+ vp

(
t + 4L + x

c

)
− · · ·

(3.4.4)

so, with reference to Eqs. (1), one identifies

U
(
t − x

c

)
=

∞∑
n=0

vp

(
t − x

c
− 2nL

c

)
(3.4.5a)

W
(
t + x

c

)
=

∞∑
m=1

vp

(
t + x

c
− 2mL

c

)
(3.4.5b)

Note that the lower limits, n = 0 and m = 1, on the two sums are different;
n = 0 corresponds to the primary wave. The various terms in the above sums do
not become nonzero until t is sufficiently large for their arguments to be positive, so
there are only a finite number of nonzero terms in the sum for any finite value of t .

If the end at x = L is a pressure-release surface, instead of a rigid surface,
the same analysis applies except that additional factors of (−1)n and (−1)m

should multiply the terms of Eqs. (5a) and (5b). The pressure-release surface
is an approximate boundary condition for a narrow (diameter small compared
to wavelength) open-ended tube protruding into an unbounded space; a classic
application is the upper end of an organ pipe.20

19The application of the method images to account for multiple reflections of plane waves in tubes
is described by L. Euler in his “On the propagation of sound,” 1766; trans. in Lindsay, Acoustics,
pp. 136–154.
20Daniel Bernoulli, “Physical, mechanical, and analytical researches on sound and on the tones
of differently constructed organ pipes,” 1762; J. L. Lagrange, “New researches on the nature and
the propagation of sound,” 1762; L. Euler, “More detailed enlightenment on the generation and
propagation of sound and on the formation of echoes,” 1767. A synopsis of these papers is given
by C. A. Truesdell, “The theory of aerial sound, 1687–1788,” in Leonhardi Euleri Opera Omnia,
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Resonance arises when the successive echoes reinforce the pressure on the piston
face. Suppose the piston velocity is 0 up to t = 0 and thereafter is periodic with a
period equal to the round-trip time 2L/c. Then vp(t − 2nL/c) is equal to vp(t) if
n < ct/2L or is equal to 0 if n > ct/2L; so one has, from Eqs. (1) and (5),

(p)x=0 = ρc[1 + 2N(t)]vp(t), (3.4.6)

where N(t) is the largest integer less than ct/2L or, equivalently, the total number of
echoes returned to the piston within time t . For such periodic motion of the piston,
the pressure at x = 0 is always in phase with the velocity and moreover has an
amplitude increasing stepwise in time, so the acoustic power output pvxA of the
piston tends on the average to increase linearly with time. Thus, the acoustic energy
(equal to the time integral of the input power) stored in the tube by time t = 2L(N+
1)/c is

E = 2ρAL(v2
p)av

N∑
n=0

(1 + 2n). (3.4.7)

Since the indicated sum on n is (N + 1)2 or (ct/2L)2, the acoustic energy tends to
increase quadratically with time.21 Both the acoustic power output by the source and
the stored energy increase without bound unless some account is taken of dissipative
processes.

Because a function with period 2L/mc (with m a positive integer) automatically
repeats itself at intervals of 2L/c, the above analysis holds if the repetition period
of vp(t) is 2L/mc, so if vp(t) is a sinusoidal function of time, the frequencies fm
(in hertz) at which resonance will occur are fm = mc/2L for m = 1, 2, 3, . . .. The
lowest resonant frequency (corresponding to m = 1) is when L = λ/2. If the end
at x = L is a pressure-release surface (approximately the case for a narrow hollow
tube protruding into an open space), the resonance criterion is that (−1)nvp(t −
2nL/c) equal vp(t) for all n < ct/2L. This will be so if vp(t) is oscillating
sinusoidally at resonance frequencies fm = (m + 1

2 )(c/2L) for m = 0, 1, 2, 3, . . . .
This follows because sin[(2πfm)(t − 2nL/c)] is sin[2πfmt − (2m + 1)nπ ] or
(−1)(2m+1)n sin 2πfmt . This in turn reduces to (−1)n sin 2πfmt . The resonance
frequencies mc/2L for the tube with two rigid ends do not occur when one end
is a pressure-release surface since contributions to the pressure at the piston from
successive echoes cancel each other when the piston is driven at such frequencies.

ser. 2, vol. 13, Orell Füssli, Lausanne, 1955, pp. LI-LXIII. (The validity of this boundary condition
is discussed in Sect. 7.6.)
21This is analogous to the result for an undamped harmonic oscillator driven at its resonance
frequency, whereby the particular solution describing motion starting from rest has an amplitude
increasing linearly with time. See, for example, L. Meirovitch, Elements of Vibration Analysis,
McGraw-Hill, New York, 1975, pp. 45–46.
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3.4.3 Constant-Frequency Oscillations

Any damping mechanism attenuates transients, so that if a source is set into motion
with a periodic vibration, the acoustic field variables eventually oscillate with the
same repetition period. We demonstrate this for the example just discussed of an
oscillating piston in a tube. The velocity vp(t) is taken to be 0 for t < 0 and to be
Vo cosωt for t > 0, where the angular frequency ω is not necessarily an integral
multiple of πc/L.

If any weak damping mechanism is taken into account, one can expect the
solution given by Eqs. (1) and (5) to be qualitatively correct, except that terms
corresponding to very high order echoes may have suffered a large attenuation and
phase shift. For larger values of n, an appropriate replacement22 of terms such as
vp(t ± x/c − 2nL/c) in Eqs. (5) is e−βnvp(t ± x/c − 2nL/c + nΔφ) where β and
Δφ are small constants but βn and nΔφ are not necessarily small. The premise here
is that the net attenuation and phase shift suffered during successive round trips are
the same. With such a substitution, U(t − x/c) in Eq. (5a) becomes

Udamp(t, x) = Re

(
Voe

−iωt eikx
N∑

n=0

ψn

)
, (3.4.8)

where we use the abbreviation ψ = ei2kLe−βe−iΔφ and where N is the largest
integer less than (ct − x)/2L.

The sum over n in the above is (1 −ψN+1)/(1 −ψ), which is nearly 1/(1 −ψ)

in the limit e−βN 
 1 or, equivalently, when t � 2L/cβ. Also, unless kL is very
close to a multiple of π , the factor 1/(1 − ψ) for smaller values of β and Δφ is
essentially the same as would be obtained if β and Δφ were set to 0. Thus, in the
limit of large t , Udamp(t, x) reduces to

Vo Re
e−iωt eikx

1 − ei2kL
= Vo

2

sinω(t − x/c + L/c)

sin kL
. (3.4.9)

Similarly, the analogous version with damping included of the sum in Eq. (5b) has
a limit given by the above but with −x/c replaced by +x/c. Consequently, with the
aid of the trigonometric identity for sin(A + B), one has

{
p/ρc

vx

}
≈ Vo

sin cos
(ωt) (k(L − x))

cos sin

sin kL
(3.4.10)

22If the only attenuation mechanism were viscous drag at the tube walls, approximate values for
β and Δφ would be 2L(ωμ/8ρc2)1/2LP /A and its negative. Here LP is the perimeter of the tube
and μ the viscosity (see Sect. 10.5).
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for the asymptotic (steady-state) solution. The expression for vx reduces to
Vo cos(ωt) at x = 0 in accord with the boundary condition vx = vp(t) at x = 0.

The steady-state solution, while not appreciably affected in mathematical form
by the presence of damping, depends on the existence of damping for its eventual
asymptotic emergence as the dominant response to a periodic excitation.23 Since
p and vx are everywhere 90◦ out of phase in this asymptotic solution, the actual
acoustic power supplied to the tube by the oscillating piston, once the steady-state
field is realized, is small if the damping is weak.

Resonance is manifested by Eqs. (10) because p and vx become singular when
sin kL is 0. If damping is taken into account, the acoustic amplitudes at such
frequencies (where kL is a multiple of π ) will be large but not singular. A prediction
of the actual magnification can be made by carrying through the derivation leading
to Eq. (9) without approximating 1/(1 − ψ) by 1/(1 − ei2kL).

An implication of Eqs. (10) is that at any frequency near a resonance frequency
fm = mc/2L (where km = πm/L), p is P sin 2πf t cos(mπx/L) approximately,
where P is independent of x and t . This, however, for given P and with f = fm,
corresponds to a solution with constant frequency of the linear acoustic equations
that could exist within the tube if both ends were closed by rigid planes, so that
∂p/∂x = 0 at both x = 0 and x = L. This is accordingly a natural acoustic motion
of constant frequency, which in the absence of damping does not require a source
for its maintenance. Such natural constant-frequency disturbances are referred to
as modes and occur only for certain discrete frequencies (the fm = mc/2L in this
instance) termed natural frequencies. The analysis illustrates two general principles:
(1) the resonance frequencies are the same as the natural frequencies, and (2) the
spatial dependence of the acoustic field when driven at a frequency close to a
resonance frequency is nearly the same as that of the corresponding natural mode.

The resonance frequencies and associated mode shapes are found by assuming
e−iωt time dependence at the outset and then solving the eigenvalue problem posed
by the Helmholtz equation and the appropriate boundary conditions at x = 0 and
x = L. For example, if the end at x = 0 is rigid and that at x = L is a pressure-
release surface, one has

d2p̂

dx2 + k2p̂ = 0 (3.4.11a)

dp̂

dx
= 0 at x = 0 p̂ = 0 at x = L (3.4.11b)

The differential equation and the x = 0 boundary condition are satisfied if p̂(x) =
P cos kx, where P is any constant. Only for certain discrete values (eigenvalues) of
k can a nontrivial (p̂ not identically 0) solution be found that satisfies both boundary

23This assertion is commonly proved in texts on mechanical vibrations or electric-circuit theory for
a spring-mass-dashpot system or an RLC circuit. See, for example, J. P. Den Hartog, Mechanical
Vibrations, 4th ed., McGraw-Hill, New York, 1956, p. 54.



3.4 Radiation of Sound by a Vibrating Piston Within a Tube 137

conditions; the km are such that cos kmx = 0 at x = L, so kmL should be an
odd multiple of π/2. Since km = 2πfm/c, one accordingly concludes that fm =
(c/4L)(2m+1), where m is an integer. The mode shapes (eigenfunctions) are given
by Pm cos[(2m + 1)πx/2L]. There are m + 1 pressure nodes (including that at
x = L) representing values of x at which p̂(x) = 0 and m − 1 pressure antinodes
(including that at x = 0) at which dp̂/dx ≈ 0.

3.4.4 Tube with Impedance Boundary Condition at End

The steady-state acoustic field generated by a piston with velocity Vo cosωt can be
derived directly by taking U(t) = Re ae−iωt and W(t) = Re be−iωt in Eqs. (1) and
subsequently choosing the constants a and b such that the boundary conditions at
the ends of the tube are met. The derivation24 is carried through here with the end
at x = L characterized by a specific acoustic impedance Z. We write Eqs. (1) in the
form

{
p/ρc

vx

}
= Re [e−iωt (aeikx ± be−ikx)]. (3.4.12)

Then, since v̂x = Vo at x = 0 and since p̂/v̂x = Z at x = L, one has

a − b = Vo (Z − ρc)aeikL = (Z + ρc)be−ikL. (3.4.13)

Thus, with some algebra, it follows that

p̂ = ρcVo

Z cos k(L − x) − iρc sin k(L − x)

ρc cos kL − iZ sin kL
. (3.4.14)

Note that Re p̂e−iωt reduces to the expression in Eqs. (10) (for tube with rigid
end) in the limit of large |Z/ρc|. Also, the above expression is identical to that
appropriate to the normal-incidence (θI = 0) reflection of a plane wave from a
wall with impedance Z. One can obtain Eq. (14) from Eq. (3.3.3a) by replacing
the symbols θI , y, and v̂y by 0, L − x, and −v̂x and choosing the f̂ in (3.3.3a)
so that v̂x = Vo at y = L; that is, f̂ = aeikL is the complex amplitude of the
net incident wave on the far end (x = L) of the tube. The amplitude-reflection
coefficient R [given, according to Eq. (3.3.4), by (Z − ρc)/(Z + ρc)] is the same
as be−ikL/aeikL.

24E. T. Paris, “On resonance in pipes stopped with imperfect reflectors,” Phil. Mag. 4:907–
917(1927).
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3.4.5 The Q of a Resonance

The above solution exemplifies the behavior of an acoustic system driven near a
resonance frequency. For simplicity, we consider the case when the end at x = L

is “nearly rigid,” so |Z| � ρc; we accordingly anticipate resonant behavior near
any angular frequency ω0

n = nπc/L with n an integer. If both numerator and
denominator in Eq. (14) are divided by Z cos kL and terms of higher than first order
in either ρc/Z or ω−ω0

n are discarded in the denominator and terms of higher than
zero order are discarded in the numerator, the result (with some algebra) is

p̂ ≈
(

2Qn

k0
nL

)
ρcVo

[
cos k0

nx

1 − i2QnΔω/ω0
n

]
, (3.4.15)

with

Qn = k0
nL(R

2 + X2)

2ρcR
, Δω = ω − ω0

n + (ρc2/L)X

X2 + R2 . (3.4.16)

Here R and X are the real and imaginary parts of Z and are evaluated at ω0
n. The

approximate expression for v̂x is similar to that of Eq. (15), but ρcVo should be
replaced by Vo and cos k0

nx should be replaced by i sin k0
nx. Note that Eq. (15) is not

valid near points where cos k0
nx = 0 (nominal locations of pressure nodes), while

the equation for v̂x is not valid near points where sin k0
nx = 0 (nominal locations of

antinodes). Given the previously stated assumption that |Z| � ρc, both Qn/k
0
nL

and Qn are much larger than 1.
A principal implication of Eq. (15) is that for any fixed value of x (other than a

pressure node) and for fixed piston velocity amplitude Vo, one has, for variable but
small Δω (see Fig. 3.8),

(p2)av � (p2)av,max

1 + (2Qn Δω/ωn)2
, (3.4.17)

where (p2)av,max is the maximum mean squared pressure for frequencies in the
vicinity of ω0

n. The frequency at which the maximum is obtained is that at which
Δω = 0, that is, approximately at ω0

n. The above indicates that (p2)av drops to
one-half of its resonant value and the sound-pressure level drops by 3 dB when
|Δω| = ωn/2Qn or |Δf | = fn/2Qn. The quantity fn/Qn is accordingly the
frequency width Δf of the resonance peak measured between its half-power points,
i.e., where (p2)av = 1

2 (p
2)av,max. For such resonance peaks, a quality factor Q

can be defined25 as fn/Δf , resonance frequency divided by bandwidth between
half-power points. Thus, the Q in the example above is the Qn given by Eq. (16).

25The definitions given here are consistent with those given in IEEE Standard Dictionary of
Electrical and Electronics Terms, Wiley-Interscience, New York, 1972, p. 453.
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Fig. 3.8 Sketch of a
resonance peak in the
frequency response of a
system driven at constant
frequency. Plotted is (p2)av at
a typical point for frequencies
near the mth resonance
frequency fm. Peak drops to
one-half maximum value at
fm ± fm/2Qm, where Qm is
the quality factor for the
resonance

An alternate definition of the Q associated with a resonance is the energy
within the system divided by the average energy lost per radian when the system
is vibrating at a resonance frequency. In the steady state, the average energy loss per
unit time is the same as the average power Pav supplied by the source. A radian
corresponds to a time increment of 1/ω, so the energy loss per radian is Pav/ω.
Thus, if ωn is a resonant frequency, one should have

Qn = ωn

Eav

Pav
. (3.4.18)

We here show that Eq. (18) is consistent with Eq. (16) for the example discussed
in the preceding paragraphs. The average energy per unit volume is 1

4 |p̂|2/ρ c2 +
1
4ρ|v̂x |2, where p̂ is given by Eq. (15) with Δω = 0 and v̂x is given as described
in the discussion following Eq. (15). This yields (Qn/k

0
nL)

2 (ρV 2
o )AL for the

time-averaged acoustic energy Eav within the tube. The time-averaged power is
1
2 Re (p̂ v̂∗

x)A evaluated at any value of x. Although the approximate expression
(15) and its counterpart for v̂x indicate that p̂ and v̂x are 90◦ out of phase, this is
not exactly the case and Pav is not zero; it is only small. A good approximation for
Pav results from using v̂x = Vo at x = 0, so Pav is 1

2VoA times Re p̂ at x = 0, or
(Qn/k

0
nL)ρcV

2
o A, or ck0

nEav/Qn, where p̂ is taken from Eq. (15). Since ck0
n ≈ ωn,

Eq. (18) results.
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3.5 Sound Radiation by Traveling Flexural Waves

As a second example of plane-wave generation26 by a vibrating solid, we consider
a wall consisting of a large plate (idealized as infinite) whose right face nominally
is flush with the y = 0 plane but which is undergoing transverse vibrations (see
Fig. 3.9). Thus, a given point on the plate’s face has y coordinate η(x, z, t), which if

Fig. 3.9 Sound radiation by flexural wave moving along a wall with supersonic speed cW . Wall
moves in y direction with velocity vW (t − c−1

W x) and generates plane waves propagating at angle
θ . If the flexural-wave speed is subsonic, the disturbance (for constant-frequency excitation) dies
out exponentially with y

26J. Brillouin, “Problems of radiation in the acoustics of buildings,” Acustica 2:65–76 (1952).
The method of analysis dates back to Green, “On the reflexion and refraction of sound,” 1838.
The closely related problem of radiation by flexural waves, periodic along axis, on a transversely
oscillating cylinder of infinite length was analyzed by A. Kalähne, “The wave motion about a
transversely vibrating string in an unbounded fluid,” Ann. Phys. (4) 45:657–705 (1914).
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positive, represents the displacement of that portion of the plate to the right (toward
y > 0).

A given displacement field η(x, z, t) can be represented via a triple Fourier
transform as a superposition of traveling transverse waves, and since the acoustic
disturbance due to the overall vibration is a superposition of acoustic waves caused
by the individual transverse waves, it is sufficient (as an initial step for analysis)
to limit one’s attention to a single traveling wave. Thus, we consider the special
case when η is such that ∂η/∂t = vW (t − c−1

W x), where |vW | 
 c. Here the
wall (or plate) normal vibrational velocity vW (W being an abbreviation for wall) is
independent of z and depends on t and x only through the combination t − c−1

W x;
the function vW (t − c−1

W x) represents a transverse wave (flexural wave) moving in
the +x direction with the flexural-wave speed cW and without change of form. (If
the flexural wave is a natural wave motion of the plate, the only such wave moving
without change of form is one of constant frequency, but this restriction need not
be taken into account at present.) As described below, the nature of the acoustic
disturbance in the fluid depends critically on whether the flexural wave is moving at
supersonic (cW > c) or subsonic (cW < c) speed.

3.5.1 Sound Generated by Supersonic Flexural Waves

If cW > c, the steady-state solution of the linear acoustic equations satisfying the
boundary condition vy = vW (t − c−1

W x) at y = 0, corresponding to the notion
(causality again) that the sound is actually caused by the vibrating surface, and
neglecting reflections from distant walls or surfaces on the far +y side of the plate,
is a plane wave. To demonstrate this, we consider a plane traveling-wave solution
(propagating at any angle θ with the y axis) of the linear acoustic equations of
the form p = f (t − n · x/c), v = np/ρc. The z independence of the boundary
conditions suggests that n has no z component, so we set n = nxex + nyey , where
nx = sin θ and ny = cos θ are the x and y components of n. Then the boundary
condition vy = vW (t − c−1

W x) at y = 0 is satisfied by

c

nx
= c

sin θ
= cW f (t) = ρc

ny
vW (t). (3.5.1)

3.5.2 Trace-Velocity Matching Principle

If any function, such as f (t −n ·x/c) above, depends on t and x in the combination
t − v−1

tr x, where vtr is some constant, one says that vtr is the trace velocity
corresponding to the x direction. If a line of microphones or sensors were placed
parallel to the x axis so that each had the same y and z coordinates, the relation
between the signals received by the various sensors could be interpreted as if the
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Fig. 3.10 Plane-wave passage past linear array of microphones. Trace velocity vtr is distance d

between microphones divided by time lapse Δt for reception of given wave feature. The sketch
indicates that vtr = c/(cos θ)

disturbance were moving in the x direction with speed vtr (see Fig. 3.10). The actual
disturbance might in reality be moving at an angle with the x axis and, if it is a plane
wave, its speed in the direction of propagation will be less than vtr.

The trace-velocity matching principle27 states that, under steady-state circum-
stances, the trace velocity of effect equals the trace velocity of the cause. If a
disturbance has t and x dependence only in the combination t − v−1

tr x, and if
this causes other disturbances, they should also depend on t and x in the same
combination. This presumes that the governing equations are unchanged if one
changes the time origin and the spatial origin such that t → t +Δt , x → x + vtr Δt

for arbitrary Δt ; that is, the governing equations and boundary conditions must have
an invariance under time and x-direction translations. In the present example, this

27An early explicit stating of this is given by Rayleigh, The Theory of Sound, vol. 2, sec. 270. The
term “trace matching” is also used to denote the related phenomenon by which matching the trace
velocity of an incident wave with the propagation velocity of a free wave in a wall tends to reduce
the transmission loss of a wall (L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound,
Springer-Verlag, New York, 1973, p. 409).
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is guaranteed because the linear acoustic equations are the same regardless of the
choice of time and spatial origins and because the interface between the vibrating
solid and the fluid is nominally flat and parallel to the x axis. The cause (the wall
vibrations) has trace velocity cW along the x direction, so the trace velocity c/nx of
the effect (the radiated sound wave) must also be cW .

3.5.3 Outgoing Versus Incoming Waves

In the solution represented by Eq. (1), there are two possible choices for ny . Since
n is a unit vector, one has n2

x + n2
y = 1, and thus ny = ±[1 − (c/cW )2]1/2. The

plus sign, leading to a plane wave propagating obliquely away from the plate, is a
plausible choice since it agrees with the notion that a wave should propagate away
from rather than toward its source. There do exist,28 among other physical categories
of wave propagation, counterexamples to this notion, but here the choice of the plus
sign also leads to an Iy that is everywhere positive. Thus, if we want a solution in
which acoustic energy (as well as the wave itself) propagates away from the source,
ny > 0 is required. Two other methods of substantiating this choice may also be
mentioned. First, one can solve a modified version of the linear acoustic equations
in which a damping mechanism29 (causing internal loss of acoustic energy) is
introduced. It is sufficient to consider vW as a sinusoidal function of its argument and
to take the acoustic variables as being the real parts of complex spatially dependent
amplitudes times e−iωt . Then, although the source is not explicitly considered to
be bounded in duration and spatial extent (with the steady-state idealization of a
traveling flexural wave), the wave far from the plate should die out in amplitude with
large y. One discards a possible wave that grows with increasing distance as being
unphysical and then examines the resulting solution in the limit as the damping goes
to zero. This results in just the ny > 0 wave. A second method is to solve a transient
problem in which the plate is completely at rest at an early time to and then starts
(gradually growing in amplitude) after that time to vibrate so that ∂η/∂t is of the
form vW (t−c−1

W x). The wave field is required initially to be zero everywhere, and it
evolves gradually after the source has been turned on. At late times, the acoustic field
in the vicinity of the vibrating portions of the plate resembles the physically realistic
steady-state solution. The procedure just described can be formally carried through
by Fourier transform techniques; the asymptotic steady-state solution at finite y

(the transient radiates away) is the same as what results from the considerations
previously mentioned.

28For counterexamples, see S. H. Crandall, “Negative group velocities in continuous structures,” J.
Appl. Mech. 24:622–623 (1957); H. Lamb, “On group velocity,” Proc. Lond. Math. Soc. (2)1:473–
479 (1903–1904).
29J. W. S. Rayleigh, “On progressive waves,” Proc. Land. Math. Soc., 9:21–26 (1877); reprinted as
an appendix to vol. 1 of the Dover edition of The Theory of Sound; H. Lamb, Hydrodynamics, 6th
ed., 1932, Dover, New York, 1945, pp. 399, 413.
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The solution for acoustic waves generated by supersonic (cW > c) flexural waves
moving along a plate can be summarized as

p = ρcWvx = ρc

ny
vW (t − n · x/c) (3.5.2a)

vy = vW

(
t − n · x

c

)
nx = c

cW
ny =

[
1 −

(
c

cW

)2
]1/2

(3.5.2b)

The intensity in the acoustic field is pv, or p2n/ρc since the disturbance is a plane
traveling wave. With p as given above, one accordingly has

I = ρc

n2
y

[
vW

(
t − n · x

c

)]2
n. (3.5.3)

The energy radiated per unit time by the vibrating plate per unit area of its surface is
pvy = Iy , evaluated at y = 0, or (ρc/ny)v2

W , where vW is evaluated at t − c−1
W x. In

the limit cW → ∞, vW is independent of x, and the plate is moving back and forth
as a unit, so the solution reduces to that of the example discussed previously of a
piston in a long tube. However, when cW decreases to near the sound speed c in the
fluid, ny → 0 and p, I, and the radiated acoustic power per unit area become large.
The infinite limit cannot be realized because, among other reasons, the generation
of acoustic energy must result in a decrease of the vibrational energy in the plate.

3.5.4 Acoustic Disturbances Created by Subsonic Flexural
Waves

When cW < c (subsonic flexural wave), the plane-wave solution described above
is inapplicable because it would require ny to be imaginary, but the trace-velocity
matching principle still applies. If one limits oneself to flexural waves of constant
frequency (a building block for more general cases) such that vW (t − c−1

W x) is of
the form Vo cos(ωt −ωc−1

W x), the boundary condition at the plate is satisfied if one
sets

vy = Vo cos(ωt − ωc−1
W x)F (y), (3.5.4)

where F(y) is 1 at y = 0. This above expression, representing a Cartesian
component of v, should satisfy the wave equation and (since the latter is separable
in a Cartesian coordinate system) one finds that it does, provided F(y) satisfies the
ordinary differential equation

d2F

dy2 −
(ω
c

)2
β2F = 0; where β =

[(
c

cW

)2

− 1

]1/2

. (3.5.5)
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This equation has linearly independent solutions that grow or die out exponentially
with increasing y. Since the medium is here idealized as being unbounded on
the right (+y side), we discard the former as unphysical and consequently obtain
e−(ω/c)βy for F(y).

The acoustic pressure is found from expression (4) for vy , in conjunction with
the trace-velocity matching principle, and from the component of Euler’s equation
of motion. (We rule out any term not having the same y dependence as vy , since
such a term that satisfied the conditions just stated would not also satisfy the wave
equation.) The x component of v is similarly found from the expression for p, from
the trace-velocity matching principle, and from the x component of Euler’s equation
of motion. In this manner, one obtains a wave field of the form

p = ρcWvx = −ρcVoβ
−1 sin(ωt − ωc−1

W x)e−(ω/c)βy (3.5.6a)

vy = Vo cos(ωt − ωc−1
W x)e−(ω/c)βy (3.5.6b)

Such a wave disturbance of constant frequency, propagating in one direction but
decaying exponentially in another, is an inhomogeneous plane wave.30

The acoustic-energy implications of the above solution are

wav = 1
2ρV

2
o

(
c/cW

β

)2

e−2(ω/c)βy, (3.5.7a)

Ix,av = cWwav, Iy,av = 0, (3.5.7b)

where w is the acoustic energy per unit volume given by Eq. (1.11.3); the time
averages here are over an integral number of half periods. Here Iy,av is zero because
the y component of fluid velocity is 90◦ out of phase with the acoustic pressure, so
the time average of their product is zero. The acoustic energy in the fluid associated
with the presence of the flexural wave stays close to the plate, as evidenced by the
factor e−2(ω/c)βy , and moves as a unit parallel to the plate in the +x direction with
speed cW .

3.5.5 The Coincidence Frequency

The prediction that the flexural wave radiates sound only if cW > c applies to the
idealized case where the plate is of infinite extent and the flexural wave continues
indefinitely, but the model’s predictions have approximate validity when a plate
of finite size large in terms of flexural and acoustic wavelengths is vibrating. The

30L. M. Brekhovskikh, Waves in Layered Media, Academic, New York, 1960, pp. 4–6.
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enhanced radiation when cW is near c can be demonstrated31 by suspending a large
metal plate by strings and causing it to vibrate by means of an electromagnetic
shaker attached to the plate. If the shaker is oscillating at fixed frequency f = ω/2π ,
the vibration over the surface of the plate for higher frequencies can be considered
for the most part (except near the shaker and near the plate edges) as a superposition
of freely propagating plane flexural waves traveling in various directions, each with
speed (phase velocity) cW . The speed cW is proportional to ω1/2 for a thin plate, the
theoretical relation32 being

cW = cpl = K1/4ω1/2, K = Eh2

12ρS(1 − ν2)
, (3.5.8)

where E = Young’s modulus
h = plate thickness

ρS = mass in plate per unit volume
ν = Poisson’s ratio

For an aluminum (E = 72 × 109 Pa, ρS = 2.7 × 103 kg/m3 , ν = 0.34) plate of
0.5 cm thickness, for example, K is 63 N · m3/kg; thus, for a frequency of 1000
Hz (ω = 6283 rad/s) one has cW = 220 m/s. Each of the superimposed plane
flexural waves contributes independently to the radiated sound amplitudes in accord
with the linear nature of the boundary conditions. Consequently, at typical points
outside the plate, there should be a noticeable increase in the received sound when
the shaker frequency goes from somewhat below to somewhat above the coincidence
frequency33 at which cW = c. This coincidence frequency fc is c2/2πK1/2, that is,
of the order of 2.3 kHz for the 0.5-cm-thick aluminum-plate example just cited.
Providing the plate dimensions are large compared with c/fc (about 15 cm for the
example), the effect is quite observable. [One should design the demonstration so
that the averaged (over surface of plate) squared vibrational velocity caused by the
shaker does not vary substantially with frequency.]

31L. Wittig, “Random vibration of point driven strings and plates,” Ph.D. thesis, Department of
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass., 1971; S. H.
Crandall and L. Wittig, “Chladni patterns for random vibrations of a plate,” in G. Hermann and N.
Perrone (eds.), Dynamic Response of Structures, Pergamon, New York, 1971, pp. 55–72.
32L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound, Springer-Verlag, New York,
1973, pp. 95–101; Rayleigh, The Theory of Sound, vol. 1, secs. 214–217; Y. C. Fung, Foundations
of Solid Mechanics, Prentice-Hall, New York, 1965, pp. 456–463.
33The concept originated with L. Cremer, “Theory of the sound blockage of thin walls in the case
of oblique incidence,” Akust. Z. 7:81–104 (1942). The definition of coincidence frequency given in
the text is that of M. C. Junger and D. Feit, Sound, Structures, and Their Interaction, M.I.T. Press,
Cambridge, Mass., 1972, pp. 158–159.
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3.5.6 Specific Radiation Impedance

For a body vibrating at fixed frequency, the ratio of complex pressure amplitude p̂

to the outward component v̂out of the acoustic-fluid-velocity complex amplitude is
the local specific radiation impedance Zrad of the surface.34 Thus,

Zrad =
(

p̂

v̂out

)
on S0

where v̂out = v̂S ·nout, (3.5.9)

where vS is the surface velocity of the body, and nout is the unit normal to the
surface pointing into the fluid. In general, Zrad varies from point to point along the
surface and with frequency. It also depends on the environment of the body; e.g.,
the specific radiation impedance of the example of the vibrating piston in a tube,
discussed previously, depends on the impedance at the far end (x = L) and on the
length L of the tube. In addition, the specific radiation impedance at any given point
depends on the relative phasing and amplitudes of vibration at points all over the
vibrating body. In the example just discussed of sound generated by flexural waves
on a plate, one finds from Eqs. (2) and (6) that

Zrad =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρc

[
1 −

(
c

cw

)2
]−1/2

= ρc

cos θ
c < cW

−iρc

[(
c

cW

)2

− 1

]−1/2

= − iρc

β
c > cW

(3.5.10a)

(3.5.10b)

i.e., it depends critically on the flexural-wave speed and changes from purely
resistive (Zrad real) to purely reactive (Zrad imaginary) when the flexural-wave speed
drops below the sound speed in the fluid.

The concept of specific radiation impedance is useful in the prediction of the
effects of the surrounding fluid on the vibration of a solid.35 (This is of substantial
importance when a body is vibrating under water and of less importance when it is
vibrating in air.) In addition, it is useful in the analysis of the efficiency with which a
vibration can generate sound. If the outward component of the acoustic fluid velocity
is known along the surface, its complex amplitude v̂out and the radiation impedance
Zrad give a prediction of the time average of the acoustic power generated per unit
area of the solid’s surface:

34The term “radiation impedance” without the adjective “specific” is often used for the complex-
amplitude ratio of the net reaction force exerted by acoustic pressure on a radiating body to a
surface-averaged outward component of velocity. See, for example, P. M. Morse, Vibration and
Sound, McGraw-Hill, New York, 1948, p. 237; L. L. Beranek, Acoustics, McGraw-Hill, New York,
1954, pp. 116–128.
35See, for example, Junger and Feit, Sound, Structures, and Their Interaction, pp. 163–165; G.
Kurtze and R. H. Bolt, “On the interaction between plate bending waves and their radiation load,”
Acustica 9:238–242 (1959).
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(I ·nout)av = 1
2 |v̂out|2 ReZrad. (3.5.11)

The acoustic power radiated by the body is the area integral of this expression over
the ambient surface So of the vibrating body. [See Eq. (1.11.14).]

3.6 Reflection and Transmission at an Interface Between
Two Fluids

The concepts of trace velocity, specific radiation impedance, and the trace-velocity
matching principle apply to the example36 of a plane wave incident on an interface
between two fluids (see Fig. 3.11). The incident wave (henceforth indicated by

Fig. 3.11 Plane-wave reflection and refraction at an interface between two fluids. Refracted wave
(direction nII) is generated in fluid II if cI/(sin θI) > cII

36The discussion in the text is similar to that of Green, “On the reflexion and refraction of sound,”
1838. A treatment of sound reflection and refraction earlier than that of Green had been given by S.
D. Poisson, “Memoir on the movement of two superimposed elastic fluids,” Mem. Acad. Sci. Paris
10:317–404 (1831). Poisson dealt with the normal-incidence case earlier in his “Memoir on the
movement of an elastic fluid through a cylindrical tube.” The optical counterpart of the reflection-
refraction problem had been considered in terms of a mechanical model of light waves by Fresnel
in 1823.
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subscript I in place of I ) propagates through a medium (y < 0) with sound speed
c1 and ambient density ρ1 in the direction nI = ex sin θI + ey cos θI toward an
interface separating the first medium from a second medium (cII, ρII, with y > 0).
The interface nominally coincides with the y = 0 plane but oscillates and flexes
because of the acoustical disturbance. (The two fluids are presumed not to mix.)

The analysis in this and succeeding sections regarding the transmission and
reflection of plane waves at one or more parallel interfaces applies also when one or
more of the considered substances is an elastic solid, providing one limits one’s
attention to normal incidence (θI = 0), considers only longitudinal waves, and
replaces acoustic pressure p in the solid by −σyy , the negative of the normal stress
acting on surfaces perpendicular to the direction of propagation. The sound speed
in the solid is interpreted as cD , the dilatational elastic-wave speed; it and the shear-
wave speed cS are given by

cD =
[

E(1 − ν)

(1 + ν)(1 − 2ν)ρ

]1/2

cS =
[

E

2(1 + ν)ρ

]1/2

, (3.6.1)

where E = elastic modulus
ν = Poisson’s ratio
ρ = mass per unit volume

A brief list of values of cD, ρ, and other pertinent properties for common solid
materials is given in Table 3.1. The restriction to normal incidence is necessary
because a longitudinal wave striking an interface obliquely will also excite shear
(transverse) waves37 within a solid. The ensuing analysis, however, is written as
if both materials were ideal fluids and makes no a priori restriction to normal
incidence.

37Insofar as the reflected wave is concerned, the analysis in Sect. 3.3, leading to Eqs. (3.3.3) to
(3.3.6), is applicable for oblique plane-wave reflection from a solid. If the wave is incident from a
fluid onto a homogeneous isotropic elastic solid half space, the appropriate identification [replacing
Eq. (4)] for the specific acoustic impedance of the reflecting surface is

ZII = ρIIcD

⎧⎨
⎩

[1 − 2(cS/vtr)
2]2

[1 − (cD/vtr)2]1/2 + 4
cS

cD

(
cS

vtr

)2
[

1 −
(
cS

vtr

)2
]1/2

⎫⎬
⎭ ,

where each radical is understood to have a phase of π/2 when its argument is negative. An elastic
solid is such that c2

D > 2c2
S , so ZII is imaginary and |RI,II| = 1 if vtr < cS . There is a value of vtr

(the Rayleigh wave speed) somewhat less than cS for which ZII is identically zero and for which
RI,II = −1; but in cases when ρII � ρI, cD � cI, the range of incidence angles where |ZII| is
comparable or smaller than |ZI| is very small and typically |ZII| � |ZI|, so RI,II ≈ 1 and the
half space can be idealized as rigid. A derivation of the above is given by Brekhovskikh, Waves in
Layered Media, pp. 30–31. Brekhovskikh’s Z1 cos2 2γ1 +Zt sin2 2γ1 in his eq. (4.25) is the same
as our ZII with the identifications Z1 = ρIIcD/[1 − (cD/vtr)

2]1/2, Zt = ρIIcS/[1 − (cS/vtr)
2]1/2,

cos γ1 = [1 − (cS/vtr)
2]1/2, sin γ1 = cS/vtr.
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The trace velocity vtr of the incident wave along the x axis, i.e., along the y = 0
plane, is cI divided by the x component of nI, or cI/ sin θI. Whatever disturbance
is generated within the second fluid must have the same trace velocity. For the
reflected wave, this leads again to the law of mirrors (angle of incidence equals angle
of reflection), and the reflected wave is a plane wave propagating in the direction
ex sin θI − ey cos θI, that is, similar to that of nI except that the y component has
changed sign.

If the trace velocity is supersonic with respect to the second medium (vtr > cII),
the analysis above of the radiation of sound by a supersonic flexural wave traveling
along a plate [leading to Eqs. (3.5.2)] suggests that the disturbance in the second
fluid will be a plane wave propagating away from the interface. The propagation
direction (unit vector nII making angle θII with the y axis) of this transmitted wave
has a trace velocity in the x direction along the interface of cII/(sin θII). The trace-
velocity matching principle requires this be the same as the trace velocity of the
incident wave, so one has38 (Snell’s law)

c−1
I sin θI = c−1

II sin θII = 1

vtr
. (3.6.2)

This phenomenon, whereby propagation direction changes on passage into a
medium with different sound speed, is known as refraction.

Internal boundary conditions coupling the solutions of the wave equation in the
two fluids are the continuity of normal particle velocity and of total pressure at
the actual (deformed) interface. The former leads to the approximate requirement
that the normal component of displacement be continuous at the nominal interface
location or, in the absence of ambient flow, that vy be continuous at y = 0.
The requirement of pressure continuity assumes no mass transport across the
interface and neglects surface tension; under such circumstances it is the fluid-
dynamic counterpart of Newton’s third law. Since the ambient pressure is constant
(with the neglect of gravity), and since the acoustic pressure changes negligibly
over distances comparable to a particle displacement, the appropriate approximate
boundary condition is the continuity of acoustic pressure at the nominal interface
location.

[With gravity taken into account and with y denoting the vertical direction,
however, the requirement, that acoustic pressure be continuous at y = 0, must be

38The hypothesis that (sin θ1)/(sin θII) is independent of θI in the case of optical radiation
was advocated with supporting (although incorrect) mathematical reasoning by Descartes in his
Dioptics (Leyden, 1637), but it is believed that Descartes learned about this experimental fact from
a manuscript (no longer in existence) circulated c. 1621 by Willebrord Snell (1591–1626). The
earliest discovery of this law of sines was by Thomas Harriott (c. 1560–1621). [J. W. Shirley,
“Early experimental determination of Snell’s law,” Am. J. Phys. 19:507–508 (1951); W. B. Joyce
and A. Joyce, “Descartes, Newton, and Snell’s law,” J. Op. Soc. Am. 66:1–8 (1976).]
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modified39 to

p′(x, 0−, z, t) − ρIgη = p′(x, 0+, z, t) − ρIIgη, (3.6.3)

where η = Δξ · ey at interface = normal (y-direction) displacement of interface
g = acceleration due to gravity

p′(x, 0−, z, t) = acoustic pressure in fluid I extrapolated to y = 0

This results because the total pressure in, say, medium II at y = η is [po(η) +
p′(x, η, z, t)]II. Then, since η is small and (dp0/dy)II = −gρII (hydrostatic
relation), the total pressure is equal to approximately po(0) − gρIIη + p′

II, where
p′

II denotes the acoustic part of the pressure just above the interface in medium II.]
The disturbance in medium II is equivalent to what would be produced by a

traveling [with trace velocity c1/(sin θI)] flexural wave moving along the interface,
so if medium II is unbounded, the ratio p̂/v̂y at the interface (which is continuous
since p̂ and v̂y are continuous) is given by the radiation impedance of Eqs. (3.5.10)
with ρc replaced by ρIIcII and cW replaced by cI/(sin θI); that is, p̂/v̂y = ZII at
y = 0, where we use the abbreviation

ZII =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρIIcII

cos θII
if sin θI <

cI

cII

− iρIIcII

βII
if sin θI >

cI

cII

(3.6.4a)

(3.6.4b)

where

cos2 θII = −β2
II = 1 −

(
cII

c1

)2

sin2 θI. (3.6.5)

For the respective cases in Eqs. (4a) and (4b), cos θII and βII are understood to be
positive.

Since p̂/v̂y is continuous across the interface, ZII is also the specific acoustic
impedance at y = 0. The analysis given previously of plane-wave reflection from
a surface of fixed impedance is therefore applicable here. In particular, the acoustic
field variables in the region y < 0 are given by Eqs. (3.3.3) (providing one replaces
y and v̂y there by their negatives to take into account the difference between the
choices of coordinate systems). The pressure-amplitude reflection coefficient R is
identified from Eq. (3.3.4) as

RI,II = ZII − ZI

ZII + ZI
, (3.6.6)

39F. Press and D. G. Harkrider, “Propagation of acoustic-gravity waves in the Atmosphere,” J.
Geophys. Res. 67:3889–3908 (1962).
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where, by analogy to Eqs. (4), we define ZI = ρIcI/(cos θI). This reflection
coefficient has the significance that if

p̂I = f̂ ei(ω/cI)nI·x (3.6.7)

is the complex pressure amplitude of the incident wave, the corresponding quantity
for the reflected wave p̂R is Eq. (7) multiplied by RI,II with nI replaced by nR in
the exponent. The analogous expression for the complex pressure amplitude in the
second medium is of the form of a constant TI,II times Eq. (7) with nI/cI replaced
by nII/cII in the exponent if sin θI < cI/cII. For the other possibility, when sin θI >

cI/cII, the transmitted wave is of the form [see Eqs. (3.5.6)]

p̂T = TI,IIf̂ ei(ω/cI)(sin θI)xe−(ω/cII)βIIy. (3.6.8)

In either event, v̂y = p̂/ZII and v̂x = p̂/ρIIvtr throughout the second medium.
Also, the continuity of the pressure at the interface requires that the transmission
coefficient TI,II be 1 + RI,II or 2ZII/(ZII + ZI).

In the constant-frequency case, the energy per unit time and per unit area of
interface (averaged over an integral number of half cycles) carried in toward the
interface by the incident wave and carried out from the interface by the reflected
and transmitted waves can be identified, respectively, as

(
dP

dA

)
av,I

= 1
2 |f̂ |2/Z1

(
dP

dA

)
av,R

= |RI,II|2
(
dP

dA

)
av,I(

dP

dA

)
av,T

=
(
dP

dA

)
av,I

−
(
dP

dA

)
av,R

(3.6.9)

These follow from such considerations as those giving Eqs. (3.3.5) and (3.3.6); the
latter is in accord with the conservation of acoustic energy.

3.6.1 Water–Air Interfaces

A plane sound wave incident from a medium with a higher sound speed onto an
interface separating it from a medium with lower sound speed is reflected as if the
interface had a real specific acoustic impedance given by Eqs. (4a) and (5). If cII 

cI, it is a good approximation to replace cos θII in Eq. (4a) by 1, giving ZII � ρIIcII
independent of angle of incidence θI, so the surface is locally reacting. If, in addition,
ρIIcII 
 ρIcI, then, insofar as the prediction of the reflected wave is concerned, it
is also a good approximation to consider ZII as identically zero, so the surface is
idealized as a pressure-release surface.
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The above considerations apply in particular to underwater sound reflection
from the water’s surface (a water–air interface), since (cair/cwater)

2 � 0.05 and
(ρc)air/(ρc)water � 0.0003.

3.6.2 Transient Reflection

If the incident waveform is not of constant frequency but is described by f (t − nI ·
x/cI) for the acoustic pressure, then providing cI > cII or θI is less than the critical
angle sin−1(cI/cII), the reflected and transmitted waveforms are similar to that of
the incident waveform:

pR = RI,IIf

(
t − nR · x

cI

)
(3.6.10a)

pT = TI,IIf

(
t − nII · x

cII

)
(3.6.10b)

These follow from the inverse Fourier transforms of the previously described
expressions for p̂R and p̂T for the constant-frequency case when one recognizes,
for the circumstances just described, that the reflection and transmission coefficients
are real and frequency-independent. (Note that |RI,II| ≤ 1 but |TI,II| can be larger
than 1.)

However, if the second medium should have a sound speed greater than the first,
the reflected waveform will no longer be a constant times the incident waveform
when θI is greater than the critical angle, i.e., the θI giving a θII equal to π/2 from
Snell’s law, although one still has pR = g(t−nR ·x/cI), where the Fourier transform
of g(t) is related40 to that of f (t) by ĝ(ω) = RI,IIf̂ (ω) for positive real ω. In this
circumstance, Eqs. (4b) and (6) require that RI,II have a magnitude equal to 1 but
be complex, so it may be written (for ω > 0) as exp (−iφI,II) where

φI,II = 2 tan−1 ρ1c1/(cos θI)

ρIIcII/βII
(3.6.11)

is an angle between 0 and π . Since g(t) should be a real function, ĝ(−ω) equals
ĝ(ω)∗, and since f̂ (ω) also has the same property, RI,II for negative real ω should
be the complex conjugate of that for ω > 0. The Fourier integral relations (2.8.1)
and (2.8.2) accordingly give

g(t) = (cosφI,II)f (t) + (sinφI,II)fH (t) (3.6.12)

40A. B. Arons and D. R. Yennie, “Phase distortion of acoustic pulses obliquely reflected from a
medium of higher sound velocity,” J. Acoust. Soc. Am.d 22:231–237 (1950); B. F. Cron and A. H.
Nuttall, “Phase distortion of a pulse caused by bottom reflection,” ibid. 37:486–492 (1965).
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where

fH (t) = − 1

π
Re

(∫ ∞

o

e−iωt i

∫ ∞

−∞
eiωt

′
f (t ′) dt ′ dω

)

The order of integration in the above can be interchanged after insertion of a factor
e−ωτ [similar to what is done in Eq. (2.8.5)], with the understanding that one should
eventually take the limit as τ → 0. In this manner, one finds

fH (t) = lim
τ→0

[
1

π

∫ ∞

−∞
f (t ′) t ′ − t

τ 2 + (t ′ − t)2
dt ′
]
.

If τ is extremely small and f (t ′) is continuous, then, since the fractional quantity is
odd in t ′ − t , the contribution to the integral over t ′ from t − ε to t + ε is negligible
(ε being taken as, say, some large but fixed integer times τ ). Outside this range of t ′,
the fractional quantity is very nearly 1/(t ′ − t), so the limit above is equivalent to

fH (t) = 1

π
Pr
∫ ∞

−∞

[
f (t ′)
t ′ − t

]
dt ′, (3.6.13)

where Pr (denoting principal value) is an abbreviation for what is implied by the
above discussion; i.e., one performs the integration omitting an interval of width 2ε
centered at the singularity and takes the limit as ε → 0. In the mathematical-physics
literature fH (t) is called the Hilbert transform41 of f (t). Three examples are shown
in Fig. 3.12.

An apparent paradox presented by Eqs. (12) and (13) is that fH (t) and therefore
g(t) may be nonzero at times arbitrarily long before f (t) first becomes nonzero.
Thus, a person in the first medium hears a portion (precursor) of the echo before
he hears the direct wave. This, however, is not a violation of causality, since the
solution just described is for a steady-state circumstance for which the incident wave
has been impinging on the interface (although, at large negative values of x) at
all times in the remote past. Since the solution described requires, in particular,
that cII be greater than cI, it is possible for acoustic energy to arrive earlier at the
listener location via a faster path that takes advantage of the higher sound speed in
the second medium.

41P. M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1, McGraw-Hill, New York,
1953, p. 372.
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Fig. 3.12 Three simple pulse shapes and their Hilbert transforms [D. Sachs and A. Silbiger, J.
Acoust. Soc. Am., 49:835 (1971)]

3.7 Multilayer Transmission and Reflection

The foregoing analysis can be extended to plane-wave transmission through any
number of fluid layers of different density and sound speed42 (see Fig. 3.13).
The trace-velocity matching principle applies for each layer, so p̂ throughout has
a common x-dependent factor of exp[i(ω/cI)(sin θI)x]. In any given layer, the
disturbance is a superposition of two obliquely propagating plane waves if c <

cI/(sin θI) or of exponentially growing and decaying (with y) inhomogeneous plane
waves if c > cI/(sin θI). The internal boundary conditions, continuity of p̂ and v̂y ,
allow one to define a y-dependent specific impedance Zlocal(y) as the local ratio of
p̂ to v̂y , which is continuous across interfaces. Within each layer, one can define an
intrinsic specific impedance (ZI, ZII for the first and second layers, etc.) such that,
say, ZII is given by Eqs. (3.6.4) with ZIII, ZIV defined analogously.

42Rayleigh, The Theory of Sound, vol. 2, sec. 271; R. W. Boyle and W. F. Rawlinson, “Passage of
sound through contiguous media,” Trans. R. Soc. Can. (3)22:55–68 (1928).
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Fig. 3.13 Plane-wave transmission through a sequence of nominally parallel fluid layers with
differing densities and sound speeds; yN−1,N gives the y coordinate of the interface between the
(N − 1)th and N th layers

A technique43 for analyzing such multilayer transmission-reflection problems is
based on an intermediate determination of Zlocal at the interface yI,II between the
first and second layers. Once Zlocal(yI,II) is determined, the reflection coefficient is
given [by analogy with Eq. (3.6.6)] by

R = Zlocal(yI,II) − ZI

Zlocal(yI,II) + ZI
, (3.7.1)

and the fractions of incident energy reflected and transmitted are |R|2 and 1 −
|R|2. [The latter follows from Eq. (3.3.6) and from the relation ∇ · Iav = 0. Since
translational symmetry transverse to the y axis requires ∂Ix,av/∂x = 0, the relation
∇·Iav = 0 implies that (pvy)av is independent of y. The average energy transmitted
past the I,II interface per unit time and area transverse to the y axis equals that
transmitted into the last layer.]

To determine Zlocal(yI,II), one begins with the “known” local specific impedance
at the last (largest y) interface yN−1,N . This may be some specified specific
acoustic impedance of a surface, or if the last layer is idealized as unbounded,
it is the intrinsic specific impedance ZN . To find the local specific impedance
at the interface between the (N − 2)th and (N − 1)th layers, one makes use

43Brekhovskikh, Waves in Layered Media, pp. 56–61.
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of an impedance-translation theorem (proved below), which states that, within
any homogeneous layer, with intrinsic specific impedance Zint, the local specific
impedance Zlocal(y − L) at y − L is related to that at y by

Zlocal(y − L) = Zint
Zlocal(y) cosKL − iZint sinKL

Zint cosKL − iZlocal(y) sinKL
, (3.7.2)

which can be considered a generalization of Eq. (3.4.14). Here we abbreviate

K = ωρ

Zint
= ω

c

{
cos θ c > cI/(sin θI)

iβ c < cI/(sin θI)
(3.7.3)

where ρ and c are the ambient density and sound speed of the layer and cos θ and β

are determined as in Eqs. (3.6.5). (Recall that for any φ, cos iφ and sin iφ are cosh φ

and i sinhφ, respectively.)
To prove this impedance-translation theorem, note that, within such a layer, the

general solution of the linear acoustic equations, given e−iωt time dependence and
ei(ω/vtr)x dependence [with vtr = c1/(sin θ1)] on coordinate x, is

{
p̂

Zintv̂y

}
= ei(ω/vtr)x(AeiKy ± Be−iKy),

where A and B are constants. The quantity p̂/v̂y at y or y − L gives Zlocal(y) or
Zlocal(y − L), respectively. Solution of the first such equation for Be−iKy/AeiKy

and substitution of that ratio into the second equation yields Eq. (2).
The impedance-translation equation, plus the continuity of Zlocal across layer

interfaces, allows one to successively work back, layer by layer, from Zint(yN−1,N )

to Zint(yI,II). As an illustration, consider three layers, one intervening layer of thick-
ness L sandwiched between two semi-infinite half spaces (cI, ρI) and (cIII, ρIII).
As long as cIII < cI/ sin θI), there will be a transmitted plane wave in region III
propagating (in accord with the trace-velocity matching principle and Snell’s law)
at an angle θIII with respect to the y axis, where (sin θIII)/cIII is (sin θI)/cI. The local
specific impedance at the +y side of layer II (and throughout layer III) is ZIII. The
local specific impedance at the (I,II) interface results from Eq. (2) with Zlocal(y) and
Zint identified as ZIII and ZII, respectively, so the reflection coefficient becomes

R = (ZIIZIII − ZIZII) cosKIIL − i(Z2
II − ZIZIII) sinKIIL

(ZIIZIII + ZIZII) cosKIIL − i(Z2
II + ZIZIII) sinKIIL

. (3.7.4)

If ZII is real (cII < cI/ sin θI), this reflection coefficient [as well as the local specific
impedance Zlocal(yI,II)] is periodic in layer thickness L with a repetition length
π/KII. It is also periodic in frequency.

One of the implications of Eq. (4) is that |R| = 1 whenever ZIII is purely
imaginary [cIII > c1/(sin θ1)], regardless of the properties of the intervening layer.
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In general, |R| = 1 if the sound speed in the last layer exceeds the trace velocity,
for any number of intervening layers, provided the last layer is idealized as a half
space (unbounded at large y). This must be so because p̂ and v̂y are 90◦ out of phase
in the last layer; the time average of power transmitted is zero.

Another implication of the above expression is that R may be identically zero
under circumstances other than the trivial one where ZI = ZII = ZIII. For example,
if the angle of incidence and the layer properties are such that Z2

II = ZIZIII, then R
will be zero if KIIL is an odd multiple of π/2 (such that its cosine is zero). A special
case would be θI = 0 (in which case the analysis also applies to longitudinal elastic-
wave transmission through solid slabs). Then, if one wants perfect transmission
without reflection into medium III from a source in medium I, a transmission plate44

made of buffer material is placed between the two substances; this buffer material
should have (or approximate) the property

ρIIcII = (ρIcIρIIIcIII)
1/2. (3.7.5)

The thickness of the layer would be selected so that (ω/cII)L = π/2 or, for fixed
frequency f = ω/2π , so that L = 1

4 (cII/f ) is a quarter of the sound wavelength at
that frequency in the buffer material.

If the properties of medium III are the same as those of medium I (so one has
a layer of foreign material in an otherwise homogeneous medium), Eq. (4) reduces
(with ZIII = ZI and after dividing numerator and denominator by ZIIZI) to

R = −i(r − r−1) sinKIIL

2 cosKIIL − i(r + r−1) sinKIIL
, (3.7.6)

with the abbreviation r = ZII/ZI. The fraction of incident energy transmitted is
1 −|R|2, and since both the incident wave and the transmitted wave (on the far side
of the intervening layer) are plane waves propagating in the same direction through
the same medium, the mean squared pressures have the ratio 1 − |R|2. After some
algebra one therefore obtains

(p2
T )av

(p2
I )av

= 1

1 + 1
4 (r − r−1)2 sin2 KIIL

. (3.7.7)

Because (r − r−1) sinKIIL is real regardless of the sign of Z2
II, the above relation

holds (recall that i4 = 1) also when ZII is imaginary. Note that (p2
T )av/(p

2
I )av ≤ 1

and that it equals 1 (perfect transmission) when KIIL is a multiple of π .

44P. J. Ernst, “Ultrasonic lenses and transmission plates,” J. Sci. Instrum. 22:238–243 (1945).



160 3 Reflection, Transmission, and Excitation of Plane Waves

3.8 Transmission Through Thin Solid Slabs, Plates,
and Blankets

3.8.1 Transmission Loss

For circumstances, like those described in the last part of the preceding section,
when a sound wave is incident on an intervening slab of material (not necessarily
a fluid layer), one defines a sound-power transmission coefficient τ as the fraction
of the incident sound power transmitted to the far side of the slab. If the incident
wave is a plane wave, and if the slab (or partition) has properties unchanging
with displacements parallel to its faces, the transmitted wave will be a plane wave
propagating in the same direction as the incident wave. One can accordingly argue,
as in the discussion preceding Eq. (3.7.7), that the fraction of incident power
transmitted is the same as the quotient of the mean squares of transmitted and inci-
dent acoustic pressures. Consequently, the plane-wave sound-power transmission
coefficient τ(θI, ω) (corresponding to angle of incidence θI and angular frequency
ω) for such circumstances becomes (p2

T )av/(p
2
I )av. The transmission loss RTL (in

decibels) is defined in general in terms of the transmitted fraction τ of incident
power as 10 log (1/τ) and thus, for the plane-wave constant-frequency case, the
plane-wave transmission loss equals

RTL = Lp,I − Lp,T , (3.8.1)

where Lp,I and Lp,T are the sound-pressure levels for the incident and transmitted
plane waves.

3.8.2 Slab Specific Impedance

The analysis of transmission loss simplifies for the case (see Fig. 3.14) of an
intervening slab, i.e., a layer of different material, whose properties are such that
vfront = vback, where vfront denotes the normal component of the fluid velocity
(in the direction from front toward back) at the front of the slab and vback denotes
the analogous quantity on the opposite side of the slab. (Which side one wishes to
designate as the front is arbitrary, but in a subsequent discussion we take the side
from which the incident wave is coming as the front side.) The assumption that the
two velocities are nearly equal is appropriate if the time for an acoustic disturbance
to propagate across the slab is substantially less than one-quarter of a wave period
and if the ratio of the characteristic impedance of the material in the slab to the
local specific acoustic impedance at the back of the slab is large compared to 2π
times the ratio of the thickness of the slab to a wavelength. For solid walls of typical
thicknesses, with air on both sides, such is invariably the case at audible frequencies.



3.8 Transmission Through Thin Solid Slabs, Plates, and Blankets 161

Fig. 3.14 Sound transmission through a thin slab. Here vfront is the fluid-velocity component
toward the slab at a small distance in front of slab. The model assumes that vfront = vback, but
corresponding pressures are not necessarily equal

If the slab is porous, so that there is a net flow of fluid through it, the transverse
velocity of the solid material in the slab may not be the same as vfront or vback, but
vfront = vback nevertheless may be a good approximation if the pore volume per unit
slab area is substantially less than 1

4 wavelength. (This follows from conservation-
of-mass considerations and from the assumption that density fluctuations of fluid
within the pores are not markedly different from those on either side of the slab. If
there is flow through the pores, then, on a microscopic scale, the fluid velocity just at
the surface will vary substantially over distances comparable to pore sizes and pore
spacings, but such variations smooth out for regions only slightly removed from the
slab surface. The quantities vfront and vback can be considered as local averages over
small areas parallel to the slab faces.)

Given this equivalence of fluid velocities on opposite sides of the slab, one can
define a slab specific impedance Zsl(vtr, ω) such that

p̂front − p̂back = Zsl(vtr, ω)v̂front = Zsl(vtr, ω)v̂back. (3.8.2)

Here p̂front and p̂back represent the complex acoustic-pressure amplitudes at the front
and back sides of the slab; vtr is the common, parallel to slab face, trace velocity of
the acoustic disturbances on the two sides of the slab, each appropriate complex
acoustic amplitude having the common factor exp(i ωx/vtr) for its x dependence.
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An additional assumption implied in this definition is that the slab’s dynamics are
governed by linear equations.

Dividing both sides of Eq. (2) by v̂front = v̂back and making use of the definition
of local specific impedance as ratio of p̂ to v̂y yields

Zlocal(yfront) = Zlocal(yback) + Zsl. (3.8.3)

(This is analogous to the result that the electric impedance of two circuit elements
in series is the sum of the impedances of the two elements.)

If the incident acoustic wave impinges on the slab from the front side, the
pressure-amplitude reflection coefficient R is given by Eq. (3.7.1) with yI,II
identified as yfront; also, Eq. (3.3.3b) requires that v̂front be (p̂1/Z1)(1 − R). The
relation (3) therefore yields

v̂front = 2 p̂I

2ZI + Zsl
. (3.8.4)

Here p̂I denotes the complex amplitude of the incident wave’s acoustic pressure at
the front of the slab; ZI is pc/(cos θI).

Since pressure and the y component of fluid velocity on the back side of the slab
are related in the same manner as for a plane wave propagating at angle θI with
they axis, at the back side of the slab one has p̂T = ZIv̂back. Thus, Eq. (4) leads
to 2Z1/(2ZI + Zsl) for the pressure-amplitude transmission coefficient. The square
of the magnitude of this is the plane-wave sound-power transmission coefficient, so
the transmission loss, from Eq. (1), becomes

RTL = 10 log

(∣∣∣∣1 + 1

2

Zs1

ρc
cos θI

∣∣∣∣
2
)
, (3.8.5)

with the insertion of (cos θI)/ρc for 1/ZI.
The energy theorem for the circumstances just described can be derived with

appropriate identifications from Eqs. (3.3.5) and (3.3.6), i.e.,

(
dP

dA

)
av,T

=
(
dP

dA

)
av,I

−
(
dP

dA

)
av,R

−
(
dP

dA

)
av,d

, (3.8.6)

where
(
dP

dA

)
av,T

= 1
2 |v̂front|2 Re {Zlocal(yback}) (3.8.7a)

(
dP

dA

)
av,d

= 1
2 |v̂front|2 ReZsl (3.8.7b)
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represent the power transmitted per unit face area and the rate at which energy is
dissipated per unit area within the slab. The latter follows because the average rate
at which work is done on the slab is 1

2 Re [(p̂front − p̂back)v̂
∗
front]. If Zsl is purely

imaginary, there is no energy dissipation and Eq. (6) reverts to a strict conservation-
of-energy statement.

3.8.3 Oblique-Incidence Mass Law

A simple model45 of a slab or a plate useful in the discussion and interpretation
of acoustic transmission phenomena is the perfectly limp plate, whose specific
impedance comes solely from the inertia of its mass. The model is such that, if
mpl is the plate mass per unit area, then, from Newton’s second law,

mpl = ∂vpl

∂t
= pfront − pback. (3.8.8)

Also, given that the plate is not porous, the boundary condition (3.1.2) requires
that v̂pl = v̂front = v̂back, so from Eq. (2) and the prescription ∂/∂t → −iω one
identifies Zsl = −iωmpl. The transmission loss of Eq. (5) accordingly becomes
(limp-wall mass-law transmission loss)46

RTL = 10 log

[
1 +

(
ωmpl

2ρc

)2

cos2 θI

]
, (3.8.9)

where we recognize 2ρc/ω as the mass per unit area of a slab of thickness λ/π

filled with fluid of density ρ.
For a slab of solid material in air for frequencies in the audible range it is

invariably true that 2πmpl/ρλ � 1. [For example, for a 1
2 -cm-thick aluminum plate

and a frequency of 340 Hz, one has mpl ≈ 13 kg/m2 and λ ≈ 1 m, and (with ρ = 1.2
kg/m3) the ratio 2πmpl/ρλ is of the order of 70.] Given this assertion and providing
θI is not close to grazing incidence (so cos θI is not too small), the 1 in the argument
of the logarithm in Eq. (9) is negligible. In this limit, doubling the plate mass mpl or
frequency f increases RTL by 10 log 4 ≈ 6 dB.

The oblique-incidence mass law also follows from the expression (3.7.7) for the
sound-transmission coefficient of an intervening fluid layer in the limit |KIIL| 
 1
and |ZII| � |ZI|, (ρIIcII � ρIcI). Then one can neglect r−1 in the expression
r − r−1 and approximate sin KIIL by KIIL. Since rKIIL is (ZII/ZI)(ωρII/ZII)L,

45L. Cremer, “Theory of the sound blockage of thin walls in the case of oblique incidence,” Akust.
Z. 7:81–104 (1942).
46I. L. Ver and C. I. Holmer, “Interaction of sound waves with solid structures,” in L. L. Beranek
(ed.), Noise and Vibration Control, McGraw-Hill, New York, 1971, pp. 270–361.
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which in turn is ω(ρIIL/ρIcI) cos θI, while ρIIL = mpl is the slab mass per unit
area, the quantity 10 times the logarithm, base 10, of the right side of Eq. (3.7.7) in
the limit described is the same as the RTL of Eq. (9) above.

3.8.4 Transmission Through Euler–Bernoulli Plates

The spring-like resistance of a thin plate to bending can be approximately taken into
consideration by replacing Eq. (8) by the Euler–Bernoulli plate equation47

mpl
∂2ξpl

∂t2 = pfront − pback − Bpl

(
∂2

∂x2 + ∂2

∂z2

)2

ξpl, (3.8.10)

where ξpl is the normal displacement of the plate (positive if in y direction), so
vpl = ∂ξpl/∂t . The quantity Bpl is the plate bending modulus (proportionality
factor between torque per unit length and curvature for cylindrical bending),
given, according to the theory of elasticity, for a homogeneous isotropic plate by
Eh3[12(1 − ν2)]. Here E is elastic modulus, h is plate thickness, and ν is Poisson’s
ratio.

For plate vibrations excited by sound waves of angular frequency ω propagating
without dependence on z and with a trace velocity vtr along the x axis, the
prescription ∂/∂t → −iω, ∂/∂x → iω/vtr, ∂/∂z → 0 converts Eq. (10) into
an algebraic equation relating complex amplitudes. Consequently, the slab specific
impedance is identified, with reference to Eq. (2), as

Zsl = −iωmpl

[
1 −

(
cpl

vtr

)4
]
, (3.8.11)

47So called because it is based on the same general principles as the Euler–Bernoulli model of a
beam, which dates back to papers published by James Bernoulli (1705), Daniel (James’s nephew)
Bernoulli, (1741–1743, published 1751), and L. Euler (1779, 1782). The theory of thin plates is due
to S. D. Poisson, “Memoir on elastic surfaces,” 1814, “Memoir on the equilibrium and movement
of elastic bodies,” 1820; Sophie Germain, “Researches on the theory of elastic surfaces,” 1821;
and G. Kirchhoff, “On the equilibrium and the motion of an elastic plate,” 1850. Summaries and
bibliographical data for all these works are given by I. Todhunter and K. Pearson, A History of
the Theory of Elasticity and of the Strength of Materials, vol. 1, 1866, reprinted by Dover, New
York, 1960, pp. 10–13, 30–32, 50–56, 147–160, 208–276; vol. 2, pt. 2, 1893, reprinted 1960, pp.
39–48. For a modern derivation of the thin-plate equation, see, for example, C.-T. Wang, Applied
Elasticity, McGraw-Hill, 1953, pp. 276–280.
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where cpl, abbreviated for ω1/2(Bpl/mpl)
1/4, is the same as in Eq. (3.5.8) and

represents the natural-phase velocity (so called because it is associated with the
speed of lines of constant phase) for traveling waves with straight wavefronts of
angular frequency ω on a plate. If vtr should equal cpl, one could have a disturbance
propagating along the plate without any external influence; i.e., Eq. (10) can then
be satisfied with pfront − pback = 0 but with ξpl of the form of a constant-frequency
plane traveling wave that is not identically zero.

The oblique-incidence transmission loss for the Euler–Bernoulli plate model is
as given by Eq. (9) but with the prescription

mpl → mpl

[
1 −

(
cpl

vtr

)4
]

= mpl

[
1 −

(
f

fc

)2

sin4 θI

]
, (3.8.12)

where, in the latter expression, vtr has been identified as c/(sin θI) and where the
variation of cpl as the square root of the frequency f has been used to express cpl =
(f/fc)

1/2c, fc being the coincidence frequency at which cpl = c. As is described in
the discussion following Eq. (3.5.8), fc should equal c2/2πK1/2 with K equaling
Bpl/mpl.

If f 
 fc/(sin2 θI), the factor in brackets in Eq. (12) is nearly 1; then the
transmission loss is unaffected by plate stiffness and is the same as that predicted
by the mass-law equation. However, if f = fc/(sin2 θI) [or, equivalently, if
θ1 = sin−1 (fc/f )1/2 or if vtr = cpl], the transmission loss predicted by Eq. (9) with
the substitution (12) is identically 0. It is also zero in the limit of zero frequency.
Thus, when considered as a function of frequency, the transmission loss must have
a maximum somewhere between 0 and fc/(sin2 θI). The maximum coincides with
that of 2πfmpl[1 − (f/fc)

2 sin4 θI] and is accordingly at fc/(31/2 sin2 θI), that
is, smaller by a factor of 1/(31/2) = 0.58 than the frequency at which perfect
transmission occurs.

Internal energy losses within solids are frequently taken into account with the
replacement48 of the elastic modulus E by (1 − iη)E [or, equivalently, of Bpl by
(1 − iη)Bpl in the case of a plate] in relations involving complex amplitudes. Here
η is a real quantity termed the loss factor (Table 3.2), which can be measured for a
given plate by a variety of methods49 and which in general varies with frequency.
It should not strictly be considered a material constant as it is strongly affected, in
the case of metals, for example, by such processes as cold rolling, heat treatment,
and irradiation.50 Typical values for metals range from 10−4 (aluminum) to 10−2

(lead). A plate of laminar construction or one covered with a viscoelastic layer has

48A. Schoch, “On the asymptotic behavior of forced plate vibrations at high frequencies,” Akust.
Z., 2: 113–128 (1937).
49L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound, Springer-Verlag, New York,
1973, pp. 189–205.
50C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, 1948, pp.
41–59, 94–95, 115–121.



166 3 Reflection, Transmission, and Excitation of Plane Waves

Table 3.2 Typical loss factors (flexural) at audio frequencies for common materials

Material Loss factor η Material Loss factor η

Aluminum 10−4 Magnesium 10−4

Brass, bronze < 10−3 Masonry blocks 5−7 × 10−3

Brick 1−2 × 10−2 Oak, fir 0.8−1 × 10−2

Concrete Plaster 5 × 10−3

Light 1.5 × 10−2 Plexiglass, Lucite 2−4 × 10−2

Porous 1.5 × 10−2 Plywood 1−1.3 × 10−2

Dense 1−5 × 10−2 Sand, dry 0.6–0.12

Copper 2 × 10−3 Steel, iron 1−6 × 10−4

Cork 0.13–0.17 Tin 2 × 10−3

Glass 0.6−2 × 10−3 Wood fiberboard 1−3 × 10−2

Gypsum board 0.6−3 × 10−2 Zinc 3 × 10−4

Lead 0.5−2 × 10−3

Source: E. E. Ungar, “Damping of panels,” in L. L. Beranek (ed.), Noise and Vibration Control,
McGraw-Hill, New York, 1971, p. 453

a composite loss factor that can be estimated if one knows the dynamical properties
of the individual layers.51

The substitution of a complex plate bending modulus (1 − iη)Bpl into Eq. (11)
leads to

Zsl = ωηmpl

(
f

fc

)2

sin4 θI − iωmpl

[
1 −

(
f

fc

)2

sin4 θI

]
(3.8.13)

for the slab specific impedance of a lossy plate. The transmission loss of Eq. (5)
derived from this when η 
 1 is close to that for η = 0 except in the vicinity
of the frequency fc/(sin2 θI), where the lossless-plate theory would predict a zero
transmission loss. The modified theory gives instead

RTL = 20 log

(
1 + 1

2

ωηmpl

ρc
cos θI

)

at this frequency.

51A review citing principal references is given by E. E. Ungar, “Damping of panels,” in Beranek,
Noise and Vibration Control, pp. 434–475.
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Table 3.3 Flow resistivity of porous materials of various densities

Material Density, kg/m3 Flow resistivity, 103 N · s/m4

Fiberglas AA 11.2 58

7.4 34

Fiberglas H-33 41.6 29

Rock wool (Johns-Manville Stonefelt, type M) 54.1 28

42.6 31

Kaowool blanket B (Babcock and Wilcox) 50 65

Wood fiber 32.2 39

Ultralite no. 200 (Gustin Bacon Co.) 20.0 7

100.0 90

Ultrafine no. 1001 (CertainTeed) 40 30

Acoustiform-mat ceiling board (Celotex) 160 70

Thermafiber insulating blanket (US Gypsum) 30 3.5

Source: L. L. Beranek, J. Acoust. Soc. Am. 19:556–568 (1947); D. A. Bies, “Acoustical properties
of porous materials,” in L. L. Beranek (ed.), Noise and Vibration Control, McGraw-Hill, New York,
1971, pp. 250–251

3.8.5 Transmission Through Porous Blankets52

The simplest model of a porous slab is a blanket whose resistance to flow is
described by the specific flow resistance Rf , defined so that the transverse fluid
velocity on either side relative to the velocity vbl of the blanket is given for steady
flow by

vfront − vbl = vback − vbl = 1

Rf

(pfront − pback). (3.8.14)

This is a fluid-dynamic analog to Ohm’s law of electric resistance. For a homo-
geneous material of fixed density, Rf is proportional to the blanket thickness; the
specific flow resistance per unit thickness is the flow resistivity (Table 3.3). The
quantity Rf can be determined from a steady-flow experiment in which the blanket
is held fixed and fluid is forced to flow through it at a set rate with the pressure
measured on both sides of the blanket. The application of Eq. (14) to situations in
which vfront or vbl may be oscillating with time is consistent with the assumption
that Rf is independent of frequency.

52L. L. Beranek, “Acoustical properties of homogeneous, isotropic rigid tiles and flexible blankets,”
J. Acoust. Soc. Am. 19:556–568 (1947); R. H. Nichols, Jr., “Flow-resistance characteristics of
fibrous acoustical materials,” ibid., 19:866–871 (1947); ASTM C522-69, Standard Method of
Test for Airflow Resistance of Acoustical Materials, American Society for Testing and Materials,
Philadelphia.
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The determination of transmission loss can be carried through with various
idealizations of how the blanket is supported. A particular case would be that when
the blanket is hanging freely. If the blanket is perfectly limp, Eq. (8) applies but
with mpl and vpl replaced by mbl and vbl, the change of subscript implying that
we are concerned with a blanket. Equations (14) and (8) together then give an
equation of the form of Eq. (2) in which the slab specific impedance for the blanket
is consequently identified as

Zsl =
[ −1

iωmbl
+ 1

Rf

]−1

. (3.8.15)

This, in terms of an electric-circuit analogy, consists of impedances −iωmbl and
Rf in parallel. The expression for transmission loss, resulting from a substitution of
Eq. (15) into Eq. (5), is cumbersome, but if ω 
 Rf /mbl, it reduces to the mass-law
transmission loss. In the other limit of ω � Rf /mbl, it reduces to the transmission
loss for an immobile blanket, i.e.,

RTL = 10 log

(∣∣∣∣1 + 1

2

Rf

ρc
cos θI

∣∣∣∣
2
)
, (3.8.16)

which is independent of frequency.

3.9 Problems

3.1 A solid sphere of radius a is rotating with uniform angular velocity ω about
an axle displaced a slight distance b from its center, where b 
 a and b 

c/ω. Here c is the sound speed in the surrounding fluid. Let the rotational axis
lie along the z axis and let the sphere’s center lie in the z = 0 plane, so that
with an appropriate choice of time origin the sphere’s center at time t is at
xC = b cos ωt, yC = b sin ωt . In terms of spherical coordinates (r, θ, φ),
where z = r cos θ , x = r sin θ cosφ, what boundary condition would be
imposed on the acoustic fluid velocity on a sphere of radius a centered at the
origin to enable one to predict the resulting acoustic field approximately?

3.2 A broadband plane wave at an angle of incidence of 45◦ and propagating
through air with sound speed 340 m/s is reflected from a rigid surface. Over
the octave band centered at 500 Hz the incident sound has nearly constant
spectral density, and the sound level corresponding to this band for the
incident wave alone is 80 dB (re 20μPa). Determine and plot as a function
of distance from the wall the octave-band sound-pressure level for the same
band that results because of the sound reflection. Beyond what minimum
distance can one assume that the octave-band level is within ±0.5 dB of
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83 dB? How does this answer change if one considers instead an octave band
centered at 250 or 1000 Hz?

3.3 An interface between two fluids nominally lies on the y = 0 plane. In the
absence of an acoustic disturbance, the fluid in the region y > 0 is moving
with a velocity vo in the x direction while that in the region y < 0 is
motionless. The sound speeds and ambient densities in the regions y < 0 and
y > 0 are cI, pI and cII, pII, respectively. A plane wave of angular frequency
ω is incident from the y < 0 side of the interface with a propagation direction
characterized by a unit vector nI = ex sin θI + ey cos θI. Show that one of
the appropriate linear acoustic boundary conditions at the interface is

(vy)
(−)
o = (vy)

(+)
o

1 − (vo/cI) sin θI
,

where (vy)
(−,+)
o denote the y components of the acoustic fluid velocity on

the two sides of the interface.
3.4 The acoustic pressure (incident wave plus reflected wave) just outside a

specimen of sound-absorbing material (interface coinciding with y = 0
plane) when an incident wave of frequency f = ω/2π is propagating toward
it at an angle of incidence of 45◦ is

p = A cos

[
ω

(
t − x − y

21/2c

)]
− 0.5A sin

[
ω

(
t − x + y

21/2c

)]
,

where A is the amplitude of the incident wave and y is the distance from the
interface. What is the specific acoustic impedance of this interface in units
of ρc? If the material is locally reacting, what will the absorption coefficient
for reflection with the same frequency at normal incidence be?

3.5 A particular type of acoustic tile is locally reacting and for a frequency of 200
Hz has a normal-incidence specific impedance of 1000 + i2000 kg/(m2s). A
plane wave in air of 200-Hz sound with a sound-pressure level of 70 dB in
the absence of reflection is incident on the tile at an angle of θI .

(a) How close must θI be to grazing incidence for the resulting sound-
pressure level just at the surface of the tile to be less than 67 dB?

(b) Determine and plot the absorption coefficient as a function of θI .

3.6 Suppose that one knew at the outset that a particular interface was locally
reacting and had determined, for a given frequency, the absorption coefficient
versus angle of incidence θI . Would it be possible to determine the specific
acoustic impedance of the surface from these data? If so, give instructions
and a numerical example for a possible data-analysis scheme. [F. V. Hunt, J.
Acoust. Soc. Am. 10:216–217 (1939); L. L. Beranek, ibid., 12: 14–23 (1940).]
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3.7 A plane wave is incident at an angle of incidence θI on a reflecting surface
of unknown specific acoustic impedance. The net acoustic pressure at a point
just outside the surface is measured and found to be B cos(ωt − ψ); at the
same point in the absence of reflection it would be A cosωt . In terms of
ρ, c, A, B, ω, θI , and ψ , determine an expression for the specific acoustic
impedance of the surface. [U. Ingard and R. H. Bolt, J. Acoust. Soc. Am.
23:509–516 (1951).]

3.8 A long circular duct (length idealized as infinite) of radius a whose axis
coincides with the x axis is filled with fluid of ambient density ρ and sound
speed c. At x = 0 the duct has stretched across it a thin membrane. The
dynamics of the membrane are such that in circumstances of interest it can
be modeled as a thin rigid piston of effective mass meff whose displacement
xp (equal to the membrane’s displacement averaged over the cross-sectional
area) is resisted by a force proportional to xp, the proportionality factor
(spring constant) being keff. Thus, the membrane’s displacement satisfies the
differential equation

meffẍp + keffxp = πa2(pfront − pback).

If a plane wave of angular frequency ω is incident on the membrane from the
−x side, what fraction of the incident power will be transmitted to the air on
the +x side of the membrane?

3.9 The membrane of Problem 3.8 is displaced a distance xp = x0
p and released

from rest at time t = 0. Before that time there is no acoustic disturbance
in the tube. Given the idealization that the only cause of vibrational-energy
loss of the membrane is the radiation of sound, determine xp as a function
of time. What is the net acoustic energy radiated by the membrane in the +x

direction in the limit of large t? Under what circumstances will the pressure
variation be nonoscillatory?

3.10 A piston at one end of a tube (cross-sectional area 0.01 m2) whose length is
exactly one-fourth wavelength at a frequency of 1000 Hz is oscillating with
a displacement amplitude of 0.0001 m and with a frequency 1000 Hz + Δf ,
where Δf is much smaller than 1000 Hz. The apparent specific impedance
at the other end of the tube is ρc(0.02 − i.006) where ρ = 1.2 kg/m3 and
c = 340 m/s. For what value of Δf is the average acoustic power generated
by the oscillating piston a maximum? What is the quality factor Q for the
resonance?

3.11 Two fluids with sound speeds and densities (cI, pI) and (cII, pII), respec-
tively, are separated by a plane interface. In one experiment, a plane wave at
angle of incidence θI (less than the critical angle) is incident on the interface
from the first fluid and a plane wave propagating at angle θII with the interface
normal is generated in the second fluid, while in a second experiment a
plane wave is incident on the interface from the second fluid at an angle of
incidence θII. Prove that the fractions of incident power transmitted are the
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same for the two experiments and the fractions of incident power reflected
are also the same.

3.12 A plastic transmission plate is to be designed to allow perfect transmission
(without reflection) of normal-incidence plane waves from water (ρ =
1000 kg/m3, c = 1500 m/s) into steel (ρ = 7700 kg/m3, c = 6100 m/s). The
frequency of interest is 20,000 Hz, and the available plastics all have a density
of 1500 kg/m3. What should the sound speed in the plastic and the plate’s
thickness be? (A minimal thickness is desired.) Suppose the same plate is
used for transmission of the same frequency, also at normal incidence, from
steel into water. What fraction of the incident power will be transmitted?

3.13 If a fluid occupying the region y > 0 is bounded by a locally reacting surface
of finite specific impedance, it is sometimes possible to have an acoustic
disturbance (surface wave) with an acoustic pressure of the form

p = Re
{
Pe−αyeikxe−iωt

}
,

where, for a given real angular frequency ω, the quantities P, α, and k are
complex constants, the real parts of α and k being positive and P being
arbitrary but nonzero. As an example, take Z = ρc(100 + i200) and
determine expressions for α and k. In terms of P, x, and y, what are the
time-averaged y and x components of the acoustic intensity in the fluid?
What is the time-averaged energy loss per unit surface area and per unit time
of the surface wave? How do the answers change if the specific impedance
is Z = ρc(100 − i200)?

3.14 A porous blanket of mass per unit area high enough not to move under the
influence of acoustic disturbances of interest is suspended a distance L in
front of a flat rigid wall. The flow resistance of the blanket is Rf . A plane
wave of angular frequency ω (wave number k = ω/c) is incident normally
on the blanket. Determine an expression for the specific acoustic impedance
on a surface just in front of the blanket. What fraction of the incident power is
absorbed? For given k and Rf , what choice of L gives maximum absorption?
What would the absorption coefficient be in the latter case?

3.15 A piston at the x = 0 end of a tube of length L is set into motion at time
t = 0 with a velocity Vo for 0 < t < L/c, with a velocity −Vo for L/c <

t < 2L/c, with a velocity Vo for 2L/c < t < 3L/c, with a velocity −Vo for
3L/c < t < 4L/c, etc. The far end of the tube is presumed rigid, and loss
mechanisms within the tube are of negligible significance. Determine and
sketch the acoustic pressure at the piston face as a function of t for t up to
10L/c. Also determine and sketch the instantaneous acoustic power output
of the piston over the same interval of time. How much acoustic energy is in
the tube by time 10L/c?
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3.16 For the idealized model (no viscosity) discussed in the text for reflection
of obliquely incident plane waves at an interface between two fluids, is
the tangential component of acoustic fluid velocity continuous across the
interface? Is the ambient density times tangential acoustic fluid velocity
continuous? Is the velocity potential continuous?

3.17 Following the Alaskan earthquake of March 28, 1964, Rayleigh waves
traveling at a velocity of the order of 10 times the speed of sound in
air passed across the USA. At Boulder, Colorado, the resulting infrasonic
pressure oscillation near the ground was at an amplitude of 2 Pa and a period
of 25 s. Estimate the amplitude of the transverse velocity of the ground
motion. What was the time-averaged intensity of the resulting acoustic wave?
Assuming that all the radiated energy propagated to ionospheric heights
without reflection or refraction, what would the fluid-velocity amplitude have
been at an altitude where the ambient density is 10−8 that at the earth’s
surface? [R. K. Cook, “Radiation of sound by earthquakes,” pap. K19 in D.
E. Commins (ed.), 5e Congr. Int. Acoust., G. Thone, Liège, 1965, vol. 1b.]

3.18 A sheet of porous material is suspended in air at a distance of 1
4 -wavelength

in front of a rigid wall. For the frequency of interest, the mass of the sheet
is high enough not to move significantly under the influence of a sound
wave. When a constant-frequency plane wave is normally incident on the
sheet, a microphone just in front of it registers an acoustic pressure with an
rms amplitude of 0.3 Pa, while a microphone behind it at the wall surface
registers an rms amplitude of 0.2 Pa. What is the specific flow resistance
of the sheet? What fraction of the incident sound power is absorbed? What
would the transmission loss of the same sheet be if the wall were not present?

3.19 Sound waves in air are incident at an angle of 45◦ on a 0.5-cm-thick sheet of
steel.

(a) At what frequency would you expect perfect transmission to occur (with
the neglect of internal losses)?

(b) At what lower frequency does the transmission loss have a maximum?
(c) At what frequency above that of part (a) does the transmission loss first

exceed that of part (b)?
(d) Discuss the general dependence of the ratio of the frequencies of parts

(c) and (b) on the elastic modulus E and Poisson’s ratio of the material in
the plate, the thickness of the plate, the angle of incidence, and the mass
per unit volume of the material in the plate. (Use the thin-plate model for
the sheet.)

3.20 It is planned to construct a sound barrier by suspending two identical lead
sheets at a distance d apart. Assuming that all the sound arrives at normal
incidence, is there some optimal nonzero choice for d (in terms of sound
wavelengths) that will give a maximum transmission loss? If so, by how
many decibels would the resulting transmission loss exceed that of a single
sheet of twice the mass per unit area?
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3.21 A subsonic flexural wave with phase speed c/3 and angular frequency ω

is propagating along the surface of a plate immersed in a fluid of ambient
density ρ. Discuss the acoustically induced trajectories of fluid particles
moving with the local fluid velocity, nominally located at a distance h from
the plate. Are they circles, ellipses, or straight lines? When a given particle
is at a point on its trajectory that is closest to the plate surface, what is the
phase of the plate’s transverse displacement at the nearest point on the plate?

3.22 A plane wave of angular frequency ω is incident normally on a slab of foreign
material (assumed lossless) of width d. Let pI and cI denote ambient density
and sound speed of the material on both sides of the slab and let ρII and cII
denote the analogous quantities for the slab itself.

(a) Let R̂1 be the complex amplitude of the reflected pressure wave just at
the near surface of the slab and let T̂III be the complex amplitude of the
transmitted pressure wave just at the far surface of the slab; show that

R̂I

T̂III
= i

2

[
(ρc)I

(ρc)II
− (ρc)II

(ρ)c)I

]
sin

ωd

cII
.

(b) Suppose two identical transducers (which generate and receive sound)
are placed on opposite sides of the slab at distances L and L + ΔL,
respectively, from the nearer side of the slab and are caused to oscillate
in phase but with different amplitudes for a short time less than 2L/cII
but larger than several 2π/ω. The net received plane wave at the farther
transducer is found to have negligible amplitude throughout most of its
time of reception for some choice of ΔL and for some ratio B/A of the
two amplitudes of the incident pressure pulses. How are B/A and ΔL

related to ω, d, and the acoustical properties of the two materials? Could
one determine cII and ρII from such an experiment? [H. J. McSkimin, J.
Acoust. Soc. Am. 23:429–434 (1951).]

3.23 In Problem 3.22, suppose that Euler’s equation of motion does not hold
within the slab proper; instead, for waves going in the +x and −x directions,
suppose that the complex amplitude v̂x of fluid velocity is related to the
corresponding amplitude σ̂xx of the normal component of stress by

ZII(ω)v̂x = ∓σ̂xx,

where ZII(ω) is some complex number depending on frequency. Suppose
that σ̂xx varies with distance x through the slab as

σ̂xx = AeikIIx + Be−ikIIx,
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where kII(ω) is another complex number, the two terms here corresponding
to waves traveling in the +x and −x direction, respectively. Take σ̂xx = −p̂

(Newton’s third law) to hold at the two faces of the slab and discuss how the
experiment described above should be modified and how the results should
be interpreted in order to obtain information concerning ZII and kII. Is it
appropriate to assume that ZII = ρIIω/kII?

3.24 A sonic boom with acoustic-pressure waveform given by f (t − nI · x/cI),
where f (t) is as sketched in Problem 1.29, is incident from air onto an
air–water interface at an angle of incidence of 45◦. Discuss the general
characteristics of the signature of the pressure signal received at a depth h

below the interface. Neglect viscosity and nonlinear effects. [R. K. Cook, J.
Acoust. Soc. Am., 47:1430–1436 (1970); J. C. Cook, T. Goforth, and R. K.
Cook, ibid., 51:729–741 (1972).]

3.25 Determine the natural frequencies and the corresponding eigenfunctions
describing the x dependence of acoustic pressure for a narrow tube extending
from x = 0 to x = L with both ends open. Take the boundary condition at
each open end to be p = 0.

3.26 A piston at the x = 0 end of a tube (cross-sectional area A) of length L

is oscillating with a velocity amplitude Vo. The specific acoustic impedance
at the other end (x = L) is ερc, where ε is a small positive real number
much less than 1. Give approximate expressions for the lowest resonance
frequency, the Q of this resonance, and the peak time-averaged acoustic
power output of the piston for frequencies in the vicinity of this resonance.

3.27 A stretched membrane nominally lies in the xz plane and is surrounded on
both sides by a fluid of ambient density ρ and sound speed c. The flexural
vibrations of the membrane are governed by the partial differential equation

σ
∂2η

∂t2 − T

(
∂2η

∂x2 + ∂2η

∂z2

)
= p(x, 0−, z, t) − p(x, 0+, z, t),

where σ = mass per unit area of membrane
T = tension per unit length to which the membrane is stretched
η = transverse displacement of membrane in +y direction

The two pressures correspond to the y < 0 and y > 0 sides. It is here
assumed that (T /σ)1/2 
 c. Suppose one has a sinusoidal wave

η = A cos

[
ω

(
t − x

cW

)]

traveling in the x direction. What is the speed cW in terms of ω, σ, T , ρ,
and c?
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3.28 A plane wave is incident on a continuously stratified medium for which
c and ρ are functions of y; the acoustic pressure is of the form p =
Re{p̂(y)e−iω(t−x/vtr)}, and vy is given by an analogous expression, where vtr
is some given trace velocity. Show that the local specific acoustic impedance
Zlocal(y) = p̂(y)/v̂y(y) satisfies the differential equation

−dZlocal

dy
= −iωρ + iω

ρ
(c−2 − v−2

tr )Z2
local.

Discuss how, with appropriate approximations, one can derive the limp-wall
oblique-incidence mass-law transmission loss from this equation.



Chapter 4
Radiation from Vibrating Bodies

Attention in the first few sections of the present chapter is directed toward models
of sound generation and propagation for which the resulting phenomena are more
conveniently described in terms of spherical coordinates than Cartesian coordinates.
We begin with the fundamental examples of sound radiation from radially and
transversely oscillating spheres and subsequently show that they can be used as
building blocks for analyses of sound radiation in less idealized circumstances.
Various general relations between sound sources and their radiated acoustic fields
are discussed in the latter sections of the chapter.

4.1 Radially Oscillating Sphere

The prototype of an omnidirectional source is a sphere1 (see Fig. 4.1) centered at
the origin whose radius oscillates about some nominal value a with velocity vS(t).
Given that the external medium is unbounded, the acoustic field is spherically
symmetric, and so Eqs. (1.12.4) apply. With F(t − [r/c])/ρc replaced by an
equivalent “to be determined” function ψ(t−[r/c]+[a/c]), these equations become

vr = ψ̇

r
+ cψ

r2 p = ρcψ̇

r
, (4.1.1)

where ψ̇ denotes the derivative of ψ with respect to its argument (here understood
to be t −[r/c]+[a/c]). The boundary condition, vr(a, t) = vS(t), resulting from
Eq. (3.1.2), therefore requires

1G. G. Stokes, “On the communication of vibration from a vibrating body to a surrounding gas,”
Phil. Trans. R. Soc. Lond. 158:447–463 (1868); A. E. H. Love, “Some illustrations of modes of
decay of vibratory motions,” Proc. Lond. Math. Soc. (2) 2:88–113 (1905); J. Brillouin, “Transient
radiation of sound sources and related problems,” Ann. Telecommun. 5:160–172, 179–194 (1950).
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Fig. 4.1 Sound generation
by a radially oscillating
sphere with radial surface
velocity vS(t)

a−1 d

dt
ψ(t) + ca−2ψ(t) = vS(t), (4.1.2)

which integrates to

ψ(t) = a

∫ t

−∞
e−(c/a)(t−τ)vS(τ ) dτ, (4.1.3)

with the requirement that ψ(t) be zero before vS(t) first becomes nonzero. The
above expression for ψ(t) and Eqs. (1) for vr(r, t) and p(r, t) describe the transient
solution for the acoustic field radiated by the sphere.

The constant-frequency solution, resulting when vS has been oscillating for a
long time with an angular frequency ω, can be derived directly from Eqs. (1.12.8);
the constant A appearing there is identified from the requirement that the v̂r in
Eq. (1.12.8b) be v̂S at r = a, where v̂S is the complex amplitude of vS(t). Thus,
Eqs. (1.12.8) yield

p̂

ρc
= v̂r

1 + i/kr
= −ika2v̂S

r(1 − ika)
eik(r−a). (4.1.4)

These also result from the transient solution for a sphere that starts oscillating at time
to in the limit when the retarded time t−[r/c]+[a]/c (minus the time to) is large
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compared with the time (2πa)/c for a disturbance to travel around the perimeter of
the sphere. (Here t −[r/c]+ [a/c] is the time the wave currently being received left
the surface.)

The time-averaged intensity Ir,av of a spherically symmetric wave is |p̂|2/2ρc,
in accord with (4) and with the relation Ir,av = 1

2 Re{p̂v̂∗
r }. Consequently, the time-

averaged power Pav radiated by the radially oscillating sphere is 4πr2|p̂|2/2ρc, so,
from (4) one has

Pav = (ka)2

1 + (ka)2
ρc(v2

S
)av(4πa

2). (4.1.5)

In the limit ka � 1, the power radiated per unit surface area of the sphere is ρc(v2
S
)av

(the same as for radiation to one side from a plate vibrating without flexure with a
velocity amplitude |v̂S|).

4.1.1 Low-Frequency Approximation

If vS(t) changes slowly over times of the order of a/c, a suitable approximation
to p(r, t) results from a neglect of the first term in Eq. (2), such that ψ(t) =
(a2/c)vS(t). Also, it is consistent to ignore the distinction between vS(t − [r/c] +
[a/c]) and vS(t − [r/c]) when ψ(t − [r/c] + [a/c]) is inserted into Eqs. (1). In this
manner, the acoustic pressure reduces to

p(r, t) = ρ

4πr

(
dQS

dt

)
t→t−r/c

, (4.1.6)

where QS(t) = 4πa2vS (surface area of sphere times radial velocity) is the time
derivative of the volume enclosed by the source and is referred to as the source-
strength function. The result, moreover, is a good approximation2 even if, over any
interval of time, the radius may change by an increment comparable to, or larger
than, its original value, providing QS(t) is the instantaneous derivative of the actual
volume enclosed by the sphere. It is required that the velocity of the surface always
be substantially less than c and that the surface acceleration be substantially less
than c2 divided by the sphere radius.

The constant-frequency version of Eq. (6) also results from Eq. (4) if one
neglects the term −ika in the factor (1 − ika)−1 and approximates e−ika by 1.
The equivalence is evident if one notes that dQS/dt evaluated at t − r/c is equal to

2This was recognized and applied by M. Strasberg, “Gas bubbles as sources of sound in liquids,”
J. Acoust. Soc. Am. 28:20–26 (1956). A rigorous justification is given by P. A. Frost and E. Y.
Harper, “Acoustic radiation from surfaces oscillating at large amplitude and small Mach number,”
ibid. 58:318–325 (1975).
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Re{(−iωQ̂Se
ikre−iωt )}, where Q̂S is 4πa2v̂S . The prescription for incorporation of

a time shift, t → t − r/c, is to multiply the complex amplitude by a factor of eikr .

4.2 Transversely Oscillating Rigid Sphere

A rigid sphere (see Fig. 4.2) whose center is oscillating back and forth along the
z axis about the origin is the simplest model3 of a source whose volume does not
change with time. The appropriate boundary condition, deduced from Eq. (3.1.2), at
the nominal location of the sphere’s surface is

vr(a, θ, t) = vC(t) · er = vC(t) cos θ, (4.2.1)

where vC(t) = vC(t)ez is the velocity of the sphere’s center. To construct a solution
of the linear acoustic equations satisfying this boundary condition, we note that:
(1) the derivative with respect to z of any solution of the wave equation is also a

Fig. 4.2 Sound generation by a transversely oscillating rigid sphere of radius a. The center of the
sphere moves back and forth along the z axis with velocity vC(t)

3S. D. Poisson, “On the simultaneous movement of a pendulum and of the surrounding air,” Mem.
Acad. Sci., Paris 11:521–582 (1832); Stokes, “On the communication of vibration,” 1868.
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solution, and (2) a known solution is 1/r times any function of t − r/c, so

Φ = ∂

∂z

[
1

r
ψ
(
t − r

c
+ a

c

)]
(4.2.2)

is a possible candidate for the velocity potential. Here the differentiation is carried
out at fixed x and y, and so, since r2 = x2 + y2 + z2, one has ∂r/∂z = z/r

or cos θ . Thus, the operator ∂/∂z can be replaced by (cos θ)∂/∂r in the above.
Because Eq. (2) and the expression in Eq. (1) both depend on θ only through the
multiplicative factor cos θ , a function ψ can be found that ensures that vr = ∂Φ/∂r

will reduce to vC(t) cos θ when r = a.
The ordinary differential equation that ψ(t) must satisfy so that ∂Φ/∂r will

equal vC(t) cos θ at r = a results from Eq. (2) if one recognizes that the first and
second derivatives with respect to r of ψ(t − [r/c] + [a/c]) are −(1/c)ψ̇(t) and
(1/c)2ψ̈(t), respectively, at r = a. The resulting substitutions into the boundary-
condition equation then yield

ψ̈(t) + 2
c

a
ψ̇(t) + 2

( c
a

)2
ψ(t) = c2avC(t). (4.2.3)

Such an inhomogeneous linear second-order ordinary differential equation with
constant coefficients can be solved4 as a superposition of indicial responses, but we
here limit ourselves to the steady-state case, such that vC(t) equals Re{v̂Ce

−iωt }. The
prescription ∂/∂t → −iω (discussed in Sect. 1.8) converts Eq. (3) into an algebraic
equation for the complex amplitude associated with ψ , the solution of which leads to

ψ(t) = Re
{
Aeikae−iωt

}
, (4.2.4)

with the abbreviation

A = v̂Ca
3e−ika

2 − (ka)2 − 2ika
= v̂C

[(d2/dr2)(r−1eikr )]r=a

. (4.2.5)

The quantity ψ(t−r/c+a/c) is obtained by inserting an additional factor of eik(r−a)

in Eq. (4). With this insertion, with subsequent substitution of ψ(t − r/c+a/c) into

4See, for example, K. N. Tong, Theory of Mechanical Vibration, Wiley, New York, 1960, pp. 31–
37. The differential equation can also be solved by the method of variation of parameters described,
for example, by C. R. Wylie, Jr., Advanced Engineering Mathematics, McGraw-Hill, New York,
1951, pp. 41–44. Transient solutions and their implications for sound radiated by a transversely
accelerating sphere are reviewed by A. Akay and T. H. Hodgson, “Sound radiation from an
accelerated or decelerated sphere,” J. Acoust. Soc. Am. 63:313–318 (1978). The earliest such
solutions, for spheres suddenly accelerated from rest to a uniform velocity and to a sinusoidally
oscillating velocity, are given by G. Kirchhoff, Mechanik, 2d ed., Teubner, Leipzig, 1877, pp. 317–
321.
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Eq. (2), and with the relations p = −ρ∂Φ/∂t and v = ∇Φ, the spatially dependent
amplitudes of the field quantities are identified as

Φ̂ = A cos θ
d

dr

eikr

r
, (4.2.6a)

p̂ = iωρΦ̂, v̂r = ∂Φ̂

∂r
, v̂θ = r−1 ∂Φ̂

∂θ
. (4.2.6b)

In the above expressions, the operations by d/dr and d2/dr2 lead to multiplica-
tive factors of d/dr → ik − 1/r and d2/dr2 → −k2 + 2r−2 − 2ikr−1. Thus, in
the far field, where kr � 1, one has

p̂ ≈ −ω2ρ

c
A cos θ

eikr

r
≈ ρcv̂r . (4.2.7)

Because |v̂θ | decreases at large r as r−2 rather than r−1, it is negligible. The time-
averaged intensity (pvr)av derived from this far-field approximation is

Ir,av = (ka)4

4 + (ka)4 ρc[(vC · er )
2]av

(a
r

)2
. (4.2.8)

The same expression, moreover, holds for all points outside the sphere. The time
average (pvθ )av vanishes identically since p̂ and v̂θ are 90◦ out of phase. Because
of the cos θ factor in the acoustic pressure and of the cos2 θ factor in the acoustic
intensity, there is no sound at right angles to the direction of the sphere’s translation;
the sound is most intense in the directions θ = 0 or 180◦, where the sphere’s motion
is directly toward or away from the listener.

The time average of the acoustic power emitted is the integral of Ir,av over the
surface of a sphere, or

Pav =
[

(ka)4

4 + (ka)4

]
ρc

(v2
C
)av

3
4πa2. (4.2.9)

Here 4πa2 is the surface area of the oscillating sphere; 1
3 (v

2
C
)av is the surface average

of [(vC ·n)2]av. In the large ka limit (when the factor in brackets becomes 1), each
element of the sphere’s surface radiates sound as if it were a segment of a very large
flat surface vibrating perpendicularly to itself with velocity vC ·n. In the opposite
limit, where ka 
 1, Pav is smaller than its high-frequency limit by a factor of
(ka)4/4, while the corresponding factor in the same limit for a radially oscillating
sphere [see Eq. (4.1.5)] is (ka)2. Since, in this low ka limit, (ka)2 � 1

4 (ka)
4,

the radially oscillating sphere is a much more efficient radiator of sound at low
frequencies than the transversely oscillating sphere, given that the surface-averaged
mean squared normal velocities are of comparable magnitude.
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4.2.1 Force Exerted by Transversely Oscillating Sphere

The net force exerted on the fluid by the sphere, in accord with Newton’s third law,
is the surface integral of p(a, θ, t)er . Symmetry requires that this force have only a
z component, so one has

F (t) = Fz(t)ez = eza
2
∫ 2π

o

∫ π

o

p(a, θ, t) cos θ sin θ dθ dφ. (4.2.10)

The complex amplitude associated with this force is consequently found, from
Eqs. (6), to be

F̂z = iωρA(ika − 1) 4
3πe

ika, (4.2.11)

where A is the constant in Eq. (5). The time-averaged acoustic power Pav
transmitted to the fluid must be 1

2 Re{F̂zv̂
∗
C
} and, in accord with the acoustic-energy

conservation theorem, this leads to the same result as Eq. (9).

4.2.2 Small-ka Approximation

In the low-frequency limit, when vC(t) is oscillating at frequencies such that ka 

1, the appropriate approximation to Eq. (3) results when the first two terms on the
left side are neglected, so ψ(t) = 1

2a
3vC(t); it is also consistent in this limit to

approximate ψ(t − r/c + a/c) by ψ(t − r/c) . Consequently, the velocity potential
in Eq. (2) approximates to

Φ = 1
2a

3 cos θ
∂

∂r

[
1

r
vC

(
t − r

c

)]
. (4.2.12)

The corresponding approximation for p, resulting from the relation p = −ρ ∂Φ/∂t ,
yields

p = 1

2

ρa3

c

1

r
er ·

[(
∂

∂t
+ c

r

)
v̇C

(
t − r

c

)]
. (4.2.13)

Also, in this low-frequency or ka 
 1 approximation, the force amplitude F̂z

given by Eq. (11) reduces, in lowest nonzero order, to −iωρA 4
3π , while A, from

Eq. (5), reduces to v̂Ca
3/2. The time-dependent force F (t) = ez Re{F̂ze

−iωt }
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consequently appears in this approximation as5

F (t) = 1
2md v̇C(t), (4.2.14)

where md = 4
3πa

3ρ is the mass displaced by the sphere. This resembles Newton’s
second law, force equals mass times acceleration, with an apparent entrained mass
equal to md/2. However, this approximate Fz(t) is 90◦ out of phase with vC(t) and
is consequently inadequate for a nonzero estimate of the time-averaged acoustic
power Pav = 1

2 Re{F̂zv̂
∗
C
}. The lowest-order approximation for the resistive part

(that in phase with v̂C) of the complex amplitude, derived from Eq. (11), is

(F̂z)resist ≈ (ka)4ρcπa2v̂C

3
, (4.2.15)

and this suffices to reproduce the Pav in Eq. (9) to lowest nonzero order in ka.

4.3 Monopoles and Green’s Functions

4.3.1 Concept of a Point Source

Any spherically symmetric source of sound of angular frequency ω in an unbounded
fluid gives rise to an outgoing spherically symmetric wave, the complex velocity-
potential amplitude, the complex pressure amplitude, and time-averaged power
output of which [see Eqs. (1.12.8a) and (1.12.9a )] are representable in the form

Φ̂ = −Q̂S

eikR

4πR
, p̂ = Ŝ

eikR

R
, Pav = 2π |Ŝ|2

ρc
, (4.3.1)

where the source-strength amplitude Q̂S = −4πŜ/iωρ is a constant and R =
|x −xS | is the radial distance from the center of the source (at xS). The constant Ŝ is
here referred to as the monopole amplitude. One possible realization of a source
of such a wave would be the radially oscillating sphere discussed in Sect. 4.1,
in which case Ŝ results from the coefficient of r−1eikr in Eq. (4.1.4). One can
consider a hypothetical limiting case for which a becomes progressively smaller

5P. M. Morse, Vibration and Sound, 2d ed., McGraw-Hill, New York, 1948, p. 319. For
incompressible flow, this dates back to George Green, “On the vibrations of pendulums in fluid
media,” 1833, reprinted in N. M. Ferrers (ed.), Mathematical Papers of the Late George Green,
Macmillan, London, 1871, pp. 315–324, and to G. G. Stokes, “On some cases of fluid motion,”
1843, reprinted in G. G. Stokes, Mathematical and Physical Papers, vol. 1, Cambridge University
Press, Cambridge, 1880, pp. 2–68. A modern derivation is given by C.-H. Yih, Fluid Mechanics,
McGraw-Hill, New York, 1969, pp. 99–108.
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Fig. 4.3 Possible form of a
function Δε(R) that is
concentrated where R < ε,
negligibly small for R > 10ε.
As explained in the text, the
integral of 4πR2 Δε(R) over
R should be 1

but v̂S becomes simultaneously larger, such that Ŝ ≈ −iωρa2v̂S remains constant.
The sphere is then idealized as a point. Although an extremely small source of
sufficiently large strength to generate audible sound at appreciable distances would
in actuality require consideration of nonlinear terms, the concept of a point source6

(or acoustic monopole) generating waves governed by the linear acoustic equations
is a convenient extrapolation consistent with the general framework of linear
acoustic theory. Typically, any small source, with time-varying mass of fluid in any
small volume enclosing it, has all the attributes of a point source, providing the
dimensions of the source are small compared with a wavelength and the discussion
of the sound field is restricted to radial distances greater than several body diameters.
(This is discussed in Sect. 4.7.)

The field of Eq. (1) satisfies the Helmholtz equation (1.8.13) everywhere except
at the source; it is a limiting form (as ε → 0) of some particular solution of the
inhomogeneous equation7 (see Fig. 4.3)

(∇2 + k2)p̂ε = −4πŜ Δε(R), (4.3.2)

where the right side has an R-dependent factor Δε(R).
Insight into the possible choices for Δε(R) such that ŜR−1eikR will be a solution

at finite R results after integration of both sides of Eq. (2) over the volume of

6The concept, which is analogous to those of a point mass and of a point charge, was introduced
into acoustics by H. Helmholtz, “Theory of air oscillations in tubes with open ends,” J. reine angew.
Math. 57:1–72 (1860).
7The inhomogeneous Helmholtz equation for k = 0 is the mathematical equivalent of Poisson’s
equation, ∇2V = −4πGρ, originally introduced as a relation between gravitational potential and
mass density by Poisson in 1813.
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a sphere of radius Ro centered at xS . Since ∇2p̂ε is the divergence of ∇p̂ε , the
resulting first term becomes a surface integral. If p̂ε is spherically symmetric (which
would follow from symmetry if there were no external boundaries and which is
approximately true if Ro is sufficiently small compared with the distance to the
nearest boundary), then the angular integration in each term results in a factor 4π ,
representing the total solid angle about a point. In this manner, one obtains

4πR2
o

(
∂p̂ε

∂R

)
R0

+ 4πk2
∫ R0

o

p̂εR
2 dR = −4πŜ

∫∫∫
Δε(R) dV . (4.3.3)

Suppose Δε(R) is concentrated within the region R < ε and is negligible for
R greater than, say, 10ε. If one takes Ro = 10ε, the integral on the right side is
approximately the same as if carried over all space. Also, if Δε is to be such that
p̂ in Eq. (1) is a solution for R ≥ Ro, then, for sufficiently small ε, the overall
volume integral of Δε(R) must be such that (3) is satisfied if p̂ε is replaced by
ŜR−1eikR . This insertion and subsequent evaluation of the indicated derivative and
integral lead to a value for the left side that is identically −4πŜ regardless of the
value of Ro. The right side of Eq. (3) must have the same value, so the appropriate
identification of Δε(R) is any function whose volume integral is 1 and which is
of appreciable magnitude only for values of R less than, say, 10ε. Such a function
would be δε(x − xS)δε(y − yS)δε(z − zS), where δε(x), defined by Eq. (2.8.7), is
an element in the sequence describing the Dirac delta function. This identification
leads to the generalized function relation8

(∇2 + k2)p̂ = −4πŜδ(x − xS) = −4πŜδ(x − xS)δ(y − yS)δ(z − zS). (4.3.4)

The indicated product expression defining δ(x − xS) implies that this Dirac delta
function with vector argument must be such that for any function ψ(x)

∫∫∫
ψ(x)δ(x − xS) dV = ψ(xS). (4.3.5)

The strict interpretation of Eq. (4) is that p̂ should be the limit as ε → 0 of the
solution p̂ε of Eq. (2), but for most purposes the process of taking such a limit need
not be considered explicitly.

Another interpretation of Eq. (4) is that p̂ should be a solution of the homoge-
neous equation except in the near neighborhood (of vanishing volume) of xS and
that near xS it should become singular as R−1 in such a way that

8A delta function on the right side of the wave equation to denote the presence of a point source was
used as early as 1937 in their theory of Cherenkov radiation by I. Frank and I. Tamm, C. R.Dokl.
Acad. Sci. URSS 14:109–114 (1937). Its widespread use today was undoubtedly considerably
influenced by the chapter on Green’s functions in P. M. Morse and H. Feshbach, Methods of
Theoretical Physics, vol. 1, McGraw-Hill, New York, 1953, pp. 791–895.
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p̂ = Ŝ

R
+ Ŝ f (x, y, z), (4.3.6)

where f (xy, z) is bounded at xS . To prove this assertion, one recognizes that
any solution of the inhomogeneous differential equation can be represented as any
particular solution plus some solution of the homogeneous equation. The particular
solution ŜR−1eikR approaches Ŝ/R plus bounded terms as R → 0, and the solution
of the homogeneous equation is bounded; so Eq. (6) results. This interpretation
applies in particular when the propagation of sound away from the source is altered
by the presence of bounding surfaces, e.g., a source above the ground. Note also that
Eq. (6) is equivalent to the condition Rp̂ ≈ Ŝ near xS .

4.3.2 Point Mass Source

A differential equation analogous to (4) results from the linear acoustic equations
when a point-mass-source term is added to the linear version of the mass-
conservation equation; i.e., one replaces the zero on the right side of Eq. (1.5.3a)
by ṁS(t)δ(x − xS), where ṁS(t) is the rate at which mass is added (negative if
extracted) to the fluid existing outside some small fixed region enclosing the source
(see Fig. 4.4). Alternately, one can interpret ṁS as ρQS , where QS(t) is the integral
of v ·n over a small surface enclosing the source and accordingly represents the time
rate of change of the volume excluded from the fluid by the source.

If the derivation outlined in Sect. 1.6 of the wave equation is carried through with
the mass-conservation equation modified by the inclusion of a point-mass-source
term, the result is the inhomogeneous wave equation

∇2p − 1

c2

∂2p

∂t2
= −m̈S(t)δ(x − xS) = −ρQ̇S(t)δ(x − xS). (4.3.7)

The solution appropriate to an unbounded fluid can be developed from the solution
ŜR−1eikR of Eq. (4) and from the superposition principle. The quantities p̂ and Ŝ

can be interpreted as the Fourier transforms of p and m̈S/4π , so Eq. (4) follows
from (7). The product of eikR times the Fourier transform of m̈(t), however, is the
Fourier transform of m̈(t − R/c). The Fourier integral theorem consequently gives

p = (4πR)−1m̈S

(
t − R

c

)
, (4.3.8)

which is equivalent to Eq. (4.1.6), previously derived for the radially oscillating
sphere in the limit ka 
 1.

If boundaries are to be taken into account, an appropriate solution of the
homogeneous equation should be added. Regardless of what such solution is added,
one can argue [in a manner similar to that leading to Eq. (6)] that the presence of the
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Fig. 4.4 Sketch supporting
idealization of a small source
with time-varying volume as
a point-mass source. The fluid
flow in a small sphere (radius
Ro) surrounding the source is
approximately such that the
rate of mass flow through the
sphere’s surface is ρ times the
time derivative of the volume
enclosed by the source

delta function on the right side of the wave equation is equivalent to the requirement
that in the vicinity of xS

p ≈ m̈S(t)

4πR
+ f (x, y, z, t), (4.3.9)

where f (x, y, z, t) is bounded in magnitude.

4.3.3 Green’s Functions

The solution of Eq. (4) with Ŝ = 1, satisfying whatever boundary conditions
(presumed passive) are imposed by the presence of external surfaces or causality
considerations, is the Green’s function9 Gk(x|xS), the first argument denoting the
location of the listener and the second the location of the source. Thus, Gk(x|xS)

9The name derives from George Green’s use of analogous functions in connection with Laplace’s
equation to derive solutions of electrostatic and magnetostatic boundary-value problems. (G.
Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism, Nottingham, 1828, pp. 10–13.)
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Fig. 4.5 Nomenclature for discussion of sound radiation from N point sources. Here Ŝn and xn

denote monopole amplitude and location of the nth point source

satisfies the inhomogeneous equation

(∇2 + k2)Gk(x|xS) = −4πδ(x − xS), (4.3.10)

and if the medium external to the source is unbounded, Gk is identified from Eq. (1)
as the free-space Green’s function R−1eikR .

A universal property of Green’s functions is the reciprocity relation Gk(x|xS) =
Gk(xS |x); that is, Gk is unchanged if source and listener locations are interchanged.
The free-space Green’s function satisfies this trivially; the proof of reciprocity for
more general circumstances is deferred to Sect. 4.9.

The superposition principle allows the Green’s function to be used in the
construction of solutions corresponding to several point sources (see Fig. 4.5). Thus,
if one has N point sources, the complex acoustic-pressure amplitude should satisfy
the Helmholtz equation with a sum of source terms, −4πŜnδ(x − xn), on the right
side; the appropriate solution resulting from Eq. (10) is

p̂ =
N∑

n=1

ŜnGk(x|xn). (4.3.11)
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Similarly, for a continuous smear of sources where ŝ(x) denotes the monopole-
amplitude distribution per unit volume, one has

∇2p̂ + k2p̂ = −4πŝ(x) = −4π
∫∫ ∫

ŝ(xS)δ(x − xS) dVS, (4.3.12)

p̂ =
∫∫∫

Gk(x|xS)ŝ(xS) dVS, (4.3.13)

where the integration extends over the source volume.
The Green’s function G(x, t |xS, tS) (corresponding to a unit point impulsive

source) for the wave equation satisfies

(
∇2 − 1

c2

∂2

∂t2

)
G(x, t |xS, tS) = −4πδ(t − tS)δ(x − xS), (4.3.14)

and from causality considerations should be zero if t < tS . The solution when the
external medium is unbounded results from Eqs. (7) and (8) with m̈(t) → 4πδ(t −
tS); that is,

G(x, t |xS, tS) = δ(t − tS − R/c)

R
. (4.3.15)

The function satisfying Eq. (14) can be used to develop a solution for a
distributed transient source of the inhomogeneous wave equation, where a source
term −4πs(x, t) is on the right side. The source function s(x, t) is written as a
time and volume integral (the differential of integration being dtS dVS) in a manner
analogous to that depicted in Eq. (12). The superposition principle and Eq. (14) then
yield

p =
∫∫∫∫

G(x, t |xS, tS)s(xS, tS) dVS dtS. (4.3.16)

When the Green’s function is given by Eq. (15), the tS integration can be done using
the property (2.8.9) of the delta function, and one accordingly obtains

p =
∫∫∫

S(xS, t − R/c)

R
dVS. (4.3.17)

The retarded time t − R/c in the argument of s implies that the contribution from
each portion of the source travels to the listener with the sound speed.
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4.4 Dipoles and Quadrupoles

4.4.1 Dipoles

The superposition of fields of two or more monopoles located at different points
gives a possible acoustic field because of the linearity of the basic equations. One
can conceive, in particular, of two point sources (see Fig. 4.6) of opposite monopole
amplitudes Ŝ and −Ŝ, that is, 180◦ out of phase with each other, and located a
distance d apart at xS + d/2 and xS − d/2. [If the monopoles are both radially
oscillating spheres of nominal radius a, then a should be substantially less than d so
that the acoustic-pressure field in the vicinity of either source will be dominated by
a 1/R term, as required in Eq. (4.3.6).]

A point dipole corresponds to the limit in which d becomes small enough to
ensure that kd 
 1. In this limit and given |x − xS | � d, Gk(x|xS ± d/2) can
be approximated with a truncated Taylor series as Gk(x|xS)± (d/2) ·∇SGk(x|xS),
where the operator ∇S denotes the gradient with respect to the source coordinates.
Thus, the superimposed pressure field becomes

p̂ = d̂ ·∇SGk(x|xS), (4.4.1)

Fig. 4.6 Acoustic dipole
modeled by two point sources
of monopole amplitudes Ŝ
and −Ŝ located at xS + d/2
and xS − d/2. The
dipole-moment amplitude
vector d̂ is Ŝd
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Fig. 4.7 Transversely
oscillating thin disk of radius
a (where ka 
 1) as a
possible physical realization
of a point force applied to a
fluid. As discussed in
Sect. 4.8, the apparent
equivalent force F (t) is
8
3ρa

3v̇C , where v̇C is the
transverse acceleration of the
disk

where the complex amplitude d̂ (dipole-moment amplitude vector) replaces Ŝd.
Since Gk(x|xS) satisfies Eq. (4.3.10), the differential equation that (1) must
satisfy is

∇2p̂ + k2p̂ = (d̂ · ∇S)[−4πδ(x − xS)] = 4π d̂ · ∇δ(x − xS). (4.4.2)

If the fluid surrounding the dipole is unbounded, the function Gk(x|xS) is
R−1eikR . Since ∇Sf = (df/dR)∇SR for any function f (R) of R and since
∇SR = (xS−x)/R, the acoustic field (1) for a dipole in an unbounded fluid becomes

p̂ = −d̂ · eR
d

dR

eikR

R
= −∇ · (d̂ R−1eikR). (4.4.3)

Here eR = (x − xS)/R is the unit vector pointing radially outward from the dipole
center toward the observation point.

4.4.2 Point Force in a Fluid

The model of a point time-varying concentrated force10 F (t) applied at a point
xS within a fluid furnishes another instance of the generation of a dipole field.
Such a model can be approximately realized by a very thin rigid disk of radius a

(see Fig. 4.7) oscillating transverse to its face, with F (t) identified as the net force

10J. W. S. Rayleigh, The Theory of Sound, vol. 2, 2d ed., 1896, reprinted by Dover, New York,
1945, sec. 375.
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exerted by the disk on the adjacent fluid. [The value F (t) = 8
3ρa

3v̇C is derived in
Sect. 4.8.] The presence of the force is taken into account by the inclusion of a term
F (t)δ(x − xS) on the right side of the linear version of Euler’s equation of motion
for a fluid.

The corresponding inhomogeneous wave equation is derived by taking the
divergence of both sides of the Euler’s equation with the source term included and
subsequently replacing ρ∇ ·v by −∂ρ′/∂t , in accord with the conservation-of-mass
equation, then replacing ∂ρ′/∂t by c−2 ∂p/∂t . In this manner, one obtains

∇2p − 1

c2

∂2p

∂t2
= ∇ · [F(t)δ(x − xS)] = −F (t) ·∇Sδ(x − xS). (4.4.4)

Consequently, for the constant-frequency case, an equation of the same form as
Eq. (1) results, but with 4π d̂ replaced by F̂ . The solution when the fluid is
unbounded is given by Eq. (3) with d̂ replaced by F̂/4π . Therefore, by the same
process by which Eq. (4.3.8) was derived, one can identify the transient solution as

p = 1

4π
eR ·

(
1

R
+ 1

c

∂

∂t

)
F (t − R/c)

R
. (4.4.5)

4.4.3 Quadrupoles

The simplest conceptual realization of a quadrupole is two closely spaced dipoles11

(see Fig. 4.8) with equal but opposite dipole-moment amplitude vectors. Such
a model would give, from Eq. (1), a superposition of the dipole fields ±d ·
∇SGk(x|xS ± d/2); the sum, in the limit of d 
 R, kd 
 1, approximates to

p̂ = (d̂ ·∇S)(d ·∇S)Gk(x|xS). (4.4.6)

11The definition here of quadrupole radiation is the same as that of M. J. Lighthill, “On sound
generated aerodynamically, I: General theory,” Proc. R. Soc. Lond. A211:564–587 (1952). The
term is sometimes used to denote the portion of a field whose amplitude falls off with r as r−2

or to denote the portion expressible in terms of second-order spherical harmonics, but the proper
definition is for a field resembling that corresponding to a limiting case of four closely spaced point
monopoles whose aggregate source strength and dipole moment vanish. In the case of solutions of
Laplace’s equation ∇2Φ = 0, a quadrupole field in an unbounded space also has the properties
mentioned above.
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Fig. 4.8 Possible models of
acoustic quadrupoles: (a)
longitudinal quadrupole; (b)
lateral quadrupole. The
general model discussed in
the text consists of two
dipoles with dipole-moment
amplitude vectors d̂ and −d̂

at xS + d/2 and xS − d/2

If the medium is unbounded, the Green’s function is R−1eikR and since ∇S = −∇
when applied to a function of x − xS , one has

p̂ = (d̂ ·∇)(d ·∇)
eikR

R
=

3∑
μ,ν=1

Q̂μν

∂2

∂xμ∂xν

eikR

R
, (4.4.7)

where we write Q̂μν = D̂μdν . (One can also define Q̂μν as the average of D̂μdν

and D̂νdμ.)
Since d̂ and d are vectors whose directions are arbitrary and since ∂2/(∂x∂y) is

the same as ∂2/(∂y∂x), the above implies that any quadrupole field in an unbounded
space is a linear combination of six functions corresponding to the differential
operators ∂2/∂x2, ∂2/∂y2, ∂2/∂z2, ∂2/(∂x∂y), ∂2/(∂x∂z), and ∂2/(∂y∂z) applied
to R−1eikR . Of these, there are two basic types: a longitudinal quadrupole,
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for which d̂ and d are parallel, and a lateral quadrupole, for which they are
perpendicular.

The field of an axial quadrupole aligned along the z axis is given, according to
Eq. (7), by

p̂ = Q̂zz

[
(1 − 3 cos2 θ)

(
ik

R
− 1

R2
+ k2

3

)
− k2

3

]
eikR

R
, (4.4.8)

where θ is the angle between eR and the z direction, so cos θ is (z−zS)/R. Similarly,
for a lateral quadrupole with d̂ in the x direction and with d in the y direction, one
finds

p̂ = Q̂xy

(x − xS)(y − yS)

R2 (−k2 − 3ikR−1 + 3R−2)
eikR

R
. (4.4.9)

Since the intensity in the far field (kR � 1) is radial, and since its time average
equals 1

2 |p̂|2/ρc, Eqs. (8) and (9) yield

Ir,av =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(k4 cos4 θ)|Q̂zz|2
2ρcR2

longitudinal

k4 sin4 θ cos2 φ sin2 φ

2ρcR2 |Q̂xy |2 lateral.

(4.4.10a)

(4.4.10b)

The radiation patterns in the two cases vary with θ and φ as cos4 θ and as
sin4 θ cos2 φ sin2 φ (see Fig. 4.9). The total acoustic power outputs (time average)

Fig. 4.9 Radiation patterns of (a) a longitudinal quadrupole and (b) a lateral quadrupole. Here
distance from the origin to a point on a sketched surface is proportional to the magnitude of the
acoustic intensity in the same direction
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found by integrating the appropriate expression for Ir,av over the surface of a sphere
of radius R are πk4/ρc times 2

5 |Q̂zz|2 and 2
15 |Q̂xy |2, since the area averages of

cos4 θ and sin4 θ cos2 φ sin2 φ are 1
5 and 1

15 .

4.4.4 Multipole Expansions

A number (array) of monopole sources of the same frequency gives rise to a
composite acoustic field whose complex acoustic-pressure amplitude is of the form
of Eq. (4.3.11); we assume in what follows that the external medium is unbounded,
so that the contribution to the sum from the nth source is ŜnR

−1
n eikRn , where

Rn = |x − xn|. If the sources are clustered in the vicinity of the origin within
a volume of radius d, where kd 
 1, an expansion of R−1

n eikRn in a multiple
power series in the source coordinates should be rapidly convergent at r � d, so we
replace12

R−1
n eikRn = [exp(−xn ·∇)] (r−1eikr ), (4.4.11a)

exp (−xn ·∇) = 1 − xn ·∇ + 1

2! (xn · ∇)(xn ·∇) − · · · . (4.4.11b)

The sum over sources then becomes

p̂ = Ŝr−1eikr − d̂ ·∇(r−1eikr ) +
∑
μ,ν

Q̂μν

∂2

∂xμ∂xν

(
r−1eikr

)
+ · · · , (4.4.12)

where we use the abbreviations

Ŝ =
∑
n

Ŝn, d̂ =
∑
n

xnŜn, Q̂μν = 1

2

∑
n

xnμxnνŜn. (4.4.13)

12The derivation proceeds from

f (x − ε) = f (x) − ε
d

dx
f (x) + 1

2! ε
2 d2

dx2 f (x) − · · ·

= f (x) − (εex ·∇)f (x) + 1

2! (εex ·∇)2f (x) − · · ·

If one has a function of x−xS , the coordinate system can be temporarily oriented so that one of the
axes points in the direction −xS . The above then applies if the components of x−xS perpendicular
to xS are held constant, with the result

f (x − xS) = f (x) − (xS ·∇)f (x) + 1

2! (xS ·∇)2f (x) − · · · .

For a fuller explanation, see R. Courant, Differential and Integral Calculus, vol. 2, Wiley-
Interscience, Glasgow, 1936, pp. 80–81.
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Fig. 4.10 Example of sound
radiation from three point
sources lying on the z axis at
z = d, z = 0, and z = −d

with monopole amplitudes
Ŝ1, −2Ŝ, and Ŝ1. The field
for kd 
 1 is that of a
longitudinal quadrupole

Thus, the acoustic field formally appears as a monopole field plus a dipole field plus
a quadrupole field, etc.13

Given kd 
 1, the field is generally well approximated by that of a single
point monopole. An exception is when the sum of the Ŝn vanishes, either by design
or because of symmetry. Then the dipole term would dominate, and the far-field
pressure would have an amplitude diminished by a factor of the order of kd from that
nominally expected. If Ŝ is zero, d̂ , as computed by Eq. (13), should be independent
of the choice of coordinate origin.

When both the monopole amplitude and dipole-moment-amplitude vector van-
ish, the quadrupole term ordinarily dominates. In such a case, the far-field pressure
and the acoustic power output are decreased by factors of the order of (kd)2 and
(kd)4 from what would nominally be expected.

Example Suppose three point sources (see Fig. 4.10) lie on the z axis at z = d,

z = 0, and z = −d, with monopole amplitudes of Ŝ1, −2Ŝ1, and Ŝ1, respectively.

13The theory of a multipole expansion of a static field described by a potential satisfying
Laplace’s equation originated with J. C. Maxwell, A Treatise on Electricity and Magnetism, vol.
1, Oxford University Press, Oxford, 1873, pp. 157–178; the extension to the dynamic case for
electromagnetic fields is due to H. A. Lorentz, “Extension of the Maxwell theory, theory of
electrons: state of the field if the exciting charge lies in an infinitely small space,” in A. Sommerfeld
(ed.), Encyklopädie der mathematischen Wissenschaften, vol. 5, pt. 2, no. 1, 1904, reprinted by
Teuber, Leipzig, 1922, pp. 177–178. A concise statement of the theory for the acoustical case is
given by P. E. Doak, “Multipole analysis of acoustic radiation,” paper K56 in D. E. Commins (ed.),
5e Congr. Int. Acoust., G. Thone, Liège, 1965, vol. 1b.
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The total monopole amplitude is zero; the dipole-moment-amplitude vector is also
zero. The only nonzero quadrupole component is Q̂zz = d2Ŝ1, so the acoustic field
is that of a longitudinal quadrupole and the net acoustic power output, resulting
from Eq. (10a), is 2

5π(kd)
4|Ŝ1|2/ρc. If the phase of the center source is reversed,

so that all three are in phase, the field will be that of a monopole with monopole
amplitude 4Ŝ1 and the acoustic power output will be 32π |Ŝ1|2/ρc, larger by a factor
of 80/(kd)4.

4.5 Uniqueness of Solutions of Acoustic Boundary-Value
Problems

Many physical phenomena in acoustics are modeled as boundary-value problems,
whereby some features of the acoustic field are specified on bounding surfaces or
throughout a spatial region at an initial instant. Using this information, one seeks to
predict the acoustic field at other points and at other times. Such problems need not
be solved explicitly by mathematical analysis or numerical computation; answers to
major questions can be obtained by direct experimental measurement, by similitude
analysis of the governing equations, or possibly by experimentation on an analogous
physical system that can be modeled, with a suitable translation of symbols, by the
same equations. It is desirable (especially from the latter standpoint when one is
planning experiments) to know just how many initial data or boundary data are
required for a unique prediction.

4.5.1 Poisson’s Theorem and Its Implications

Causality is often incorporated, either explicitly or implicitly, in posing acoustic
boundary-value problems. To characterize the wave caused by a source, one must
require the wave to be absent before the source is first turned on. The earliest time at
which such a wave disturbance appears at a distant point is delayed by the minimum
time of propagation at the sound speed c from source to listener. This property of
acoustic fields results with some generality from a relationship derived originally by
Poisson.14

Suppose the acoustic pressure p(x, t) satisfies the wave equation in some region.
We let xo be any point in the region and consider a hypothetical sphere of radius
R centered at the point xo (see Fig. 4.11). A restriction on R is that during times

14The version of the proof given here is due to J. Liouville, “On two memoirs by Poisson,” J. Math.
Pures Appl. (2)1:1–6 (1856). Poisson’s original proof appeared in “Memoir on the integration of
some partial differential equations and, in particular, that of the general equation of movement of
elastic fluids,” Mem. Acad. Sci. Paris 3:121–176 (1818).



4.5 Uniqueness of Solutions of Acoustic Boundary-Value Problems 199

Fig. 4.11 Geometry for
discussion of Poisson’s
theorem, which relates the
acoustic pressure at xo at
time t to the value and the
time and spatial derivatives of
the acoustic pressure at time
t − R/c averaged over the
surface of a sphere of radius
R centered at xo

to−(R/c) to to the spherical region must be entirely within the fluid. Let p̄(xo, R, t)

be the average (spherical mean) of p(xo + nR, t) over the spherical surface, i.e.,

p̄(xo, R, t) = 1

4πR2

∫∫
p(xo + nR, t) dS, (4.5.1)

where n is the surface’s outward unit normal vector. Then Poisson’s relationship
(derived further below) is

p(xo, to) =
[(

∂

∂R
+ 1

c

∂

∂t

)
Rp̄(xo, R, t)

]
t→to−R/c

. (4.5.2)

This implies that if one knew p , n · ∇p, and ∂p/∂t at all points on the surface at
time to −R/c, this information would be sufficient to determine p(xo, to) at a time
R/c later. (The relation also holds if one replaces c by −c.)

To demonstrate Eq. (2) it is sufficient to choose the coordinate system so that xo

is at the origin and to use spherical coordinates (r, θ, φ). Since p satisfies the wave
equation, one has (with r set to R)

lim
ε→0

1

4π

∫ 2π

o

∫ π−ε

ε

(
∇2p − 1

c2

∂2p

∂t2

)
sin θ dθ dφ = 0.
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Here, in terms of spherical coordinates, the Laplacian15 of p is

∇2p = 1

r

∂2

∂r2 rp + 1

r2 sin θ

θ

∂θ

(
sin θ

∂p

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2 p, (4.5.3)

but the second and third terms give no contribution to the above average over solid
angles since ∂p/∂θ is finite at θ = 0 and θ = π and p is periodic in φ with
period 2π . The angular averaging operation can be carried out on p first [giving the
spherical mean p̄(0, R, t)] for the remaining two terms in the integrand because
R and t are independent of θ and φ. Consequently, p̄(0, R, t) satisfies the wave
equation (1.12.2) for a spherically symmetric wave.

15Spherical coordinates constitute an orthogonal curvilinear coordinate system (discussed in
general here for future reference). If ξ1, ξ2, ξ3 are properly ordered coordinates, the unit vectors
ai = ∇ξi/|∇ξi | must form a right-handed set such that a1 · a2 = 0, a1 × a2 = a3, etc. The
incremental-displacement vector dx can be written as

dx = h1 dξ1 a1 + h2 dξ2 a2 + h3 dξ3 a3, (i)

where

hi =
⎡
⎣∑

j

(
∂xj

∂ξi

)2
⎤
⎦

1/2

(ii)

represents distance associated with unit change in ξi . In terms of the hi , the expressions for the
gradient, divergence, Laplacian, and the ai are

∇p =
3∑

i=1

ai

1

hi

∂p

∂ξi
, (iii)

∇ · v = 1

h1h2h3

(
∂

∂ξ1
h2h3v1 + ∂

∂ξ2
h3h1v2 + ∂

∂ξ3
h1h2v3

)
, (iv)

∇2p = 1

h1h2h3

[
∂

∂ξ1

(
h2h3

h1

∂p

∂ξ1

)
+ ∂

∂ξ2

(
h3h1

h2

∂p

∂ξ2

)
+ ∂

∂ξ3

(
h1h2

h3

∂p

∂ξ3

)]
, (v)

ai =
∑
j

1

hi

∂xj

∂ξi
ej , (vi)

where e1, e2, e3 are unit vectors in the x1, x2, x3 directions and v1 = v · a1. For spherical
coordinates r, θ, φ with x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ , one finds from (ii) that
hr = 1, hθ = r, hφ = r sin θ , so Eq. (3) results from (v). These details are discussed in almost any
text on vector analysis and in many texts on mathematical techniques, electromagnetic theory, and
fluid mechanics. See, for example, I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics
and Modern Engineering, 2d ed., McGraw-Hill, New York, 1966, pp. 416–417. Expression (v)
is due to G. Lamé, “On the laws of equilibrium of the fluid ether,” J. Ec. Polytech. 14:191–288
(1834).
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If one now defines

F(R, t) = ∂

∂R
Rp̄ + 1

c

∂

∂t
Rp̄,

this wave equation can be written as

(
∂

∂R
− 1

c

∂

∂t

)
F(R, t) = 0,

which has the general solution f (t + R/c) for F(R, t). However, if one takes the
above definition for F(R, t) in the limit R → 0 (given that ∂p̄/∂R and ∂p̄/∂t

remain finite), one must identify f (t) as p̄(0, 0, t) or, equivalently, as p(0, t); so
one has p(0, t + R/c) = F(R, t). Substituting p(0, t + R/c) for F(R, t) into
the above differential equation and setting t = to − R/c, we obtain Eq. (2), thereby
verifying the theorem.

A simple consequence of Poisson’s theorem is that if, at some time t1, both
p(x, t1) and ∂p(x, t1)/∂t1 are identically zero within a sphere of radius Ro centered
at x0, then p(xo, t) must remain zero up until time t1 + Ro/c. Hence wave
disturbances (with the neglect of nonlinear terms and ambient flow) cannot move
faster than the speed of sound. If initially the acoustic field in some bounded or
partially bounded space is zero, and if the walls are set in vibration at time tinit, the
earliest time one can expect a wave disturbance at a given point is tinit + Rmin/c,
where Rmin is the minimum distance from that point to the boundary.

The above reasoning leads to Huygens’ construction16 (see Fig. 4.12) for deter-
mination of time of onset of a wave disturbance. The surface (wavefront) separating
disturbed and undisturbed regions moves into the undisturbed region with speed c.

4.5.2 Closed Regions

We here consider the question of uniqueness when the region of interest (Fig. 4.13)
is enclosed by surfaces on which the normal component v · nS of the acoustic
fluid velocity is specified as a function of time. If the acoustic field within the
enclosure is zero before the walls begin to vibrate, the subsequent acoustic field
is unique. A proof17 results if one assumes that there are two such fields and

16Huygens’ exposition on the principles underlying such a construction is in his Traité de la
lumière, Leyden, 1678. For a detailed summary and relevant history, see E. Mach, The Principles of
Physical Optics, 1926, reprinted by Dover, New York, 1954, pp. 255–271. The modem viewpoint
on Huygens’ principle is described by B. B. Baker and E. T. Copson, The Mathematical Theory of
Huygens’ Principle, Oxford, 1950, pp. 1–3.
17The general method of proving uniqueness with energy integrals dates back to C. F. Gauss,
“General theorems concerning the attracting and repelling forces that vary with the inverse
square of distance,” Leipzig, 1840, reprinted in Carl Friedrich Gauss Werke, vol. 5, Königlichen
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Fig. 4.12 Huygens’
construction of a wavefront at
time to + Δt from wavefront
at time to. The new wavefront
is the envelope of spheres of
radius c Δt centered at points
on the old wavefront

then demonstrates that their difference is zero. This difference satisfies the same
(zero) initial conditions and the same homogeneous partial-differential equations,
but satisfies the requirement that Δv · nS = 0 at all boundary surfaces. The energy
theorem of Eq. (1.11.2) applies, with p replaced by Δp and v replaced by Δv. The
integral version of the latter for the total volume V takes the form

∂

∂t

∫∫∫ [
(Δp)2

2ρc2 + ρ(Δv)2

2

]
dV =

∫ ∫
Δp Δv ·nS dS, (4.5.4)

where the surface’s unit normal nS points into V .

Gesellschaft der Wissenschaften, Göttingen, 1877, pp. 197–242, especially pp. 226–237. The
generalization to the wave equation is due to G. Kirchhoff, Mechanik, 2d ed., Teubner, Leipzig,
1877, pp. 311, 336. For a modern discussion with pertinent twentieth-century references, see R.
Courant, Methods of Mathematical Physics, vol. 2, Partial Differential Equations, Interscience,
New York, 1962, pp. 642–647.
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Fig. 4.13 Geometry for
discussion of the uniqueness
of solutions of the wave
equation for a closed region
consisting of a volume V

with bounding surface S.
Here nS is the unit normal to
S pointing out of the surface
into the fluid

Since Δv · nS = 0 at every point on the surface, the volume integral in Eq. (4)
must be independent of time. The initial values of Δp and Δv, however, are zero, so
the volume integral must be zero for all time. The only way such an integral can be
zero is for its integrand to vanish. Hence, Δv and Δp are zero at all points in V for
all times. Thus, the two solutions of the boundary-value problem must be the same,
and uniqueness follows.

Uniqueness can be demonstrated similarly when p rather than v · nS is specified
at each point on the boundary, given that p and v are initially specified everywhere.
Also, one could specify the problem by giving one or the other, p or v · nS , at
each point on the bounding surfaces. One cannot arbitrarily specify both along the
boundary, since use of either one or the other might lead to different solutions.
Nevertheless, if the problem is to be physically meaningful, the boundary data taken
in a single experiment must be consistent with the mathematical model, so it should
not in principle make any difference what subset of boundary data is used in the
prediction of p and v at interior points. Also, there is here an implication for the
possible design of acoustic systems. Given the broad assumptions that lead to the
linear acoustic equations (1.5.3) and the boundary condition (3.1.2), one cannot
independently control surface pressures and normal velocities.
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Fig. 4.14 Conceptual device
used for proof of uniqueness
of transient solutions of the
wave equation for an open
region. The outer surface is at
least a distance (t − to)c from
any point on the inner
boundary; to is the time of
source excitation

4.5.3 Uniqueness and Open Regions

The above conclusions apply even when the fluid’s spatial extent is unbounded in
certain directions (see Fig. 4.14). One limits one’s attention to a finite region partly
enclosed by solid surfaces and partly enclosed by a hypothetical surface that lies
within the fluid. This latter surface is taken to be far enough removed from the
cause of the sound, e.g., some vibrating solid surface, to ensure that, for all times
of interest, the wave disturbance has not yet reached it. The existence of such a
surface is guaranteed by Poisson’s theorem. One chooses it to be at least a distance
(c)(t − to), to being time of initial source excitation, from any active surface. Then
p and v are zero on the surface. Consequently, if one postulates two solutions, each
initially zero, and specifies that they must both satisfy the same boundary conditions
(specified values of either p or v for all times up to t at each point on S), Eq. (4)
again results and leads to the conclusion that Δp and Δv must be zero up to time t .
The solution is unique up to time t , but since t is arbitrary, the solution is unique for
all time.

4.5.4 Sommerfeld Radiation Condition

The boundary condition that the acoustic field vanishes at points farther than (t−to)c

from the source is awkward to apply in analytical studies. Often used instead is the
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Sommerfeld radiation condition,18 which states that (in spherical coordinates)

lim
r→∞

[
r

(
∂p

∂r
+ 1

c

∂p

∂t

)]
= 0, lim

r→∞

[
r

(
∂p̂

∂r
− ikp̂

)]
= 0. (4.5.5)

(The constant-frequency version results from the first equation with the prescription
∂/∂t → −iω.) This can be derived, given that all the bodies generating or perturbing
the acoustic field are within a finite region centered at the origin. At sufficiently large
distance r , the acoustic field varies more strongly with radial displacements than
with displacements perpendicular to the radial direction, and ∇2p is approximately
r−1∂2(rp)/∂r2; one therefore concludes that p at large r is of the form of Eq.
(1.12.3), where the functions f and g depend on the angular coordinates θ, φ,
in addition to r and t . The function g(t + r/c, θ, φ) is argued to be zero from
causality considerations, so one is left with just the f term, the error being of the
order of 1/r2 times another function of t−r/c, θ , and φ. Consequently, one obtains
the radiation condition (5) above.

An equivalent statement of the Sommerfeld radiation condition is

lim
r→∞ {(p − ρcvr)} = 0, (4.5.6)

which results because the wave disturbance locally resembles a plane wave (v ≈
np/ρc) propagating in the radial direction at large r . This version leads to the
identification of ρc as the apparent specific acoustic impedance Z = p̂/v̂r
associated with a sphere of radius r in the limit of large r .

With condition (6) imposed, the boundary-value problem for sound radiation
from a collection of vibrating solids all of finite extent and on the surface of each
of which either p or v · nS is prescribed (but not both) must also have a unique
solution. If one assumes that there are two solutions, then Eq. (4) holds. If V is
taken to be finite and bounded by a sphere of large radius r [not necessarily greater
than (t − to)c], the right side is not a priori zero but reduces, because of Eq. (6), to
the nonpositive quantity

−
∫ ∫

Sr

ρc(Δvr)
2 dS,

18A. Sommerfeld, “The Green’s function of the oscillation equation,” Jahresber. Dtsch. Math.
Ver., 21:309–353 (1912). Sommerfeld’s Ausstrahlungsbedingung appears on p. 331. For later
statements of radiation conditions (and proofs of uniqueness) see K. Rellich, “On the asymptotic
behavior of solutions of ∇2u + ku = 0 in infinite regions,” ibid., 53:57–64 (1943); F. V.
Atkinson, “On Sommerfeld’s radiation condition,” Phil. Mag.(7)40:645–651 (1949); C. H. Wilcox,
“A generalization of theorems of Rellich and Atkinson,” Proc. Am. Math. Soc., 7:271–276 (1956);
R. Leis, “On the Neumann boundary value problem for the Helmholtz oscillation equation,” Arch.
Ration. Mech. Anal. 2:101–113 (1958); C. H. Wilcox, “Spherical means and radiation conditions,
” ibid. 3:133–148 (1959).
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where the integration extends over the sphere of radius r (on which nS is −er ). The
time integral of the above cannot be positive, so the volume integral in (4) is either 0
or negative at any given instant. It cannot, however, be negative, so it must be zero.
One concludes that Δv and Δp are zero throughout the volume V and, in particular,
that Δvr is zero on the outer sphere. The solution is therefore unique.

4.5.5 Uniqueness of Constant-Frequency Fields

A constant-frequency acoustic field (or the Fourier transforms of acoustic variables
in a transient disturbance) is uniquely specified in a closed volume V when p̂, v̂ ·nS ,
or Z = p̂/(−v̂ ·nS) (but only one of the three at any point) is given at each and every
point on the confining surface S, providing that, on one portion of S, it is Z (rather
than p̂ or v̂ ·nS) that is specified and on this surface Re{Z} > 0 and |Z| is finite. The
proof results from the corollary ∇ · (Re p̂∗v̂) = 0 of the steady-state field equations
(1.8.12). If one has two solutions, the differences Δp̂ and Δv̂ must also satisfy
this divergence relation; the integral of such a relation over V , in conjunction with
Gauss’s theorem, requires a zero value for the integral of Re{(Δp̂∗ Δ ˆv ·nS) over the
surface confining the volume V . If both solutions are required to satisfy boundary
conditions with either p̂ or v̂ ·nS (but not both) prescribed on various portions of S,
then Δp̂ or Δv̂ · nS , respectively, will vanish on those portions. On the remaining
portions, the specific impedance Z = p̂/(−v̂·nS) is prescribed, so Δp̂ = −ZΔv̂·nS

and the requirement for a zero value of the surface integral reduces to

∫∫
Re{Z} ∣∣Δv̂ ·nS

∣∣2 dS = 0, (4.5.7)

where the integral extends over just those surfaces on which an impedance boundary
condition is prescribed. Equation (7) results in the conclusion that on any surface of
finite specific impedance over which Re Z > 0 one must have Δv̂ · nS = 0. The
relation Δp̂ = −ZΔv̂ ·nS then requires Δp̂ = 0 on the same portion of surface.

The above analysis indicates that both Δp̂ and its normal derivative vanish on
some finite surface. Because Δp̂ must satisfy the Helmholtz equation (1.8.13),
each and every higher derivative of Δp̂ is zero on this surface. [For example, if
the surface lies on the z = 0 plane, Δp̂ and ∂Δp̂/∂z are zero for a finite range
of x and y. Within this range, ∂Δp̂/∂x, ∂2Δp̂/∂x2, etc. are zero because Δp̂ is
constantly zero. Similarly, ∂2Δp̂/(∂x ∂z) is zero because ∂Δp̂/∂z is constantly
zero. The Helmholtz equation then predicts that ∂2Δp̂/∂z2 will be zero on the
surface. Zero values for the higher derivatives result because ∂Δp̂/∂z, ∂2Δp̂/∂z2,
etc. also satisfy the Helmholtz equation.]

Since Δp̂ and all its derivatives vanish on a portion of S, the prediction of Δp̂

for points away from that surface based on a Taylor-series expansion is zero. This
then leads to the conclusion that the solution is unique.
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The analysis just given implies that sufficient boundary conditions for constant-
frequency radiation from a finite-sized vibrating body (or an assemblage of vibrating
bodies) in an open space result from specification of v̂ · nS, p̂, or Z at each point
on the body and from specification of the Sommerfeld radiation condition (6) on a
large sphere surrounding the body. The latter device formally makes the open region
appear to be a finite volume V ; because ρc is real and positive, there is a portion (the
outer sphere) of the confining surface on which Re Z > 0; the solution is therefore
unique.

Since predictions of acoustic fields can be modeled as boundary-value problems,
one has considerable latitude in the selection of what data might be taken in the near
field of a source to predict the field at moderate to large distances. Over any surface
(see Fig. 4.15) enclosing the source one can measure either p̂ or v̂ · n. The source
need not be a vibrating solid, and the surface on which near-field measurements
are made need not be the surface of the source, but it is required that the acoustic
field equations hold outside the surface of measurement. Because such data lead
(although, possibly with the aid of a large computer) to a unique prediction of the
field outside the surface, any such prediction of p̂ or v̂ at a distant point is the same
as would be obtained from any other valid choice of near-field data.

Fig. 4.15 An implication of
the uniqueness theorem: the
acoustic field outside any
surface S′ enclosing the
source can be determined
from the knowledge of either
p or v ·n on S′
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4.6 The Kirchhoff–Helmholtz Integral Theorem

Discussions of sound radiation are often facilitated by a mathematical theorem19

due to Kirchhoff and Helmholtz, derived here for an isolated vibrating body (or for
a fixed surface enclosing a source) in an otherwise unbounded fluid; each point on
the surface S of the body vibrates with the same angular frequency ω.

The derivation begins with the vector identity20

G(∇2 + k2)p̂ − p̂(∇2 + k2)G = ∇ · (G∇p̂ − p̂∇G), (4.6.1)

where G is any function of position. Both sides are integrated over a volume V

consisting of all points outside S that are within some large sphere of radius R

centered at the origin. The contribution from the first term on the left is zero because
(∇2 + k2)p̂ = 0 within V . Gauss’s theorem transforms the volume integration over
the right side into a surface integral; there are contributions from the inner surface
S and from the outer sphere. The integration accordingly yields

−
∫∫∫

p̂(∇2 + k2)G dV = −
∫ ∫

S

(G∇p̂ − p̂∇G) ·nS dS + IR, (4.6.2)

where

IR = R2
∫ 2π

o

∫ π

o

(
G

∂p̂

∂R
− p̂

∂G

∂R

)
sin θ dθ dφ (4.6.3)

is the surface integral over the outer sphere. The minus sign appears in front of the
first term on the right of (2) because nS is here understood to point out of the surface
S into the external volume.

We stipulate that G is a Green’s function Gk(x|xo) that throughout V satisfies the
inhomogeneous Helmholtz equation (4.3.10). This stipulation causes the left side of
Eq. (2) to be 4πp̂(xo) (given that xo is in V ) because of the integral property of the
Dirac delta function. Moreover, if G is required to satisfy the Sommerfeld radiation
condition, if |G| goes to zero at least as fast as 1/R at large R, and if p̂ has the same
properties (which must be true for the actual solution), IR vanishes in the limit of
large R. Because the remaining terms in (2) are independent of the choice for R,

19Helmholtz, “Theory of air oscillations . . . ,” especially pp. 22–25; G. Kirchhoff, “Toward a theory
of light rays,” Ann. Phys. Chem. 18:663–695 (1883), especially pp. 666–669. A frequently cited
modern derivation is that of J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York,
1941, pp. 424–428. The basic mathematical ideas were used in the case of Laplace’s and Poisson’s
equations by Green, Essay on the Application of Mathematical Analysis, 1828.
20Green’s theorem can be derived from this by integrating both sides over a fixed volume, then
converting the integral on the right to a surface integral by means of Gauss’s theorem. Green,
Essay on the Application of Mathematical Analysis, 1828.
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one must conclude that IR is identically zero for any sphere containing the surface
and the point xo. Thus, for xo exterior to S, Eq. (2) reduces to

p̂(xo) = − 1

4π

∫
F

∫
(G∇p̂ − p̂∇G) ·nS dS, (4.6.4)

where the integration extends over the vibrating surface only. (If xo were within the
interior of S, a similar equation would result but with the left side replaced by zero.)

One has some latitude in the selection of the Green’s function G. One could
choose it, for example, so that G or ∇G · nS vanishes on the surface S, and then
one of the two terms in the integrand of (4) would drop out and one would need to
only know (besides G) p̂ or ∇p̂ · nS , respectively, to evaluate p̂(xo). However, the
simplest explicit choice for G is the free-space Green’s function R−1eikR; we here
make this choice to obtain the Kirchhoff–Helmholtz integral theorem.

One may note, from Eq. (1.8.12), that ∇p̂ · nS = i ωρv̂n, and also that

∇G = x − xo

R3 (ikR − 1)eikR. (4.6.5)

The transient version of Eq. (4) can consequently be identified with the prescriptions
that iω → −∂/∂t and that a factor eikR multiplying e−iωt is equivalent to shifting t

to t − R/c. Thus, with the symbol change x → xS, xo → x we obtain

p(x, t) = ρ

4π
∈
∫

v̇n(xS, t − R/c)

R
dS

+ 1

4πc

∫ ∫
eR ·nS

(
∂

∂t
+ c

R

)
p(xS, t − R/c)

R
dS, (4.6.6)

where here we write R = |x − xS | and eR = (x − xS)/R. The symbol xS here
denotes a point on the surface of the body; x denotes a point outside the body. [The
derivation of Eq. (4) led to a representation of the listener location by the symbol
xo, but since the choice of symbols to denote position is only a matter of definition,
one can make the substitutions x → xS and xo → x.] The constant-frequency
version of the Kirchhoff–Helmholtz integral theorem is recovered if one replaces
v̇n(xS, t − R/c) by −iωv̂n(xS)e

ikR, ∂/∂t → −iω, etc.
Result (6) holds if x is any point outside S and, in particular, if x = x′

S
+ n′

S
δ

is a point displaced a slight distance δ from a point x′
S

on the surface. In the limit
as δ becomes zero, the integrands become singular, but the right side of (6) remains
finite and approaches the sum of the principal values (i.e., omit a small patch of
radius ε centered at x′

S
and take the limit as ε → 0) of the integrals plus 1

2p(x, t).
Alternately, one can regard the right side of (6) as yielding 1

2p(x, t) rather than
p(x, t) when x is on the surface. If x is inside the surface, the right side should
yield zero.

Equation (6) or its constant-frequency counterpart is not a solution of an acoustic
boundary-value problem since, as discussed in the previous section, one cannot
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specify both p and vn independently on the surface. Instead, it is a corollary of the
governing partial-differential equation and of the Sommerfeld radiation condition.
If v̂n, for example, is specified on S, the solution of the acoustic boundary-value
problem will have to be such that it gives values of p̂(xS) on the surface S satisfying
the x → xS version (as described above) of Eq. (6). Such an equation can be
regarded as an integral equation for p̂(xS) and, indeed, the numerical solution of
this integral equation is a common first step for prediction of the acoustic field of a
vibrating object.21

4.6.1 Multipole Expansions of the Kirchhoff–Helmholtz
Integral

The integral theorem leads to convenient expressions for the coefficients in the
multipole expansion of a small vibrating body.22 Let us assume that the body is
confined to the vicinity of the origin and that any dimension a characterizing the
body’s size satisfies the criterion ka 
 1, where k = ω/c and ω is any angular
frequency characterizing the surface vibrations. For simplicity, we here use the
transient expression (6); the constant-frequency result can be determined with the
prescription that the retarded time t−R/c in the argument of a function corresponds
to the presence of a factor of eikR in the complex amplitude and with the replacement
of ∂/∂t by −iω.

The derivation of an appropriate multipole expansion is similar to that of
Eq. (4.4.12). One replaces p(xS, t − R/c)/R by the expansion resulting from
the application of the operator exp (−xS · ∇) to p(xS, t − r/c)/r , where the
exp (−xS ·∇) = 1−xS ·∇+· · · is the expansion operator in Eq. (4.4.11b). A similar
expansion replaces v̇n(xS, t −R/c)/R. Note also that the operator eR(∂/∂t + c/R)

applied to p(xS, t − R/c)/R is equivalent to −c∇ applied to the same function.
Thus, Eq. (6) becomes

p(x, t) = ρ

4π

∫
int[exp (−xS ·∇)] v̇n(xS, t − r/c)

r
dS

21Solution of the integral equation is not unique for certain discrete frequencies, but can be made
unique if one specifies that the Kirchhoff–Helmholtz integral vanishes for all x within the surface.
[H. A. Schenck, “Improved integral formulation for acoustic radiation problems,” J. Acoust. Soc.
Am. 44:41–58 (1968); L. G. Copley, “Fundamental results concerning integral representations in
acoustic radiation,” ibid. 44:28–32 (1968); P. H. Rogers, “Formal solution of the surface Helmholtz
integral equation at a nondegenerate characteristic frequency,” ibid. 54:1662–1666 (1973).]
22H. L. Oestreicher, “Representation of the field of an acoustic source as a series of multipole
fields,” J. Acoust. Soc. Am. 29:1219–1222 (1957), 30:481 (1958).



4.7 Sound Radiation from Small Vibrating Bodies 211

− 1

4π

∫ ∫
[exp (−xS ·∇)](nS ·∇)

p(xS, t − r/c)

r
dS.

(4.6.7)

A rearrangement of terms and application of differential calculus identities subse-
quently yields the multipole expansion

p = S(t − r/c)

r
−∇· d(t − r/c)

r
+

3∑
μ,ν=1

∂2

∂xμ∂xν

Qμν(t − r/c)

r
+· · · , (4.6.8)

where

S(t) = ρ

4π

∫∫
v̇n(xS, t) dS = ρ

4π
Q̇S(t), (4.6.9a)

d(t) = 1

4π

∫∫
[ρxS v̇n(xS, t) + nSp(xS, t)] dS, (4.6.9b)

Qμν(t) = 1

8π

∫∫
[ρxSμxSνv̇n(xS, t) + (xSμnν + xSνnμ)p(xS, t)] dS

(4.6.9c)

are identified as the monopole function, the dipole-moment vector, and the μνth
quadrupole component, respectively. Definition (9c) is such that Qμν = Qνμ. In
Eq. (9a), QS(t) is the instantaneous time derivative of the volume enclosed by
a surface that moves with the same normal velocity as the fluid just outside the
reference surface S and is consequently identified as the source strength.

4.7 Sound Radiation from Small Vibrating Bodies

We have seen (Sects. 4.1 and 4.2) that simple expressions result for the sound
radiation from spherical bodies undergoing radial or transverse oscillations in the
limit ka 
 1. Similar expressions, appropriate for sound at large distances from
small vibrating bodies of arbitrary shape, are derived here. The analysis also gives
some insight into the nature of acoustic fields near such bodies.

For vibrations of a given angular frequency ω or, alternately, of a given value
of k = ω/c, the boundary-value problem for radiation from an isolated vibrating
body is posed by the Helmholtz equation (1.8.13), by a specification of the normal
component v̂S ·n = v̂n of the complex amplitude of the outward-normal component
of the body’s surface velocity, and by the Sommerfeld radiation condition. The
boundary condition (3.1.2) implies that at the surface, n · ∇p̂ should be ikρcv̂n.
The resulting boundary-value problem, in accordance with the remarks in Sect. 4.5,
should have a unique solution.
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An approximate solution scheme results from consideration of a sequence of
problems in which the frequency and therefore k varies continuously from problem
to problem, but for which the complex surface velocity amplitude v̂n at a given point
on the surface is held fixed. If we let a be a representative length characterizing the
dimensions of the body, then ka is a dimensionless parameter distinguishing various
problems in the overall set. Two possible expansions of p̂ in terms of ka would be
an inner expansion in which r/a is kept fixed and an outer expansion in which kr

is kept fixed. Such expansions exist as simple power series in ka for the known
solutions [see Eqs. (4.1.4), (4.2.5), and (4.2.6)] for a radially oscillating sphere and
for a transversely oscillating rigid sphere, so one can proceed with some hope of
finding such expansions for more general classes of vibrating bodies. The leading
term in the inner expansion should be at most of order ka; that in the outer expansion
should be at most of order (ka)2. Thus, one can write the inner expansion as

p̂ =
N∑

n=1

p̂in,n + Rin
N, (4.7.1a)

where p̂in,n is of the form

p̂in,n = iρcv̂typ(ka)
nFn

( r
a
, θ, φ

)
, (4.7.1b)

with the dimensionless functions Fn(r/a, θ, φ) for n = 1, 2, . . ., yet to be
determined. Here v̂typ is some typical value of the v̂n; the quantity Rin

N is the
remainder. Similarly, the outer expansion can be written as

p̂ =
N∑

n=2

p̂out,n + Rout
N , (4.7.2a)

with

p̂out,n = iρcv̂typ(ka)
nGn(kr, θ, φ). (4.7.2b)

These are (at worst) asymptotic expansions in the sense that, for given ε, r/a, φ, θ ,
and N , there is some finite value δ such that if ka < δ, the remainder Rin

N in the
inner expansion has absolute value less than ε(ka)N+1, even though, for fixed ka,
the quantity |Rin

N | may not go to zero when N becomes large without limit.
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The method of matched asymptotic expansions23 as applied to the general
boundary-value problem posed above is a scheme whereby the p̂in,n and p̂out,n can
be determined in a systematic fashion from the following requirements:

1. Both Eqs. (1a) and (2a) represent solutions of the Helmholtz equation.
2. The inner expansion (1a) must satisfy the inner boundary condition.
3. The outer-expansion terms must satisfy the Sommerfeld radiation condition.
4. The first few terms in both expansions describe the same function in a hypothet-

ical range where a 
 r 
 1/k.

Requirement 1 applied to the inner expansion is satisfied when Eqs. (1) are
substituted into the Helmholtz equation and when the resulting coefficients of
different powers of ka are equated to zero. Similarly, requirement 2 is satisfied if
the inner expansion is substituted into the inner boundary condition and if this is
required to be identically satisfied for arbitrary ka. In this manner, the following
sequence of (incompletely posed) boundary-value problems results:

∇2p̂in,1 = 0 with n ·∇p̂in,1 = iωρv̂n on S, (4.7.3a)

∇2p̂in,2 = 0 with n ·∇p̂in,2 = 0 on S, (4.7.3b)

∇2p̂in,3 = −k2p̂in,1 with n ·∇p̂in,3 = 0 on S. (4.7.3c)

The form of the outer expansion can be derived from the constant-frequency
version of the multipole expansion, Eq. (4.6.8), of the Kirchhoff–Helmholtz integral.
For the evaluation of coefficients depending on surface pressure, we use the inner
expansion, Eq. (1a), for p̂. Thus, one can consider d̂ and the Q̂μν as being expanded
in a power series in ka, that is, d = d̂1 + d̂2 + · · · , etc., where d̂1 results from
Eq. (4.6.9b) with v̇n replaced by −iωv̂n and with p replaced by p̂in,n and where

4π d̂n =
∫∫

nSp̂in,n dS, n ≥ 2. (4.7.4)

The Q̂μν,n are defined analogously with reference to Eq. (4.6.9c).

23Texts discussing the method of matched asymptotic expansions are A. H. Nayfeh, Perturbation
Methods, Wiley-Interscience, New York, 1973, pp. 111–154; J. D. Cole, Perturbation Methods
in Applied Mathematics, Blaisdell, Waltham, Mass., 1968, pp. 11–78, 129–162; M. Van Dyke,
Perturbation Methods in Fluid Mechanics, Academic, New York, 1964, pp. 77–97. A general
review of the method as applied to acoustics is given by M. B. Lesser and D. G. Crighton, “Physical
Acoustics and the Method of Matched Asymptotic Expansions,” in W. P. Mason (ed.), Physical
Acoustics, vol. 11, Academic, New York, 1976, pp. 69–149. The modern development of the
method was inaugurated by S. Kaplun, P. A. Lagerstrom, and J. D. Cole in articles published c.
1955. The basic concept that the near field of a small vibrating body is approximately the same as if
the fluid were incompressible can be discerned in papers by Rayleigh published in 1871 (Rayleigh
scattering) and 1897.
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One can establish from Eq. (4.6.9a) that Ŝ is of the form −iρcv̂typka
2 times a

dimensionless quantity independent of ka. Similarly, from Eqs. (1b) and (4.6.9b),
one establishes that each d̂n is of the form of −iρcv̂typa

2(ka)n times such a
dimensionless quantity. Each of the Q̂μν,n is of the form of −iρcv̂typa

3(ka)n

times a dimensionless quantity independent of ka. Analogous considerations hold
for the coefficients arising from higher-order terms in the multipole expansion.
Consequently, a comparison of the ka dependence for fixed kr of the various order
(in ka) terms in the multipole expansion with those in the outer expansion results in
the identifications

p̂out,2 = Ŝ
eikr

r
, (4.7.5a)

p̂out,3 = −d̂1 ·∇ eikr

r
, (4.7.5b)

p̂out,4 =
(

−d̂2 ·∇ eikr

r

)
+

3∑
μ,ν=1

Qμν,1
∂2

∂xμ ∂xν

eikr

r
. (4.7.5c)

[Below it is demonstrated that the dipole term (in parentheses) of Eq. (5c) is zero.]
The determination of boundary conditions for the asymptotic behavior at large

r of the inner expansion functions p̂in,n is accomplished with the help of a general
matching condition that both expansions represent the same function at intermediate
distances r , where a 
 r 
 1/k, so that the inner expansion’s form at large r/a

should resemble the outer expansion’s form at small ka. The latter can be derived
by expanding each of the eikr appearing in Eqs. (5) in a power series in kr

eikr =
∞∑

m=0

(ika)m(r/a)m

m! , (4.7.6)

so that one has, for example, that the mth term in the expansion of [∂2/(∂xμ ∂xν]
(r−1eikr ) is (ka)m/a3 times a dimensionless function of r/a, θ , and φ. Thus, since
Q̂μν,1 is −iρcv̂typka

4 times a dimensionless quantity independent of ka, the product
of Q̂μν,1 and the mth term in the kr expansion varies with ka for fixed r/a as
(ka)m+1. Consequently, such a term gives information concerning p̂in,n for n =
m + 1 at large r/a. In such a manner, one establishes that, in the limit of large r/a,

p̂in,1 → Ŝ

r
− d̂1 ·∇ 1

r
+

3∑
μ,ν=1

Q̂μν,1
∂2

∂xμ ∂xν

1

r
− · · · , (4.7.7a)

p̂in,2 → ikŜ − d̂2 ·∇ 1

r
+

3∑
μ,ν=1

Q̂μν,2
∂2

∂xμ ∂xν

1

r
− · · · , (4.7.7b)
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p̂in,3 → −1

2
k2

⎛
⎝Ŝr − d̂1 ·∇r +

3∑
μ,ν=1

Q̂μν,1
∂2r

∂xμ ∂xν
− · · ·

⎞
⎠

− d̂3 ·∇ 1

r
+

3∑
μ,ν=1

Q̂μν,3
∂2

∂xμ ∂xν

1

r
− · · · . (4.7.7c)

That Eqs. (7) are consistent with Eqs. (3) follows since the individual terms in
Eqs. (7a) and (7b) are solutions of Laplace’s equation ∇2ψ = 0. Also, since ∇2r =
2/r [see Eq. (4.5.3)], Eqs. (7a) and (7c) are such that ∇2p̂in,3 = −k2p̂in,1. The
function p̂in,1 is uniquely determined by Eq. (3a) and by the requirement, derived
from (7a), that it goes to zero at large r at least as fast as 1/r . That the asymptotic
expansion of p̂in,1 should be given by Eq. (7a), where the coefficients Ŝ, d̂1, Q̂μν,1
are given by the constant-frequency versions of Eqs. (4.6.9) with p̂ → p̂in,1, follows
from the k = 0 analog of the multipole expansion of the Kirchhoff–Helmholtz
integral.

The only way the asymptotic expansion (7b) can be consistent with the boundary
condition in Eq. (3b) that ∇p̂in,2 · n = 0 on the vibrating surface is for one to have
p̂in,2 = ikŜ identically. Equation (4) then yields the relation d̂2 = 0. The Q̂μν,2

calculated from Eq. (4.6.9c) (with the vn term omitted and p replaced by ikŜ) are
zero unless μ = ν. The third term in Eq. (7b) vanishes nevertheless because all
three of the Q̂μν,2 are equal and because ∇2(1/r) = 0. Analogous considerations
apply to the higher-order terms.

We now summarize the results of the preceding analysis, explicitly taking into
account the time dependence using the prescription −iω → ∂/∂t and using the
correspondence of the factor eikr to the time shift t → t − r/c. Equations (3a) and
(3b) imply that up to second order in ka the acoustic pressure at distances r 
 1/k
satisfies Laplace’s equation (which results for incompressible potential flow),

∇2pin(x, t) = 0, (4.7.8a)

with the boundary condition

n ·∇pin(xS, t) = −ρ
∂

∂t
vn(xS, t) (4.7.8b)

at points xS on the surface of the vibrating body. At large r/a the inner solution
approaches

pin(x, t) →
⎡
⎣S(t)

r
− d1(t)·∇ 1

r
+

3∑
μ,ν=1

Qμν,1(t)
∂2

∂xμ ∂xν

1

r
− · · ·

⎤
⎦− Ṡ(t)

c
,

(4.7.9)
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where S(t), d1(t), and the Qμν,1(t) are as given by Eqs. (4.6.9), the latter two with
p replaced by pin. The quantity in brackets corresponds to first order in ka (for fixed
r/a), and the last term corresponds to second order. Equation (9) imposes an outer
boundary condition on pin, that it plus Ṡ/c go to zero at least as fast as 1/r . In
conjunction with Eqs. (8), this specifies pin(x, t), d1(t), and the Qμν,1(t) uniquely.

Another implication of the analysis is that the acoustic-pressure field at r � a is
given up to fourth order in ka (for fixed kr) by24

pout = S(t − r/c)

r
−∇·d1(t − r/c)

r
+

3∑
μ,ν=1

∂2

∂xμ ∂xν

Qμν,1(t − r/c)

r
, (4.7.10)

where the monopole, dipole, and quadrupole terms correspond, respectively, to
second, third, and fourth order in ka for fixed kr . This satisfies the wave equation
and matches Eq. (9).

The monopole term in Eq. (10) is the same [see Eq. (4.1.6)] as derived for the
radially oscillating sphere in the limit ka 
 1. The implication here, however, is that
this should be a good approximation for sound radiation at distances r � a from any
small vibrating body whose volume changes with time. This confirms the assertion
that any sufficiently small source with time-varying volume can be considered as a
point monopole source regardless of the shape of the body.

Instances when the monopole term might be insufficient to explain radiation from
a small vibrating body are when the body is moving very nearly as a rigid body or it
is a vibrating plate or shell whose thickness changes negligibly. For the latter case,
vnxS is equal and opposite on opposite sides of the shell, so the integral over the
first term vanishes in Eq. (4.6.9b). Since the surface integral over pnS is the net
force F (t) exerted by the body on the surrounding fluid, one identifies the leading
term in the acoustic-pressure field at r � a as being the same as Eq. (4.4.5), derived
for a point force applied to a fluid.

For a rigid body, one can in general write (see Sect. 3.1) vn as n · (vC + Ω × xS),
where vC(t) is the velocity of the body’s geometric center (taken as the origin)
and Ω(t) is the body’s angular velocity. In such a case, an application of Gauss’s
theorem converts the surface integral of xS v̇n to the volume integral

∫∫
xS v̇n dS =

∫∫∫
[v̇C + Ω̇ × x + ∇ · (Ω̇ × x)] dV = ρ−1md v̇C. (4.7.11)

The second equality results because the choice of geometric center as origin forces
the volume integral of x to be zero and because ∇ · (Ω × x) = 0. (Here md is the
mass of fluid displaced by the body.) Consequently, the dipole-moment vector d1(t)

24A brief derivation of the first two terms here (taken individually) is given by L. D. Landau and E.
M. Lifshitz, Fluid Mechanics, Addison-Wesley, Reading, Mass., 1959, pp. 280–281. Although
Landau and Lifshitz do not use the full liturgy of what is now called the method of matched
asymptotic expansions, their approach employs the same concepts.
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Fig. 4.16 Example of a
quadrupole radiator: a
symmetric rigid body
undergoing rocking motion
about its geometric center (If
the cross section is a square,
the radiation is octupole)

is 1/4π times F 1(t) + md dvC/dt , and the leading term in the associated pressure
field at r � a is25

pdipole = − 1

4π
∇ ·

{
1

r

[
F 1

(
t − r

c

)
+ md v̇C

(
t − r

c

)]}
. (4.7.12)

This is consistent with the result (4.2.13) for radiation from a transversely oscillating
sphere in the limit ka 
 1. Since, for that special case, F 1(t) = 1

2mddvC/dt , the
sum F1+mddvC/dt is 3

2mddvC/dt and, with md = 4
3πa

3r and a vector identity, the
above reduces to Eq. (4.2.13).

Instances where a vibrating body would radiate predominantly as a quadrupole
would be when (1) the intrinsic symmetry of the body and of the vibration is such
that F 1(t) must be identically zero and (2) either v̇C is identically zero throughout
the motion or the vibrating body can be modeled as a thin shell. As an example,
consider the rigid body in Fig. 4.16, whose nominal position is such that its surface
is even in x and y, the body undergoing rocking oscillations about the z axis passing

25An alternate derivation applicable when F 1 and vC are parallel, e.g., because of symmetry, dates
back to H. Lamb, The Dynamical Theory of Sound, 2d ed., 1925, reprinted by Dover, New York,
1960, pp. 240–241. A general statement, developed by H. M. Fitzpatrick and M. Strasberg, c.
1957, is summarized by Strasberg, “Radiation from unbaffled bodies of arbitrary shape at low
frequencies,” J. Acoust. Soc. Am., 34:520–521 (1962).
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Fig. 4.17 A symmetric bell
vibrating in a mode that
produces quadrupole
radiation

through its geometric center. The symmetry of the body and of the motion requires
that vn be antisymmetric in x and y, so the normal derivative of p at the surface is
also antisymmetric in x and y. Since the wave equation and the radiation condition
are unchanged if x → −x or if y → −y, the solution of the resulting boundary-
value problem must conform to the symmetry properties of the boundary conditions,
so p is odd in both x and y. This automatically rules out monopole and dipole fields.
The symmetry requires that the lowest-order (in some ka) outer solution for fixed
kr be a lateral quadrupole field of the form

pQ = 2
∂2

∂x ∂y

Qxy,1(t − r/c)

r
. (4.7.13)

Another example of quadrupole radiation is a vibrating bell26 (see Fig. 4.17).
When the bell is vibrating with constant frequency in any one of its natural vibration
modes, the bell’s circular symmetry requires the normal velocity v̂n to be periodic
in azimuthal angle φ with period 2π/N , where N is an integer. Any breathing mode
with N = 0 typically corresponds to a frequency far above the audible range;
one mode with N = 1 is a simple pendulum oscillation (caused by gravity) and
corresponds to an infrasonic frequency; other N = 1 modes involve flexing (as
in transverse vibration of a beam) of the bell without changing the circular shapes
of its cross sections and correspond to ultrasonic frequencies. Since the pressure

26The first mathematical discussion of note of sound radiation by bells is that of Stokes, “On
the communication of vibration,” 1868, who modeled the bell as a sphere. His identification of
the radiation as quadrupole is implicit in his choice of the spherical harmonic of second order to
describe “the principal vibration for a sphere vibrating in the manner of a bell.” J. W. S. Rayleigh,
The Theory of Sound, 2d ed., Dover, New York, 1945, vol. 2, sec. 324, quotes the relevant passages
from Stokes’s paper verbatim. An extensive discussion of vibrations of bells and of their acoustic
radiation is given by Rayleigh, “On bells,” Phil. Mag.(5)29:1–17 (1890).
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radiated by any mode has the same φ dependence as v̂n, one concludes that the
monopole and dipole terms vanish identically for any vibration corresponding to
audible frequencies. The only vibrational modes giving rise to quadrupole radiation
are those corresponding to N = 2, and if the bell’s symmetry axis is the z axis, the
only nonzero quadrupole components are Qxy = Qyx, Qxx , and Qyy . Symmetry
also requires Qxx = −Qyy . Thus, the radiated acoustic pressure at r � a is given
predominantly by an expression of the form

pQ = 2
∂2

∂x ∂y

Qxy,1(t − r/c)

r
+
(

∂2

∂x2 − ∂2

∂y2

)
Qxx,1(t − r/c)

r
. (4.7.14)

An implication27 of this equation is that there should be no sound along the z axis
(x = 0, y = 0).

4.8 Radiation from a Circular Disk

As an application of the analytical technique described in the previous section,
we here consider a small circular disk28 (see Fig. 4.18) of radius a oscillating
parallel to its axis with velocity vC(t). Such an example furnishes a model for sound
radiation from an unbaffled loudspeaker and leads to a prediction of acoustic power
substantially less than what would be obtained if the loudspeaker were mounted in
a baffle. If the disk nominally lies in the xy plane with its center at the origin, the
inner boundary condition is that vz = vC(t) for w < a, where w = (x2 + y2)1/2,
and for z both slightly greater and slightly less than 0.

The boundary-value problem for determination of the inner field can be posed in
terms of a velocity potential Φin(x, t), whose gradient is vin and which is such that
pin = −ρ ∂Φin/∂t . It follows from Eqs. (4.7.8) that Φin should satisfy Laplace’s
equation and satisfy the boundary condition ∂Φin/∂z = vC(t) for w < a and for
z = 0+ and z = 0−.

27J. W. S. Rayleigh, “Acoustical observations I,” Phil. Mag. (5)3:456–464 (1877).
28The problem of radiation by a vibrating disk is closely related to that of diffraction by a disk,
so that solution for one leads to solution of the other. This is discussed by F. M. Wiener, “On the
relation between the sound fields radiated and diffracted by plane obstacles,” J. Acoust. Soc. Am.
23:697–700 (1951). The solution of the latter problem in the small ka limit is due to Rayleigh,
“On the passage of waves through apertures in plane screens, and allied problems,” Phil. Mag.
(5)43:259–272 (1897). The low-frequency result for the oscillating disk was explicitly stated by
Lamb, Dynamical Theory of Sound, p. 241.
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Fig. 4.18 Oblate-spheroidal coordinates used in analysis of radiation from a vibrating disk. The
limiting surface ξ = 0 coincides with the disk’s nominal location

4.8.1 Oblate-Spheroidal Coordinates

The natural coordinates for the problem are oblate-spheroidal coordinates29

(ξ, η, φ), where w = a cosh ξ sin η, z = a sinh ξ cos η, x = w cosφ, y = w sinφ

with ξ ≥ 0, 0 < η < π , and 0 < φ < 2π . A surface of constant ξ is given by

w2

a2 cosh2 ξ
+ z2

a2 sinh2 ξ
= 1 (4.8.1)

and represents an oblate spheroid formed by rotation of an ellipse (distance 2a
between its foci, major semidiameter a cosh ξ , and minor semidiameter a sinh ξ )

29H. Lamb, Hydrodynamics, 6th ed., 1932, reprinted by Dover, New York, 1945, sec. 107, pp.
142–143. Our a is Lamb’s k, our ξ is Lamb’s η, our η is Lamb’s θ , our φ is Lamb’s ω.
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about its minor axis, which coincides with the z axis. The disk is a degenerate
member of this family and corresponds to the surface ξ = 0.

In oblate-spheroidal coordinates, Laplace’s equation takes the general form30

∇2Φin = 1

a2(cosh2 ξ − sin2 η)

[
1

cosh ξ

∂

∂ξ

(
cosh ξ

∂Φin

∂ξ

)

+ 1

sin η

∂

∂η

(
sin η

∂Φin

∂η

)]
+ 1

a2 cosh2 ξ sin2 η

∂2Φin

∂φ2 = 0, (4.8.2)

and the component of ∇Φin pointing in the direction of increasing ξ and perpendic-
ular to a surface of constant ξ is given in general by

∇Φin · eξ = 1

a(cosh2 ξ − sin2 η)1/2

∂Φin

∂ξ
. (4.8.3)

Here

eξ = 1

(cosh2 ξ − sin2 η)1/2

[
sinh ξ sin η (ex sin φ + ey cosφ)

+ cosh ξ cos η ez

]
(4.8.4)

is the unit vector in the direction of increasing ξ . Thus, on the surface of the disk
(ξ = 0), eξ is +ez if cos η > 0 (z = 0+) and −ez if cos η < 0 (z = 0−), so eξ is
the unit outward-normal vector n to a flat disk when ξ = 0.

4.8.2 Solutions of Laplace’s Equation

For future reference, we here digress to list three particular solutions (corresponding
to monopole, dipole, and quadrupole fields) of Eq. (2):

Fo(ξ), cos η F1(ξ), cos η sin η sinφ F 1
2 (ξ). (4.8.5)

30The general statements on p. 173n. apply to oblate-spheroidal coordinates with the identifications
ξ1, ξ2, ξ3 → ξ, η, φ. Thus one has

hξ = hη = a (cosh2 ξ − sin2 η)1/2 hφ = a cosh ξ sin η,

such that hξ dξ is incremental displacement associated with ξ → ξ + dξ , etc. Equations (2)–(4)
follow from Eqs. (v), (iii), and (vi) in the footnote with the substitutions just described.
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Their substitution into Laplace’s equation shows that each of the functions Fm
n (ξ)

(no superscript if m = 0) must satisfy the ordinary differential equation31

1

cosh ξ

d

dξ

(
cosh ξ

dFm
n

dξ

)
+
[

m2

cosh2 ξ
− n(n + 1)

]
Fm
n = 0. (4.8.6)

The equation for Fo(ξ) is relatively simple, the solution being any constant times the
indefinite integral of 1/(cosh ξ). If we require Fo(ξ) → 0 as ξ → ∞, the resulting
integration leads to

Fo(ξ) = sin−1
[

1

cosh ξ

]
. (4.8.7a)

The two differential equations for F1(ξ) and F 1
2 (ξ) have the respective proper-

ties, which can be verified by substitution that they have particular solutions

F1(ξ) = d

dξ
[(cosh ξ)Fo(ξ)], (4.8.7b)

F 1
2 (ξ) = d

dξ

[
(sinh ξ)F1 + 1

2 (cosh ξ)
dF1

dξ

]
. (4.8.7c)

Here the Fo(ξ) and F1(ξ) on the right sides are any particular solutions of the n =
0,m = 0 and n = 1,m = 0 equations. Thus, with Fo(ξ) as given above, one has

F1(ξ) = sinh ξ sin−1
(

1

cosh ξ

)
− 1, (4.8.7b’)

F 1
2 (ξ) = 3 sinh ξ cosh ξ sin−1

(
1

cosh ξ

)
− 3 cosh ξ + 1

cosh ξ
. (4.8.7c’)

Both go to zero as ξ → ∞.
For the boundary-value problem of the transversely oscillating disk, the require-

ment, that ∇Φin · n equal vC or −vC if z = 0+ or z = 0−, is satisfied if one
requires ∇Φ · eξ = vC when ξ = 0 or, from (3) above, if ∂Φ/∂ξ = vC a cosh η

when ξ = 0. This suggests that one look for a solution of Laplace’s equation of the
form cos η F(ξ), where dF(ξ)/dξ = vCa at ξ = 0 and F(ξ) → 0 as ξ → ∞.

31This is related to the differential equation satisfied by the associated Legendre functions. The
function Fm

n (ξ) is a constant times Qm
n (i sinh ξ), that is, an associated Legendre function of the

second kind with imaginary argument. Definitions and properties of the Legendre functions are
given in M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover,
New York, 1965, pp. 331–341. Our choice for Fo(ξ) is iQo(i sinh ξ). The expressions for F1 and
F 1

2 follow from Eqs. (8.5.3) and (8.6.7) in the Handbook. For derivations, see E. T. Whittaker and
G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge, 1927, pp. 318, 324.
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The function F(ξ) is identified from Eqs. (5) and (7b′) as (2avC/π)F1(ξ), so the
velocity potential of the inner field is given by32

Φin = 2avC

π
cos η

[
sinh ξ sin−1

(
1

cosh ξ

)
− 1

]
. (4.8.8)

4.8.3 Determination of the Outer Solution

The inner-field potential function is such that, on the two faces of the disk (ξ =
0, cos η = ±(1 − (w/a)2]1/2), one has33

Φin = ∓ 2vCa

π

[
1 −

(w
a

)2
]1/2

w < a, (4.8.9)

while Φin is identically 0 for w > a on the plane z = 0 (η = π/2). In the limit of
large ξ, sinh ξ sin−1(1/ cosh ξ) approaches 1 − 4

3e−2ξ and eξ → 2r/a, where r is
the radial (spherical coordinates) distance from the origin. Consequently, for r � a,
one has

Φin → 2vCa
3

3π

∂

∂z

1

r
, (4.8.10)

which is characteristic of the potential for the incompressible-flow field of a dipole.
The pressure in the far field corresponding to this is −ρ ∂Φin/∂t , so, with reference
to Eq. (4.7.9), one identifies the dipole-moment vector as

32Lamb, Hydrodynamics, sec. 108, p. 144. Our Eq. (8) follows from Lamb’s expression (3) for his
φ (which is the negative of our Φin) with μ → cos η, ζ → sinh ξ, ζo → 0, e → 1, sin−1 e →
π/2, ε → a, andU → vC . The mathematical identity cot−1(sinh ξ) = sin−1(1/ cosh ξ) has
also been used. The solution is due to E. Heine, “Concerning some problems that lead to partial
differential equations,” J. reine angew. Math. 26:185–216 (1843).
33The prediction in Eq. (9) gives infinite tangential velocity at the edge of the disk, so if the
convection term ρv · ∇v [equals to ∇(ρv2/2) for irrotational flow] is taken into account, the
pressure at the edge will also be infinite when the plate is moving with constant speed. The ideal-
fluid solution is unrealistic for the steady-motion case, the actual flow developing a wake behind
the disk and eddies being generated at the edges that are swept downstream with the fluid. In the
acoustical case, however, the disk is not moving with steady velocity but is oscillating back and
forth with a small velocity amplitude. The theoretical prediction is not valid within a distance
of the order of (2μ/ρω)1/2 from the edge of the plate (where μ is the viscosity of the fluid),
but this length is much smaller than a and the potential-flow solution gives a prediction that is
on the whole reasonably accurate. For a discussion with accompanying photographs for the related
problem of nominally steady flow past a strip (with a disclaimer in regard to the acoustical case) see
A. Sommerfeld, Mechanics of Deformable Bodies, 2d ed., 1947, Academic, New York, 1950, pp.
207–215. The feeble influence of viscosity on flows associated with oscillatory motion is explained
by Lamb, Hydrodynamics, pp. 619–623, 654–657.
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d1(t) = 2ρv̇C(t)a
3

3π
= F 1(t)

4π
. (4.8.11)

The matching procedure corresponding to Eq. (4.7.9) allows us to identify the
acoustic pressure at distances r � a (outer solution) as −∇ · [d1(t − r/c)/r].

For a transversely oscillating sphere of radius a1, the quantity md dvC/dt + Fz

is
(

3
2

) (
4
3

)
πa3

1ρ dvC/dt , while for the disk it is 8
3ρa

3 dvC/dt ; one can therefore

conclude that the far field of a transversely oscillating disk (with ka 
 1) is
equivalent to that radiated by a transversely oscillating sphere of radius a1 =
(4/3π)1/3a = 0.7515a.

4.9 Reciprocity in Acoustics

Reciprocity34 refers to situations for which a magnitude associated with an “effect”
at a point is unchanged when the locations of “cause” and “point of observation”
are interchanged.

4.9.1 Reciprocity in Vibrating Systems

As an example, consider the mechanical system in Fig. 4.19 consisting of three
coupled masses that move because of applied forces F1, F2, and F3. The motion
is influenced by a spring with spring constant k2 and by dashpots (constants c2 and
c3). If x1, x2, x3 denote the displacements of the corresponding masses, the coupled
equations of motion (derived from mechanical principles) can be written in matrix
form as

⎡
⎣ D11 −k2 −c3

d
dt

−k2 D22 −c2
d
dt

−c3
d
dt

−c2
d
dt

D33

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣F1

F2

F3

⎤
⎦ , (4.9.1)

where D11 = M1 d
2/dt2 + c3 d/dt + k2, etc. are linear operators. The pertinent

property of the matrix is its symmetry about the diagonal. Thus, if each force is
oscillating with angular frequency ω, such that F1 = Re F̂1e

−iωt , the corresponding
algebraic equations for the complex amplitudes (with the prescription d/dt →
−iω) of the velocities u1, u2, u3 (dx1/dt, dx2/dt, dx3/dt) written as

34The concept dates back to Helmholtz, “Theory of air oscillations in tubes with open ends,” 1860,
and to J. C. Maxwell, “On the calculations of the equilibrium and stiffness of frames,” Phil. Mag.
(4)27:294–299 (1864).
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Fig. 4.19 A mechanical system that satisfies the reciprocity principle

3∑
j=1

Yij ûj = F̂i i = 1, 2, 3 (4.9.2)

are such that the mobility matrix [Y ] is also symmetric35; that is, Yij = Yji .

Yij = Yji .

The solution of Eqs. (2) for the ûi takes the form

ûi =
∑
j

Zij F̂j , (4.9.3)

where the coefficients Zij are elements of the matrix [Z] representing the inverse of
[Y ]. This mechanical-impedance matrix [Z] is also symmetric (Zij = Zji) because

35This was first demonstrated by J. W. S. Rayleigh, “Some general theorems relating to vibrations,”
Proc. Lond. Math. Soc. 4:357–368 (1873); Theory of Sound, vol. 1, pp. 91–104, 150–157. The
symmetry is because a dissipation function D(ẋ1, ẋ2, . . .) exists such that Lagrange’s equations
for a conservative linear system can be extended to give

d

dt

∂T

∂ẋi
+ ∂D

∂ẋi
+ ∂V

∂xi
= Fi,

where the kinetic-energy function T and potential-energy function V are quadratic in the ẋi and
the xi , respectively. The generalized force Fi is such that Fi δxi represents the work done on the
system during an admissible variation δxi . The proof is also given by E. T. Whittaker, A Treatise
on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge University Press,
London, 1937, pp. 230–232.
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the inverse of a symmetric matrix must also be symmetric. Consequently, if a force
with complex amplitude F̂a is applied to mass Mi , no other active forces being
applied, the velocity amplitude ûj of mass Mj(j �= i) is the same as would be
obtained for the velocity amplitude of mass Mi if the force F̂a were applied to Mj .
This is a statement of the principle of reciprocity.

Another statement of the reciprocity principle comes from a consideration of
two separate experiments in which the impressed forces are given by F̂1a, F̂2a, F̂3a
and F̂1b, F̂2b, F̂3b, respectively. Let û1a, û2a, û3a and û1b, û2b, û3b denote the cor-
responding velocity amplitudes for the two experiments. Then one can demonstrate
that

∑
i

(F̂iaûib − F̂ibûia) = 0. (4.9.4)

The proof follows from either Eq. (2) or Eq. (3).
The above results [Yij = Yji, Zij = Zji , and Eq. (4)] apply to any lumped-

parameter vibrational system undergoing small-amplitude oscillations of constant
frequency. Analogous results apply to electric circuits.36 Reciprocity does not
depend on the system’s being nondissipative and is thus not directly related to any
requirement of energy conservation.

4.9.2 Reciprocity and the Linear Acoustic Equations

The linear acoustic equations derived in Chap. 1 require (given a nonmoving time-
independent ambient medium) that the complex amplitudes p̂(x) and v̂(x) for a
constant-frequency disturbance satisfy

− iωp̂ + ρc2 ∇ · v̂ = 0 − iωρv̂ + ∇p̂ = 0. (4.9.5)

These also apply if ρ and c are position-dependent, given that po is constant; in
what follows, we allow for this possibility.37 Suppose one has two sets of solutions,
p̂a, v̂a and p̂b, v̂b, of the above equations. Then, the following statement (leading to
a reciprocity principle) is in general true:

36See, for example, H. H. Skilling, Electrical Engineering Circuits, Wiley, New York, 1957, pp.
303–304, 331–332.
37The proof of the acoustic-reciprocity principle for an inhomogeneous medium is due to L. M.
Lyamshev, “A question in connection with the principle of reciprocity in acoustics,” Sov. Phys.
Dokl. 4:405–409 (1959).
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∇ · (p̂a v̂b − p̂bv̂a) = 0. (4.9.6)

The proof is as follows:

∇ · (pa v̂b) = pa∇ · v̂b + v̂b · (∇p̂a) = p̂a

(
iω

ρc2 p̂b

)
+ v̂b · (iωρ v̂a)

= p̂b

(
iω

ρc2
p̂a

)
+ v̂a · (iωρ v̂b)

= p̂b∇ · v̂a + v̂a ·∇p̂b = ∇ · (p̂bv̂a),

where the successive steps follow from Eqs. (5) and from vector identities.
Integration of Eq. (6) over a volume V and application of Gauss’s theorem yields

∫∫
v̂b ·ninp̂a dS −

∫∫
v̂a ·ninp̂b dS = 0, (4.9.7)

where nin = −nout is the unit normal pointing into the volume V . This is analogous
to Eq. (4); p̂a(xS) dS is the force applied in the a experiment to the volume by the
external environment on a surface element of area dS centered at xS ; v̂a(xS) ·nin is
the corresponding velocity at xS in the direction of the impressed force.

4.9.3 Interchange of Source and Listener

To prove the version of the acoustic-reciprocity theorem that involves interchange
of listener and source positions, we let p̂a(x), v̂a(x) be the field caused by a point
source at x1 with source-strength amplitude Q̂a , such that Re Q̂ae

−iωt represents
the time rate of volume efflux from the source. Then the first of Eqs. (5) is modified
to

− iωp̂a + ρc2∇ · v̂a = ρc2Q̂aδ(x − x1). (4.9.8)

Similarly, let p̂b(x), v̂b(x) describe the field caused by a point source Q̂b at x2.
Then a derivation analogous to that leading to Eq. (6) yields

∇ · (p̂a v̂b − p̂bv̂a) = p̂aQ̂bδ(x − x2) − p̂bQ̂aδ(x − x1). (4.9.9)

On the boundaries of the volume of interest it is assumed that conditions such as
p̂ = 0, or v̂ ·nout = 0, or p̂/v̂ ·nout = Z(xS), or the Sommerfeld radiation condition
are prescribed. Both the a and b fields satisfy the same boundary conditions.
Consequently, if one integrates both sides of Eq. (9) over the volume, the surface
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integral resulting from the divergence on the left side is zero,38 so one is left with

p̂a(x2)

Q̂a

= p̂b(x1)

Q̂b

. (4.9.10)

The ratio of pressure amplitude to source strength remains the same if locations of
source and listener are interchanged.

4.9.4 Reciprocity and Green’s Functions

For a homogeneous medium, ρ(x2) = ρ(x1), and the ratio p̂a(x2)/Q̂a is −iωρ/4π
times the Green’s function Gk(x2|x1) (see Sect. 4.3). Thus, Eq. (10) implies that

Gk(x2|x1) = Gk(x1|x2), (4.9.11)

which can be regarded as the reciprocity principle for Green’s functions correspond-
ing to point-source solutions of the Helmholtz equation. This holds trivially for the
free-space Green’s function R−1eikR , where R = |x2 − x1|, but the analysis above
shows that it has considerable general applicability.39

38The recognition that the reciprocity principle for point sources applies when portions of the
boundary are locally reacting is due to E. Skudrzyk, Die Grundlagen der Akustik, Springer, Vienna,
1954, p. 380. Lyamshev, “Principle of Reciprocity,” 1959, showed that the principle applies if the
medium has within it elastic bodies, e.g., plates, shells, or membranes. A possible exception was
described by J. H. Janssen, “A note on reciprocity in linear passive acoustical systems,” Acustica
8:76–78 (1958), who showed that reciprocity is violated if the medium has within it a porous
material described by equations of motion like those devised by C. Zwikker and C. W. Kosten,
Sound Absorbing Materials, Elsevier, Amsterdam, 1949. However, some years later, J. F. Allard
(Propagation of Sound in Porous Media, Elsevier, 1992) pointed out that Eq. (3.05) in Zwikker
and Kosten’s book is incorrect. It has subsequently been shown that a reciprocity relation applies
for Biot’s (J. Acoust. Soc. Am, 1956) model of porous media.
39A reciprocity relation when the source is a dipole rather than a monopole is derived by J. W.
S. Rayleigh, “On the application of the principle of reciprocity to acoustics,” Proc. R. Soc. Lond.
25:118–122 (1876); Theory of Sound, vol. 2, sec. 294. A well-known case (also discussed by
Rayleigh) where reciprocity is not applicable is when the medium has an ambient motion. For
example, if the wind velocity increases with height, sound is always heard better downwind than
upwind. Reciprocity still applies, however, if the ambient flow direction is reversed at each point
when source and listener locations are interchanged. From a strictly mathematical standpoint,
reciprocity of the Green’s function follows if the governing boundary-value problem (partial-
differential equations and boundary conditions) is self-adjoint. Analogous considerations hold for
the set of Green’s functions corresponding to a system of equations. If the problem is not self-
adjoint, a reciprocity principle can be derived relating the Green’s functions to those corresponding
to the adjoint system. For a full discussion, see C. Lanczos, Linear Differential Operators, Van
Nostrand, London, 1961, pp. 239–244.
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Example A barrier extending to some height h is to be erected between a noise
source and a region where quiet is desired. One side of the barrier is to be treated
with special sound-absorbing material; the other side is to be left untreated. On
which side should the treatment be applied?

Solution Given that the source radiates very nearly as a point source, that the
surfaces are locally reacting, and that the source and possible listeners are symmet-
rically located on opposite sides of the barrier, the answer, according to the principle
of reciprocity, is that it makes no difference which side is treated.

4.10 Transducers and Reciprocity

A transducer is any device that changes one form of energy into another; loud-
speakers and microphones are examples of electroacoustic transducers. A model
of a linear electroacoustic transducer40 can be taken as a “black box” (Fig. 4.20)
embedded in a fluid with two wires at one end which carry a current i into and
out of the transducer and across which the voltage is e. On the other side is a
movable surface whose motion is characterized by a volume velocity U representing
the time rate of change of the volume enclosed by the surface or, equivalently, the
area integral over the transducer surface of its outward-normal velocity. This surface
is acted upon by some perturbation pressure p. If the pressure is nonuniform over
the surface of the transducer, the value of p we use is a weighted surface average,

Fig. 4.20 Sketch of an idealized transducer. Voltage e is across wires on electric side; current
i flows through transducer. Pressure p on acoustical side acts on a diaphragm, whose vibration
causes a volume velocity Uout flowing out from the transducer

40For a general account of the mathematical description and properties of transducers, see F. Hunt,
Electroacoustics, Harvard University Press, Cambridge, Mass., 1954, especially pp. 92-94, 103–
109.
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the weighting being such that, for this p, −pU is the net mechanical-power input
to the transducer. The product ei represents the net electric-power input, so with
such identifications we refer to −p and U or to e and i as conjugate variables; −p

and e are generalized forces; U and i are generalized velocities.
When all variables e, i,−p, and U are oscillating with the same angular

frequency ω, the physical properties of a linear transducer impose two algebraic
relations41 between the complex amplitudes ê, ı̂,−p̂, and Û , we write them as

[
ê

−p̂

]
=
[
Zec Tea

Tae Za

] [
ı̂

Û

]
. (4.10.1)

The matrix element Zec is the clamped electrical impedance (ê/ı̂ when Û is zero),
while Za is the open-circuit acoustic impedance (−p̂/Ûout when ı̂ is 0). (The term
“acoustic impedance” is discussed in detail in Sect. 7.2.) The values of the matrix
elements can be derived from fundamental principles if one has a detailed model
of the transducer. Alternately, they can be obtained by experiment. The physical
principles governing typical designs42 result in either Tea = Tae or Tea = −Tae,
although this is not invariably the case (transducers having the property |Tea| =
|Tae| are called reciprocal transducers). When this is so, the generalized velocity at
one side of the transducer resulting from an application of a generalized force on
the other side has the same direct proportionality to this force as when locations of
generalized force and generalized velocity are interchanged, i.e.,

∣∣∣∣∣
Û

ê

∣∣∣∣∣
p̂=0

=
∣∣∣∣ ı̂p̂
∣∣∣∣
ê=0

. (4.10.2)

This is a reciprocity principle analogous to those discussed previously for mechani-
cal and acoustical systems.

In general, one makes a distinction between the portion of p̂ due to external
causes, e.g., another sound source, and that caused by the motion of the surface,
which causes a local motion of the surrounding fluid and which radiates sound to
the far field. For a given environment, the latter portion p̂rad is directly proportional

41This was first recognized by H. Poincaré, “Study of telephonic reception,” Eclairage Electr.
50:221–372 (1907). Writing the equations in terms of mechanical impedances as well as electric
impedances is due to R. L. Wegel, “Theory of magneto-mechanical systems as applied to telephone
receivers and similar structures,” J. Am. Inst. Electr. Eng. 40:791–802 (1921).
42Reciprocity theorems for electroacoustic transducers date back to W. Schottky, “The law of low-
frequency reception in acoustics and electroacoustics” Z. Phys. 36:689–736 (1926). For a general
discussion and detailed proofs, see L. L. Foldy and H. Primakoff, “A general theory of passive
linear electroacoustic transducers and the electroacoustic reciprocity theorem, I and II,” J. Acoust.
Soc. Am. 17:109–120 (1945); 19:50–58 (1947). That transducers are not necessarily reciprocal was
demonstrated in 1942 by E. M. McMillan; the analysis is given in his “Violation of the reciprocity
theorem in linear passive electromechanical systems,” ibid. 18:344–347 (1946).
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to Û , so we write p̂rad/Û = Za,rad, this serving to define the acoustic radiation
impedance of the transducer. With this definition, the second of the two algebraic
equations implied by (1) can be rewritten as

− p̂ext − Za,radÛ = Taeı̂ + ZaÛ . (4.10.3)

This takes a form similar to the original equation if the second term on the left
is transferred to the right and if Za + Za,rad is abbreviated as Z′

a . Consequently,
Eq. (1) also holds with the substitutions, p̂ → p̂ext, Za → Z′

a . If the transducer is a
reciprocal transducer, Eq. (2) remains valid when p̂ is replaced by p̂ext.

A transducer is acting as a loudspeaker when p̂ext = 0. In this case, its
performance is characterized by the ratio Û/ı̂ (with p̂ext = 0). The transducer
equation (with the substitutions described above) gives this ratio as −Tae/Z

′
a .

If the loudspeaker dimensions are small compared with a wavelength and if the
loudspeaker is located in an open space, it radiates as a monopole; the monopole
amplitude is identified from Eq. (4.6.9a) as −iωρÛ/4π . The far-field pressure
amplitude is (Ŝ/r)eikr , so one has

p̂(r) =
(
Û

ı̂

)
pext=0

(−iωρ

4πr
eikr

)
(ı̂) (4.10.4)

for the acoustic-pressure amplitude in the far field.
If the transducer is acting as a microphone, the ideal operation is such that

negligible current passes through the transducer; ê will then vary in direct proportion
to the external pressure p̂ext, the proportionality factor derived from Eq. (1) being
−Tea/Z

′
a (with the substitutions described previously). The magnitude of this factor

is the microphone response M (open-circuit voltage response to pressure in sound
field).

If the transducer is a reciprocal transducer such that |Tea| = |Tae|, Eqs. (1) (with
p̂ → p̂ext) and (4) lead to Schottky’s law of low-frequency reception

M =
∣∣∣∣ ê

p̂ext

∣∣∣∣
ı̂=0

= 4πr

ωρ

∣∣∣∣ p̂(r)ı̂

∣∣∣∣
p̂ext=0

, (4.10.5)

which is completely independent of the constants of the transducer.
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An application of (5) is in the calibration of microphones.43 Suppose one wants
to determine the microphone response MA of microphone A. One has in the
laboratory a loudspeaker C and a reciprocal transducer B, neither of which are
necessarily calibrated. In a first experiment (see Fig. 4.21) the loudspeaker C is
turned on, transducer B is placed a distance d from the loudspeaker, and its open-
circuit voltage |êB |E1 (caused by the pressure from the loudspeaker) is measured.
Here E1 denotes experiment 1. In the second experiment, transducer B is removed
and microphone A is placed in the identical position, the loudspeaker’s input voltage
being unchanged. Then the open-circuit voltage |êA|E2 is measured. It is expected
that p̂ext will be the same in the two experiments, so

|êA|E2

|êB |E1
= MA

MB

. (4.10.6)

The third experiment is with the loudspeaker C replaced by the reciprocal
transducer B and with microphone A left in the same position as in experiment 2.
The transducer B is driven as a loudspeaker and its input current |ı̂B |E3 is measured.
One also measures the open-circuit voltage |êA|E3 induced in microphone A by the
sound from transducer B. According to (5), the external pressure at microphone A

in this experiment should be given by

|p̂ext,A|E3 = ωρ

4πd
MB |ı̂B |E3 = |êA|E3

MA

, (4.10.7)

where the second equality results from the definition of MA. Elimination of MB

(which is not necessarily known) from Eqs. (6) and (7) and subsequent solution of
the resulting equation for MA then yields

MA =
(

4πd

ωρ

) 1
2
( |êA|E3|êA|E2

|êB |E1|ı̂B |E3

) 1
2

. (4.10.8)

Thus one has a measurement of the microphone response MA without ever explicitly
measuring a pressure.

43The use of reciprocity in calibration of microphones was suggested by S. Ballantine in 1929
but was not used until 1940, when R. K. Cook and W. R. MacLean independently invented the
absolute-calibration method and Cook demonstrated its practicality. [S. Ballantine, “Reciprocity
in electromagnetic, mechanical, acoustical, and interconnected systems,” Proc. Inst. Radio Eng.
17:929–951 (1929); R. K. Cook, “Absolute pressure calibrations of microphones,” J. Res. Nat.
Bur. Stand. 25:489–505 (1940); W. R. MacLean, “Absolute measurement of sound without a
primary standard,” J. Acoust. Soc. Am. 12:140–146 (1940).] A general review and historical
account is given by H. B. Miller, “Acoustical measurements and instrumentation,” ibid. 61:274–
282 (1977). The free-field method (due to MacLean) discussed in the text is less commonly used
than the pressure-chamber method. Detailed calibration methods are described in ANSI S1.10-
1966 (R1976), American National Standard Method for the Calibration of Microphones, American
National Standards Institute, New York, 1976.
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Fig. 4.21 Free-field method for absolute calibration of a microphone A by use of a loudspeaker
C and a reciprocal transducer B. Successive experiments E1, E2, and E3 are sketched in (a), (b),
and (c)

4.11 Problems

4.1 A spherical body immersed in a compressible fluid has constant radius a up
until time to = a/c and then suddenly begins to expand so that the radial
velocity at the surface is Vo for t > a/c, where Vo 
 c. Determine the
acoustic pressure and sketch p versus t for fixed r . (Limit your analysis to
when t − r/c 
 a/Vo and use an approximate boundary condition at r = a.)
Show that the net acoustic energy imparted to the fluid is approximately
4πa3ρV 2

o . What fraction of this energy propagates to the far field? What
happens to the rest of the energy? [M. C. Junger, J. Acoust. Soc. Am.,
40:1025–1030 (1966).]
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4.2 Show that the transient solution of the differential equation (4.2.3) is

ect/aψ(t) = ca2
∫ t

−∞
sin

[
c(t − τ)

a

]
vC(τ )e

cτ/adτ.

Show that for a sphere suddenly (at t = 0) accelerated from rest to constant
speed vC the above integral gives

ψ(t) =
⎧⎨
⎩

0 t < 0
vCa

3

2

[
1 − e−ct/a

(
cos

ct

a
+ sin

ct

a

)]
t > 0.

4.3 Use the result of Problem 4.2 in a discussion of sound radiation from an
impulsively accelerated sphere of radius a whose translational velocity is 0
before t = 0 and equal to a constant value vC for t > 0. Determine an
explicit expression for the acoustic pressure during the early history of wave
disturbances at radial distances r � a. Show that the pressure has a sudden
jump at the onset of the pulse and determine the magnitude of this jump.
Sketch a typical pressure waveform and indicate how one can determine a

and vC from it when these quantities are not known a priori. [M. C. Junger
and W. Thompson, Jr., J. Acoust. Soc. Am. 38:978–986 (1965).]

4.4 The center of a rigid sphere of radius a is moving along a circular path of
radius b with constant angular velocity Ω , where Ωb 
 c, Ωa 
 c.
Determine an expression for the acoustic pressure in the far field resulting
from this motion. What is the time-averaged acoustic power radiated?

4.5 A rigid sphere of radius a is oscillating back and forth along the z axis about
the origin with angular frequency ω such that its center moves with velocity
v̂Cez cos ωt , where v̂C is a constant. Determine expressions for the time
averages of the net acoustic kinetic energy and potential energy contained
within a large sphere of radius r (centered at the origin) and verify that the
difference of the two approaches a nonzero constant in the limit of large r .
Determine this constant and give an interpretation of its magnitude for the
case ωa/c 
 1 in terms of the related incompressible-flow problem. [J. E.
Jones (Lennard-Jones), Proc. Lond. Math. Soc. (2) 20:347–364 (1922).]

4.6 Give explicit expressions for the inner and outer expansions (in powers of ka
with a/r or kr held fixed) for the example of a radially oscillating sphere.
Discuss the order of magnitude of successive terms for the cases ka = 0.01
and kr = 0.1 for both expansions. Show explicitly that the outer expansion of
the inner expansion is the same as the inner expansion of the outer expansion
for at least the first three terms.

4.7 An accelerometer mounted on the surface of a radially oscillating sphere of
nominal radius a indicates that the acceleration is composed of a very large
number of frequencies such that the mean squared acceleration associated
with any finite frequency band of width Δf is a2

f Δf , where a2
f (spectral
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density of acceleration) is nearly constant over the range of 250–2000 Hz.
Determine an expression for the spectral density of the received acoustic
pressure at arbitrary radius r from the sphere for the same range of
frequencies. Given that ka 
 1 for all the frequencies of interest, by how
many decibels would the octave-band sound-pressure levels corresponding
to two successive octave bands be expected to differ?

4.8 Answer the questions in Problem 4.7 for a rigid sphere undergoing transverse
oscillations along the z axis, the accelerometer being mounted at a point on
the sphere corresponding to θ = 0.

4.9 Two point sources of monopole amplitudes Ŝ and −Ŝ, both radiating at
angular frequency ω, are located a distance d apart, where kd is not
necessarily small. Determine expressions for the far-field acoustic pressure
and the time-averaged net acoustic power radiated by this combination of
sources. For what values of kd is the acoustic power within 10% of what
would be predicted for a dipole with dipole-moment amplitude Ŝd? Beyond
what value of kd can one be assured that the radiated power is within 10% of
that corresponding to the sum of what would be radiated by each source in
the absence of the other source? How do you reconcile your results with the
prediction (Sect. 1.11) that the power output by a collection of sources is the
sum of the powers output by the individual sources?

4.10 Acoustic similitude. Show that the complex amplitude p̂ of acoustic pressure
in a sound field radiated by a body of characteristic dimension a vibrating
with angular frequency ω has the general and asymptotic forms

p̂ ≈ ρcv̂typF
(x

a
, ka

)
→ ρcv̂typM(θ, φ, ka)

a

r
eikr ,

while the time average of the net acoustic power radiated by the body is of
the form

Pav = ρc

[∫ ∫
(v2

n)av dA

]
Q(ka).

Here the functions F(x/a, ka), M(θ, φ, ka), and Q(ka) should be dimen-
sionless and should in general depend on the shape of the body and on the
relative amplitudes and phases of the normal velocity on the surface of the
body; v̂typ is a complex amplitude of the normal velocity at a typical point on
the surface;

∫∫
(v2

n)av dA is the integral of the mean squared normal velocity
over the body’s surface. Show also that, in the limit of small ka, the functions
M(θ, φ, ka) and Q(ka) vary with ka as ka and (ka)2, respectively, for
monopole radiation; as (ka)2 and (ka)4, respectively, for dipole radiation;
and as (ka)3 and (ka)6, respectively, for quadrupole radiation.

4.11 A small vibrating body (ka 
 1) radiates primarily as a quadrupole into an
unbounded fluid. Assuming that the surface vibrations are unaffected by the
surrounding fluid, show that the time-averaged acoustic power output varies
with the ambient density and sound speed of the fluid as ρ/c5. Suppose that
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the power output is Pav,o when the surrounding fluid is air at a pressure
of 105 Pa and a temperature of 20 ◦C. What is the power output when the
pressure is pumped down to 103 Pa with the temperature held constant?
Suppose, after the pumping down, hydrogen (a diatomic gas with molecular
weight 2) is added to the fluid until the pressure once again is 105 Pa (the
temperature still being held constant). What is the resulting sound power
output of the body in this air–hydrogen mixture? [G. G. Stokes, Phil. Trans.
R. Soc. Lond. 158:447–463 (1868).]

4.12 A sphere of nominal radius a, nominally centered at the origin, is simultane-
ously undergoing radial and transverse oscillations such that its centerpoint
has velocity v̂Cez cos ωt and its instantaneous radius is a + (v̂S/ω) sin ωt .
Determine an expression for the complex amplitude of the acoustic pressure
at an arbitrary point outside the sphere. Determine the net time-averaged
acoustic power output of the body and show that the contributions from radial
and transverse oscillations are additive. Given that ka = 0.1, what would the
ratio |v̂C/v̂S | have to be for the two contributions to be equal? Is your result
consistent with the assertion that any body with time-varying volume tends
to radiate primarily as a monopole in the limit ka 
 1?

4.13 (The following exercise is intended to demonstrate that the near-field pres-
sure of a vibrating body may possibly be predicted from an incompressible-
flow model even when ka is comparable to 1.) A spherical body of nominal
radius a is undergoing quadrupole-type contortions such that the normal
velocity at the surface is given by Vo sin2 θ cos φ sin φ cos ωt . Determine
the ratio of the complex pressure amplitude at the surface to what would be
obtained if the surrounding fluid were incompressible and plot the real and
imaginary parts of this ratio versus ka. Up to what value of ka is the real part
within 25% of its low-frequency limit? Up to what value is the imaginary
part less than 25% of the real part?

4.14 Verify that an explicit substitution into the Kirchhoff–Helmholtz integral for-
mula of the surface pressures and normal velocities for a radially oscillating
sphere leads to the expression for the acoustic pressure outside the sphere
derived in Sect. 4.1. For simplicity, limit your comparison to the constant-
frequency case and to points where r � a, kr � 1, but do not necessarily
assume that ka is small.

4.15 Carry through the exercise described in Problem 4.14 for the example of a
transversely oscillating sphere.

4.16 One possible scheme to determine the acoustic power output of a vibrating
body is to measure p and vn simultaneously on the surface, compute the
time average of their product, and integrate the result over the surface area.
Suppose this method is tried for a transversely oscillating sphere vibrating
such that ka = 0.1. To what accuracy would the relative phase between vn
and p have to be measured at each point in order to guarantee an accuracy
of 10% in the acoustic power estimate? Would one expect less stringent
instrumentation requirements if the measurements were made instead on a
sphere whose radius were such that kr = 1?
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4.17 Show that it is possible for three longitudinal quadrupoles to be mutually
oriented so that the resulting acoustic field is completely spherically sym-
metric. How would the acoustic power output of the combination of the three
quadrupoles compare with what would be expected for the sum of the three
acoustic powers associated with each quadrupole when radiating alone?

4.18 In a large unbounded space, a sphere of fluid of radius a is suddenly heated,
e.g., by nuclear irradiation, to a temperature increment ΔT above the ambient
temperature To, such that, at t = 0, the sphere has pressure po +Δp but is of
ambient density and the fluid within it has not yet begun to move. Assuming
that the linear acoustic approximation is valid, what is the time dependence
of acoustic pressure p at an arbitrary radius r > a? Give a sketch of your
result.

4.19 A rectangular solid, a by 1.5a by 2a, is centered at the origin with each of
its six faces nominally perpendicular to the corresponding coordinate axis;
it is undergoing rotational oscillations (angular frequency ω) about the z

axis. Determine an approximate expression for the dependence on r, θ, φ

(spherical coordinates) of the acoustic pressure at distances r � a. If the
amplitude of the pressure oscillations at a distance corresponding to kr = 10
at a point on the x = y line is p10, what would you estimate as the total
time-averaged acoustic power output (in terms of p10, ω, c, ρ) of this sound
source? Assume ka 
 1. How would you expect p10 and the power output
to vary if the frequency were doubled but the peak angle of rotation of the
solid were kept constant?

4.20 The acoustic pressure on the surface of a vibrating sphere of radius a is
measured and found to be given by

p = A cosωt cos θ,

where A and ω are constant and θ is the polar angle in spherical coordinates.
What would you estimate as the time-averaged acoustic power generated by
this source in terms of A, ω, ρ, and c?

4.21 A sphere of radius a and mass M is suspended from a fixed point in an
otherwise open space by a spring with spring constant ksp, such that the tether
point lies on the z axis and the sphere’s center is nominally at the origin. The
sphere is displaced a distance zo(
 a) and released from rest. Discuss the
subsequent motion of the sphere assuming M � 4

3πρa
3. How long will it

be before 90% of the potential energy initially stored in the spring is radiated
away as sound? (Neglect viscosity.)

4.22 A cubical loudspeaker enclosure, dimensions a on each edge, has four
loudspeakers of radius b centrally placed in each of its four sides (but not
on the top and bottom). The enclosure is suspended in a large open space.
If only one loudspeaker is excited, the average acoustical power output is
Pav,1. What would the power output be if all four are excited with the same
amplitude and all four are in phase? (Assume ka 
 1.) If each loudspeaker
moved as a rigid disk of area A and with velocity amplitude Vo and angular
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frequency ω, what would you estimate for Pav,1? Discuss the nature of the
radiation when the loudspeakers 2, 3, and 4 (numbered counterclockwise
looking down from the top) have phases of 90, 180, and 270◦ relative to the
first loudspeaker.

4.23 When a small loudspeaker that radiates as a monopole in an open space is
placed in the corner of a room, the sound-pressure level in the center of the
room is 100 dB. The loudspeaker is then moved to the center of the room,
and the vibrational amplitude of its moving face is increased by a factor of
2. What would you expect for the sound-pressure level in the corner of the
room (old loudspeaker position)?

4.24 A sound source located at point A in a building gives rise to a sound level
outside the building 100 m away at point B of 75 dB. It is known that the
sound leaves through an open window. In a second experiment, it is found
that a second sound source located a large distance away from the building
(in the same relative direction as B) causes a sound level inside the building
of 60 dB at point A. The sound level at the same distance from the source
along an unobstructed path is 65 dB. Estimate the acoustic power output of
the first sound source, i.e., in the building, would have if it were radiating into
an open space. Assume both sources to be nominally omnidirectional and to
have dimensions small compared with a wavelength. Both sources have the
same frequency content.

4.25 A small body of unspecified shape is oscillating with angular frequency ω

in a fluid with sound speed c and ambient density ρ. Any representative
dimension a of the body is much less than c/ω. At distances r , where r � a

and r 
 c/ω, the pressure perturbation caused by the body’s oscillations is
found to be given approximately by

p ≈ Kx

r3 cosωt,

where K is a constant. Estimate the time-averaged acoustic power that this
body radiates to the far field in terms of K, ρ, c, and ω.

4.26 A rigid square plate of dimensions a on a side is oscillating back and forth
along the z axis normal to its face, such that its center has velocity Vo cos ωt .
Assume that (ω/c)a 
 1, Vo/ω 
 a. The value of Vo is not measured, but
it is known to be the same in two successive experiments. In experiment 1,
the ambient density is ρ, the sound speed is c, and the angular frequency ω1.
In experiment 2, the ambient density is pumped down to 10−3ρ, the fluid is
heated so that its sound speed becomes 2c, and the frequency is increased to
2ω1. In the first experiment, the acoustic pressure is measured on the z axis at
a distance c/ω1 from the plate and is found to be given by K1 cos ω1t . Give
an expression for the acoustic pressure at radial distances r � a (but r not
necessarily large compared with c/ω1) for the second experiment. Express
your result in terms of the parameters c, ω1, ρ,K1 as well as the spherical
coordinates r and θ .
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4.27 Two identical reciprocal transducers are separated a distance of 4.8 m in an
unbounded fluid (sound speed 340 m/s and ambient density 1.2 kg/m3). One
transducer is used as a loudspeaker, and the other as a microphone. When an
oscillating current of rms amplitude 10−2 A is input to the first transducer,
it is found that an oscillating voltage of rms amplitude 1 V is induced in the
open circuit of the second transducer. The frequency is 200 Hz. What is the
rms acoustic pressure incident on the moving face of the second transducer?

4.28 The disk described in Sect. 4.8 is undergoing rocking oscillations about the
diameter lying along the x axis, such that a point on the disk with a given
y coordinate has velocity vz = Ωy. Here Ω is the time-varying angular
velocity of the disk. Show that the acoustic-pressure field at large distances
from the disk is given in the small ka approximation by

p = 2
∂2

∂y∂z

Qyz,1(t − r/c)

r
Qyz,1(t) = 2ρΩ̇(t)a5

45π
.

4.29 The circumstances of Problem 4.28 are altered so that the disk is undergoing
rocking oscillations about the line y = Δ. Show that the resulting pressure
on the front face (z = 0+) of the disk is approximately

p ≈ 4

3π
ρΩ̇(t)(a2 − w2)1/2(y − 3

2Δ),

and show that the acoustic pressure in the far field is

p ≈ 4ρa5

45π

(
∂

∂y
+ 15

2

Δ

a2

)
∂

∂z

Ω̇(t − r/c)

r
.

4.30 Devise any linear circuit having as elements at least one resistor, two
inductors, and a capacitor and demonstrate that reciprocity holds in the
sense that the complex amplitude of the current flowing through the second
inductor caused by a specified voltage imposed in series with the first
inductor is the same as when the voltage is imposed in series with the second
inductor and the measured current is that flowing through the first inductor.

4.31 Give an alternate derivation of the reciprocity relation Eq. (4.9.10) starting
from Eq. (4.9.7) with a volume bounded externally by the fluid’s natural
boundaries and internally by two tiny spheres centered at x1 and x2.
Boundary conditions on the inner sphere centered at x1 should be such that,
for the a field, the net volume flowing per unit time out through the sphere
has complex amplitude Q̂a in the limit of vanishing sphere radius while, for
the b field, the corresponding limit is zero.



Chapter 5
Radiation from Sources Near
and on Solid Surfaces

The present chapter begins with a discussion of the effects of nearby solid surfaces
on the radiation of sound and then continues with the closely related topic of
radiation from a planar surface when a portion of it is vibrating. This topic serves
to introduce and illustrate concepts helpful in understanding the influence of baffles
on sound sources, the radiation from extended bodies, the transition from near field
to far field, and common phenomena associated with the diffraction of sound.

5.1 Sources Near Plane Rigid Boundaries

The sound field radiated by a source is often appreciably affected by a neighboring
surface. If this surface (referred to here as a wall) is idealized as rigid, planar, and
of infinite extent, only simple considerations are required to take its presence into
account.

5.1.1 Image Sources

The conceptual device commonly used is an image source (see Fig. 5.1) such that
the original boundary-value problem of source plus wall is replaced by one with
two sources (original source and image source) but no wall. The image source is the
mirror image in all respects of the original source. Thus, if the wall corresponds to
the plane z = 0 and if (xS, yS, zS) is a point on the surface of the original source,
(xS, yS,−zS) must be a point on the surface of the corresponding image source. If
the velocity at a point on the source’s surface has Cartesian components (v1, v2, v3),
the velocity at the corresponding point on the image source must have components
(v1, v2,−v3).
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Fig. 5.1 Concept of an
image source. The original
boundary-value problem (a)
of a vibrating body outside a
rigid plane surface is
equivalent to the
boundary-value problem (b)
of radiation from source and
image source in an
unbounded medium

The mirror symmetry of the boundary-value problem of two sources and no wall
requires the z component of the fluid velocity to vanish on the plane z = 0. This
is the condition imposed by the presence of the wall in the original boundary-value
problem with source and wall, so the solution to the problem with source and image
source but no wall satisfies the fluid-dynamic equations and the boundary conditions
appropriate to the original problem. Our uniqueness theorems of Sect. 4.5 require
the two solutions to be identical in the region z > 0.

5.1.2 Remarks Concerning Acoustic Power and Spherical
Spreading

Symmetry requires that one-half of the power radiated by a source and its image
in an open space be transmitted to the source side of the symmetry plane.
Consequently, the total power (radiating into the region z > 0) emitted by a source
near a wall is half what would be radiated by the isolated source-image combination
(no wall) in all directions.
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At radial distances large compared with source-image separation, source dimen-
sions, and a wavelength, the (far-field) acoustic pressure is of the form1 f (t −
r/c, θ, φ)/r , the radial component of acoustic fluid velocity is p/ρc, and the radial
component of time-averaged intensity is (p2)av/ρc. The intensity and mean squared
pressure at such large distances decrease as 1/r2 with increasing radial distance r

(fixed θ and φ), so our conclusions concerning spherical spreading for an isolated
source apply equally well for a source near a plane rigid wall, given r sufficiently
large. If J (θ, φ)/r2 gives the far-field intensity, the acoustic power Pav,W radiated
into the region z > 0 by a source near a wall is

Pav,W =
∫ π/2

0

∫ 2π

0
J (θ, φ) dφ sin θ dθ. (5.1.1)

Note that we integrate over a hemisphere rather than a sphere; θ ranges from 0 to
π/2 rather than from 0 to π .

5.1.3 Cases When More Than One Wall Is Present

For a source between two parallel rigid walls, one needs an infinite array of images
(see Fig. 5.2a). There are, first, two images corresponding to reflections of the source
through the two walls, then images of the images corresponding to reflections of the
images through the opposite walls, then images of these images, etc. The total array
of sources has a repetition distance of twice the distance between walls. (This is
what one sees in a room with mirrors on two parallel walls.)

The array of sources is not confined to a region of limited spatial extent, so
our previous discussion concerning spherical spreading does not apply. Energy-
conservation considerations imply instead, at large cylindrical radial distance w,
that the integral over z between walls of the time-averaged radial component of
intensity should fall off with w as 1/w for fixed azimuthal angle φ. In general, the z

component of intensity will not be negligible compared with the radial component,
and one cannot assume that the plane-wave relation p = ρcvw holds at large w.

The method of images also applies when a source is near two rigid walls meeting
at right angles (see Fig. 5.2b); three image sources are required in the equivalent
boundary-value problem. If the source is near the corner of three walls at right angles
to each other, one obtains an equivalent boundary-value problem by adding seven
image sources (Fig. 5.2c). Since the source and images are confined to a region of
limited spatial extent, deductions analogous to those for the single-wall case can be
made concerning spherical spreading at large distances from the source.

1F. A. Fischer, “Directionality and radiation intensity of acoustic ray groups in the vicinity of a
reflecting plane surface,” Elektr. Nachrichtentech. 10:19–24 (1933).
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Fig. 5.2 Situations in which more than one image source is required to satisfy the boundary
conditions: (a) source between plane parallel walls; (b) source near where two perpendicular
walls meet; (c) source near intersection of three mutually perpendicular surfaces; (d) source in
a rectangular duct

A more complicated example (Fig. 5.2d) is a source in an infinitely long
rectangular duct with rigid walls. In this case, there is a twofold infinity of image
sources, all lying in a plane transverse to the duct. For a source in a six-sided
rectangular room with rigid walls, there is a threefold infinity of image sources
arrayed in a three-dimensional rectangular lattice.

5.1.4 Dependence of Acoustic Far Field and Net Acoustic
Power Output on Distance from a Wall

For a source of characteristic dimension a vibrating at angular frequency ω = ck

and located a nominal distance zS from a single flat rigid wall (at z = 0), the far-
field pressure and the net acoustic power output depend on kzS and a/zS . A principal
assumption is that the state of vibration of the body is independent of zS . (This is
a good approximation for a solid body vibrating in air.) In the limit a/zS 
 1,
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that is, where distance from the wall is great compared with a body dimension,
the total acoustic field is well approximated by the superposition of those fields
resulting from separate consideration of the source and image. Thus, if the far-field
acoustic pressure due to the source alone (no wall) is f̂ (θ, φ)R−1

S eikRS , where RS is
the distance from the source’s nominal location, the combination of the source and
image has a far-field pressure (with RS � a, RI � a) given by

p̂ = f̂ (θ, φ)
eikRS

RS

+ f̂ (π − θ, φ)
eikRI

RI

, (5.1.2)

where RI is distance from the image source. At distances r � zS , one has RS ≈
r − zS cos θ and RI ≈ r + zS cos θ , so the above reduces to

p̂ ≈ eikr

r
[e−ikzS cos θ f̂ (θ, φ) + eikzS cos θ f̂ (π − θ, φ)]. (5.1.3)

From this one derives the time-averaged acoustic intensity 1
2 |p̂|2/ρc. The average

acoustic power output results from Eq. (1) with J (θ, φ) = r2Ir,av. Taking p̂ as
given by Eq. (3), changing the θ integration variable to θ ′ = π − θ in appropriate
terms, then replacing the symbol θ ′ by θ , we find

Pav,W = Pav,ff + 
Pav (5.1.4)

where

Pav,ff = 1

2ρc

∫ 2π

0

∫ π

0
|f̂ (θ, φ)|2 sin θ dθ dφ (5.1.5)


Pav = 1

2ρc
Re

[∫ 2π

0

∫ π

0
ei2kzs cos θ f̂ (π − θ, φ)f̂ ∗(θ, φ) sin θ dθ dφ

]

(5.1.6)

Here Pav,ff is the free-field power output (wall not present), and 
Pav is the power
increment (possibly negative) caused by the presence of the wall.

If the far-field radiation of the source when isolated is spherically symmetric (as
for a monopole), f̂ (θ, φ) is the monopole amplitude Ŝ and the above expressions
reduce to2

p̂ ≈ 2Ŝ
eikr

r
cos(kzS cos θ), r � zS (5.1.7a)

Pav,W = Pav,ff

[
1 + sin 2kzS

2kzS

]
. (5.1.7b)

2U. Ingard and G. Lamb, Jr., “Effect of a reflecting plane on the power output of sound sources,”
J. Acoust. Soc. Am. 29:743–744 (1957).
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When kzS 
 1, the acoustic pressure in the far field is doubled, the intensity
increases by a factor of 4, and the power increases by a factor of 2. (Recall that
the power is going only into the region z > 0.) When 2kzS = 4.49 (zS = 0.358λ),
the power output has its minimum value of 0.783 Pav,ff; it oscillates about Pav,ff
at larger zS and is within 5% of the free-field value for 2kzS > 20 (zS > 1.59λ).

If the radiation pattern for the source alone resembles that of a dipole perpendic-
ular to the wall, f̂ (θ, φ) is −ikD̂z cos θ and f̂ (π − θ, φ) is the negative of f̂ (θ, φ);
Eq. (3) therefore yields

p̂ = −2 sin(kzS cos θ)kD̂z cos θ
eikr

r
, (5.1.8a)

where D̂z is the source’s dipole-moment amplitude. The field for kzS 
 1 is
consequently that of a longitudinal quadrupole with quadrupole-moment amplitude
2zSD̂z. The power output for arbitrary kzS is given (with η = 2kzS), according to
Eqs. (5) and (6), by

Pav,W = Pav,ff(1 − 6η−2 cos η − 3η−1 sin η + 6η−3 sin η). (5.1.8b)

The quantity in parentheses reduces to 3
10η

2 and to 1 − 3η−1 sin η in the limits
η 
 1 and η � 1. Although the source’s acoustic power vanishes when the source
is at the wall, it is within 5% of the free-field value when η > 60 (zS > 4.77λ).

One concludes from the above examples and from a study of Eq. (6) that 
Pav
can be regarded as 0 if kzS is sufficiently large. Since the real and imaginary parts
of exp (i2kzS cos θ) oscillate rapidly with θ if kzS is large, in the limit of very
large kzS the overall integrand is an oscillatory function, the integrals over whose
peaks tend to cancel integrals over troughs. Just how far the source must be from the
surface before the limit is nearly realized depends on the complexity of the source.

5.2 Sources Mounted on Walls: The Rayleigh Integral;
Fresnel–Kirchhoff Theory of Diffraction by an Aperture

A model for a source with a baffle, e.g., a loudspeaker on one side of a large
enclosure, is that in which a limited portion of a surface has prescribed normal
velocity, the remainder of the surface being idealized as rigid. The surface is here
taken as the z = 0 plane, and the region on the +z side of the surface is idealized as
unbounded (see Fig. 5.3).

An expression for the acoustic pressure outside the surface can be extracted from
the Kirchhoff-Helmholtz integral theorem, Eq. (4.6.6), with the aid of the method of
images. The boundary-value problem, with nonzero vn(x, y, t) specified on some
area of the z = 0 plane and otherwise zero, is equivalent to that of radiation from a
thin disk of time-varying thickness in an unbounded medium. The normal velocity
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Fig. 5.3 Nomenclature for
description of radiation from
a nominally flat and rigid
surface (z = 0 plane), a
limited portion of which is
vibrating with normal
velocity vn(x, y, t)

vn for given x and y on the two sides of the disk has the same value, i.e., both
sides are either moving outward simultaneously or moving inward simultaneously,
so that the resulting z symmetry requires p, vx , and vy to be even in z but vz to be
odd in z. Consequently, the integrals in Eq. (4.6.6) over the surface pressure give
equal and opposite contributions, and the net contribution from surface pressure to
the Kirchhoff-Helmholtz integral is zero. (The distance R from listener position to
either of any two surface points on opposite sides of the disk has the same value
since the disk is infinitesimally thin.) The integrals over the surface-normal velocity
from the front and back surfaces of the disk give equal contributions, so one needs
to integrate only over the front face providing the resulting expression is multiplied
by 2.
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The result of the reasoning just outlined is that the Kirchhoff–Helmholtz integral
reduces to the Rayleigh integral3

p(x, t) = ρ

2π

∫∫
v̇n(xS, yS, t − R/c)

R
dxS dyS, (5.2.1)

where R2 is z2 + (x − xS)
2 + (y − yS)

2. This is equivalent to the field generated by
a continuous smear of monopole sources distributed on the z = 0 plane; that is, p
satisfies the inhomogeneous wave equation

∇2p − 1

c2

∂2p

∂t2
= −2ρv̇n(x, y, t) δ(z) (5.2.2)

in an unbounded space. The apparent mass added to the fluid per unit surface area
has a time derivative equal to 2ρvn(x, y, t); the volume excluded from the fluid per
unit area of the z = 0 plane by the source has a time derivative equal to 2vn(x, y, t).
The factor of 2 appears because both sides of the disk are moving outward with
velocity vn.

5.2.1 Green’s-Function Derivation of Rayleigh Integral

An alternate derivation4 of Eq. (1) results for the constant-frequency case from
the Green’s-function formulation in Sect. 4.6. One can rephrase Eq. (4.6.4) for the
problem under consideration here as

p̂(x) = 1

4π

∫∫
[p̂(xS)∇SGk(xS |x) − Gk(xS |x)∇Sp̂(xS)]zS=0 · ez dxS dyS,

(5.2.3)

where Gk(xS |x) is a Green’s function for the Helmholtz equation, which we choose
to be that corresponding to a point source outside a rigid flat surface. It can be
derived by the method of images and is

Gk(xS |x) = R−1
1 eikR1 + R−1

2 eikR2 (5.2.4)

where

R1,2 = [(xS − x)2 + (yS − y)2 + (zS ∓ z)2] 1
2 (5.2.5)

3J. W. S. Rayleigh, The Theory of Sound, vol. 2, 2d ed., 1896, reprinted by Dover, New York, 1945,
sec. 278.
4A. Sommerfeld, “The freely vibrating piston membrane,” Ann. Phys. (5)42:389–420 (1943).



5.2 Sources Mounted on Walls: The Rayleigh Integral; Fresnel–Kirchhoff. . . 249

[Here Gk(xS |x) = Gk(x|xS), in accord with the principle of reciprocity discussed
in Sect. 4.9.] The Green’s function of Eq. (4) has the property that ∇SGk(xS |x) · ez
vanishes at zS = 0, so the first term in Eq. (3) drops out. In regard to the second term,
Gk(xS |x) at zS = 0 is 2R−1eikR . Also ∇Sp̂(xS) · ez at zS = 0 is iωρv̂n(xS, yS), in
accord with Euler’s equation of motion, so Eq. (3) reduces to

p̂(x) = −iωρ

2π

∫∫
v̂n(xS, yS)R

−1 eikR dxS dyS, (5.2.6)

which is recognized as the constant-frequency form (involving complex amplitudes)
of Eq. (1).

5.2.2 Fresnel–Kirchhoff Theory of Diffraction

There is a resemblance between the Rayleigh integral in Eq. (6) and what results
from the Fresnel–Kirchhoff theory of diffraction5 by an aperture A in a screen
(Fig. 5.4). If a wave disturbance, e.g., plane wave or diverging spherical wave, is
incident from the −z side of the screen on the aperture, the classic assumptions
(expressed in terms of acoustic quantities) of Kirchhoff would be that insofar as the
evaluation of the pressure on the +z side is concerned, the p̂(xS, yS) and v̂n(xS, yS)

in the Kirchhoff–Helmholtz integral can be taken as p̂i(xS, yS) and v̂i (xS, yS)·ez (i
for incident) within the aperture and as zero at points on the screen surface outside
the aperture. This would then give (z > 0)

p̂(x) = 1

4π

∫∫
A

[−p̂i(xS)(ik − R−1)eR − i ωρv̂i (xS)] · ezR−1eikR dxS dyS,

(5.2.7)

where the integral extends only over the aperture. At distances large compared with
a wavelength, the quantity R−1 is neglected compared with ik. Furthermore, if the
incident wave is a plane wave with propagation direction ni , then pi = ρcvi ·ni and
vi · ez = (vi · ni )ni · ez, so Eq. (7) would reduce to

p̂(x) = −iωp

2π

∫∫
A

[
1

2

(
1 + eR · ez

ni · ez

)]
v̂i (xS, yS) · ezR−1eikR dxS dyS.

(5.2.8)

5M. Born and E. Wolf, Principles of Optics, 4th ed., Pergamon, Oxford, 1970, pp. 378–381.
Pertinent original references are A. Fresnel, “On the diffraction of light; examination of the colored
fringes existing in the shadow of an illuminated body,” Ann. Chim. Phys. (2) 1:239–281 (1816); G.
G. Stokes, “On the dynamical theory of diffraction,” Trans. Camb. Phil. Soc. 9:1 (1849), reprinted
in Stokes, Mathematical and Physical Papers, vol. 2, Cambridge University Press, Cambridge,
1883, pp. 243–328; G. Kirchhoff, “On the theory of light rays,” Ann. Phys. Chem. 18:663–695
(1883).
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Fig. 5.4 Unit vectors ni , eR, ez used in the Fresnel–Kirchhoff approximation for diffraction by
an aperture in a thin screen

An equivalent version (with the assumptions described above) results when v̂i is
replaced by p̂ini/ρc.

Equation (8) can be compared with Eq. (6). The two agree if v̂n is interpreted as
v̂i · ez and if the location of the observation point x is far enough distant to make
eR approximately constant and nearly equal to ni for all straight lines connecting
points on the aperture with x. If the Kirchhoff assumption that v̂ ·ez = v̂i ·ez on the
aperture is accepted, expression (8) would have to be erroneous unless eR ·ez/ni ·ez
is identically 1, since Eq. (6) represents the exact solution when v̂n is known over
the plane z = 0 and since v̂n must be zero on the plane at points outside the aperture.
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The Fresnel–Kirchhoff theory of diffraction is intrinsically a high-frequency
approximation; it gives incorrect results when the aperture dimensions are much
smaller than a wavelength.6 Furthermore, even if such dimensions are large and
one uses the theory to predict fields at only those distances which are large
compared with a wavelength, the predictions may be in substantial error at large
angular deviations from the direction ni . Nevertheless, the theory is satisfactory for
explaining small-angle high-frequency diffraction phenomena and has an advantage
in simplicity compared with rigorous theories of diffraction. It is extensively used
in optics; applications to acoustics are limited because many of the diffraction
phenomena of interest either involve dimensions small compared with a wavelength
or require an understanding of diffraction through large angles.

5.3 Low-Frequency Radiation from Sources Mounted on
Walls

Insight into the implications of the Rayleigh integral can be obtained from exam-
ination of limiting cases. If the region in which v̂n is nonzero is confined to a
distance a from the origin, and if ka 
 1, the concepts of matched asymptotic
expansions discussed in Sect. 4.7 are applicable. The near-field pressure satisfies
Laplace’s equation and has a complex amplitude found from Eq. (5.2.6) with eikR

replaced by 1 + ikR

p̂in(x) = −iωρ

2π

∫∫
v̂n(xS, yS)R

−1 dxS dyS + ρck2

2π
Q̂S, (5.3.1)

where Q̂S is the surface integral of v̂n(xS, yS) and represents the complex amplitude
of the rate of volume flow out from the source.

The acoustic-pressure amplitude at distance r � a is given by the multi-pole
expansion that matches Eq. (1); to fourth order in ka, one has

p̂out(x) = Ŝ
eikr

r
−
(
D̂x

∂

∂x
+ D̂y

∂

∂y

)
eikr

r

+
(
Q̂xx

∂2

∂x2
+ 2Q̂xy

∂2

∂x ∂y
+ Q̂yy

∂2

∂y2

)
eikr

r

(5.3.2)

6H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66:163–182 (1944); R. D. Spence,
“A note on the Kirchhoff approximation in diffraction theory,” J. Acoust. Soc. Am. 21:98–100
(1949).



252 5 Radiation from Sources Near and on Solid Surfaces

where Ŝ is −(iωρ/2π)Q̂S , while D̂x and Q̂xy are given by −(iωρ/2π) times the
area integrals of xSv̂n (for D̂x) and of 1

2xSySv̂n (for Q̂xy). The leading term in
Eq. (2), with the time dependence explicitly inserted, gives the prediction

pout(x, t) = ρ

2πr
Q̇S

(
t − r

c

)
, (5.3.3)

which describes a radially symmetric spherical wave. This is the same as the
expression (4.1.6) for monopole radiation from a vibrating body of time-varying
volume if we replace Q̇S by 2Q̇S ; the factor of 2 results because of the image source.

The above solution indicates the substantial effect a baffle has on sound
radiation. If a circular disk of radius a is vibrating with constant frequency
(ka 
 1) transverse to its face in an open space, it radiates primarily as a
dipole and the acoustic power output to one side (see Sect. 4.8) is given by
(16/27π)2ρc(ka)4(πa)2(v2

n)av/2. However, if the disk is baffled by placing it in an
aperture of the same size in a large screen, the radiation is primarily as a monopole
and the power output to one side is ρc(ka)2(πa2)(v2

n)av/2. Insofar as ka 
 1, the
second case corresponds to a much greater power output.

5.3.1 Pressure on Vibrating Circular Piston at Low
Frequencies

For a vibrating circular piston of radius a mounted in a rigid wall (an idealization
of a baffled loudspeaker), the pressure amplitude at the wall (z = 0), given ka 
 1,
can be determined from Eq. (1) with v̂n set equal to a constant over the surface of
the piston; one then has

(p̂in)z=0 = ρc

π
v̂n

[
−ikaψ

(w
a

)
+ π

2
(ka)2

]
(5.3.4)

where

2ψ
(w
a

)
= a−1

∫∫
(R−1)z=0 dxS dyS (5.3.5)

Because of the cylindrical symmetry and because of its lack of dimensionality, (5)
is a function only of w/a, where w is the distance of the point (x, y) from the center
of the piston.

To evaluate ψ(w/a) it is sufficient to let y = 0, x = −w. Then one can use
a cylindrical coordinate system in which xS = −w + ξa cosφ, yS = ξa sinφ,
such that ξa is the radial distance (cylindrical coordinates) from the point (−w, 0).
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The differential area element is then a2ξ dξ dφ and, moreover, (R)z=0 is aξ , so
2ψ(w/a) = ∫∫

dξdφ with appropriate integration limits. With the abbreviations
η = w/a, ζ = (1 − η2 sin2 φ)1/2, and φm = sin−1 (1/η) we find that the disk
occupies the region 0 < ξ < η cosφ + ζ , 0 < φ < 2π , for η < 1, and the region
η cosφ − ζ < ξ < η cosφ + ζ , −φm < φ < φm, for η > 1. Consequently, one has

2ψ(η) = ∫∫
dξ dφ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 2π

0
(η cosφ + ζ )dφ η < 1

2
∫ φm

−φm

(1 − η2 sin2 φ)1/2 dφ η > 1.

(5.3.6a)

(5.3.6b)

The second expression can be cast into a more convenient form if one changes the
integration variable to u = sin−1(η sinφ), such that u is π/2 when φ = φm and such
that ζdφ/du is the sum of −(η−η−1)(1−η−2 sin2 u)−1/2 and η(1−η−2 sin2 u)1/2.

The integral over cosφ from 0 to 2π in the η < 1 expression in Eqs. (6) vanishes,
and the integral over ζ from 0 to 2π is 4 times the integral from 0 to π/2; the
indicated integrations reduce in this manner to7

ψ(η) =

⎧⎪⎪⎨
⎪⎪⎩

2E(η2) η < 1

2ηE

(
1

η2

)
− 2(η − η−1)K

(
1

η2

)
η > 1

(5.3.7a)

(5.3.7b)

Here we abbreviate

{
E(m)

K(m)

}
=
∫ π/2

0
(1 − m sin2 φ)±1/2 dφ (5.3.8)

for the complete elliptical integrals8 of the first and second kinds, respectively. [Both
K(m) and E(m) are π/2 at m = 0; as m → 1, K(m) → 1

2 ln [16/(1 − m)] and
E(m) → 1.] The function ψ(η) (see Fig. 5.5) has the value of π at η = 0, decreases
monotonically to 2 at η̇ = 1, and further decreases for η > 1 to an asymptotic form
ψ(η) → π/2η at large η. This latter behavior is consistent with the requirement that
p̂in match the expression in Eq. (2) for a 
 w 
 1/k.

7H. Lamb, “On the vibrations of an elastic plate in contact with water,” Proc. R. Soc. Lond.
A98:205–216 (1920). A general result holding for arbitrary ka was later derived by N. W.
McLachlan, “The acoustic and inertia pressure at any point on a vibrating circular disk,” Phil.
Mag. (7)14:1012–1025 (1932).
8L. M. Milne-Thomson, “Elliptical Integrals,” in M. Abramowitz and I. Stegun (eds.), Handbook
of Mathematical Functions, Dover, New York, 1965, pp. 590–592, 608–611.
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Fig. 5.5 Plot of function ψ(w/a) describing the relative magnitude of the acoustic pressure [with
complex amplitude −(ika/π)ρcv̂nψ(w/a)] at radius w = ηa outside (z = 0+) a wall in which a
piston of radius a is oscillating with very low frequency (ka 
 1)

5.3.2 Force Exerted by the Slowly Oscillating Baffled Piston

The complex amplitude of the force exerted by the piston on the fluid outside the
wall is the integral of (p̂in)z=0 over the area of the piston. In this respect, note that

∫ 2π

0

∫ a

0
ψ
(w
a

)
w dw dφ = 4πa2

∫ 1

0

[∫ π/2

0
(1 − η2 sin2 u)1/2 du

]
η dη.

A change of integration order allows the η integration to be performed; the resulting
integrand for the u integration is subsequently recognized as the derivative of
1
3 [tan (u/2) + sinu]. Consequently, the above expression is 8

3πa
2. Equation (4)

therefore gives9 the force exerted by the piston on the fluid to second order in ka as

F̂z = (ρcv̂n)πa
2
[
−ika

8

3π
+ (ka)2

2

]
, (5.3.9)

9J. W. S. Rayleigh, “On the theory of resonance,” Phil. Trans. R. Soc. Lond. 161:77–118 (1870).
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or with the time dependence explicitly inserted,

Fz(t) = ρπa2 8a

3π
v̇n(t) − ρπa4

2c
v̈n(t). (5.3.10)

The leading term, from the viewpoint of Newton’s second law, indicates that the
fluid entrained by the piston has an apparent mass of ρπa2(8a/3π), corresponding
to the fluid in a cylinder of area πa2 and length 8a/3π .

5.4 Radiation Impedance of Baffled-Piston Radiators

The ratio of the force amplitude F̂z to the normal velocity amplitude v̂n for a baffled
piston (with v̂n constant over the piston’s area) is the piston’s mechanical radiation
impedance (here denoted by Zm,rad) and is the area integral of the specific radiation
impedance p̂/v̂n. Thus, from Eq. (5.2.6), one has

Zm,rad = −iωρ

2π

∫∫∫∫
R−1eikR dxS dyS dx dy, (5.4.1)

where R is [(x − xS)
2 + (y − yS)

2]1/2 and the limits are such that (xS, yS) and
(x, y) are within the area A of the piston. The ratio (F̂z/A)/v̂nA = Zm,rad/A

2 is
the acoustic radiation impedance Za,rad. The quadruple integral in Eq. (1) is known
as the Helmholtz integral.

5.4.1 Electroacoustic Significance of Radiation Impedance

This parameter Zm,rad is of importance in transducer design because it describes
the influence of the environment on transducer performance. In particular, it is
required for the evaluation of the transducer’s electroacoustic efficiency. For a linear
electroacoustic transducer operating at constant angular frequency ω, Eq. (4.10.1)
relates the complex amplitudes (see Fig. 4.20) ê and −F̂z/A to the complex
amplitudes ı̂ and Û = v̂nA. [The p̂ in Eq. (4.10.1) is the complex amplitude of
an average pressure p, the averaging being such that −pU is the power input to the
transducer by the external fluid. Since, for the rigid piston, this power is −Fzvn, and
since U is vnA, we replace p̂ by F̂z/A.] If the transducer constants Zec, Tea, Tae,
and Za are known, the additional knowledge of the radiation impedance Zm,rad
allows a prediction of the ratios v̂n/ê and ı̂/ê when the transducer is operated as
a loudspeaker; i.e.,

(Av̂n, ı̂) = (Tae, − Z′
a)

TaeTea − ZecZ′
a

, (5.4.2)
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where Z′
a abbreviates Za + Zm,rad/A

2. These relations, given the applied voltage
ê, determine the electric power 1

2 Re êı̂∗ supplied and the acoustic power output
1
2 |v̂n|2 ReZm,rad. The ratio of the latter to the former is the electroacoustic efficiency
η, given in terms of the symbols introduced above by

η = |Tae|2 ReZm,rad/A
2

TaeTea − ZecZ′
a

. (5.4.3)

5.4.2 Evaluation of Radiation Impedance for a Baffled
Circular Piston

The fourfold integration in Eq. (1) reduces10 to tabulated functions of a single
variable for a circular piston of radius a with a series of mathematical manipulations.
Because of the symmetry in interchange of x and y with xS and yS , it is sufficient to
restrict the integration range so that (x2

S + y2
S)

1/2 ≤ (x2 + y2)1/2 and subsequently
to multiply the result by 2. For the xS, yS , integration, one uses a coordinate system
centered at the point (x, y) and rotated so that the center of the disk lies at x′

S = w,
y′
S = 0, where w = (x2 + y2)1/2, and introduces cylindrical coordinates R, φS ,

such that x′
S = R cosφS and y′

S = R sinφS . The region (x2
S + y2

S)
1/2 < w then

comprises points where −π/2 < φS < π/2 and 0 < R < 2w cosφS . In this
manner, one obtains

Zm,rad = −iωρ

π

∫ 2π

0
dφ

∫ a

0
w dw

∫ π/2

−π/2
dφS

∫ 2w cosφS

0
eikR dR. (5.4.4)

The φ integration gives a factor of 2π ; the last two integrations yield

1

π

∫ π/2

−π/2
dφS

∫ 2w cosφS

0
eikR dR = 1

πik

∫ π/2

−π/2
ei2kw cosφS dφS − 1

ik

= 1

ik
[J0(2kw) + iH0(2kw) − 1] (5.4.5)

where

J0(η) = 2

π

∫ π/2

0
cos(η cosφS) dφS H0(η) = 2

π

∫ π/2

0
sin(η cosφS) dφS

(5.4.6)

10Rayleigh, The Theory of Sound, vol. 2, sec. 302.
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are the Bessel function and the Struve function11 of zero order (see Table 5.1). The
functions J0(η) and H0(η) have the properties12

∫ η

0
J0(η)η dη = ηJ1(η) = −η

d

dη
J0(η) (5.4.7a)

∫ η

0
H0(η)η dη = ηH1(η) = η

[
2

π
− d

dη
H0(η)

]
(5.4.7b)

where J1(η) and H1(η) are the Bessel function and the Struve function of first order.
These relations permit an evaluation of the remaining integration over w in Eq. (4);
the net result for the mechanical radiation impedance is

Zm,rad = ρcπa2[R1(2ka) − iX1(2ka)] (5.4.8)

11The Bessel function Jn(η) and the Struve function Hn(η) for positive integer order n can be
considered to be defined by the integrals

{
Jn(η)

Hn(η)

}
= 2(2n + 1)ηn

[(2n + 1)(2n − 1) · · · 3 · 1]π
∫ π/2

0

⎧⎨
⎩

cos
(η cosφ)

sin

⎫⎬
⎭ (sinφ)2n dφ

For a full discussion, see G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed.,
Cambridge University Press, London, 1966, pp. 24–25, 328–338. The expression for Jn(η) is
known as Poisson’s integral for the Bessel function. The boldface symbol Hn(η) for the Struve
function is traditional and should not be construed as denoting a vector.
12For the Struve functions, the identity (7b) follows from

1 =
∫ π/2

0

∂

∂φ
[sinφ cos(η cosφ)] dφ

=
∫ π/2

0

{
∂

∂η
[sin(η cosφ)] + η sin2 φ sin(η cosφ)

}
dφ (i)

=
∫ π/2

0

{
∂

∂η

[
η

∂

∂η
sin(η cosφ)

]
+ η sin(η cosφ)

}
dφ (ii)

Equation (i) leads to 1 = (π/2)(dH0/dη+H1), while (ii) leads to 1 = (π/2)[(d/dη)(η dH0/dη)+
ηH0]. Since η dH0/dη = 0 at η = 0, the integral from 0 to η of the latter yields η =
(π/2)(η dH0/dη + L), where L is the left side of (7b). The derivation of (7a) for the Bessel
functions proceeds in an analogous manner from

0 = η

∫ π/2

0

∂

∂φ
[sinφ cosφ cos(η cosφ)] dφ
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Table 5.1 Bessel and Struve
functions of orders 0 and 1

η J0(η) J1(η) H0(η) H1(η)

0 1.00 0.00 0.00 0.00

0.5 0.94 0.24 0.31 0.05

1.0 0.77 0.44 0.57 0.20

1.5 0.51 0.56 0.74 0.41

2.0 0.22 0.58 0.79 0.65

2.5 −0.05a 0.50 0.73 0.86

3.0 −0.26 0.34 0.57 1.02

3.5 −0.38 0.14 0.36 1.09

4.0 −0.40 −0.07a 0.14 1.07

4.5 −0.32 −0.23 −0.06a 0.97

5.0 −0.18 −0.33 −0.19 0.81

5.5 −0.01 −0.34 −0.23 0.63

6.0 +0.15a −0.28 −0.18 0.48

6.5 0.26 −0.15 −0.08 0.38

7.0 0.30 −0.00 +0.06a 0.35

7.5 0.27 +0.141a 0.20 0.39

8.0 0.17 0.23 0.30 0.49

8.5 0.04 0.27 0.34 0.62

9.0 −0.09a 0.25 0.32 0.75

9.5 −0.19 0.16 0.24 0.85

10.0 −0.25 0.04 0.12 0.89
aZeros of J0(η) are 2.405, 5.520, 8.654; zeros of J1(η)

are 3.832, 7.016, 10.173; zeros of H0(η) are 4.323,
6.780, 10.481

with (see Fig. 5.6)

R1(2ka) = 1 − 2J1(2ka)

2ka
X1(2ka) = 2H1(2ka)

2ka
. (5.4.9)

For small values of the argument η, a power-series expansion and a term-by-term
integration of Eqs. (6) and (7) yields

J1(η) = η/2

(1!)2 − 2(η/2)3

(2!)2 + 3(η/2)5

(3!)2 − · · · (5.4.10a)

H1(η) = 2

π

(
η2

12 · 3
− η4

12 · 32 · 5
+ η6

12 · 32 · 52 · 7
− · · ·

)
(5.4.10b)
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Fig. 5.6 Piston impedance functions R1(2ka) and X1(2ka) for a circular piston of radius a

mounted in a rigid planar baffle. These functions are such that the mechanical radiation impedance
of the piston is ρcπa2(R1 − iX1)

so, for small values of 2ka, the piston impedance functions R1(2ka) and X1(2ka)
are given by

R1(2ka) = (2ka)2

4 · 2
− (2ka)4

6 · 42 · 2
+ (2ka)6

8 · 62 · 42 · 2
− · · · (5.4.11a)

X1(2ka) = (4/π)(2ka)

3
− (4/π)(2ka)3

5 · 32 + (4/π)(2ka)5

7 · 52 · 32 + · · · (5.4.11b)

Both series are absolutely convergent but slow to converge when 2ka is substantially
larger than 1. Note that these are consistent with Eq. (5.3.10) in the limit 2ka 
 1.
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In the other limit, when 2ka � 1, one uses the asymptotic expressions13

J1(η) →
(

2

πη

)1/2

cos

(
η − 3π

4

)
(5.4.12a)

H1(η) → 2

π
+
(

2

πη

)1/2

sin

(
η − 3π

4

)
(5.4.12b)

to obtain

R1(2ka) → 1 − (8/π)1/2 cos(2ka − 3π/4)

(2ka)3/2
(5.4.13a)

X1(2ka) → 4/π

2ka
+ (8/π)1/2 sin(2ka − 3π/4)

(2ka)3/2 (5.4.13b)

The limiting expressions of 1 and (4/π)/2ka are approached in an oscillatory
manner, the amplitude decreasing as (2ka)−3/2 with increasing ka. The limiting
value of ρcπa2 for Zm,rad is what would be expected if the acoustic disturbance
near z = 0 over the major portion of the piston were the same as in a plane wave
emanating from an unbounded wall vibrating without flexure.

13To derive the asymptotic expression for H1(η), we write the integrand in Eq. (6) for H0(η) as the
real part of i exp (−iη cosφ) and interchange the order of taking the real part and of integrating.
The integration path is then deformed to one going from 0 to π/2 + i∞ plus one going from
π/2 + i∞ to π/2. For the first segment, the variable of integration is changed to s, so that cosφ =
1 − is2 and s goes from 0 to +∞ along the path. In the second segment, one lets ξ = Imφ be the
integration variable. Doing all this yields

H0(η) =
(

2

π

)
21/2 Re

[
e−i(η−3π/4)

∫ ∞

0

e−ηs2
ds

(1 − is2/2)1/2

]
+ 2

π

∫ ∞

0
e−η sinh ξ dξ,

where the phase of the radical is understood to be between 0 and −π/4. For large η one can
approximate (1 − is2/2)1/2 by 1 and sinh ξ by ξ without appreciably changing the value of either
integral, the resulting approximate integrals being then readily performed, so one obtains

H0(η) → 2

πη
+
(

2

πη

)1/2

cos

(
η − 3π

4

)
.

From (7b), one has H1(η) = (2/π) − dH0/dη; using the above and keeping only terms of order
η−1/2, we obtain (12b). The derivation of (12a) proceeds in an analogous manner from Eq. (6)
except that one takes the imaginary part of i exp (−iη cosφ). The asymptotic expression for J1(η)

is obtained from that of J0(η) with the identity J1(η) = −dJ0(η)/dη.
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5.5 Far-Field Radiation from Localized Wall Vibrations

When the wall area undergoing constant-frequency vibrations is confined to a
distance a from the origin, a characteristic far field is realized at points where
the radial distance r is much larger than either a or ka2. In this event, a suitable
approximation for the Rayleigh integral (5.2.6) results when R is replaced14 by
r − xS · er in the exponent and by r in the denominator, so that R−1eikR becomes
r−1eikr exp(−ikxS · er ).

In this limit of large r Eq. (5.2.6) is reduced to the form of an outgoing spherical
wave with nonuniform directivity, i.e.,

p̂ = f (θ, φ)r−1eikr , (5.5.1)

where we abbreviate

f (θ, φ) = −iωρ

2π

∫∫
v̂n(xS, yS)e

−kxS ·er dxS dyS

= −iωρ

2π
g(k sin θ cosφ, k sin θ sinφ) (5.5.2)

with

g(ξ, η) = ∫ ∫ v̂n(xS, yS)e
−iξxS e−iηyS dxS dyS, (5.5.3)

representing the two-dimensional Fourier transform15 of v̂n(xS, yS).
For a circular piston, where v̂n is constant up to radius a and thereafter zero,

the integral in Eq. (2) leads (after a change of integration variables to cylindrical
coordinates u, φS , where xS = u cosφS, yS = u sinφS) to

f (θ, φ) = −iωρv̂n

∫ a

0

(
1

2π

∫ 2π

0
e−iku sin θ cos(φ−φS) dφS

)
u du.

The periodicity of the integrand allows the integration on φS to be replaced by one
on φS − φ from 0 to 2π . Since the exponential is symmetrical in φS − φ, it can be
replaced by the cosine of its argument. With this replacement, the integrations from
0 to π/2, π/2 to π , π to 3π/2, and 3π/2 to π yield identical values, so the quantity

14In the analogous Fresnel–Kirchhoff theory of diffraction by an aperture (Sect. 5.2), the diffraction
is said to be Fraunhofer diffraction when the R in eikR can be replaced by r − xS · er . Points at
which this approximation is satisfactory are said to lie in the Fraunhofer region. Similarly the terms
Fresnel diffraction and Fresnel region are used when the quadratic terms (but not the higher-order
terms) in the expression R ≈ r −xS ·er + 1

2 [x2
S +y2

S − (xS ·er )2]/r affect the value of the integral.
See Born and Wolf, Principles of Optics, p. 383.
15R. C. Jones, “On the Theory of the Directional Patterns of Continuous Source Distributions on a
Plane Surface,” J. Acoust. Soc. Am., 16:147–171 (1945).
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in parentheses is 2/π times the integral from 0 to π/2 over cos[ku sin θ cos(φS −
φ)], the integration variable being φS −φ. This quantity is subsequently recognized,
from Eq. (5.4.6), as J0(ku sin θ). Consequently, f (θ, φ) reduces16 to

f (θ) = −iωρv̂n

k2 sin2 θ

∫ ka sin θ

0
J0(η)η dη = −i

ρcv̂nka
2

2

2J1(ka sin θ)

ka sin θ
. (5.5.4)

The Bessel function of first order in the latter expression results from Eq. (5.4.7a).
We have here deleted φ as an argument of f (θ), since the result, because of the
circular symmetry, is independent of φ.

The Bessel function J1(η) is η/2 for small η [see Eq. (5.4.10a)], while, for large
η, it has the asymptotic form given in Eq. (5.4.12a). The first three zeros are at η =
3.832, 7.616, and 10.173; the nth zero in the limit of large n is asymptotically (n +
1
4 )π . Consequently, the factor 2J1(ka sin θ)/(ka sin θ), considered as a function of
θ , is 1 at θ = 0 and has one zero between 1 and π/2 if 3.832 < ka < 7.016, two
zeros if 7.016 < ka < 10.173, three zeros if 10.173 < ka < 13.32, etc. Note that
the far-field value of p̂ at θ = 0 is the same as the leading term in the low-frequency
(ka 
 1) outer expansion (5.3.2).

The far-field intensity corresponding to Eqs. (1) and (4) is

Ir,av = |f (θ)|2
2ρcr2 = (Ir,av)θ=0

[
2J1(ka sin θ)

ka sin θ

]2

, (5.5.5)

so the radiation pattern (see Fig. 5.7) given by r2Ir,av when plotted versus θ

exhibits, for ka > 3.83, a central lobe centered at θ = 0 that is bounded at
θ = ± sin−1 (3.83/ka), plus one or more side lobes.

The acoustic power output Pav by the vibrating baffled piston is the surface
integral over a hemisphere (0 < θ < π/2) of large radius r of Ir,av. The acoustic-
energy corollary requires Pav to be the same as the integral of 1

2 Re p̂ v̂∗
n over the

front face of the piston or to be 1
2 |v̂n|2 ReZm,rad, where Zm,rad is the radiation

impedance. Consequently, the function R1(2ka) appearing in Eqs. (5.4.8) and
(5.4.9) should be the same as

R1(2ka) = (ka)2

2

∫ π/2

0

[
2J1(ka sin θ)

ka sin θ

]2

sin θ dθ, (5.5.6)

and, indeed, a substitution of the power-series expansion (5.4.10a) of J1(η) into the
above reproduces Eq. (5.4.11a).

16N. W. McLachlan, “Pressure distribution in a fluid due to the axial vibration of a rigid disc,”
Proc. R. Soc. Lond. A122:604–609 (1928). For Fraunhofer diffraction by a circular aperture, the
formula was first derived, although in a somewhat different form, by G. B. Airy, Trans. Camb. Phil.
Soc., 5:283 (1835).
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Fig. 5.7 Radiation patterns of a vibrating circular piston in an otherwise rigid wall for various
values of ka. The quantity plotted is Ir (θ)/Ir (0), where Ir (θ) is the time-averaged intensity as a
function of polar angle θ and Ir (0) is the intensity at θ = 0. (a) ka = 0; (b) ka = 2; (c) ka = 4;
(d) ka = 8
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5.6 Transient Solution for Baffled Circular Piston

We here discuss the transient radiation17 from a baffled piston [radius a, centered
at the origin, vn = vn(t) on the piston face, 0 on the remainder of the wall] that
results immediately following switch-on. To transform the double integral in Eq.
(5.2.1) into a single integral, one first changes the coordinate system (xS, yS) to
one centered at the point (x, y, 0) and rotated so that the center of the piston is at
x′
S = w, y′

S = 0, where w = (x2 + y2)1/2. The integration variables are taken
as u and φ′

S , where x′
S = u cosφ′

S , y′
S = u sinφ′

S , so that R = (u2 + z2)1/2 and
the differential area element dxS dyS becomes u du dφ′

S (see Fig. 5.8). Points on the
perimeter of the piston then correspond to values of u and φ′

S such that

u2 + w2 − 2uw cosφ′
S = a2. (5.6.1)

For w < a (listener location within cylinder extending outward from the piston
face), the values of u corresponding to points within the piston area range from 0 to
a + w, and for u within these limits φ′

S ranges from −π to π for 0 < u < a − w,
but for a − w < u < a + w it ranges from −φm to φm, where, from Eq. (1), we
define

φm(u) = cos−1 u2 + w2 − a2

2wu
(5.6.2)

to be such that it lies between 0 and π . For w < a, φm decreases monotonically
from π to 0 when u ranges from a − w to a + w.

For w > a (listener outside the piston’s projection), the integration variable u

ranges from w − a to w + a, and for u fixed φS ranges from −φm to φm, where φm

is still as given by Eq. (2). In this case, however, φm increases from 0 (at u = w−a)
up to a maximum of sin−1 (a/w) [occurring when u = (w2 −a2)1/2] and thereafter
decreases, reaching 0 at u = w + a.

Since vn(t − R/c) is independent of φ′
S , the φ′

S integration in Eq. (5.2.1) (with
the changes in integration variables described above) can be done directly, with the
result

p = −ρcH(a − w)

∫ a−w

0

d

du

[
vn

(
t − R

c

)]
du

− ρc

π

∫ a+w

|a−w|
φm(u)

d

du

[
vn

(
t − R

c

)]
du. (5.6.3)

17J. W. Miles, “Transient loading of a baffled piston,” J. Acoust. Soc. Am. 25:200–203 (1953); F.
Oberhettinger, “Transient solutions of the baffled piston problem,” J. Res. Nat. Bur. Stand. 65B:1–6
(1961). The derivation in the text is similar to that of P. R. Stepanishen, “Transient radiation from
pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49:1628–1638 (1971).
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Fig. 5.8 Coordinate systems for derivation of the transient acoustic field of a circular piston in a
rigid baffle. The coordinate system (x′

S, y
′
S) is centered at the projection (x, y, 0) of the listener

position on the piston plane and oriented so that the piston center is at x′
S = w, y′

S = 0. The polar
coordinates u and φS are such that x′

S = u cosφS , y′
S = u sinφS

because (d/du)[vn(t − R/c)] = −(1/c)v̇n(t − R/c)u/R. Here H(a − w) is the
Heaviside unit step function (1 if w < a, 0 if w > a). Note that the first integral is
vn(t −Rs/c)− vn(t − z/c), where Rs = [(a −w)2 + z2]1/2 is the smallest distance
from the listener to the perimeter of the piston.

An alternate version (used in subsequent sections) of Eq. (3) results after an
integration by parts of the second term, such that

p = ρcH(a − w)vn

(
t − z

c

)
+ ρc

π

∫ a+w

|a−w|
dφm

du
vn

(
t − R

c

)
du. (5.6.4)

In addition, we make a further change of integration variable to ψ , where

u2 = w2 + a2 + 2wa sinψ, (5.6.5)
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such that ψ ranges from −π/2 to π/2 as u ranges from |a − w| to a + w. Also, it
follows from (2) and the definition of ψ that

dφm

du
du = −au−2(a + w sinψ) dψ. (5.6.6)

Consequently Eq. (4) yields18

p = ρcH(a − w)vn
(
t − z

c

)− ρc

π

∫ π/2

−π/2

a(a + w sinψ)

w2 + a2 + 2wa sinψ
vn

(
t − R

c

)
dψ,

(5.6.7)

where, in terms of ψ , the distance R is now (w2 + a2 + z2 + 2wa sinψ)1/2.
Yet another version (used directly below) results from the change of integration

variable in the second integral in Eq. (3) to τ = t − R/c such that

u = [c2(t − τ)2 − z2]1/2,
d

du
vn

(
t − R

c

)
du = v̇n(τ ) dτ. (5.6.8)

Consequently, one obtains

p = ρcH(a − w)

[
vn

(
t − z

c

)
− vn

(
t − Rs

c

)]

+ ρc

π

∫ t−Rs/c

t−Rl/c

v̇n(τ )φm(u) dτ. (5.6.9)

with Rl and Rs representing the largest and smallest distances, [(a ± w)2 + z2]1/2,
from the listener position to the perimeter of the piston.

Equation (9) is frequently used with a numerical integration of the second term
to determine the transient field of the baffled circular piston when vn is a given
function. The overall expression can be rewritten as

p =
∫ t

−∞
v̇n(τ )pus(x, t − τ) dτ, (5.6.10)

where pus(x, t) is the unit step response, acoustic pressure resulting at the listener
location at time t when vn is zero before t = 0 and thereafter has value 1. The
expression for pus(x, t) results from Eq. (9) if one sets vn(t) = H(t), so v̇n(t) =
δ(t), such that (see Fig. 5.9)

18A. Schoch, “Considerations in regard to the sound field of a piston diaphragm,” Akust. Z. 6:318–
326 (1941).
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Fig. 5.9 Transient acoustic-pressure waveforms at z = a and z = 4a caused by an impulsively
accelerated circular piston in an otherwise rigid wall. The piston is motionless before t = 0 and
thereafter has constant velocity V0. To take advantage of the model’s intrinsic similitude p/ρcV0
is plotted versus ct/a for fixed values of w/a and z/a

pus(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 t < z
c

0 w > a, z
c
< t < Rs

c

ρc w < a, z
c
< t < Rs

c
ρc
π

cos−1 c2t2−z2+w2−a2

2w(c2t2−z2)1/2
Rs

c
< t <

Rl

c

0 t >
Rl

c

(5.6.11)

This multiplied by V0 gives the field radiated by a piston that is suddenly accelerated
to velocity V0 at time t = 0. Its implication for this case is that, for w < a, the
received acoustic-pressure pulse begins abruptly with a jump to a value ρcV0 at
t = z/c, stays constant until t = Rs/c, and then decreases monotonically, reaching
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0 at t = Rl/c, and staying 0 thereafter. For w > a, p stays 0 up until time Rs/c and
increases from 0 following onset up to a maximum value of (ρcVo/π) sin−1 (a/w)

[achieved when t = (w2 + z2 − a2)1/2/c] and thereafter decreases, reaching 0 (and
remaining 0 thereafter) at t = Rl/c.

The various arrival times characterizing the field radiated by the piston in
the idealized situation just described are consistent with Poisson’s theorem and
Huygens’ construction and can be derived from simple considerations. If the listener
lies in the projection of the piston’s area, the earliest arrival time is z/c and the
arrival should be the same as for radiation from a piston of infinite area up until
the first arrival from the perimeter of the piston, occurring at time Rs/c. At points
outside the piston’s projection, the first wave to arrive must come from the nearest
point on the piston perimeter, so it arrives at time Rs/c. Since the Rayleigh integral
gives no contribution from points at which v̇n is zero, the last arrival in both cases
must come from the farthest point on the perimeter of the piston and arrives at time
Rl/c.

5.7 Field on and Near the Symmetry Axis

The expressions derived in the previous section demonstrate that the field of an
oscillating baffled circular piston is not necessarily easy to describe at intermediate
radial distances. However, a simple expression results for the field along the
symmetry axis (x = 0, y = 0). This expression follows trivially from Eq. (5.6.9) if
w is set to zero, so that Rs = Rl , but inasmuch as the steps leading to that equation
are somewhat intricate, an alternate derivation for the special case w = 0 is given
here.

5.7.1 Field on Symmetry Axis

The derivation proceeds from the Rayleigh integral (5.2.1) with x and y set to 0 and
with the integration variables xS, yS replaced by cylindrical coordinates wS, φS ,
where xS = wS cosφS and yS = wS sinφS . Thus we have

p(0, 0, z, t) = ρ

2π

∫ 2π

0

∫ a

0

v̇n(t − R/c)

R
wS dwS dφS, (5.7.1)

where R2 = z2 + w2
S .

The φS integration yields 2π ; the wS integration can be replaced by one over R,
such that R−1wS dwS becomes dR and the integration limits become z and (z2 +
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a2)1/2. Since v̇n(t − R/c) is −c(∂/∂R)[vn(t − R/c)], we accordingly obtain19

p = ρc

[
vn

(
t − z

c

)
− vn

(
t − (z2 + a2)1/2

c

)]
. (5.7.2)

This can be regarded as the superposition of two waves, one propagating from the
center of the piston and the other (with a minus sign prefixed) propagating from the
edge of the piston (wS = a).

When the piston is oscillating with constant angular frequency ω, the two terms
in Eq. (2) may cancel for certain values of z. With the prescription that the complex
amplitude of vn(t − τ) is v̂neiωτ , Eq. (2) yields, after some algebra, the expression

p̂ = −2iρcv̂n exp

{
ik[z + (z2 + a2)1/2]

2

}
sin

[
k(z2 + a2)1/2 − kz

2

]
. (5.7.3)

This (see Fig. 5.10) is zero whenever k(z2 + a2)1/2 differs from kz by a multiple of
2π or when

kz = (ka)2 − (2nπ)2

4nπ
, (5.7.4)

where n is any positive integer less than ka/2π . Thus, if ka/2π is between 5 and
6, there would be five pressure nodes along the z axis. Moreover, if ka should be an
integer multiple of 2π , one of these nodes (largest n) is on the face of the piston at
z = 0, w = 0. There are one or more nodes only if ka > 2π .

The existence of such nodes is a consequence of the circular symmetry of the
piston; they would not be expected for a piston of irregular shape. Beyond the

19H. Backhaus and F. Trendelenberg, “On the unidirectional beaming of piston diaphragms,” Z.
Tech. Phys. 7:630–635 (1926). The analogous result for diffraction by a circular aperture dates
back to Fresnel, “On the diffraction of light . . . ,” 1816, and to A. Schuster, “Elementary treatment
of problems on the diffraction of light,” Phil. Mag. (5)31:77–86 (1891). The result is related
to Poisson’s famous prediction (originally intended to debunk Fresnel’s theory of diffraction
but shortly thereafter experimentally confirmed by Arago) that there should be a bright spot in
the shadow of a circular disk along the axis of the disk. If the Fresnel–Kirchhoff integral with
eR · ez = ni · ez = 1 in Eq. (5.2.8) is used with v̂i · ez = v̂n for wS > a, 0 for wS < a, and
with a small attenuation factor inserted to make the integral convergent, one obtains (Babinet’s
principle) an expression equal to the original incident plane wave minus what would be predicted
for the problem of diffraction by a circular aperture of the same size. This difference for points on
the symmetry axis, according to Eq. (2), is ρcvn(t − (z2 + a2)1/2/c), which has exactly the same
amplitude as that of the incident acoustic-pressure wave. For a historical account, see E. Mach,
The Principles of Physical Optics: An Historical and Philosophical Treatment, 1926, reprinted by
Dover, New York, 1954, pp. 285–286.
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Fig. 5.10 Variation along symmetry axis of acoustic-pressure amplitude |p̂| with distance z (units
of a) from center of oscillating circular piston of radius a. Plot of |p̂|/|ρcv̂n| versus z/a is for
ka/2π = 5.5

farthest node (n = 1), the pressure amplitude |p̂| rises to one additional maximum
of |2ρcv̂n| at kz = [(ka)2−π2]/2π and thereafter decreases. In the limit z � a, one
has (z2 + a2)1/2 ≈ z + 1

2a
2/z and if, moreover, z � ka2, Eq. (3) above reduces to

p̂ → − i

2
(ka2)ρcv̂n

eikz

z
, (5.7.5)

which has the characteristic form for spherical spreading and is the same as would
be predicted for a piston vibrating at low frequencies. [See Eq. (5.3.2).] The reason
for the latter behavior is that, if one is directly in front of a piston (not necessarily
circular) and sufficiently far from it, the phases eikR of contributions from various
points on the piston are all nearly the same. The criterion for the leading term in
Eq. (5.3.2) to hold is that the path lengths from any two points on the piston to the
listener differ by a quantity considerably less than a wavelength.

5.7.2 Field Near Symmetry Axis

To study the field when w is not identically zero but merely small compared with
a, we make use of Eq. (5.6.7). Within the integrand of the second term, it is a good
approximation to set w = 0 everywhere except in the time delay R/c; the latter is
approximated by a power-series expansion in w truncated to first order, such that
R ≈ (a2 + z2)1/2 + wa(a2 + z2)−1/2 sinψ . With these approximations, the ψ

integration for the determination of the complex amplitude requires the evaluation of

∫ π/2

−π/2
exp

[
ikwa

(a2 + z2)1/2 sinψ

]
dψ = 2

∫ π/2

0
cos

[
kwa

(a2 + z2)1/2 sinψ

]
dψ.

(5.7.6)
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This, however, is recognized from Eq. (5.4.6), after a change of integration variable
to π/2 − ψ , as πJ0(kwa/(z2 + a2)1/2). Consequently, the constant-frequency
version of Eq. (5.6.7), for w/a 
 1, becomes20

p̂ = ρcv̂n

[
eikz − eik(z

2+a2)1/2
J0

(
kwa

(z2 + a2)1/2

)]
. (5.7.7)

Since J0(0) = 1, the above expression for p̂ reduces to Eq. (2) when w = 0.
However, since21

J0(η) →
(

2

πη

)1/2

cos
(
η − π

4

)
(5.7.8)

for η � 1, the second term in Eq. (7) is small compared with the first when kw �
[1 + (z/a)2]1/2. This could be so even for w 
 a if ka � 1. For example, if
ka = 100 and z = a, the criterion would be met for kw = 10 or w = a/10. One
concludes that if ka � 1, the field is approximately a plane wave at points where
a � w � (z2 + a2)1/2/ka. Such a region exists for z 
 ka2.

5.8 Transition to the Far Field

If ka � 1, the field of a vibrating baffled piston persists as a collimated beam of
radius a for distances up to the order of ka2 from the piston with some anomalous
behavior due to symmetry (as discussed in the previous section) near the beam’s axis
and with some deterioration at the edge of the beam. To describe the latter behavior
and the transition to the far field, we return to expression (5.6.7). Our interest here
is in circumstances for which kRl − kRs is substantially larger than 1, so that the
real and imaginary parts of the integrand in the second term undergo a large number
of oscillations over the range of integration. The integrals over adjacent peaks and
troughs tend to cancel each other, the exceptions being those near ψ = −π/2 and
ψ = π/2, where the derivative of the phase with respect to ψ vanishes. To take
advantage of this, we change the variable of integration to ξ = sinψ (so R2 becomes
z2 + w2 + a2 + 2waξ ) and then deform the path of integration going from ξ = −1
to 1 to the contour C = C1 + C2 sketched in Fig. 5.11. The variable of integration
for the C1 contour is changed to u1, so that

kR = kRs + iu2
1, 2k2wa(ξ + 1) = 2ikRsu

2
1 − u4

1.

20Schoch, “Consideration . . . ,” 1941.
21The derivation of this asymptotic expression proceeds as outlined on p. 225n; the result is due to
Poisson (1823). For a general derivation that includes higher-order terms, see Watson, Treatise on
the Theory of Bessel Functions, pp. 196–198.
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Fig. 5.11 Deformed integration contour in the complex ξ plane for evaluation of the acoustic-
pressure field from a vibrating circular piston in the limit ka � 1, kRl − kRs � 1. The original
integration path was from ξ = −1 to ξ = +1 along the real axis. The contour C1 is the parabola
2(ξR + 1) = −(waξI /Rs)

2. Contour C2 is defined analogously

The first equation defines u1 in terms of ξ ; the second results from squaring both
sides of the first. Note that exp ikR dies out exponentially with increasing u1 if the
contour C1 is specified so that u1 is real and positive all along C1. Similarly, the
variable of integration for the integration along contour C2 is taken as u2, where

kR = kRl + iu2
2 2k2wa(ξ − 1) = 2ikRlu

2
2 − u4

2,

and C2 is specified such that u2 is real and positive along C2. (The integral over the
arc at infinity connecting C1 and C2 vanishes for w not identically zero.)

With the substitutions just described, Eq. (5.6.7) leads to the expression

p̂ = ρcv̂nH(a − w)eikz − ρcv̂n

π
ei(kRs+π/4)

∫ ∞

0
e−u2

1 φ1(u1) du1

− ρcv̂n

π
ei(kRl−π/4)

∫ ∞

0
e−u2

2 φ2(u2) du2

(5.8.1)

where

φ1,2(u) = 2[2k2a(a ∓ w) + G1,2](kRs,l + iu2)

[k2(a ∓ w)2 + G1,2](4k2wa ∓ G1,2)1/2(2kRs,l + iu2)1/2
, (5.8.2)
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with the abbreviation

G1,2(u) = 2ikRs,lu
2 − u4. (5.8.3)

The phases of the radicals in the integrands are here understood to be 0 when u = 0
and to vary continuously with increasing u when u is real.

To obtain approximate expressions for the above integrals that elucidate the
phenomena occurring at intermediate values of z near the edges of the original beam
(i.e., near w = a) emanating from a piston of large ka, we limit our attention here
to circumstances in which ka � 1 and 1/k 
 z 
 ka2, w > a/2. For these
circumstances, such quantities as kRs, kRl, kwa/Rl , kwa/Rs , and k(w + a)a/Rl

are all large compared with 1. Since the integrands in Eq. (1) are concentrated near
u1 = 0 and u2 = 0, respectively, one can approximate the quantities φ1(u1) and
φ2(u2) by setting u2

1 or u2
2 to zero in any factor whose magnitude is large compared

with 1. In this manner, we obtain

φ1(u) ≈
(

2Rs

kwa

)1/2
ka(a − w) + iRsu

2

k(a − w)2 + 2iRsu2
(5.8.4)

φ2(u) ≈ a

a + w

(
2Rl

kwa

)1/2

(5.8.5)

(Note that in the former expression we allow for the possibility of a−w being close
to zero.) To facilitate the evaluation of the corresponding integral, we rewrite the
above approximate expression for φ1(u) in the form

φ1(u) ≈
(

Rs

2kwa

)1/2

+ a + w

4(wa)1/2

[
1

(π/2)1/2X + e−iπ/4 u
+ 1

(π/2)1/2X − e−iπ/4 u

]

(5.8.6)

where we use the abbreviation

X =
(

k

πRs

)1/2

(a − w). (5.8.7)

In regard to the insertion of these expressions for φ1 and φ2 into Eq. (1), note that
the integral from 0 to ∞ of exp(−u2) is 1

2π
1/2 and that the integral arising from the

second term in the brackets in Eq. (6) can be rewritten after a change of integration
variable, u → −u, in the same form as the integral arising from the first term but
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with integration limits of −∞ and 0. Consequently, one obtains22

p̂

ρcv̂n
= H(a − w)eikz −

(
Rs

8πkwa

)1/2

ei(kRs+π/4)

− 2a

a + w

(
Rl

8πkwa

)1/2

ei(kRl−π/4) − a + w

(8wa)1/2 AD(X)ei(kRs+π/4)

(5.8.8)

where AD(X) is the diffraction integral23 given by

AD(X) = 1

π21/2

∫ ∞

−∞
e−u2

du

(π/2)1/2X − e−iπ/4 u
(5.8.9)

= f (X) − ig(X) (5.8.9a)

the latter serving to define the auxiliary Fresnel functions24 f (X) and g(X), which
represent the real and negative imaginary parts of AD(X).

22The limiting case of a → ∞, w − a finite and abbreviated by x, corresponds to the case when
the x < 0 portion of the plane z = 0 is vibrating with constant amplitude and phase and the x > 0
portion is motionless. This limit applied to (8) gives

p̂

ρcv̂n
= H(−x)eikz − 2−1/2AD(X) exp

{
i
[
k(x2 + z2)1/2 + π

4

]}
, (i)

with X = −{k/[π(x2 + z2)1/2]}1/2x. This, with z � |x|, reduces to

p̂

ρcv̂n
= eikz[H(−x) − 2−1/2eiπ/4AD(X)ei(π/2)X2 ] = eikz2−1/2e−iπ/4

∫ ∞

−X

ei(π/2)t2
dt. (ii)

The mathematical steps leading to (ii) are explained later in the present section. This in the limit
considered is the same as the classical result for Fresnel diffraction of a plane wave by a straight
edge in the Fresnel–Kirchhoff theory. See Born and Wolf, Principles of Optics, pp. 433–434.
23So called here because it is a ubiquitous feature of any asymptotic solution of the wave equation
when the boundary involves a sharp edge. Born and Wolf, Principles of Optics, p. 428, use the term
to refer, with some multiplicative factors, to the integral of eikR over the aperture.
24W. Gautschi, “Error function and Fresnel integrals,” in Abramowitz and Stegun (eds.), Handbook
of Mathematical Functions, pp. 297–302, 323–324. Note that our AD(X) is (1−i)/2 times the w(z)

in Gautschi’s eq. (7.1.4) with z = (π/2)1/2Xeiπ/4, so our (9a), giving iAD(X) = [(1 + i)/2]w(z)

as g(X) = if (X), is consistent with Gautschi’s (7.3.23) and (7.3.24).
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5.8.1 Properties of the Diffraction Integral

The diffraction integral AD(X) has the properties of being odd in X but discontinu-
ous at X = 0 and of being related to the Fresnel integrals

C(X) =
∫ X

0
cos

(π
2
t2
)
dt, S(X) =

∫ X

0
sin
(π

2
t2
)
dt (5.8.10)

by the relation

AD(X) = 1 − i

2
e−i(π/2)X2 {sign (X) − (1 − i)[C(X) + iS(X)]}. (5.8.11)

[This equivalence is demonstrated for X > 0 by replacing (a mathematical identity)

1

ζ − e−iπ/4u
= e−iπ/4

∫ ∞

0
exp [i(ζ eiπ/4 − u)s] ds

in Eq. (9) with ζ = (π/2)1/2X, interchanging the order of s and u integrations, and
subsequently writing the total exponent as

−u2 + i(ζ eiπ/4 − u)s = −iζ 2 − y2 −
(
u + is

2

)2

with y = s/2+ e−iπ/4ζ . The integral over u of e−(u+is/2)2
yields π1/2. The integral

over s of e−y2
is changed to an integral over y from e−iπ/4ζ to ∞, which in turn

is broken into an integral from 0 to ∞ (which evaluates to π1/2) minus an integral
from 0 to e−iπ/4ζ . In the latter integral, the variable of integration is changed to t ,
where y = (π/2)1/2te−iπ/4, such that the t integration limits become 0 and X. The
cited result then follows from Euler’s formula (1.8.3), from Eqs. (10), and from the
recognition that e±iπ/4 is (1 ± i)/21/2.]

Behavior of AD(X) at large and small values of |X| is determined, respectively,
by (1) expanding the integrand in Eq. (9) in an inverse power series in X, then
integrating term by term, and (2) expanding the integrands in Eqs. (10) in a power
series in (π/2)t2, then integrating term by term, subsequently substituting the results
plus a power-series expansion of exp [−i(π/2)X2] into Eq. (11). In this manner, the
large X limit yields

f (X) → 1

πX
− 3

π3X5 + · · · (5.8.12a)

g(X) → 1

π2X3 − 15

π4X7 + · · · (5.8.12b)
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Fig. 5.12 Auxiliary Fresnel functions f (X) and g(X) versus their argument X, representing the
real and negative imaginary parts of the diffraction integral AD(X) (an odd function of X). The
leading terms in the asymptotic expressions for f (X) and g(X) are also shown [A. D. Pierce, J.
Acoust. Soc. Am. 55:946 (1974)]

while the small X limit yields

f (X) = sign(X)

(
1

2
− π

4
X2 + π

3
|X|3 − · · ·

)
(5.8.13a)

g(X) = sign(X)

(
1

2
− |X| + π

4
X2 − · · ·

)
(5.8.13b)

The plots in Fig. 5.12 of f (X) and g(X) along with the leading terms in their
asymptotic expressions indicate that, for most purposes, the asymptotic expressions
are sufficient for |X| > 2.

5.8.2 Field Near Edge of Main Beam

If w is very close to a, that is, a listener at a point on a hypothetical cylinder
projecting out from the piston’s perimeter, the parameter X is vanishingly small and,
in accord with Eqs. (9a) and (13), AD(X) is (1 − i)/2 if X = 0+ (w = a − 0+)
and −(1 − i)/2 if X = 0− (w = a + 0+), so the last term (with the minus sign) in
Eq. (8) is − 1

2e
ikz sign (a−w). Regardless of which direction the limit is approached

from, the sum of the first and fourth terms gives 1
2e

ikz at w = a, so the right side in
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Eq. (8) is continuous at w = a (as it should be). The complete expression at w = a

consequently reduces to

p̂

ρcv̂n
≈ 1

2e
ikz

[
1 − eiπ/4

( z

2πka2

)1/2
]

− (z2 + 4a2)1/4

(8πka2)1/2 e−iπ/4 eik(z
2+4a2)1/2

.

(5.8.14)

The range of values of z for which the above is valid can be assessed with
reference to the exact expression [derived from Eqs. (5.6.3) or (5.6.7)] for p̂/ρcv̂n
when w = a, that is,

p̂

ρcv̂n
= 1

2e
ikz − 1

π

∫ π/2

0
eik[z2+(2a)2 sin2 φ]1/2

dφ. (5.8.15)

For z = 0, this has the value25 [see Eq. (5.4.6)]

(
p̂

ρcv̂n

)
z=0

= 1
2 [1 − J0(2ka) − iH0(2ka)]. (5.8.16)

If ka � 1, both the Bessel function and the Struve function are small compared
with 1 and the right side here is close to 1

2 .
In general, the second term in Eq. (15) is of small magnitude until z reaches

values comparable to ka2, in which case the appropriate approximate form [derived
after replacing the radical in the exponent by its truncated binomial expansion z +
(2a2/z) sin2 φ] is

p̂

ρcv̂n
≈ 1

2e
ikz

[
1 − eika

2/zJ0

(
ka2

z

)]
, (5.8.17)

which may be compared with Eq. (5.7.7). When the argument of the Bessel function
is small compared with 1, Eq. (17) reduces to Eq. (5.7.5) (as it should), but it is
equivalent to Eq. (14) [with (z2 + 4a2)1/2 replaced by z+ 2a2/z in the latter] in the
limit when the Bessel function can be replaced by the leading term in its asymptotic
expansion, e.g., when ka2/z is of the order of 1 or greater. Consequently, one can
conclude that, near w = a, Eq. (14) gives a good description of the pressure field
up to z = ka2. In addition, since the terms other than 1

2e
ikz in both Eqs. (14) and

(17) are of minor significance unless z becomes comparable to ka2, Eq. (14) is also
a good approximation (for w near a) when z is close to the plane of the piston.

25A. G. Warren, “A note on the acoustic pressure and velocity relations on a circular disc and
in a circular orifice,” Proc. Phys. Soc. (Lond.) 40:296–299 (1928). Warren omits all details; an
explicit derivation is given by McLachlan, “The acoustic and inertia pressure . . . ,” Phil. Mag.,
(7)14:1012–1025 (1932).
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5.8.3 Characteristic Single-Edge Diffraction Pattern

In the range of values of z where both z and (z2 + 4a2)1/2 are small compared with
8πka2, given that |w − a| 
 a, the second and third terms in Eq. (8) are of smaller
magnitude than the first and fourth, so insight into the phenomena occurring near the
edge of the primary sound beam results from the neglect of these two terms. (The
stated criteria would apply, for example, if ka = 100 and if z/a < 100.) To the same
order of approximation, one can set (a + w)/(8wa)1/2 = 1/

√
2 in the coefficient

preceding AD(X); one can also set Rs equal to z + (w − a)2/2z in the exponential
factor eikRs and equal to z in the argument of X. Thus, Eq. (8) reduces to

p̂ = ρcv̂ne
ikz

[
H(X) − eiπ/4

21/2 AD(X)ei(π/2)X2
]

(5.8.18)

= ρcv̂ne
ikz

(
2−1/2e−iπ/4

∫ ∞

−X

ei(π/2)t2
dt

)
. (5.8.18a)

with X now approximated to (k/πz)1/2(a − w). Here we have also replaced the
a − w in the argument of the Heaviside unit step function by X, since the latter
has the same sign as a − w. Note that the overall function is continuous in X (as
it should be) since, near X = 0, the second term (without the minus sign) is 1

2 if
X = 0+ and − 1

2 if X = 0−.
An implication of the above approximate expression for p̂ is that the spatial

and frequency dependence of the mean squared pressure is contained in a single
dimensionless parameter X, that is,

(p2)av

(ρc)2(v2
n)av

=
∣∣∣∣H(X) − eiπ/4

21/2
AD(X)ei(π/2)X2

∣∣∣∣
2

= 1

2

∣∣∣∣
∫ ∞

−X

ei(π/2)t2
dt

∣∣∣∣
2

(5.8.19)

= 1
2 {[ 1

2 + C(X)]2 + [ 1
2 + S(X)]2} (5.8.19a)

= 1
2 {[f (X)]2 + [g(X)]2}, X < 0 (w > a). (5.8.19b)

This function, plotted in Fig. 5.13, occurs also in the theory of diffraction by edges
and may accordingly be called the characteristic single-edge diffraction pattern. It
decreases monotonically with increasing negative X, asymptotically approaching
1/2π2X2; at X = 0 it has the value 1

4 , while at large positive X it approaches

(p2)av

(ρc)2(v2
n)av

→ 1 − 21/2 cos[(π/2)X2 + π/4]
πX

, w < a (X > 0), (5.8.20)
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Fig. 5.13 Characteristic single-edge diffraction pattern equal to 1
2

∣∣∣∫∞
−X

ei(π/2)t2
dt

∣∣∣2 plotted

versus diffraction parameter X and Fresnel number NF = X2/2 [For a circular piston in a rigid
baffle, X is (k/πz)1/2(a − w) and is negative in the shadow zone]

i.e., it oscillates26 about 1 with an amplitude that decreases with increasing X.
The latter approximate expression exhibits local pressure minima whenever

(π/2)X2 + π/4 is a multiple of 2π , that is, when (with λ = 2π/k)

a − w ≈ (2λz)1/2(n − 1
8 )

1/2. (5.8.21)

26Photographs resulting from exposure of a photographic plate to an ultrasonic beam radiating
from a baffled piston exhibit such interference rings in a vivid manner. [J. T. Dehn, “Interference
patterns in the near field of a circular piston,” J. Acoust. Soc. Am. 32:1692–1696 (1960).]
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The positions of the local pressure maxima are given by an analogous expression,
but with the number 1

8 replaced by 5
8 . With increasing a − w (decreasing w) or,

equivalently, with increasing n, these maxima and minima become progressively
closer together. With increasing distance z from the piston, the overall pattern
spreads out; the radial distance between the nth and (n + 1)th maxima increases
with z as z1/2.

Similarly, if w > a, the radial distance w′(z) at which (p2)av first drops below
some set fraction ε (assumed substantially less than one-fourth) of the nominal
plane-wave value (ρc)2(v2

n)av tends to increase with z, the quantity w′(z) − a

being approximately (λz/ε)1/2/2π . If the so-defined w′(z) is taken as a measure
of the radius of the broadened beam, the axial distance at which the beam radius
has increased by 2 wavelengths is 4 times that at which it has increased by 1
wavelength and the beam therefore broadens at a slower rate with increasing z.
However, the heights and depths of particular maxima or minima do not vary with
z in the approximation considered here.

The successive minima and maxima within the beam near w = a can be
interpreted as partial interference and reinforcement of a plane wave coming from
the face of the piston with phase kz and a wave coming from the nearest point on
the perimeter of the piston with phase kRs +π + δ, where δ varies with position but
is between 0 and π/4 (asymptotically π/4). Thus one has

NF = Rs − z

λ/2
=
{
(2n − 1) − δ/π for reinforcement
2n − δ/π for partial cancellation

(5.8.22)

The left side, representing the difference between the path length from the edge and
the direct path length in units of half wavelengths, is the Fresnel number NF . Since
Rs − z is (w − a)2/2z in the approximation considered here, the parameter X is
(2NF )

1/2.
The term “Fresnel number” derives from the concept of Fresnel zones27 (see

Fig. 5.14). The set of all points on the surface at radial distance R (from the listener)
between z and z + λ/2 is said to lie in the first Fresnel zone; those for which R lies
between z+λ/2 and z+λ lie in the second Fresnel zone, etc. The Rayleigh integral
(5.2.6) can be interpreted as a sum over contributions from the various Fresnel zones
that overlap the active face of the vibrating piston. Phase variations of wavelets that
originate from points on the same Fresnel zone are relatively minor, while wavelets
originating from two adjacent zones tend (on the average) to partially cancel each
other. The Fresnel number in Eq. (5.8.22) can be identified as the number of Fresnel
zones that separate the projection of the listener point on the z = 0 plane from the
nearest point on the piston’s perimeter. A unit change in Fresnel number corresponds
to the addition of the contribution from another Fresnel zone to the Rayleigh

27A. Sommerfeld, Optics, Academic, New York, 1950, pp. 218–220; Born and Wolf, Principles
of Optics, pp. 371–375; F. W. Sears, Optics, 3rd ed., Addison-Wesley, Reading, Mass., 1949, pp.
245–251.
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Fig. 5.14 Fresnel zones on a circular piston. Example plotted is for ka = 20, wL/a = 6, zL/a =
4, where a is piston radius and wL and zL are cylindrical coordinates of listener

integral, which partially cancels the contribution from the previously added zone.
This qualitatively explains why the distance from a maximum to the next minimum
or from a minimum to the next maximum corresponds asymptotically to a unit
change in NF . However, no special significance should be attached to integer values
of NF .

Since the approximate expression Eq. (18) depends on the radius a of the piston
only through the distance w − a, it and all the intervening remarks apply to the
radiation from uniformly vibrating baffled pistons that are not necessarily of circular
shape. One can interpret w − a as transverse distance from the listener position to
the nearest point on the outward projection of the piston’s perimeter. The solution’s
validity is primarily limited to points near the nominal edge of the beam; the
restrictions described previously apply if a is taken as a characteristic dimension
of the piston.
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5.8.4 Field Far Outside the Central Beam

To describe the pressure field at points at a moderate distance from the edge of
the central beam, yet for circumstances in which the inequalities assumed at the
beginning of the present section are valid, one can approximate AD(X) in Eq. (8)
by its asymptotic limit 1/πX with X given by Eq. (7). (This presumes that w − a

is sufficiently large to ensure that |X| ≥ 2.) For such circumstances, the first term
in (8) vanishes, and the second and fourth combine into one similar to the third but
with a − w replacing a + w. In this limit, the acoustic disturbance resembles the
sum of two waves, coming from the nearest and farthest points, respectively, on the
piston’s perimeter. These waves set up an interference and reinforcement pattern;
local minima in (p2)av occur when

Rl − Rs

λ/2
≈ 2n + 1

2 , (5.8.23)

where n is an integer less than 2a/λ− 1
4 . (Note that the maximum possible value of

Rl − Rs is 2a.)
For the considered range of z for which the approximation described above is

valid, the maxima in this interference pattern are substantially lower in magnitude
than those found in the central beam (w < a). The first discernible minimum,
for z fixed and for w > a, corresponds to a value of n for which the cylindrical
radial distance w satisfying Eq. (23) is somewhat greater than a, so the minima
corresponding to lower integer values of n are not present until z has increased to
some threshold value, depending on n. Typical patterns28 are shown in Fig. 5.15.

The partial cancellation at a minimum becomes nearly complete at radial
distances r sufficiently large to ensure that Rs/Rl ≈ 1, (w−a)/(w+a) ≈ 1. In this
limit one can set Rl ≈ Rs ≈ r and w − a ≈ w + a ≈ w in the coefficients of the
exponentials. However, to account for phase variations over a hemisphere of fixed
r , one should retain the first-order corrections to Rl and Rs in the exponentials; that
is, Rl,s ≈ r ± a sin θ . In this manner, one finds that Eq. (8) reduces to what is given
by Eqs. (5.5.1) and (5.5.4) but with the Bessel function replaced by its asymptotic
expression (5.4.10a). Consequently, Eq. (8) matches the far-field expression in the
limit w � a (as it should).

28The analysis in the present section is largely due to Schoch, “Considerations . . . ,” 1941. For
a comparable but mathematically dissimilar discussion of the field of a circular plane piston in
the ka � 1 limit, see P. H. Rogers and A. O. Williams, Jr., “Acoustic Field of a Circular Plane
Piston in Limits of Short Wavelength or Large Radius,” J. Acoust. Soc. Am., 52:865–870 (1972).
Some detailed computational results for the intermediate range of ka are displayed by H. Stenzel,
Leitfaden zur Berechnung von Schallvorgängen, Springer, Berlin, 1939, pp. 75–79; they are also
given by S. N. Rschevkin, A Course of Lectures on the Theory of Sound, Pergamon, Oxford, 1963,
pp. 441–443.
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Fig. 5.15 The development with increasing axial distance z of side lobes A, B, and C in the
radiation pattern of a circular piston (radius a) vibrating at a frequency such that ka = 20. The
quantity plotted is (p2)av in units of the nominal average value (ρc)2(v2

n)av expected for plane-
wave propagation in the central beam; w is the radial distance in cylindrical coordinates from the
axis of the piston. The computations are based on Eq. (5.8.8)

5.9 Problems

5.1 At the time a small airplane passes at 150 m altitude over point A on the
ground (see sketch), the sound level at A is 100 dB. Estimate the sound level
received at the same time at a point B (150 m from A) on the intersection of
an isolated building with the ground.
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Problem 5.1

5.2 Verify that the method of images applies for a source near a planar pressure-
release surface if the image source’s surface motion is appropriately chosen.
What is the Green’s function for a unit-monopole-amplitude point source
near a pressure-release surface? Show that the field approaches that of a
dipole when a monopole source is sufficiently close to a pressure-release
surface.

5.3 An acoustic monopole is near the corner of a large room. Take the floor as the
z = 0 plane and the two neighboring walls as the x = 0 and y = 0 planes;
let the source be at the point (d, d, d) and let the power output the source
would have in an unbounded space be Pav,ff. Assuming that the surfaces are
perfectly rigid, determine and plot the resulting acoustic power as a function
of kd. Beyond what value of kd can one assume the acoustic power output
to be within 10% of Pav,ff? [J. Tickner, J. Sound Vib., 36:133–145 (1974).]

5.4 The space (x > 0, y > 0, z > 0) is bounded by three rigid planes at x =
0, y = 0, and z = 0.

(a) Derive an expression for the Green’s function Gk(x|x0) for the
Helmholtz equation that satisfies the appropriate boundary conditions
and verify that Gk(x|x0) = Gk(x0|x).

(b) When |x0| is a large distance from the corner but x is much closer, show
that this Green’s function assumes the approximate form

Gk(x|x0) = F(kx, ei )r
−1
0 eikr0 ,

and determine the function F(kx, ei). Do not necessarily assume kr �
1. Here r0 = |x0| and ei = −x0/r0 is the unit vector pointing from
source to corner.
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(c) How does this result apply when a plane wave rather than a wave from a
point source is incident on the corner?

5.5 An underwater monopole source with angular frequency ω = ck is at depth
zS below the water’s surface (a pressure-release surface) and is at a distance
xS from a large rigid surface occupying the x = 0 plane. Otherwise the
region occupied by the water is unbounded.

(a) Determine the Green’s function Gk(x, y, z|xS, yS, zS) for the
Helmholtz equation that satisfies the boundary conditions appropriate to
this problem and verify that the Green’s function satisfies the reciprocity
condition.

(b) Determine the far-field radiation pattern of the source at distances |x| �
|xS | when k|x| � 1.

(c) Determine the time-averaged acoustic power of the source and discuss
the limiting cases of kxS → 0 and kzS → 0.

5.6 Two loudspeakers of area A are mounted on a large rigid wall (z = 0)
with their centers at x = −l/2, y = 0, and x = l/2, y = 0. Both
loudspeakers have the same velocity amplitude |v̂n|, but they are 90◦ out of
phase. Determine the time-averaged far-field acoustic intensity and power
output of this two-loudspeaker system. Consider the dimensions of the
loudspeakers to be small compared with a wavelength or with l but carry
through the derivation for arbitrary kl. (The analysis is simpler if the polar
axis of the spherical coordinate system is selected so that the resulting field
is independent of φ.)

5.7 Four small loudspeakers (labeled 1, 2, 3, 4) are mounted at (−l/2, l/2),
(l/2, l/2), (l/2,−l/2), and (−l/2,−l/2) on a rigid wall occupying the z = 0
plane. The separation distance l is large compared with a loudspeaker radius
a but small compared with a wavelength of the radiated sound. Determine
the power radiated out from the wall by this system to lowest nonzero
order in kl when each loudspeaker oscillates with velocity amplitude |v̂n|
for the following possible phase selections: (a) all loudspeakers in phase; (b)
speakers 1 and 2 in phase but 180◦ out of phase with 3 and 4; (c) speakers 1
and 3 in phase but 180◦ out of phase with 2 and 4.

5.8 A rigid circular diaphragm of mass m = 0.015 kg and radius 0.15 m
moves inside a cylindrical cavity whose mouth has a very large baffle. The
diaphragm is separated from the inner end of the cavity by an elastic material
that behaves like a spring with a spring constant of 2000 N/m. A sinusoidally
varying force with a frequency of 330 Hz causes the diaphragm to vibrate
and to radiate 0.5 W of acoustic power.

(a) What is the velocity amplitude of the diaphragm?
(b) What force amplitude is required to produce this power? [Take ρc =

400 kg/(m2·s) and c = 350 m/s.]
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5.9 A square piston, dimensions a on each side, is mounted in a rigid wall (z =
0) and vibrates with angular frequency ω and velocity amplitude |v̂n|.
(a) Derive an expression for the far-field intensity for arbitrary ka.
(b) For ka = 2π , plot the ratio of intensity at polar angle θ to that at θ = 0

versus θ for fixed azimuthal angle φ when φ = 0◦ and when φ = 45◦.
Also plot the analogous ratio for fixed θ versus φ when θ = 90◦.

(c) Determine the smallest value of ka for which the far-field radiation
pattern has a nodal direction. Take the piston as occupying the region
−a/2 < x < a/2, −a/2 < y < a/2 in the z = 0 plane and let
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ .

5.10 A small baffled loudspeaker driven by a transducer and oscillating at 1000
Hz frequency with rms velocity of 1 m/s causes the sound in air at a
radial distance of 10 m to have an rms acoustic pressure of 0.1 Pa. The
electroacoustic transducer (with baffled loudspeaker included) is such that
when it acts as a loudspeaker, a voltage Re 1.0e−iωt V causes an area-
averaged loudspeaker velocity of Re (1 − i)e−iωt m/s and a current of
Re (1 − i)e−iωt A. What is the electroacoustic efficiency of this system?

5.11 An annular piston with inner radius a and outer radius 4
3a is mounted on a

wall so that the inner area, 0 < w < a, does not move, while the piston,
a < w < 4

3a, oscillates with velocity amplitude |v̂n| and angular frequency
ω.

(a) What is the smallest nonzero value of ω at which the acoustic pressure
just in front of the center point (0, 0, 0) is zero?

(b) If ω is systematically varied, what is the maximum acoustic-pressure
amplitude one can expect at any given point on the symmetry axis?

5.12 A zone plate is constructed to enhance the acoustic-pressure amplitude at
a point on the symmetry axis 10 wavelengths from the center of a baffled
circular piston oscillating at angular frequency ω. The radius of the piston
is such that, at this frequency and for the cited listener point, it corresponds
to the outer edge of the fifth Fresnel zone. The piston is oscillating with
velocity amplitude |v̂n|, but the zone plate blocks out the second and fourth
zones so that only zones 1, 3, and 5 contribute to the radiated field. What is
the acoustic-pressure amplitude at the chosen listener point?

5.13 A rigid sphere of radius a moves back and forth with small displacement
amplitude and angular frequency ck in a circular hole of the same radius in a
large rigid screen.

(a) Given that ka 
 1 and that the velocity amplitude of the sphere is |v̂C |,
determine the acoustic power radiated to one side of the screen.

(b) How does your result compare with what would be expected without the
screen?

5.14 A baffled circular piston of radius a begins to vibrate at time t = 0 such that
vn(t) = 0 for t < 0, vn(t) = |v̂n| sinωt for t > 0. Plot the acoustic pressure
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versus time at a point on the symmetry axis at a distance 3πc/ω from the
piston center when ω = 4πc/a.

5.15 (a) Show that the method of images applies for a point source within the
interior region of a wedge formed by two rigid walls that intersect at an
angle of π/n, where n is a positive integer.

(b) Determine the location of all necessary images of a source at a point
described by cylindrical coordinates wS, φS, zS within a wedge-shaped
region formed by the planes φ = 0 and φ = π/3.

(c) Give an expression for the Green’s function that satisfies boundary
conditions appropriate to the circumstances of (b).

(d) How much enhancement in acoustic-power output relative to that
expected in a free-field environment is obtained in the limit wS → 0?

5.16 Verify that the expressions in Eqs. (5.4.9) and (5.5.6) for R1(2ka) are
equivalent.

5.17 Determine a definite-integral expression for the acoustic power radiated
by the baffled square piston of Problem 5.9 and show that its average
approximates to (ρc)(ka)2a2(v2

n)av/2π for ka 
 1 and to ρca2(v2
n)av for

ka � 1.
5.18 For the low-frequency limit, when the acoustic field near an oscillating

baffled circular piston can be described as incompressible flow, determine
the component vw of the fluid velocity that corresponds to flow radially away
from the symmetry axis for points on the piston (z = 0). Plot your result in
a suitable dimensionless form versus w/a.

5.19 A limiting case of interest is when the x < 0 half of the z = 0 plane has
normal velocity Re v̂ne−iωt while the other half remains rigid.

(a) Prove that the complex acoustic-pressure amplitude p̂ along the plane
x = 0 is 1

2ρcv̂ne
ikz.

(b) Show that p̂ is given by the expression on page 236n in the limit kz � 1.
Give a derivation that proceeds from the Rayleigh integral without the
artifice of extracting the ka � 1 limit from the result for a circular
piston.

5.20 (a) Show for the circumstances for which Eq. (5.8.18) is applicable that the
radial component (cylindrical coordinates) vw of the fluid velocity at
w = a has a complex amplitude v̂w, equal to [(1+i)/2]v̂n(πkz)−1/2eikz.

(b) Use this result to estimate to what distance z the primary beam (occu-
pying the cylinder of radius a) propagates before the acoustic power
transported within it drops by 50% of its value near the piston surface.
(Assume ka � 1.)

5.21 Show that the quadruple Helmholtz integral in Eq. (5.4.1) (whose value
determines the piston’s radiation impedance) can be reduced to evaluation
of the double integral

� �
Ein(−ikR) dl · dlS
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where dl and dlS are differential line elements, the two integrations proceed-
ing around the perimeter of the piston. Here

Ein(η) =
∫ η

0

1 − e−t

t
dt

is the exponential integral. Do not necessarily assume that the piston is
circular. [O. A. Lindemann, “Transformation of the Helmholtz integral into
a line integral,” J. Acoust. Soc. Am. 40:914–915 (1966).]

5.22 (a) Show that, in the limit of small ka, where a is a characteristic piston
dimension, the result in Problem 5.21 reduces to the evaluation of

� �
R dl · dlS.

(b) Hence show that the mechanical radiation impedance of a baffled
rectangular piston of dimensions a by b is given in the limit of ka 
 1,
kb 
 1, by

Zm,rad = −i
ρc

2π
k(ab)3/2f

(a
b

)
+ ρc

2π
k2(ab)2,

where

f (ζ ) = 2ζ 1/2 sinh−1 ζ−1 + 2ζ−1/2 sinh−1 ζ + 2
3 ζ

3/2 + 2
3 ζ

−3/2 − 2
3 (ζ + ζ−1)3/2.

[O. A. Lindemann, “Radiation impedance of a rectangular piston at very
low frequencies,” J. Acoust. Soc. Am. 44:1738–1739 (1968).]

5.23 A point source of monopole amplitude Ŝ and oscillating at angular frequency
ω is at (0, 0, zS) between two parallel rigid walls, z = 0 and z = h.

(a) Show that the image sources have z coordinates 2nh ± zS , where the
integer n is positive, negative, or zero.

(b) Show that the complex amplitude of the acoustic pressure can be
alternately written as

p̂ = Ŝ

∫ ∞

−∞
eik(ζ

2+w2)1/2

(ζ 2 + w2)1/2

∞∑
n=−∞

[δ(ζ − z + zS + 2nh) + δ(ζ − z − zS + 2nh)] dζ

= Ŝ

h

∫ ∞

−∞
eik(ζ

2+w2)1/2

(ζ 2 + w2)1/2

[ ∞∑
n=0

εn cos
nπzS

h
cos

nπ(z − ζ )

h

]
dζ

= Ŝ

h

∞∑
n=0

εn cos
nπzS

h
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where

εn =
{

1 for n = 0
2 for n ≥ 1

(c) Express the above definite integral as k times a function of [k2 −
(nπ/h)2]1/2w and show that the result is proportional to what is defined
as the Hankel function in standard reference texts.

5.24 (a) Verify that the complex acoustic-pressure amplitude at the perimeter of
an oscillating baffled circular piston is given by Eq. (5.8.16).

(b) Show that the result is compatible with Eqs. (5.3.4) and (5.3.7) in the
limit ka 
 1.

5.25 (a) Determine an expression for the time-averaged axial component Iz,av of
the acoustic intensity along the symmetry axis of a baffled circular piston
oscillating at constant frequency.

(b) What is the corresponding limiting value (w → 0) of w−1Iw,av along
the symmetry axis? (Here w denotes the radial distance in cylindrical
coordinates.)

(c) Sketch the energy flow lines (lines everywhere tangential to I) in the
vicinity of the symmetry axis for ka = 6π . Indicate the direction of
energy flow with arrows.

5.26 A highly directional acoustic radiator is to be designed using a baffled
circular piston. The sound-pressure level in the far field at angles greater
than 10◦ should be at least 10 dB less than that at the same radial distance
along the symmetry axis. What is the minimum value of ka to accomplish
this objective?



Chapter 6
Room Acoustics

The sound in a room consists of that coming directly from the source plus sound
reflected or scattered (see Fig. 6.1) by the walls and by objects in the room. Sound
having undergone one or more reflections is called reverberant sound because
it corresponds for an impulsive source to a series of echoes. If the direct wave
predominates almost everywhere, the room is anechoic (without echoes); rooms
so designed1 are anechoic chambers. A reverberation chamber is a room designed2

so that the reverberant field predominates overwhelmingly.
The bulk of the present chapter is concerned with sound in reverberant rooms.

Many of the concepts introduced here, e.g., room absorption, reverberation time,
random-incidence absorption coefficients, and random wave fields, have implica-
tions extending beyond room acoustic applications and correspond to analogous
concepts in such diverse areas as the propagation of sound in the ocean, the
vibrations of large complex bodies, the radiation of sound by such bodies, and the
propagation of sound within and out of ducts.

1J. Duda, “Basic design considerations for anechoic chambers,” Noise Control Eng. 9:60–67
(1977); W. Koidan and G. R. Hruska, “Acoustical properties of the National Bureau of Standards
anechoic chamber,” J. Acoust. Soc. Am. 64:508–516 (1978).
2Standard design criteria are set forth in American National Standard Methods for the Deter-
mination of Sound Power Levels of Small Sources in Reverberation Rooms, ANSI S1.21-1972,
American National Standards Institute, New York, 1972. See also the discussion by W. K. Blake
and L. J. Maja, “Chamber for reverberant acoustic power measurements in air and in water,” J.
Acoust. Soc. Am. 57:380–384 (1975).
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Fig. 6.1 Sketch of ray paths from a source in a reverberant room

6.1 The Sabine–Franklin–Jaeger Theory of Reverberant
Rooms

An appropriate idealization (discovered by W. C. Sabine3 at the turn of the century)
is that the sound “fills” a reverberant room in such a way that the average energy
per unit volume in any region is nearly the same as in any other region. The
corresponding mathematical model (reverberant-field model) that Sabine deduced
from a series of ingenious experiments has a relation to the full-wave model (wave
equation plus boundary conditions) of classical acoustics similar to that of radiative
heat transfer to electromagnetic theory or of kinetic theory to classical mechanics.
It applies best to “large” rooms whose characteristic dimensions are substantially
larger than a typical wavelength and to “live” (as opposed to “dead”) rooms, for
which the time determined by the ratio of the total propagating energy within the

3W. C. Sabine, “Architectural acoustics,” Eng. Rec. 38:520–522 (1898); “Architectural acoustics,”
ibid. 41:349–351, 376–379, 400–402, 426–427, 450–451, 477–478, 503–505 (1900); both the
1898 paper and the series of 1900 are also printed in Am. Archit. Build. News 62:71–73 (1898),
ibid.68:3–5, 19–22, 35–37, 43–45, 59–61, 75–76, 83–84 (1900). All except that of 1898 are printed
in W. C. Sabine, Collected Papers on Acoustics, Dover, New York, 1964. Historical sidelights are
given by L. L. Beranek: “The Notebooks of Wallace C. Sabine,” J. Acoust. Soc. Am. 61:629–639
(1977).
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room to the time rate at which energy is being lost from the room (absorbed or
transmitted out) is considerably larger than the time required for a sound wave
to travel across a representative dimension of the room. (Other limitations are
discussed in Sects. 6.3 and 6.6.)

6.1.1 Energy-Conservation Equation for Rooms

The basic concepts involved in the Sabine model are best explained within the
context of the principle of conservation of acoustic energy. The portion of the field
associated with a given frequency band can be defined, even for nonsteady fields,
in terms of functions pb(x, t) and vb(x, t) that correspond to the instantaneous
outputs when p(x, t) and v(x, t) are passed through frequency filters. These filtered
field variables also satisfy the linear acoustics equations (see Problem 2.41), and so
the derivation of Eq. (1.11.2) is still applicable. After an integration over the interior
volume V of the room, the analogous differential equation involving pb and vb
yields the energy-conservation relation

d

dt

∫∫∫
wb dV = Pb − Pb,d , (6.1.1)

where wb is the acoustic energy density given by (1.11.3) with pb and vb replacing
p and v. Here Pb is the net acoustic power associated with the frequency band of
interest supplied by sources in the room. The power dissipated Pb,d is the power
within the same frequency band leaving the room through its bounding surfaces and
is defined as a surface integral of pbvb · nout. The dissipation within the interior of
the room proper is usually not significant, except at higher frequencies, but Eq. (1)
(with a broader interpretation of Pb,d ) can still be used when one wants to take this
into account (see Sect. 10.8).

Equation (1), holding at every instant, is also true (Problem 2.41) if wb,Pb,
and Pb,d are replaced by running time averages, w̄b, P̄b, and P̄b,d . One can also
argue that if the effective duration of the averaging interval is sufficiently long,
these running time averages are additive functions for nonoverlapping bands. For
example, the function w̄b for the band 1000–2000 Hz should equal the sum of those
corresponding to the bands 1000–1500 Hz and 1500– 2000 Hz.

6.1.2 Spatial Uniformity

The principal assumption on which the Sabine model is based is that over the
major portion of the interior space of the room, the local spatial average of w̄b

is independent of position. (A local spatial average is here understood to be an
average over a volume with dimensions substantially larger than a representative
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acoustic wavelength but substantially smaller than those of the room as a whole.)
This assumption may not be valid near a source and may also not be true near
protruding obstacles, but one can limit the volume of consideration to whatever
portion V ′ of V the assumption applies. It must nevertheless be assumed that only a
small fraction of V is excluded.

This spatial uniformity requires the presence of the walls for its existence
and maintenance. If a source is suddenly turned on, the time interval within
which such a uniformity is established can be estimated as the time lapse until
the hundredth reflected wave arrives. For a rectangular room with nearly rigid
walls, the various reflected waves can be considered as coming from a rectangular
array of image sources (see Sect. 5.1); in the extended space there is one image
source per volume V , so the first 100 images lie within a radius of the order of
(3/4π)1/3(100)1/3V 1/3 = 2.9V 1/3. This suggests that an average spatial uniformity
is well established within a time interval of the order of 3l/c, where l is a
representative dimension of the room. For l equal to, say, 10 m and with c =
340 m/s, this gives a time interval of 0.1 s.

The Sabine model regards all acoustic fields with the same average energy
density w̄ as equivalent insofar as a field’s statistical properties are concerned.
(Here and in what follows w̄ represents the local spatial average of the running time
average; the subscript b is omitted, and no additional symbolism is used to imply
spatial averaging. Also, in accord with the remarks above, w̄ is assumed independent
of position.)

A consequence of the statistical-equivalence assumption is that P̄d depends
on the reverberant field in the room only through w̄. Furthermore, because the
boundary conditions at surfaces bounding V are governed by linear equations
relating the primary acoustic field variables p and v, this relationship should be
a direct proportionality. (Both w̄ and P̄d increase by the factor K2 when the
field variables are each increased by a factor K .) The proportionality constant is
a property of the room as a whole, independent of the nature and position of the
source but possibly dependent on frequency.

The proportionality just described can be written

P̄d = c

4
Asw̄, (6.1.2)

where c is the speed of sound and As is a frequency-dependent room property having
units of area that can be considered to be defined by this equation. For reasons
explained below, As is referred to as the equivalent area of open windows or the
absorbing power of the room and is said to have the units of metric sabins, the
term sabin identifying the context in which it is used. (The unit sabin without the
adjective refers to the area As in square feet, although Sabine used metric units in
his first papers.)
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Fig. 6.2 Reverberant decay of running time average of square of acoustic pressure as displayed
by a high-speed level recorder. (a) Sudden turnoff of a narrow-band source (1000 ± 50 Hz) and (b)
firing a pistol shot (600–1200 Hz) [W. Furrer, Room and Building Acoustics and Noise Abatement,
Butterworths, London, 1964, p. 89]

With the substitution of Eq. (2) for P̄d , the running time average of the energy-
conservation law (1) is reduced to the differential equation4

V
dw̄

dt
+ c

4
Asw̄ = P̄. (6.1.3)

6.1.3 Reverberation Time

After the sudden extinction of a source in a reverberant room, the running time
average of sound pressure squared, as indicated by a sound-level meter with the
“fast” response, for example, may fluctuate somewhat erratically (Fig. 6.2), but the
gross tendency resembles an exponential decay, similar to that experienced by the
volume average w̄ of energy density. The latter behavior results from an integration
of Eq. (3) with P̄ set to zero, i.e.,

w̄(t) = w̄inite
−t/τ τ = 4V

cAs

. (6.1.4)

4G. Jaeger, “Toward a theory of reverberation,” Sitzungsber. Kais. Akad. Wiss. (Vienna), Math.
Naturwiss. Kl., sec. IIa 120:613–634 (1911).
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The so-defined characteristic decay time τ has units of seconds per half neper, since
whenever the amplitude of the primary acoustic variables decreases by a factor of
e−1 or by 1 neper (Np), the energy density (a bilinear quantity) decreases by a factor
of e−2.

The usual descriptor for the exponential decay of reverberant sound is the time
T60 required for the spatial average of the energy density to drop by a factor of
106(60 dB). This reverberation time T60 is such that when t = T60 in Eq. (4),
w̄init/w̄ is 106; therefore, T60 is (6 ln 10)τ = 13.82τ . Because w̄ is proportional
to p2 (a relation w̄ = p2/ρc2 is derived below), and because a decrease of p2 by
a factor of 106 corresponds to a decrease in sound level by 60 dB, T60 has the units
of seconds per 60 dB; its relation to τ expresses the equivalence of 60 dB to 13.82
Np/2.

6.1.4 Sabine’s Equation

One of the Sabine’s principal contributions to room acoustics was the experimental
discovery that for an empty room of volume V the reverberation time T60 is
predictable from the relation5 (in SI units)

T60 = 0.161V∑
i αiAi

. (6.1.5)

Here the sum extends over all the distinct portions of the total surface area of
the room, each element of area Ai characterized by an absorption coefficient αi

determined from measurements of T60 with various mixtures of wall coverings
and from the requirement that αi be 1 for an open window. The model presumes
that αi is an intrinsic property of the wall material (depending also on frequency),
independent of the source, source location, magnitude (given that it is sufficiently
large), and location of area Ai and of the coverings on other portions of the bounding
surfaces. Sabine’s experimental data indicated that Eq. (5) can predict reverberation
times for specific cases using values of the αi derived from previous measurements
of reverberation times in different circumstances. Typical numbers measured by
Sabine with a source of 512 Hz frequency for the absorption coefficient α were
wood sheathing (hard pine), 0.061; plaster on wood lath, 0.034; plaster on wire lath,
0.033; glass, single thickness, 0.027; plaster on tile, 0.025; brick set in Portland
cement, 0.025; seat cushions, 0.80; carpeting, 0.20; oriental rugs, extra heavy, 0.29;

5Various slightly different experimentally determined values for the numerical coefficient are
mentioned in Sabine’s writings; 0.164 s/m is, for example, given in a 1906 paper (Collected Papers
on Acoustics, p. 103). The value 0.161 is predicted by theory when the room temperature is 18.3 ◦C
(65◦F); 0.164 corresponds to 9.4 ◦C (49◦F).
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Table 6.1 Representative absorption coefficients of surfaces

Absorption coefficient α

Material 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Brick, unglazed 0.03 0.03 0.03 0.04 0.05 0.07

Plaster, gypsum, or lime, on
brick 0.01 0.02 0.02 0.03 0.04 0.05

On concrete block 0.12 0.09 0.07 0.05 0.05 0.04

Concrete block, coarse 0.36 0.44 0.31 0.29 0.39 0.25

Painted 0.10 0.05 0.06 0.07 0.09 0.08

Plywood, 1-cm-thick
paneling 0.28 0.22 0.17 0.09 0.10 0.11

Cork, 2.5 cm thick
with airspace behind 0.14 0.25 0.40 0.25 0.34 0.21

Glass, typical window 0.35 0.25 0.18 0.12 0.07 0.04

Drapery, lightweight, flat
on wall 0.03 0.04 0.11 0.17 0.24 0.35

Heavyweight, draped to
half area 0.14 0.35 0.55 0.72 0.70 0.65

Floor, concrete 0.01 0.01 0.02 0.02 0.02 0.02

Linoleum on 0.02 0.03 0.03 0.03 0.03 0.02

Heavy carpet on 0.02 0.06 0.14 0.37 0.66 0.65

Wood 0.15 0.11 0.10 0.07 0.06 0.07

Ceiling, gypsum board 0.29 0.10 0.05 0.04 0.07 0.09

Plastered 0.14 0.10 0.06 0.05 0.04 0.03

Plywood, 1 cm thick 0.28 0.22 0.17 0.09 0.10 0.11

Suspended acoustical
tile, 2 cm thick 0.76 0.93 0.83 0.99 0.99 0.94

Gravel, loose, and moist,
10 cm thick 0.25 0.60 0.65 0.70 0.75 0.80

Grass, 5 cm high 0.11 0.26 0.60 0.69 0.92 0.99

Rough soil 0.15 0.25 0.40 0.55 0.60 0.60

Water surface, as in a pool 0.01 0.01 0.01 0.02 0.02 0.03

Source: M. D. Egan, Concepts in Architectural Acoustics, McGraw-Hill, 1972, pp. 32–34

linoleum, loose on floor, 0.12. (Table 6.1 lists absorption coefficients extracted from
more recent literature.)

The extension to Sabine’s derivation of Eq. (5) that successfully predicts the
numerical coefficient is due to W. S. Franklin6; a derivation similar in basic concept
but explicitly related to the wave theory of sound is given below.

6W. S. Franklin, “Derivation of equation of decaying sound in a room and definition of open
window equivalent of absorbing power,” Phys. Rev.16:372–374 (1903).
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6.1.5 Diffuse Sound Fields

To demonstrate the equivalence of Eqs. (4) and (5) when As is as defined by Eq. (2),
it is sufficient to limit one’s consideration to the constant-frequency case. Within
the interior of a reverberant room, the field is regarded as a superposition of freely
propagating plane waves, no two of which are traveling in the same direction (see
Fig. 6.3a), so for the complex amplitudes we write

p̂ =
∑
q

p̂qe
iknq ·x, ρcv̂ =

∑
q

nqp̂qe
iknq ·x . (6.1.6)

The time average of the energy density associated with this field, expressed
using Eqs. (1.11.3) and (1.8.9), involves a double sum over indices q and q ′, but
the process of taking a local spatial average causes the cross terms (q �= q ′) to
tend to average out. The spatial average of exp[ik(nq − nq ′) · x] is nearly zero for
a sufficiently large averaging volume. Moreover, the spatial averages of the cross
terms should have a variety of magnitudes; either sign is equally likely for terms
having a given magnitude, so the total sum of such terms should be small. The terms
for which q = q ′, however, are positive and must be retained. With the neglect of
cross terms, the time average of the energy density reduces to the sum of the time
averages of its constituent plane waves [see Eq. (1.11.11a)], so one obtains

w̄ ≈ 1

2ρc2

∑
q

|p̂q |2 ≈ 1

ρc2
p2, (6.1.7)

which is analogous to Parseval’s theorem (see Sects. 2.1 and 2.7).
The portion w̄ΔΩ of the average energy density propagating with directions lying

within a cone of solid angle ΔΩ is that part of the sum in Eq. (7) for which nq

lies in ΔΩ . One can conceive of a directional energy density D(e) as the quasi
limit as ΔΩ becomes small of w̄ΔΩ /ΔΩ . where ΔΩ is the solid angle centered
on the direction e. This D(e) (energy per unit volume and per unit solid angle of
propagation direction7) must accordingly be such that its integral over all directions,
4π sr (steradians), is w̄.

A field satisfying the criterion that D(e) be independent of e, so D(e) = w̄/4π ,
is a perfectly diffuse field. Near an absorbing surface (especially at an open window),

7In the theory of radiative heat transfer, an intensity of radiation I is defined as the energy emitted
by a surface per unit area of surface per unit time and per unit solid angle of propagation direction.
The analog of the directional energy density defined in the text can be identified for volumes just
outside such a surface and for directions pointing obliquely away from it as I/c, where c is the
speed at which the energy propagates. See, for example, F. Kreith, Principles of Heat Transfer, 3d
ed., Intext, New York, 1973, p. 229.
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Fig. 6.3 (a) Reverberant field represented as a superposition of traveling plane waves. (b) Waves
incident on a surface adjacent to a reverberant field

the field departs from this ideal, but nevertheless D(e) for directions pointing into
the surface (out of the room) is representative of the acoustic state within the interior
of the room and should therefore be nearly w̄/4π , where w̄ is the room’s average
energy density.

The above considerations allow one to describe the energy lost at any large
flat (or nearly flat) portion of the room’s bounding surface. If many plane waves
are simultaneously incident on such a wall (Fig. 6.3b), the individual waves reflect
independently and the principle of superposition can be used in conjunction with
the theory of plane-wave reflection described in Sect. 3.3. Such an analysis requires
that the time average of the rate at which energy is absorbed (not reflected) by the
surface per unit area be

1

2ρc
Re

{∑
q,r

′
p̂q p̂

∗
r (1 + Rq)(1 − R∗

r )e
ik(nq−nr )·xT nr ·nout

}
,

where Rq = pressure-amplitude reflection coefficient corresponding to incidence
direction nq

xT = displacement vector tangential to surface
nout = unit vector pointing out of room

The prime implies that the sum is restricted to incident waves, such that nr points
obliquely toward the wall.

If the surface portion is sufficiently large, one can replace the above expression
by its average over surface area. For reasons similar to those given in the derivation
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of Eq. (7), the surface-area averages of the cross terms are small and tend to average
out. Consequently, one is left with just the area averages of the terms for which
q = r , for which the exponential factor is 1, and for which p̂q p̂

∗
r = |p̂q |2 is real.

Moreover, the real part of (1 + Rq)(1 − R∗
q ) is the absorption coefficient α(nq) for

a plane wave incident in the nq direction. The resulting expression is therefore

dP̄d

dA
= 1

2ρc

∑
q

α(nq)
∣∣p̂q

∣∣2 nq ·nout. (6.1.8)

To eliminate explicit reference to the amplitudes |p̂q | of individual plane waves,
the above sum is arranged into a double sum, first over terms for which nq lies
within solid angle ΔΩ , then over solid angles. If an individual solid-angle element
is sufficiently small, the factors α(nq) and nq ·nout for all the constituent terms can
be approximated with nq replaced by the solid angle’s central direction, unit vector
e. Furthermore, the partial sum of the |p̂q |2, corresponding to nq lying within this
small range of solid angle, can be recognized from Eq. (7) as 2ρc2 times D(e)ΔΩ .
The sum over solid-angle elements goes into an integral over solid angle, so Eq. (8)
yields

dP̄d

dA
= c

∫∫ ′
α(e)D(e)e ·nout dΩ = c

4
αriw̄, (6.1.9)

where the integral extends over just those directions for which e · nout ≥ 0. The
second equality follows from the perfectly diffuse idealization, D = w̄/4π , and
with the definition

αri = 1

π

∫∫ ′
α(e)e ·nout dΩ (6.1.10)

for the random-incidence absorption coefficient αri.
Equation (10) describes a weighted average of plane-wave absorption coeffi-

cients because when α(e) is constant, the right side integrates to α(e). This is
verified if one chooses a coordinate system such that nout is in the z direction and if
one uses the spherical coordinates θ, φ to describe directions, so that e ·nout = cos θ
and dΩ = sin θ dθ dφ; the integration limits are (0, π/2) and (0, 2π) for θ and φ.
Ordinarily, α(θ, φ) is independent of φ, so Eq. (10) reduces to

αri = 2
∫ π/2

0
α(θ) cos θ sin θ dθ. (6.1.11)
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6.1.6 Equivalent Area of Open Windows

For an open window of sufficiently large area, one would expect α(θ) to be 1
regardless of angle of incidence, so αri would also be 1. Thus, the average absorption
coefficient α for a given surface of area ΔA can alternately be defined in the manner
originally chosen by Sabine as the ratio of ΔP̄d/ΔA to that expected for an open
window. The latter is identified from Eq. (9), with α = 1, as (c/4)w̄. (In what
follows the subscript ri is omitted.)

Sabine’s definition allows a broader conception8 of absorption coefficient tran-
scending some of the limitations of the derivation. The average rate of dissipation
ΔP̄d by any portion of the walls or by any object in the room can be written as
(c/4)w̄ ΔAs , where xΔAs is the equivalent area of open windows yielding the
same ΔP̄d . The sum of all such ΔP̄d gives Eq. (2), so As is the equivalent area of
open windows for the room as a whole.

If all such contributions come from surfaces for which it is meaningful to asso-
ciate an absorption coefficient, As becomes the sum of the αiAi . The reverberation
time T60 = (6 ln 10)τ , where τ is given by Eq. (4), becomes

T60 = (24 ln 10)V

c
∑
i

αiAi

= 55.3V

cAs

. (6.1.12)

The first version, which has been referred to as the Sabine–Franklin reverberation
time,9 reduces to Eq. (5) when c = 342 m/s (corresponding to a temperature of
18.3 ◦C or 65 ◦F).

6.1.7 Absorbing Power of Objects and Persons

To account for objects or people in a room, one adds the appropriate increment ΔAs

for each object to the absorbing power As . The following examples show how ΔAs

can be determined.

Example 1 A room of volume V has reverberation times of T60,I or T60,II when a
person is not or is present in the room. The total As for each case is determined from

8That the absorption coefficient defined by Eq. (10) is not necessarily the same as what is required
to yield the reverberation time via Eq. (5) is discussed at some length by T. F. W. Embleton,
“Sound in large rooms,” in L. L. Beranek (ed.), Noise and Vibration Control, McGraw-Hill, New
York, 1971, pp. 219–244.
9W. B. Joyce, “Sabine’s reverberation time and ergodic auditoriums,” J. Acoust. Soc. Am. 58:643–
655 (1975).
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the second version of Eq. (12), and the increment ΔAs due to the person’s presence
is the difference, i.e.,

ΔAs = (24 ln 10) V

c

(
1

T60,II
− 1

T60,I

)
. (6.1.13)

Example 2 An area ΔA of the room in Example 1 nominally having absorption
coefficient α0 is covered by an oil painting, and the reverberation time decreases
to T60,III. To determine the ΔAs associated with the painting, one follows the
analysis of Example 1 but recognizes that the painting replaces a wall portion having
absorbing power α0ΔA. The difference of the two As’s is the ΔAs intrinsically due
to the painting minus α0 ΔA. Consequently, the painting’s ΔAs is

ΔAs = α0 ΔA + (24 ln 10) V

c

(
1

T60,III
− 1

T60,I

)
. (6.1.14)

In such a manner, Sabine determined that the absorbing-power increment
associated with an isolated man is of the order of 0.48 metric sabin at 512 Hz. (For a
woman dressed in the style of 1900, it was 0.54 metric sabin.) For oil paintings with
an area of the order of 1 m2, he found the average absorption coefficient ΔAs/ΔA

(where ΔA included the frames) to be 0.28.
A chief premise in typical applications is that the absorbing-power increment

associated with an object is intrinsic to that object. It should be the same for
every room, regardless of position and orientation of the object, regardless of the
position of the source and of other objects, and regardless of the room’s construction.
However, even if the diffuse-field idealization is appropriate in the bulk of the room,
the premise is poor if two such objects are close together or if a number obtained
when the object was suspended in the center of the room is to be used when the
object is resting on the floor.

Such exceptions are generally recognizable as such. For example, if one wishes
to estimate the incremental absorbing power of an audience in an auditorium,10 one
refers to data not for isolated persons but for other audiences seated on the same
type of chairs with the same seating density (see Table 6.2). The premise would be
that the average increment per person is the same for both audiences.

10L. L. Beranek, “Audience and seat absorption in large halls,” J. Acoust. Soc. Am. 32:661–670
(1960); Music, Acoustics, and Architecture, Wiley, New York, 1962, pp. 541–554.
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Table 6.2 Absorbing-power increments due to persons and seats

Absorbing-power increment, metric sabins

Description 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Man standing, in heavy coat 0.17 0.41 0.91 1.30 1.43 1.47

Without coat 0.12 0.24 0.59 0.98 1.13 1.12

Musician, sitting, with instrument 0.60 0.95 1.06 1.08 1.08 1.08

Student, seated, including seat,
high school

0.20 0.28 0.31 0.37 0.41 0.42

Elementary school 0.17 0.21 0.26 0.30 0.33 0.37

Person seated in church pew 0.23 0.25 0.31 0.35 0.37 0.35

Per m2 of floor area, without
audience, moderately upholstered
chairs, 0.90 × 0.55 m

0.44 0.56 0.67 0.74 0.83 0.87

Cloth-covered seats with 0.49 0.66 0.80 0.88 0.82 0.70
perforated bottoms

With audience, wooden chairs, 0.24 0.40 0.78 0.98 0.96 0.87
2/m

1/m2 0.16 0.24 0.56 0.69 0.81 0.78

Moderately upholstered chairs 0.55 0.86 0.83 0.87 0.90 0.87

Source: H. Kuttruff, Room Acoustics, Applied Science, London, 1973, pp. 156–157; L. L. Beranek,
Acoustics, McGraw-Hill, New York, 1954, pp. 300–301

6.2 Some Modifications

The Sabine–Franklin–Jaeger model introduced in the preceding section rests on
restrictive assumptions and holds at best only in an averaged sense. Most of the
simpler suggestions how the model might be modified to increase its domain of
application use the concept of a mean free path in a room.

6.2.1 Mean Free Path

The calculation leading to Eq. (6.1.9) indicates that the average rate at which
acoustic energy is incident on the walls of the room per unit surface area is (c/4)w̄,
so (c/4)w̄S is the rate at which energy is incident on all walls, S being the total wall
surface area. The ratio cS/4V of this to the total energy w̄V in the room can be
interpreted as an average rate (with a weighting described below) at which a “ray”
of sound bouncing about the room undergoes reflections.
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Fig. 6.4 Partitioning of a room’s acoustic energy into many rays, each of fixed energy; this
idealization leads to 4V/S for the characteristic path length

A simple derivation11 supporting the above interpretation is as follows. Suppose
the energy E in the room is divided into energies E1, E2, E3, . . . , each being
associated with a distinct ray (see Fig. 6.4). If one ignores absorption, the energy
associated with each ray stays constant. If the number of reflections ray r undergoes
in time Δt is ΔNr , the average energy-weighted number of reflections per ray in
time Δt is

〈ΔN〉 = �Er ΔNr

�Er

. (6.2.1)

The numerator, however, is the total ray energy striking the walls in time Δt , or,
from the discussion above, (c/4)w̄S Δt , and the denominator is the total energy w̄V

in the room; the right side is therefore (cS/4V ) Δt . The relation 〈dN/dt〉 = cS/4V
therefore results.

11P. E. Sabine, Acoustics and Architecture, McGraw-Hill, New York, 1932, pp. 309–311. An earlier
but dissimilar derivation leading to the same result was given by Jaeger, “Toward a theory of
reverberation.”
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The distance a “ray” moving with the sound speed c travels in time 1/〈dN/dt〉 is

lc = 4V

S
, (6.2.2)

and represents a characteristic path length for sound in a room. For a cubical room
of length a on each side, one has V = a3, S = 6a2, so lc = 2

3a. For a spherical
room, lc is 4

3 times the radius. For a rectangular room, lc is between 2
3 and 2 times

the room’s smallest dimension.
Various definitions12 of a mean free path appear in the early literature on

architectural acoustics, but the ones most meaningful within the context of the
Sabine–Franklin–Jaeger model are those leading to the lc above. The quantity lc
is not the average distance between reflections for any given ray, nor is it the
average over rays of such an average distance; instead it is c times the reciprocal
of an average collision frequency per ray of rays with walls. Consequently, lc is the
reciprocal of the mean free reciprocal path length, but to keep our terminology brief
we refer to it as a mean free path or characteristic path length.

6.2.2 Limitations of Sabine’s Equation

A possible weak point in the derivation of the Sabine–Franklin reverberation
time is the assumption that the energy-dissipation rate at time t depends on the
simultaneous value of the energy density in the room. What is more nearly true is
that it depends on the current values near each wall of the energy-density portion
propagating toward the wall. But if the energy in the room is changing rapidly with
time, the approximation of this local quantity by an average over room volume
becomes suspect. One can argue, as in the previous section, that a time of the order
of 3lc/c or greater is required for the spatial distribution of energy to equilibrate
whenever some change in the source output is made. Consequently, the model’s
predictions for reverberant decay may be invalid if the characteristic decay time τ

is comparable to or less than 3lc/c or, equivalently, if the average (surface-area-
weighted) absorption coefficient is of the order of 1

3 or greater.
Equations (6.1.4) often give a higher average energy-versus-time curve during

reverberant decay than is measured and thus predict a longer time for w̄ to decay
by some fixed fraction. The energy incident on the walls is representative of the
average energy density in the center of the room at a time of the order of 1

2 lc/c

or more earlier. This average energy density at the earlier time is higher (during

12A geometrical definition (not explicitly involving energy) leading also to 4V/S has been given
by C. W. Kosten, “The mean free path in room acoustics,” Acustica 10:245–250 (1960). Various
proposed definitions are reviewed by F. V. Hunt, “Remarks on the mean free path problem,” J.
Acoust. Soc. Am. 36:556–564 (1964).
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reverberant decay), so the energy incident on the walls is higher than was assumed
in the derivation; the rate of energy dissipation is therefore also higher, and the
energy in the room decreases faster than predicted by the Sabine–Franklin–Jaeger
model.

6.2.3 Norris–Eyring Reverberation Time

A simple assumption13 overcoming the limitations just described (but raising other
objections) is that the energy incident per unit time on the walls decreases stepwise
(see Fig. 6.5a) after the source has been turned off. For the first14 lc/c s, the
directional energy density at the walls for propagation directions pointing into the
walls is taken as w̄init/4π and thus corresponds to energy not having suffered wall
reflections since t = 0. During the next lc/c s, all arriving energy is assumed to have
suffered one and only one wall reflection, so the average energy density associated
with it has decreased by a factor of 1 − ᾱ, where ᾱ is the area-averaged absorption
coefficient. Thus, D = (1 − ᾱ)w̄init/4π for the second interval. Similarly, D is
(1 − ᾱ)2w̄init/4π for the next lc/c s, etc.

The net energy absorbed in the first interval is ᾱV w̄init; the energy remaining at
the end of that interval is (1 − ᾱ)V w̄init. After another interval, it is reduced again
to 1 − ᾱ times its value at the start of the interval. Consequently, the net volume-
averaged energy density remaining at time tN = Nlc/c is

w̄(tN ) = w̄init(1 − ᾱ)N . (6.2.3)

The stepwise variation in P̄d implies that w̄(t) decreases linearly with time
between integer values of ct/ lc (Fig. 6.5b), the slope changing discontinuously at
times nlc/c. A good approximation to the overall decay curve results if one uses (3)
even when N is not an integer, i.e.,

w̄(t) = w̄init(1 − ᾱ)ct/ lc = w̄inite
−t/τNE , (6.2.4)

τNE = 4V

cS[− ln (1 − ᾱ)] . (6.2.5)

The corresponding Norris–Eyring reverberation time T60 is 13.82τNE.

13C. F. Eyring, “Reverberation time in “‘dead’ rooms,” J. Acoust. Soc. Am., 1:217–241 (1930). The
first conception of Eq. (5) is attributed to R. F. Norris by C. A. Andree, ibid. 3:549–550 (1932).
Norris’ version of the derivation is given as appendix II in V. O. Knudsen’s Architectural Acoustics,
Wiley, New York, 1932, pp. 603–605.
14The variant on the derivation of taking the first interval as 1

2 lc/c, the rest as lc/c, yields the same
reverberation time.
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Fig. 6.5 (a) Norris–Eyring idealization of stepwise decrease in energy incident per unit time on
room walls. (b) Corresponding prediction of time variation of room’s energy following source
switch-off; dashed line is an exponentially decaying curve that passes through the segment
junctions

The Norris–Eyring reverberation time is the same as the Sabine–Franklin T60
except that ᾱ has been replaced by − ln (1−ᾱ). The latter is approximately ᾱ+ᾱ2/2
and differs from ᾱ by less than 10% if ᾱ < 0.2. However, for ᾱ = 0.3, 0.4, 0.5, one
has − ln (1 − ᾱ) equal to 0.36, 0.51, 0.67, so the distinction becomes appreciable
when ᾱ is of the order of 1

3 or greater. Since the Norris–Eyring T60 is less than the
Sabine–Franklin T60, it implies a more rapid decay of sound.
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Fig. 6.6 Partitioning of the energy reflected from surface S1 during the first time interval. A
fraction fj1 impinges on surface Sj during the second interval

6.2.4 Rooms with Asymmetric Absorption15

The assumption that the energy incident per unit area and time is the same at any
given time for all wall surfaces may be questioned if one surface (area S1) has an
absorption coefficient α1 substantially different from the value α0 for the remaining
surfaces (area S − S1).

If one idealizes the energy incident (per unit area and time) on any surface as
decreasing stepwise in time (as in the derivation of the Norris–Eyring equation), the
net energy absorbed during the second time interval is (see Fig. 6.6)

(−ΔE)2 = Δt
∑
i,j

αjfji(1 − αi)Sic
w̄init

4
. (6.2.6)

15T. W. F. Embleton, “Absorption coefficients of surfaces calculated from decaying sound fields,”
J. Acoust. Soc. Am. 50:801–811 (1971).
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Here fji represents the fraction of the power (1 − αi)Sicw̄init/4 reflected by the ith
surface during the first time interval that is incident on the j th surface during the
second time interval. These fractions are such that

∑
j

fji = 1,
∑
i

fjiSi = Sj , where fji = 0 if i = j. (6.2.7)

The second relation ensures that the energy incident per unit time and area will
be the same for all surfaces when α is the same for all surfaces; the third
results because the reflected energy does not come directly back to the surface
Si . (Explicit expressions16 for the fji , termed radiation shape factors in heat-
transfer applications, in terms of quadruple integrals result from simple geometrical
considerations; analytical formulas, tabulations, and curves exist in the literature.
However, the example discussed below, when only one surface has a dissimilar
absorption coefficient, leads to results independent of the numerical values of the
fji .)

The double sum in the expression (6) for (−ΔE)2, when all the αi except α1
have the same value α0, reduces, after some algebra and with the help of Eqs. (7), to

(−ΔE)2 = [Einc(2)][ᾱ + (Δᾱ)E] (6.2.8)

where ᾱ is the area-averaged absorption coefficient, Einc(2) is the net energy
incident on all surfaces during the second time interval, and

(Δᾱ)E = (α1 − α0)
2

1 − ᾱ

(
S1

S

)2

(6.2.9)

Equation (8) allows the apparent absorption coefficient (net energy absorbed
divided by net energy incident) during the second time interval to be identified as
ᾱ + (Δᾱ)E . A simple model results if this is assumed to be the fraction of energy
absorbed during all later intervals; the rationale is that the asymmetry in the area
distribution of incident energy is primarily caused by the most recent reflection;
if the absorption coefficients were suddenly changed so that all the αi became the
same, the energy incident per unit area and time would be nearly the same for all
wall surfaces after a time interval Δt .

With the assumption just described, the average energy per unit volume remain-
ing in the room at time t = N Δt for N � 1 is approximately [1 − ᾱ − (Δᾱ)E]N
times w̄init. Consequently, the train of reasoning leading to the Norris–Eyring
reverberation time must be modified so that ᾱ is replaced by ᾱ + (Δᾱ)E . This
modification, with Δt = 4V/cS, yields

16H. C. Hottel, “Radiant heat transmission,” Mech. Eng. 52:699–704 (1930); D. C. Hamilton and
W. R. Morgan, “Radiant-interchange configuration factor,” Nat. Adv. Comm. Aeronaut. Rep. NACA
TN2836, Washington, 1952; Kreith, Principles of Heat Transfer, pp. 243–251.
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T60 = (24 ln 10)V/cS

− ln[1 − ᾱ − (Δᾱ)E] (6.2.10)

The additional term −(Δᾱ)E in the argument of the logarithm is the only distinction
between this and the Norris–Eyring reverberation time.

Example The floor (surface 1) of a cubical room has absorption coefficient α1; the
vertical walls and the ceiling each have absorption coefficient α0. The quantity α0 is
known from previous measurements; one measures T60 and seeks to determine α1.
Estimate the error resulting from the use of the Norris–Eyring model.

Solution Let α1,NE be the value of α1 computed from Eq. (5) with T60 = 13.82τNE
and with ᾱ = 1

6α1 + 5
6α0. Equation (10) would give the same numerical value for

the argument of the logarithm as the Norris–Eyring model, so the corrected value of
α1 must be such that

1
6α1,NE = 1

6α1 + (Δᾱ)E (6.2.11)

α1,NE − α1

α1
= (α1 − α0)

2

α1(6 − α1 − 5α0)
(6.2.12)

Equation (12) follows from Eq. (11) with (Δᾱ)E taken from Eq. (9).
The fractional error in α1 predicted by Eq. (12) vanishes when α1 = α0; if α1 �

α0, it reduces to α1/(6−α1), which is still small if α1 < 0.1. If α1 were of the order
of 1, the predicted error would be close to 20%.

6.2.5 The Room Constant17

An extension of the Sabine–Franklin–Jaeger theory to take into account the field
near the source begins with the premise that the reverberant field has no effect on
direct wave or source power. At moderate distances from the source, the time-
averaged radial component of intensity conforms to spherical spreading and is
described by PavQθ/4πr2, where the directivity factor Qθ is a function of direction
whose integral over all solid angles pointing from the source into the room is 4π .
For a spherically symmetric radiator some distance from any surface, Qθ should be
1; for one resting on the floor, it should be 2. If r is large enough for this direct wave

17E. Dietze and W. D. Goodale, Jr., “The computation of the composite noise resulting from
random variable sources,” Bell Syst. Tech. J. 18:605–623 (1939); A. London, “Methods for
determining sound transmission loss in the field,” J. Res. Natl. Bur. Stand. 26:419–453 (1941);
Beranek, Acoustics, McGraw-Hill, New York, 1954, pp. 313–324; R. W. Young, “Sabine
reverberation equation and sound power calculations,” J. Acoust. Soc. Am., 31:912–921 (1959).
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to be considered locally planar, the plane-wave relation wav = Ir,av/c applies, so
the energy density associated with the direct wave is PavQθ/4πr2c. The product
of this with ρc2 yields the corresponding mean squared pressure.

The time averages of the energy densities (or of the mean squared pressures) of
the direct and reverberant fields are presumed to be additive. This is not exactly true,
especially if the frequency band of interest is narrow or if the source is emitting a
pure tone, but it may be regarded as approximately so if one thinks in terms of
local spatial averages, for the reasons cited in the derivation of Eq. (6.1.7). The
reverberant field consists of all energy reflected one or more times from the room’s
walls; it is assumed to be diffuse and to be such that local spatial averages are
independent of position, and thus it is characterized by a uniform-reverberant-field
energy density w̄R (a spatial average). The energy density at any point in the room
is then w̄R plus the corresponding expression, PavQθ/4πr2c, for the direct wave.

The power feeding and maintaining the reverberant field is the source power
minus the energy lost per unit time on the first reflection. If we assume, in the
absence of any evidence to the contrary, e.g., a highly directional source aimed
at an open window, that the fraction of power lost on one reflection is the average
wall-absorption coefficient ᾱ, then (1 − ᾱ)P̄ is the rate at which energy is being
added to the reverberant field. One may argue, as in Sect. 6.1, that the rate at which
this reverberant energy is being dissipated is proportional to w̄R , the proportionality
constant being ᾱSc/4. In the steady state, dw̄R/dt = 0; since the energy added per
unit time equals the rate of dissipation, one obtains

w̄R = 4P̄

cRrc
Rrc = ᾱS

1 − ᾱ
(6.2.13)

Here the room constant Rrc (units of area) represents the room’s absorbing power
divided by 1 − ᾱ.

With the local spatial average p2 of the mean squared pressure taken as the sum
of the direct-field and reverberant-field contributions, each term being ρc2 times the
corresponding energy density, one finds, from the previously given expressions for
the two energy densities, that

p2 = ρc P̄

(
Qθ

4πr2 + 4

Rrc

)
(6.2.14)

This formula gives an indication of how far from, or close to, the source one must
be to be assured that the reverberant (or direct) field predominates. At the radius of
reverberation, or critical radius,

r0 =
(
RrcQθ

16π

)1/2

(6.2.15)

the two terms are of equal contribution, and the sound-pressure level is 3 dB higher
than expected from either alone. At 2r0 the direct-field contribution is only one-
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Fig. 6.7 Sound-pressure level (relative to that of reverberant field) versus ratio of distance r

from source to radius of reverberation r0. Function plotted is 10 log [(r0/r)
2 + 1]; dashed line,

corresponding to direct field alone, is 10 log [(r0/r)
2]

fourth that of the near field, and the level is only 10 log (1 + 1
4 ) ≈ 1 dB higher than

that of the reverberant field alone; at 3r0 the discrepancy is 0.5 dB; at 4r0 it is 0.3 dB;
at 5r0 it is 0.2 dB. At r0/2, r0/4, and r0/8, the levels are 7, 12, and 18 dB higher than
that of the reverberant field alone and 1, 0.3, and 0.1 dB higher than that of the direct
field alone (see Fig. 6.7). To determine the direct field of a source in a reverberant
room to within 1 dB, one should pick a point at which the sound-pressure level is
at least 7 dB greater than that typically measured at a distant point in the room or
sufficiently close to the source for the sound-pressure level to increase by at least
5 dB when the distance from the source is halved. Alternatively, one can estimate
r0 in advance by taking Qθ = 1 (suspended source) or Qθ = 2 (source on floor)
and by calculating the room constant from a reverberation-time measurement, using
Eq. (6.1.12) and Rrc = As/(1 − As/S).

If the room constant Rrc is to be derived from a reverberation-time measurement
via the Sabine–Franklin equation, however, it is inconsistent to retain the factor
1− ᾱ in the denominator in the definition (13) of Rrc. The model implicitly assumes
ᾱ 
 1, and since the factor (1 − ᾱ)−1 gives a correction of second order in ᾱ,
that is, ᾱ/(1 − ᾱ) ≈ ᾱ + ᾱ2, one should disregard it unless the reverberation-time
formula is itself accurate to second order. If ᾱS is the value derived from the Sabine–
Franklin formula, and if ᾱS is greater than the actual ᾱ for the room by some amount
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Δᾱ, then SᾱS would be a valid second-order approximation to the room constant if
Δᾱ/ᾱ = ᾱ. According to the Norris–Eyring formula, Δᾱ ≈ 1

2 ᾱ
2, so Δᾱ/ᾱ ≈ 1

2 ᾱ.
Furthermore, the Norris–Eyring equation often tends to overestimate ᾱ, partly for
the reasons cited in the derivation of Eq. (10), so Δᾱ/ᾱ is typically somewhat larger
than 1

2 ᾱ. For such reasons and in the absence of any better model of comparable
simplicity, it is usual practice to take Rrc = SᾱS .

6.3 Applications of the Sabine–Franklin–Jaeger Theory

6.3.1 Design and Correction of Rooms

Criteria for what constitutes good acoustics for rooms intended for specified
purposes have been extensively developed since the time of Sabine and are discussed
in various books and articles.18 An extensive discussion of them is beyond the scope
of the present text, but it should be noted that the reverberation time T60 plays
a central role in the quantitative formulation of some of the simpler criteria (see
Fig. 6.8).

An indication of why the reverberation time should be significant results from
the transient solution of (6.1.3). That equation, with 4V/cτ replacing As , can be
rewritten as an ordinary differential equation for w̄et/τ and subsequently integrates
to

w̄(t) = V −1
∫ t

−∞
e−(t−t ′)/τP̄(t ′) dt ′ (6.3.1)

If P̄ has been constant for an indefinite time, one has the steady-state case and (1)
reduces to

w̄tot = P̄τ

V
(6.3.2)

which can alternately be obtained from (6.1.3) by setting dw̄/dt = 0 at the outset.
(The subscript tot here implies that this is the energy density resulting from the total
history of the source.)

18See, for example, Beranek, Music, Acoustics, and Architecture; W. Furrer, Room and Building
Acoustics and Noise Abatement, Butterworths, Washington, 1964; A. Lawrence, Architectural
Acoustics, Elsevier, Amsterdam, 1970; Knudsen, Architectural Acoustics; A. F. B. Nickson and
R. W. Muncey, “Criteria for Room Acoustics,” J. Sound Vib., 1:292–297 (1964); P. H. Parkin,
W. E. Scholes, and A. C. Derbyshire, “The Reverberation Times of Ten British Concert Halls,”
Acustica, 2:97–100 (1952); H. Bagenal and A. Wood, Planning for Good Acoustics, Methuen,
London, 1931.
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Fig. 6.8 Optimum midfrequency (500–1000 Hz) reverberation times for fully occupied rooms
versus volume (From L. L. Doelle, Environmental Acoustics, McGraw-Hill, New York, 1972, p. 56)

The portion of this steady-state energy density generated by the source in
the most recent interval of duration Δt results from a replacement of the lower
integration limit in Eq. (1) by t − Δt , such that

w̄last Δt = w̄tot(1 − e−Δt/τ ) (6.3.3)

If the sound from the source is transmitting information, e.g., speech or music,
“early” echoes reinforce the information and “late” echoes interfere. Consequently,
one can conceive19 of a value of Δt that splits the sound currently received into
“useful” sound and interfering sound. The ratio of the energy densities associated
with these two categories is identified from (3) as

w̄useful

w̄interfering
= eΔt/τ − 1 (6.3.4)

19This originated with C. Zwikker, “Partitioning of loudspeaker intensities,” Ingenieur (The
Hague) 44:39–45 (1929), and has subsequently been applied by a number of investigators, e.g.,
R. Thiele, “Directional distribution and chronological order of sound echoes in rooms,” Acustica
3:291–302 (1953); F. Santon, “Numerical prediction of echograms and the intelligibility of speech
in rooms,” J. Acoust. Soc. Am. 59:1399–1405 (1976).
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Since τ = T60/(6 ln 10), this indicates that, for specified Δt , the ratio of the useful
to interfering energy is determined by the reverberation time; the larger the T60, the
lower the ratio.

The auditory sensation adheres to no semblance of simple mathematical rules,
but it is sometimes helpful20 to view it as a system that responds to a running time
average of some function (not necessarily the square) of the acoustic pressure out-
side the ear. For processing ordinary speech, existing data21 suggest an integration
time of the order of 50 ms. This integration time represents a plausible choice for
the Δt in Eq. (4).

If the useful energy density masks the interfering energy density whenever
the former is greater than or equal to, say, 5 times the latter, little additional
improvement in the perception of information results when τ decreases below the
value Δt/(ln 6) resulting when the right side of Eq. (4) is set equal to 5. This
transitional value of τ , with Δt = 50 ms, corresponds to a reverberation time
T60 ≈ 0.4 s.

On the other hand, increasing T60, given fixed room volume V and fixed source
power output P̄ , increases the average energy density in the room. Because the
auditory system tends to perceive the information associated with louder sound
better, the perception may increase somewhat if the reverberation time is increased
beyond the lower value described above. If the reverberation time becomes too
long, the information becomes garbled and perception decreases, even though
the sound continues to become louder. Thus, for given V and P̄ , there is an
optimum reverberation time22 for the room, which, according to the reasoning
just described, should increase with increasing room volume. For small rooms, in
situations where maximum perception of information is desired, e.g., speech, the
optimum reverberation time is substantially less than 1 s.

For music, it is desirable that the information be partially smeared out to
smooth over attack transients intrinsically associated with common types of musical
instruments. substantially less smearing is desired for chamber music than for
orchestral music. The optimum reverberation time in any event should be higher for
a given room volume for music reception than for speech reception and experiments
have been performed to determine what this optimum should be.

20W. A. Munson, “The growth of auditory sensation,” J. Acoust. Soc. Am. 19:584–591 (1947);
J. J. Zwislocki, “Temporal summation of loudness: An analysis,” ibid.46:431–441 (1969); M. J.
Penner, “A power law transformation resulting in a class of short-term integrators That produce
time-Intensity trades for noise bursts,” ibid. 63:195–201 (1978).
21H. Haas, “On the influence of a simple echo on the comprehension of Speech,” Acustica 1:49–58
(1951). The value of 50 ms is what was chosen (with reference to speech) as the break point in the
partitioning of acoustic energy density into a useful and a disturbing part in Thiele, “Directional
Distribution. . . . ”
22S. Lifshitz, “Mean intensity of sound in an auditorium and optimum reverberation,” Phys. Rev.,
27:618–621 (1926); W. A. MacNair, “Optimum reverberation time for auditoriums,” J. Acoust.
Soc. Am. 1:242–248 (1930); J. P. Maxfield, “The time integral basic to optimum reverberation
time,” ibid. 20:483–486 (1948).
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There are other design considerations23 in architectural acoustics, but within
the context of the Sabine–Franklin–Jaeger model (which assumes the sound to be
perfectly diffuse and uniformly distributed) the only parameter to be considered for
a room of fixed volume is the reverberation time. If the reverberation time differs
from optimum, one seeks to change the absorbing power As by altering the wall
covering; rooms are designed to achieve the optimum reverberation time.

Another category of application in this context is noise reduction. Factory rooms
are typically constructed so that they have high reverberation times; a noise source in
such a room produces sound levels at distant points substantially higher than would
be received in an open space. The mean squared pressure at distances somewhat
larger than the radius of reverberation, according to Eqs. (6.1.7) and (2), conforms
on the average to the relation

p2 = ρc2τP̄

V
= ρc2T60P̄

(6 ln 10)V
(6.3.5)

so decreasing the reverberation time by a factor of K decreases the sound-pressure
level by 10 logK decibels. If ᾱ is much less than 1, an appreciable reduction is
feasible. The decrease of T60 will have little effect on the noise in the immediate
vicinity of the source, but if no one spends a considerable fraction of time at such
points, this need not be taken into consideration. Otherwise, one would seek to
reduce P̄ by altering or enclosing the source.

6.3.2 Measurement of Absorption Coefficients
and Reverberation Times

The use of reverberation-time measurements to deduce absorption coefficients of
wall coverings [see Eq. (6.1.14)] is a standard application of the Sabine–Franklin–
Jaeger model. Typically, such measurements are carried out in reverberation cham-
bers especially constructed for the purpose (see Fig. 6.9), and efforts are made to
ensure that the assumptions inherent in the model are satisfied. To determine the
reverberation time, one ideally wants a decay curve giving the average acoustic
energy density or the volume average of p2 versus time following source switch-
off. This volume average can be approximated by the average (over microphones)
of the running time averages of the squared acoustic pressure taken from several
microphones judiciously spaced throughout the room or by the long-time average
resulting when a microphone traverses a long path within the room. The latter
technique is applicable if a steady-state source of known power output P̄ is used,
the reverberation time being subsequently derived from Eq. (2).

23See, for example, E. Meyer and H. Kuttruff, “Progress in architectural acoustics,” in E. G.
Richardson and E. Meyer (eds.), Technical Aspects of Sound, vol. 3, Elsevier, Amsterdam, 1962,
pp. 221–337.
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Fig. 6.9 Reverberation room at Carrier Corporation, Syracuse, N.Y. The indicated qualification
loudspeaker is for assessing conformance with standard criteria for reverberation rooms. Overhead
is the rotating diffuser [J. T. Rainey, C. E. Ebbing, and R. A. Ryan, Noise Control Eng., 7:82 (1976)]

How best to estimate the reverberation time, given one and only one source
location and one and only one receiver location, is of practical interest for field
applications; what is often done is to fire a pistol and to record A-weighted or octave-
band sound-pressure levels versus time. The pistol shot injects acoustic energy Einit
into the room, and, for times somewhat larger than 3lc/c, this can be presumed to
fill the room uniformly. The instrumentation used to obtain the sound-pressure level
versus time is invariably such that the resulting level corresponds to a short-term
(characteristic averaging time of the order of 0.1 s) running time average of p2.
Typically, the decay curve is somewhat erratic, but a smoother curve results if one
plots instead24

10 log

[
1

Tref

∫ ∞

t

p2(t ′)
p2

ref

dt ′
]

= 10 log

(
1

Tref

∫ ∞

t

10L(t
′)/10 dt ′

)
(6.3.6)

24M. R. Schroeder, “New method of Measuring reverberation time,” J. Acoust. Soc. Am. 37:409–
412 (1965); W. T. Chu, “Comparison of reverberation measurements using Schroeder’s impulse
method and decay-curve averaging method,” ibid. 63:1444–1450 (1978).



318 6 Room Acoustics

where Tref is any arbitrarily chosen constant. Such a curve is a priori smoother
because the integral is a monotonically decreasing function of time. It should be
more representative of the decay of total sound energy in the room because the
deviations of p2(t) from its spatial average tend to average out over long periods of
time, so the integral from t to ∞ of p2(t) tends to be closer to the corresponding
integral of p2(t) than a typical value of p2(t) is to p2(t). If p2(t) does decay as
e−t/τ , as predicted by Eq. (6.1.4), the integral of p2(t) from t to ∞ is τp2(t),
so the integral above would be a good approximation to the sound-pressure level
corresponding to p2(t), plus a constant, 10 log (τ/Tref). The slope (negative) of the
curve described by Eq. (6) therefore gives the decay rate in decibels per second and
is equal to 60/T60.

6.3.3 Measurement of Source Power

The acoustic power P̄ of the source can be evaluated from Eq. (5), given
measurements of T60 and p2. The latter, and therefore also P̄ , depends on the
location and orientation of the source, but one ideally25 wants the free-field power
output P̄ff that would result if the source were suspended in an open space or (a
different P̄ff) if the source were resting on a rigid infinite plane.

Some insight into whether P̄ is a good approximation to P̄ff results if one
considers the source to be a vibrating solid whose surface motion is unaffected by
the external pressure. The acoustic pressure on the surface of the solid can be taken
as pdir + prvrt (dir for direct, rvrt for reverberant). Then the deviation ΔP̄ of the
acoustic power from P̄ff is the integral of (prvrtvn)av over the surface area S0 of the
source.

To estimate the magnitude of ΔP̄ , we take the rms value of prvrt, from Eq. (5),
to be (ρc2P̄τ/V )1/2. The source is taken to be a radially oscillating sphere
of radius a, where ka 
 1, so the rms value of vn, from Eq. (4.1.5), equals
(4πP̄ff/ρc)

1/2(kS0)
−1. All phase differences between Prvrt and vn are considered

equally likely, so the expected value of (ΔP̄)2 is 1
2 of what results of Prvrt and vn

are in phase. Thus, the rms value of ΔP̄ is

(ΔP̄)rms = 1√
2

(
ρc2P̄τ

V

)1/2 (
4πP̄ff

ρc

)1/2
S0

kS0
= (P̄P̄ff)

1/2
(

2πcτ

k2V

)1/2

(6.3.7)

25T. J. Schultz, “Sound power measurements in a reverberant room,” J. Sound Vib. 16:119–129
(1971).
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The criterion for |ΔP̄| 
 P̄ff is therefore that 2πcτ/k2V 
 1 or, since As =
4V/cτ , that

k2As � 8π (6.3.8)

Consequently, a measured P̄ will be close to P̄ff if the frequency generated is
substantially larger than c/(As)

1/2.
The foregoing analysis presumes that the Sabine–Franklin–Jaeger model is

applicable and that the source is some distance (relative to a wavelength) from any
wall surface. A similar reasoning applied to dipole and quadrupole sources yields
the same criterion. However, for larger sources, one finds the additional criterion
S0 
 As .

If the criteria just stated are marginally met, the value of ΔP̄ may be expected to
fluctuate somewhat with source-position displacements over distances comparable
to a wavelength and also to fluctuate with frequency; closer determination of P̄ff
results from averaging over source positions and over finite frequency bands.

One refinement26 is the use of (slowly) rotating vanes (see Fig. 6.9) in the
reverberation chamber which cause the pressure patterns in the room to fluctuate
without changing room volume or its reverberation time. Ideally, the rotation causes
a long-time average to become representative of what would result from an average
over both source position and microphone position, so the acoustic power computed
from Eq. (5) would be closer to P̄ff.

6.3.4 Simultaneous Conversations in a Reverberant Room27

The theory of room acoustics gives quantitative insight into acoustical phenomena
(cocktail party effect) occurring when many people are in one room and many
conversations are simultaneously in progress. As the number of people increases, the
overall sound level in the room increases, the interference from other conversations
makes listening more difficult, talkers raise their voices, and people cluster closer
together.

Suppose (see Fig. 6.10) there are N persons in the room, N/K persons per
group, and K conversations simultaneously in progress; the acoustic power of each
talker is P̄ . A listener receives the direct sound from the nearest talker plus the
reverberant sound from all the talkers. It is assumed that the radius of reverberation

26J. Tichy, “Effects of source position, wall absorption, and rotating diffuser on the qualifications
of reverberation rooms,” Noise Control Eng. 7:57–70 (1976); J. Tichy and P. K. Baade, “Effect of
rotating diffusers and sampling techniques on sound-pressure averaging in reverberation rooms,”
J. Acoust. Soc. Am. 56:137–143 (1974); C. E. Ebbing, “Experimental Evaluation of Moving Sound
Diffusers for Reverberant Rooms,” J. Sound Vib., 16:99–118 (1971).
27I. Pollack and J. M. Pickett, “Cocktail party effect,” J. Acoust. Soc. Am. 29:1262(A) (1957); W.
R. MacLean, “On the acoustics of cocktail parties,” ibid. 31:79–80 (1959); L. A. Crum, “Cocktail
party acoustics,” ibid. 57:S20 (1975).
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Fig. 6.10 Parameters for discussion of cocktail party effect; N people are distributed among K

clusters; dcl denotes distance between clusters, and r denotes distance between people in the same
cluster

is substantially less than the spacing between clusters, so the sound from other
talkers may be regarded as reverberant sound. The reverberant-sound energy density
should be K times that due to any one talker, so the sound energy density in the
vicinity of one such talker at a distance r should be the expression in Eq. (6.2.14)
divided by ρc2 with the second term multiplied by K , that is,

w̄ = P̄

c

(
Qθ

4πr2
+ 4K

Rrc

)
(6.3.9)

For simplicity, we take Qθ = 1 (spherical spreading).
The neglect of the direct field from neighboring clusters is justified if 1/4πd2

cl is
less than ( 1

3 )(4/Rrc) (so the reverberant field of any one cluster dominates its own
direct field beyond a cluster spacing distance dcl), that is, if

dcl >

[
9(ln 10)V

2πcT60

]1/2

(6.3.10)

For example, for a room 10 by 10 by 5 m with V = 500 m3, c = 342 m/s, and
T60 = 1 s, one would require dcl > 2.2 m for (9) to be valid.

An approximate criterion for one to comprehend a conversation is that the signal-
to-noise ratio S/N exceed 1. This ratio is that of the energy density associated with
the nearest talker to that of the other talkers. The appropriate expression deduced
from Eq. (9) is

S/N = (r0/r)
2 + 1

K − 1
(6.3.11)

where r0 = (Rrc/16π)1/2 is the radius of reverberation of the room.
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The effect of the people in the room on the room constant can be taken into
account by setting Rcr = R0

cr + N ΔAs , where ΔAs is the incremental additional
absorbing power per person. For a party that is not too crowded, this occupancy
correction is negligible. For example, for a room 10 by 10 by 5 m and with a
reverberation time of 1 s, the room constant is 81 metric sabins, so if one takes
ΔAs ≈ 0.5 metric sabin (the value measured by Sabine), the number N of guests
would have to be 160 in order that N ΔAs ≈ R0

cr and this would correspond to 0.6
m2 of floor area per person. Long before the party became so crowded, however, the
signal-to-noise ratio of Eq. (11) would drop below 1 for any reasonable choices of
listener–talker separation distance r and of N/K .

Disregarding the possible dependence of r0 on N , one sees from the form of
Eq. (11) that for any given choice of r the signal-to-noise ratio decreases as the
number K of clusters increases. If one takes r0 = 1.3 m (corresponding to the
example above, with Rcr = 81 metric sabins) and takes r = 0.6 m, the signal-
to-noise ratio is below 1 when K exceeds 6. With four persons per cluster, this
would give N = 24 for the number of guests at this threshold of conversational
frustration. If the number of guests exceeds this threshold, r must be decreased for
intelligible conversation to be maintained, but eventually r must be so small that
only one listener can stand sufficiently close to a talker.

An acoustically overcrowded party can be avoided by choosing a room with
a sufficiently large room constant (as opposed to floor area) to accommodate the
anticipated number of simultaneous conversations.

6.4 Coupled Rooms and Large Enclosures

6.4.1 Transmission of Reverberant Sound Through a Panel

In noise-control applications, the sound that escapes from a room is often of major
interest. To introduce the relevant principles, let us consider a room in which the
reverberant energy density is w̄in. The energy incident per unit time on a panel
of area ΔA, in accordance with the discussion leading to Eq. (6.1.9), should
be (c/4)w̄in ΔA; a fraction r is reflected, a fraction αd is dissipated within the
wall proper, and a fraction τtrans is transmitted (see Fig. 6.11). In accord with the
examples of plane-wave transmission discussed in Sects. 3.6 and 3.8, one expects
an analog of the acoustic-energy-conservation principle to apply, so that these three
fractions sum to 1.

The transmission loss28 of the wall segment under consideration is defined as

RTL = 10 log
1

τtrans
(6.4.1)

28E. Buckingham, “Theory and interpretation of experiments on the transmission of sound through
partition walls,” Sci. Pap. Bur. Stand. (U.S.) 20:193–219 (1924–1926).
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Fig. 6.11 Reverberant-sound transmission through a wall. Interior field is assumed perfectly
diffuse, so that energy incident per unit time on area ΔA is (c/4)w̄in ΔA; fractions αd, τtrans,
and r are dissipated, transmitted, and reflected

Ideally, this is an intrinsic frequency-dependent property of the material, but it can
also depend on the panel’s area, shape, and installation. It does, however, invariably
satisfy a reciprocity relation

RTL(left → right) = RTL(right → left) (6.4.2)

This is in accord with the results on plane-wave transmission described in Chap. 3
and can be inferred along more general lines in a manner similar to that of
Sect. 4.9. Its intrinsic validity becomes plausible if one considers two rooms with no
absorption separated by a panel; within each room there is initially the same acoustic
energy density. The energy going from room 1 to room 2 must equal that going from
room 2 to room 1 [hence Eq. (2)], or otherwise the energy densities would become
unequal; i.e., the panel would be performing similarly to a Maxwell’s demon.29

29J. C. Maxwell, Theory of Heat, Longmans Green, London, 1871, p. 308. The demon is “a being
whose faculties are so sharpened that he can follow every molecule in its course . . . who opens and
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If the panel dimensions are sufficiently large compared with a representative
wavelength, the energy transmitted per unit time and wall area should be the integral
over solid angle (direction e pointing obliquely into the wall and out of the room) of
τtrans(e)cD(e)e ·nout, where τtrans(e) is the plane-wave acoustic-power transmission
coefficient corresponding to incidence direction e. Thus, in a manner similar to that
of the derivation of Eq. (6.1.10), one identifies the ratio of total energy transmitted
to total energy incident as

τtrans,ri =
∫∫ ′

τtrans(e)e ·nout dΩ∫∫ ′
e ·nout dΩ

(6.4.3a)

= 2
∫ π/2

0
τtrans(θ) sin θ cos θ dθ (6.4.3b)

If the other side of the wall bounding a room filled with diffuse sound is an open
space without sources, the local volume average of the acoustic energy density just
outside the wall is

w̄out = w̄in

4π

∫∫ ′
τtrans(e) dΩ (6.4.4)

where the integral extends over directions pointing obliquely toward the open space.
[The incident field is assumed to be made up of a large number of plane waves
uniformly distributed in propagation direction, each of which generates a plane
transmitted wave, with amplitude decreased by [τtrans(e)]1/2, propagating in the
same direction.] Consequently, the corresponding ratio of local volume averages
of mean squared pressures is

(p2)out

(p2)in

= 1
2Kτtrans,ri (6.4.5)

K =
∫ π/2

0 τtrans(θ) sin θ dθ

2
∫ π/2

0 τtrans(θ) sin θ cos θ dθ
(6.4.6)

A rough approximation often used in the absence of a knowledge of the angular
variation of τtrans is to take K = 1 (resulting exactly when τtrans is independent of
θ ), such that Eq. (5) yields

L̄out = L̄in − RTL − 3 dB (6.4.7)

closes [a] hole [connecting two portions of a vessel], so as to allow only the swifter molecules to
pass from [side] A to [side] B, and only the slower ones to pass from [side] B to [side] A.”
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with L̄in and L̄out representing sound-pressure levels corresponding to (p2)in and
(p2)out.

6.4.2 Transmission Out Through an Open Window

An extension of the above analysis applies to the field at larger distances from an
open window (area ΔA). The energy passing through the window per unit time and
propagating within solid angle dΩ is the same as that incident, or (cw̄in/4π)e ·
nout dΩ ΔA. At a large radial distance r from the window (where r2 � ΔA), this
incremental power passes through a portion (area r2 dΩ) of the sphere of radius r

centered at the window. Hence, the intensity at large r should be

Ir,av = cw̄in

4π

e ·nout dΩ ΔA

r2 dΩ
= cw̄in cos θ

ΔA

4πr2 (6.4.8)

where θ is the angle with the line normal to the window. Since the field
locally resembles an outgoing spherical wave at large distances, and since w̄in

is (p2)in/ρc
2, Eq. (8) implies

[p2(r)]av = (p2)in cos θ
ΔA

4πr2 (6.4.9)

As an example, suppose a room with a sound level inside of 90 dB has an open
window of area ΔA = 1 m2. The sound level outside is not less than 50 dB unless
r exceeds 102/(4π)1/2 = 28 m.

6.4.3 Theory of Large Enclosures

A common procedure (see Fig. 6.12) for reducing the acoustic power radiating into
the environment is to build an enclosure around the source. The simplest theory30

of such enclosures assumes that the sound field within the enclosure is reverberant
and that the actual acoustic power output of the source is unaltered by the presence
of the enclosure.

The net energy per unit time escaping out of the enclosure, according to the
discussion in the earlier part of this section, should be

30For analyses of enclosures that are not large compared to source dimensions, see R. S. Jackson,
“The performance of acoustic hoods at low frequencies,” Acustica 12:139–152 (1962), “Some
aspects of the performance of acoustic hoods,” J. Sound Vib. 3:82–94 (1966); M. C. Junger, “Sound
transmission through an elastic enclosure acoustically closely coupled to a noise source,” ASME
Pap. 70-WA/DE-12, American Society of Mechanical Engineers, New York, 1970.
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Fig. 6.12 Idealized model of “large” enclosure; source power output P̄actual causes reverberant
field of energy density w̄in inside enclosure, while power P̄out escapes to external environment

P̄out = c

4
w̄in

∫∫
τtrans dS (6.4.10)

while that dissipated P̄d within the enclosure and not transmitted out is given by
a similar expression involving the surface integral of αd . The requirement that the
actual sound power output P̄actual of the source equal P̄out + P̄d consequently
yields the power ratio

P̄out

P̄actual
=

∫∫
τtrans dS∫∫

τtrans dS + ∫∫
αd dS

(6.4.11)

An implication of Eq. (11) is that no sound-power reduction is achieved unless
there is some absorption. Thus, enclosure walls are typically lined with absorbing
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material. If the quotient τ̄trans/ᾱd of the area averages of τtrans and αd is small
compared with 1, then the ratio P̄out/P̄actual approaches τ̄trans/ᾱd ; for fixed ᾱd ,
an increase in the transmission loss of the walls results in more power reduction. If
one thinks in terms of sound rays bouncing about inside the enclosure, an increased
noise reduction caused by increased RTL (decreased τ̄trans) is associated with rays
undergoing more reflections and thus losing more energy through dissipation at the
walls before a significant fraction of their original energy can be transmitted out.

6.4.4 Coupled Rooms

If a source (acoustic power P̄) is in a room (see Fig. 6.13) separated by a panel of
area ΔA from a second room, the difference of the sound-pressure levels in the two
rooms can be predicted from considerations of acoustic-energy conservation. The
appropriate generalization31 of Eq. (6.1.3) for room 1 is

Fig. 6.13 Adjacent rooms coupled by a panel of area ΔA with transmission loss RTL. Source with
power output P̄ causes energy densities w̄1 and w̄2 and sound-pressure levels L̄1 and L̄2. Noise
reduction LNR, equal to L̄1 − L̄2, is determined by ΔA, RTL, and absorbing power As,2 of room 2

31A. H. Davis, “Reverberation equations for two adjacent rooms connected by an incompletely
soundproof partition,” Phil. Mag. (6)50:75–80 (1925).
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V1
dw̄1

dt
= − c

4
As,1w̄1 − c

4
τtransw̄1 ΔA + c

4
τtransw̄2 ΔA + P̄ (6.4.12)

The first term on the right is the negative of the energy dissipated per unit time within
room 1; the second is the negative of the rate at which energy is being transmitted
from room 1 to room 2; the third is the rate at which energy is being transmitted
from room 2 to room 1. Similarly, for room 2, one has

V2
dw̄2

dt
= − c

4
As,2w̄2 + c

4
τtrans ΔA(w̄1 − w̄2) (6.4.13)

In the steady-state situation, the second of the two equations above leads to

w̄2

w̄1
= (p2)2

(p2)1

= τtrans ΔA

τtrans ΔA + As,2
(6.4.14)

which is independent of P̄ and of the properties of room 1. The corresponding
difference of the two sound levels, termed the noise reduction LNR, is consequently

LNR = L̄1 − L̄2 = RTL + 10 log

(
10−RTL/10 + As,2

ΔA

)
(6.4.15)

The inverse relation, with RTL expressed in terms of LNR and As,2/ΔA, is the
basis for the common method of experimentally measuring the transmission loss
of panels. [One measures L̄1 and L̄2 in the two coupled reverberant rooms of a
specially designed TL facility with a sample panel forming part of the common
wall (the rest of the wall being virtually nontransmissive); As,2 is found from
measurement of the reverberation time of room 2.] Note that the noise reduction
increases when As,2 increases. In the ideal case when As,2 is 0, the noise reduction
is 0, regardless of the RTL of the panel.

6.4.5 Reverberant Decay in Coupled Rooms32

If the source of sound in room 1 is suddenly turned off, the subsequent decay of w̄1
and w̄2 is governed by the two coupled differential equations (12) and (13) with P̄
set to zero. Their solution can be worked out by standard techniques33 for systems
of homogeneous ordinary differential equations with constant coefficients; one sets

32Davis, “Reverberation equations . . . ,”; H. Kuttruff, Room Acoustics, Applied Science, London,
1973, pp. 119–123.
33See, for example, I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern
Engineering, 2d ed., McGraw-Hill, New York, 1966, pp. 148–151.
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(w̄1, w̄2) = (A1, A2)e
−at + (B1, B2)e

−bt (6.4.16)

where a characteristic decay rate a and the corresponding eigenvector (A1, A2) are
related such that

⎡
⎣−V1a + c

4
(As,1 + τtrans ΔA) − c

4
τtrans ΔA

− c

4
τtrans ΔA −V2a + c

4
(As,2 + τtrans ΔA)

⎤
⎦[A1

A2

]
=
[

0
0

]

(6.4.17)

The same relation holds between b, B1, and B2. The quantities a and b are the two
roots of the equation that results when the determinant of coefficients is set to zero:
A1/A2, is determined subsequently from either of Eqs. (17). Initial values of w̄1
and w̄2 supply the remaining information necessary for determination of the four
coefficients, A1, A2, B1, B2.

As long as τtrans ΔA is somewhat less than (V1V2)
1/2|As,2/V2 − As,1/V1| and

is less than either As,2 or As,1, the decay constants a and b are approximately
the reverberation times for the two rooms considered separately, but the coupling
between the rooms implies that the decay of w̄1 or w̄2 can no longer be strictly
considered as a single exponential decay. If, for example, a � b,A1 � B1, the
energy density w̄1 at first decays nearly as e−at but eventually as e−bt .

6.5 The Modal Theory of Room Acoustics

The concept of a room mode34 leads to a theory of room acoustics35 intrinsically less
approximate than the Sabine–Franklin–Jaeger model. Here we confine ourselves to
a simple version of the modal theory that uses modes for a room with rigid walls.
Below, we show that the use of such modes does not preclude the development of
an approximate theory applicable to rooms with walls of finite impedance.

34J. W. S. Rayleigh, The Theory Sound, vol. 2, 2d ed., reprinted by Dover, New York, 1945, sec.
267. Earlier work by J. M. C. Duhamel gave eigenfunctions and natural frequencies for finite
segments of rectangular and circular tubes with rigid walls but ends that were pressure-release
surfaces [“On the vibrations of a gas in cylindrical, conical, etc., tubes,” J. Math. Pures Appl.
14:49–110 (1849), especially pp. 84–86]. The basic concept per se of a vibration mode as a building
block in the description of a vibrating system with more than 1 degree of freedom dates back to
Daniel Bernoulli’s modal description of the vibrating string in 1753.
35K. Schuster and E. Waetzmann, “On reverberation in closed spaces,” Ann. Phys. (5)1:671–695
(1929); M. J. O. Strutt, “On the acoustics of large rooms,” Phil. Mag. (7)8:236–250 (1929); P. M.
Morse, “Some aspects of the theory of room acoustics,” J. Acoust. Soc. Am. 11:56–66 (1939).
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6.5.1 The Eigenvalue Problem

For a room with rigid walls, there are a multitude of particular solutions (labeled by
n = 1, 2, 3, . . .) of the homogeneous wave equation of the form

p = Ψ (x, n)e−iω(n)t . (6.5.1)

The eigenfunction Ψ (x, n) satisfies the Helmholtz equation and the rigid-wall
boundary condition

[∇2 + k2(n)]Ψ (x, n) = 0 in V, ∇Ψ (x, n) ·nout = 0 on S. (6.5.2)

The eigenvalue k2(n), equal to ω2(n)/c2, is one of a discrete series of real positive
numbers for which a nontrivial solution of the boundary-value problem (2) exists.
The determination of values of k2(n) and of the associated eigenfunctions is an
eigenvalue problem; the field associated with a given Ψ (x, n) is a room mode.

6.5.2 Modes for a Rectangular Room

To exemplify the above remarks, we consider a rectangular room (Fig. 6.14)
bounded by rigid walls lying along the planes x = 0, x = Lx , y = 0, y = Ly ,
z = 0, z = Lz. A possible Ψ (x, n) of the factored form X(x)Y (y)Z(z) is
substituted into the Helmholtz equation, such that subsequent division by Ψ yields

X−1X′′(x) + Y−1Y ′′(y) + Z−1Z′′(z) + k2 = 0. (6.5.3)

Because the second, third, and fourth terms are independent of x, the x derivative
of the first term is zero, so that term is a constant. Anticipating that this constant is
negative, we write it as −k2

x and have

X′′(x) + k2
xX(x) = 0. (6.5.4)

Similar ordinary differential equations hold for Y (y) and Z(z), and from Eq. (3) we
conclude that the three separation constants are related such that k2

x +k2
y +k2

z = k2.
The solution of Eq. (4) ensuring that the boundary condition ∂Ψ/∂x = 0 at

x = 0 will be satisfied is of the form of a constant times cos kxx. The other
boundary condition, ∂Ψ/∂x = 0 at x = Lx , requires that sin kxLx = 0. This gives
kx = πnx/Lx , so X(x) must be a constant times cos (nxπx/Lx) for some integer
nx . Since similar considerations apply to Y (y) and Z(z), a possible eigenfunction
Ψ (x, n) is

Ψ (x, nx, ny, nz) = A cos
nxπx

Lx

cos
nyπy

Ly

cos
nzπz

Lz

, (6.5.5)
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Fig. 6.14 (a) Coordinate system and parameters for description of modes in a rectangular room
Lx by Ly by Lz. (b) Sketch of nx = 2, ny = 3, nz = 0 mode (independent of z coordinate).
Dashed lines indicate acoustic-pressure nodes; indicated signs of eigenfunction result if p is taken
as positive at the origin

where A is an arbitrary constant. The corresponding eigenvalue, from the relation
k2
x + k2

y + k2
z = k2, is

k2(nx, ny, nz) = π2

[(
nx

Lx

)2

+
(
ny

Ly

)2

+
(
nz

Lz

)2
]
. (6.5.6)

Any combination of integers nx, ny, nz gives a mode. The index n in Eqs. (2)
in this case is the set of these three integers (each assumed nonnegative to avoid
redundancy).
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6.5.3 Orthogonality of Modal Eigenfunctions

The identity

∫ Lx

0
cos

nxπx

Lx

cos
n′
xπx

Lx

dx = 0, nx �= n′
x, (6.5.7)

(given nx ≥ 0, n′
x ≥ 0) requires that the volume integral of the product of two

eigenfunctions described by Eq. (6) be zero unless nx = n′
x, ny = n′

y , and nz = n′
z.

To investigate the possibility of mutual orthogonality36 of modal eigenfunctions
for general shapes of rooms, we let Ψ1 = Ψ (x, n1) and Ψ2 = Ψ (x, n2) denote two
eigenfunctions. Then from Eq. (2) it follows that

Ψ2(∇2 + k2
1)Ψ1 − Ψ1(∇2 + k2

2)Ψ2 = 0.

But Ψ2∇2Ψ1−Ψ1∇2Ψ2 is the divergence of Ψ2∇Ψ1−Ψ1∇Ψ2, so an integration over
room volume with subsequent application of Gauss’s theorem and of the boundary
condition yields

(k2
1 − k2

2) ∫ ∫ ∫Ψ1Ψ2 dV = 0. (6.5.8)

Thus, the integral must be zero if k2
1 �= k2

2.
It is possible, e.g., for a cubic room, that two or more independent eigenfunctions

correspond to the same eigenvalue. One can always select them, however, e.g., by
the Schmidt orthogonalization process,37 to be a linearly independent set and to be
such that the volume integral of the product of any two different members of the
set vanishes. Furthermore, since any Ψ (x, n) multiplied by a constant is still an
eigenfunction, we assume that the multiplicative constant has been chosen such that
Ψ (x, n) is normalized to have a mean squared volume average of 1. With these
choices, we have an orthonormal set satisfying

∫∫∫
V

Ψ (x, n)Ψ (x, n′) dV = δnn′V. (6.5.9)

Another property of the set of eigenfunctions chosen in this manner is

∫∫∫
V

∇Ψ (x, n) ·∇Ψ (x, n′) dV = δnn′k2(n)V . (6.5.10)

36J. W. S. Rayleigh, “On the fundamental modes of a vibrating system,” Phil. Mag. (5)46:434–439
(1873).
37See, for example, R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1,
Interscience, New York, 1953, p. 4.
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The proof results from the consecutive replacements of ∇Ψ · ∇Ψ ′ by
∇ · (Ψ ′ ∇Ψ ) − Ψ ′ ∇2Ψ (a vector identity) and of ∇2Ψ by −k2(n)Ψ (from
the Helmholtz equation). The volume integral of the first term is transformed into
a surface integral by Gauss’s theorem and is recognized as being zero because of
the boundary condition; the volume integral of the second term yields δnn′k2(n)V

because of Eq. (9), so Eq. (10) results.
Similarly, a multiplication of the Helmholtz equation by Ψ ∗(x, n) and a

subsequent integration over V yields

k2(n) =
∫∫∫ ∇Ψ (x, n) ·∇Ψ ∗(x, n) dV∫∫∫ |Ψ (x, n)|2 dV , (6.5.11)

so k2(n) must be real and positive. Since the Helmholtz equation then requires
Ψ ∗(x, n) to be an eigenfunction, we can always choose eigenfunctions to be real.

6.5.4 Modal Expansion of Functions

The modal eigenfunctions satisfying Eqs. (2) constitute a complete set; any well-
behaved function f (x) for points x within the room can be approximated38 as a
linear combination of the Ψ (x, n). An expansion coefficient an can be determined
from the requirement

∫∫∫
f (x)Ψ (x, n) dV =

∫∫∫ [∑
n′

an′Ψ (x, n′)
]
Ψ (x, n) dV,

such that Eq. (9) yields

an = 1

V

∫∫∫
f (x)Ψ (x, n) dV . (6.5.12)

38The applicable theorem is that “the eigenfunctions of any self-adjoint differential system of the
second order form a complete set.” That Eqs. (2) describe a self-adjoint system follows from the
equivalence of Ψ ∇2φ − φ∇2Ψ to the divergence of Ψ ∇φ − φ∇Ψ and from the vanishing of
the normal component of the latter at the walls when both Ψ and φ satisfy the boundary condition.
For a general proof, see I. Stakgold, Boundary Value Problems of Mathematical Physics, vol. 1,
Macmillan, New York, 1967, pp. 212–220.
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6.5.5 Field of a Point Source in a Room with Walls
of Large Impedance

We now apply the mathematical apparatus of room modes to determine the field of
a point source of angular frequency ω and monopole amplitude Ŝ. The room walls
are characterized by a specific impedance Z, possibly having different values on
different surfaces, but being such that |Z|/ρc � 1 so that the walls are nearly rigid.
The complex pressure amplitude p̂ satisfies the inhomogeneous Helmholtz equation
with a source term −4πŜ δ(x − x0) on the right side. On the walls of the room, p̂
satisfies the boundary condition (see Sect. 3.3) ∇p̂ · nout = ik(ρc/Z)p̂, where nout
is the unit normal pointing out of the room. The completeness property allows us to
determine an expansion39 for p̂(x) in terms of eigenfunctions Ψ (x, n) appropriate
to the same room geometry but which satisfy the rigid-wall boundary condition of
Eq. (2).

To develop expressions for the coefficients an, we follow a procedure similar to
that for solving a boundary-value problem in terms of a Green’s function, but we use
an eigenfunction rather than a Green’s function. Multiplying Eq. (4.3.4) by Ψ (x, n)

and subsequently integrating over room volume, expressing Ψ ∇2p̂ as p̂ ∇2Ψ plus
the divergence of Ψ ∇p̂ − p̂ ∇Ψ , then making use of Gauss’s theorem and of the
boundary condition of Eq. (2), we obtain

∫ ∫ ∫ p̂(∇2 + k2)Ψ (x, n) dV + ∫∫Ψ (x, n)∇p̂ ·nout dS

= −4πŜ ∫ ∫ ∫Ψ (x, n)δ(x − x0) dV = −4πŜΨ (x0, n). (6.5.13)

Further reduction results because ∇2Ψ (x, n) is −k2(n)Ψ (x, n) and from the
boundary condition ∇p̂ ·nout = (ik)(ρc/Z)p̂.

Insertion of an eigenfunction expansion for p̂ results in the coupled algebraic
equations

[k2 − k2(n)]an + ik
∑
m

Bnmam = −4πŜΨ (x0, n)

V
, (6.5.14)

with the abbreviation

Bnm = 1

V

∫∫
Ψ (x, n)

ρc

Z
Ψ (x, m) dS, (6.5.15)

the integral extending over the surface area of the room.
For a room with nearly rigid walls, the coupling terms (m �= n) in Eq. (14) are

of minor importance; the possibility that some k(n) may be close to k can be taken

39P. M. Morse and K. U. Ingard, “Linear Acoustic Theory” in S. Flügge (ed.), Handbuch der
Physik, vol. 11, pt. 2 (Akustik I), Springer, Berlin, 1961, p. 60.
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into account if we group the m = n term, ikBnnan, with the [k2 − k(n)]an term;
we then solve the coupled equations by iteration, taking Bnm = 0 for m �= n in
the first approximation. In such a manner, with the so-derived an’s inserted into the
expansion for p̂, one obtains the approximate expression

p̂ = −4π
Ŝ

V

∑
n

Ψ (x, n)Ψ (x0, n)

k2 − k2(n) + ikBnn

. (6.5.16)

For a typical higher-order mode in a room, the local volume average of Ψ 2 is
nearly independent of position. A similar statement holds for |Ψ |2 at points on
the walls, but the surface-area average is nearly twice the volume average. These
remarks are supported by the rectangular-room eigenfunctions given by Eq. (5)
when nx > 0, ny > 0, nz > 0. (If one or more of the three indices is 0, the
ratio is less than 2.) Such considerations suggest, for most of the modes of interest,
that Eq. (15) (for n = m) can be approximated by

Bnn = 2

V

∫∫
ρc

Z
dS. (6.5.17)

Another approximate identification results from the assumption that the walls are
locally reacting and from insertion40 of the plane-wave absorption coefficient α(θ),
equal to 1 − |R|2 and determined from Eq. (3.3.4), into Eq. (6.1.11), so that, with
β = ρc/Z replacing 1/ζ ,

αri = 8βR

∫ π/2

0

cos2 θ sin θ dθ

(βR + cos θ)2 + β2
I

≈ 8βR. (6.5.18)

The latter expression, applicable for the case of the nearly rigid wall, results when
βR and βI are set to zero in the integrand. Our approximate expression (17) for Bnn

therefore leads to

c Re Bnn ≈ c

4V

∫∫
αri dS ≈ 1

τ
, (6.5.19)

where τ is the characteristic time of the Sabine–Franklin–Jaeger model.
The imaginary part of Bnn is of minor consequence. The denominator factor

in Eq. (16) can be written as [k − ksh(n)][k + ksh(n) − Ynn] + ikXnn, where the
shifted eigenvalue ksh(n) is such that k2

sh − kshYnn = k2(n). Here Xnn and Ynn
are the real and imaginary parts of Bnn. One ordinarily is interested in values of
k much greater than any |Ynn|, so the term −Ynn in the factor k + ksh(n) − Ynn
can be discarded. For virtually all the terms contributing to the sum, ksh(n) can be

40E. T. Paris, “On the coefficient of sound-absorption measured by the reverberation method,” Phil.
Mag. (7)5:489–497 (1928).
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approximated by k(n) + Ynn/2. Since most of the Ynn have nearly the same value,
the resonant frequencies cksh(n) have nearly the same spacing as the ω(n). Insofar
as one is not concerned with a precise prediction of the resonance frequencies, the
ksh(n) can be replaced by the k(n) without changing the overall predictions of the
modal formulation. Thus, the denominator factor is replaced by k2 −k2(n)+ ikXnn.
With the additional approximation represented by Eq. (19), we accordingly obtain

p̂ ≈ −4π
Ŝ

V

∑
n

Ψ (x, n)Ψ (x0, n)

k2 − k2(n) + ik/cτ
. (6.5.20)

6.5.6 Acoustic Energy in a Room

To express the time average of the acoustic energy in the room in terms of modes,
one begins with the volume integral

E = 1

4ρc2

∫∫∫ [
|p̂|2 +

( c

ω

)2 ∇p̂ ·∇p̂∗
]

dV. (6.5.21)

Insertion of the appropriate expansions for p̂ and p̂∗ [sums over n and m of
anΨ (x, n) and a∗

mΨ (x, m)] yields a double sum over n and m, the cross terms
of which vanish because of Eqs. (9) and (10), so we obtain

E = V

4ρc2

∑
n

|an|2
{

1 +
[
ω(n)

ω

]2
}
. (6.5.22)

The sums over n resulting from the 1 and the [ω(n)/ω]2 terms in the coefficient of
|an|2 correspond to the potential energy EP and the kinetic energy EK .

If the field is that of a point source, appropriate values for the an are the
coefficients of the Ψ (x, n) in Eq. (20). This replacement yields, for the potential
energy EP ,

EP = p2V

2ρc2
= 2πP̄ff

cV

∑
n

Ψ 2(x0, n)

[k2 − k2(n)]2 + k2/c2τ 2
, (6.5.23)

where P̄ff = 2π |Ŝ|2/ρc is the power the source radiates in a free-field environment.
The analogous sum for the kinetic energy EK diverges because the fluid velocity

in the vicinity of a point source varies as 1/r2. For large rooms and higher-frequency
sources, however, a meaningful value41 is obtained if one sums over only those k(n)

41This was pointed out to the author by Preston W. Smith, Jr.
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which are less than, say, 1/5r0, where r0 is the radius of reverberation; the resulting
truncated sum corresponds to the kinetic energy E′

K in the reverberant part of the
field. The analogous truncation in Eq. (23) has negligible influence on EP ; the sum,
E′ = E′

P + E′
K , corresponds to the product of the energy density w̄ introduced

in Sect. 6.1 with the room-volume portion V ′ that excludes the source’s immediate
neighborhood.

6.5.7 Modal Description of Power Injection

The near field of a single-frequency point source has the characteristic form
(discussed in Sect. 4.3)

p̂ = Ŝ

R
+ Ŝf ν̂ = 1

ρω

(
iŜeR

R2 − iŜ∇f

)
, (6.5.24)

where, as before, Ŝ is monopole amplitude, R = |x−x0| is distance from the source,
and f is a function whose value and gradient are bounded at x = x0. Starting
from these general expressions and with consideration of the surface integral of
1
2 Re (p̂∗v̂ ·eR) over a sphere centered at the source, one can subsequently conclude,
after taking the limit R → 0, that the time-averaged power output of the source
must be42

P̄ = P̄ff

(
Im

p̂

kŜ

)
x→x0

, (6.5.25)

where P̄ff is the power the source would radiate if it were in a free-field
environment. [If the source is in an unbounded region, p̂ = ŜR−1eikR and Eq.
(25) reduces to P̄ff. Although p̂/Ŝ diverges as x → x0, its imaginary part does
not.]

In terms of room modes and in the approximation of the nearly rigid wall
represented by Eq. (20), the above expression reduces to43

P̄ = 4πP̄ff

V

∑
n

(1/cτ)Ψ 2(x0, n)

[k2 − k2(n)]2 + k2/c2τ 2
. (6.5.26)

42R. H. Lyon, “Statistical analysis of power injection and response in structures and rooms,” J.
Acoust. Soc. Am., 45:545–565(1969).
43G. C. Maling, Jr., “Calculation of the acoustic power radiated by a monopole in a reverberation
chamber,” J. Acoust. Soc. Am. 42:859–865 (1967). The analogous result for a point dipole is given
by S. N. Yousri and F. J. Fahy, “An analysis of the acoustic power radiated by a point dipole source
into a rectangular reverberation chamber,” J. Sound Vib. 25:39–50 (1972).
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6.6 High-Frequency Approximations

The principal formulas of the Sabine–Franklin–Jaeger model result when modal
sums are approximated by integrals. The demonstration of this begins with the
derivation of an expression for the number of room modes per unit frequency
bandwidth.

6.6.1 The Modal Density

Let N(ω) denote the number of room modes whose natural frequencies are less than
a given value of ω. For a rectangular room, Eq. (6.5.6) indicates that N(ω) is the total
number of points in kx, ky, kz space with coordinates (nxπ/Lx, nyπ/Ly, nzπ/Lz)

that lie in or on the boundaries of the first octant (kx ≥ 0, ky ≥ 0, kz ≥ 0)
at a radial distance less than ω/c (see Fig. 6.15). Each point lies in a rectangular
box of dimensions (π/Lx, π/Ly, π/Lz) with volume π3/V , each box having only
one such point, the set of all boxes filling the space. The box corresponding to the
index triplet nx, ny, nz confines kx to between (nx − 1

2 )π/Lx and (nx + 1
2 )π/Lx ;

analogous limits confine ky and kz.
The total volume in the kx, ky, kz space occupied by all boxes whose center

points satisfy the inequality consists approximately44 of the sum of the following:

1. The volume (π/6)(ω/c)3 in an octant with radius ω/c
2. The sum of the volumes of three quarter-circle slabs of radius ω/c having

thicknesses π/2Lx, π/2Ly , and π/2Lz, respectively
3. The sum of three volumes of rectangular columns each having length ω/c,

the three cross-sectional areas being 1
4π

2/LxLy,
1
4π

2/LyLz, and 1
4π

2/LxLz,
respectively

4. A volume 1
8π

3/LxLyLz.

The estimated total number of modes N(ω), taken as the sum of these volumes
divided by the volume π3/V per point, is consequently

N(ω) ≈ 1

6

V

π2

(ω
c

)3 + 1

16

S

π

(ω
c

)2 + 1

16

L

π

ω

c
+ 1

8
(6.6.1)

where S = 2(LxLy + LyLz + LzLx) is the total surface area of the room and
L = 4(Lx + Ly + Lz) is the total length of all the edges in the room.

In the limit V � 6S/(16ω/c) (room dimensions large compared with a
wavelength), the first term predominates. Although the above was derived for a

44D.-Y. Maa, “Distribution of eigentones in a rectangular chamber at low frequency range,” J.
Acoust. Soc. Am. 10:235–238 (1939).
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Fig. 6.15 Sketch depicting some of the volume contributions in kx, ky, kz space to the estimation
of Nπ3/V , where N(ω) is the number of room modes whose natural frequencies are less than ω;
the room volume V is LxLyLz. There is one mode associated with each rectangular block of
dimensions π/Lx by π/Ly by π/Lz whose center lies within or on the boundary of the portion of
the sphere of radius ω/c lying within the first octant of kx, ky, kz space

rectangular room, the same leading term holds45 for a room of any shape; that is,
(c/ω)3N(ω)/V approaches 1/6π2 in the limit of large ω.

The number of modes in a frequency band of width Δω and centered at angular
frequency ω can be estimated as [dN(ω)/dω] Δω, with N(ω) taken as the leading

45H. Weyl, “The asymptotic distribution law for the eigenvalues of linear partial differential
equations (with application to the theory of black body radiation)”, Math. Ann. 71:441–479 (1912).
A general proof is given by Courant and Hilbert, Methods of Mathematical Physics, vol. 1, pp.
429–445.
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term in the above. Thus, the average number of modes per unit angular frequency
bandwidth (modal density) is

dN

d ω
= 1

2

V

π2

ω2

c3 = 1

(Δω)mode
= 1

2π(Δf )mode
(6.6.2)

Here (Δf )mode is the average spacing in hertz between successive room resonance
frequencies. For example, in a room of volume 500 m3 and near frequencies of 500
Hz, with c = 340 m/s, one has (Δf )mode = 0.025 Hz.

6.6.2 The Schroeder Cutoff Frequency

If the quantity 1/cτ [see Eq. (6.5.20)] is sufficiently small compared with k(n) −
k(n − 1) or k(n + 1) − k(n), a resonance is apparent whenever the source driving
frequency ω is sufficiently close to the natural frequency ω(n). The nth term in
sums such as those in Eqs. (6.5.23) and (6.5.26) becomes overwhelmingly larger
than any other term as ω → ω(n) and the frequency dependence of p2, of E′, or of
P̄ is approximately described by the factor {[k2 −k2(n)]2 +k2/c2τ 2}−1. Near such
a resonance this in turn is approximately [c2/2ω(n)]2{[ω − ω(n)]2 + (1/2τ )2}−1.
This factor is down to one-half its maximum value when |ω − ω(n)| = 1/2τ , so
the Q of the resonance is ω(n)τ or k(n)cτ ; the bandwidth of the resonance peak is
therefore

(Δω)res = 1

τ
(Δf )res = 6 ln 10

2πT60
= 2.20

T60
(6.6.3)

The latter, representing the bandwidth in hertz, is (Δω)res/2π .
When the resonance peaks are closer together than the bandwidth associated

with any one peak, the resonances are less evident. If the average spacing (Δf )mode
between peaks is of the order of or less than, say, 1

3 (Δf )res, the resonance peaks may
be regarded46 as a smoothed-out continuum. Since the average spacing (Δf )mode
decreases with increasing frequency, there is a frequency fSch (Schroeder cutoff
frequency) below which (Δf )res > 3(Δf )mode is not satisfied and above which it is.
This frequency is identified, from Eqs. (2) and (3), as

fSch =
(

c3

4 ln 10

)1/2 (
T60

V

)1/2

= c

(
6

As

)1/2

(6.6.4)

46M. Schroeder, “The statistical parameters of frequency curves of large rooms,” Acustica, 4:594–
600 (1954); M. R. Schroeder and K. H. Kuttruff, “On frequency response curves in rooms:
comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing
between maxima,” J. Acoust. Soc. Am. 34:76–80 (1962). The first reference placed the transitional
peak spacing at 1

10 (Δf )res, but this was changed to 1
3 (Δf )res in the 1962 paper.
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This, in SI units and with c = 340 m/s, becomes (in round numbers)
2000(T60/V )1/2. Thus, for a room with V = 500 m3 and with T60 = 1 s, the
Schroeder cutoff frequency is 90 Hz. Note that the criterion f � fSch is equivalent
to that previously derived in Sect. 6.3 for the deviation ΔP̄ of the source power
output to be small compared with P̄ff.

6.6.3 Approximation of Modal Sums by Integrals

What can be termed Schroeder’s rule says that above the Schroeder cutoff frequency
a sum over mode indices can be approximated by an integral. Suppose one has a sum
of the generic form [see Eqs. (6.5.23) and (6.5.26)]

Sum =
∑
n

F (k(n), k)Ψ 2(x0, n) (6.6.5)

and suppose also that there are a large number of terms of comparable magnitude
for which k(n) is between k′ − Δk′/2 and k′ + Δk′/2 for a Δk′ considerably
less than k′. The number of terms corresponding to this wave-number interval is
c(dN/dω)ω=ck′Δk′, where dN/dω is the modal density of Eq. (2). If the average
〈FΨ 2〉k′ over the terms corresponding to such a wave-number interval varies slowly
from interval to interval, the sum is approximately the integral

Sum → c

∫ ∞

0
〈FΨ 2〉k′

(
dN

dω

)
ω=ck′

dk′ (6.6.6)

The various assumptions just stated increase in validity the larger k(n) is compared
with 2πfSch/c. Insofar as the dominant contribution comes from terms where k(n)

is comparable to or larger than k, the integral (6) approximates the sum (5) with
increasing success the larger the source frequency is compared with fSch. In the
computation of the energies associated with the reverberant field, the upper limit
should be replaced by a fraction (whose exact value should be of no consequence)
of the reciprocal of the radius of reverberation.

Because there is no systematic relation between the F ’s and Ψ 2’s, the local
average 〈FΨ 2〉k′ can be factored as 〈F 〉k′ 〈Ψ 2〉k′ to a good approximation if a great
number of terms are involved. Thus, with dN/dω taken from Eq. (2), one has

Sum → V

2π2

∫ ∞

0
F(k′, k)RP (k

′, x0)(k
′)2dk′ (6.6.7)

where RP (k
′, x0) replaces 〈Ψ 2〉k′ and is the average over n of those Ψ 2(x0, n) for

which k(n) is in a small interval centered at k′.
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6.6.4 Modal Averages of Squares of Eigenfunctions

The quantity RP (k, x0) can be alternately expressed as the ratio of the acoustic
power output P̄ (time-averaged) of a monopole source at x0, with account taken of
the proximity of the source to the nearest walls only, to the free-field acoustic power
P̄ff

RP (k, x0) = P̄(k, x0)

P̄ff
(6.6.8)

Here k = ω/c, where ω is the frequency of the source generating power P̄ .
The above assertion follows from the observation that the average of a large num-

ber N of Ψ 2(x, n) corresponding to nearly the same eigenvalue is approximately

1

N

∑
n

Ψ 2(x, n) ≈ 1

N

∣∣∣∣∣
∑
n

Ψ (x, n)eiφn

∣∣∣∣∣
2

=
∣∣∣∣ q̂(x)

∣∣∣∣
2

where the φn are randomly selected phase angles. The cross terms such as
2Ψ (x, n)Ψ (x,m) cos(φn − φm), n �= m, have a large variety of magnitudes
and may have either sign, so they average out. The quantity q̂ identified from
the latter relation is an approximate solution of the Helmholtz equation whose
normal derivative at the walls is zero. Within any localized region large compared
with a wavelength, one can approximate q̂ by a large number of plane waves
uniformly distributed among propagation directions. Near the walls of the room,
the relationships between the phases of these plane waves must be such that the
boundary condition Δq̂ · nout = 0 is satisfied. The overall volume average of |q̂|2
is 1, and for the most part |q̂|2 should be everywhere equal to its volume average,
except near the walls of the room, where there are systematic relations between the
phases of its constituent plane waves. Thus, |q̂(x)|2 → 1 at distances far from a
room boundary.

If x is near a particular wall, then [ as in the derivation of Eq. (6.1.8)] the
above reasoning suggests that |q̂(x)|2 is a constant times the average over incidence
directions n of the mean squared pressure at x resulting when a plane wave of unit
amplitude is incident obliquely on the wall with direction n and the wall is idealized
as rigid. The multiplicative constant is chosen so that |q̂(x)|2 approaches 1 at large
distances from the well. Alternately, a unit-amplitude incident plane wave can be
regarded as being generated by a point source of monopole amplitude Ŝ = d located
at x − nd, where d is large. The principle of reciprocity requires the corresponding
|p̂2(x)| be the same as the |p̂2(x − nd)| resulting when the point-source location is
changed to x. Consequently, the mean squared pressure at x due to a unit-amplitude
incident plane wave is proportional to the far-field radiation pattern from a point
source at x, the proportionality factor being independent of direction. This implies
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that averaging over incidence directions is equivalent,47 apart from a multiplicative
constant, to determination of the power P̄ radiated from a source at x. Since |q̂(x)|2
must approach 1 at large distances from the wall, and since P̄ → P̄ff at such
distances, one arrives at Eq. (8).

The correspondence described above requires RP (k, x) to be nearly 1 within the
interior of the room, to be 2 on most wall surfaces, to be 4 along an intersection
of two walls, and to be 8 at a corner where three walls meet. These values can be
derived by the method of images (see Sect. 5.1) and are supported by calculations48

of modal sums.

6.6.5 Evaluation of Modal Integrals

The integral in Eq. (7) approximates the sums, represented by Eqs. (6.5.23) and
(6.5.26), that give p2 and P̄ for a point source in a room. For both cases, the
function F(k′, k) is of the form

F(k′, k) = K

(k2 − k′2)2 + k2/c2τ 2 (6.6.9)

Because F(k′, k) peaks strongly near k′ = k when 1/cτ 
 k, a good approximation
results if we set k′ = k in the integrand except in the denominator factor, where we
replace k2 − k′2 by 2k(k − k′). Thus Eq. (7) becomes

Sum → KV

8π2

P̄(k, x0)

P̄ff

∫ ∞

0

dk′

(k − k′)2 + 1/(2cτ)2
. (6.6.10)

Given k � 1/cτ , one may in addition make the further approximation of extending
the lower limit to −∞, so that the indicated integral [change integration variable to
θ where k′ − k = (1/2cτ) tan θ ] becomes 2πcτ .

In the application of the above analysis to the expressions, derivable from
Eqs. (6.5.23) and (6.5.26) for the volume average of mean squared pressure and
the acoustic-power output of a monopole source, the appropriate identifications for
K are 4π ρcP̄ff/V

2 and 4πP̄ff/(cτV ). Thus, the two quantities just mentioned
become

p2 = ρc2τP̄(k, x0)/V P̄ = P̄(k, x0). (6.6.11)

47R. V. Waterhouse, “Output of a sound source in a reverberation chamber and other reflecting
environments,” J. Acoust. Soc. Am. 30:4–13 (1958).
48See, for example, Maling, “Calculation of the acoustic power.”
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The potential energy EP in the room is consequently 1
2τP̄ . An analogous derivation

for the reverberant part of the kinetic energy leads with the summation truncation
described in the previous section to

E′
K ≈ P̄

πc

∫ km

0

(k′/k)4dk′/k2

(1 − k′/k)2(1 + k′/k)2 + 1/(cτk)2 , (6.6.12)

where the upper limit km should be much less than 1
2πcτk

2 but much larger than
2/πcτ . The dominant contribution to the integration comes from k′ near k, so an
appropriate approximation sequence is to first set k′/k = 1 except in the factor
1 − k′/k and to then change the integration limits to −∞ and ∞. Doing this yields
E′

K ≈ 1
2τP̄ , so E′ = E′

P + E′
K ≈ τP̄ .

The similarity of the approximate relations derived above between P̄, p2, E′ =
V w̄, and τ with what holds in steady-state circumstances for the Sabine–Franklin–
Jaeger model demonstrates that the latter has a substantial basis in the wave theory
of sound but holds only in the high-frequency limit, i.e., for f somewhat larger
than fSch. While the analysis given here is for a constant-frequency point source,
one can expect the same conclusions to apply to any type of source if the radiated
frequencies are sufficiently high and the dimensions of the room sufficiently large.
[However, the value of P̄(k, x0)/P̄ff will not necessarily be the same as what is
derived for a monopole source. For a point dipole, for example, with its dipole-
moment vector normal to the nearest wall, one would use Eq. (5.1.8b).]

6.7 Statistical Aspects of Room Acoustics

Deviations of acoustic field quantities from the averages predicted by the Sabine–
Franklin–Jaeger model are frequently given a statistical interpretation. Suppose, for
example, that a source at x0 causes the contribution to the pressure from a given
frequency band to be p(x, t |x0). The average over time and over listener position x

of p2 is predicted to be ρc2τP̄/V by the reverberant-field model, but the model per
se gives no information about how much a given average over time of p2(x, t |x0)

for fixed x and x0 may deviate from this double average.
A probability density function w(q) for any field variable q(x) can be constructed

by measuring q(x) at a large number of randomly selected points. The fraction of the
total number of measured values between qa and qb is interpreted as the probability
P(qb > q > qa) that q falls within this range. The average probability per unit
range of q is P(qb > q > qa)/(qb − qa), and this ratio’s value in the quasi limit of
small qb − qa is the probability density function w(q) evaluated at the center of the
interval. Thus, w(q) dq is the probability that a random measurement is between
q − dq/2 and q + dq/2.
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The expected value of a function f (q) can be written in two ways:

〈f (q)〉 =
∫ ∞

−∞
f (q)w(q) dq = 1

V

∫∫∫
f (q(x)) dV . (6.7.1)

The latter defines the “randomly selected points” to be such that the numbers of
samples drawn from two subvolumes of equal size are the same.

One also defines a joint-probability-density function w(q1, q2) for any two field
variables q1(x) and q2(x) such that w(q1, q2) dq1 dq2 is the probability that q1
and q2 simultaneously lie within the ranges (q1 − dq1/2, q1 + dq1/2) and (q2 −
dq2/2, q2 + dq2/2). This function should be such that the expected value of any
function f (q1, q2) is the average over volume of f (q1(x), q2(x)). The integral of
w(q1, q2) over all values of q2 yields the probability density function w(q1) for q1.

6.7.1 Frequency Correlation

A starting point for the development of the principal hypotheses of statistical room
acoustics may be taken as the expression (6.5.20) for the complex acoustic-pressure
amplitude caused by a constant-frequency point source in the nearly rigid wall
approximation. This we rewrite as

p̂(x, ω|x0) = 4πŜ

V
(a + ib), (6.7.2)

where

{a, b} ≈
∑
n

{An,Bn}Ψ (x, n)Ψ (x0, n), (6.7.3)

{An, Bn} = {[k2(n) − k2], k/cτ }
[k2(n) − k2]2 + k2/c2τ 2 . (6.7.4)

For given x and x0, the plots of a(ω) and b(ω) versus ω are calculable, but since
the curves vary with x, one may consider49 a(ω) and b(ω) as stochastic processes.
At frequencies somewhat above the Schroeder cutoff frequency, these are quasi-
stationary processes because their statistical properties are insensitive to shifts in
the frequency origin. Each process has zero mean since the spatial average is zero
for each Ψ (x, n) (we assume that the zero-frequency mode is negligibly excited).
Also, since a large number of terms contribute to their values, each of which could
as well be negative as positive, one expects, with reference to various proofs under

49M. Schroeder, “The statistical parameters of frequency curves of large rooms,” Acustica 4:594–
600 (1954).
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restricted conditions of the central-limit theorem,50 that the pair a(ω), b(ω) forms
a joint Gaussian process. This implies, in particular, that if one lets each q1, q2,
. . . , qN denote either a(ωi) or b(ωi) for various selected frequencies ωi , the joint-
probability-density function for the set of q’s is

w(q1, q2, . . . , qN) = (2π)−N/2 det[M]−1/2 exp

⎛
⎝−1

2

∑
i,j

[M−1]ij qiqj
⎞
⎠ ,

(6.7.5)

where det[M] and [M−1] denote the determinant and inverse, respectively, of a cor-
relation matrix [M] having elements Mij = 〈qiqj 〉. This, with the assumption that
the processes are quasi-stationary, leads to the conclusion that the only statistical
averages needed for a specification of all such probability density functions are the
frequency autocorrelation functions 〈a(ω)a(ω + Δω)〉 and 〈b(ω)b(ω + Δω)〉 and
the frequency cross-correlation function 〈a(ω)b(ω + Δω)〉.

Expressions for these functions follow from Eq. (1) and from the orthogonality
and normalization of the Ψ (x, n). One has, for example [with An(ω) rewritten as
A(k(n), k)],

〈a(ω)b(ω + Δω)〉 =
∑
n

A(k(n), k)B(k(n), k + Δk)Ψ 2(x0, n). (6.7.6)

This sum is approximated by an integral in the manner described in the derivation
of Eqs. (6.6.7), with k(n) → k′, 〈Ψ 2〉 → RP (k

′, x0), Δn → (V/2π2)(k′)2 dk′.
Since the overall integrand is for most intents zero unless k′ is moderately close to
k (given |Δk| and 1/cτ both substantially less than k), one sets k′ = k in the factors
RP (k

′, x0) and (k′)2 at the outset and approximates

A(k′, k) ≈ 2k(k′ − k)

4k2(k′ − k)2 + k2/c2τ 2
, B(k′, k) ≈ k/cτ

4k2(k′ − k)2 + k2/c2τ 2
.

(6.7.7)

Also, since Δk 
 k, the only tangible effects of shifting k to k + Δk arise in the
factor k′ − k; everywhere else in the expression for B(k′, k +Δk), one sets k +Δk

to k. A further approximation replaces the lower limit of integration by −∞. Then,
with a change of variable to β, where β/2cτ is k′ − k, one obtains

〈a(ω)b(ω + Δω)〉 ≈ V

4π2 RP (k, x0)cτ

∫ ∞

−∞
β dβ

(β2 + 1)[(β − 2τ Δω)2 + 1] .
(6.7.8)

50J. L. Doob, Stochastic Processes, Wiley, New York, 1953, pp. 71–72, 141.
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The indicated integral is performed by adding a semicircular arc (β = Reiφ, 0 <

φ ≤ π, R → ∞) to the integration path such that the resulting contour encloses
the poles (at β = i and β = 2τ Δω + i) in the upper half plane. The result, by the
residue theorem, is (π/2)τ Δω/[1 + (τ Δω)2].

The evaluation of 〈a(ω)a(ω+Δω)〉 and 〈b(ω)b(ω+Δω)〉 is performed similarly,
a distinction being that the β’s of the numerator in Eq. (8) are replaced by β(β −
2τΔω) and 1, respectively. The integral factor in both cases is (π/2)/[1+ (τΔω)2].
The three correlation functions consequently vary with Δω in the following manner:

〈a(ω)a(ω + Δω)〉 ≈ 〈b(ω)b(ω + Δω)〉 ≈ 〈a2(ω)〉
1 + (τ Δω)2 , (6.7.9a)

〈a(ω)b(ω + Δω)〉 ≈ 〈a2(ω)〉τΔω

1 + (τΔω)2 . (6.7.9b)

The above expressions are applicable for estimation of the frequency autocorre-
lation function 〈p2(ω)p2(ω +Δω)〉 for the ensemble of frequency-response curves
p2(ω, x). Here p2(ω, x) is the time average of the squared acoustic pressure when
the source’s frequency is ω. If the source characteristics very slowly with ω, and if
they change negligibly over an interval Δω, then (for Δω 
 ω)

〈p2(ω)p2(ω + Δω)〉
〈p2(ω)〉

= 〈[a2(ω) + b2(ω)][a2(ω + Δω) + b2(ω + Δω)]〉
〈a2 + b2〉2 .

(6.7.10)

To evaluate this, we use the relation,51 applicable if x and y are any two random
variables, for example, a(ω) and a(ω + Δω) or b(ω) and a(ω + Δω), with a joint
Gaussian probability distribution and zero mean, that

〈x2y2〉 = 〈x2〉〈y2〉 + 2 〈xy〉2. (6.7.11)

This, in conjunction with Eqs. (9), leads to 4〈a2〉2{1 + [1 + (τ Δω)2]−1} for the
numerator of Eq. (10), so we obtain

〈p2(ω)p2(ω + Δω)〉 = 〈p2〉2{1 + [1 + (τ Δω)2]−1}. (6.7.12)

51From (5) one has, for a bivariate Gaussian distribution with q1 = x, q2 = y, r = 〈xy〉/〈y2〉,
∑
i,j

[M−1]ij qiqj = 〈y2〉x2 − 2〈xy〉xy + 〈x2〉y2

〈x2〉〈y2〉 − 〈xy〉2 = (x − ry)2

〈(x − ry)2〉 + y2

〈y2〉 ,

so w(x, y) factors into a product of probability density functions for the statistically independent
quantities x − ry and y. Also, Eq. (5) yields 〈y4〉 = 3〈y2〉2. Consequently, algebraic manipulation
of the expression 〈[(x − ry) + ry]2y2〉 leads to Eq. (11).
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6.7.2 The Poisson Distribution

For pure-tone excitation above the Schroeder cutoff frequency, the mean squared
acoustic pressure conforms to a Poisson distribution. The demonstration proceeds
from the observation that

w(s) = d

ds

∫ ∞

−∞

∫
w(a, b)H(s − a2 − b2) da db (6.7.13)

is the probability density function for a2 + b2. Here H is the Heaviside unit step
function; the double integral is the probability that a2 + b2 < s; its derivative
is thus the probability density function. Since the random variables a and b are
uncorrelated for Δω = 0, since both individually correspond to a Gaussian
distribution with zero mean, and since both have the same mean squared value,
the exponent in Eq. (5) in this particular case becomes −(a2 + b2)/2〈a2〉. One
converts the integration variables in Eq. (13) to polar coordinates u, φ such that
a = u cosφ, b = u sinφ, da db = u du dφ, a2 + b2 = u2, and then lets u2 = v

such that u du = 1
2dv; the φ integration gives a factor 2π ; the v integration limits

are 0 and s. The s differentiation then gives πw(a, b) with a2 + b2 = s, so
w(s) = (1/〈s〉) exp(−s/〈s〉), which is the probability density function for a Poisson
distribution. Here 〈s〉 = 2〈a2〉 is the average value 〈a2〉 + 〈b2〉 of s.

Since the time average p2 of p2 is a product of a nonrandom (i.e., independent
of x) quantity with a2 + b2 and since, for any random variable x with probability
density function wx(x), the probability density function wy(y) for y = Kx is

wx(y/K)/K , such that wx(x) dx = wy(y) dy, the quantity p2 also conforms to
a Poisson distribution, i.e.,

w(p2) = 1

〈p2〉
exp

−p2

〈p2〉
, (6.7.14)

where 〈p2〉 is the spatial average of p2. (The overbar here implies a time average.)
The most probable value of p2 is 0, but since p2 is always nonnegative, the

expected value is finite. The variance is

〈(p2 − 〈p2〉)2〉 = 〈(p2)2〉 − 〈p2〉2 = 〈p2〉2, (6.7.15)

since the integrals of xe−x and x2e−x from 0 to ∞ are 1 and 2. Thus, the rms
deviation of a measurement of p2 from 〈p2〉 is the same as 〈p2〉. [This is consistent
with Eq. (12) in the limit τΔω = 0.] The probability that p2 exceeds 〈p2〉 is e−1 or
0.368, and the probability that it is less than the average is 1 − e−1 = 0.632, so at a
randomly selected point, it is nearly twice as probable that p2 will be less than the
average rather than higher than the average.
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Fig. 6.16 Implications of the Poisson distribution. Curve A: Probability density function w(z) for
1

10 (ln 10)(L − L0). Curve B: Probability P(L) that measured sound-pressure level is less than L.
Curve C: Probability 1−P(L) that it is greater than L. The level L0 corresponds to spatial average
over entire room of mean squared acoustic pressure

The Poisson distribution requires also that the average sound-pressure level
be 2.5 dB lower than that corresponding to 〈p2〉. To demonstrate this, let z =
1
10 (ln 10)(L − L0), where L0 is the sound level corresponding to the average 〈p2〉.
Then, since p2/〈p2〉 = 10(L−L0)/10 is ez, the probability density function for z is
(see Fig. 6.16)

w(z) = exp

(
−p2

〈p2〉

)
d

dz

(
p2

〈p2〉

)
= ez−ez , −∞ < z < ∞. (6.7.16)

The expected value 〈z〉 for z (with a change of integration variable to y = ez) is

∫ ∞

−∞
zez−ezdz =

∫ 1

0
(ln y)

d

dy
(1 − e−y) dy −

∫ ∞

1
(ln y)

d

dy
e−y dy = −γ,

(6.7.17)

where γ = 0.5772157 · · · is the Euler–Mascheroni constant.52 Since 10γ /(ln 10)
is 2.5, the average level 〈L〉 is L0 − 2.5 dB. The probable deviation of a single

52E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University
Press, London, 1973, pp. 235–236, 243.
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measurement from L0 is 〈(L−L0)
2〉1/2, which is the same as [〈(L−〈L〉)2)+(〈L〉−

L0)
2]1/2 or [10/(ln 10)][〈(z−〈z〉)2〉+γ 2]1/2. The value π2/6 for the quantity 〈(z−

〈z〉)2) results from a lengthy computation,53 so the net result is 〈(L − L0)
2〉1/2 =

6.1 dB.
The rms deviation of L from 〈L〉 becomes54 [10/(ln 10)]π/61/2 = 5.6 dB. The

expected value of (L − L0)
2, given L > L0, is (3.2 dB)2; given L < L0, it is

(7.6 dB)2. Thus, if error brackets are to be placed on a data point, the upper bracket
should be 7.6 dB above and the lower bracket 3.2 dB below, with a net spread of
10.8 dB.

6.7.3 Effect of Finite-Frequency Bandwidth

If the source is broadband, the variations in the mean squared pressure p2

corresponding to any finite-frequency band of bandwidth Δω are considerably less
than those for the constant-frequency case if τ Δω � 1. To demonstrate this,55

we consider a band extending from ω1 to ω2 over which the power output per unit
frequency bandwidth is constant, such that the mean squared pressure for the band,
according to Eqs. (2.7.7) and (2.9.6), is

p2 = K

∫ ω2

ω1

[a2(ω, x) + b2(ω, x)] dω, (6.7.18)

where K is independent of x. The variance in p2 is then

〈(p2 − 〈p2〉)2〉 = K2
∫ ω2

ω1

∫
〈[f (ω) − 〈f 〉][f (ω′) − 〈f 〉]〉 dω dω′, (6.7.19)

where we abbreviate f for a2 + b2. A substitution from Eq. (12) then yields

〈(p2 − 〈p2〉)2〉 = 〈p2〉2

(ω2 − ω1)2

∫ ω2

ω1

∫
[1 + τ 2(ω − ω′)2]−1 dω dω. (6.7.20)

The double integration can be performed by letting x = (ω − ω1)/(ω2 − ω1),
y = (ω′ − ω1)/(ω2 − ω1) be new integration variables (limits 0 and 1) such that
ω − ω′ = (x − y) Δω, where we write Δω for ω2 − ω1. A further substitution of

53H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, N.J.,
1946, p. 376. [Our w(z) is Cramer’s j1(z) with ν = 1, such that his S1, and S2 are both zero.]
54This is in accord with measurements reported by P. Doak, “Fluctuations of the sound pressure
level in rooms when the receiver position Is varied,” Acustica, 9:1–9 (1959).
55M. R. Schroeder, “Effect of frequency and space averaging on the transmission responses of
multimode media,” J. Acoust. Soc. Am. 46:277–283 (1969).
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α for x − y replaces the x integration by one on α from −y to 1 − y, so one has
0 < y < 1 − α for α between 0 and 1 and −α < y < 1 for α between −1 and 0.
With this recognition, one can do the y integration first, keeping α fixed, the result
being 1 − |α|, so

〈(p2 − 〈p2〉)2〉 = 〈p2〉2
∫ 1

−1
(1 − |α|)[1 + (τ Δω)2α2]−1 dα, (6.7.21)

and here it is sufficient to integrate only from 0 to 1 and subsequently multiply
the result by 2. A further change of integration variable to θ , where tan θ =
(d/dθ) ln (sec θ) replaces (τΔω)α, yields (see Fig. 6.17)

〈(p2 − 〈p2〉)2〉 = 〈p2〉2V (τΔω), (6.7.22)

V (τΔω) = 2

τΔω
{tan−1(τΔω) − (τΔω)−1 ln [1 + (τΔω)2]1/2},

≈
⎧⎨
⎩

1 − 1
6 (τΔω)2 τ Δω 
 1

π

τΔω
− 2 ln(eτΔω)

(τΔω)2 τ Δω � 1
(6.7.23)

Fig. 6.17 Function V (τΔω) describing variance in p2 for sound of angular frequency bandwidth
Δω in a room with characteristic energy decay time τ . Also plotted are two approximate asymptotic
expressions for the function
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The behavior when τΔω → 0 is consistent with Eq. (15) for the single-frequency
case. Also, the leading term π/(τΔω) in the asymptotic expansion for V (τΔω) is
the same as would be obtained if there were N = (τΔω)/π discrete widely spaced
frequencies, each equally strongly excited. The leading term can also be written in
terms of T60 and the bandwidth Δf in hertz as 3 ln 10/(T60Δf ) of as 6.9/(T60Δf ).

With the last recognition, one can conjecture that, in the limit of large τΔω, the
probability density function w(p2) is the same as that of the sum of N independent
random variables each having a Poisson distribution and the same mean, 〈p2〉/N .
After a brief calculation similar to that in the derivation of Eq. (14), this conjecture
leads to

w(p2) = 1

�(N)

N

〈p2〉

(
Np2

〈p2〉

)N−1

exp

(
−Np2

〈p2〉

)
, (6.7.24)

where �(N) [equal to (N − 1)! for integer N ] is the gamma function. This reduces
to Eq. (14) for N = 1 and has a mean of 〈p2〉 (as it should) and a variance of
〈p2〉2/N . A comparison of the latter with Eq. (22) suggests that the above would be
a fairly good approximate probability density function for arbitrary bandwidth if we
set N = 1/V (τ Δω).

With z = ( 1
10 ln 10)(L − L0), as before, and with L0 representing the sound-

pressure level associated with 〈p2〉, the corresponding probability density function
N exp (Nz − eNz) has a mean of −γ /N and a variance of (π2/6)/N2. Thus, the
average sound-pressure level L̄ is L0 − 2.5/N dB, and the rms deviation from L̄ is
5.6/N dB.

Example For the third octave band with f0 = 250 Hz in a room with a reverberation
time of 1 s, what is the probability that L lies within ±0.5 dB of L0?

Solution From the relations T60 = (6 ln 10)τ and Δω = 2π(21/6 − 2−1/6)f0 (third
octave band) one determines τΔω = 26.33, and from N = 1/V (τΔω) one finds
N = 9.35. Since ± 1

2 dB corresponds to a z of ±(ln 10)/20 = ±0.115, the desired
probability is the integral of N exp (Nz − eNz) from −0.115 to 0.115; this integral
is the difference of the values of − exp(−eNz) (the indefinite integral) at Nz = 1.1
and Nz = −1.1, so the probability is 0.66. The probability of its lying within ±1 dB
of L0 is similarly found to be 0.89. The corresponding probabilities for a pure tone
(N = 1) would be 0.08 and 0.17.

6.8 Spatial Correlations in Diffuse Sound Fields

Our discussion of statistical room acoustics continues with an examination of the
spatial variation of sound fields in reverberant rooms.
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6.8.1 The Spatial Autocorrelation Function
for Acoustic Pressure

The requisite statistical averages for the description of the spatial fluctuations result
from the idealization of the sound field as a superposition of a large number of
propagating plane waves, such that the acoustic pressure in the constant-frequency
case has a complex amplitude given by Eq. (6.1.6). The autocorrelation function of
the constant-frequency pressure field is the average over volume of the product of
p(x, t) and p(x + Δx, t + Δt) for fixed Δx and Δt ; a derivation analogous to that
of Eq. (6.1.7) yields

〈p(x, t)p(x + Δx, t + Δt)〉 = 1

2

∑
q

|p̂q |2 cosω

(
Δt − nq · Δx

c

)
. (6.8.1)

With the diffuse-field idealization, the cosine here is replaced by its average over
propagation direction, and the sum of the |p̂q |2 is replaced by 2〈p2〉. The average
over solid angle of cos [ω(Δt−e·Δx/c)] can be performed in spherical coordinates
taking Δx in the z direction, so Eq. (1) reduces56 to

〈p(x, t)p(x + Δx, t + Δt)〉 = 〈p2〉1

2

∫ π

0
cosω

(
Δt − |Δx|

c
cos θ

)
sin θ dθ

= 〈p2〉 cos(ω Δt)
sin k|Δx|
k|Δx| . (6.8.2)

The time periodicity with a period of 2π/ω exhibited by the above autocorrela-
tion function follows from the periodicity of the pressure. The spatially dependent
factor is 1 when |Δx| = 0 but equals 0 when k|Δx| = π, 2π, 3π, . . . or when
|Δx| = λ/2, λ, 3λ/2, . . .. Since the amplitude decreases to zero as 1/k|Δx| when
k|Δx| → ∞ (Fig. 6.18a), there is a basis for assuming that pressure measurements
spaced more than several wavelengths apart are statistically independent.

An expression for the spatial autocorrelation function57 〈p2(x)p2(x + Δx)〉 of
the mean squared acoustic pressure results analogously from the superimposed-
plane-waves hypothesis. With the recognition that the spatial average of the coupling
factor exp [ik(nq − nq ′ + nr − nr ′) ·x] is negligibly small unless q ′ = q, r ′ = r or
r ′ = q, r = q ′, one obtains as an intermediate result

〈p2(x)p2(x + Δx)〉 = 1

4

∑
q,r

|p̂q |2|p̂r |2 + 1

4

∑
q,r

|p̂q |2|p̂r |2eik(nr−nq )·Δx .

56R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman, and M. C. Thompson, Jr.,
“Measurement of correlation coefficients in reverberant sound fields,” J. Acoust. Soc. Am. 27:1072–
1077 (1955).
57D. Lubman, “Spatial averaging in a diffuse sound field,” J. Acoust. Soc. Am. 46:532–534 (1969).
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Fig. 6.18 Spatial dependence of the autocorrelation functions of (a) acoustic pressure (Δt = 0)
and (b) mean squared acoustic pressure in a constant-frequency sound field
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This in turn leads with the diffuse-field hypothesis to the expression (see Fig. 6.18b)

〈p2(x)p2(x + Δx)〉 = 〈p2(x)〉2

(
1 +

∣∣∣∣ 1

4π

∫∫
eikΔx·e dΩ

∣∣∣∣
2
)

= 〈p2(x)〉2

{
1 + sin2 k|Δx|

(k|Δx|)2

}
. (6.8.3)

Note that this function’s limiting value of 2〈p2〉 when |Δx| = 0 is consistent with
Eq. (6.7.12).

The extension of the above result to when the field is composed of a band of
frequencies proceeds from the notion of a spectral density, which implies

〈p2(x)p2(x + Δx)〉 =
∫ ω2

ω1

∫
〈Sp(ω, x)Sp(ω

′, x + Δx)〉 dω dω′. (6.8.4)

Here Sp(ω, x) is such that its integral over ω gives p2(x).
The average appearing in the above integrand can be written as 〈S2

p〉[1 +
G(ω, ω′, Δx)] with some choice of the function G. We assume that the spatial
average of S2

p is independent of ω, so it is identified as 〈p2〉2/(Δω)2. Equations

(6.7.12) and (3) require that G be [1 + (ω − ω′)2τ 2]−1 or (sin2 k|Δx|)/(k|Δx|)2,
when Δx is 0 or when ω = ω′. It must be 1 when both Δx and ω − ω′ are zero,
and it must go to zero when |ω − ω′|τ, (ω/c)|Δx|, or (ω′/c)|Δx| becomes large.
A simple approximate choice for G with these properties is the product of the two
limiting functions corresponding to Δx = 0 and ω − ω′ = 0, with the replacement
of k by kav = (ω + ω′)/c in the latter. This synthesis yields

〈Sp(ω, x)Sp(ω
′, x + Δx)〉 ≈ 〈p2〉2

(Δω)2

{
1 + [1 + τ 2(ω − ω′)2]−1 sin2 kav|Δx|

(kav|Δx|)2

}
.

(6.8.5)

For typical rooms, τ is invariably much larger than |Δx|/c for any |Δx| of
interest. The factor (sin2 kav|Δx|)/(kav|Δx|)2 may be considered as constant over
the integration domain unless (Δω/c)|Δx| is comparable to 1 or (since cτ � |Δx|)
unless τ Δω � 1. In the latter case, the sharp peak in the factor [1+τ 2(ω−ω′)2]1/2

at ω = ω′ allows one to consider the spatially dependent factor as being the same
as if ω′ were set equal to ω at the outset when one is doing, say, the ω′ integration
first. On this basis, we conclude that the value of the integral is unchanged for all
practical purposes if the spatially dependent factor is replaced by its average over
the frequency interval. Thus, with reference to the analysis leading to Eq. (6.7.22),
we find that Eq. (5) reduces to

〈p2(x)p2(x + Δx)〉
〈p2〉2

≈ 1 + V (τΔω)F(k1|Δx|, k2|Δx|), (6.8.6)
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where V (τΔω) is the function defined in Eq. (6.7.23) and we abbreviate

F(a, b) = 1

b − a

∫ b

a

sin2 x

x2
dx

= 1

b − a
[Si (2b) − Si (2a) − b−1 sin2 b + a−1 sin2 a], (6.8.7)

where

Si (y) =
∫ y

0
t−1 sin t dt (6.8.8)

is the sine integral function.

6.8.2 Spatial Averaging

If one measures p2(x) at points x1, x2, . . . , xK and then averages them, the average
being taken as an estimate of 〈p2〉, the variance associated with the estimate is

〈(
1

K

∑
i

fi − 〈f 〉
)2〉

= 〈f 2〉
K2

∑
ij

( 〈fifj 〉
〈f 〉2

− 1

)
, (6.8.9)

where we write fi for p2(xi ). The rms relative error Δrms in the estimate is the
square root of the above divided by 〈f 〉. Thus, from Eq. (3), one obtains (for a pure
tone)

Δrms = 1

K

⎡
⎣K +

∑
i �=j

sin2(k|xi − xj |)
k2|xi − xj |2

⎤
⎦

1/2

. (6.8.10)

A minimum value of 1/K1/2 for Δrms can be approximately achieved if one chooses
the xi and xj such that each of the terms in the above sum (i �= j) is much less than
1/K . This would be so, for example, if |xi − xj | � λK1/2/2π .

A common method for spatial averaging is to move the microphone along a path
at slow speed and to take the long-term time average of the received p2. If the path
of length L is straight, and if the signal is a pure tone, the expected rms relative error
from this method is given by Eq. (10) with the sum expressed as a double integral
and with the prescriptions Δi/K → dx/L, Δj/K → dx′/L,

∣∣xi − xj

∣∣ →∣∣x − x′∣∣, such that
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(Δrms)
2 = 1

L2

∫ L

0

∫
sin2[k(x − x′)]
k2|x − x′|2 dx dx′

= 2
∫ 1

0
(1 − u)

sin2 kLu

(kLu)2 du, (6.8.11)

where the derivation of the second version is similar to that of Eq. (6.7.21). The
integral over u can be expressed in terms of tabulated functions, but we confine
ourselves here to limiting cases. For small kL, a power-series expansion and
subsequent term-by-term integration yield

Δrms ≈ 1 − 1
36 (kL)

2. (6.8.12)

In the limit of large kL, the u in the factor 1 − u is of minor consequence. After its
discard, the upper integration limit can be taken as ∞, so that Eq. (11) takes the form
of 2/kL times the definite integral of ξ−2 sin2 ξ , with ξ replacing kLu. The integral
is a standard definite integral whose value is π/2, so the large-kL limit yields

Δrms =
( π

kL

)1/2 =
(

λ

2L

)1/2

. (6.8.13)

If one wants the expected relative error to be less than 0.3, for example, one should
choose L to be greater than (λ/2)/(0.3)2 = 5.5λ.

6.8.3 Frequency Averaging Versus Spatial Averaging

Since the variance in measurements of p2 decreases as the frequency bandwidth
increases [see Eq. (6.7.23)], an average over frequency is roughly equivalent to an
average over position. From a comparison of Eqs. (6.7.22) and (13), one arrives at
the correspondence

k ΔL ≈ τ Δω, (6.8.14)

such that an average over a line of length ΔL leads to a prediction with the same
probable error as an average over a frequency band of width Δω if ΔL and Δω

are so related. Alternately, an insertion of τ from Eq. (6.1.4) transforms the above
correspondence into

As ΔL

4V
≈ Δω

ω
. (6.8.15)
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This implies, for a cubic room with average absorption coefficient 0.1, that
averaging along a line extending the length of the room is equivalent to averaging
over a bandwidth of slightly less than 1

4 octave. For broadband sources with power
output per unit bandwidth slowly varying over 1

4 -octave intervals, the frequency
average, i.e., a broadband measurement, with a single microphone position would
normally be a simpler method of estimating the acoustic energy per unit frequency
bandwidth accurately than a spatial average of contributions from a narrow band.
However, if the sound is a pure tone, and if all the surfaces are motionless, e.g., no
rotating vanes, some spatial averaging is necessary.

One consequence of the correspondence just described is that long-period time
averages can replace spatial averages for any narrow-bandwidth sound field whose
bandwidth in hertz is nevertheless substantially larger than 1/2πτ . Given that the
nominal frequency of the sound is itself much greater than this bandwidth, the sound
field may yet behave for other intents as a pure tone. Thus, for example, suppose one
measured p(x1, t) and p(x2, t) at two typical points x1 and x2 for such a narrow-
band sound field. Then one would expect, from Eq. (2), that58

lim
T→∞

1

T

∫ T

0
p(x1, t)p(x2, t) dt ≈ 〈p2〉 sin k|x1 − x2|

k|x1 − x2|
≈ [p2

1(x1)p
2
2(x2)]1/2 sin k|x1 − x2|

k|x1 − x2| . (6.8.16)

provided |x1 − x2| is somewhat less than c/Δω, where Δω is the bandwidth of the
sound.

6.9 Problems

6.1 An untreated room 6 m long, 5 m wide, and 3 m high has surfaces of average
absorption coefficient α0 = 0.01. When all the sources of sound are on, the
sound level is 90 dB. To reduce this level, the floor is covered with a carpet
with absorption coefficient αc. What should αc be if the sound level is to be
reduced to 80 dB?

6.2 The sound-pressure level in a factory room 10 by 10 by 4 m is typically 90
dB. The reverberation time for the room is 4 s. Estimate the sound power
output of the sources in the room.

6.3 A reverberation time of 5 s is measured when four people are present in a
room 5 by 5 by 4 m. What is the reverberation time when no one is present?

6.4 The total absorbing power of the surfaces of a room is 5 metric sabins.
When a carpet of area 2 m2 is hung on one wall of the room, the original

58Cook et al., “Measurement of correlation coefficient . . . .”
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reverberation time of 5 s drops to 4 s. What is the random-incidence
absorption coefficient of the carpet?

6.5 In his original experiments, Sabine had no direct method of measuring
sound level or source power output but nevertheless accurately measured
reverberation times using two identical but widely spaced sound sources.
Suppose when one source is excited and suddenly turned off, 3 s lapses
before the sound in the room decreases to the threshold of audibility. If both
sources are excited and suddenly turned off, the corresponding time is 4 s.
What is the reverberation time of the room?

6.6 The sound-pressure level in a room is 90 dB. How much energy per unit time
passes out through an open window of 1 m2 area? What would the sound-
pressure level be in the open space outside the room at a point 20 m from the
window along a line making 45◦ with the unit normal to the window?

6.7 The reverberation time of a room is 4 s when the walls, floor, and ceiling all
have absorption coefficient α0. If half of the total surface area of the room is
covered with an acoustic tile with absorption coefficient 4 α0, what will the
reverberation time be?

6.8 Suppose that a sound source in a room excites plane waves that propagate
only in the +x and −x directions. The two walls perpendicular to the x

axis are a net distance L apart, and each has normal incidence absorption
coefficient α. Determine an expression for the reverberation time T60 of the
room for the described circumstances in the limit α 
 1.

6.9 A two-dimensional reverberant sound field is in a low-ceilinged room with
parallel floor and ceiling. The field may be considered in any local region
as being a superposition of a large number of plane waves, all of the same
frequency and with propagation directions parallel to the floor.

(a) If the energy density in the room is w̄, how much energy is incident per
unit time and area on the average on the vertical walls of the room?

(b) If α(θ) is the absorption coefficient for a plane wave at angle of
incidence θ , what would be the fraction of incident energy absorbed
for the two-dimensional random-incidence situation described above?

(c) Determine an expression for the reverberation time T60 for such a sound
field in terms of the floor area of the room, the perimeter length or the
floor, sound speed c, and the apparent absorption coefficient.

6.10 What would be the counterpart of the Norris–Eyring reverberation time for
the one-dimensional field described in Problem 6.8. What would be the
appropriate modification if the two walls had different absorption coeffi-
cients?

6.11 Derive Eq. (6.6.12) and state whatever assumptions are required. Show that
the integral expression leads to the approximate result E′

K = 1
2τP̄ .

6.12 Two rooms are connected by a panel of area 12 m2. Each room has
dimensions 4 by 4 by 3 m and an absorbing power of 1.2 metric sabins.
What should the transmission loss of the panel be if the sound pressure level



6.9 Problems 359

in room 2 is to be 60 dB when a source in room 1 causes a sound-pressure
level of 90 dB within that room?

6.13 A sound source rests on the floor of a room with dimensions 5 by 6.28 by 4
m whose reverberation time is 3.22 s. If the sound level at a distance of 3 m
from the source is 95 dB, what would you estimate for the sound level at a
distance of 0.5 m from the source?

6.14 A limp panel, i.e., one that satisfies criteria for the mass law, has a
transmission loss for normal incidence of R0. Derive a simple expression
for its random-incidence transmission loss.

6.15 The sound level in a factory room is 95 dB, but if all the windows are open
simultaneously, the sound level drops to 90 dB. The dimensions of the room
are 10 by 10 by 4 m, and the total area of the open windows is 10 m2. Give an
estimate for the reverberation time of the room when all windows are closed.
What is the corresponding value of the average absorption coefficient of the
room’s surfaces?

6.16 A panel separating two rooms has an area of 5 m2 and a transmission
loss of 20 dB. Room 1 has a sound source in it and has a sound level
at a representative point of 90 dB. Room 2 has no sound sources and has
negligible absorption. What would you estimate for the sound level in room
2?

6.17 A small intense source of sound is in a room with a room constant of 25
metric sabins. A worker standing about 1 m from the source experiences a
sound level of 95 dB. Assuming that the source rests on a nearly rigid floor,
what reduction in sound level can be expected for this worker when the room
constant is increased by a factor of 10?

6.18 A cocktail party for serious conversationalists is planned for a room 10 by
10 by 4 m with a reverberation time of 1.2 s. Previous parties have been such
that attendees clustered in groups of four; typical listeners stand 0.5 m from
the person they are trying to hear. What is the maximum number of guests
that should be invited?

6.19 Two adjacent apartment living rooms have a common wall of area 20 m2

with a transmission loss of 40 dB. Both rooms have absorbing power of 30
metric sabins. If a loud stereo in one room causes a sound level of 70 dB in
the second room, what would you expect for the sound level in the room in
which the stereo is being played?

6.20 The absorption coefficient of a particular surface is 0.1 cos θ when radiated
by a plane wave at angle of incidence θ . What would be the corresponding
random-incidence absorption coefficient?

6.21 The sound level in a room is 85 dB. What is the sound level just outside an
exterior wall whose transmission loss is 30 dB?

6.22 The given wall of area A is of checkerboard construction such that a
portion A1 has a transmission loss R1 while the remaining portion A2 has
a transmission loss R2. What value would you assign for the transmission
loss RTL for the wall as a whole?
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6.23 A cubic enclosure 2 m on each side is placed over a small sound source
resting on a rigid floor. The transmission loss of the walls of the enclosure
is 20 dB for each wall. What would the absorption coefficient of the inner
lining of the enclosure have to be if its insertion loss (10 log of ratio of power
transmitted out without enclosure to that with enclosure present) is to be 15
dB?

6.24 Determine the lowest 10 nonzero natural frequencies for a rectangular room
of dimensions 4 by 5 by 7 m with rigid walls and give a plot of the number of
modes having resonance frequency less than f versus frequency f . On the
same graph plot both the asymptotic expression (6.6.1) and its leading term.
Discuss whether the other terms represent an improvement to the fit. Are 10
points sufficient to test the derivation of the asymptotic expression?

6.25 Determine the natural frequencies and modal eigenfunctions for a rectangular
swimming pool of dimensions Lx by Ly by Lz. The upper surface, z = Lz, is
a pressure-release surface, while the remaining boundary surfaces are rigid.

6.26 For a cubical room with dimensions L on a side, determine a complete set
of orthonormal eigenfunctions that correspond to the natural frequency ω =
5πc/L.

6.27 The surfaces of a room, dimensions Lx by Ly by Lz, have specific acoustic
impedance z = 1000 ρc. A point source of monopole amplitude Ŝ is placed
close to the corner (0, 0, 0) and is driven at angular frequency ω = πc/Lx .
Estimate the resulting acoustic-pressure amplitude at the opposite corner
(Lx, Ly, Lz). (Assume that only one mode is appreciably excited.)

6.28 A vertical line source in a rectangular room (floor dimensions Lx and Ly)

excites only those modes for which the eigenfunction is independent of z.
Derive an expression appropriate in the limit of large ω for the number N(ω)

of such modes that have natural frequency less than ω rad/s.
6.29 A room with dimensions 20 by 30 by 10 m has a reverberation time of 3 s.

(a) What is the corresponding Schroeder cutoff frequency?
(b) If a pure tone of 250 Hz is played in the room and causes an average

sound-pressure level of 80 dB, what is the probability that a given person
will hear 70 dB or less.

(c) If a person at a distance of 1 m from you hears 85 dB, what is the
probability that you will hear more than 90 dB?



Chapter 7
Low-Frequency Models of Sound
Transmission

Acoustic phenomena are often interpreted in terms of concepts based on the
assumption that the acoustic wavelength is large compared with a characteristic
length. The radiation of sound from small vibrating bodies, discussed in Chap. 4,
is an instance of this; other examples emerge in the present chapter. To establish
a theoretical basis for examples involving low frequencies in pipes and ducts, we
begin with a discussion of guided waves.

7.1 Guided Waves

Sound waves in a duct can be described in terms of guided wave modes.1 We here
consider a duct (waveguide) of constant cross-sectional shape and area (see Fig. 7.1),
aligned so that its walls (idealized as rigid) are parallel to the x axis.

7.1.1 Duct Cross-Sectional Eigenfunctions

Regardless of whether the cross section is circular, rectangular, or less regularly
shaped, one can construct appropriate separable solutions of the Helmholtz equation
of the form

p̂(x, y, z) = Xn(x)Ψn(y, z), (7.1.1)

1The concept originated in major part with J. W. S. Rayleigh, The Theory of Sound, vol. 2, 1878, 2d
ed., 1896, reprinted by Dover, New York, 1945, secs. 268, 340. Existence of higher-order modes
was demonstrated experimentally by H. E. Hartig and C. E. Swanson, “ ‘Transverse’ acoustic
waves in rigid tubes,” Phys. Rev. 54:618–626 (1938). Such modes are of interest in regard to noise
generated by turbomachinery, fans, compressors, and jet engines. See, for example, J. M. Tyler and
T. G. Sofrin, “Axial flow compressor noise studies,” Soc. Automot. Eng. Trans. 70:309–332 (1962).
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Fig. 7.1 Duct of constant cross section: (a) rectangular duct, (b) circular duct

because the separation-of-variables technique described in Sect. 6.5 leads, for some
separation constant α2

n, to the differential equations

(
∂2

∂y2
+ ∂2

∂z2

)
Ψn + α2

nΨn = 0, (7.1.2a)

d2Xn

dx2 + (k2 − α2
n)Xn = 0. (7.1.2b)

Furthermore, Eq. (1) will conform to the rigid-wall boundary condition if ∇Ψn ·
nwall = 0 at the duct walls.

The Ψn and α2
n are eigenfunctions and eigenvalues for a “two-dimensional room”

with rigid walls, so in accordance with the remarks in Sect. 6.5, the α2
n are real and

nonnegative and take on discrete values. The set of Ψn can be chosen as orthonormal,
such that

1

A

∫∫
Ψn(y, z)Ψn′(y, z) dA = δnn′ (7.1.3)

where the integral extends over the cross-sectional area A of the duct. Furthermore,
the Ψn(y, z) form a complete set, so for any function f (y, z), one has, when (y, z)

lies in the duct,
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f (y, z) =
∑
n

anΨn(y, z), an = 1

A

∫∫
f (y, z)Ψn(y, z)dA. (7.1.4)

7.1.2 Duct with Rectangular Cross Section

For a duct whose interior occupies the region 0 < y < Ly, 0 < z < Lz, the
eigenfunctions and eigenvalues are identified from Eqs. (6.5.5) and (6.5.6) as

Ψn = K(ny, nz) cos
nyπy

Ly

cos
nzπz

Lz

, (7.1.5a)

α2
n = π2

[(
ny

Ly

)2

+
(
nz

Lz

)2
]
, (7.1.5b)

where the constant K(ny, nz) is determined from Eq. (3). (If both ny and nz are
zero, K is 1; if only one is zero, K is 21/2; if both are nonzero, K is 2.)

7.1.3 Duct with Circular Cross Section

If the duct has a circular cross section2 of radius a, Eq. (2a) is appropriately written
in polar coordinates (r, φ) where y = r cosφ, z = r sinφ, for which the Laplacian3

in two dimensions is ∂2/∂r2 + r−1∂/∂r + r−2∂2/∂φ2. The resulting version of
(2a) is further separable, so that a function R(r) times either cosmφ or sinmφ is
a possible solution. For the function Ψn to be single-valued and continuous in φ,
the separation constant m must be an integer. The radial factor R(r) satisfies the
differential equation that results when ∂2/∂φ2 is replaced by −m2:

[
d2

dr2 + 1

r

d

dr
+
(
α2
n − m2

r2

)]
R(r) = 0. (7.1.6)

This is Bessel’s equation4; its only solution finite at r = 0 is KJm(αnr), where
K is a constant and Jm is the Bessel function of order m. The boundary condition

2J. W. S. Rayleigh, “Oscillations in cylindrical vessels,” Phil. Mag. (5)1:272–279 (1876); “On the
passage of electric waves through tubes, or the vibrations of dielectric cylinders,” ibid. 43:125–
132 (1897). A related analysis for elastic waves in a solid cylinder was given by L. Pochhammer,
“Concerning the velocities of small vibrations in an unlimited isotropic circular cylinder,” J. reine
angew. Math., 81:324–336 (1876).
3This follows from p. 173n. with ξ1, ξ2, ξ3 = r, φ, x and with hr = 1, hφ = r, hx = 1.
4Derived by L. Euler in 1764 in an analysis of vibrations of a stretched membrane. That Jm(αnr)

is a solution follows from an explicit substitution of its power-series expansion into the differential
equation. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge
University Press, Cambridge, 1944, pp. 5, 6, 15–19.
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requires dR/dr = 0 at r = a, so αn must be such that αnJ
′
m(αnα) = 0. If ηqm

denotes the qth root (q = 1, 2, . . .) of ηqmJ ′
m(ηqm) = 0, the corresponding αn is

ηqm/a and the corresponding eigenfunction is

Ψn(r, φ) = KqmJm

(nqmr
a

) { cos mφ

sin mφ

}
. (7.1.7)

For m > 0, the η = 0 root of ηJ ′
m(η) = 0 leads to the trivial solution Ψn = 0,

but setting η to 0 reduces J0(ηr/a) to 1, so that Ψn in the m = 0, η = 0 case is
a constant. The other roots (η �= 0) are solutions of J ′

m(η) = 0. Taking q = 1 as
labeling the lowest root, one has in particular ηq0 = 0.0, 3.832, 7.016; ηq1 = 1.841,
5.331, 8.536; ηq2 = 3.054, 6.706, 9.969 for q = 1, 2, 3. In the limit of large q

(fixed m), roots can be determined from the asymptotic-series expression for the
Bessel function and approach5 (q + m/2 − 3

4 )π .

7.1.4 Cutoff Frequencies and Evanescent Modes

Possible solutions of Eq. (2b) for the axial factor Xn(x) are exp(±iβnx), where
βn = (k2 − α2

n)
1/2 for k2 > α2

n and βn = i(α2
n − k2)1/2 for α2

n > k2. A propagating
guided wave is therefore described by the expression

p(x, y, z, t) = Re
{
Be−iωt eiβnxΨn(y, z)

}
, (7.1.8)

providing k2 > α2
n; the corresponding disturbance has a trace velocity (phase

velocity) of vph = ω/(k2 − α2
n)

1/2 along the x axis. However, if k2 < α2
n, the factor

exp iβnx becomes exp (−|βn|x) and Eq. (8) then corresponds to a disturbance dying
out exponentially with increasing x.

For a given frequency, there are a limited number of modes for which α2
n < k2.

There is at least one, this being the plane-wave, or fundamental, mode, for which αn

is 0 and Psin is constant. Modes for which α2
n > k2 are evanescent, while those for

which α2
n < k2 are propagating modes. If ω is greater than the cutoff frequency ωc,n

given by cαn, the mode is propagating, but below that frequency it is evanescent. For
all modes other than the plane-wave mode, propagation above the cutoff frequency
is dispersive. Different frequencies correspond to different phase velocities and to
different repetition lengths along the x axis. If αn �= 0, a wave packet composed of a
sum of waves of the form of Eq. (8), with n fixed but with various frequencies, would
have a time-dependent signature that distorts with increasing propagation distance.

An evanescent mode transports no net acoustic energy. If p is given by Eq. (8),
then vx (derived from ρ ∂vx/∂t = −∂p/∂x) is given by an analogous expression

5J. McMahon, “On the roots of the Bessel and certain related functions,” Ann. Math.
(Charlottesville, Va.) 9:23–30 (1894–1895).
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but with B replaced by βnB/ωρ. If βn is imaginary, as for an evanescent mode, the
time average Ix,av of the x component of the acoustic intensity vanishes because p

and vx are 90◦ out of phase; the power transported through the duct, represented by
the integral of Ix,av over the cross-sectional area, is also zero.

In many situations of practical interest, the frequency is so low that the only
propagating mode is the plane-wave mode. For a rectangular duct, this is so,
according to Eq. (5b), if ω < cπ/Lmax, where Lmax is the maximum of Ly or
Lz. For a circular duct of radius a, the dispersive modes are all evanescent if
ω < 1.841c/a. The latter criterion requires, for example, that the frequency be
less than 1000 Hz for a 0.1-m-radius duct containing air at 20 ◦C.

7.1.5 Point Source in a Duct

At large distances from a source within a duct, only the propagating modes need
to be considered. We illustrate this with an analysis6 of the field (within a duct of
infinite length) of a point source with angular frequency ω, monopole amplitude
Ŝ, located at y0, z0, with x0 = 0 (see Fig. 7.2). The complex pressure amplitude
p̂(x, y, z) can be expanded in the Ψn(y, z) as in Eq. (4), with the coefficients an
taken as functions Xn(x) [not necessarily the same as those in Eq. (2b)].

If such a modal expansion is substituted into the Helmholtz equation with a point-
source term −4πŜδ(x − x0) on the right side, and if the result is multiplied by a
particular Ψn(y, z) and subsequently integrated over the cross-sectional area of the
duct, one obtains, with use of Eqs. (2a) and (3), the inhomogeneous differential
equation

[
d2

dx2 + (k2 − α2
n)

]
Xn = −4πŜ

A
Ψn(y0, z0)δ(x). (7.1.9)

The solution for x �= 0 satisfies the homogeneous equation (2b) and may be
taken as a constant times exp iβn|x|, such that it corresponds to a wave that either
propagates away (k2 > α2

n) or dies out exponentially (k2 < α2
n) from the source.

The multiplicative constant must be the same for x > 0 as for x < 0 to ensure
Xn continuous at x = 0. The delta function requires, however, that dXn/dx be
discontinuous. Integration of both sides from x = −ε to x = ε yields (in the limit
ε → 0)

(
dXn

dx

)
+ε

−
(
dXn

dx

)
−ε

→ −4πŜ

A
Ψn(y0, z0),

6First discussed by M. Taylor, “On the emission of sound by a source on the axis of a cylindrical
tube,” Phil. Mag. (6)24:655–664 (1912).
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Fig. 7.2 Point source in a duct

so the solution of (9) is

Xn = −2πŜΨn(y0, z0)

iβnA
eiβn|x|. (7.1.10)

The resulting p̂ is the sum over n of XnΨn.
The analogous expression for v̂x derives from the x component of Euler’s

equation and from the solution for p̂, the result being

v̂x = ±
∑
n

βn

ωρ
Xn(x)Ψn(y, z), (7.1.11)

where the signs apply for x > 0 and x < 0, respectively. The quantity ωρ/βn is the
characteristic modal specific impedance associated with the nth mode.

The power transmitted in the +x direction is the area integral of 1
2 Re{p̂ v̂∗

x}.
Because of the orthogonality (3) of the modal eigenfunctions Ψn(y, z), all the
cross terms in the resulting double sum integrate to zero, so the power is the
sum of the powers associated with the individual modes. Those associated with
the evanescent modes vanish, however, since their modal specific impedances are
imaginary. Consequently, one is left with

Pright = 2π2|Ŝ|2
Aωρ

∑
n

′ Ψ 2
n (y0, z0)

(k2 − α2
n)

1/2 (7.1.12)
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for the power transmitted to the right of the source. The total power output, to the
left and to the right, is twice this. (Here the prime on the sum implies that one
include only terms for which α2

n < k2.) One implication is that the power output of
the source suddenly jumps to a very large value whenever the driving frequency is
increased from just below to just above any mode’s cutoff frequency.

When the driving frequency is below the cutoff frequency for the first dispersive
mode, such that only the plane-wave mode (αn = 0, Ψn = 1) is excited, the net
power output P , equal to 2Pright, reduces to7

P = 4π2|Ŝ|2c
Aω2ρ

= 2πc2

ω2A
Pff, (7.1.13)

where Pff = 2π |Ŝ|2/ρc is the power radiated by the source in a free-field envi-
ronment. For the same circumstances, at distances sufficiently large for evanescent
modes to be neglected, the complex pressure amplitude reduces to

p̂ = i(2πcŜ)

ωA
ei(ω/c)|x|, (7.1.14)

Because Re [(i4πŜ/ωρ)e−iωt ] is the time rate of change of the volume excluded
by the source, the latter leads to the identification for the time-dependent acoustic
pressure (at large |x|) as

p = ρc

2A

(
dVS

dt

)
t→t−|x|/c

. (7.1.15)

This applies to sources that excite any combination of frequencies, providing each
is below the cutoff frequency for the first dispersive mode. It can be compared
with the corresponding expression (ρ/4πR) d2VS/dt

2 (with t → t − R/c) for
the acoustic pressure resulting from a monopole source in an unbounded medium
[see Eq. (4.1.6)].

7.2 Lumped-Parameter Models

A lumped-parameter model8 uses a limited number of time-dependent aggre-
gate variables rather than field quantities varying with both position and time.
The partial-differential equations and boundary conditions interrelating the field

7Taylor, “On the emission of sound,” derives this when the source is on the axis of a circular tube.
The generalization to a duct of arbitrary cross-sectional shape is given (although without details
of derivation) by H. Lamb, “The propagation of waves of expansion in a tube,” Proc. Lond. Math.
Soc. (2)37:547–555 (1934).
8An extensive exposition of the concept is given by H. H. Woodson and J. R. Melcher,
Electromechanical Dynamics, pt I, Discrete Systems, Wiley, New York, 1968, pp. 15–59.
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quantities are replaced by ordinary differential equations interrelating the aggregate
variables. The coefficients (lumped-parameter elements) in the latter description
usually have a viable physical interpretation, either in terms of an analogous
mechanical system or an analogous electrical system. Typically, lumped-parameter
models are used when the frequency is such that ka 
 1, where a is a characteristic
dimension appropriate to the physical system.

An example of a lumped-parameter model would be a spring, whereby one
idealizes an elastic solid of possibly complicated shape as a massless entity whose
sole property, as regards the analysis of the behavior of the physical system of which
it is a part, is its spring constant, i.e., incremental force required per incremental
change in elongation; force and elongation replace stress and strain fields.

7.2.1 Volume Velocity and Average Pressure

In acoustics, the commonly used lumped-parameter variables are volume velocity
and average pressure. For a surface S1 terminated at its edges by a rigid surface
(see Fig. 7.3), the volume velocity U1 flowing across S1 is defined as the integral

U1 =
∫∫

v ·n dS1. (7.2.1)

The side of S1 toward which the unit normal n points determines the positive sense
of U1. Since the surface integral of ρv · n is the mass flowing across S1 per unit
time in the linear acoustics approximation (without ambient flow), U1 would be the
volume flowing across S1 per unit time if the fluid were of ambient density.

The second variable one associates with the aggregate acoustic field over the
surface S1 is the average acoustic pressure p1. This is the surface integral of p v ·n

divided by U1, so it is a weighted (by v · n) area average of p. The definition of p1
is such that p1U1 is the power transmitted across S1 in the positive sense. In typical
applications, S1 is selected so that the pressure along it does not vary significantly
and no distinction between pressure and average pressure is made.

7.2.2 Acoustic Impedance

In the description of lumped-parameter models that use volume velocity and
pressure (we omit the qualifying adjective “average”) as variables, a convenient
concept is that of acoustic impedance ZA. For the surface S1, this frequency-
dependent quantity is defined9 as the ratio

ZA,1 = p̂1

Û1
, (7.2.2)

9G. W. Stewart, “Acoustic wave filters,” Phys. Rev. 20:528–551 (1922).
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Fig. 7.3 The volume
velocity across S1 is the area
integral of v ·n, where n

points normal to S1 toward
the + side

where p̂1 and Û1 are either the complex amplitudes (constant-frequency
disturbance) or the Fourier transforms (transient disturbance) of p1(t) and U1(t).
The unit of ZA,1 is 1 kg/(m4 ·s). The reciprocal Û1/p̂1 is called the acoustic mobility
(rather than acoustic admittance). If the identifications of plus and minus sides of
S1 are interchanged, ZA,1 changes sign.

7.2.3 Acoustical Two-Ports

Suppose one takes two surfaces S1 and S2 in an acoustical system (see Fig. 7.4a) and
defines the plus and minus sides of each such that if U1 is positive, volume will flow
through S1 toward S2; positive U2 corresponds to volume flowing from S1 through
S2. The region between S1 and S2 is here regarded as a passive black box, which
we call a two-port10 and which will serve as our prototype of a lumped-parameter
model.

The acoustic boundary-value problem for the black-box region, given pressures
p1(t) and p2(t) on surfaces S1 and S2, should, according to the theorems developed
in Sect. 4.5, have a unique solution, and from this solution one can determine U1
and U2. The linear nature of the governing partial differential equations and the
boundary conditions requires that U1 and U2 be linear functions of p1 and p2. Thus,
for the constant-frequency case, one should have11

[
Û1

Û2

]
=
[
D11 D12

D21 D22

] [
p̂1

p̂2

]
, (7.2.3)

10In electric-circuit theory, the term denotes any two-terminal-pair network. See, for example,
H. H. Skilling, Electrical Engineering Circuits, Wiley, New York, 1957, pp. 537–572.
11W. P. Mason, “A study of the regular combination of acoustic elements, with application to
recurrent acoustic filters, tapered acoustic filters, and horns,” Bell Syst. Tech. J. 6:258–294 (1927).
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Fig. 7.4 (a) Acoustical two-port in which position-independent pressures p1 and p2 are applied
at surfaces S1 and S2; sense of positive volume flow is from S1 toward S2. (b) Corresponding
electrical analog for constant-frequency case represented by a π network

where the acoustic-mobility matrix [D] is a frequency-dependent property of the
two-port. Considerations of reciprocity require, moreover, that D12 = −D21.

Given the reciprocity requirement, Eqs. (3) can be written alternatively as

Û1 =(Z−1
left + Z−1

mid)p̂1 − Z−1
midp̂2, (7.2.4a)

Û2 =Z−1
midp̂1 − (Z−1

right + Z−1
mid)p̂2, (7.2.4b)
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with a suitable definition of parameters Zleft, Zright, and Zmid in terms of D11, D22,
and D12 = −D21. These equations have a circuit analog12 (see Fig. 7.4b) in which
p̂1 and p̂2 are voltages applied at the ends of a circuit two-port consisting of a π

network with lumped impedances Zleft, Zmid, and Zright; Û1 and Û2 are currents
flowing into and out of the two-port at its two ends. The analogy holds because
circuit-theory principles (voltage at a node is univalued, and sum of currents flowing
into a node is zero) applied to the circuit yield the same equations.

Once the impedances for our two-port are identified, the relation between the
acoustic impedances ZA,1 and ZA,2 on surfaces S1 and S2 can be interpreted in
terms of circuits. If the two-port in Fig. 7.4b has a load ZA,2 on its right, ZA,1 will
be the equivalent impedance of a one-port in which ZA,2 and Zright are in parallel,
the combination being in series with Zmid, and that combination being in parallel
with Zleft, such that

ZA,1 =
⎧⎨
⎩

1

Zleft
+
[
Zmid +

(
1

Zright
+ 1

ZA,2

)−1
]−1

⎫⎬
⎭

−1

(7.2.5)

This is equivalent to what results from Eqs. (4) if one sets p̂2 = ZA,2Û2, then
eliminates Û2, and solves for ZA,1 = p̂1/Û1.

7.2.4 Continuous-Volume-Velocity Two-Port

Of the two limiting cases of principal interest, one is that for which Zleft and Zright
are so large that they can be idealized as infinite and replaced by open circuits in the
circuit diagram, such that (see Fig. 7.5a)

Û1 = Û2, p̂1 − p̂2 = ZmidÛ1, ZA,1 − ZA,2 = Zmid. (7.2.6)

The latter idealization generally implies the assumption of incompressible flow.
Suppose one has, for example, a volume V with openings of areas A1 and A2 on
opposite sides, all other portions of the surface being rigid. Then the incompressible
idealization would require, when one integrates ∇ · v over the volume and uses
Gauss’s theorem, that U1 = U2.

If the volume is hollow, and if Euler’s equation ρ ∂v/∂t = −∇p applies
throughout, ∇ × v = 0 for all time since it must have been zero in the remote past;
so one can describe v in terms of a potential function Φ(x, t) such that v = ∇Φ,

12This is the conventional acoustic analogy. An acoustic-mobility analogy in which pressure →
current, volume velocity → voltage, is also occasionally used. The latter was introduced by F. A.
Firestone, “A new analogy between mechanical and electrical systems,” J. Acoust. Soc. Am. 4:249–
267 (1932–1933).



372 7 Low-Frequency Models of Sound Transmission

Fig. 7.5 Circuit analogs for (a) a continuous-volume-velocity two-port and (b) a continuous-
pressure two-port

p = −ρ ∂Φ/∂t . (Here, as in the previous sections of the text, ρ is understood to be
the ambient density ρ0.) Since ∇·v = 0, one has ∇2Φ = 0. Given that p is uniform
over A1 and A2, these surfaces must have uniform potentials, which we denote by
Φ1(t) and Φ2(t). The solution for Φ(x, t), given Φ1 and Φ2, can be written as

Φ(x, t) = Φ1(t) + [Φ2(t) − Φ1(t)] f (x), (7.2.7)

where f(x) is independent of t , satisfies Laplace’s equation, and equals 0 on A1 and
1 on A2; its normal derivative vanishes on all other boundary surfaces. Taking the
gradient and time derivative of this and multiplying by ρ gives

ρ
∂v

∂t
= [p1(t) − p2(t)] ∇f. (7.2.8)

If one chooses any cross-sectional surface Smid of V such that A1 is on one side and
A2 is on the other and n points from the A1 side to the A2 side normal to the surface,
then an area integral of the above leads to

p1(t) − p2(t) = MA

dU

dt
, (7.2.9)

where U = U1 = U2 is the volume velocity flowing through the volume V from A1
toward A2 and MA is ρ divided by the integral over Smid of ∇f · n. One can argue
that the surface integral of ∇f · n is independent of the surface Smid (in the same
manner as one concludes that U1 = U2); so the integral is a constant appropriate
to the geometry of the volume and to the choices for A1 and A2; consequently,
the quantity MA (acoustic inertance) is a constant independent of Smid and of U .
Rewriting Eq. (9) in terms of complex amplitudes and comparing the result with
(6) then yields Zmid = −iωMA as the acoustic impedance associated with this
continuous-volume-velocity two-port.
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7.2.5 Continuous-Pressure Two-Port

The other limiting case corresponds to Zmid → 0. The short circuit allows a
replacement of the parallel combination of Zleft and Zright by a single impedance
Zpar = (Z−1

left + Z−1
right)

−1, so one has (Fig. 7.5b)

p̂1 = p̂2 = Zpar(Û1 − Û2),
1

ZA,1
= 1

Zpar
+ 1

ZA,2
. (7.2.10)

A nontrivial situation (Zpar �= ∞) to which such a model applies is when the
inertial term in Euler’s equation is negligible, so ∇p = 0, but the compressibility is
not neglected; then the integral version of the conservation-of-mass equation (with
ρ′ replaced by p/c2) would give

U1 − U2 = ∂p

∂t

V

ρc2 = CA

∂p

∂t
, (7.2.11)

with p uniform throughout the volume V of the two-port. Then Eq. (10) leads to the
identification Zpar = 1/(−iωCA) with CA = V/ρc2. The quantity CA (acoustic
compliance) corresponds to capacitance in the electric-circuit analog.

7.3 Guidelines for Selecting Lumped-Parameter Models

There are two principal idealizations made in the construction of lumped-parameter
models: (1) the pressure changes very little over distances small compared with a
wavelength, and (2) the sum of the volume velocities flowing out of a small volume
is zero. The continuous-pressure two-port is based on the first idealization, the
continuous-volume-velocity two-port on the second. In each case, one of the two
idealizations is not made but is replaced by a coupling relation involving a complex
impedance (a lumped-parameter element).

7.3.1 Continuity of Pressure

The premise that acoustic pressure does not “ordinarily” vary appreciably over
distances much less than a wavelength can be examined by taking two points x1 and
x2 at which the pressures are p1 and p2, respectively (see Fig. 7.6a). If one selects
a path connecting x1 and x2 along which Euler’s equation is a good approximation,
then it should be so that (acoustic version of Bernoulli’s equation)

ρ
∂

∂t

∫ x2

x1

v · d� = −
∫ x2

x1

∇p · d� = −(p2 − p1) (7.3.1)
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Fig. 7.6 (a) Path connecting points x1 and x2 used in investigation of the magnitude of the
difference of the acoustic pressures at the two points. (b) Streamtube of flow from x1 to x2.
(c) Two ducts joined by an elbow. (d) Flexible plate extending across the cross section of a duct.
The question considered is whether the pressures are nearly equal at x1 and x2

where d� represents the differential displacement along the path. Consequently, if
the disturbance is of constant frequency, the magnitude |p̂2 − p̂1| is bounded by
ρc|v̂|maxkΔs, where Δs is net distance along the path and |v̂|max is the maximum
value of |v̂| along the path.

Much closer than a wavelength in the present context means kΔs 
 1. Granted
this, one can regard the statement p̂2 ≈ p̂1 as a good approximation if ρc|v̂|max
is not substantially larger than either |p̂2| or |p̂1|. Recall that, for a traveling plane
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wave, |p̂| = ρc|v̂|; the same holds for a traveling fundamental-mode wave in a duct.
Thus, if |v̂| is along the path of the same order of magnitude in relation to |p̂| as for
a plane wave, the requirement k Δs 
 1 leads to p1 ≈ p2.

In other circumstances, |v̂|max can be estimated by assuming that the flow
between the points is incompressible and taking the path to be a streamline. If one
knows from other considerations that the velocities v̂1 and v̂2 are of the order of
magnitude of |p̂1|/ρc and |p̂2|/ρc (as they will be if x1 and x2 are located in duct
segments where the plane-wave mode dominates), the question reduces to whether
a streamtube (Fig. 7.6b) surrounding the streamline narrows appreciably along the
path. Conservation of mass implies that |v̂| varies inversely as streamtube area, so
a streamtube with a narrow constriction allows the possibility of a large pressure
change between x1 and x2.

The foregoing analysis applies to two ducts joined by an elbow13 (see Fig. 7.6c).
Because the evanescent modes die out with distance, p will be uniform across either
duct at a moderate distance (comparable to a cross-sectional dimension) from the
elbow. The pressures at such points on opposite sides of the elbow are nearly the
same if a streamtube connecting them or their neighbors is not constricted. However,
if the elbow has a sizable constriction, the streamtube may narrow considerably in
going through the elbow and one will not assume p̂1 ≈ p̂2.

An extreme case where p̂1 ≈ p̂2 is not indicated is when the geometry is such
that the flow must pass through a small orifice. For example, if a duct has a rigid
plate (Fig. 7.6d) extending across a cross section, the plate having a small hole
in its center, then any streamtube passing through the orifice must be constricted.
Other circumstances for which a substantial change in pressure might occur over a
short distance are when there is no path connecting x1 and x2 along which Euler’s
equation is everywhere valid. Examples would be a flexible plate, membrane, or
porous blanket extending across a duct.

7.3.2 Continuity of Volume Velocity

The idealization “ordinarily” made is that the net volume velocity flowing out of
a volume (with dimensions much less than a wavelength) is zero. Situations for
which this is a reasonable premise can be identified by integrating the conservation-
of-mass relation over the volume (see Fig. 7.7). Starting from ∂p/∂t+ρc2∇ · v = 0,

13W. Lippert, “The measurement of sound reflection and transmission at right-angled bends in
rectangular tubes,” Acustica 4:313–319 (1954); J. W. Miles, “The diffraction of sound due to right-
angled joints in rectangular tubes,” J. Acoust. Soc. Am. 19:572–579 (1947). Lippert’s fig. 7 (based
on his data) and Miles’ theory suggest that the continuity of pressure is a good approximation up
to ka ≈ 1, where a is the width of the duct.
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Fig. 7.7 A volume V bounded partly by rigid boundaries and by surfaces S1, S2, . . .. The volume
velocity flowing out of V through Sn is Uout

n

one obtains (with an application of Gauss’s theorem)

∑
Uout
n = − ∂

∂t

∫∫∫
p

ρc2 dV (7.3.2)

where Uout
n is the volume velocity flowing out through the portion Sn of the surface

bounding V .
Suppose there is only one opening of area A into the volume V , the remaining

surface being rigid. We would normally regard the volume velocity flowing out
through this area as negligibly small if |Û | 
 |p̂|A/ρc, that is, |ZA| much larger
than the value ρc/A expected for a plane wave in a duct of cross-sectional area
A. Equation (2) shows this criterion is satisfied if kV/A is much less than unity;
the lower the frequency, the more likely this is to be so. However, even though the
volume’s dimensions may be much less than a wavelength, it is still possible (see
Fig. 7.8) to have kV/A ≈ 1 if the opening area A is a small fraction of the surface
area of V . For such a situation, the assumption that the net volume velocity coming
out of a small volume is zero should be reconsidered.

Returning to the general case where there is more than one opening, let us assume
that the source of the disturbance transmits energy into the volume through area
A1 and that a subsidiary analysis (taking into account the system’s terminations)
has determined what the acoustic impedances at all the other openings should be.
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Fig. 7.8 A volume with a
single small opening for
which the approximation that
net volume velocity flowing
out of a volume should be
zero may not be valid

Also, let us assume that the pressure is uniform throughout the junction region. The
complex-amplitude version of Eq. (2) then gives

Ûout
1

p̂
= −

N∑
n=2

1

Zout
A,n

+ ikV

ρc
(7.3.3)

We do not expect the terms on the right to cancel each other, so insofar as we seek
to determine the number on the left side, the ikV/ρc term can be neglected if at
least one of the Zout

A,n is substantially less in magnitude than ρc/kV . Even if this

is not satisfied, a “satisfactory” estimate of Ûout
1 /p̂ to the order of the traveling-

wave magnitude A1/ρc is obtained with the ikV/ρc term neglected as long as
kV/A1 
 1. The approximation

∑
Uout
n = 0 will therefore lead to the same

implications as Eq. (2) if the terminal impedance on any opening is substantially
smaller in magnitude than ρc/kV or if our concern is with the impedance the
junction and appendages present to a subsystem coupled to the junction through
an area large compared to kV .

Example (Duct with Change in Cross-Sectional Area) In the duct sketched in
Fig. 7.9, all indicated dimensions are substantially less than a wavelength, so
evanescent modes are significant only between x = −δ1 and x = δ2. The plane-
wave-mode disturbance in, say, the x > δ2 region is a superposition of plane
waves traveling in the +x and −x directions, so an extrapolation of these waves
back to x = 0 determines what the pressure and volume velocity (positive sense
corresponding to flow in the +x direction) corresponding to the plane-wave mode
would be at x = 0. Furthermore, the orthogonality relation (7.1.3) leads to the
conclusion that the other modes never contribute to the volume velocity, so the
x → 0 extrapolated volume velocity associated with the plane-wave mode should
be the same in the limit kδ2 
 1 as the actual volume velocity at x = 0.
The extrapolated pressure should be the area averaged pressure at x = 0. Such
considerations in conjunction with Eq. (2) lead to the conclusion that the volume
velocity is continuous across the junction. Since the volume intrinsically associated
with the junction is in effect zero, the right side of Eq. (2) gives no contribution.
This reasoning still applies when the opening at the junction is obstructed by a plate
with an orifice, by a porous membrane, or by a flexible plate extending across the
junction.
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Fig. 7.9 Duct with change in cross-sectional area

We cannot necessarily conclude, however, that the two plane-wave-mode pres-
sures extrapolated to x = 0 should be the same; nevertheless, from Eq. (7.2.6) one
can set

p̂(0−) − p̂(0+) = ZJ Û(0), (7.3.4)

where ZJ is an acoustic impedance associated with the junction14; p̂(0−) represents
the plane-wave-mode pressure in the x < 0 duct segment extrapolated to x = 0, and
p̂(0+) is the corresponding extrapolated pressure for the x > 0 duct segment.

14For results applicable to cylindrical ducts, see F. Karal, “The analogous acoustical impedance for
discontinuities and constrictions of circular cross-section,” J. Acoust. Soc. Am. 25:327–334 (1953).
Karal’s approximate low-frequency result in the present notation is that the acoustic inertance
[equal to ZJ /(−iω)] associated with a junction between joined circular cylinders of radii b and a

(with b < a) with a common axis is of the form

MA = 8ρ

3π2b
H

(
b

a

)
,

where H(b/a) is 1 when b/a → 0 and decreases monotonically to zero as b/a → 1.0. The general
theory for arbitrary ka is developed by J. W. Miles; “The reflection of sound due to a change
in cross section of a circular tube,” ibid. 16:14–19 (1944). A derivation based on the Schwarz–
Christoffel transformation applied to a rectangular duct, occupying the region 0 < y < a, 0 >

z > d, with a rigid partition at x = 0 having a slit of width b in its middle extending from z = 0 to
z = d, y = (a − b)/2 to y = (a + b)/2, yields an acoustic inertance

MA = 2ρ

πd
ln

[
csc

(
b

a

π

2

)]
,

which diverges logarithmically to ∞ as b → 0. J. W. Miles, “The Analysis of Plane Discontinuities
in Cylindrical Tubes, II,” ibid., 17:272–284 (1946); P. M. Morse and K. U. Ingard, Theoretical
Acoustics, McGraw-Hill, New York, 1968, pp. 483–487.
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For an unobstructed junction, the simple rule that emerges from Eq. (1) is that an
upper limit to |ZJ | is ρck(δ1 +δ2)/Amin where Amin is the minimum duct area. This
can be compared with the traveling-plane-wave impedances ρc/A1 and ρc/A2 for
the two duct segments. If the estimated upper limit is substantially less than either
of these, we replace (4) by p̂(0−) = p̂(0+). A circumstance where this might not be
valid would be where both ducts are circular and of radii a1 and a2, with a1 � a2.
Then we can take δ1 + δ2 ≈ a1, so we would be concerned about the finite value of
ZJ when ka1 is comparable to a2

2/a
2
1 or when the frequency ω/2π is comparable to

or larger than a critical value of (ca2
2/a

3
1)/2π .

For example, if a duct of 3 cm radius joined to one of 10 cm radius, we would
consider taking the junction’s impedance into account at frequencies of the order
of (340)( 3

10 )
2/[(2π)(0.1)] ≈ 50 Hz. In contrast, the lowest cutoff frequencies for

dispersive modes in the two ducts are 3300 and 1000 Hz, respectively.

7.3.3 Reflection and Transmission at a Junction

The estimation of the amplitude of waves, transmitted and reflected at a junction,
within the context of the model described by Eq. (4) proceeds along lines similar to
those discussed in Sects. 3.3 and 3.6. If the incident wave comes from the −x side,
the resulting traveling wave on the other side of the junction causes the acoustic
impedance for x > 0 to be ρc/A2. The impedance for the plane-wave mode in the
x < 0 portion will therefore be ZJ + ρc/A2 at x = 0−.

The pressure-amplitude reflection coefficient for the incident (plane-wave mode)
wave can be written, with a suitable interpretation of symbols in Eq. (3.3.4), as

R = ZA(0−) − ρc/A1

ZA(0−) + ρc/A1
= ZJ + ρc/A2 − ρc/A1

ZJ + ρc/A2 + ρc/A1
. (7.3.5)

The requirement that the volume velocity at x = 0 be (1 − R)(A1/ρc) times the
incident pressure amplitude and that the transmitted pressure amplitude at x = 0+
be ρc/A2 times the volume velocity at x = 0+ causes the ratio of transmitted
pressure to incident pressure to be

T = A1

A2
(1 − R) = 2ρc/A2

ZJ + ρc/A2 + ρc/A1
. (7.3.6)

In the usual case, when ZJ is neglected, R and T reduce to (A1 − A2)/(A1 +
A2) and 2A1/(A1 + A2). The fraction of the incident power that is transmitted is
4A1A2/(A1 + A2)

2.
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7.4 Helmholtz Resonators and Other Examples

7.4.1 The Helmholtz Resonator

The classic model (see Fig. 7.10a) of a Helmholtz resonator15 (a wine bottle being
a ubiquitous example) consists of a rigid-walled volume connected to the external
environment by a small opening, which may or may not have a neck. The overall
dimensions are all much less than an acoustic wavelength. Within the volume
proper at points not near the opening, Eq. (7.3.1) suggests that the pressure should
be spatially uniform; the analysis leading to Eq. (7.2.11) consequently requires
the volume velocity Uinto flowing into the volume to be (V/ρc2)∂p/∂t . The
generalization of this relation that takes dissipation into account is Ûinto = p̂in/Zvol,
where Zvol is the acoustic impedance (with a positive real part) associated with
the volume. Here, however, we restrict our attention to the ideal case, such that
Zvol = 1/(−iωCA) , where the acoustic compliance CA is V/ρc2.

Near the opening, possibly also within the neck, and just outside the opening in
the external environment, the pressure may vary markedly with position. However,
since the volume in that region is small (k ΔV/A 
 1), we model the region
near the opening as a continuous-volume-velocity two-port. The complex pressure
amplitude p̂out somewhat outside the opening16 is therefore related to p̂in by the
relation, p̂out − p̂in = ZopÛinto, where Zop is the opening’s acoustic impedance.

If one neglects dissipation, Eq. (7.2.9) applies and Zop is −iωMA. If the opening
has a long neck of length l, the inertance is nearly that of a duct segment of length
l and area A within which the disturbance is in the plane-wave mode. For such a
circumstance, but for kl 
 1, the fluid in the neck behaves like a lumped mass
ρAl caused to accelerate by the force (p1 − p2)A, where A is the neck cross-
sectional area. The resulting acceleration of this lumped mass is A−1dUinto/dt ,
so ρl dUinto/dt should be (p1 − p2)A (mass times acceleration equals force).
A comparison of such a relation with Eq. (7.2.9) leads to ρl/A for the neck’s
acoustic inertance MA. If the neck is not long or is even nonexistent, one can still
write MA = ρl′/A, where l′ is an “effective neck length.”

The definitions of Zop and Zvol taken together lead to

p̂out = ZHRÛinto, p̂in = Zvol

ZHR
p̂out, ZHR = Zvol + Zop. (7.4.1)

15H. Helmholtz, “Theory of air oscillations in tubes with open ends,” J Reine Angew. Math.
57:1–72 (1860); On the Sensations of Tone, 4th ed., 1877, trans. A. J. Ellis, Dover, New York,
pp. 42–44, 55, 372–374; M. S. Howe, “On the Helmholtz resonator,” J. Sound Vib. 45:427–
440 (1976); U. Ingard, “On the theory and design of acoustical resonators,” J. Acoust. Soc. Am.
25:1037–1062 (1953); A. S. Hersh and B. Walker, “Fluid mechanical model of the Helmholtz
resonator,” NASA CR-2904 (1977). Applications to noise control are discussed by M. C. Junger,
“Helmholtz resonators in load-bearing walls,” Noise Control Eng. 4:17–25 (1975).
16As is explained in the next section, the pressure amplitude at moderate distances r from the
opening is of the form Â(x) + B̂/r , where Â(x) is slowly varying with position x relative to the
center of the opening, B̂ is independent of position; the identification for p̂out is Â(0).
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Fig. 7.10 (a) Sketch of a Helmholtz resonator within which the pressure is pin and through whose
neck flows volume velocity Uinto. (b) Electric-circuit analog. (c) Mechanical analog

Here ZHR is the acoustic impedance just outside the opening of the resonator and
HR stands for Helmholtz resonator. These relations correspond to a circuit diagram
(Fig. 7.10b) of a continuous-volume-velocity two-port terminated by an impedance
Zvol. If Zvol is taken as 1/(−iωCA) and Zop as −iωMA, the analog is an LC

circuit (inductor and capacitor in series). In the latter idealized case, the substitutions
−iω → d/dt and Ûinto → dXinto/dt yield

MA

d2Xinto

dt2
+ 1

CA

Xinto = pout, pin = C−1
A Xinto, (7.4.2)

where Xinto denotes the volume displacement.
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Alternatively, if ξinto = Xinto/A denotes the average particle displacement in the
opening, the first of these can be written

Mmech
d2ξinto

dt2 + kspξinto = Fmech, (7.4.3)

where Mmech = ρAl′ = apparent mass of fluid moving in vicinity of opening
ksp = ρc2A2/V = apparent spring constant associated with compressible

fluid in volume
Fmech = poutA = apparent force exerted on opening by pressure field outside

opening.

Thus the Helmholtz resonator can be interpreted (see Fig. 7.10c) as a forced
harmonic oscillator, i.e., a mass and a spring moving under the influence of an
external force.

The pressure pout outside the opening is affected by the dynamic state of the
resonator, but for simplicity we here regard Pout as being externally controlled.
Consequently, if it is made to oscillate with angular frequency ω, Eq. (2) yields

Xinto = CApin = pout

−ω2MA + C−1
A

. (7.4.4)

Resonance occurs when the denominator vanishes; this is at the resonance frequency
ωr , where

ωr = 1

(MACA)1/2
=
(

ksp

Mmech

)1/2

= c

(
A

l′V

)1/2

. (7.4.5)

If ω is close to ωr , the pressure oscillations inside the volume are considerably larger
than just outside the opening. In addition, because the resonator’s impedance ZHR
is (−iωCA)

−1 − iωMA, Eq. (5) implies that ZHR is 0 at the resonance frequency.

7.4.2 Helmholtz Resonator as a Side Branch

We next consider the example17 of a long straight duct (of cross-sectional area AD

and extending along the x axis) that has a Helmholtz resonator attached to one of
its walls in the vicinity of x = 0 (see Fig. 7.11a). Let ÛHR denote the complex
amplitude of the volume velocity flowing into the Helmholtz resonator; let ÛD(0−)
and ÛD(0+) denote volume-velocity amplitudes in the duct just before and just
after the junction with the resonator, positive sense corresponding to flow in the +x

17G. W. Stewart, “Acoustic transmission with a Helmholtz resonator or an orifice as a branch line,”
Phys. Rev. 27:487–493 (1926).



7.4 Helmholtz Resonators and Other Examples 383

Fig. 7.11 Helmholtz resonator as a side branch: (a) geometrical configuration; (b) equivalent
circuit

direction. The discussion in Sect. 7.3 concerning volume velocities flowing out of a
small volume suggests that volume velocity is locally conserved, so we set

ÛD(0−) = ÛHR + ÛD(0+). (7.4.6)

Also, the pressure pD(x, t) in the duct is expected to be continuous at x = 0,
and p̂D(0) should be the pressure amplitude just outside the resonator opening;
p̂D(0−), p̂D(0+), and p̂out,HR are therefore all equal. Dividing both sides of (6) by
the common pressure amplitude then gives (see Fig. 7.11b)

Z−1
A (0−) = Z−1

HR + Z−1
A (0+), (7.4.7)

where ZA(x) is the acoustic impedance in the duct.
Reflection and transmission of waves past the resonator is analyzed as described

previously in the discussion of the effects of a change in duct cross-sectional
area. The pressure-amplitude reflection coefficient is given by the first version of
Eq. (7.3.5), which, from Eq. (7), leads to

R = (Z−1
HR + AD/ρc)−1 − ρc/AD

(Z−1
HR + AD/ρc)−1 + ρc/AD

= −ρc/AD

2ZHR + ρc/AD

. (7.4.8)

The pressure-amplitude transmission coefficient T is 1 + R because the pressure
amplitude at x = 0+ is (1 + R)p̂i(0−). The fractions of incident power reflected
and transmitted are |R|2 and |T |2; the fraction absorbed by the resonator is 1 −
|R|2 − |T |2.
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Near the resonance frequency of the resonator, ZHR → 0 (or becomes very small
when energy dissipation is taken into account), so R → −1 (as for reflection by a
pressure-release surface) and T → 0. Thus the resonator has the potentially useful
property of causing nearly total reflection of acoustic waves at frequencies near its
resonance frequency.

7.4.3 Composite Example18

Various seemingly complicated acoustical systems can be satisfactorily and simply
analyzed by lumped-parameter techniques; an example is shown in Fig. 7.12a.
A force of complex amplitude F̂ and angular frequency ω drives a piston of
mechanical mass MP at one end of a short duct segment of cross-sectional area
A. The other end is terminated by a closed cavity, while the middle of the duct
has two side branches. The upper branch leads successively through two cavities
connected by a narrow constriction. The duct (area AL) in the lower branch has
a porous membrane of flow resistance Δp/v = Rf stretched across it. Beyond
the membrane, the lower duct leads in an unspecified manner to the external
environment, so that the (terminal) acoustic impedance just below the membrane
appears to be Zterm.

The modeling of the system proceeds with the replacement of the driving force
by a driving pressure of F̂ /A. The piston becomes an acoustic inertance of MP/A

2.
With each duct subsection or constriction one associates an acoustic inertance,
denoted by MA1, MA2, etc. With the cavities one associates acoustic compliances
CA1, CA2, CA3. The porous membrane becomes an acoustic resistance RA =
Rf /AL.

The circuit analog in Fig. 7.12b is a compact representation of all the equations
constituting the model. The correspondences depicted between voltages in the
circuit diagram and pressures at points in the acoustical system are in accord with the
relations p̂1 − p̂2 = ZAÛ12 and U1 −U2 = p̂/ZA that hold for continuous-volume-
velocity and continuous-pressure two-ports, respectively. Thus, for example, the
current from b to c corresponds to the volume velocity Ubc flowing into the cavity
with compliance CA1. Part of this volume velocity accounts for the time rate of
change of pressure in the cavity and corresponds to current flowing through CA1
in the circuit diagram; the other part of Ubc is Ucd and corresponds to the current
flowing through MA3 and CA2 in the circuit diagram. From an analysis of the circuit
equations, one can determine the mechanical impedance presented by the system to
the force F̂ and the net power generated by the force, as well as the volume velocity
flowing through any portion of the system and the pressure at each designated point
in the sketch.

18For a number of similar examples, see L. L. Beranek, Acoustics, McGraw-Hill, New York, 1954,
pp. 67–69, 437–442.
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Fig. 7.12 (a) Composite acoustical system discussed in the text. (b) Circuit representation of the
lumped-parameter model. The voltages at the points a, b, c, . . . in the latter correspond to the
acoustic pressures at the corresponding points in the acoustical system

7.5 Orifices

Another example for which a lumped-parameter model is applicable is the trans-
mission of sound through an orifice19 (hole) in an otherwise rigid thin plate
(see Fig. 7.13); the orifice’s cross-sectional dimensions (a denoting a representative

19J. W. S. Rayleigh, “On the passage of waves through apertures in plane screens, and allied
problems,” Phil. Mag. (5)43:259–272 (1897).
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Fig. 7.13 Geometry used in the discussion of sound transmission through an orifice

value) are much less than λ/2π . Let the z axis be normal to the plate, the coordinate
origin being centered at the orifice. The analysis here adopts the conceptual
framework of matched asymptotic expansions (discussed previously in Sect. 4.7).
We eventually concentrate on the case when the orifice is circular, but for the present
we proceed without any special assumption concerning its shape.

7.5.1 Matched-Asymptotic-Expansion Solution
for Orifice Transmission

On the −z side of the plate, a wave with pressure pi(x, y, z, t) is incident and in
the absence of the orifice creates a reflected wave with pressure pi(x, y, −z, t).
We group these two (external) pressures together and call the sum p

(−)
ext (x, t). Given

that the orifice is small, the resulting field at large distances r � a from the orifice
consists, in the region z < 0, approximately of the incident wave, the reflected wave,
and an outgoing spherical wave. On the z > 0 side, the field in the same limit is a
spherical wave. These two spherical waves are caused by the motion of fluid at the
opening, so the result (5.3.3) based on the low-ka approximation to the Rayleigh
integral is applicable. The surface integral appearing there over v̇n is identified from
the definition (7.2.1) as −U̇12 or U̇12 for the spherical waves propagating on the −z

and +z sides of the plate, where U12 is the volume velocity flowing through the
orifice from the −z side to the +z side. Thus, our expressions for the outer solutions
at large r become
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p → [p(−)
ext (x, t), 0] ∓ ρ

2πr
U̇12

(
t − r

c

) {
z < 0
z > 0

. (7.5.1)

These automatically satisfy the wave equation and, moreover, satisfy the boundary
condition ∇p ·n = 0 on the plate boundary.

The inner solution for small ka is described by a velocity potential Φ(x, t)

that has an asymptotic expansion in powers of 1/r , each term of which satisfies
Laplace’s equation. If we keep just the first two terms, we have

Φ → Φ(−,+)∞ ± U12

2πr

{
z < 0
z > 0

(7.5.2)

where Φ
(−)∞ and Φ

(+)∞ are the asymptotic values of Φ on the −z and +z sides of
the orifice. That the coefficients of 1/r are equal but opposite is in accord with
the conservation of mass; the U12 appearing here must also be the volume velocity
from −z side to +z side through the orifice, so it is the same as the U12 in Eq. (1).
Because U12 must be linearly dependent on Φ

(−)∞ and Φ
(+)∞ , and because it must be

zero when the two asymptotic potentials are equal, one can set

Φ(+)∞ − Φ(−)∞ = MA,or

ρ
U12, (7.5.3)

where the proportionality factor MA,or is the acoustic inertance intrinsically associ-
ated with the orifice.

Matching Eqs. (1) to Eqs. (2) consists of expanding Eqs. (1) in a power series in
r (the leading term of which goes as 1/r) and equating the coefficients of the r−1

and r0 terms with those in the expansion of −ρ ∂Φ/∂t . Matching of the r−1 terms
substantiates our use of the function U12(t − r/c) in Eqs. (1); the matching of the
r0 terms yields

[p(−)
ext (0, t), 0] ± ρ

2πc
Ü12 = −ρΦ̇(−,+)∞ . (7.5.4)

When inserted into Eq. (3), these give for the constant-frequency case (∂/∂t →
−iω)

(−iωMA,or)Û12 = [p̂ext(0) − R
(−)
A Û12] − (R

(+)
A Û12), (7.5.5)

R
(−)
A = R

(+)
A = ω2ρ

2πc
= k2ρc

2π
. (7.5.6)

The transient version of (5) is an ordinary differential equation for U12(t).
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7.5.2 Acoustic-Radiation Resistance

The second term of Eq. (5.3.1) indicates that the real part of the acoustic radiation
impedance associated with sound generation by fluid motion in the orifice must
always be ρck2/2π to lowest nonvanishing order in ka, which is in accord with the
values of R

(+)
A and R

(−)
A in Eq. (5). Also, these values yield (ρ/2πc)(U̇2

12)av for
the averaged acoustic power radiated to each side of the orifice by the fluid motion.
Because this power is the same as is carried away by each of the spherical waves
in Eq. (1), the consistency of the solution represented by Eqs. (1) and (3) is further
substantiated. Although R

(−)
A and R

(+)
A are identical, we make a distinction between

the two corresponding terms in Eq. (5) because, in other instances, one or both of
the acoustic resistance terms do not appear in the formulation.

7.5.3 Helmholtz Resonator with Baffled Opening

One such instance is when the orifice connects a Helmholtz resonator to an
external environment (see Fig. 7.14). The “outer solution” for the interior of the
resonator would be taken as that where p is spatially uniform and v is such that
∇ · v = −(ρc2)−1∂p/∂t . Matching this with the inner solution, Eq. (2), gives

Fig. 7.14 Orifice terminated by a Helmholtz resonator; U12 is volume velocity from external
medium into the resonator
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pin = −ρΦ̇
(+)∞ and U12 = ṗinV/ρc2, so that the transient version of Eq. (5)

becomes instead

pext − pin = MAU̇12 − ρ

2πc
Ü12, (7.5.7)

with ṗin = ρc2U12/V . In this instance, the R
(+)
A term in (5) is replaced by

one involving the acoustic compliance of the resonator. To the external pressure
field, the acoustic impedance p̂ext/Û12 of the Helmholtz resonator appears to be
−iωMA + 1/(−iωCA) + R

(−)
A , where CA is the acoustic compliance associated

with the volume and R
(−)
A is the acoustic resistance given by Eq. (6). From this

point of view, the resonator, even in the absence of fluid friction, is intrinsically a
damped oscillator, the damping being associated with the radiation of sound from
the mouth of the resonator.

7.5.4 Acoustic Inertance of a Circular Orifice in a Thin Plate

The incompressible-flow inner-region solution can be found in closed form when
the orifice is circular (radius a), the plate thickness being idealized as infinitesimal.
The appropriate coordinate system for a determination of Φ is oblate-spheroidal
coordinates, such that w = a cosh ξ sin η, x = w cosφ, y = w sinφ, and z =
a sinh ξ cos η, where20 ξ ranges from −∞ to ∞, η ranges from 0 to π/2, and φ

ranges from 0 to 2π (see Fig. 7.15). The boundary condition on Φ corresponding to
the presence of the rigid plate is ∂Φ/∂η = 0 at η = π/2 for all ξ . The requirement
that the potential Φ approach asymptotic expressions of the form of Eqs. (2) at large
r implies that Φ is independent of η and φ at large |ξ |. All this will be so if Φ is a
function only of ξ (other than of time t). In this case, Laplace’s equation reduces to

1

cosh ξ

d

dξ
(cosh ξ

dΦ

dξ
) = 0, (7.5.8)

which successively integrates21 to

20In the analysis (Sect. 4.8) of radiation from a vibrating circular plate, the range of ξ was taken
to be from 0 to ∞ and the range of η to be between 0 and π . The distinction arises because we
wish the coordinates to be continuous at all points not adjacent to solid boundaries. Here we wish
ξ to be continuous at the orifice and accept the discontinuity of η at neighboring points on opposite
sides of the plate.
21H. Lamb, Hydrodynamics, 1879, 5th ed., 1932, sec. 108, pp. 144–145. Lamb’s expression in the
present notation is Φ = −B cot−1(sinh ξ), which is −B[π/2− tan−1(sinh ξ)], so our result differs
from his by a constant whose value is immaterial insofar as v = ∇Φ is concerned. The solution
dates back to E. Heine (1843).
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Fig. 7.15 Oblate-spheroidal coordinate system used in the derivation of the acoustic inertance of
a circular orifice. Note that ξ ranges from −∞ to ∞, η from 0 to π/2. The plate is the surface
η = π/2; the orifice corresponds to ξ = 0

dΦ

dξ
= B

cosh ξ
= B

d(sinh ξ)/dξ

1 + sinh2 ξ
.

Φ =D + B tan−1(sinh ξ), (7.5.9)

where D and B are constants, the arc tangent being understood to be between −π/2
and π/2. Note that the orifice (ξ = 0) is a surface of constant potential, as required
by symmetry.

At large |ξ |, w → (a/2)e|ξ | sin η, |z| → (a/2)e|ξ | cos η, so r → (a/2)e|ξ | and
sinh ξ → ±r/a, where the two signs correspond to ξ > 0 and ξ < 0 (or z > 0 and
z < 0). Since tan−1 f → π/2−1/f as f → +∞ and tan−1 f → −π/2+1/|f | as
f → −∞, one accordingly has, at large r , that Φ → (D∓Bπ/2)±Ba/r for z < 0
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and z > 0. Comparison of these with Eq. (2) then gives Ba = U12/2π, Φ
(+)∞ −

Φ
(−)∞ = Bπ ; Eq. (3) therefore yields22

MA,or = ρ

2a
(7.5.10)

as the acoustic inertance associated with the orifice. Since acoustic inertance is the
pressure per unit volume acceleration, the quantity (πa2)2MA,or or (ρ)(πa2)(πa/2)
is the apparent mass of air oscillating back and forth through the orifice. This is the
mass of fluid in a column of cross-sectional area πa2 and length πa/2.

7.5.5 Diffraction of Plane Wave by a Circular Orifice

The foregoing results lead to the conclusion that, if a plane wave p̂i = Aeik·x [such
that p̂(−)

ext (0) is 2A] is incident on a plate with a circular orifice of radius a where
ka 
 1, the diffracted wave on the z > 0 side of the orifice is given by [see Eqs. (1),
(5) (6), and (10)]

p̂ = −iωρ

2π

2A

−iω(ρ/2a) + k2ρc/π

eikr

r
≈ 2aA

π

eikr

r
. (7.5.11)

The time-averaged transmitted power is 2πr2|p̂|2/2ρc, or

Pav = 4a2

π

A2

ρc
= 8a2

π
Ii,av. (7.5.12)

This is 8/π2 = 0.81 times the acoustic power πa2Ii,av incident on the aperture
when k is parallel to ez. By contrast, the Kirchhoff approximation (see Sect. 5.2)

22For the more general case of an elliptical orifice of area A and eccentricity e [defined such that
(1 − e2)1/2 is ratio of minor axis to major axis] the result is

MA,or

ρ
= 1

2

(π
A

)1/2 2

π
K(e2)(1 − e2)1/4

≈ 1

2

(π
A

)1/2
(

1 − e4

64
− e6

64
− . . .

)
,

where K(e2) is the complete elliptical integral of the first kind defined by Eq. (5.3.8). This is
derived by Rayleigh, Theory of Sound, vol. 2, sec. 306. Rayleigh’s discussion is in terms of a
conductivity, which is the same as ρ divided by the acoustic inertance. His conclusion based on
the above result is that it is a good approximation to take the conductivity as 2(A/π)1/2 [or to take
MA,or as (ρ/2)(π/A)1/2]. For a general review, see C. L. Morfey, “Acoustic properties of openings
at low frequencies,” J. Sound Vib. 9:357–366 (1969).
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would predict the volume velocity through the orifice to have an amplitude
(A/ρc)πa2 and the transmitted power to be (ka)2(πa2/4)A2/ρc, or (ka)2/2 times
the incident power when the incoming wave is at normal incidence. Given ka 
 1,
the latter would be considerably smaller than is actually the case.

7.6 Estimation of Acoustic Inertances and End Corrections

In the absence of dissipative mechanisms, the only lumped-parameter element
needed to describe a continuous-volume-velocity two-port is its acoustic inertance
MA. This is often difficult to calculate exactly (the circular-orifice example in
the previous section being an exception), but there are applicable fluid-dynamic
principles regarding incompressible flow for estimating and putting bounds on its
value.

7.6.1 Principle of Minimum Kinetic Energy

Euler’s equation leads to the conclusion ∇ × v = 0, so one can conceive of a
velocity potential Φ such that v = ∇Φ, p = −ρ ∂Φ/∂t . This conclusion is
not changed if the flow is incompressible, so that ∇ · v = 0 replaces the mass-
conservation equation, but there are also other conceivable incompressible flows
satisfying the appropriate boundary conditions that are not potential flows. Of all
such flows, however, the potential flow gives the minimum kinetic energy.23

To demonstrate this, let v(x, t) be a potential-flow field and imagine that a
variation δv dependent on x is added to it. Both v and δv are incompressible flow
fields, but ∇ × δv is not necessarily zero.

The total kinetic energy (KE)var associated with the varied field in a fixed volume
V is

(KE)var =
∫∫∫

1
2ρ(v + δv)2 dV. (7.6.1)

The cross term ρv · δv in the integrand can be written as ∇ · (ρΦ δv) because
v = ∇Φ,∇ · δv = 0; so its volume integral becomes a surface integral. Thus, since
δv · δv ≥ 0, Eq. (1) yields the inequality

(KE)var ≥ (KE)true +
∫∫

ρΦ δv · n dS, (7.6.2)

23The theorem is due to W. Thomson (Lord Kelvin), “On the vis-viva [kinetic energy] of a liquid
in motion,” Camb. Dublin Math. J., 1849; reprinted in Mathematical and Physical Papers, vol. 1,
Cambridge University Press, Cambridge, 1882, pp. 107–112.



7.6 Estimation of Acoustic Inertances and End Corrections 393

where the integral is over the surface S bounding V ; the “true” kinetic energy
corresponds to δv = 0.

Suppose that the boundary conditions on some portions of S are those appropriate
to a rigid boundary, so that v · n = 0, while on all other portions v · n is known.
Then, for any incompressible flow field (not necessarily irrotational) that satisfies
the boundary conditions, the deviation δv of this v from the actual v must be such
that δv·n = 0 everywhere on S. Since the second term in Eq. (2) vanishes, the actual
flow gives the minimum kinetic energy of all conceivable incompressible flows that
satisfy the same boundary conditions.

Other applicable circumstances are when the boundary conditions are specified
so that Φ has value Φ1 on one portion S1 of S and has value Φ2 on another portion
S2 of S while v · n = 0 on the remainder of S (see Fig. 7.16). Thus n × v = 0
on S1 and S2. The solution of the boundary-value problem can be characterized by
a volume velocity U12 flowing from S1 to S2. Any incompressible flow through V

satisfying v · n = 0 on all portions of S other than S1 and S2 also corresponds to
some U12. If the resulting U12 is the actual U12, the surface integral of δv·n vanishes
on both S1 and S2. Since Φ is constant on either S1 and S2, and since δv · n = 0
on all other portions, the second term of (2) must vanish. Therefore, regardless of
the values of Φ1 and Φ2, the potential-flow field corresponding to a given U12 is the
one of all such flow fields for which the kinetic energy is a minimum.

Fig. 7.16 Circumstances for which the principle of minimum kinetic energy yields the principle
of minimum acoustic inertance
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7.6.2 Principle of Minimum Acoustic Inertance

For the circumstances described above where Φ is constant on portions S1 and S2
and v · n = 0 on the remainder of S, the acoustic inertance MA, defined such that
MA/ρ is (Φ2 − Φ1)/U12, can also be written24 as 2KE/U2

12. Consequently, the
minimum-kinetic-energy principle yields

MA ≤ 2(KE)var

U2
12

. (7.6.3)

Any incompressible (but not necessarily irrotational) flow field passing through V

with v · n = 0 on all portions of S other than S1 and S2 will give particular values
of U12 and KE; with them one can calculate an estimate of MA from Eq. (3). Since
the true kinetic energy corresponding to the same U12 will be smaller, the estimated
MA will be an upper bound.

7.6.3 Effect of Relaxing of Constraints

A consequence of Eq. (3) is that any relaxing of constraints must decrease the
acoustic inertance. Thus, for example, the geometry in Fig. 7.17b results in a lower
acoustic inertance than that in Fig. 7.17a. To demonstrate this, let Vb be a control
volume that corresponds to the less constrained flow; let Va correspond to the
constrained volume with the same choices for S1 and S2, so Va is entirely confined
within Vb. A possible flow through Vb corresponds to a potential flow through Va but
with nonmoving fluid in the regions of Vb not lying in volume Va . Such a flow field
when inserted into the right side of Eq. (3) would give the true acoustic inertance
MA,a for Va but must overestimate MA,b since it is not the true potential flow for
Vb. Thus MA,b < MA,a . The proof also implies that an imposition of a constraint
must increase the acoustic inertance.

24The proof begins with the requirement Φ∇2Φ = 0. With a vector identity and with v = ∇Φ,
this leads to

1
2ρ∇ · (Φv) = 1

2ρv
2.

Integration over the volume and subsequent application of Gauss’s theorem yields

1
2ρΦ2U12 − 1

2ρΦ1U12 = KE,

so the definition, MA/ρ = (Φ2 − Φ1)/U12, requires that 2KE/U2
12 also be MA.
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Fig. 7.17 The geometry in
(a) is such that the flow is
constrained relative to that for
the geometry in (b). The
assertion is made that the less
constrained geometry has the
lower acoustic inertance

7.6.4 Lower Bound for Acoustic Inertance

The principle of minimum kinetic energy gives a powerful method for obtaining an
upper bound to MA when the potential-flow boundary-value problem is not easily
solvable. Here we describe a theorem due to Rayleigh25 that can yield a lower
bound.

Let us suppose the volume V is divided (see Fig. 7.18) into two volumes VI and
VII by a surface Smid extending across its middle, so that fluid flowing from S1 to
S2 must flow through Smid. Although S1 and S2 are specified to be equipotential
surfaces (n × v = 0), one does not necessarily expect Smid to be an equipotential
also. However, if VI were considered by itself, one might formally regard Smid as

25J. W. S. Rayleigh, “On the theory of resonance,” Phil. Trans. R. Soc. Lond. 161:77–118 (1870);
Theory of Sound, vol. 2, sec. 305. Rayleigh’s statement of the theorem, paraphrased in the
terminology of the present text, was that if the ambient density is diminished in any region, the
acoustic inertance should also be decreased. The inertance would be the MA,I + MA,II in Eq. (4)
if ρ were formally considered to go to zero in a thin layer about the surface Smid. Consequently,
the actual inertance should be greater than or equal to MA,I + MA,II. In terms of the electrical
analog, Rayleigh’s assertion seems obvious, but the physical realization of such a limiting case in a
fluid-dynamic context presents conceptual difficulties, so the theorem is here demonstrated without
consideration of cases where the ambient density is nonuniform.
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Fig. 7.18 Geometry used in the proof of Rayleigh’s lower-bound theorem for acoustic inertances

being an equipotential and one could thereby associate an acoustic inertance MA,I
with volume VI. Similarly, acoustic inertance MA,II can be associated with VII. The
statement that can be made concerning the acoustic inertance MA for the volume V

as a whole is

MA ≥ MA,I + MA,II, (7.6.4)

so that the sum MA,I + MA,II gives a lower bound for MA.
To prove the assertion, let ΦI, ΦII be solutions for the boundary-value problem

corresponding to volumes VI and VII and let Φ be the solution corresponding to
volume V as a whole. It is assumed that each such solution corresponds to the same
volume velocity. We denote the corresponding velocity fields by vI, vII, and v. The
kinetic energy KE for the boundary-value problem corresponding to volume V can
be expressed in terms of those values (KE)I and (KE)II corresponding to the velocity
fields vI and vII in volumes VI and VII as

KE =
∫∫∫

1
2ρ(vI + v − vI)

2dVI +
∫∫∫

1
2ρ(vII + v − vII)

2dVII

≥ (KE)I+(KE)II +
∫∫∫

ρvI · (v − vI)dVI +
∫∫∫

ρvII · (v − vII)dVII,

(7.6.5)

where the inequality follows from (v − vI)
2 ≥ 0, (v − vII)

2 ≥ 0. In the third
term, we use vI = ∇ΦI, ∇ · (v − vI) = 0 to replace vI · (v − vI) by its equivalent
∇ · [ΦI(v − vI)], such that, with Gauss’s theorem, we obtain
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∫∫∫
ρvI · (v − vI) dVI =

∫∫
ρΦI(v − vI) ·nIdS1 +

∫∫
ρΦI(v − vI) ·nIdSmid.

(7.6.6)

(Recall that v ·nI = vI ·nI = 0 on the portions of the surface SI of VI other than S1
and Smid.) Here nI denotes the unit outward normal on SI. Since ΦI is constant on
either S1 or Smid, the definition of the volume velocity U12 requires that each of the
integrals in Eq. (6) vanish. Since the same is true for the analogous integral over VII
in Eq. (5), that equation requires KE to be greater or equal to (KE)I + (KE)II. The
identification of MA as 2KE/U2

12 and the hypothesis that the three kinetic energies
each correspond to the same volume velocity then leads to Eq. (4).

7.6.5 Flanged Opening in a Duct

A circular duct (radius a) with a flanged opening (Fig. 7.19a) furnishes a simple
example to which the above principles apply. The potential-flow problem in the
vicinity of the opening is such that Φ → ΦD + (U/πa2)z for large negative z

within the duct and Φ → Φ∞ − U/2πr at large r in the half space outside the
opening. The acoustic inertance MA is defined for this example such that MA/ρ is
(Φ∞ − ΦD)/U . To estimate its value by the principle of minimum acoustic
inertance, we postulate an incompressible flow such that within the duct vz =
U/πa2 is uniform over the cross section; the flow outside the opening is taken to be
a potential flow. Conservation of mass across each differential area of the opening
imposes vz = U/πa2 at z = 0 for w < a as a boundary condition on the z > 0
solution. The existence of the flange requires vz = 0 on the remainder of the z = 0
plane.

The potential flow outside the flange has a kinetic energy equal to the volume
integral of 1

2ρ(∇Φ)2 = 1
2ρ∇ · (Φ∇Φ). Gauss’s theorem (with the choice of 0 for

Φ∞) converts this to an area integral over the opening of − 1
2ρvzΦ. At the opening,

vz is assumed equal to U/πa2. The area integral of −ρΦ is the time integral of the
area integral of p; the latter is identified from the result for the vibrating circular
piston in a rigid wall. Equation (5.3.10) yields in the low-frequency limit a value of
(8/3π)aU for the area integral of −Φ, and the kinetic energy therefore becomes

KE = 1

2

8

3π2

ρ

a
U2. (7.6.7)

For the postulated flow field, this is the excess kinetic energy associated with the
presence of the opening; Eq. (3) consequently yields

MA ≤ 8

3π2

ρ

a
. (7.6.8)
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Fig. 7.19 (a) A semi-infinite duct with a flanged opening. (b) A duct segment of finite length with
flanges at both ends

To apply Rayleigh’s lower-bound theorem, we take Smid to be the opening. Our
definition of acoustic inertance is such that there is no inertance associated with the
duct (MA,I = 0), so the lower bound MA,II is (Φ∞ − Φop)ρ/U , where Φop is the
assumed uniform potential across the opening. This quantity MA,II, however, can be
taken from the solution given in Sect. 7.5 for potential flow through a circular orifice
in a thin rigid plate. That solution is such that the orifice is of uniform potential and
Φ

(+)∞ − Φor = Φor − Φ
(−)∞ . Consequently, the inertance associated with the region

z > 0 is one-half that given by Eq. (7.5.10). Thus, we obtain, from Eq. (4),

MA ≥ 1

4

ρ

a
. (7.6.9)



7.6 Estimation of Acoustic Inertances and End Corrections 399

This, in conjunction with Eq. (8), brackets MA between 0.250ρ/a and 0.270ρ/a.
The actual value26 is 0.261ρ/a.

7.6.6 Circular Orifice in a Plate of Finite Thickness

This example (Fig. 7.19b) can be regarded as a short circular duct of length
l(kl 
 1) with flanges on both openings. If an incompressible flow is postulated
that has uniform flow within the duct, the principle of minimum acoustic inertance
applies and an analysis similar to that leading to Eq. (8) yields

MA ≤ ρl

πa2
+ 2

8

3π2

ρ

a
. (7.6.10)

Rayleigh’s lower-bound theorem similarly yields

MA ≥ ρl

πa2
+ 1

2

ρ

a
. (7.6.11)

In the limit l → 0, MA is given by the expression (7.5.10) for an orifice in a
thin plate, so Eq. (11) is exact in this limit. If l/a is large, the cross section in the
middle of the duct should be of nearly uniform potential, so MA should be twice the
inertance of a duct segment of length l/2 with a flanged opening; the inertance due
to each half is nearly ρ(l/2)/πa2 plus the inertance intrinsically associated with a
flanged opening. Taking King’s result of 0.261ρ/a for the latter, we have

MA ≈ ρl

πa2
+ 2(0.261)ρ

a
, l � a. (7.6.12)

It cannot necessarily be assumed that this is either a lower bound or an upper bound
for arbitrary l/a, but it is an overestimate in the limit l/a → 0.

7.6.7 End Corrections

The acoustic inertance for the example above can be written in the form

MA = ρ

A
(l + Δl), (7.6.13)

26L. V. King, “On the electrical and acoustic conductivities of cylindrical tubes bounded by infinite
flanges,” Phil. Mag. (7)21:128–144 (1936).
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where A is the cross-sectional area of the duct and Δl is an end correction associated
with the terminations of the duct at the two ends. If l � (A)1/2, the remarks
preceding Eq. (12) indicate that Δl is independent of l and furthermore can be
decomposed into contributions (Δl)1 and (Δl)2 that are associated with each of the
two ends. Thus, if one end of the duct opens with a flange into an unlimited space,
the correction (Δl)1 for this end is AMA1/ρ, where MA1 is the acoustic inertance
associated with the opening. For a circular duct of radius a with a flanged opening,
Eqs. (8) and (9) yield an end correction (Δl)1 with the limits (8/3π)a and (π/4)a
or, equivalently, 0.85a and 0.79a. King’s exact result for (Δl)1 is 0.82a.

Another model of duct termination is that of a thin-walled hollow circular tube
protruding into an open space. The absence of the constraining flange causes the
acoustic inertance associated with the opening to decrease, so the end correction
must be less than 0.82a. There are no simple calculations that place more stringent
bounds on the end correction, but an intricate exact solution27 for the radiation of
waves from an unflanged hollow tube yields, in the low-frequency limit,

Δl = (0.61 · · · )a, unflanged opening. (7.6.14)

The corresponding acoustic inertance is ρ(πa2)−1Δl or 0.20ρ/a.

7.6.8 Effective Neck Lengths of Helmholtz Resonators

In the discussion preceding Eq. (7.4.1), the acoustic inertance of a Helmholtz
resonator is taken as ρl′/A, where l′ is an effective neck length. In the estimation of
l′ we distinguish cases where the actual neck length l is much less and much greater
than the radius a of the opening. In both cases, a is assumed to be much less than
the dimensions of the vessel. If l 
 a, the opening is similar to that of an orifice in
a thin plate, so the appropriate estimate of the acoustic inertance is that of Eq. (11),
which leads to l + (π/2)a for l′.

If l � a, then l′ ≈ l + (Δl)1 + (Δl)2, where (Δl)1 and (Δl)2 are the
end corrections associated with the inner and outer openings. The inner opening
resembles a flanged termination, so we set (Δl)1 = 0.82a. This value would also
apply for (Δl)2 if the outer end of the neck terminates in a flange (a Helmholtz
resonator with a baffled opening). If the neck is long and its walls are thin, the model
of an unflanged opening is more appropriate so one would set (Δl)2 = 0.61a. Thus,

27H. Levine and J. Schwinger, “On the radiation of sound from an unflanged circular pipe,” Phys.
Rev. 73:383–406 (1948). The case when the tube walls are of finite thickness is analyzed by
Y. Ando, “On the sound radiation from semi-infinite pipe of certain wall thickness,” Acustica
22:219–225 (1970).
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in the latter case, for example, one would have28

l′ = l + 0.82a + 0.61a, l � a. (7.6.15)

If the neck is not circular, the usual approximation is to replace a by (A/π)1/2.

7.6.9 Boundary Conditions at Open Ends of Ducts

A classic example of the application of an end correction is at the open end of a
duct (see Fig. 7.20). We begin with the observation that the end presents an acoustic
impedance Zend to any plane-wave-mode disturbance within the duct (x < l),
where, in the low-frequency limit,

Zend = − iωMA + RA, MA = ρ

A
Δ , (7.6.16a)

RA = Kρck2

4π
. (7.6.16b)

The acoustic radiation resistance RA, according to Eq. (7.5.6), should be ρck2/2π
if the opening has an infinite flange, so the parameter K is identified as 2 for that
case. If the opening resembles a thin-walled tube protruding into space, the acoustic
pressure at large distances from the opening is only half as large given the same
volume velocity at the end, so K would then be 1. [The derivation is analogous to
that ensuing from Eq. (7.5.1).]

The simplest end-correction approximation consists of the replacement29 of the
boundary condition

p̂D

ÛD

= Zend. x =  , (7.6.17a)

by

p̂D = 0, x =  + Δ . (7.6.17b)

28W. P. Mason, “The approximate networks of acoustic filters,” Bell Syst. Tech. J. 9:332–340
(1930).
29Helmholtz, “Theory of air oscillations”; Rayleigh, The Theory of Sound, vol. 2, sec. 314. The
necessity for an end correction emerged with the experimental discovery by Felix Savart (1823)
that the first velocity node is less than 1

4 wavelength from the open end. The boundary condition
of p = 0 at the open end (without end correction) was adopted by Daniel Bernoulli, Euler, and
Lagrange in the eighteenth century.
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Fig. 7.20 (a) Open-ended duct extending into open space. (b) Duct with end correction Δl that
has equivalent acoustical properties if the end is taken to be a pressure-release surface

Here p̂D(x) and ÛD(x) are the plane-wave-mode pressure and volume-velocity
amplitudes within the duct (x < l). Their values for x > l are regarded as
what would be extrapolated using the one-dimensional linear acoustic equations.
Adopting the boundary condition (17b) is equivalent to regarding the end as being
at x =  + Δ and to assuming that this virtual end is a pressure-release surface.

Approximate justification of Eq. (17b) proceeds with the neglect of the radi-
ation resistance, so that Eqs. (16a) and (17a) imply a zero value for p̂D( ) +
iωρ Δ ÛD( )/A. But Euler’s equation equates iωρÛD/A to dp̂D/dx, and p̂D( )+
Δ (dp̂D/dx) is approximately p̂D( + Δ ), so Eq. (17b) results.

Since the radiation resistance is proportional to k2, its effects on the field within
the duct are ordinarily minor at low frequencies. The exception is when the system
is at resonance. Nevertheless, for the determination of the resonance frequencies,
Eq. (17b) remains a good approximation at low frequencies and is preferable to
taking the actual end at x =  as a pressure-release surface.
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7.7 Mufflers and Acoustic Filters

A muffler30 is a device that reduces the sound emanating from the end of a pipe but
which continues to allow the flow of gas through the pipe. In an idealized conceptual
model of a muffler (see Fig. 7.21), the source is characterized by the volume velocity
U(t) injected into the exhaust system; each frequency component is assumed to
propagate independently, and it is assumed that the muffler and the configuration of
the pipe do not alter the spectral density of the volume velocity actually injected by
the source. The interaction of the acoustic portion of the flow with the mean flow is
also neglected.

The assumptions just stated imply, for any given muffler design, that there should
be a direct proportionality between the same frequency components of volume
velocities existing at two given points. Thus, we can characterize the source for
our present purposes by what the spectral density would be at a given point if the
pipe extended indefinitely without interruptions or changes in cross-sectional area.
We choose this point G to be just upstream of where the muffler is to be inserted.
The external sound radiation is determined by the spectral density of the volume
velocity leaving the tail of the pipe, which in turn is determined by the ratio of
the spectral density at the exit plane to that nominally expected at G. This ratio,
however, can be derived from an analysis of constant-frequency sound propagation.

7.7.1 The Transmission Matrix and Its Consequences

The segment of the pipe that includes the muffler, extending between points G and
H in Fig. 7.21, can be regarded as an acoustical two-port, so the matrix equation
(7.2.3) applies. In an equivalent manner, we can write

[
p̂G

ÛG

]
=
[
K11 K12

K21 K22

] [
p̂H

ÛH

]
. (7.7.1)

where the quantities Kij are frequency-dependent quantities embodying the acous-
tical properties of the muffler. Reciprocity requires that the matrix determinant be 1.
Also, for a symmetric muffler, which looks the same from both ends, K11 and K22
must be identical.

The ratio p̂H /ÛH is the acoustic impedance ZH just downstream of the muffler
presented by the tailpipe and the environment. The ratio p̂G/ÛG, derived from
Eq. (1), is accordingly

30P. O. A. L. Davies, “The design of silencers for internal combustion engines,” J. Sound Vib.
1:185–201 (1964); T. F. W. Embleton, “Mufflers,” in L. L. Beranek (ed.), Noise and Vibration
Control, McGraw-Hill, New York, 1971, pp. 362–405; E. K. Bender and A. J. Bremmer, “Internal-
combustion engine intake and exhaust system noise,” J. Acoust. Soc. Am. 58:22–30 (1975).
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Fig. 7.21 Simplified model
of an exhaust system. The
muffler is inserted between
points G and H

p̂G

ÛG

= K11ZH + K12

K21ZH + K22
. (7.7.2)

If a wave is incident on the muffler at G from the upstream direction, then ÛG =
(1 − RG)Ûi, where Ûi is the portion of the volume velocity at G associated with
this incident wave and where

RG = p̂G/ÛG − ρc/A

p̂G/ÛG + ρc/A
(7.7.3)

is the pressure-amplitude reflection coefficient for a wave incident on the muffler.
Since Eq. (1) leads to

(1 − RG)Ûi = (K21ZH + K22)ÛH , (7.7.4)

we accordingly find

2ρc

A

Ûi

ÛH

= K11ZH + K12 + ρc

A
K21ZH + ρc

A
K22. (7.7.5)

7.7.2 Insertion Loss

The acoustic-pressure amplitude in the far field is directly proportional to the vol-
ume velocity |ÛH | just downstream of the muffler. Consequently, the performance
of the muffler is characterized by the ratio of |ÛH |2 to what its value would be
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without the muffler. With the assumption (discussed below) that |Ûi | is unaffected
by the muffler and with the recognition that [K] is the unit matrix when the muffler
is not present, one finds from (5) that the reciprocal of this ratio is

|K11ZH + K12 + (ρc/A)K21ZH + (ρc/A)K22|2
|ZH + ρc/A|2 . (7.7.6)

The assumption that Ûi is unaffected by the muffler’s presence is equivalent to the
expectation that waves reflected back to the source by the muffler have negligible
amplitude when they eventually return to the muffler. Circumstances for which the
assumption is valid are when the pipe upstream of the muffler is such that a traveling
wave experiences, say, 5 dB attenuation or more on one round trip. A similar
assumption that further simplifies the analysis is that there is sufficient attenuation
along the tailpipe to ensure that whatever is transmitted beyond the muffler at H
does not return to the muffler (anechoic termination). This allows us to assume a
traveling plane wave at H such that ZH = ρc/A. Both assumptions are traditional31

in muffler design but warrant reconsideration in particular cases. They are adopted
here to obtain an unencumbered perspective on muffler performance.

With the assumptions just described, the insertion loss of the muffler, defined as
the sound-pressure-level drop caused by its insertion, is 10 times the logarithm of
the expression (7.7.6) with ZH replaced by ρc/A, that is,

IL = 10 log

(
1
4 |K11 + K22 + ρc

A
K21 + A

ρc
K12|2

)
. (7.7.7)

Since we are assuming anechoic termination of the muffler, insertion loss is the
same as transmission loss. The objective of a good muffler design is that IL be
very low for low frequencies, so the steady flow is not inhibited, but IL be high at
those acoustic frequencies which convey the dominant portion of the noise. Thus
the muffler should perform like a low-pass filter.

7.7.3 Reactive and Dissipative Mufflers

A reactive muffler is one for which the dissipation in the muffler can be neglected.
In this event, the parameters Zleft, Zright, and Zmid in Eqs. (7.2.4) are all imaginary
numbers, and consequently one finds K11 and K22 to be real and K12 and K21 to
be imaginary. A reactive muffler reduces the sound power entering the muffler by

31D. D. Davis, G. M. Stokes, D. Moore, and G. L. Stevens, “Theoretical and experimental
investigation of mufflers with comments on engine-exhaust muffler design,” Nat. Advis. Comm.
Aeronaut. Rep. 1192, Washington, 1954; G. W. Stewart, “Acoustic wave filters,” Phys. Rev. 20:528–
551 (1922).
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altering the acoustic impedance ZG at the entrance of the muffler. For example, if
ZG were zero, no power would pass into the muffler. Any plane wave incident on
the muffler would undergo perfect reflection. Even if the attenuation in the upstream
pipe were insignificant, this would still reduce the power radiated out of the tailpipe,
because the created standing wave would have a pressure at the source nearly 90◦
out of phase with the source’s volume velocity.

A dissipative muffler, on the other hand, does not appreciably alter the power
entering the muffler but instead dissipates if before it leaves the muffler. The simplest
idealization of a dissipative muffler is a lined segment of pipe of length L that
attenuates the amplitude of a traveling plane wave by a factor of e−αL without
appreciably reflecting the sound or altering the ratio of pressure to volume velocity.
The transmission loss in this case is easily seen to be 10 times log e2αL, but it is
instructive to see how the result follows from the formulation developed above.

Letting p̂a and p̂b be the amplitudes at G and H , respectively, of two coexisting
plane waves traveling downstream and upstream, respectively, we find

(
p̂G,

ρcÛG

A

)
= p̂a ± p̂be

ikLe−αL,

(
p̂H ,

ρcÛH

A

)
= p̂ae

ikLe−αL ± p̂b.

Elimination of p̂a and p̂b from these and a comparison with Eq. (1) yields

[K] =
[

cos (kL + iαL) −i
ρc
A

sin(kL + iαL)

−i A
ρc

sin(kL + iαL) cos (kL + iαL)

]
, (7.7.8)

so the insertion loss of Eq. (7) reduces to (10 log e)(2αL). Thus, the larger the αL,
the larger the insertion loss. The power entering the muffler is larger by a factor of
10IL/10 than that leaving the muffler.

7.7.4 Helmholtz Resonators as Filters

The theory of a Helmholtz resonator as a side branch, developed in Sect. 7.4, leads
to p̂G = p̂H , ÛG = p̂G/ZHR + ÛH , where ZHR is the acoustic impedance of the
resonator. Consequently, we identify K11 = 1, K12 = 0, K21 = 1/ZHR, K22 = 1,
and Eq. (7) yields

10IL/10 = |ZHR + 1
2ρc/A|2

|ZHR|2 (7.7.9)

= 1 + 1

4β2(f/fr − fr/f )2 , (7.7.9a)
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where β2 = (MA/CA)(A/ρc)2 and 2πfr = (MACA)
−1/2. In the second version,

we have explicitly inserted the expression (−iωCA)
−1 − iωMA for the acoustic

impedance ZHR of the Helmholtz resonator.
The Helmholtz resonator primarily filters out frequencies close to the resonance

frequency fr . The infinite insertion loss predicted at the resonance frequency is
consistent with the prediction that the resonator acts as a perfect reflector at such
a frequency. However, if β is large compared with 1, the bandwidth over which
appreciable insertion loss occurs is small compared with fr .

7.7.5 Expansion-Chamber Muffler

Another simple prototype (see Fig. 7.22) of a muffler consists of a duct of length
L and of larger area AM inserted between pipes of area A. With the neglect of the
acoustic inertances at the duct junctions, the matrix [K] for such a muffler can be
identified from Eq. (8) with α set to zero and with A replaced by AM . Subsequent
insertion of these expressions into (7) yields

10IL/10 = cos2 kL+ 1
4 (m+m−1)2 sin2 kL = 1+ 1

4 (m−m−1)2 sin2 kL, (7.7.10)

where we use m for the area expansion ratio AM/A. This gives zero insertion loss
when kL is a multiple of π ; the insertion loss is periodic in f with a period of
c/2L. A maximum occurs when f is an odd multiple of c/4L, such that L is
an odd multiple of quarter wavelengths. The maximum predicted insertion loss is
10 log[(m + m−1)2/4 and is accordingly determined by the area expansion ratio.
Values of m = 4, 9, 16, 25, and 36 correspond to peak insertion losses of 6.5, 13.2,
18, 22, and 25 dB.

Fig. 7.22 Geometry of an expansion-chamber muffler
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Fig. 7.23 Sketches of commercial mufflers [From T. F. W. Embleton, “Mufflers, ” in L. L. Beranek
(ed.), Noise and Vibration Control, McGraw-Hill, New York, 1971, p. 379]

7.7.6 Commercial Muffler Designs

The analysis of actual commercial mufflers (see Fig. 7.23) is often complicated by
multiple chambers and perforated pipes. The muffler insertion loss, moreover, is
often significantly affected by the ambient flow and by nonlinear effects. However,
some insight if not accurate predictions can still be obtained with the classical
lumped-parameter techniques. To determine32 the [K] matrix, one assumes that,
within each segment, the pressure p is uniform over the cross section but not the
same inside and outside a perforated pipe. Within such a pipe, the volume velocity
parallel to the axis suffers a discontinuity at each orifice, the discontinuity equaling
the volume velocity through the orifice. The latter’s complex amplitude is in turn
given by (p̂in − p̂out)/(−iωMA), where the orifice’s acoustic inertance MA is of the
order of ρ/2a. When a pipe extends only partway into a concentric chamber, the
volume velocities up axis for pipe and for surrounding chamber must sum to that
down axis for the chamber, as if three ducts of areas Apipe, Aout, and Apipe + Aout
met at a common junction. The three corresponding pressures are assumed to be the
same at the junction.

Example The straight-through muffler in Fig. 7.24 is analyzed by associating
volume velocities Ûch(x) and Ûpipe(x) with the chamber (area Aout) and pipe (area
Apipe). The large number of perforations is taken into account in a smeared-out
manner by replacing the mass-conservation equations with

32A detailed discussion along similar lines but with nonlinear orifice impedance and ambient flow
taken into account is given by J. W. Sullivan, “A method of modeling perforated tube muffler
components,” J. Acoust. Soc. Am. 66:772–788 (1979).
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Fig. 7.24 Parameters characterizing a simplified model of a straight-through muffler

Aout

ρc2 (−iωp̂ch) + dÛch

dx
=n(p̂pipe − p̂ch)

−iωMA

, (7.7.11a)

Apipe

ρc2 (−iωp̂pipe) + dÛpipe

dx
=n(p̂ch − p̂pipe)

−iωMA

, (7.7.11b)

where n is the number of perforations per unit length of pipe axis. Since Euler’s
equation still holds for the interior and exterior regions, one has

−iωρÛch = − Aout
dp̂ch

dx
, (7.7.12a)

−iωρÛpipe = − Apipe
dp̂pipe

dx
. (7.7.12b)

Elimination of Ûch and Ûpipe from Eqs. (11) and (12) yields two coupled wave
equations, general solutions of which are

p̂pipe =A cos kx + B sin kx + AoutC cosβx + AoutD sinβx, (7.7.13a)

p̂ch =A cos kx + B sin kx − ApipeC cosβx − ApipeD sinβx, (7.7.13b)

where A, B, C, D are arbitrary constants, k is ω/c, and

β2 = k2 − nρ

MA

(A−1
pipe + A−1

out). (7.7.14)
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The boundary conditions, Ûch = 0 at x = 0 and at x = L, give two relations
between the four constants, while two other relations result from Ûpipe = ÛH at
x = L and from p̂pipe = p̂H at x = L. Consequently, the constants, A, B, C, D

become linear combinations of ÛH and p̂H . Equations (12b) and (13b) with such
substitutions and with x set to zero therefore yield equations of the form (1). The
matrix [K] can subsequently be identified and the insertion loss can be determined
from Eq. (7). (Since the intent here is only to describe the analytical method, the
algebra is not carried through.)

7.8 Horns

A horn33 (see Fig. 7.25) is an impedance-matching device that increases the acoustic
power output of a source and gives a directional preference to the radiated power.
To understand the rationale underlying the first of these properties, consider a small
acoustic source of fixed volume-velocity amplitude Û whose power output is

P = 1
2 |Û |2Re{Z}, (7.8.1)

where Z is the acoustic impedance presented to the source by its external environ-
ment. For a radially oscillating sphere of radius a, Eq. (4.1.4) implies that

Z = ρc

4πa2

(ka)2 − ika

(ka)2 + 1
≈ ρck2

4π

(
1 − i

ka

)
(7.8.2)

when the source is in a free environment; the second version results when ka 
 1.
The time-averaged power radiated is therefore (ρc/8π)k2|Û |2 in the low-frequency
limit, which is characteristic of any monopole source. When mounted on a rigid
wall, the source produces twice this power. In contrast, the power output when the
source is at the rigid end of a tube of cross-sectional area A and of unbounded length
is ρc|Û |2/2A [twice that given by Eq. (7.1.13)], providing the frequency is lower
than the cutoff frequency for the first dispersive mode. If k2A 
 2π , a source in
a duct is a much more powerful generator of acoustic energy than when it is in an
open environment.

Such an enhancement in power output does not necessarily result when the source
is connected to the external environment by a duct segment of finite length the far
end of which is open. Reflections of sound from the open end alter the impedance
at the source position so that Re Z is not in general ρc/A. For a duct of constant

33For a historical overview, see J. K. Hilliard, “Historical review of horns used for audience-type
sound reproduction,” J. Acoust. Soc. Am. 59:1–8 (1976).
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Fig. 7.25 Schematic description of a horn and of its coupling to a transducer [After C. T. Molloy,
J. Acoust. Soc. Am. 22:551 (1950)]

cross-sectional area and of length L, the impedance at the source is given by34

Z = ρc

A

Zend cos kL − i(ρc/A) sin kL

(ρc/A) cos kL − iZend sin kL
. (7.8.3)

For a narrow tube, the end impedance Zend, given by Eq. (7.6.16a), is small in
magnitude compared with ρc/A, so Re Z is typically (Re Zend)/(cos2 kL), which is
much less than ρc/A except near the resonance frequencies. However, the resonance
peaks are narrow, so the tube is unsatisfactory as a coupling device if one wants
a substantial power amplification with minor frequency distortion over a broad
frequency band.

A duct of variable cross section can circumvent this difficulty if (ideally) the
cross-sectional area varies slowly enough to prevent internal reflections and if
the mouth at the far end is wide enough to ensure negligible reflection at the
abrupt termination. The graphs35 (see Fig. 7.26) of the real and imaginary parts of
AZmth/ρc versus ka for the acoustic impedance at the mouth (mth) of an open-
ended unflanged thin-walled circular tube when a plane wave is incident from along
its axis suggest that the squared magnitude |R|2 of the reflection coefficient will be
less than 0.25 if ka > 2. If ka = 1, |R|2 is of the order of 1

2 . Below ka = 1,
there may still be some overall amplification of the radiated acoustic power if the

34This follows from Eqs. (7.7.1) and (7.7.8) with α set to 0, with p̂H /ÛH set to Zend, and with
p̂G/ÛG set to Z.
35C. T. Molloy, “Response peaks in finite horns,” J. Acoust. Soc. Am. 22:551–557 (1950); H. Levine
and J. Schwinger, “On the radiation of sound from an unflanged circular pipe,” Phys. Rev. 73:383–
406 (1948).
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Fig. 7.26 Real and imaginary parts of the acoustic impedance Z in units of ρc/A at the mouth of
an open-ended unflanged thin-walled circular tube (radius a) [After C. T. Molloy, J. Acoust. Soc.
Am. 22: 552 (1950); low-frequency limits based on results of H. Levine and J. Schwinger, Phys.
Rev. 73:383 (1948)]

area at the mouth is still large compared with the area at the source, but the plot
of P for fixed |Û | versus frequency will exhibit distinct resonances. Consequently,
the usually stated design criterion36 is that ka should be greater than 1 at the mouth
for the lowest frequency radiated. For a frequency of 100 Hz in air with a sound
speed of 340 m/s, this implies that the mouth diameter should be of the order of
1 m. In practice, however, smaller diameters are often used, it being asserted37 that
the resonance peaks are not noticeable to the human ear if the power variation with
frequency is substantially less than 10:1. Also, the coupling of the transducer to
the horn through the throat and the circuitry associated with the transducer can
be designed (so that the complex ratio of Û to the signal amplitude is frequency-
dependent) to minimize the variations caused by the resonances.

36Beranek, Acoustics, p. 268.
37C. R. Hanna and J. Slepian, “The function and design of horns for loud speakers,” Trans. Am. Inst.
Elec. Eng. 43:393–411 (1924): “Variations in acoustic power of the order of ten to one between 200
and 4000 cycles are not noticed by the ear, however, and the departure from a uniform response can
be kept within this range by a proper design of the horn.” The 10:1 is at variance with the original
conception of the decibel as the minimum increment of sound level detectable by the human ear but
may be appropriate for broadband sound. Beranek (Acoustics, p. 280) chooses a design in one of
his examples for which the variation is 2:1 and refers to such as “fairly well damped” resonances.
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7.8.1 The Webster Horn Equation

Most analyses of horns are based on a quasi-one-dimensional model of sound
propagation in a rigid-walled duct (see Fig. 7.27) of variable cross-sectional area
A(x). To derive the governing equation,38 one integrates the wave equation for the
acoustic pressure over the volume of a duct segment between x and x+Δx. Gauss’s
theorem is then used to change the volume integral of ∇2p to a surface integral of
∇p ·n. But since ∇p ·n = 0 on the walls of the duct, one is left with the differences
of the integrals of ∂p/∂x over the cross section at x + Δx and x. Dividing by Δx

and taking the limit as Δx → 0 then yields

∂

∂x

∫∫
∂p

∂x
dA − 1

c2

∂2

∂t2

∫∫
p dA = 0. (7.8.4)

The approximation is made that p is uniform over the cross section, and the above
reduces to the Webster horn equation

1

A

∂

∂x

(
A
∂p

∂x

)
− 1

c2

∂2p

∂t2 = 0, (7.8.5)

{
∂2

∂x2 + 1

4A2 [(A′)2 − 2AA′′] − 1

c2

∂2

∂t2

}
A1/2p = 0, (7.8.5a)

where in the second version (derived from the first), the primes denote differentia-
tion with respect to x. This is supplemented by Euler’s equation

ρ
∂vx

∂t
= −∂p

∂x
, ρ

∂U

∂t
= −A

∂p

∂x
, (7.8.6)

when a determination of the volume velocity is desired.
The criterion for the applicability of Eq. (5), that the fractional change of p over

a cross section be small, leads (after a brief analysis of the linear acoustic equations)
for cylindrically symmetric disturbances in a duct of radius r(x) (with r ′ = dr/dx)
to

1
2 rr

′(∂p/∂x)rep

prep

 1,

krr ′

2

 1,

(r ′)2

2

 1. (7.8.7)

where the quantities (∂p/∂x)rep and prep denote representative magnitudes of
∂p/∂x and p; the second version results if one assumes (∂p/∂x)rep/prep ≈ k,
as for a plane wave. The third version results in the low-frequency limit if one

38A. G. Webster, “Acoustical impedance, and the theory of horns and of the phonograph,” Proc.
Natl. Acad. Sci. (U.S.) 5:275–282 (1919).
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Fig. 7.27 Conceptual model
used for derivation of the
Webster horn equation

takes r = r ′x with r ′ constant and uses the outgoing spherical-wave expression
x−1eikx for prep. [While Eq. (5) formally applies to propagation in a conical tube
of solid angle ΔΩ with A → x2ΔΩ when x is radial distance from the apex, the
interpretation adhered to here for A is area of a planar cross section transverse to a
fixed Cartesian axis. A wide-angled cone of slowly varying solid angle is therefore
precluded from consideration.]

7.8.2 Salmon’s Family of Horns39

Circumstances for which the Webster horn equation is most easily solved are those
for which the coefficient (1/4A2)[(A′)2 − 2AA′′] in Eq. (5a) is constant. If we set
this40 to −m2 and replace A by πr2, we obtain the ordinary differential equation

d2r

dx2
= m2r. (7.8.8)

The solution of this for r(x) is

r = rth(coshmx + T sinhmx), (7.8.9)

39V. Salmon, “Generalized plane wave horn theory” and “A new family of horns,” J. Acoust. Soc.
Am. 17:199–211, 212–218 (1946).
40One can also set it to +m2, in which case r(x) is rth(cosmx +T sinmx). This is discussed by B.
N. Nagarkar and R. D. Finch, “Sinusoidal horns,” J. Acoust. Soc. Am. 50:23–31 (1971), who point
out that the bell of an English horn is a sinusoidal horn.
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where rth is the radius at the throat (x = 0) and rthTm is dr/dx at x = 0. The case
m = 0 yields the solution

r = rth +
(
dr

dx

)
th
x. (7.8.10)

which describes a conical horn. For m > 0, the special cases of T = 1 and T = 0
yield the exponential horn, where r = rthe

mx , and the catenoidal horn, where r =
rth coshmx. In the former case, m is called the flare constant.

For any member of Salmon’s family described by nonzero m, the solutions p̂ of
the Webster horn equation in the constant-frequency case are linear combinations
of A−1/2eiγ x and A−1/2e−iγ x , where γ = (k2 − m2)1/2 for k > m and γ =
i(m2−k2)1/2 for k < m. Thus, one obtains the transmission relation [by a derivation
similar to that of Eq. (3.4.14)]

[
A1/2p̂

(A1/2p̂)′
]
x=0

=
[

cos γL −γ−1 sin γL

γ sin γL cos γL

] [
A1/2p̂

(A1/2p̂)′.

]
x=L

. (7.8.11)

This equation leads in turn to the impedance translation relation

(
iωρ

ZA
+ r ′

r

)
th

= iγ

(
1 + ε

1 − ε

)
, (7.8.11a)

ε = e2iγL
(
iωρ/ZA + r ′/r − iγ

iωρ/ZA + r ′/r + iγ

)
mth

, (7.8.11b)

where the subscripts th and mth refer to the throat and mouth. This suffices to
determine the throat impedance for any member of Salmon’s family of horns.

7.8.3 Concept of a Semi-Infinite Horn

The quantity ε may be small in magnitude compared with 1 in either of two limiting
circumstances. In the high-frequency limit, where k2 � m2, γ is approximately k

and r ′/r is small compared with k. If the mouth is sufficiently wide, the quantity
iωρ/ZA at the mouth is also nearly ik, so the terms iωρ/ZA and −iγ tend to cancel
in the numerator. Since |e2iγL| is equal to 1, the result is that |ε| is small.

The other limiting case is that where k < m, so γ → i|γ |, but L is large enough
to ensure that e−|γ |L 
 1. In either case, one can expand (1+ ε)/(1− ε) in a power
series such that, to first order in ε,

(
iωρ

ZA

)
th

= iγ −
(
r ′

r

)
th

+ 2iγ ε. (7.8.12)
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With the “small” first-order term in ε discarded, the above is what would have
resulted if one had ignored the impedance boundary condition at the outset and
had required instead that A1/2p̂ be of the form of a constant times eiγ x within the
horn, i.e., either an outgoing dispersive wave or an evanescent wave that decreases
exponentially with increasing x. If one disregards the inapplicability of the Webster
horn equation at large L and overlooks the fact that eiγ x satisfies the Sommerfeld
radiation condition only in the limit k � m, the solution eiγ x for A1/2p̂ can be
loosely interpreted as that appropriate for a horn of infinite length, i.e., a semi-
infinite horn. The concept is useful because it leads to a simple expression for the
throat impedance that has some validity in limiting cases, as explained above.

7.8.4 The Cutoff Frequency

The semi-infinite-horn model predicts Re{Zth} = 0 and therefore no power output
[in accordance with Eq. (1)] when k < m or, equivalently, when f < fc, where the
cutoff frequency is given by

fc = cm

2π
. (7.8.13)

This prediction results because Eq. (12) with ε set to 0 has a right side that is purely
real when k < m [iγ = −(m2 − k2)1/2]. Zero power transmission below the cutoff
frequency is not absolutely correct, but the prediction indicates that relatively small
power output results for a long horn unless k is of the order of m or larger. Equation
(12) yields, to first order in ε, an expression for Re Zth that varies with |γ | primarily
as e−2|γ |L when e−2|γ |L is small and k < m. Thus, for a long horn, where mL

is somewhat larger than 1, there is a rapid decrease of power transmission as the
frequency decreases below the cutoff frequency.

In the other limit, when k is large, the semi-infinite-horn model predicts

Zth = ρc

Ath

k

γ + i(r ′/r)th
→ ρc/Ath. (7.8.14)

The limiting expression is the same as for radiation into an infinitely long duct of
constant cross-sectional area Ath. Note that, for a catenoidal horn, (r ′/r)th is zero,
so Zth is formally infinite according to this model when k = m and is purely real
(resistive) above the cutoff frequency. For the exponential horn, (r ′/r)th = m, so
Zth reduces to

Zth = ρc

Ath

(
γ − im

k

)
, (7.8.15)

and Re{Zth} is 0 at k = m and increases with k.
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To illustrate the transition between the model represented by Eq. (11a) and the
semi-infinite-horn model, some numerical examples41 are given in Fig. 7.28 for an
exponential horn where mrth = 1

30 ; the mouth impedances are taken from Fig. 7.26.

7.8.5 Other Considerations in Horn Design

Electroacoustic transducers are typically coupled to horns through a small cavity.
The coupling can be modeled by an acoustic compliance CA in parallel with the
impedance −iωMA+Zth. The compliance can be taken as V/ρc2 from Eq. (7.2.11);
an estimate of the acoustic inertance MA would be 0.261ρ/rth in accord with the
model of a circular duct with a flanged opening discussed in Sect. 7.6. The overall
acoustic impedance seen by the transducer diaphragm would be

Zdia = [−iωCA + (Zth − iωMA)
−1]−1. (7.8.16)

The selection of the throat radius, which governs the throat impedance in the
high-frequency limit, is constrained by the choice of the cutoff frequency, the
length of the horn, and the mouth radius. The cutoff frequency fc determines
m; for fixed type of radius profile and for given m and L, the mouth radius is
directly proportional to rth. Consequently, a smaller throat radius leads to a mouth
impedance departing more from the ideal value of ρc/Amth that would give no
plane-wave reflection. To circumvent this difficulty, acoustical radiation systems
frequently use two horns, one designed for low frequencies and the other for high
frequencies, with cross-over circuitry to channel each frequency within the overall
signal to the appropriate horn.

Because horn lengths required for the achievement of good impedance matching
at low frequencies are often unwieldy, many commercially marketed horns are of a
folded design,42 so that the propagation direction reverses once or twice before the
wave leaves the mouth, although the wave continually passes through regions with
gradually increasing cross-sectional area.

Another consideration affecting the choice of throat radius is that of nonlinear
distortion.43 One cause of such distortion is the amplitude dependence of the
compliance of the cavity, that is, V/ρ0c

2 → V/[γ (p0 + p′)] if the horn is
operating in air of specific-heat ratio γ . Another nonlinear effect is that the
speed of the wave propagating down the horn depends on amplitude, such that

41Similar examples are exhibited by H. F. Olson, “Horn loud speakers,” RCA Rev. 1(4):68–
83, April, 1937. Examples for the catenoidal horn are given by G. J. Thiessen, “Resonance
characteristics of a finite catenoidal horn,” J. Acoust. Soc. Am. 22:558–562 (1950).
42R. W. Carlisle, “Method of improving acoustic transmission in folded horns,” J. Acoust. Soc. Am.
31:1135–1137 (1959).
43A. L. Thuras, R. T. Jenkins, and H. T. O’Neil, “Extraneous frequencies generated in air carrying
intense sound waves,” J. Acoust. Soc. Am. 6:173–180 (1935); S. Goldstein and N. W. McLachlan,
“Sound waves of finite amplitude in an exponential horn,” ibid. 275–278 (1935).
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Fig. 7.28 Real part of throat impedance, units of ρc/Ath, of an exponential horn with flare
constant m = (30 rth)

−1 versus k/m (frequency in units of nominal cutoff frequency, cm/2π )
for various choices of horn length L. (a) Lm = 0.5; (b) Lm = 1.0; (c) Lm = 2.0; (d) Lm = 5.0.
Dashed line corresponds to the semi-infinite horn limit
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c → c + βp′/ρ0c
2, where β is a positive constant intrinsic to the fluid. (This is

explained in Chap. 11.) The pressure peaks therefore tend to overtake the troughs
with increasing propagation distance, a tendency partially offset by the amplitude
decrease with propagation distance through a horn of expanding area. The primary
result of both effects is the generation of the first overtone (twice the frequency) of
the original signal. The distortion increases with the transducer driving amplitude,
so the design must take into account the peak power required.

7.9 Problems

7.1 A source that nominally generates 1 mW acoustic power in open air at a
frequency of 100 Hz is placed in the center of a very long rectangular duct
with cross-sectional dimensions of 0.1 by 0.2 m. (Take c = 340 m/s and
ρ = 1.2 kg/m3.)

(a) What propagating modes are excited?
(b) How much acoustic power is generated?

7.2 A high-frequency source emitting sound of 8000 Hz frequency is at a
randomly selected point in the duct of Problem 7.1. Estimate the number
of propagating duct modes that are excited.

7.3 A model for fan noise in a circular duct (radius a and aligned parallel to the z

axis) due to Tyler and Sofrin, “Axial flow compressor noise studies,” is based
on the concept of spinning modes. A simplified version of the theory takes
the z component vz of fluid velocity at the fan end (z = 0) of the duct to be

vz = V0 cos[n(φ − Ωt)],

where Ω is fan angular speed and n is number of blades.

(a) What frequencies are generated according to this model?
(b) Give a general expression (involving Bessel functions) for acoustic

pressure at an arbitrary point in the duct (assumed to be of infinite
length).

(c) Under what circumstances will only one propagating spinning mode be
excited?

7.4 An acoustic dipole of nominal power output Pff in a free-field environment
is placed in the center of a long circular duct (radius a) and is aligned with its
dipole-moment vector parallel to the duct axis. The dipole generates angular
frequency ω, where ω is less than the lowest cutoff frequency for a non-
dispersive mode.

(a) What is the power output of the dipole?
(b) How would this answer be affected if the dipole were aligned transverse

to the axis?
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7.5 A semi-infinite rectangular duct (dimensions a by 2a) is capped at the x = 0
end by a flat rigid wall.

(a) If a harmonic point source is located on the duct centerline at x0 =
λ/3, what will the resulting pressure amplitude at large x be? Let Pff
be the free-field acoustic power output; assume that the source angular
frequency ω = 2πc/λ is low enough for only the plane-wave mode to
propagate.

(b) How does the answer change if x0 becomes λ/2?

7.6 Verify (with as much generality as you wish) that the acoustic-mobility
matrix [D] for an acoustical two-port satisfies the reciprocity requirement
D12 = −D21.

7.7 The mechanical analog of an acoustical two-port is sketched in the accom-
panying figure.

(a) Sketch a possible acoustical system to which the analog applies.
(b) Is this a continuous-pressure two-port or a continuous-volume-velocity

two-port?
(c) Sketch the circuit analog for the system.

Problem 7-7

7.8 (a) If a duct segment of length L and cross-sectional area A with a
plane-wave-mode disturbance within it is modeled as an acoustical
two-port, what are the appropriate identifications for the elements
Zleft, Zmid, Zright in Fig. 7.4 for arbitrary kL?

(b) Show that the circuit analog in the low-frequency limit consists of two
capacitors and an inductor.

(c) What is the corresponding mechanical analog?
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(d) How do your results in (b) and (c) compare with results when the flow
is considered incompressible? When the internal pressure gradients are
neglected?

7.9 Three pipes of cross-sectional areas A1, A2, and A3 are joined in a Y
configuration and contain fluid of ambient density ρ and sound speed c.
Consider the dimensions of the junction and the diameters of the three pipes
to be all substantially less than a characteristic wavelength. Sound is incident
from the far end of the first pipe; the conditions are such that there are no
reflected waves from the far ends of pipes 2 and 3. What fraction of the
incident acoustic power is transmitted into pipe 2?

7.10 A long circular duct of radius a is filled with air of ambient density ρ and
sound speed c. At x = 0 the duct has stretched across it a thin membrane
with negligible mass under tension T N/m. The nature of the membrane is
such that it deflects an average distance ȳ given by

ȳ = Δp

8T
a2,

when there is a net pressure drop Δp across it. If a plane wave of angular
frequency ω is incident from the far left, what fraction of the incident power
will be transmitted to the air on the right side of the membrane? (Consider
ka 
 1.)

7.11 The side branch to an infinitely long pipe of cross-sectional area A is another
pipe of cross-sectional area Ab. If this side branch is regarded as a muffler,
what is the corresponding insertion loss?

7.12 The influence of a side branch on acoustic waves in a duct system is such
that it causes the acoustic impedance in the duct just to the left of the branch
to be ZL when that just to the branch’s right is ZR and when the source is
also on the left side. In terms of ρ, c, ZL, ZR , and A (duct cross-sectional
area), what fraction of the incident acoustic power is transmitted out of the
duct into the side branch?

7.13 The incompressible potential flow through a slit of width b in a thin rigid
partition extending across a rectangular duct of dimensions a by d is
described in parametric form (0 < y < a/2, η ≥ 0) by the equations
(see accompanying figure)

Φ =B ln (ξ2 + η2)1/2,

x + iy = a

π
ln

[(ζ − α2)1/2 + (ζ − α−2)1/2]ζ 1/2

α−1(ζ − α2)1/2 + α(ζ − α−2)1/2 ,

α = tan

(
b

a

π

4

)
, ζ = ξ + iη,

where the mapping (Schwarz–Christoffel transformation) described by the
second equation is such that the center of the duct (y = a/2, all x)
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Problem 7-13

corresponds to the negative ξ axis in the complex ζ plane. Show that this
solution leads to the acoustic inertance given on page 329n. For what ranges
of frequency could one ignore the presence of the constriction?

7.14 A long rectangular tube, cross-sectional area A, has a circular patch of
area Ap = 0.1A on one of its walls replaced by an attenuating device.
The principal mechanical property of the device, which resembles a very
lightweight piston mounted flush with the duct wall, is that excess pressure
in the duct causes it to move outward with velocity v = pAp/b, where b is
a dashpot constant (force per velocity). If a plane wave of angular frequency
ω is incident from the left, what fractions of the incident power are reflected,
absorbed, and transmitted beyond the device? Give your answer in terms of
ω, A, c, ρ, and b and consider all applicable dimensions to be much smaller
than c/ω.

7.15 A Helmholtz resonator (volume V ) has two circular mouths, each of radius
a and with negligible neck length. The separation distance between the two
orifices is large compared with a. If a turbulent pressure field Pext cosωt is
simultaneously at the two mouths, near what value of ω would you expect
resonance to occur?
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7.16 A generalization of a Helmholtz resonator that takes into account the
elasticity of its walls assumes that the volume inside the bottle increases
by ΔV = GΔp when the pressure inside increases by Δp, where G is a
constant. If the resonator has volume V , mouth cross-sectional area A, and
effective neck length l′, what are (a) its acoustical impedance and (b) its
resonance frequency with the wall elasticity taken into account? (c) Relative
to what combination of ρ, c, A, l′, and V should G be small if wall elasticity
is to be neglected?

7.17 A Helmholtz resonator has volume V , neck cross-sectional area A, and
resonance frequency fr . In terms of these quantities and of c and ρ,
determine (a) resonator neck inertance MA, (b) effective neck length l′, and
(c) ratio of acoustic pressure inside to fluctuating pressure outside (just above
the neck) when the neck is oscillating at the resonance frequency. In part
(c) assume that the mouth has a wide flange and that the principal cause of
energy loss is acoustic radiation from the mouth.

7.18 The internal friction of a Helmholtz resonator with a resonance frequency of
250 Hz and a volume of 5 × 10−4m3 is such that, at resonance, the pressure
amplitude inside is 15 times that outside.

(a) If the acoustic impedance of the resonator is of the form

ZA = RA − i

(
ωMA − 1

ωCA

)
,

what are RA, MA, and CA?
(b) What is the Q of the resonator? (Take ρ = 1.2 kg/m3 and c = 340 m/s.)

7.19 Two Helmholtz resonators (see accompanying figure), each of volume V , are
connected by a neck with acoustic inertance MA. The first resonator also has
a mouth (inertance MA) that opens into the external environment.

(a) Sketch the circuit analog for this system.
(b) Determine the acoustic impedance at the open mouth and sketch its

magnitude versus frequency.

Problem 7-19
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(c) At what frequencies, if any, does the impedance vanish?
(d) What are the relative phases of the pressures in the two volumes when

the system is oscillating at each such frequency?

7.20 For a given fixed frequency, the acoustic impedance ZHR of a Helmholtz
resonator attached as a side branch to a duct of cross-sectional area A is
purely imaginary (reactive). Plane waves incident within the duct from the
left are partially reflected, such that only a fraction αT of the incident power
is transmitted beyond the resonator. In terms of αT , A, and ρc, what are the
possible values of ZHR?

7.21 To reduce the low-frequency noise transmitted by a square duct of cross-
sectional dimensions 0.4 by 0.4 m, a resonance chamber of volume V is
fitted over a 2-cm-radius hole on the side of the duct.

(a) If the chamber performs as a Helmholtz resonator without a neck, what
should V be for nearly total reflection of 60-Hz noise?

(b) If the chamber is designed in this manner, what fraction of incident
power is transmitted past the resonator when the frequency is 120 Hz?

(c) Suppose one uses three such resonators instead of one, spaced at
intervals that correspond to 1

4 wavelength at 120 Hz. What fraction of
incident power will be transmitted at 120 Hz?

7.22 Discuss the example of sound transmission past a junction between two ducts
using the framework and terminology of matched asymptotic expansions. In
particular, explain how one would define and derive an acoustic inertance
associated with the junction from the incompressible-potential-flow solution
for the junction. Your definition should lead (and you should demonstrate
that this is so) to

MA,J = 2(KE)excess

U2
12

,

where (KE)excess is the excess kinetic energy caused by the presence of the
junction and U12 is the volume velocity through the junction.

7.23 A reverberant room contains sound of predominantly 500 Hz at a sound-
pressure level of 80 dB. One of the walls (concrete, 15 cm thick) has a 1-cm-
radius hole leading to the outside.

(a) How much acoustic power leaks through the hole?
(b) If the wall dimensions are 4 by 3 m, what is its apparent transmission

loss due to the presence of the hole?

7.24 A plane wave impinges at angle of incident θ on a flat rigid surface that has
a circular patch of radius a at its center. At the frequency ω of interest, the
patch behaves like a pressure-release surface. Given that ka 
 1, determine
the effect of the patch on the reflected (or scattered) wave field. If the incident
wave has intensity Iav, how much power is scattered by the patch?
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7.25 Two long square ducts (each of cross-sectional dimensions w by w) are side
by side and share a common wall. An orifice of radius a through this wall
couples the two ducts so that a wave traveling through one causes waves to
propagate away from the orifice in the other. Derive an expression applicable
to low frequencies for the sound-pressure-level difference between the two
ducts when the sound source is in one of the ducts.

7.26 Suppose that the orifice considered in Sect. 7.5 has a porous blanket of
flow resistance Rf extending across it. For the circumstances adopted in
the derivation of Eq. (7.5.11), determine expressions for the rate of energy
dissipation by the blanket and for the power transmitted to the other side of
the plate.

7.27 A circular duct of radius b has a rigid partition extending across its cross
section, within which is a circular orifice, centered at the duct axis, of radius
a. Determine upper and lower bounds for the acoustic inertance of the orifice.
What nontrivial limiting expression should describe the inertance in the limit
of small a/b?

7.28 Karal’s low-frequency result cited on page 329n for the acoustic inertance
associated with the junction between two cylindrical ducts is slightly in error
in the limit b/a 
 1. What should the result in this limit be?

7.29 A long circular duct of radius a opens with a wide flange into an unbounded
space (z > 0). A plane wave of angular frequency ω = ck is incident from
the −z end of the duct toward the opening. Derive an approximate formula
valid for ka 
 1 for the fraction of the incident power radiated out of the
end of the pipe.

7.30 A piston oscillates with displacement amplitude of 0.0001 m at one end of a
thin-walled rigid circular tube of radius 0.05 m. The end of the tube extends
without a flange into open air of ambient density 1.2 kg/m3 and sound speed
340 m/s.

(a) What should the length of the tube be if its lowest resonance frequency
is to be 250 Hz?

(b) What acoustic power is generated by the piston when it is oscillating at
250 Hz in such a tube?

(c) What is the Q of the resonance?
(d) What is the next highest resonance frequency for the tube?

7.31 A single-expansion-chamber reaction muffler is to be designed to provide
at least 10 dB transmission loss for all frequencies between 500 and 1500
Hz. The smallest possible expansion-area ratio m = AM/A, given AM >

A, compatible with this design objective is most desirable. What values of
L (expansion chamber length) and m would you select? Take the speed of
sound of the air in the muffler to be 340 m/s.

7.32 A segmented duct has cross-sectional area A1 for x < 0, area A2 for 0 <

x < λ/2, area A3 for λ/2 < x < 3λ/4, and area A4 for x > 3λ/4, where
λ denotes an acoustic wavelength. If a plane wave is incident from the left
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(x < 0) through the segment of area A1, what fraction of the incident power
is transmitted to the segment of area A4?

7.33 Derive an energy-conservation corollary for the Webster horn model repre-
sented by Eqs. (7.8.5) and (7.8.6). What does the model imply concerning
the time average of pU for constant-frequency disturbances?

7.34 A horn’s cross-sectional area A(x) is described by αx, where α is a constant.
Show that the solution of Webster’s horn equation for the constant-frequency
case can be expressed in terms of Bessel functions and Neumann functions
(Bessel functions of the second kind).

7.35 The diaphragm of a transducer has area Adia and is coupled to a horn of
throat area Ath via a cavity of volume V . Driving frequencies of interest
are such that neither kV/Adia nor kV/Ath is necessarily small, although
k3V, k2Adia, and k2Ath are each much less than 1. Analysis of the system
gives an acoustic inertance MA for the flow from the cavity into the horn. The
acoustic impedance in the horn just beyond the throat is that appropriate to a
semi-infinite exponential horn of flare constant m. Discuss how the system’s
performance varies with the cavity volume V when the driving frequency is
1
5 , equal to, and 5 times the nominal cutoff frequency of the horn. (Make
whatever assumptions seem reasonable concerning the other parameters of
the system.)

7.36 A perforated pipe of radius b has n holes per unit length, each of radius a.
If the pipe is in an open space, and if planar waves of constant frequency
are made to propagate down the pipe, what relation should hold between
wave number k and angular frequency ω? Derive a suitable wave equation
using approximations analogous to those that yield Eqs. (7.7.11). Is there
a cutoff frequency for plane-wave propagation down the pipe? If so, adopt
some plausible values for the system’s parameters and estimate the cutoff
frequency’s order of magnitude.

7.37 Determine an expression for the insertion loss for the model of a straight-
through muffler (Fig. 7.24) represented by Eqs. (7.7.11a) to (7.7.14). Sketch
IL versus kL for Aout/Apipe = 3, nρ/MA = 100Apipe/L

2.



Chapter 8
Ray Acoustics

8.1 Wavefronts, Rays, and Fermat’s Principle

The concept of a wavefront plays a central role in that branch of acoustical
theory known as geometrical acoustics or ray acoustics. A wavefront is any
moving surface along which a waveform feature is being simultaneously received
(see Fig. 8.1). For example, if the time history of acoustic pressure has a single
pronounced peak that arrives at x at time τ(x), the set of all points satisfying
t = τ(x) describes the corresponding wavefront at time t . For a constant-frequency
disturbance, the wavefronts are surfaces along which the phase of the oscillating
acoustic pressure everywhere has the same value. It is not necessarily assumed that
the amplitude along a wavefront is constant or that the wavefront is planar; however,
the theory described below tacitly assumes that the amplitude varies only slightly
over distances comparable to a wavelength and that the radii of curvature of the
wavefront are substantially larger than a wavelength.

8.1.1 Ray Paths in Moving Media

The theory of plane-wave propagation described in Sect. 1.7 predicts that wavefronts
move with speed c when viewed in a coordinate system in which the ambient
medium appears at rest. If the ambient medium is moving with velocity v, the wave
velocity cn seen by someone moving with the fluid becomes1 v+cn in a coordinate
system at rest. Here n is the unit vector normal to the wavefront; it coincides with

1G. G. Stokes, “On the effect of wind on the intensity of sound,” Rep. Br. Assoc. Adv. Sci., 27th
Meet., Dublin, 1857, pt II, Misc. Commun., pp. 22–23; G. Jaeger, “On the propagation of sound
in moving fluid,” Sitzungsber. Kais. Akad. Wiss. (Vienna), Math-Naturwiss. Kl., sec. IIa 105:1040–
1046 (1896); E. H. Barton, “ On the refraction of sound by wind,” Phil. Mag. (6)1:159–165 (1901).
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Fig. 8.1 Concept of a wavefront. Points over which the wavefront simultaneously passes receive
the same waveform feature at the same time

the direction of propagation if the coordinate system is moving with the local
ambient fluid velocity v. However, the direction of propagation perceived by a
stationary observer is not necessarily the same as that of n. The latter is independent
of the velocity of the frame of reference, but the direction of propagation is not.
(Throughout the following four sections, the subscript on vo is omitted.)

Let xP (t) be a moving point (Fig. 8.2) that lies on the wavefront t = τ(x) at an
initial time. Then, according to the reasoning outlined above, xP (t) will always lie
on the moving wavefront if its velocity is

dxP

dt
= v(xP , t) + n(xP , t)c(xP , t) = vray. (8.1.1)

Here we allow for the possibility that v and c may vary with both position and time.
The line described in space by xP (t) versus t is a ray path; the function xP (t) is a
ray trajectory. The speed of the wavefront normal to itself is the dot product of the
right side of (1) with n; this product equals c+v ·n, which is less than the magnitude
|cn + v| of the ray velocity vray.
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Fig. 8.2 Concept of a ray
path. The point xP (t) moves
with velocity cn + v such that
it is always on wavefront
τ(x) = t and in so doing
traces out a ray path

Equation (1) suffices to determine the wavefront at successive times and repre-
sents an extension of Huygens’ principle. For inhomogeneous media, however, it
is awkward to use by itself because it requires a knowledge of n at each instant
along the path (which would require the construction of the wavefront surface in
the vicinity of the ray at closely spaced time intervals). To circumvent this, we
derive an additional differential equation that allows the prediction of the time rate
of change of n. Instead of dealing with n directly, we use a wave-slowness vector2

s(x) = ∇τ(x), which is parallel to n because ∇τ is perpendicular to the surface
t = τ(x).

The label “wave-slowness” applies because the reciprocal of |s| is the speed c +
n · v with which the wavefront moves normal to itself. The demonstration of this
proceeds from a consideration of the wavefront at closely spaced times t and t +Δt .
For a given ray trajectory xP (t), the position at t + Δt is approximately xP (t) +
ẋP (t)Δt , so t + Δt ≈ τ(xP + ẋPΔt), which in turn is approximately τ(xP ) +
Δt ẋP ·∇τ . However, t = τ(xP ) and ∇τ = s, so this requires that ∇τ · ẋP = 1 or,
from (1), that

s · (cn + v) = 1 cs ·n = 1 − v · s (8.1.2)

for any given point on the waveform at any given time. Since s is parallel to n, one
has s = (s ·n)n and n = s/(s ·n), and the above therefore yields

s = n

c + v ·n
, n = cs

Ω
, (8.1.3)

2For a plane wave of constant frequency, s is k/ω, so it is parallel to the phase velocity and equal
in magnitude to the reciprocal of the phase speed. The terminology dates back to L. Cagniard,
Reflection and Refraction of Progressive Seismic Waves, Gauthier-Villars, Paris, 1939, trans. E. A.
Flinn and C. H. Dix, McGraw-Hill, New York, 1962.
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where

Ω = 1 − v · s = 1 − v ·∇τ = c

c + v ·n
. (8.1.4)

Equation (3) substantiates the assertion that |s|−1 = c+n·v. Also, because n·n = 1
and s = ∇τ , the above relations give

s2 = Ω2

c2
, (∇τ)2 = Ω2

c2
. (8.1.5)

This partial-differential equation is the eikonal equation, τ(x) being the eikonal.3

A differential equation for the time rate of change of s along a ray trajectory can
be derived4 starting from

ds(xP )

dt
= (ẋP ·∇)s = c(n ·∇)s + (v ·∇)s, (8.1.6)

where all the indicated quantities are understood to be evaluated at xP (t). Because
n is in the direction of s, the first term has a factor (s · ∇)s, which can be
expressed as

(s ·∇)s = −s×(∇×s)+ 1
2∇s2 = 0+ 1

2∇Ω2

c2 = −Ω

c2 ∇(v ·s)−Ω2

c3 ∇c, (8.1.7)

3In optical literature, the eikonal W(x) is defined to be coτ (x), where co is a reference (constant)
wave speed, e.g., the speed of light in vacuo. Equation (5) then, with v set to 0, would yield
(∇W)2 = (co/c)

2, where co/c is the index of refraction. The introduction of a reference sound
speed, however, seems superfluous in the present context, so τ(x) is here referred to as the eikonal.
See M. Born and E. Wolf, Principles of Optics, 4th ed., Pergamon, Oxford, 1970, pp. 110–112.
The term was introduced into optics by H. Bruns in 1895; the concept, however, is due to W.
R. Hamilton (1832). The version given here of the eikonal equation was derived for motion of
weak discontinuities in a fluid by G. S. Heller, “Propagation of acoustic discontinuities in an
inhomogeneous moving liquid medium,” J. Acoust. Soc. Am. 25:950–951 (1953), and by J. B.
Keller, “Geometrical acoustics, I: The theory of weak shock waves,” J. Appl. Phys. 25:938–947
(1954).
4The earliest of the many different published derivations is E. A. Milne, “Sound waves in the
atmosphere,” Phil. Mag. (6)42:96–114 (1921). The analysis of ray paths in a moving stratified
fluid dates back to Jaeger, “On the propagation of sound,” and Barton, “On the refraction of
sound by wind,” and to S. Fujiwhara, “On the abnormal propagation of sound waves in the
atmosphere,” Bull. Cent. Meteorol. Obs. Jap. vol. 1, no. 2 (1912); vol. 4, no. 2 (1916), and R.
Emden, “Contributions to the thermodynamics of the atmosphere, II: On the propagation of sound
in a wind-moving polytropic atmosphere,” Meterorol. Z. 53:13–29, 74–81, 114–123 (1918). For a
medium without ambient flow, the ray equations date back to Snell, Huygens, and W. R. Hamilton,
although they were rarely applied to the propagation of sound in inhomogeneous media until the
twentieth century.
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where we recognize that ∇ × (∇τ) = 0 and we substitute for s2 from Eq. (5).
Subsequent insertion of Eq. (7) and of n = cs/Ω into Eq. (6) yields

ds

dt
= −Ω

c
∇c − ∇(v · s) + (v ·∇)s. (8.1.8)

A further reduction follows from the vector identity [of which that in Eq. (7) is a
special case]

∇(v · s) = v × (∇ × s) + s × (∇ × v) + (v ·∇)s + (s ·∇)v, (8.1.9)

where the first term is zero because s is a gradient.
The ray-tracing equations are Eqs. (1) and (8), which we here write, with the

substitution n = cs/Ω and with the identity (9), as5

dx

dt
= c2s

Ω
+ v, (8.1.10a)

ds

dt
= −Ω

c
∇c − s × (∇ × v) − (s ·∇)v, (8.1.10b)

or (in Cartesian coordinates)

dsi

dt
= −Ω

c

∂c

∂xi
−

3∑
j=1

sj
∂

∂xi
vj . (8.1.10b’)

(Here and in what follows the subscript P is omitted.) These equations do not
depend on the spatial derivatives of s; so if c(x, t) and v(x, t) are specified, and
if a ray position x and wave-slowness vector s are specified at time to, Eqs. (10) can
be integrated in time to determine x and s at any subsequent instant; no information
concerning neighboring rays is required. These are nonlinear, but they are ordinary

5These are a special case of the general ray equations for propagation of a wave packet of
slowly varying frequency ω(x, t) and wave number k(x, t) in a time-dependent inhomogeneous
anisotropic medium. If F(ω, k, x, t) = 0 describes the dispersion relation at time t near point x

rays are given by the equations (in Cartesian coordinates)

dω

dt
= − ∂F/∂t

∂F/∂ω

dxi

dt
= − ∂F/∂ki

∂F/∂ω

dki

dt
= ∂F/∂xi

∂F/∂ω
.

In our particular case, F = (ω − v · k)2 − c2k2 = 0 comes from the eikonal equation. For
a derivation, see G. B. Whitham, “Group velocity and energy propagation for three-dimensional
waves,” Common. Pure Appl. Math. 14:675–691 (1961); “A note on group velocity,” J. Fluid Mech.
9:347–352 (1960). Various versions of the second ray-tracing equation (10b) are reviewed and
shown to be equivalent by R. Engelke, who gives a derivation of his own in “Ray trace acoustics
in unsteady inhomogeneous flow,” J. Acoust. Soc. Am. 56:1291–1292 (1974).
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differential equations of first order, so they are amenable to standard numerical
techniques of integration.6

8.1.2 Fermat’s Principle

If l denotes distance along a ray path, then dx/dl (abbreviated here as x′) denotes
ray direction. The ray-speed magnitude vray satisfying Eq. (1) is therefore such that

cn = vrayx
′ − v. (8.1.11)

However, n ·n is 1 and x′ · x′ is also 1, so vray satisfies the quadratic equation

v2
ray − 2vrayv · x′ − (c2 − v2) = 0,

whose positive solution, given c2 > v2, is

vray = v · x′ + [c2 − v2 + (v · x′)2]1/2. (8.1.12)

The time that a ray takes to go from xA to xB is consequently

TAB =
∫ lB

lA

dl

v · x′ + [c2 − v2 + (v · x′)2]1/2 . (8.1.13)

Here we assume that c and v are functions only of position, such that for a given ray
path they can be regarded as functions of distance l along the path.

Fermat’s principle7 is that the actual ray path connecting xA and xB is such
that it renders the travel-time integral TAB stationary with respect to small virtual
changes in the path. If a small variation x(l) → x(l) + δx(l) is imposed on the
actual path (see Fig. 8.3), the resulting variation δTAB should be zero to first order
in the δx.

A proof for when the path has no intermediate reflections proceeds with change
of integration variable to the projection q of the ray path on the straight line

6See, for example, R. W. Hamming, “Numerical solution of ordinary differential equations,” in M.
Klerer and G. A. Korn (eds.), Digital Computer User’s Handbook, McGraw-Hill, New York, 1967,
chap. 2.6; C. B. Moler and L. P. Solomon, “Use of pplines and numerical integration in geometrical
acoustics,” J. Acoust. Soc. Am. 48:739–744 (1970).
7Pierre de Fermat (1657) originally conjectured that the optical travel time is a minimum (principle
of least time), but it was later recognized by W. R. Hamilton (1833) that there are exceptions to
this and that the correct statement is that the actual path is stationary with respect to other adjacent
paths. The proof that the principle also applies to acoustic waves in moving media is due to P.
Uginčius. “Ray acoustics and Fermat’s principle in a moving inhomogeneous medium,” J. Acoust.
Soc. Am. 51:1759–1763 (1972).
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Fig. 8.3 Fermat’s principle: the travel time of the actual ray path connecting two points is
stationary with respect to small virtual changes

connecting xA and xB , such that dl becomes (xq · xq)
1/2dq and x′ becomes

xq/(xq · xq)
1/2, where xq is the derivative of x with respect to q. The travel time

TAB then becomes the integral from 0 to |xB − xA| over q of L(xq, x), where

L(xq, x) = x2
q

v · xq + [(c2 − v2)x2
q + (v · xq)2]1/2

. (8.1.14)

The requirement that the travel time be stationary then leads to the Euler–Lagrange
equation8

d

dq

∂L

∂xq

− ∂L

∂x
= 0. (8.1.15)

(Here ∂L/∂x denotes the vector with components ∂L/∂x, ∂L/∂y, ∂L/∂z.) Alge-
braic manipulations with the relations and definitions derived earlier in this section
reduce the partial derivatives of the function L(xq, x) to

8For introductory discussions of the calculus of variations, see J. Mathews and R. L. Walker,
Mathematical Methods of Physics, Benjamin, New York, 1965, pp. 304–326; S. H. Crandall,
D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown, Dynamics of Mechanical and
Electromechanical Systems, McGraw-Hill, New York, 1968, pp. 1–35, 417–424. There is an
analogy between Eq. (15) and Lagrange’s equations of classical mechanics, between L(xq , x)

and a Lagrangian, and between Fermat’s principle and Hamilton’s principle.
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∂L

∂xq

= n

n · vray
= s, (8.1.16a)

∂L

∂x
= −dl/dq

vray

[
Ω

c
∇c + s × (∇ × v) + (s ·∇)v

]
. (8.1.16b)

So Eq. (15) is equivalent to the ray-tracing equation (10b). Fermat’s principle is
therefore a consequence of the ray equations.

In a wider sense, Fermat’s principle also applies to ray paths whose directions
change abruptly. It leads to the predictions, inferred earlier (Chap. 3) from the trace-
velocity matching principle, that angle of reflection equals angle of incidence (law
of mirrors) upon reflection at a flat surface and that angle of refraction is related to
angle of incidence by Snell’s law (in the absence of ambient flow) on transmission
through a planar interface. The principle also correctly predicts paths by which
diffracted waves can reach a listener.

Example A source and listener (see Fig. 8.4) are at heights h and z above a plane
interface separating two fluids with sound speeds cI and cII, where cII > cI. Two
of the stationary paths are the direct path and the reflected path. Another possibility
is a path that goes from source to interface along a line that makes an angle θ with
the vertical, then proceed just below the surface along a horizontal line, and then
emerges into medium I along a path that proceeds from surface to listener at an
angle φ with the vertical. The travel time along such a path is

TAB = h

cI cos θ
+ r − h tan θ − z tanφ

cII
+ z

cI cosφ
, (8.1.17)

where r is the total horizontal distance. The requirement that TAB be stationary
with respect to variations in θ leads to the equation ∂TAB/∂θ = 0 or,
after some algebra, to sin θ = cI/cII. Consequently, θ is the critical
angle θc = sin−1(cI/cII), that is, the angle at which the reflection-coefficient
magnitude first becomes –1. The requirement ∂TAB/∂φ = 0 similarly
leads to φ = sin−1(cI/cII). The only constraint on the solution is that
the travel time along the middle segment must be positive, so r must
exceed (h + z) tan θc.

This refraction arrival path,9 which we here infer from Fermat’s principle, lies
outside the domain of what is normally referred to as geometrical acoustics. The

9C. B. Officer, Introduction to the Theory of Sound Transmission, McGraw-Hill, New York, 1958,
pp. 195–201; W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media,
McGraw-Hill, New York, 1957, pp. 93–102; K. O. Friedrichs and J. B. Keller, “Geometrical
acoustics, II: diffraction, reflection, and refraction of a weak spherical or cylindrical shock at
a plane interface,” J. Appl. Phys. 26:961–966 (1955). Applications of the refraction arrival to
geophysical exploration date back to A. Mohorovičić (1910).
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Fig. 8.4 Possible ray paths connecting source and listener above a plane interface separating two
dissimilar fluids

existence of such a path, however, is confirmed by the solution of the boundary-
value problem for a transient point source above a plane interface above two fluids.
If r is sufficiently large, the first arrival comes with a travel time given by Eq. (17),
with θ and φ set to θc, and arrives from a direction that is proceeding obliquely
upward at an angle of θc with the vertical.

The applicability of Fermat’s principle to the prediction of paths like that of the
refraction arrival is a principal tenet of the geometrical theory of diffraction.10 A
diffracted ray is a ray which originates at an interface, a surface, or an edge and
which propagates with all the attributes of a ray generated by a real source but which
is created by a process inexplicable (and therefore labeled as diffraction) within the
confines of the ordinary geometrical-acoustics theory. The portion of the refraction
arrival path from the interface to the listener is an example of a diffracted ray.

8.2 Rectilinear Sound Propagation

For a homogeneous medium in which c and v are constant, a consequence of the
second ray-tracing equation (8.1.10b) is that s and n are constant. The ray velocity
dx/dt is also constant, and the ray paths are straight lines. This deduction, for the
circumstances just described, is the law of rectilinear propagation of sound.

10J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52:116–130 (1962); “A geomet-
rical theory of diffraction” in L. M. Graves (ed.), Calculus of Variations and Its Applications, Proc.
Symp. Appl. Math., vol. 8, McGraw-Hill, New York, 1958, pp. 27–52; G. L. James, Geometrical
Theory of Diffraction for Electromagnetic Waves, Peregrinus, Stevenage, England, 1976, pp. 97–
98, 130–131, 169–171.
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Fig. 8.5 Construction of a
wavefront at time t when the
wavefront at time t = 0 is
given. The ambient fluid
velocity is zero and the
ambient sound speed is
constant

8.2.1 Parametric Description of Wavefronts

Suppose a wavefront (moving toward larger values of z) is given by z = f (x, y) at
t = 0. The ambient velocity v is zero, and c is constant. It is desired to describe the
wavefront at some later time t (see Fig. 8.5).

The ray passing through a point xP on the initial wavefront is moving in the
direction n, where (with fx = ∂f/∂x)

n =
{ ∇[z − f (x, y)]

|∇[z − f (x, y)]|
}

x=xP

= ez − fxex − fyey

(1 + f 2
x + f 2

y )
1/2

. (8.2.1)

At time t , the ray is at x = xP + ctn. If we let α and β represent xP and yP , this
position can be written as

x(α, βt) = αex + βey + f (α, β)ez + ct (ez − fαex − fβey)

(1 + f 2
α + f 2

β )
1/2

. (8.2.2)



8.2 Rectilinear Sound Propagation 437

This gives a parametric description of the wavefront at time t through the
parameters α and β; any choice of α and β generates a point on the wavefront.
Thus, an analytical expression replaces Huygens’ graphical construction.

8.2.2 Variation of Principal Radii of Curvature Along a Ray

Any surface locally resembles an elliptical bowl (concave or convex) or a saddle and
has two principal radii of curvature. If one picks any point (Fig. 8.6) on the surface,
chooses it to be the origin, and lets the z direction be perpendicular to the surface
at that point, the x and y axes can always be selected in such a way that the surface
near the selected point can be described to second order in x and y by

z = x2

2r1
+ y2

2r2
, (8.2.3)

Fig. 8.6 Characteristic local shapes of surfaces: (a) elliptical bowl; (b) saddle shape; (c) geometry
used in the discussion of the variation of wavefront radii of curvature along a ray
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where r1 and r2 (possibly negative) are the two principal radii of curvature. [The
identification follows since a circle in the xz plane of radius r1 that is tangential to
the z = 0 plane is given by (z − r1)

2 + x2 = r2
1 or by z = x2/2r1 for z 
 r1,

|x| 
 r1.]
The variation of r1 and r2 along a ray moving through a homogeneous quiescent

medium can be deduced from Eq. (2). One chooses the coordinate system so that
the ray passes through the origin t = 0 in the +z direction and f (α, β) equals
α2/2r0

1 + β2/2r0
2 (to second order in α and β). Then, to second order in α and β,

the z component of (2) yields

z = ct + α2

2r0
1

(
1 − ct

r0
1

)
+
(

β2

2r0
2

)(
1 − ct

r0
2

)
. (8.2.4)

However, to first order (which is all that is required) in α and β, the x and y

components of Eq. (2) yield α(1 − ct/r0
1 ) and β(1 − ct/r0

2 ) for x and y; thus to
second order in x and y one has

z = ct +
1
2x

2

r0
1 − ct

+
1
2y

2

r0
2 − ct

. (8.2.5)

Since this is of the same form as Eq. (3), the directions associated with the principal
radii of curvature remain constant along any given ray. The radii themselves
decrease by ct during time t ; or, equivalently, after the ray has traveled distance
Δz, they are each decreased by Δz. This assumes that the wavefront is concave
along the ray of interest. If it is convex or saddle shaped such that, say, r0

1 < 0, |r1|
increases with the distance of propagation, the incremental increase equaling the
incremental change of distance along the ray. A decrease of wavefront curvature
radius is associated with a focusing of rays and an increase with a defocusing.

8.2.3 Caustics

Equation (5) indicates that if, say, r0
1 > 0 and r0

2 > r0
1 , the wavefront will develop

a cusp (r1 = 0) at time t = r0
1/c. Points at which this occurs are points at which

adjacent rays intersect. The locus of all such points, each of which corresponds to
a given ray proceeding out from the original wavefront, is a caustic surface (see
Fig. 8.7). Since the wavefront has a cusp at the point where it touches a caustic, the
assumption that the wavefront everywhere locally resembles a propagating plane
wave is no longer approximately valid and the basic tenets of geometrical acoustics
are inapplicable. The extension of the theory to cover such contingencies is deferred
to Sect. 9.4.

The geometrical-acoustics prediction, however, of where the caustics occur is
of intrinsic interest because it indicates where abnormally high amplitudes can be
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Fig. 8.7 Formation of a caustic [From A. D. Pierce, J. Acoust. Soc. Am. 44:1055 (1968)]

expected. Since the concept of a caustic applies also to rays in inhomogeneous
media, the location and meteorological circumstances of intrinsically noisy activ-
ities,11, e.g., static tests of large rocket engines, are often carefully selected so that
distant populated areas are not touched by caustics.

Example A wavefront z = f (x) has a concave radius of curvature R(x) with a
minimum value Ro at x = 0. The z axis is perpendicular to the wavefront at x = 0;
also, the origin is selected so that f (0) = 0. We seek to describe the caustic in the
vicinity of the point x = 0, z = Ro (see Fig. 8.8).

Solution Since the ray passing through the wavefront at x = α touches the caustic
when ct = R(α), Eqs. (2) yield

x = α − R(α)f ′(α)[1 + (f ′)2]−1/2, (8.2.6a)

z = f (α) + R(α)[1 + (f ′)2]−1/2, (8.2.6b)

11R. N. Tedrick, “Meteorological focusing of acoustic energy,” Sound: Uses Control 2(6):24–27
(1963); J. Reed, “Climatology of airblast propagations from Nevada Test Site nuclear airbursts,”
Rep. SC-RR-69-572, Sandia Laboratories, Albuquerque, 1969, available from National Technical
Information Services, Washington, Accession No. N70-29525.
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Fig. 8.8 Geometry adopted for study of the shape of a caustic surface near its vertex

(primes denoting derivatives with respect to α) as the parametric description of the
caustic. If these are expanded in a power series in α, we find

x ≈ α − (Ro + 1
2R

′′
oα

2)(αf ′′
o + 1

6f
iv
o α3)[1 − 1

2 (f
′′
o α)

2]
≈ (1 − Rof

′′
o )α − [ 1

2R
′′
of

′′
o + 1

6Rof
iv
o − 1

2 (f
′′
o )

3Ro]α3

z ≈ 1
2f

′′
0 α

2 + (Ro + 1
2R

′′
0α

2)[1 − 1
2 (f

′′
o α)

2]
≈ Ro + [ 1

2f
′′
o − 1

2 (f
′′
o )

2Ro + 1
2R

′′
0 ]α2,

with the zero subscript implying evaluation at α = 0. Note that the geometry
requires fo, f ′

o, f
′′′
o , and R′

o each to be zero.
Since the radius of curvature of a line is given by

R(α) = [1 + (f ′)2]3/2

f ′′(α)
, (8.2.7)
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one finds f ′′
o = 1/Ro and R3

of
iv
o = 3−RoR

′′
o , so the above approximate description

of the caustic reduces to

x ≈ −1

3

R′′
o

R0
α3, z − Ro ≈ 1

2R
′′
oα

2. (8.2.8)

The caustic is consequently given by

x = ∓
(

8

9R2
oR

′′
o

)1/2

(z − Ro)
3/2 (8.2.9)

in the vicinity of z = Ro, x = 0.

The characteristic cusp with which the two branches of the caustic meet is
sometimes called an arête.12 Beyond the arête and between the two branches, three
rays, rather than one, pass through each point, and the wavefront has a folded
form.13

8.3 Refraction in Inhomogeneous Media

That sound waves refract (change their propagation direction) on passing through an
interface separating two fluids with different sound speeds is discussed in Sect. 3.6.
In continuous media, refraction is characterized by a gradual bending of ray paths
rather than by an abrupt change of direction. Here we explore the implications of
the ray-tracing equations as regard such ray bending.

8.3.1 Refraction by Sound-Speed Gradients

When the ambient fluid velocity is zero, and when the sound speed is independent
of time, the wave slowness s becomes n/c and Eqs. (8.1.10) reduce to

dx

dt
= c2s,

ds

dt
= −1

c
∇c. (8.3.1)

12W. D. Hayes, in “Round table discussion on sonic boom problems,” Aircraft Engine Noise and
Sonic Boom, AGARD Conf. Proc. 42:36–38 (1969).
13See, for example, the shadowgraph by W. J. Pierson, Jr. of water waves focused by passage over
a bottom protuberance, given by J. J. Stoker, Water Waves, Interscience, New York, 1957, p. 135.
Analogous features appear in Schlieren photographs of shock waves after passage through jets;
see, for example, S.-L. V. Hall, “Distortion of the sonic boom pressure signature by high-speed
jets,” J. Acoust. Soc. Am. 63:1749–1752 (1978).
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To determine the influence of the sound-speed gradient on the bending of rays, we
consider the ray that initially passes through the origin in the +x direction, such that
s = ex/c(0) at t = 0. Then, to first order in t , the second of Eqs. (1) yields

s = 1

c
ex − 1

c
(∇c) t, (8.3.2)

where c and its derivatives (cx, cy, cz) are understood to be evaluated at (0, 0, 0).
It accordingly follows from the equations for dy/dt and dz/dt that y and z are
proportional to t2 for small t . Then, because x = ct to lowest order, the first of
Eqs. (1) yields, to lowest nonvanishing order in x,

y = −1

2

cy

c
x2, z = −1

2

cz

c
x2, (8.3.3)

which are the equations of parabolas.
Suppose, moreover, that one has selected the coordinate axes in such a way that,

at x = 0, cz = 0 and ∇c is parallel to ey . Then the ray path is locally curved toward
negative y if cy > 0 and curved toward positive y if cy < 0. In either case the radius
of curvature of the ray path is c/|cy | (see Fig. 8.9).

The above discussion leads to the conclusion that if a sound ray is moving
through a medium with variable sound speed, the ray curves away from its

Fig. 8.9 Ray-path curvature
in a medium with spatially
varying sound speed. Ray
bends in plane of transverse
gradient ∇⊥c and of ray path,
away from direction of ∇⊥c

with a radius of curvature
equal to c/|∇⊥c|
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direction of propagation if the component ∇⊥c of ∇c transverse to the direction
of propagation is nonzero. The ray bends in the plane of ∇⊥c and the local ray path
but away from the direction of ∇⊥c, toward the lower-sound-speed side. The radius
of curvature of the ray path is c/|∇⊥c|, or c/(|∇c| sin θo), where θo is the angle
between the ray direction and the direction of ∇c.

The bending of rays toward regions of lower sound speed is explicable in terms
of wavefronts. Since the portion of the wavefront on the low-sound-speed side of a
ray is moving slower, the wavefront must tilt toward that side. Since the ray (given
v = 0) remains normal to the wavefront, it bends in that direction.

8.3.2 Rays in a Medium with Constant-Sound-Speed
Gradient14

When ∇c is everywhere the same, the ray path is always a perfect arc of a circle. To
demonstrate this, it is sufficient to assume that c varies only with z and that the ray
is moving in the xz plane, so sy = 0. Equation (8.1.5) with v = 0 therefore gives
s2
z = c−2 − s2

x , and so the relation sz/sx = dz/dx [from Eq. (1)] yields

(
dz

dx

)2

− 1

c2s2
x

= −1. (8.3.4)

Furthermore, the second of Eqs. (1) predicts that sx is constant when c = c(z).
That Eq. (4) describes a circle when dc/dz is constant results because the

algebraic equation

(x − a)2 + (z − b)2 = r2
c

has the property

(
dz

dx

)2

=
(
x − a

z − b

)2

= r2
c

(z − b)2 − 1. (8.3.5)

Consequently, a comparison of Eqs. (4) and (5) indicates that if c = co − αz (such
that ∇c = −αez is constant), the integral of Eq. (4) is a circle of radius rc = 1/αsx
centered at a point on the line (see Fig. 8.10) at the virtual height z = co/α, where
the sound speed extrapolates to zero. Of the possible rays passing through the point,
those moving perpendicular to the sound-speed gradient bend the most.

14A tabulation of sound-speed profiles for which the ray-tracing equations can be integrated in
closed form is given by A. Barnes and L. P. Solomon, “Some curious analytical ray paths for some
interesting velocity profiles in geometrical acoustics,” J. Acoust. Soc. Am. 53:147–155 (1973).
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Fig. 8.10 For a medium in which sound speed varies linearly with height, ray path is arc of circle
centered at height where extrapolated sound speed goes to zero

8.3.3 Refraction by Wind Gradients

Let us next consider a ray that passes through the origin at t = 0 with wavefront
normal direction no. The corresponding initial value of the wave-slowness vector is
determined from Eq. (8.1.3); Eq. (8.1.10b’) therefore integrates to first order in t to

s ≈ (c + v ·no)
−1[no − t∇(c + v ·no)]. (8.3.6)

Equation (8.1.10a) consequently yields the power-series expansion

x ≈ (cno + v)t + 1
2 t

2[(vray ·∇)(cno + v) − c∇⊥(c + v ·no)], (8.3.7)

where ∇⊥ = ∇ − no(no · ∇) is the gradient transverse to no, and vray is cno + v.
All coefficients and derivatives are understood to be evaluated at the origin.

The plane of bending of the ray is that containing the two vectors ẋ and ẍ that
appear as coefficients of t and 1

2 t
2 in Eq. (7). The ray bends toward the direction of

the component ẍ⊥ of ẍ that is transverse to ẋ; the radius of curvature rc is ẋ ·ẋ/|ẍ⊥|.
Many ambient velocity fields of interest are approximately such that

(v · ∇)v = 0, so v varies negligibly with translation along the direction of flow.
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With this assumption and with the neglect of the slight difference between no and
the direction of ẋ, Eq. (7) leads to

ẍ⊥ ≈ c[(no ·∇)v − ∇(c + v ·no)⊥] ≈ −c∇⊥c − cno × (∇ × v). (8.3.8)

This applies, in particular, if |v| 
 c or if no is parallel to v. From this relation
one concludes that the ray curves in a direction which is opposite to that of ∇⊥c +
no × (∇ × v), with a radius of curvature approximately equal to c divided by the
magnitude of this vector.

As an example, suppose no = ez cos θ + ex sin θ and that c, vx , and vy depend
only on vertical distance z, while vz = 0. Then Eq. (8) reduces to

ẍ⊥ = −c

(
dc

dz
sin θ + dvx

dz

)
e2 + c

(
dvy

dz
cos θ

)
ey, (8.3.9)

where e2, equal to ez sin θ − ex cos θ , is the unit vector in the xz plane that is
perpendicular to no.

The y component of ẍ⊥ is associated with the ray’s sideways drift caused by
crosswinds; it is often of minor consequence, either because rays of interest are
nearly horizontal (cos θ is small) or because the net shift in ray direction due to this
component averages out to nearly zero. Its neglect leads to a radius of curvature15

equal to

rc = c

(dc/dz) sin θ + dvx/dz
. (8.3.10)

A positive value implies downward bending; a negative value implies upward
bending.

A further approximation, valid for rays proceeding in nearly horizontal direc-
tions, is to replace sin θ by 1, so that c sin θ + vx is replaced by c + vx in the
above. This leads to the simple rule that the ray undergoes refraction as if it were
moving in a medium with no winds but with an effective sound speed ceff = c+ vx ,
where vx is the component of the wind velocity in the vertical plane containing the
ray. From this viewpoint, wind-speed gradients and sound-speed gradients have the
same influence on sound rays. However, if θ is less than, say, 30◦, the influence of
a wind-speed gradient is substantially greater than that of a sound-speed gradient of
the same magnitude.

15B. Gutenberg, “Propagation of sound waves in the atmosphere,” J. Acoust. Soc. Am. 14:151–155
(1942).
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8.4 Rays in Stratified Media

The ambient properties of the atmosphere and of the oceans (see Fig. 8.11) vary
primarily with height or depth, and the ambient fluid velocity is primarily horizontal.
Consequently, the stratified-fluid model discussed above [with c = c(z), v = v(z),
and vz = 0] is commonly used in approximate analyses of sound propagation.

Fig. 8.11 Representative sound-speed-versus-height profiles for (a) the atmosphere and (b) the
oceans. These profiles are typical, but there is considerable variability with seasons, geographical
location, and meteorological conditions, especially near the ground or the sea surface. The sound
speed in the atmosphere increases again with increasing height above 90 km [Based on tables and
figures in A. E. Cole, A. Court, and A. J. Kantor, “Model Atmospheres,” chap. 2 in S. L. Valley (ed.),
Handbook of Geophysics and Space Environments, Air Force Cambridge Research Laboratories,
1965, and by M. Ewing and J. L. Worzel, “Long Range Sound Transmission,” in Propagation of
Sound in the Ocean, Geological Society of America, Memoir 27, 1948]
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8.4.1 The Ray Integrals

For a stratified fluid, the ray-tracing equation (8.1.10b′) requires that sx and sy both
be constant along any given ray. This can be viewed either as a consequence of
the trace-velocity matching principle discussed in Sect. 3.5 or as a generalization of
Snell’s law. Furthermore, once sx and sy are specified, sz can be determined as a
function of height z from Eq. (8.1.5), i.e.,

sz = ±
[(

Ω

c

)2

− s2
x − s2

y

]1/2

. (8.4.1)

(Note that 1 − v ·s is independent of sz since v does not have a z component.) Thus,
Eqs. (8.1.10b) can be regarded as solved, and from Eqs. (8.1.10a) one obtains16

[with dx/dz = (dx/dt)/(dz/dt) and dt/dz = 1/(dz/dt)]

dx

dz
= c2sx + Ωvx

c2sz
, o

dt

dz
= Ω

c2sz
, (8.4.2)

with an analogous equation for dy/dz.
Since the right sides of Eqs. (2) are functions only of z, one can determine x, y,

and t as functions of z (and of sx and sy) by direct integration, e.g.,

x = xo +
∫ z

z0

c2sx + (1 − v · s)vx

c2sz
dz, (8.4.3)

where xo is the value of x at height zo.

8.4.2 Channeling of Ray Paths

In the application of Eqs. (3) and its counterparts, one must take into account the
fact that a ray is confined to a height region for which s2

z ≥ 0. For an actual ray,
x, y, and t may not be single-valued functions of z since sz changes sign whenever
the ray reaches a height (turning point) at which s2

z goes to zero (see Fig. 8.12). The
initial position and direction of the ray determine sx and sy and the initial sign for
sz. Providing that 1 − v · s > 0, the sign of sz will be the same as that of dt/dz

[see Eq. (2)] and will therefore be positive for a ray proceeding obliquely up and
negative for one proceeding obliquely down.

Suppose the initial sign is positive. Then Eq. (3) and its counterparts describe the
ray trajectory up until it reaches that height (providing one exists) at which s2

z first
becomes zero. At that point the ray trajectory is horizontal and curving down, so it

16These were first derived by Fujiwhara, “On the abnormal propagation of sound.”
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Fig. 8.12 Ray channeled between turning points

must thereafter return to lower heights. Let zU be the height of this upper turning
point, and let xU1, yU1, tU1 be the values of x, y, and t at which it is first reached.
Thereafter, sz is negative, and subsequent values of x for the next segment of the ray
trajectory are given by

x = xU1 +
∫ zU

z

c2sx + Ωvx

c2|sz| dz. (8.4.4)

Analogous formulas hold for the corresponding values of y and t . Such relations
hold up until the ray reaches that lower turning point zL (if one exists) at which s2

z

again becomes zero and at which sz again changes sign.
Note that although sz vanishes at zU , integrals like that in Eq. (4) are nevertheless

finite. Near zU , the denominator factor |sz| goes to zero as (zU − z)1/2, so the
integrand remains integrable.

If a ray trajectory has both upper and lower turning points, it is channeled. Such
a trajectory will be periodic both in time and in horizontal displacement. The net x
displacement in going from the lower turning point to the upper turning point is the
same as that from the upper turning point to the lower turning point and is the same
for every such segment of the ray path. The same statement holds for y displace-
ments and travel-time segments. The average horizontal velocity of the ray is

vH = (Δx)L→Uex + (Δy)L→Uey

(Δt)L→U

, (8.4.5)

where (Δt)L→U is the net time required to go from the lower turning point to the
upper turning point.
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If the ray reaches a horizontal interface, such as the upper surface of the ocean for
underwater sound propagation, the wave associated with it will be partially reflected
and partially transmitted. However, so far as the reflected wave is concerned, its
wavefronts will also be locally planar and can also be described in terms of rays.
Thus, the incident ray gives rise to a reflected ray that represents a continuation of
the incident path back into the fluid. The trace-velocity matching principle requires
sx and sy to be the same for the reflected ray as for the incident ray, so the only ray
parameter that changes on ray reflection is sz, which simply changes sign. However,
at such a surface, sz does not go to zero, as is the case for internal reflection.

Given the presence of interfaces, one has the possibility17 of a ray being
channeled between an upper interface and a lower turning point, an upper interface
and a lower interface, etc.

8.4.3 Rays in Fluids Without Ambient Flow

When the medium has no ambient fluid velocity, the ray path is always in the same
vertical plane and one can orient the coordinate system so that sy = 0. Then sx can
be identified [see Eq. (8.1.3)] as ±(sin θ)/c, where θ is the angle between the ray
direction and the vertical; sx is positive for a ray proceeding obliquely in the +x

direction. The constancy of sx along a ray is thus identical to the elementary version
of Snell’s law for refraction at an interface between two fluids. Equation (1) also
reduces to

sz = ±(c−2 − c−2
o sin2 θo)

1/2, (8.4.6)

where sin θo is the value of sin θ at the height where the sound speed is co. The ray
is confined to a height regime for which

c2(z) ≤ c2
o

sin2 θo
, (8.4.7)

and turning points occur at heights where the equality holds. Consequently, any
region of height in which the profile of c versus z has a minimum is a potential
sound-speed channel, e.g., the SOFAR channel in the ocean. Also, if the sound speed

17Terminology in underwater sound classifies rays by their upper and lower turning points. A ray
that goes from source to a lower internal turning point, then to the surface, where it is reflected,
is an RSR ray (refracted-surface-reflected). A ray that traverses between upper and lower internal
turning points is a SOFAR ray. A channeled ray is an SLR (surface-limited ray) or a BLR (bottom-
limited ray) if its upper turning point is the ocean surface or if its lower turning point is the ocean
bottom, respectively. See, for example, Officer, Introduction to the Theory of Sound Transmission,
pp. 98–101, 155–161; W. H. Munk, “Sound channel in an exponentially stratified ocean, with
application to SOFAR,” J. Acoust. Soc. Am. 55:220–226 (1974).
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at some depth below an interface has a higher value than that just below the interface,
a ray can be channeled between the interface and the higher-sound-speed region.
The region in which the ray is channeled can in each case be determined from Eq. (7)
without an explicit determination of the path.

Example (Axial Rays) Suppose c(z) has a minimum value of co at z = 0 and
that near the minimum c = co + α2z2. A model profile18 which exhibits such
properties and which is amenable to analytic investigation is that where 1/c2

equals (1/co)2(1 − z2/L2), with L2 = co/2α2. For such a model, Eqs. (2), with
dt/dx = (dt/dz)/(dx/dz), can be rewritten with the help of Eq. (6) as

dx

dz
= ± sin θo

(cos2 θo − z2/L2)1/2 ,
dt

dx
= 1 − z2/L2

co sin θo
. (8.4.8)

The first leads to the differential equation

sin2 θo

(
dz

dx

)2

+ z2

L2 = cos2 θo,

which has the solution

z = L cos θo sin
x − xo

L sin θo
. (8.4.9)

Thus the ray path crosses z = 0 at intervals of (Δx)U→L of πL sin θo; the path-
repetition distance is twice this. The time required for the ray to travel the horizontal
distance (Δx)U→L is just this distance times the average, over x, of dt/dx [see
Eq. (8)]. Since the average of z2, from Eq. (9), is 1

2L
2 cos2 θo, one accordingly finds

the average horizontal velocity to be

vH = (Δx)U→L

(Δt)U→L

= 2co sin θo

1 + sin2 θo
. (8.4.10)

The above results strictly apply only if c(z) is given by co/[1 − (z/L)2]1/2, but
the conclusion, that (Δx)U→L approaches π(c/c′′)1/2

o as θo → π/2, applies to
rays channeled in any region19 where c/(d2c/dz2) at the sound-speed minimum
has the same value. (This presumes that c, c′, and c′′ are continuous.) If c(z) is
even about the altitude of its minimum, and if the source is on the channel’s axis

18R. R. Goodman and L. R. B. Duykers, “Calculation of convergent zones in a sound channel,” J.
Acoust. Soc. Am. 34:960–962 (1962).
19How this limit is approached is explored in detail by M. A. Pederson, “Ray theory applied to a
wide class of velocity functions,” J. Acoust. Soc. Am. 43:619–634 (1968); “Theory of the Axial
Ray,” ibid. 45:157–176 (1969); (with D. White) “Ray theory for sources and receivers on an axis
of minimum velocity,” ibid. 48:1219–1248 (1970).
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Fig. 8.13 Model underwater SOFAR channel and corresponding ray paths from source at depth z1
of minimum sound speed. (Note compressed horizontal scale.) Each ray is labeled by the angle α it
initially makes with the horizontal; positive α means that the ray is initially propagating obliquely
downward; α = 0◦ ray is horizontal and remains at depth z1. Sound speed c(z) is c1[1 + ε(η +
e−η − 1)] with c1 = 1.492km/s, ε = 0.0074, η = (z − z1)/(z1/2), and z1 = 1.3 km. Selected
profile is such that the caustic surface lies above z = z1 and the point where the α = 0◦ ray grazes
the caustic is not a vertex (arête) of the caustic. The focusing on the channel axis is therefore
considerably weaker than for a channel symmetric about z1 [From W. H. Munk, J. Acoust. Soc. Am.
55:222 (1974)]

(where c is smallest), the skip distance π(c/c′′)1/2
o for the axial ray, θo = 90◦, is

an extremal; adjacent rays intersect on the axis at this distance and at its multiples,
so a sequence of caustics must appear at horizontal distances of nπ(c/c′′)1/2

o , where
n = 1, 2, . . .. If the profile is not symmetric, however, this is not necessarily the case
(see Fig. 8.13). Nevertheless, each channeled ray must graze a caustic somewhere
between its first and second turning points.

8.4.4 Abnormal Sound

Audible sound is often received at distances of 200–300 km from large explosions,
even though the sound may be inaudible at closer distances (see Fig. 8.14). The
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Fig. 8.14 Locations where
sound was heard (black dots)
and not heard (open circles)
following an explosion at
Oppau, Germany, on Sept. 21,
1921. The anomalous zone of
audibility, to the east and
south, beyond 200 km is
explained by a model
atmosphere in which
stratospheric winds are
blowing toward the east
[From R. K. Cook, Sound
1:13 (1962)]

analysis20 (air seismology) of the arrival times, angles of incidence, and locations
of reception of this abnormal sound is a principal tool for studying the meteorology
of the upper atmosphere.

To explain the phenomenon, let us for simplicity ignore crosswinds, so that rays
from the source stay within a vertical plane. A ray proceeding in the xz plane from
a source on the ground will be such that the angle θ , between unit wavefront normal
n and the vertical, satisfies

sx = sin θ

c + vx sin θ
= const. (8.4.11)

Although the ray direction is in general slightly different from that of n, it is
horizontal when n is horizontal. Thus, the ray with initial angle θo turns back to
the ground when it reaches turning-point height ztp that satisfies

20F. J. Whipple, “The propagation of sound to great distances,” Q. J. R. Meteorol. Soc. 61:285–308
(1935); E. F. Cox, “Abnormal audibility zones in long distance propagation through the atmo-
sphere,” J. Acoust. Soc. Am. 21:6–16, 501 (1949); A. P. Crary and V. C. Bushnell, “Determination
of high-altitude winds and temperature in the Rocky Mountain area by acoustic soundings,” J.
Meteorol. 12:463–471 (1955); W. L. Donn and D. Rind, “Natural infrasound as an atmospheric
probe,” Geophys. J. R. Astron. Soc. 26:111–133 (1971).
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Fig. 8.15 Model atmospheric profiles of effective sound speed versus height for propagation east
to west in Northeastern United States [From D. Rind and W. L. Donn, J. Atmos. Sci. 32: 1695
(1975)]

c(ztp) + vx(ztp) = cg

sin θo
, (8.4.12)

where cg is the sound speed at the ground. (The wind speed near the ground is here
considered negligible.)

For the atmosphere at middle latitudes, the effective sound-speed profile c(z) +
vx(z) typically has a shape like those sketched in Fig. 8.15. Whether the peak
value that occurs between 30 and 60 km altitude exceeds the value at the ground
depends on the direction associated with increasing x, with the season of year, and
with latitude. Since c + vx typically decreases with height in the lower portion of
the atmosphere (the troposphere), a zone of silence is formed on the ground at
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Fig. 8.16 Representative ray paths east to west in Northern Hemisphere in summer [From B.
Gutenberg, in T. F. Malone (ed.), Compendium of Meteorology, American Meteorological Society,
Boston, 1951, p. 374]

intermediate distances from the source (see Fig. 8.16). This is sometimes offset21

by local meteorological conditions close to the ground; the profiles in the first 3 km
fluctuate in a less systematic fashion. However, those rays leaving the source with
elevation angles of 10◦ or greater are generally not refracted back to the ground until
they have reached altitudes of 30 km or higher.

The existence of ray paths that proceed from the ground to the stratosphere
then to ground requires, from Eq. (12), that c + vx at some altitude exceeds
the ground-level sound speed cg . The apparent angle of incidence θo of the
arriving sound (determined from measurement of wavefront horizontal transit speed
1/sx across an array of microphones) yields c(ztp) + vx(ztp). The arrival time is
invariably substantially later (typically about 1 min) than would be expected for
a wave traveling (creeping) directly along the ground with the sound speed. Such
creeping waves (see Sect. 9.5) are frequently detected with sensitive instrumentation
when geometrical-acoustics considerations would preclude their existence, but their
amplitudes are very weak. The geometrical-acoustics model retains its validity
insofar as dominant arrivals are concerned.

The striking feature of a zone within which abnormal sound is received is its
abrupt onset at a distance of the order of 200 km (see Fig. 8.16). The existence of
such a critical range follows from ray-theory computations of the horizontal range
R(θo) (skip distance) a ray must travel before it returns to the ground. For a profile
in which c + vx decreases monotonically to a minimum value and then increases
with further altitude increase until it reaches a maximum value greater than cg at
altitude zm, a range R(π/2) corresponding to grazing incidence θo = π/2 will exist
and be of the order of 200 km or more. As θo decreases, R will at first decrease
until it reaches some minimum value Rmin; thereafter, it increases up to the range
R(θ0,m), where θ0,m is the value of θo for which Eq. (12) predicts that ztp equals zm.
As θo decreases below θ0,m, the range takes a sudden large jump [turning point at a

21See, for example, T. F. W. Embleton, G. J. Thiessen, and J. E. Piercy, “Propagation in an inversion
and reflections at the ground,” J. Acoust. Soc. Am. 59:278–282 (1976).
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much higher altitude, where c + vx once again reaches c(zm) + vx(zm)], so that the
zone of abnormal audibility is limited by the ranges Rmin and R(θ0,m). Since R(θo)

has a minimum, a caustic must touch the ground at range Rmin. The abnormal sound
is consequently loudest just beyond the inner boundary of the abnormal-audibility
zone.

8.5 Amplitude Variation Along Rays

8.5.1 Wave Amplitudes in Homogeneous Media

To gain insight into how wave amplitudes vary along ray paths, we consider a
constant-frequency wave moving in a fluid with constant sound speed and ambient
density and for which the ambient fluid velocity is zero. The acoustic pressure
therefore satisfies the wave equation (1.6.1) and has a complex spatially dependent
amplitude p̂(x) that satisfies the Helmholtz equation (1.8.13). The insertion22 of

p̂(x) = P(x, ω)eiωτ(x)

into the latter yields

∇2P + iω(2∇P ·∇τ + P∇2τ) − ω2P

[
(∇τ)2 − 1

c2

]
= 0. (8.5.1)

To solve this in the high-frequency limit, we assume the existence of an asymptotic
expansion for P :

P(x, ω) = Po(x) + 1

ω
P1(x) + 1

ω2 P2(x) + · · · . (8.5.2)

This is then substituted into (1), and it is required that the resulting coefficient of
each power of ω vanish identically. The first two in the infinite sequence of equations
so derived involve only τ and Po; we assume that Po is an adequate approximation
for P , so we keep only the first two equations and therein replace Po by P ; the
resulting equations are

(∇τ)2 = 1

c2 , (8.5.3a)

2∇P ·∇τ + P∇2τ = 0 or ∇ · (P 2∇τ) = 0. (8.5.3b)

22A. Sommerfeld and J. Runge, “Application of vector calculus to the fundamentals of geometrical
optics,” Ann. Phys. (4)35:277–298 (1911).
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Fig. 8.17 Sketch of a ray tube

Note that these equations also result from equating the coefficients of ω2 and ω in
Eq. (1) to zero. The second version of Eq. (3b) follows from a multiplication of the
first version by P .

Equation (3a) is the eikonal equation (8.1.5) with the ambient velocity set to
zero, so its solution can be given in terms of rays. Once any wavefront surface is
specified and a value of τ is associated with it, the value of τ(x) for any position x

can be determined by finding that ray connecting the originally specified wavefront
with the point x. If the ray passes through point xo on the originally specified
wavefront, and if τ(xo) = τo, τ (x) is τo plus the travel time at speed c along the ray
from xo to x.

The solution of Eq. (3b) can be developed in terms of ray-tube areas. With the
ray passing from x0 to x one associates a ray tube (Fig. 8.17) consisting of all rays
passing through a tiny area A(xo) centered at xo transverse to the ray path. When
the ray tube reaches x, its cross-sectional area will be A(x). One integrates Eq. (3b)
over the volume of the ray-tube segment connecting x0 and x and applies Gauss’s
theorem to convert it into a surface integral. Then, since the ray path is everywhere in
the direction of ∇τ = s, the surface integral over the sides of the ray-tube segment
vanishes identically and one is left with contributions from just the two ends. Thus,
one has

P 2(xo)A(xo)(∇τ ·n)xo = P 2(x)A(x)(∇τ ·n)x,

where n is the unit vector in the direction of the ray or, equivalently (because there
is no ambient flow), the unit vector normal to the wavefront. However, ∇τ ·n = s ·n
is here 1/c [from Eq. (8.1.3)], and since c is constant, the above reduces to

P(x) = P(xo)

[
A(xo)

A(x)

]1/2

. (8.5.4)
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Thus, wave amplitude varies along a ray in inverse proportion to the square root
of the ray-tube area. If the ray-tube area grows smaller (focuses) the amplitude
increases.

The volume integral of ∇2τ over the ray-tube segment is similarly found to be
(1/c)[A(x) − A(xo)]. Thus, for any short tube segment of length dl and therefore
of (approximate) volume A(x)dl, one has

∇2τ = 1

cA

dA

dl
, (8.5.5)

where A(l) is ray-tube area at distance l along the ray. Moreover, if the coordinate
system is chosen so that the z axis points in the ray direction and x and y axes in the
principal curvature directions, the point of interest being taken as the origin, then
near that point, Eq. (8.2.3) yields

τ ≈ const + 1

c

(
z − x2

2r1
− y2

2r2

)
, (8.5.6)

where r1 and r2 are the two principal radii of curvature (positive if concave) of the
wavefront at (0, 0, 0). Consequently, we conclude that

c∇2τ = −
(

1

r1
+ 1

r2

)
. (8.5.7)

In addition, since r1 = r0
1 − l and r2 = r0

2 − l [from Eq. (8.2.5)], one can
replace −1/r1 by (d/dl)(ln r1). With a similar replacement for −1/r2 and with
c∇2τ replaced [from Eq. (5)] by (d/dl)(ln A), integration of Eq. (7) leads to the
conclusion that (A/r1r2) is independent of l, so the ratio of ray-tube areas in Eq. (4)
is the same as r0

1 r
0
2/r1r2 (see Fig. 8.18). Therefore the amplitude along the ray is

P(x) =
[

r0
1 r

0
2

(r0
1 − l)(r0

2 − l)

]1/2

P(xo) (8.5.8)

and varies inversely as the geometric mean of the two principal radii of wavefront
curvature.

The above can be generalized to a superposition of different frequencies or
to a transient waveform. Since ray paths and travel times are independent of
frequency, and since amplitude ratios at different points on the ray path are also
independent of frequency, the solution of the wave equation in the geometrical-
acoustics approximation is

p = B(l, ξ)f (t − τ, ξ), (8.5.9)
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Fig. 8.18 Geometrical proof that ray-tube area is proportional to the product of the wavefront’s
principal radii of curvature

where the parameter ξ (or, strictly speaking, pair of parameters, ξ1, ξ2) distinguishes
different rays. The waveform shape f (t − τ, ξ) is the same along any given ray, but
the amplitude factor B(l, ξ) varies with distance l along the ray. If f (t − τ, ξ) is
chosen so that it equals p(x, t) at the initial point (l = 0) on the ray, then B is the
coefficient of P(xo) in Eq. (8) and τ is τo + l/c.

8.5.2 Energy Conservation Along Rays

Although the analog of the above derivation can be carried through for propagation
in a medium in which c(x) and ρ(x) are slowly varying functions of position (we
continue to assume no ambient flow), the following heuristic derivation based on
the conservation of acoustic energy may be more enlightening. Let us assume at the
outset that

p(x, t) = B(x)f (t − τ, ξ), (8.5.10)

where τ is a solution of the eikonal equation and ξ is a constant along any given ray.
The requirement that this describe a propagating plane wave in any local region [via
Eq. (1.7.8)] means that the acoustically induced fluid velocity must be identified as
(n/ρc)p or (B/ρ)∇τf , since n is c∇τ . The energy density and intensity associated
with this wave disturbance can consequently be identified from Eqs. (1.11.3) [using
(∇τ)2 = 1/c2] as

w = B2

ρc2
f 2(t − r, ξ), I = ncw. (8.5.11)

The acoustic-energy-conservation theorem ∂w/∂t + ∇ · I = 0 then gives

2
B2

ρc2
f
∂f

∂t
+ f 2∇ ·

(
B2

ρ
∇τ

)
+ 2

B2

ρ
(∇τ ·∇f )f = 0. (8.5.12)
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If one ignores the weak dependence of f on position through ξ(x), then ∇f =
− (∂f/∂t)∇τ ; the first and third terms in the above cancel [since (∇τ)2 = 1/c2],
and one is left with

∇ ·
(
B2

ρ
∇τ

)
= 0, (8.5.13)

which is analogous to the relation ∇ · I av derived in Chap. 1.
Integration of Eq. (13) over a ray-tube segment leads, in a manner similar to that

yielding Eq. (4), to the conclusion that (B2/ρc)A is constant along any ray tube,
where A is the ray-tube cross-sectional area. Thus, if xo and x are any two points
along the same ray,

B(x) =
[
(A/ρc)xo

(A/ρc)x

]1/2

B(xo) (8.5.14)

gives the general law of variation of pressure amplitude along a ray in an inho-
mogeneous quiescent medium. For a constant-frequency wave, this relation can be
interpreted as the requirement that the time-averaged energy per unit time flowing
along a ray tube be independent of distance along the ray.23

8.6 Wave Amplitudes in Moving Media

8.6.1 Linear Acoustics Equations for Moving Media

To determine the effects of steady but inhomogeneous ambient flows on wave
amplitudes in the geometrical-acoustics approximation, we begin with the nonlinear
fluid-dynamic equations introduced in Chap. 1. With the various idealizations
described there, they can be written as

Dv

Dt
+ 1

ρ
∇p + gez = 0, (8.6.1a)

Dρ

Dt
+ ρ∇ · v = 0, (8.6.1b)

23Sometimes labeled as Green’s law for acoustic waves because of George Green’s analogous
result for shallow-water waves: “On the motion of waves in a canal of variable depth and width,”
Trans. Camb. Phil. Soc. (1837), reprinted in N. M. Ferrers (ed.), Mathematical Papers of the Late
George Green, Macmillan, London, 1871, pp. 225–230. Green’s laws in physical systems are
reviewed by H. M. Paynter and F. D. Ezekiel, “Water hammer in nonuniform pipes as an example of
wave propagation in gradually varying media,” Trans. Am. Soc. Mech. Eng. 80:1585–1595 (1958).
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Ds

Dt
= 0, (8.6.1c)

p = p(ρ, s). (8.6.1d)

Here, to demonstrate that gravity has no explicit influence on propagation in
the high-frequency limit, the gravitational force per unit mass (−gez, g being
acceleration due to gravity and ez being the unit vector in the vertical direction)
is included with Euler’s equation. If one follows the general procedure outlined in
Sect. 1.5, sets v = vo(x) + v′(x, t), p = po(x) + p′(x, t), etc., and requires
Eqs. (1) to be satisfied identically by the ambient state, then, to first order in the
acoustic perturbation, one has

Dtv
′ + v′ ·∇vo + 1

ρo
∇p′ − ρ′

ρ2
o

∇p0 = 0, (8.6.2a)

Dtρ
′ + v′ ·∇ρo + ρ′∇ · vo + ρo∇ · v′ = 0, (8.6.2b)

Dts
′ + v′ ·∇so = 0, (8.6.2c)

p′ = c2ρ′ +
(
∂p

∂s

)
o

s′. (8.6.2d)

Here the sound speed c and the thermodynamic coefficient (∂p/∂s)o are functions
of position; Dt = ∂/∂t +vo ·∇ represents the time derivative following the ambient
flow.

Equation (2d) allows the elimination of ρ′ from Eqs. (2a) and (2b). In regard to
the first and third terms in Eq. (2b), the substitution yields

c2(Dtρ
′ + ρ′∇ · vo) =Dtp

′ −
(
∂p

∂s

)
o

Dts
′

+ c2p′∇ · vo

c2 − c2s′∇ ·
[
vo

c2

(
∂p

∂s

)
o

]
.

Also, because (1d) is satisfied in the ambient state, the ambient gradients ∇po,∇ρo,
and ∇so satisfy the same relation as p′, ρ′, and s′ do in Eq. (2d). Consequently,
Eq. (2c) yields

−
(
∂p

∂s

)
o

Dts
′ = v′ · ∇po − c2v′ ·∇ρo,

and Eq. (2b) reduces to

Dtp
′+v′ ·∇po+c2p′∇·vo

c2 +ρoc
2∇·v′−s′c2∇·

[
1

c2

(
∂p

∂s

)
o

vo

]
= 0. (8.6.3)
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With such substitutions, the equations resulting from Eqs. (2a) and (2b) can
be approximated consistent with the notion of a slowly varying medium if terms
of second order in spatial derivatives of ambient variables are discarded. Here any
spatial derivative of any ambient variable is first order. Since s′ would be zero for
an acoustic wave in a homogeneous medium, its departures from a zero value are
due to spatial variations of the ambient variables; consequently, s′ is also first order.
A term like the last term in Eq. (3) is then second order and is therefore discarded.
The resulting equations are

Dtv
′ + (v′ ·∇)vo + 1

ρo
∇p′ − p′

(ρoc)2
∇po = 0, (8.6.4a)

Dtp
′ + v′ ·∇po + c2p′∇ · vo

c2 + ρoc
2∇ · v′ = 0. (8.6.4b)

8.6.2 Conservation of Wave Action

The above equations, with some further approximations, lead to a conservation
law24 similar to that in Sect. 1.11. Taking the dot product of (4a) with ρov

′,
multiplying (4b) by p′/ρoc2, and adding the two equations yields

(
∂

∂t
+ vo ·∇

)
w − (v′)2(vo ·∇)

ρ0

2
− (p′)2(vo · ∇)(2ρoc

2)−1

+∇ · I + ρov
′ · [(v′ ·∇)vo] + ρ−1

o (p′)2 ∇ · vo

c2
= 0, (8.6.5)

where w = 1
2ρo(v

′)2 + (p′)2/2ρoc2 and I = p′v′ represent what the energy density
and intensity would be when viewed by someone moving with the ambient flow.
If we limit our attention to a field that everywhere locally resembles a traveling
plane wave, then in all the smaller terms involving spatial derivatives of ambient
variables it is a consistent approximation to set v′ = np′/ρoc and (p′)2 = ρoc

2w.
(Both relations hold for a homogeneous medium, even when vo is not zero.) This
substitution then yields

∂w

∂t
+ v ·∇w − w

[
1

ρ
(v ·∇)

ρ

2
+ ρc2(v ·∇)(2ρc2)−1

]

+ ∇ · I + wn · [(n ·∇)v] + c2w∇ · v

c2 = 0, (8.6.6)

24C. J. R. Garrett, “Discussion: the adiabatic invariant for wave propagation in a nonuniform
moving medium,” Proc. R. Soc. Lond. A299:26–27 (1967); F. P. Bretherton and C. J. R. Garrett,
“Wavetrains in inhomogeneous moving media,” ibid. A302:529–554 (1969). The derivation here
is similar to that of W. D. Hayes, “Energy invariant for geometric acoustics in a moving medium,”
Phys. Fluids 11:1654–1656 (1968).
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where we resume the custom of omitting the subscripts on ρo and vo whenever the
possibility of confusing them with other quantities is negligible.

In regard to the next to the last term in Eq. (6), the unit vector n can
alternately be written as (c/Ω)s, where s = ∇τ . Also s · [(s · ∇)v] is
(s · ∇)(s · v) − v · [(s · ∇)s] from a vector identity. In the first of these two terms,
s · v can be replaced by 1 − Ω; in the second term, (s · ∇)s can be replaced by
1
2∇(Ω2/c2) from Eq. (8.1.7). Consequently, one obtains

n · [(n ·∇)v] = Ωcn ·∇ 1

Ω
+ Ω

c
v ·∇ c

Ω
. (8.6.7)

To the same order of approximation as to which Eq. (6) was derived, one can also
set nw = c−1I in a term like wn · ∇(1/Ω) that vanishes when the medium is
homogeneous. Then, with the substitutions just described, Eq. (6) reduces to

∂w

∂t
+ v ·∇w + wv ·∇

[
ln ρ−1/2 + ln(ρc2)1/2 + ln

c

Ω

]

+ ∇ · I + ΩI ·∇ 1

Ω
+ c2w∇ · v

c2 = 0,

which, with further manipulation, yields

∂

∂t

(w
Ω

)
+ ∇ ·

(
I + vw

Ω

)
= 0. (8.6.8)

If v = 0, the above reduces to the law of conservation of acoustic energy,25

Eq. (1.11.2). Although we here have an added factor of 1/Ω in each term, the
equation is still a conservation law because it is a sum of a time derivative and a
divergence. An interpretation of what physical quantity is being conserved follows
from consideration of the constant-frequency case and multiplication of both sides
by 1/ω, so that the resulting equation resembles (8) with Ω replaced by ωΩ . The

25While Eq. (8) is approximate and holds only in the geometrical-acoustics approximation, an
exact acoustic-energy corollary of the linear acoustic equations for an inhomogeneous steady
ambient flow does exist in the form of a sum of a time derivative and a divergence, although the
resulting expression involves Clebsch potentials that are not local properties of the acoustic field:
W. Möhring, “Toward an energy statement for sound propagation in stationary flowing media,” Z.
Angew. Math. Mech. 50:T196–198 (1960); “Energy flux in duct flow,” J. Sound Vib. 18:101–109
(1971); “On energy, group velocity, and small damping of sound waves in ducts with shear flow,”
ibid. 20:93–101 (1973). A simpler corollary holds for potential isentropic flows: L. A. Chernov,
“The flux and density of acoustic energy in moving media,” Zh. Tech. Fiz. 16:733–736 (1946);
R. W. Cantrell and R. W. Hait, “Interaction between sound and flow in acoustic cavities: mass,
momentum and energy considerations,” J. Acoust. Soc. Am. 36:697–706 (1964). Other energy
statements for moving fluids are given by O. S. Ryshov and G. M. Shefter, “On the energy of
acoustic waves propagating in moving media,” J. Appl. Math. Mech. (USSR) 26:1293–1309 (1962),
and by C. L. Morfey, “Acoustic energy in non-uniform flows,” J. Sound Vib. 14:159–170 (1971).



8.6 Wave Amplitudes in Moving Media 463

quantity ωΩ or ω−ωv·∇τ (abbreviated here as ω∗) can be regarded as the frequency
one would measure if one were moving with the ambient flow since the operation
of ∂/∂t + v ·∇ on exp[−iω(t − τ)] is equivalent to a multiplication by −iω∗. [The
exponential factor with t → t − τ(x) describes the predominant spatial dependence
in the geometrical-acoustics approximation for a disturbance of constant frequency;
p(x, t) should be of the form, Re{B(x) exp[−iω(t − τ)]}, where B(x) is slowly
varying.]

There exists in mechanics a theory of adiabatic invariance which originated
with Boltzmann in a thermodynamic context and which was subsequently further
developed by Ehrenfest and Burgers26 for application to the old quasi-classical
quantum mechanics, i.e., that before the epochal work (1923–1926) of de Broglie,
Heisenberg, Schrödinger, Born, and Jordan. The simplest version of this theory27

applies to a 1-degree-of-freedom system (Fig. 8.19) described by a Hamiltonian
H(q, p, λ) depending on a generalized coordinate q, on its conjugate momentum
p, and on some parameter λ that varies slowly with time. For fixed λ, the equation
H(q, p, λ) = E, where E (identified as energy) is constant, describes a curve
in a phase space described by coordinates p and q. It is assumed that this curve
is closed. The product of 1/2π with the area enclosed in phase space by a curve
of given constant E and λ defines an action variable I (λ,E). The theory predicts
that if λ varies slowly enough with t , then E varies in such a manner that I

remains nearly constant in time, so one would say that action is conserved. For
the harmonic oscillator, the Hamiltonian is p2/2m + 1

2kq
2, where m is mass and

k is spring constant. The curve H = E in phase space then describes an ellipse
of area π(2mE)1/2(2E/k)1/2. The action variable is therefore I = E/ω, where
ω = (k/m)1/2 is the natural frequency of the oscillator. Thus, for example, if k is
a slowly varying function of t , one expects E/ω to remain constant throughout the
motion.

The theory applies in particular to a pendulum mass m suspended by a string
whose length l(t) is varied slowly by pulling the string through a small hole in
the ceiling. If the amplitudes of oscillation are small, the Hamiltonian is 1

2p
2
θ /ml2 +

26L. Boltzmann, “On the mechanical significa second law of heat theory,” Sitzungsber. Kais.
Akad. Wiss. Math. Naturwiss. Kl., pt. 2 53:195–220 (1866); “On the priority of the discovery
of the relation between the second law of the mechanical heat theory and the principle of least
action,” Ann. Physik. Chem. 143:211–230 (1871); P. Ehrenfest. “Boltzmann theorem and energy
quanta,” K. Akad. Wet. Amsterdam, Proc. Sec. Sci. 16:591–597 (1914); “Adiabatic Invariants and
quantum theory,” Ann. Phys. (4) 51:327–352 (1916); J. M. Burgers, “The adiabatic invariants of
conditionally periodic systems,” ibid. 52:195–202 (1917). Some special cases are discussed by J.
W. S. Rayleigh, “On the pressure of vibrations,” Phil. Mag. (6)3:338–346 (1902). The acoustical
version of the theorem is given by W. E. Smith, “Generalization of the Boltzmann-Ehrenfest
adiabatic theorem in acoustics,” J. Acoust. Soc. Am. 50:386–388 (1971). Its principal application
to acoustics before the development of the concept of wave action was in the theory of radiation
pressure. See, for example, R. T. Beyer, “Radiation pressure: The history of a mislabeled tensor,”
J. Acoust. Soc. Am. 63:1025–1030 (1978).
27L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon, Oxford, 1960, pp. 154–156; E. J. Saletan
and A. H. Cromer, Theoretical Mechanics, Wiley, New York, 1971, pp. 259–263.
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Fig. 8.19 (a) Curve in phase
plane described by
H(p, q, λ) = E. (b) Example
for which the action variable
is an adiabatic invariant

1
2mglθ2, where pθ = ml2θ̇ , θ is the angular deviation of the string from the vertical,
and g is the acceleration due to gravity. For harmonic oscillations of frequency ω =
(mgl/ml2)1/2 = (g/l)1/2, the energy E is 1

2mglθ2
max. The adiabatic invariance of

I = E/ω requires that θmax change with t so that l3/2θmax remains constant.
Because w/ω∗ resembles an action variable per unit volume, the conservation

relation of Eq. (8), with Ω → ω∗, is regarded as a law of conservation of wave
action; w/ω∗ is the wave action per unit volume, or wave-action density, while
(I + vw)/ω∗ is the wave-action flux.

Equation (8), with Ω → w∗, although here derived for circumstances of steady
flow, applies28 also to a wave packet of nearly constant frequency traveling in a

28Hayes, “Energy invariant for geometric acoustics in a moving medium.”
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medium whose properties are slowly varying functions of both position and time.
As the packet moves, the frequency viewed by an observer at rest changes because
of the time dependence of the sound speed and ambient velocity. However, if w and
I are defined as above, and if ω∗ is taken as the frequency (also time-dependent)
measured by someone moving with the ambient flow, the conservation of wave
action still holds. The plausibility of this assertion should be evident since what
appears to be an inhomogeneous time-independent flow to someone at rest appears
to be changing with time when viewed in a moving reference frame. Since w, I , and
ω∗ are invariant under changes of reference frame, Eq. (8), with Ω → ω∗, should be
also. If one considers the various quantities in that equation to be functions of x′, t ′,
where x′ = x − vf t, t

′ = t , and the frame velocity vf is constant, then ∇ = ∇′,
∂/∂t = ∂/∂t ′ − vf · ∇′, and the wave-action-conservation equation is transformed
into

∂

∂t ′
( w

ω∗
)

+ ∇′ ·
(

I + v′w
ω∗

)
= 0, (8.6.9)

where v′ = v − vf represents the ambient velocity viewed in a reference frame
moving with velocity vf relative to the original reference frame.

8.6.3 The Blokhintzev Invariant

Given that one has selected a reference frame in which the ambient medium appears
to be time-independent, an advantage of the law of conservation of wave action in
the form of Eq. (8) is that it also applies to transient disturbances. Thus, if one sets

p′ = P(x)f (t − τ(x), ξ) v′ = np′

ρc
, (8.6.10)

where f is an arbitrary function (composed, however, primarily of high frequencies)
and ξ is constant along any given ray, an equation for P(x) results from a substitu-
tion of these expressions into Eq. (8). Following this procedure and neglecting terms
involving ∇ξ , we obtain

w =
(

P 2

ρc2

)
f 2, I + vw = vrayw,

∇ ·
(

I + vw

Ω

)
= f 2∇ ·

(
P 2vray

ρc2Ω

)
− 2

[(
P 2vray

ρc2Ω

)
·∇τ

]
f
∂f

∂t
. (8.6.11)
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However, since vray ·∇τ = 1 [see Eq. (8.1.3)], the second term on the right side
of (11) is −∂(w/Ω)/∂t , so Eq. (8) yields29

∇ ·
(
P 2vray

ρc2Ω

)
= 0, (8.6.12)

which is one of the fundamental equations of geometrical acoustics. If the ambient
velocity is set to zero, this reduces to the previously derived Eq. (8.5.13).

If one integrates Eq. (12) over the volume of a ray-tube segment and follows
the procedure described in the previous section, the conclusion is reached that the
Blokhintzev Invariant30

P 2|vray|A
(1 − v ·∇τ)ρc2 = const (8.6.13)

is constant along any given infinitesimal ray tube of variable cross-sectional area A.
[Alternate versions of this conclusion result with the replacement of vray by v+cn

or of Ω by c/(c+v ·n).]

Example (Point Source in a Jet’31) Sound is emanating from a small source at the
origin in a medium of constant sound speed and ambient density (see Fig. 8.20). The
ambient fluid velocity is in the +x direction and varies with the radial coordinate
r = (y2 + z2)1/2 such that vx(r) has a maximum along the x axis. Describe the
variation of the mean squared pressure along the x axis.

Solution Because of the cylindrical symmetry, each ray leaving the source stays
within a plane passing through the x axis. The refraction is therefore the same as if
the ray were moving in a stratified medium; thus, Eqs. (8.4.1) and (8.4.2) apply but
with z → r, sz → sr . With the abbreviations M and L for vx/c and 1/csx , these
equations yield

dr

dx
= (L − M + 1)1/2(L − M − 1)1/2

1 − M2 + ML
. (8.6.14)

29A rigorous derivation leading to the same result follows the general procedure outlined by S.
Weinberg, “Eikonal method in magnetohydrodynamics,” Phys. Rev. 126:1899–1909 (1962).
30D. I. Blokhintzev, Acoustics of a Nonhomogeneous Moving Medium, Leningrad, 1946; trans.
NACA TM 1399, National Advisory Committee for Aeronautics, Washington, especially pp. 35–
40; “The propagation of sound in an inhomogeneous and moving medium, I,” J. Acoust. Soc. Am.
18:322–328 (1946).
31J. Atvars, L. K. Schubert, and H. S. Ribner, “Refraction of sound from a point source placed
in an air jet,” J. Acoust. Soc. Am. 37:168-170 (1965); L. K. Schubert, “Numerical study of sound
refraction by a jet flow, I: Ray acoustics,” ibid. 51:434–446 (1972).
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Fig. 8.20 Ray paths from a point source on the axis of a symmetric jet. Here ξ is the angle the ray
initially makes with the direction of flow

The flow Mach number M(r) has a maximum at r = 0, so we write

M ≈ Mo − 1
2 (Mo + 1)2α2r2, (8.6.15)

where Mo is M(0) and α is a constant. The additional factor (Mo + 1)2 is for
analytical convenience. The other quantity L, in Eq. (14), is a constant for any given
ray; for the ray lying on the +x axis, dr/dx is 0, so the axial ray’s L is Mo + 1.
Since we are only interested in rays within a small ray tube centered at the +x axis,
we accordingly set

L = (Mo + 1) + 1
2 (Mo + 1)2ξ2, (8.6.16)

where the ray parameter ξ is considered small compared with 1.
The substitution of (15) and (16) into (14) and the subsequent discard, in factors

of the order of 1, of small terms proportional to α2r2 and ξ2 yields the approximate
ray-path equation

dr

dx
= (α2r2 + ξ2)1/2, (8.6.17)

which in turn integrates to

r = ξ

α
sinhαx, (8.6.18)
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with the condition that the ray passes through the source position. The initial slope
dr/dx of the ray is ξ , but refraction causes the ray to bend away from the x axis;
sinhαx is larger than αx.

The cross-sectional area of the tube containing all rays with ξ <ξo is πr2, where
r is as given by Eq. (18) with ξ → ξo. All the other factors, except P 2, in the
Blokhintzev invariant are independent of x for the ray proceeding along the x axis.
Consequently, the mean squared pressure varies with x as

(p2)av,r=0 = const

α−2 sinh2 αx
. (8.6.19)

For small x, this corresponds to spherical spreading (const/x2), but at larger x the
decrease is exponential.

The model just discussed gives a partial explanation for why the noise from
a jet leaving a nozzle has an anomalous zone of relative quiet at large distances
downstream and at small angles with respect to the jet’s axis.

Why sound from a source near the ground is louder downwind than upwind is
explained in a similar manner.32 The wind velocity increases with height, so rays
initially proceeding downwind in directions that are nearly horizontal are refracted
down; the drop-off with distance is less than that of spherical spreading. Upwind,
the opposite effect occurs.

8.7 Source Above an Interface

Another example illustrating some of the geometrical-acoustics concepts introduced
in previous sections is that of an isotropic point source located at height h above
a plane interface (Fig. 8.21). The nominal location of the interface is the z = 0
plane, and the source location is (0, 0, h). If the interface separates two fluids,33

both are assumed to have zero ambient fluid velocity; fluid I above the interface
has sound speed cI and ambient density ρI; cII and ρII denote the corresponding
quantities below the interface. The example applies in particular to the problem of
predicting the sound underwater caused by a source in air above the water’s surface.

32Stokes, “On the effect of wind . . . ,” 1857; H. Bateman, “The influence of meteorological
conditions on the propagation of sound,” Mon. Weather Rev. 42:258–265 (1914).
33The full-wave solution dates back to A. Sommerfeld’s analysis of the analogous electromagnetic-
wave problem: “On the spreading of waves in the wireless telegraphy,” Ann. Phys. (4)28:665–
736 (1909). A detailed description is given by L. M. Brekhovskikh, Waves in Layered Media,
Academic, New York, 1960, pp. 234–302. For numerical results, see M. S. Weinstein and A. G.
Henney, “Wave solution for air-to-water sound transmission,” J. Acoust. Soc. Am. 37:899–901
(1965); J. V. McNicholas, “Lateral wave contribution to the underwater signature of an aircraft,”
ibid. 53:1755 (1973).
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Fig. 8.21 Point source above a plane interface

Near the source, where the direct wave predominates, the acoustic pressure p is
f (t − R/cI)/R, where f (t) is a function characteristic of the source.

8.7.1 Sound Field Above the Interface

In the upper medium, the received sound arrives via a direct ray and via a ray that
goes from the source to the interface and back to the observation point. Because
angle of incidence equals angle of reflection, this reflected ray appears to emanate
from an image source at (0, 0, −h). We neglect any ray displacement tangential34

to the surface during reflection. Another assumption is that the change in wave

34A narrow beam of sound incident obliquely on a surface does undergo a tangential displacement;
the cross-sectional distribution of the energy in the beam is also altered: A. Schoch, “Sideways
displacement of a totally reflected ray of ultrasound waves,” Acustica 2:18–22 (1952); M. A.
Breazeale, J. Adler, and L. Flax, “Reflection of a Gaussian ultrasonic beam from a liquid-solid
interface,” J. Acoust. Soc. Am. 56:866–872 (1974). The effect is of minor consequence, however,
for a very wide beam of sound or for a spherical wave incident on the interface.
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amplitude and phase on reflection is the same as for a plane wave at the same angle
of incidence. Ray-tube areas along the two rays are proportional to R2 and R2

im,
respectively, where R and Rim are distances from the source and image source. The
only modification caused by an interface that is not perfectly reflecting is that the
complex amplitude of each frequency component of the reflected wave is multiplied
by R(θI, ω), where R(θI, ω) is the pressure-amplitude reflection coefficient when
the angle of incidence (medium I) is θI. This according to Eq. (3.3.4) is given by

R(θI, ω) = Z(θI, ω) − ρIcI/(cos θI)

Z(θI, ω) + ρIcI/(cos θI)
, (8.7.1)

where, for a locally reacting surface, the specific impedance Z is independent of θI,
while for an interface between two fluids ρIIcII/Z is a function of (cII/cI) sin θI (see
Sect. 3.6). The identification for θI is such that cos θI and sin θI are (h + z)/Rim and
w/Rim. Here w = (x2 + y2)1/2 is cylindrical distance from the vertical line passing
through the source, and Rim = [(h+z)2 +w2]1/2 is distance from the image source.

For waves of constant frequency, where f (t) = Re
{
f̂ e−iωt

}
, the solution in

the geometrical-acoustics approximation for the complex-pressure amplitude p̂ is
given, according to the discussion above, by

p̂ = f̂ R−1ei(ω/cI)R + f̂R(θI, ω)R−1
im ei(ω/cI)Rim . (8.7.2)

The validity of this is suspect whenever it predicts an unusually small value of p̂
since any corrections based on a full-wave analysis35 could then be an appreciable
fraction of the total acoustic-pressure amplitude. An instance of this would be the
field near z = 0 (such that R ≈ Rim) when R(θI, ω) is close to −1. This occurs, for
example, for reflection from a locally reacting surface when cos θI 
 ρIcI/|Z| (or
h + z 
 wρIcI/|Z|). Here we exclude such cases from our consideration.

The transient solution corresponding to the above results if one takes f̂ and p̂

to be the Fourier transforms of f (t) and p(x, t). After application of the Fourier
integral theorem, Eq. (2.8.4), one finds

p = 1

R
f

(
t − R

cI

)
+ 1

Rim
g

(
t − Rim

cI
, θI

)
, (8.7.3)

35K. U. Ingard, “On the reflection of a spherical wave from an infinite plane,” J. Acoust. Soc.
Am. 23:329–335 (1951); A. Wenzel, “Propagation of waves along an impedance boundary,” ibid.
55:956–963 (1974); S.-I. Thomasson, “Reflection of waves from a point source by an Impedance
boundary,” ibid. 59:780–785 (1976). A principal feature of the latter formulations is a surface wave
that propagates along the boundary. A detailed discussion of the limitations of the geometrical-
acoustics solution is given by M. E. Delany and E. N. Bazley, “Monopole radiation in the presence
of an absorbing plane,” J. Sound Vib. 13:269–279 (1970). How the geometrical-acoustics model
can be extended to incorporate multiple reflections is discussed by Delany and Bazley in “A note
on the sound field due to a point source inside an absorbent-lined enclosure,” ibid. 14:151–157
(1971).



8.7 Source Above an Interface 471

where the waveform g(t, θI) corresponding to the reflected wave is the inverse
Fourier transform of the product of R(θI, ω) and the Fourier transform of f (t).
For reflection from an interface between two fluids, when sin θI < cI/cII,R(θI) is
real and independent of frequency, so g(t, θI) = R(θI)f (t). If, however, cII/cI > 1
and sin θI > cI/cII, the function g(t, θI) is given by Eq. (3.6.12) in terms of the
Hilbert transform of f (t).

8.7.2 Field Below the Interface36

If the interface separates two different fluids, the wave arrives at a point (x, y,−d)

at depth d below the interface along a refracted path that crosses the interface at
intermediate radial distance wi making angles θI and θII with the vertical above
and below the interface, respectively (see Sect. 3.6). These two angles are related
by Snell’s law and are such that h tan θI and d tan θII are wi and w − wi . Given w,
h, d, cI, and cII, these relations and Snell’s law suffice to determine θI, θII, and wi

uniquely, regardless of whether cII > cI or cI > cII. There is one and only one ray
passing through any given point below the surface.

To determine ray-tube-area variation along such a ray, consider two rays leaving
the source at angles θI and θI + δθI, both rays having the same azimuth angle φ (see
Fig. 8.22). They cross the interface at cylindrical distances h tan θI and h tan θI +
h(sec2 θI)δθI [recall that (d/dθ) tan θ is sec2 θ ] and subsequently propagate in the
refracted directions θII and θII + δθII, where (take differentials of Snell’s law)

c−1
I cos θIδθI = c−1

II cos θIIδθII. (8.7.4)

Also, the two rays cross the plane z = −d at radial distances of w and w + δw,
where

w = h tan θI + d tan θII, (8.7.5a)

δw = h sec2 θIδθI + d sec2 θIIδθII

=
(
h sec2 θI + d

cII

cI
cos θI sec3 θII

)
δθI. (8.7.5b)

The corresponding values of wi and δwi result from setting d equal to 0 in these
expressions. The perpendicular separation of the two rays is (cos θII)δw at depth d.

36A. A. Hudimac, “Ray theory solution for the sound intensity in water due to a point source above
It,” J. Acoust. Soc. Am. 29:916–917 (1957); R. J. Urick, “Noise signature of an aircraft in level
flight over a hydrophone in the sea,” ibid. 52:993–999 (1972); R. W. Young, “Sound pressure in
water from a source in air and vice versa,” ibid. 53:1708–1716 (1973).
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Fig. 8.22 Ray geometry for two adjacent rays that propagate from a source at height h through an
interface (z = 0) to a depth d

A ray tube can be taken as all rays leaving the source with azimuth angles
between φ and φ + δφ, angles with the vertical between θI and θI + δθI. Because
of the cylindrical symmetry, each ray stays in the same vertical plane. Since the
azimuthal width of the tube at cylindrical distance w is wδφ, the ray-tube area just
before the ray crosses the interface is (wiδφ)(δwi cos θI). Just after it crosses the
interface it is (wiδφ)(δwi cos θII). When it reaches depth d, the ray-tube area is
(wδφ)(δw cos θII). Thus, in going from just below the interface to depth d, the ray-
tube area increases by a factor of wδw/(wiδwi) and, in accord with Eq. (8.5.4), the
pressure amplitude must decrease by a factor of (wiδwi)

1/2/(wδw)1/2.
The acoustic pressure just when the ray reaches the interface is that of the direct

wave alone, R−1f (t − R/cI), where R = h sec θI, multiplied by the pressure-
amplitude transmission coefficient T (θI) appropriate to angle of incidence θI

T (θI) = 2ρIIcII/(cos θII)

ρIcI/(cos θI) + ρIIcII/(cos θII)
. (8.7.6)

Thereafter, the ray moves with speed cII in direction θII; at depth d the net travel time
from the source to depth d is (h/cI) sec θI + (d/cII) sec θII. The time dependence of
the signature must be that of f (t) with t replaced by t minus this travel time.

The geometrical-acoustics solution to the problem can now be taken as pressure
at the interface (h sec θI)

−1f (t − (h/cI) sec θI) [but with the additional shift in
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argument of f (t) just described] times the transmission coefficient (6) times the
amplitude-diminution factor (wiδwi)

1/2/(wδw)1/2 for additional ray-tube spread-
ing in the propagation from the interface to depth d. In this manner, one obtains

p =
T (θI)f

(
t − h

cI
sec θI − d

cII
sec θII

)
(
h + d tan θII

tan θI

)1/2 (
h sec2 θI + d cII

cI
cos θI sec3 θII

)1/2

=
T (θI) cos θIf

(
t − h

cI
sec θI − d

cII
sec θII

)
(
h + d cII

cI
cos θI sec θII

)1/2 (
h + d cII

cI
cos3 θI sec3θII

)1/2 , (8.7.7)

where in the second version use has been made of Snell’s law.
To apply Eq. (7) to the prediction of the sound field at a given point, one must

first determine θI and θII in terms of w, h, and d from Snell’s law and from Eq. (5a).
In general, this requires a numerical solution, but limiting cases are amenable to
analytical approximation. In particular, if the point of observation is directly below
the source (w = 0), one has θI = θII = 0 and Eq. (7) reduces to

p = 2ρIIcII

ρIcI + ρIIcII

f (t − h/cI − d/cII)

(cII/cI)[d + (cI/cII)h] . (8.7.8)

This varies with depth d as a spherically symmetric wave radiating from a source at
virtual height (cI/cII)h.

8.8 Reflection from Curved Surfaces

The major features of reflection from a curved surface are amenable to geometrical-
acoustics techniques when the surface’s radii of curvature are large compared with a
wavelength. The chief assumption is that the reflection on any limited portion of the
surface is locally the same as for plane-wave reflection from a flat surface with the
same unit outward-normal vector. Here we consider the curved surface to be rigid,
and we assume the ambient fluid medium to be homogeneous and without ambient
flow.

8.8.1 General Geometrical Considerations

Let xS be a point on the curved surface, nS(xS) be the unit outward normal (into the
fluid) of the surface at xS , and ni (xS) be the direction of the incident sound ray that
hits the surface at xS (see Fig. 8.23). According to the law of mirrors, the unit vector
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Fig. 8.23 Geometry of incident and reflected rays in the vicinity of a curved surface

nr (xS) in the direction of the reflected ray must have the same tangential component
as ni (xS) but the opposite normal component. If one changes xS to xS + δxS ,
the three unit vectors ni ,nr , and nS undergo incremental variations δni , δnr , and
δnS . For sufficiently small δxS , these are related by the differential versions of the
equations requiring ni + nr to be tangential to the surface, nr − ni to be normal to
the surface, and the unit vector to have unit length, i.e.,

(δni + δnr ) ·nS + (ni + nr ) · δnS = 0, (8.8.1a)

(δnr − δni ) × nS + (nr − ni ) × δnS = 0, (8.8.1b)

ni · δni = nr · δnr = nS · δnS = 0. (8.8.1c)
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To solve the above equations for δnr , we introduce unit vectors e1, e2, e3,
a1, a2, a3, b1, b2, and b3, where e3 is vector nS normal to the surface at xS, e1
is the unit vector tangential to the surface in the direction of ni + nr at xS , and a3
and b3 are unit vectors in the directions of ni and nr , respectively, at xS . The unit
vector e2 equals a2, and b2 and is such that e1 × e2 = e3; the vector a1 is such
that a2 × a3 = a1. An analogous definition holds for b1. If θi denotes the angle of
incidence of the wave at xS , the definitions are such that

[
a1

a3

]
=
[∓ cos θi − sin θi

sin θi ∓ cos θi

] [
e1

e3

]
, (8.8.2)

where the upper signs in the matrix product yield a1 and a3; the lower signs yield
b1 and b3.

These unit vectors allow the substitution of e3, (2 sin θi)e1, and (2 cos θi)e3 for
nS, ni +nr , and nr −ni in Eqs. (1a) and (1b). Equations (1c) require that δni have
only a1 and a2 components, that δnr have only b1 and b2 components, and that δnS

have only e1 and e2 components. Insertion of these identifications into Eqs. (1a)
and (1b) yields the two scalar equations

b1 · δnr = −a1 · δni + 2e1 · δnS, (8.8.3a)

b2 · δnr = a2 · δni + (2 cos θi)e2 · δnS. (8.8.3b)

Next note that, near the point xS , any incident wavefront reaching xS at time
δt = 0 can be described by

cδt = δx · a3 + 1

2

2∑
μ,ν=1

giμν(δx · aμ)(δx · aν), (8.8.4)

where giμν = giνμ are the components of the curvature tensor of the incident
wavefront and δx = x − xS is here not restricted to be tangential to the reflecting
surface. (The two eigenvalues of the 2 × 2 curvature matrix37 are the reciprocals

37If the lines on the surface corresponding to principal radii ra and rb coincide with the a1 and a2
directions, respectively, then g11 = 1/ra, g22 = 1/rb, and g12 = g21 = 0. If one must rotate the
tangential coordinate axes counterclockwise through an angle φ about the surface normal for them
to coincide with the principal directions, then

g11 = r−1
a cos2 φ + r−1

b sin2 φ, g12 = (r−1
a − r−1

b ) cosφ sinφ,

[
g11 g12

g21 g22

]
=
[

cosφ − sinφ

sinφ cosφ

] [
r−1
a 0
0 r−1

b

] [
cosφ sinφ

− sinφ cosφ

]
.

Regardless of the value of φ, the determinant (Gaussian curvature) is 1/rarb, and the trace is
r−1
a + r−1

b .
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of the surface’s principal radii of curvature, that is, g11g22 − g2
12 = 1/rarb and

g11 +g22 = 1/ra +1/rb, where ra and rb are both positive if the surface is convex.)
The gradient of the right side of Eq. (4) is ni (xS + δx), or a3 + δni , when

δx = δxS is tangential to the surface. Consequently, the components of δni are

δni · a1 = gi11δxS · a1 + gi12δxS · a2, (8.8.5a)

δni · a2 = gi21δxS · a1 + gi22δxS · a2. (8.8.5b)

These, along with the analogous relations for the appropriate components of δnr

and δnS , recast Eqs. (3) into the matrix relation

[
gr11 gr12
gr21 gr22

] [
δxS · b1

δxS · b2

]
=
[−gi11 −gi12

gi21 gi22

] [
δxS · a1

δxS · a2

]

+ 2

[
gS11 gS12

gS21 cos θi gS22 cos θi

] [
δxS · e1

δxS · e2

]
. (8.8.6)

From this equation, two equations result for each of the cases: δxS in the e1
direction and δxS in the e2 direction. Solution of these four equations for gr11, g

r
12,

gr21, and gr22 yields38

[
gr11 gr12
gr21 gr22

]
=
[

gi11 −gi12
−gi21 gi22

]
+ 2

[
gS11 sec θi gS12

gS21 gS22 cos θi

]
. (8.8.7)

This gives us a general law for how the wavefront curvature changes on reflection
from a curved surface.

When the reflecting surface is perfectly flat (zero curvature tensor), the second
matrix term on the right is zero and the curvature of the reflected wavefront is
the same as that of the incident wavefront. The change of sign of the off-diagonal
components is because left appears right and vice versa when viewed in a mirror.

If the incident wave is a plane wave, [gi] is zero. If it is a diverging spherical
wave, then gi11 = gi22 = 1/Ri and gi12 = gi21 = 0, where Ri is the incident
wave’s radius of curvature at the point xS . Similarly, if the reflecting surface is
spherical and convex, one has gS11 = gS22 = 1/RS and gS12 = gS21 = 0. Thus for
a spherical wave incident on a sphere, Eq. (7) predicts that the reflected wave is
concave with its principal radii of curvature equal to [1/Ri + 2(sec θi/RS]−1 and
[1/Ri +2 (cos θi)/RS]−1. If θi = 0 (normal incidence), the reflected wave is locally
spherical with both radii of curvature equal to (1/Ri + 2/RS)

−1. In particular, if the
incident wave is planar (Ri = ∞), the two radii for the reflected wavefront are both
RS/2.

38G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60:1022–1035 (1972).
The original derivation is due to A. Gullstrand, “The general optical imaging system,” K. Sven.
Vetenskapakad. Hangl. (4) 55:1–139 (1915).
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8.8.2 Ray-Tube Area After Reflection

To determine the reflected wave amplitude after subsequent propagation through a
distance l, one needs the ratio A(l)/A(0) of ray-tube area at distance l to that at the
point of reflection, which, from Eq. (8.5.8), is

A(l)

A(0)
= (K−1

1 + l)(K−1
2 + l)

K−1
1 K−1

2

= 1 + l(K1 + K2) + l2K1K2, (8.8.8)

where K1 and K2 are the reciprocals of the two principal radii of curvature of the
wavefront just after reflection. However, since K1 + K2 is gr11 + gr22 and K1K2 is
the determinant of [gr ], this can be rewritten as

A(l)

A(0)
= det

[
1 + lgr11 lgr12
lgr21 1 + lgr22

]

= det

[
1 + (gi11 + 2gS11 sec θi)l (−gi12 + 2gS12)l

(−gi21 + 2gS21)l 1 + (gi22 + 2gS22 cos θi)l

]
, (8.8.9)

where the second version follows from Eq. (7).
For reflection of a spherical wave from a spherical surface, the off-diagonal

elements of [gi] and [gS] are zero, while their diagonal elements are 1/Ri and 1/RS ;
therefore, the above reduces to

A(l)

A(0)
= [1 + (R−1

i + 2R−1
S sec θi)l][1 + (R−1

i + 2R−1
S cos θi)l]. (8.8.10)

The corresponding result for when the incident wave is planar is obtained by setting
R−1
i = 0.
If the reflecting surface is a cylinder, not necessarily of circular cross section,

the two principal radii of curvature at the surface are RC and ∞. If we let φ denote
the angle between the plane of incidence and the line passing through the reflection
point parallel to the cylinder axis, such that gS11 = 0 when φ = 0 and gS11 = 1/RC

when φ = π/2, then gS11 = R−1
C sin2 φ, gS22 = R−1

C cos2 φ, and gS12 = gS21 =
±R−1

C sinφ cosφ. Consequently, when a spherical wave is incident, Eq. (9) reduces
to

A(l)

A(0)
= (1 + R−1

i l)[1 + R−1
i l + 2lR−1

C N(φ, θi)], (8.8.11)

N(φ, θi) = sin2 φ sec θi + cos2 φ cos θi = 1 − (ni · eC)
2

−nS ·ni

, (8.8.12)

where eC is the unit vector parallel to the cylinder axis. Again, the expression
appropriate to when a plane wave is incident results with R−1

i → 0.
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With A(l)/A(0) determined, the pressure signature associated with the reflected
wave is

pr(xS + nr l, t) =
[
A(0)

A(l)

]1/2

pi

(
xS, t − l

c

)
. (8.8.13)

This corresponds to what would be received at a point x = xS + nr l, where nr =
ni − 2(nS ·ni )nS is related to ni by the law of mirrors.

8.8.3 Echoes from Curved Surfaces

As an application of the above formulation, we consider a small source at a distance
R from the nearest point on a curved surface. At that point, the surface has principal
radii of curvature RS,I and RS,II. If f (t−r/c)/r denotes the incident wave, the echo
returned back to the source will be

pr =
[
A(0)

A(R)

]1/2
f (t − 2R/c)

R
. (8.8.14)

In this example, it is possible to orient the coordinate system so that [gS] is diagonal.
The angle θi is 0; l and Ri are both R, so Eq. (9) yields

pr = f (t − 2R/c)

2R(1 + R/RS,I)1/2(1 + R/RS,II)1/2
. (8.8.15)

Thus, the echo will be smaller by 10 log[(1 + R/RS,I)(1 + R/RS,II)]dB relative to
what would be expected for reflection from a flat surface. If R is much less than
either RS,I or RS,II, the surface may be idealized as flat.

8.8.4 Sound Beam Incident on a Sphere

A collimated beam of sound is incident from the +z direction on a sphere of radius
Ro (see Fig. 8.24), the beam’s diameter being larger than 2Ro. The time-averaged
intensity of the incident wave in the vicinity of the sphere is Ii , and the intensity Ir
of the reflected wave is to be estimated at radial distances r much larger than Ro. We
are here interested in the short-wavelength limit39 and accordingly use geometrical
acoustics.

39Full-wave results for intermediate values of kRo are tabulated by H. Stenzel, “On the disturbance
caused by a sound field incident on a rigid sphere,” Elektr. Nachrichtentech. 15:71–78 (1938);
Leitfaden zur Berechnung von Schallvorgängen, Springer, Berlin, 1939, pp. 104–114. Some of
Stenzel’s results are given in Sect. 9.1 of the present text.



8.8 Reflection from Curved Surfaces 479

Fig. 8.24 Parameters used in the geometrical-acoustics theory of reflection from a rigid sphere

The ray of sound incident at a distance wo (less than Ro) from the z axis will
strike the surface at an angle of incidence θi where θi = sin−1(wo/R0) and will
reflect such that it makes an angle of 2θi with the z axis. After a subsequent
propagation distance l, it will pass through a point at z = Ro cos θi + l cos 2θi , w =
Ro sin θi + l sin 2θi , or, in spherical coordinates, where r2 = R2

o + l2 + 2Rol cos θi
and θ = tan−1(w/z). If l � Ro, then r ≈ l + Ro cos θi and θ ≈ 2θi . Thus, we can
set θi ≈ θ/2, l ≈ r−Ro cos(θ/2), so with R−1

i = 0 and RS = Ro, Eq. (10) becomes

A(l)

A(0)
≈
(

2
r

Ro

sec
θ

2
− 1

)(
1 − 2 cos2 θ

2
+ 2r

Ro

cos
θ

2

)
.

The quantity [A(0)/A(l)]1/2 is thus approximately Ro/2r , providing θ is such that
2r/Ro � sec(θ/2). (This excludes angles close to π ). The net travel time along
the path from where the incident ray crosses the plane z = Ro to the point (r, θ) is
[l+Ro(1−cos θi)]/c ≈ r/c+(Ro/c)[1−2 cos(θ/2)]. Consequently, Eq. (13) yields

pr(r, θ, t) ≈ Ro

2r
pi

(
0, t − r

c
+ 2

Ro

c
cos

θ

2

)
, (8.8.16)

where pi(0, t) is what the incident pressure would be at the origin without the
sphere. The cos(θ/2) factor in the retarded time implies that surfaces of constant r
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are not surfaces of constant phase, but the phase variation should be negligible for
transverse displacements of the order of a wavelength.

If the incident plane wave is of constant frequency or is a superposition of
constant-frequency waveforms, we can identify Ii as (p2

i /ρc)av and Ir as (p2
r /ρc)av,

giving

Ir ≈
(
Ro

2r

)2

Ii (8.8.17)

for values of θ somewhat less than π . The net acoustic power reflected by the sphere
is therefore

Pr = 4πr2Ir = (πR2
o)Ii, (8.8.18)

which is the net acoustic power incident on the front (projected area πR2
o) of the

sphere.

8.9 Problems

8.1 Show that the unit normal n to a wavefront varies with time along a ray
according to the differential equation (in Cartesian coordinates)

dn

dt
= −[∇ − n(n ·∇)]c −

∑
k

nk[∇ − n(n ·∇)]vk,

dnx

dt
=
[
−(n2

y + n2
z)

∂

∂x
+ nxny

∂

∂y
+ nxnz

∂

∂z

]
(c + n · v),

where nx, ny , and nz are formally treated as constant in carrying out the
differentiation. [R. Engelke, J. Acoust. Soc. Am. 56:1291–1292 (1974).]

8.2 Show that when there is no ambient flow a ray path satisfies the differential
equation

d

dl

(
c−1 dx

dl

)
= ∇c−1,

where l is distance along the path. (P. G. Frank, P. G. Bergmann, and A.
Yaspan, “Ray acoustics,” reprinted in R. B. Lindsay, Physical Acoustics,
Dowden, Hutchinson and Ross, Stroudsburg, Penn., 1974.)

8.3 Show that the differential equation in Problem 8.2 results from Fermat’s
principle. Carry through the derivation in detail starting with Eq. (8.1.13)
with v set to zero.
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8.4 Show that the ray-tracing equations (8.1.10) follow from the relations on p.
375n.

8.5 In an isentropic ideal gas with steady irrotational (∇ × v = 0) ambient flow,
the sound speed c and ambient velocity v are related by

2c2

γ − 1
+ v2 = K,

where K is a constant. Verify this relation and show that the ray-tracing
equations lead to

dn

dt
= n ×

(
n ×

{[
n − (γ − 1)v

2c

]
·∇
}

v

)
.

8.6 A ray is moving in a cylindrically symmetric medium for which c depends
only on the radial distance w and for which v = 0. For a ray path lying in the
z = 0 plane, verify that weφ ·n/c is constant along the ray.

8.7 For a quiescent medium in which sound speed varies only with radial
distance r (spherical coordinates), determine whether or not a given ray path
always lies within a single plane.

8.8 For a medium whose ambient properties are described in cylindrical coor-
dinates by c = c(r), vφ = u(r), and vr = vz = 0, determine what ray
properties are constant along a given ray. (What replaces Snell’s law?) [R. B.
Lindsay, J. Acoust. Soc. Am. 20:89–94 (1948); R. F. Salant, ibid., 46:1153–
1157 (1969).]

8.9 Supply all necessary algebraic details for the proof that the ray-tracing
equation (8.1.10b) follows from the Euler–Lagrange equations (8.1.15) and
from Eq. (8.1.14).

8.10 Use Fermat’s principle to prove that angle of incidence equals angle of
reflection.

8.11 Use Fermat’s principle to prove that when source and listener lie on opposite
sides of a plane interface separating two dissimilar homogeneous quiescent
fluids, angle of incidence and angle of refraction of the connecting ray path
are related by Snell’s law.

8.12 Two points are at equal distances L from the center of a solid sphere of
radial R. They are on opposite sides of the sphere and lie on a common axis
(L > R). Given that the ambient medium has constant sound speed c and
no flow, determine the minimum travel time between the two points. What is
the corresponding ray path?

8.13 A wavefront moving in the +z direction in a homogeneous nonmoving
medium is described by

z = x2/2R

1 + 10x2/R2
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at t = 0. Sketch the wavefront at times 0.9R/c, 1.0R/c, and 1.1R/c and
discuss possible physical interpretations of the results.

8.14 A wavefront moving in the +z direction in a homogeneous nonmoving
medium is described at time t = 0 by z = f (x).

(a) Show that the ray passing through the point x = α, z ≈ f (α) at time
t = 0 will graze a caustic at time

t = (1 + f 2
α )

3/2

cfαα

(given fαα > 0).
(b) Show also that the caustic surface is described by the parametric

equations

x = α − fα(1 + f 2
α )

fαα
, z = f + 1 + f 2

α

fαα
.

(c) Determine and plot the caustic surface for the example described in
Problem 8.13.

8.15 Given a model atmosphere without winds for which c(z)/co is 1 for 0 < z <

H and is 0.9 + 0.1z/H for z > H , determine the horizontal skip distance
R(θo) versus initial angle of incidence θo. Is there a minimum range for the
reception of abnormal sound on the ground? Assume that the source is on the
ground. [L. M. Brekhovskikh, Sov. Phys. Usp. 70:159–166 (1960).]

8.16 A sound source is at x = 0, y = 0, z = h above a rigid ground in a medium
for which c(z) is described up to any height of interest by (1−z/H)co, where
H > h.

(a) Show that points on the ground at horizontal distances greater than
(2hH − h2)1/2 do not receive any direct waves.

(b) What broken ray path conforming to Fermat’s principle would connect
the source with a point on the ground at a range greater than (2hH −
h2)1/2?

(c) Determine an expression for the travel time along such a ray path.

8.17 A stratified medium without ambient flow has a sound speed c(z) given by
co cosh(z/H). Determine the ray path in the xz plane that passes through the
origin making an angle of θo with respect to the vertical.

8.18 A source and receiver are separated by a distance d and are at equal heights
h above the ground. The sound speed c(z) increases linearly with height as
co + αz. Let a particular ray be reflected at the surface once and only once
between source and receiver and let the reflection point be at a horizontal
distance x from the source.
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(a) Show that x satisfies the cubic equation

2x3 − 3dx2 + (2b2 + d2)x − b2d = 0,

where b2 = h2 + 2h/γ and γ = α/co.
(b) Determine the possible ray paths corresponding to the roots of this

equation. Under what circumstances are three different paths possible?
(Embleton, Thiessen, and Piercy, “Propagation in an Inversion.. . . ”)

8.19 A model for an underwater surface channel takes sound speed c as increasing
linearly with depth z, such that c = co + αz.

(a) Show that if the sound source is at the surface, a ray making initial
angle θo with the vertical has a path given in parametric form through
a parameter θ by

x = xn(θ, θo) = nR(θo) + co
cos θo − cos θ

α sin θo
,

z = zn(θ, θ0) = co
sin θ − sin θo

α sin θo
, R(θo) = 2co cot θo

α
,

for nR(θo) < x < (n + 1)R(θo) and where θ ranges from θo to π − θo.
Here n = 0, 1, 2, . . . defines the nth branch of the ray; R(θo) is the ray’s
skip distance.

(b) Show that caustics correspond to the lines

x2 = 4n(n + 1)

(
2coz

α
+ z2

)
,

for n = 1, 2, . . .. [D. Raphael, J. Acoust. Soc. Am. 48:1249–1256
(1970).]

8.20 A sound source at the origin is surrounded by a medium for which c(z) is
co(1 − z/H) and ρ(z) is constant for a wide range of altitudes both above
and below the source. If P is the power radiated by the source, what would
one expect for the mean squared acoustic pressure at a horizontal distance x

from the source?
8.21 For the circumstances described in Problem 8.20 determine whether any of

the rays leaving the source encounter a caustic.
8.22 (a) Show that the wavefronts for the circumstances described in Prob-

lem 8.20 are given by

τ(w, z) = 2H

co
tanh−1

[
w2 + z2

(2H − z)2 + w2

]1/2

,

where w corresponds to horizontal distance.
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(b) Verify that each wavefront is a sphere whose center lies on the z axis.
[D. H. Wood, J. Acoust. Soc. Am. 47:1448–1452 (1970).]

8.23 A source of sound lies a distance d below the water surface. In the absence of
reflections from the air–water interface the acoustic pressure would be f (t −
R/cw)/R, where R is the distance from the source and cw is the water’s speed
of sound. The sound speed ca in the atmosphere is constant, but the ambient
density ρa varies with height z as ρa,0e−z/H , where H is a constant.

(a) Using geometrical-acoustics techniques, determine the acoustically
induced fluid velocity at height 10H directly above the source.

(b) Suppose a source of the same power output is placed just above
the surface. Would it cause a greater or a smaller disturbance at the
considered altitude than the subsurface source does? (Take d to be much
less than H .)

8.24 An intrinsically omnidirectional point source lies at the origin in an
unbounded medium for which sound speed c(z) and ambient density ρ(z)

vary only with height z. Show that the mean squared acoustic pressure along
the z axis is

(p2)av = Pavρ(z)c(z)c
2(0)

4π
(∫ z

o
cdz

)2 ,

where Pav is the time-averaged acoustic power output of the source.
8.25 A plane interface z = 0 separates a medium with no ambient flow (cI, ρI for

z<0) from one with constant ambient horizontal flow velocity (cII, ρII, vII
for z > 0). Prove that if a plane wave is incident from the first medium, the
time-average rate at which wave action arrives per unit interface area with the
incident wave equals the sum of the corresponding quantities carried away
by the reflected and transmitted waves.

8.26 (a) Show that with the neglect of gravity and if the ambient state is isentropic
(so constant) and irrotational (∇ × vo = 0). Equations (8.6.2) lead to

∂v′

∂t
+ ∇

(
vo · v′ + p′

ρo

)
= 0,

∂ρ′

∂t
+ ∇ · (ρov′ + voρ

′) = 0,

∇ × v′ = 0, p′ = ρ′c2.

(b) Show that these equations have the corollary

∂W

∂t
+ ∇ ·J = 0,

W = 1
2ρo(v

′)2 + (p′)2

2ρoc2 + p′v′ · vo

c2 ,
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J = (p′ + vo · v′ρo)
(

v′ + p′vo
ρoc2

)
.

(c) Is the energy statement in part (b) consistent with the wave-action-
conservation law of Eq. (8.6.8)? (Chernov, “The flux and energy density.
. . . ”)

8.27 The generalization of the Webster horn model, when a duct of cross-sectional
area A(x) has an ambient flow vo(x), is

A

c2

∂p′

∂t
+ ∂

∂x

[
A

(
ρov

′ + vop
′

c2

)]
= 0,

∂v′

∂t
+ ∂

∂x

(
p′

ρo
+ vov

′
)

= 0.

(a) Derive these equations from Eqs. (8.6.2), making whatever approxima-
tions are necessary.

(b) Determine an energy corollary from these equations.
(c) Verify that the energy corollary is consistent with the wave-action-

conservation principle when waves are presumed to be propagating in
the +x direction without reflection.

(d) What is the Blokhintzev invariant for this model?

8.28 A plastic lens is to be placed on a transducer face to focus an ultrasound beam
on a point 30 cm distant. The beam propagates through water, sound speed
1500 m/s; the plastic has sound speed 2600 m/s and density 1200 kg/m3.
Using geometrical-acoustics concepts (such as Fermat’s principle), design a
lens-thickness-versus-radius profile that should accomplish the focusing.

8.29 For the example discussed in Sect. 8.8 of sound reflection from a rigid sphere,
determine a simple approximate expression for the geometrical-acoustics
prediction of the field near the shadow-zone boundary (w − Ro 
 Ro, z ≤
0). Take the incident wave to be of constant frequency with a complex
pressure amplitude p̂i of Pe−ikz, where P is a constant, and take into account
the interference of the reflected and incident waves. Assume that kRo is large
and use cylindrical coordinates.

8.30 A point source is at distance d = 4λ from the axis of a rigid cylinder of
radius RC . Take RC to be 3λ, the cylinder to be aligned along the x axis, and
the source to be at (0, 0, d).

(a) Determine and sketch the far-field radiation pattern of the source-
cylinder combination in the plane y = 0.

(b) What is the corresponding pattern in the plane x = 0? Use the
geometrical-acoustics approximation but take into account the interfer-
ence of direct and reflected waves.



486 8 Ray Acoustics

8.31 A source is at height H/10 above the ground in an atmosphere where the
sound speed c is co(1 − z/H). The ground is locally reacting and has
specific impedance 5ρoco. The source is intrinsically omnidirectional and
has a time-averaged power output P . Determine the geometrical-acoustics
prediction for the mean squared acoustic pressure on the ground as a function
of horizontal distance w from the source.

8.32 Spherical aberration. A plane wave proceeding originally in the −z direction
reflects from a hemispherical bowl described by z = −(R2

o − w2)1/2, where
Ro is radius of the bowl and w is radial distance in cylindrical coordinates.
Discuss the location and shape of whatever caustics are formed by the
reflected wave.



Chapter 9
Scattering and Diffraction

An obstacle or inhomogeneity in the path of a sound wave causes scattering if sec-
ondary sound spreads out from it in a variety of directions. Such an inhomogeneity
could be, for example, a fish in the ocean, a region of turbulence in the atmosphere,
or a red corpuscle in a bloodstream. The smearing of propagation directions that
results when a sound beam reflects from a rough surface is also recognized as
scattering.

The present chapter begins with a discussion (Sect. 9.1) of scattering of sound by
small isolated bodies and inhomogeneities. The basic experimental configurations
for the study of scattering are then discussed in Sect. 9.2. The Doppler effect and, in
particular, the frequency shift caused by a scatterer’s motion occupy our attention in
Sect. 9.3.

The remainder of the chapter is concerned with diffraction phenomena. The term
as used here applies to contexts where major features of the propagation and of
the overall acoustic field are well described by ray-acoustic concepts. Diffraction is
then the label assigned to those features of the field which the ray model fails to
explain. A common example is the field in the shadow zone of a large solid object
obstructing direct rays radiating from the source.

Examples of diffraction previously discussed in the present text are transverse
spreading (Sect. 5.8) of a beam of sound radiated by a baffled piston in a wall and
transmission (Sect. 7.5) through an orifice. The analysis of diffraction phenomena
resumes here with discussions of fields near caustics (Sect. 9.4) and of the penetra-
tion of sound into shadow zones bordered by limiting rays that tangentially graze
smooth surfaces (Sect. 9.5).

Subsequent sections analyze the fundamental problem of diffraction by a wedge,
which furnishes a building block for synthesis of models for diffraction by objects
whose sides meet at edges. Limiting cases of high-frequency diffraction introduce
the basic vocabulary associated with the subject and serve as benchmarks for the
estimation of magnitudes and for the interpretation of experiments.
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9.1 Basic Scattering Concepts

A dominant feature in many scattering phenomena is that (except when resonances
are excited) low frequencies scatter much less than high frequencies. The under-
standing of this led Tyndall and Rayleigh1 to an explanation for the color of the sky.
Light from the sky is scattered light; higher-frequency blue light scatters more than
lower-frequency red light; hence the sky is blue.

Low-frequency (small ka) scattering is often referred to as Rayleigh scattering
because of Rayleigh’s fundamental contributions to the basic theory, which he
developed for acoustics2 as well as for optics.

9.1.1 Scattering by a Rigid Object3

A prototype for Rayleigh scattering is a constant-frequency plane wave proceeding
in direction ek (wave-number vector k = kek) that impinges on a rigid immovable
body centered at the origin (see Fig. 9.1). The overall acoustic pressure is written

p̂ = Beik·x + p̂sc(x), (9.1.1)

where B is the peak amplitude of the incident wave pi and p̂sc(x) is the scattered
wave’s complex amplitude.

The function p̂sc(x) satisfies the Helmholtz equation and the Sommerfeld
radiation condition. Also, the ∇p̂ ·n = 0 requirement for a rigid surface imposes

∇p̂sc ·n = −iBeik·xk ·n (9.1.2)

at the body’s surface S (unit normal n pointing into fluid). Determination of p̂sc is
equivalent to determination of the field of a vibrating body of the same size and

1J. W. Strutt, Lord Rayleigh, “On the light from the sky, Its polarization and colour,” Phil. Mag.
(4)41:107–120 (1871); “On the transmission of light through an atmosphere containing small
particles in suspension, and on the origin of the blue of the sky,” ibid. (5)47:375–384 (1899);
V. Twersky, “Rayleigh scattering,” Appl. Opt. 3:1150–1162 (1964).
2J. W. S. Rayleigh, “Investigation of the disturbance produced by a spherical obstacle on the waves
of sound,” Proc. Lond. Math. Soc. 4:253–283 (1872); “On the passage of waves through apertures
in plane screens and allied problems,” Phil. Mag. (5)43:259–272 (1897).
3H. Lamb, The Dynamical Theory of Sound, 2d ed., 1925, reprinted by Dover, New York, 1960,
pp. 244–248; J. Van Bladel, “On low-frequency scattering by hard and soft bodies,” J. Acoust.
Soc. Am. 44:1069–1073 (1968); D. A. Darling and T. B. A. Senior, “Low-frequency expansions
for scattering by separable and nonseparable bodies,” ibid. 37:228–234 (1965); A. F. Stevenson,
“Solution of electromagnetic scattering problems as power series in the ratio (dimension of
scatterer)/wavelength,” J. Appl. Phys. 24:1134–1151 (1953). The discussion in the present text is
indebted to F. Obermeier, “Determination of the scattering of a plane sound wave by a hard sphere
with the assistance of the method of matched asymptotic expansions,” unpublished (c. 1975).
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Fig. 9.1 Scattering of a plane wave by a rigid immovable object small compared with a
wavelength

shape whose normal velocity is the negative of what is associated with the incident
wave.

The expansion of the exponent in Eq. (2) to first order in k yields

v̂sc ·n = − B

ρc
ek ·n − i

B

ρc
(k · x)ek ·n. (9.1.3)

The first term corresponds to rigid-body translation back and forth parallel to ek
with a velocity amplitude −B/ρc and, taken by itself, produces dipole radiation (to
lowest nonvanishing order in ka, as explained in Sect. 4.7). Although the second
term, which leads to monopole radiation, is smaller than the first by a factor of the
order of ka, both have comparable influence on the far field because monopoles
radiate more efficiently than dipoles. An approximation to the lowest order in ka

results with the discard of terms of higher than the first order and with the neglect
of higher-order multipoles for the two remaining terms.

The monopole portion, calculated with the complex-amplitude version of the
leading term in Eq. (4.7.10), yields

p̂sc,mono = −k2Beikr

4πr

∫ ∫
(ek · x)ek ·ndS = −k2BV

4πr
eikr (9.1.4)

with the aid of Gauss’s theorem and the identity ∇ ·[(ek ·x)ek] = 1; here V denotes
the total scattering body volume.

The dipole term results from Eq. (4.7.12), whose complex-amplitude version
with the appropriate substitution from Eq. (3) yields

p̂sc,dipole = −ikB

4π
∇ · [(M · ek)r

−1eikr ], (9.1.5a)

Mμν = V δμν + Wμν M · ek =
∑
μν

eμMμνeν · ek. (9.1.5b)
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The matched asymptotic expansion procedure outlined in Sect. 4.7 guarantees that
the tensor W is derivable from the solution for the incompressible potential flow
caused by translational motion of the body. The entrained-mass tensor4 ρW is such
that ρW · v̇C is the force F exerted on the fluid by the body when it experiences
acceleration v̇C . The necessity for a tensor arises because F may have components
transverse to v̇C .

Since the components of M scale as a3, the monopole and dipole terms are of
comparable magnitude. The sum of these

p̂sc = −k2B

4π

[
V − er ·M · ek

(
1 + i

kr

)]
eikr

r
(9.1.6)

implies a far-field scattered-wave amplitude proportional to k2a3/r .
Particular matrix expressions for the tensor M

3
2V

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ 8

3a
3

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ (9.1.7)

correspond, respectively, to a sphere [see Eq. (4.2.14)] and to a thin disk of radius
a oriented transverse to the z axis [see Eq. (4.8.11)]. The reciprocity principle
guarantees that such matrices are symmetric, so that selection of the coordinate
system can be such that the matrix is diagonal. For a body of revolution centered at
the z axis, the matrix is also such that Mxx = Myy (see Fig. 9.2).

The versions5 of Eq. (6) that result for the sphere and disk examples (with ek =
ez) just mentioned are, respectively,

p̂sc = −k2B

4π
( 4

3πa
3)

[
1 − 3

2 cos θ

(
1 + i

kr

)]
eikr

r
(9.1.8)

p̂sc = k2B

4π

8a3

3
cos θ

(
1 + i

kr

)
eikr

r
(9.1.9)

4The symbols adopted here are those of T. B. A. Senior, “Low-frequency scattering,” J. Acoust.
Soc. Am. 53:742–747 (1973). Senior refers to M as the magnetic-polarizability tensor and to W

as the virtual-mass tensor.
5Both results are due to Rayleigh (1872, 1897). A generalization of the sphere result to include
viscosity is due to C. J. T. Sewell, “The extinction of sound in a viscous atmosphere by small
obstacles of cylindrical and spherical form,” Phil. Trans. R. Soc. Lond. A210:239–270 (1910);
a fuller and extended account is given by H. Lamb, Hydrodynamics, 6th ed., 1932, reprinted by
Dover, New York, 1945, pp. 657–659. The required modification of Eq. (8) for a freely suspended
sphere that includes viscosity and also the acoustically induced motion is (with ka 
 1)

3
2 cos θ → (m − md)

3
2Kvis cos θ

m − md + 3
2mdKvis

Kvis = 1 + 3i

βa
− 3

β2a2 β = eiπ/4
(
ωρ

μ

)1/2

,

where μ = viscosity; m = sphere’s mass; md = mass of fluid displaced by sphere.
The immovable-sphere result is obtained in the limit m/md → ∞. The inviscid result is

obtained in the limit |βa| → ∞, so that Kvis → 1.
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Fig. 9.2 Principal components of the matrix M that appears in expression for dipole portion of
field scattered by a body in the ka 
 1 limit; ρM is the entrained-mass tensor. Plot is for spheroids
(prolate if l > w; oblate if l < w) that are bodies of revolution (length l, maximum diameter w)
about the x3 axis. The volume V is 4

3π(w/2)2(l/2). For the sphere (l/w = 1), both M11/V and

M33/V are 1; for the disk (l/w → 0), M33 → 8
3 (W/2)3, so M33/V → (2/π)(w/l) [From T. B.

A. Senior, J. Acoust. Soc. Am. 53:745 (1973)]

Here cos θ is ek · er , such that θ is the angle the scattered direction makes with the
incident direction. The monopole term is absent in the latter because the disk has no
volume.

9.1.2 Scattering Cross Section

The time-averaged intensity Isc of the scattered wave at large r , equal to the
asymptotic value of 1

2 |p̂sc|2/ρc, is proportional to the time-averaged incident
intensity Ii , decreases with r as 1/r2, and also depends in general on the direction
from the scatterer to where the scattered pressure is measured. The quotient r2Isc/Ii ,
representing the power scattered per unit solid angle and per unit incident intensity,
is referred to as the differential cross section dσ/dΩ , while the integral over solid
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angle of dσ/dΩ is referred to as the scattering cross section σ . The latter term6

is also used in literature emphasizing analogies with radar applications for the
directionally dependent quantity 4π dσ/dΩ; to avoid confusion, the alternative
terms backscattering cross section σback and bistatic cross section σbi are here
used for 4πdσ/dΩ when the direction toward the receiver extends back toward the
source and at an angle from the source, respectively. For an isotropic scatterer, for
which dσ/dΩ is independent of direction and equal to σ/4π , the backscattering
cross section and the bistatic cross section are the same as the scattering cross
section σ .

Closely related to the backscattering cross section is the target strength, measured
in decibels and defined so that

TS = 10 log
σback

4πR2
ref

, (9.1.10)

where the reference length Rref is taken as 1 m in present-day literature.7 The ratio
in the argument of the logarithm can also be regarded as the differential cross section
in the backscattering direction divided by a reference differential cross section of 1
m2/sr. If Li is the incident sound-pressure level at the scatterer, and if Lback(Ro) is
the sound-pressure level of the backscattered wave at distance Ro from the scatterer,
then the definition of target strength implies that

TS = Lback(Ro) + 10 log
R2
o

R2
ref

− Li, (9.1.11)

providing the scattered wave decreases with distance as in spherical spreading.
The differential cross section dσ/dΩ for the low-frequency scattering by a rigid

immovable body evolves out of Eq. (6) to the expression

dσ

dΩ
= k4

16π2
|V − er ·M · ek|2 , (9.1.12)

6Compare the definitions on pp. 818 and 509, respectively, of International Dictionary of Applied
Mathematics, Van Nostrand, Princeton, N.J., 1960, and IEEE Standard Dictionary of Electrical
and Electronics Terms, Wiley, New York, 1972.
7C. S. Clay and H. Medwin, Acoustical Oceanography: Principles and Applications, Wiley, New
York, 1977, pp. 180—183. The reference length of 1 yd (0.9144 m) is used in earlier literature.
See, for example, J. W. Horton, Fundamentals of SONAR, 2d ed., United States Naval Institute,
Annapolis, Md., 1959, pp. 41, 56–57, 329–330. Note that although Clay and Medwin’s definition
of backscattering cross section differs by a factor of 4π from that used here, the above definition
of target strength is the same as theirs.
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while the backscattering cross section results with er set to −ek and with a
subsequent multiplication by 4π , such that

σback = k4

4π
|V + ek ·M · ek|2 backscatter (9.1.13)

The predicted frequency dependence, as f 4, holds also for the scattering cross
section σ . The required angular integration of dσ/dΩ becomes simpler with the
z axis selected in the direction of M · ek , so that er · M · ek is |M · ek| cos θ . The
cross term integrates to zero (since cos θ is odd about θ = π/2), so the scattered
acoustic powers associated with the monopole and dipole contributions are additive.
These two remaining terms integrate to simple expressions because the average of
cos2 θ over the surface of a sphere is 1

3 and because the total solid angle about a
point is 4π ; the overall result is therefore

σ = k4

4π
[V 2 + 1

3 (M · ek)
2]. (9.1.14)

The scattering cross section σ , defined above as the scattered power per unit
incident intensity, is the apparent area blocking the incident wave. The values
resulting from Eqs. (7) for this parameter are

σ =
⎧⎨
⎩

7
9 (πa

2)(ka)4 sphere

16
27 (πa

2 cos2 θk)(ka)
4/π2 disk

(9.1.15a)

(9.1.15b)

where θk is the angle between the disk’s symmetry axis and the incident propagation
direction. The scattering cross sections in these two cases are smaller, by factors
of 7

9 (ka)
4 and 16

27 (ka)
4π−2 cos θk , than the projected areas πa2 and πa2 cos θk

the scattering body presents to the incident wave. The common factor (ka)4

substantiates the conclusion that small obstacles appear even smaller to an incident
wave.

9.1.3 Higher-Frequency Scattering

In the limit of large ka, geometrical-acoustics considerations require

σ → 2Aproj σback → πRS,IRS,II. (9.1.16)

The latter expression presumes that there is only one point on the near side of the
scatterer where the unit normal points back toward the source [see Eq. (8.8.9)]; the
principal radii of curvature at that point are RS,I and RS,II; the surface is assumed
to be convex. The factor of 2 multiplying the projected area Aproj in the expression
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for the scattering cross section arises because the definition in Eq. (1) of p̂sc and
the existence of the shadow require the scattered field to be nearly opposite to
the incident field behind the body (on the side facing away from the source). The
scattered power behind the body is therefore the projected area times the incident
intensity, which is the same as the acoustic power reflected by the illuminated part
of the body; hence the factor 2.

The transition between high- and low-frequency limits is not amenable to
simple generalizations, but some insight results from an examination of numerical
calculations for the rigid-sphere example. The solution8 of the resulting boundary-
value problem takes the form of a sum over products of spherical harmonics
and spherical Hankel functions. For small ka, the first two terms, as further
approximated by Eq. (8), suffice, but many terms must be summed when ka is
of the order of 1 or larger. The computational results plotted in Fig. 9.3 are of
(dσ/dΩ)1/2)/a; also shown are the analogous limiting versions for the Rayleigh-
scattering limit and the geometrical acoustics limit, these being

1
a

(
dσ
dΩ

)1/2 →
⎧⎨
⎩

1
3 (ka)

2|1 − 3
2 cos θ | ka 
 1

1
2 + π1/2Δ(θ) ka � 1

(9.1.17a)

(9.1.17b)

Here Δ(θ) is a singular function concentrated at θ = 0 and defined so that the
integral of Δ2(θ) over solid angle is 1.

9.1.4 Scattering by Inhomogeneities

To study acoustic scattering by a departure of the medium from spatial homogeneity,
we suppose that ρ(x) and c(x) differ near the origin from their prevalent uniform
media values ρo, and co. The wave equation for an inhomogeneous quiescent
medium (see Problem 1.6),

ρ∇ ·
(

1

ρ
∇p

)
− 1

c2

∂2p

∂t2 = 0, (9.1.18)

8H. Stenzel, “On the perturbation of the sound field caused by a rigid sphere,” Elektr. Nachrichten-
tech. 15:71–78 (1938); N. A. Logan, “Survey of some early studies of the scattering of plane waves
by a sphere,” Proc. IEEE, 53:773–785 (1965). The derivation is outlined by P. M. Morse and H.
Feshbach, Methods of Theoretical Physics, vol. 2, McGraw-Hill, New York, 1953, pp. 1483–1484.
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Fig. 9.3 Angular distribution of sound scattered by a rigid sphere of radius a. The quantity
{dσ/dΩ)1/2/a is plotted versus the polar angle θ , where dσ/dΩ is the differential cross section:
θ = 0 corresponds to scattering in the forward direction, θ = 180◦ to backscatter. The plots for
ka = 2, 4, and 6 are based on calculations of H. Stenzel (1938)

leads for the constant-frequency case to

∇2p̂ + k2p̂ = k2Δ1p̂ + ∇ · (Δ2∇p̂), (9.1.19a)

k = ω

co
, Δ2 = 1 − ρo

ρ
, Δ1 = 1 − ρoc

2
o

ρc2
, (9.1.19b)
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where the right side of Eq. (19a) vanishes except near the origin. The two right-
side terms are associated with monopole and dipole scattering, respectively. In what
follows, the spatial dimension a characterizing the extent of the inhomogeneity
is such that kac 0/c � 1 and (ka)2ρo/ρ � 1 everywhere. As before, the
incident acoustic pressure has complex amplitude Beik·x , so p̂ − Beik·x satisfies
the Sommerfeld radiation condition.

The formal recognition of the right side of the above as a source term allows
the Green’s function solution, Eq. (4.3.13), to transform Eq. (19a) into the integral
equation

p̂ = Beik·x − k2

4π

∫∫∫
Δ1(xs)p̂(xs)R

−1eikRdVs

− 1

4π
∇ ·

[∫∫∫
Δ2(xs)∇s p̂(xs)R

−1eikRdVs

]
. (9.1.20)

This in turn yields the asymptotic (large r) expression for the scattered wave

p̂sc ≈ −k2B

4π

[
Veff − er ·Meff · ek

(
1 + i

kr

)]
eikr

r
, (9.1.21)

where

Veff = 1

B

∫∫∫
Δ1(xs)p̂(xs)dVs, (9.1.22a)

Meff · ek = 1

ikB

∫∫∫
Δ2(xs)∇s p̂(xs)dVs. (9.1.22b)

Note that Eq. (21) is of the same form as Eq. (6). The coefficients are understood
to be evaluated in the limit ka → 0, so the scattering cross section here also is
proportional to f 4.

In regard to the evaluation of the above coefficients, a solution technique
applicable when Δ1 and Δ2 are not necessarily small follows the matched-
asymptotic-expansion procedure outlined in Sect. 4.7. The differential equations for
successive terms in the inner expansion result from insertion of a power series in k

into Eq. (19a). Outer boundary conditions for this sequence of differential equations
follow from the requirement that the inner solution for large r/a match the outer
solution Beik·x + p̂sc, with p̂sc represented by Eq. (21), in the limit of small kr . In
this manner, one finds the inner expansion to first order in k to be

p̂inner ≈ B + iBk ·Φ(x), (9.1.23)

where the μth component of the vector Φ(x) satisfies

∇ · [(1 − Δ2)∇Φμ] = 0, Φμ(x) − xμ → 0 as r → ∞. (9.1.24)
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The identification of the first term in Eq. (23) results from requiring the solution of
the differential equation (19a) with k2 → 0 to match Beik·x in the limit of small r .
Note that the first-order term in Eq. (23) must also satisfy the same k → 0 partial-
differential equation. The outer boundary condition in Eq. (24) results because iBk ·
Φ(x) must asymptotically equal the first-order term iBk · x of the power-series
expansion of Beik·x .

Equation (23) allows the coefficients in Eqs. (22) to become9

Veff =
∫∫∫

Δ1(x)dV, (9.1.25a)

Meff,μν =
∫∫∫

Δ2(x)
∂Φν(x)

∂xμ
dV . (9.1.25b)

The symmetry of the tensor Meff is a derivable consequence of Eqs. (24) and (25b).
The explicit expression (25a) for the effective volume of the scatterer can

alternatively be interpreted as

Veff = −ρoc
2
oΔCA, (9.1.26)

where ΔCA is the increase of the acoustic compliance of a volume enclosing
the inhomogeneity. Here acoustic compliance is defined (see Sect. 7.2) as volume
decrease per unit increase in external pressure. If the scatterer is rigid, the compli-
ance is reduced by V/ρoc

2
o, so that Veff is just the volume V of the scatterer, which

is consistent with the result in Eq. (6). If the scatterer is more compliant than the
ambient medium, (ρc2)sc < ρoc

2
o and ΔCA become positive, so Veff is a negative

number and its label as an effective volume becomes a misnomer. The symbol Veff
is retained here, however, as it makes identification from Eqs. (12) and (14) for the
scattering cross section easy.

9.1.5 Spherical Inhomogeneity

Solution for the Φν(x) in general requires further approximation or numerical
integration. An exception is that of the homogeneous sphere, such that Δ2 = ε

for r < a and Δ2 = 0 for r > a, where ε is constant. The symmetry permits the
substitution Φμ(x) = xμg(r)/r , yielding the ordinary differential equation

d

dr

[
(1 − Δ2)r

2 dg

dr

]
− 2(1 − Δ2)g = 0, (9.1.27)

9J. W. S. Rayleigh, “On the incidence of aerial and electric waves upon small obstacles in the form
of ellipsoids or elliptic cylinders, and on the passage of electric waves through a circular aperture
in a conducting screen,” Phil. Mag. (5)44:28–52 (1897).
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with the derivable restrictions that g(r) and (1 − Δ2)r
2dg/dr be continuous at

r = a. Solutions of the equation are g = αr for r < a and g = βr + γ /r2 for
r > a. The outer boundary condition requires β = 1; the continuity requirements
yield α = 3/(3−ε) and γ = [ε/(3−ε)]a3. The substitution of Φν = [3/(3−ε)]xν
for r < a into Eq. (25b) then yields

Meff,μν = 3ε

3 − ε
V δμν = 3(m − md)

2m + md

V δμν, (9.1.28)

where m = mass of foreign sphere, md = mass of ambient fluid it displaces, V =
4
3πa

3.

9.1.6 Inertia Effect for Freely Suspended Particle

The preceding result, Eq. (28), is the same as for a freely suspended rigid sphere,
and its interpretation is facilitated by the derivation10 that proceeds from such a
viewpoint. Little additional complexity results if the body is nonspherical, but we
do assume that its geometry is such that the incident acoustic wave causes no torque
to be exerted about its center of mass and that the product of the tensor W with the
unit vector ek is also in direction ek; we therefore write W · ek = Wek in what
follows.

If ξ denotes the body’s center-of-mass position, Newton’s second law requires
that

mξ̈ = −V∇pi − F sc. (9.1.29)

The first term is the small-ka approximation to the force exerted on the body
by the incident wave; −F sc is the force exerted on the body by the scattered
wave’s pressure at the surface. The definition of the entrained-mass tensor requires,
however, that

F sc = ρW · (ξ̈ − v̇i ), (9.1.30)

where vi is the fluid velocity associated with the incident wave and ρ is the ambient
density of the surrounding fluid. Elimination of F sc from the two above equations,
replacement of ∇pi by −ρv̇i , and a time integration yield

m(ξ̇ − vi ) + ρW · (ξ̇ − vi ) = −(m − md)vi . (9.1.31)

10Lamb, Hydrodynamics, 6th ed., p. 514.
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The above equation and the assumed properties of W in turn require ξ̇ to be
parallel to vi , with the result

md(ξ̈ − v̇i ) + F sc = −
[
m − md

m + ρW

]
ρM · v̇i . (9.1.32)

This, however, is the relevant quantity as regards the dipole radiation by the scatterer
since the boundary condition ξ̇ · n = vsc · n + vi · n enables us to regard such
radiation as being generated by a rigid body translating with velocity ξ̇ − vi . The
resulting dipole field is given by Eq. (4.7.12) with v̇C replaced by ξ̈ − v̇i . Since v̇i
has complex amplitude −iω(B/ρc)ek , we conclude, after a comparison with Eq.
(5a), that the only change required in Eq. (6) is that the immovable-body M tensor
be multiplied by

Kinertia = m − md

m + ρW
. (9.1.33)

For the transversely oscillating rigid sphere, ρW is 1
2md and Mμν is 3

2V δμν ; so the
above is consistent with Eq. (28).

9.1.7 Resonant Scattering

The foregoing derivation for Veff leading from Eq. (22a) to Eq. (25a) requires the
pressure near the scatterer to be not appreciably different from that of the incident
wave. Since the magnitude of the monopole term at the edge of the scatterer is of the
order of k2|B|Veff/4πa, this requires |Δ1|k2a2 to be small. A circumstance where
this may be violated, with ka nevertheless small, is a bubble (see Fig. 9.4a), within
which the ambient density is much less than that of the surrounding medium. (An
example would be a gas bubble in water.) Then for a narrow range of frequencies, yet
with ka 
 1, it is possible to have a monopole term of inordinately large amplitude.

To isolate the monopole portion of the wave scattered by a bubble, we average the
incident wave over the surface of a sphere so that eik·x is replaced by (kr)−1 sin kr .
Since the bubble is assumed spherically symmetric, the monopole portion of the
incident and scattered fields becomes

(p̂i + p̂sc)mono =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B

sin kr

kr
+ Ŝ

eikr

r
r > a,

D
sin kbr

kbr
r < a,

(9.1.34a)

(9.1.34b)

where Ŝ and D are constants and kb = ω/cb is the wave number appropriate to the
interior of the bubble. Both expressions are spherically symmetric solutions of the
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Fig. 9.4 Parameters and concepts adopted in the discussion of resonant scattering by (a) a bubble;
and (b) a Helniholtz resonator

appropriate Helmholtz equation (see Sect. 1.12). The scattered part of the exterior-
region solution conforms to the Sommerfeld radiation condition; the interior-region
solution is required to be finite at the origin.

Determination of the coefficients Ŝ and D results from imposition of the
requirements that p̂ and (1/ρ) ∂p̂/∂r be continuous at r = a. Limiting our
consideration to frequencies such that ka and kba are both small, we rewrite
Eqs. (34) as

(p̂i + p̂sc)mono =

⎧⎪⎪⎨
⎪⎪⎩
B − 1

6B(kr)2 + Ŝ

r
+ ikŜ r > a, kr 
 1

D − 1
6D(kbr)

2 r < a, kba 
 1

(9.1.35a)

(9.1.35b)
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so that the continuity conditions yield

B + Ŝ

a
+ ikŜ ≈ D, (9.1.36a)

1
3Bk2a + Ŝ

a2 ≈ ρ

3ρb
Dk2

ba. (9.1.36b)

The solution11 for Ŝ in the same approximation is

Ŝ = −(k2/4π)Vb[1 − (ρc2/ρbc
2
b)]B

1 − 1
3 (kba)

2(ρ/ρb)(1 + ika)
(9.1.37)

which yields

p̂sc,mono = (k2/4π)ρc2ΔCAB

1 − ω2MACA − iωCARA

eikr

r
(9.1.38)

with the identifications

MA = 3ρVb

(4πa2)2 CA = Vb

ρbc
2
b

RA = ρck2

4π
(9.1.39)

11An appropriate idealization for the incorporation of thermal conductivity into the model is that
the bubble-temperature fluctuation vanishes at the interface. Techniques similar to those described
in Sects. 10.3 to 10.5 then yield for the replacement of Eq. (37)

Ŝ = −(k2/4π)Vb[1 − (ρc2/ρbc
2
b)ψ]B

1 − 1
3 (kba)

2(ρ/ρb)(1 + ika)ψ
,

ψ = 1 + (γb − 1)f (eiπ/4φb), f (u) = 3(u−2 − u−1 cot u),

where φb = (ωρcp/κ)
1/2
b a, with cp denoting the specific heat, γb denoting the specific-heat ratio,

and κ denoting the thermal conductivity. For small bubbles such that φb 
 1, the bubble oscillates
isothermally rather than adiabatically, so that ψ ≈ γb. Equation (37) applies in the limit φb � 1,
so that ψ ≈ 1. Values of the complex function are

φb 0 2 4 6 8 10

f (eiπ/4φb) (1, 0) (0.91, 0.23) (0.54, 0.34) (0.35, 0.27) (0.27, 0.22) (0.21, 0.18)

The function f (u) approximates to 1 + (u2/15) at small u and to −3/u at large φb. The
imaginary part has a peak value of 0.36 ae φb = 3.41; the corresponding value for the real
part is 0.63. Viscosity is ordinarily of minor influence for bubble scattering. The basic theory
underlying the formula cited is due in major part to C. Devin, Jr., “Survey of thermal, radiation,
and viscous damping of pulsating air bubbles in water,” J. Acoust. Soc. Am. 31:1654–1667 (1959);
additional clarification and numerical results are given by A. I. Eller, “Damping constants of
pulsating bubbles,” ibid. 47:1469–1470 (1970).
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for the acoustic inertance, acoustic compliance, and acoustic (radiation) resistance
associated with the bubble. Here Vb is the bubble volume.

The above expression for MA is consistent with the model of a bubble in which
the fluid velocity in the external fluid varies with radius r as 1/r2, as in potential
flow. The kinetic energy associated with an interface velocity vs is then

1
2ρv

2
S4π

∫ ∞

a

(
a2

r2

)2

r2dr ≈ 3
2mdv

2
S

where md = ρVb is the mass displaced by the bubble. Energy-conservation
considerations therefore suggest that 3mdv̇S is the difference 4πa2 Δp of pressure
forces inside and outside the bubble. The volume velocity is 4πa2vS , so the acoustic
inertia, defined as Δp divided by the time derivative of volume velocity, is 3md

divided by the surface area squared, as in Eq. (39).
The acoustic resistance in the above formulation is similarly explained as that

associated with a monopole radiating into an unbounded space. (This follows from
the result p̂in,2 = ikŜ derived in Sect. 4.7, with Ŝ identified as the complex
amplitude of ρ/4π times the time derivative of the volume velocity.)

A resonance in the scattering occurs when ω2 is near (MACA)
−1 or when the

frequency f in hertz is near the bubble resonance frequency12

fb = cb

2πa

(
3ρb
ρ

)1/2

. (9.1.40)

Equation (38) also applies to scattering at near-resonance frequencies by an
isolated Helmholtz resonator (see Fig. 9.4b) provided the ΔCA in the numerator
is replaced by the acoustic compliance CA of the resonator’s cavity. A derivation
based on the method of matched asymptotic expansions proceeds similarly to what
is given in Sect. 7.5 for scattering by a Helmholtz resonator mounted on a wall. In
the present case, the modified version of Eq. (38) yields

12M. Minnaert, “On musical air-bubbles and the sounds of running water,” Phil. Mag. (7)16: 235–
248 (1933). The generalization that correctly takes surface tension into account is

fb = ρ−1/2

2πa

[
3

(
ρbc

2
b + nb2σ

a

)
− 2σ

a

]1/2

,

where σ is surface tension in newtons per meter and nb is the derivative ∂(ρbc
2
b)/∂pb, carried

out at constant temperature and evaluated at the ambient pressure and temperature of the external
fluid. It is understood also that ρbc2

b here denotes the value corresponding to the ambient external
temperature To and pressure po, so that ρbc2

b = γbpo and nb = γb for a gas bubble. An incorrect
expression frequently seen in the literature forgets to account for the difference between the
external and internal ambient pressures. The above result, attributed to J. M. Richardson (before
1947), is derived by R. W. Robinson and R. H. Buchanan, “Undamped free pulsations of an ideal
bubble,” Proc. Phys. Soc. Lond. B69:893–900 (1956). Typical values of σ for an air–water interface
are 0.076, 0.073, and 0.070 N/m at 0, 20, and 40◦C, so surface tension becomes important for
underwater bubbles only if a < 10−5m.
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p̂sc,mono = ikρc

4πr

Beikr

ZHR + ρck2/4π
, (9.1.41)

where ZHR is the acoustic impedance of the Helmholtz resonator.
Near the resonant frequency, the scattered wave is overwhelmingly monopole,

so the scattered field is spherically symmetric and the scattering cross section is
4πr2|p̂sc,mono|2/B2. With radiation damping as the only damping mechanism taken
into account, one finds from Eqs. (38) and (41) that σ is bounded13 by 4π/k2 =
λ2/π .

Analogous considerations apply to scatterers that radiate as dipoles or
quadrupoles when driven at a resonance frequency. A solid sphere suspended
by a spring, for example, should radiate primarily as a dipole when the incident
wave’s frequency equals the system’s resonance frequency. Similarly, apropos
of the legendary story of the operatic tenor whose voice could shatter wine
glasses, the scattered resonance sound in such a situation would most likely have
been quadrupole radiation. The guiding principle for prediction of the scattered
field’s radiation pattern is that the scattering body is caused to vibrate as in its
corresponding natural mode of free vibration when it is excited by a resonance
frequency.

9.2 Monostatic and Bistatic Scattering: Measurement
Configurations

Instrumentation configurations for studies of scattering are broadly classified as
monostatic and bistatic.14 If the transmitter and receiver are at the same or at closely
spaced points, the configuration is monostatic. If they are at widely spaced points,
it is bistatic. In the discussion here, to emphasize the similarities in concept with
other types of remote sensing systems, the sound-generation apparatus is referred to
as the transmitter and the reception apparatus is referred to as the receiver unless
special reference is being made to acoustical or electroacoustical properties.

13H. Lamb, “A problem in resonance, illustrative of the theory of selective absorption of light,”
Proc. Lond. Math. Soc. 32:11–20 (1900); J. W. S. Rayleigh, “Some general theorems concerning
forced vibrations and resonance,” Phil. Mag. (6)3:97–117 (1902); Theory of Sound, vol. 2, 2d ed.,
reissue of 1926, pp. 284A–284D.
14The terminology comes from radar. See, for example, M. I. Skolnik, Introduction to Radar
Systems, McGraw-Hill, New York, 1962, pp. 585–586. The “static” qualification in the adjectives
monostatic and bistatic was originally intended to distinguish ground-based radar systems from
airborne radar systems.
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Fig. 9.5 Instrumentation configurations for the study of scattering: (a) monostatic and (b) bistatic

9.2.1 Monostatic Pulse-Echo Sounding

In the prototype pulse-echo sounding experiment, a directional transmitter is aimed
at a distant scattering object (see Fig. 9.5a). At time t = 0 the transmitter sends out
a pulse of duration τ and of nearly constant angular frequency ω = 2πf , where the
ratio of τ to the period 1/f is much larger than 1. The distance rs to the scatterer,
moreover, is in turn somewhat larger than cτ/2 and is such that the scatterer is in the
transmitter’s far field. The acoustic pressure incident near the scatterer is therefore
describable (see Sect. 1.12) by
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pi = Dr−1F
(
θ, φ, t− r

c

)
, (9.2.1)

where the function F is nonzero only if 0 < t − r/c < τ and oscillates with angular
frequency ω throughout the pulse interval; its normalization is such that the time
average of F 2 is 1 for the time interval and for the direction toward the scatterer,
taken here as θ = 0. The constant D is then such that (D2/ρc)/r2

s is the incident
wave’s average intensity at the scatterer during the irradiation interval

The scatterer’s dimensions are regarded here as sufficiently small compared
to rs for the incident wave to appear locally planar, so that the definitions
introduced in the preceding section apply. The scattered-wave intensity Isc varies
with direction and with radial distance r from the scatterer as (dσ/dΩ)Ii/r

2, where
the differential cross section dσ/dΩ can alternatively be expressed as σback/4π
for the backscattered direction. Thus, the intensity scattered back to the transmitter
becomes

Iback = D2

ρc
r−2
s

(σback

4π

)
r−2
s (9.2.2)

during the interval when 0 < t − 2rs/c < τ . Because rs is larger than cτ/2,
the backscattered pulse does not overlap the incident pulse, and so the operation
mode of the transducer can be switched to that for reception in the interval between
termination of the transmission and first arrival of the echo.

The overall delay time, when multiplied by c, yields 2rs , so that the additional
measurement of the echo’s intensity, in conjunction with Eq. (2), suffices to
determine the backscattering cross section σback.

Example The transducer in a SONAR (sound navigation ranging) system when
transmitting causes an rms acoustic pressure prms within the central beam at far-field
distance r such that prmsr = 100N/m. If the peak backscattered signal arrives after
net delay time of 3 s with an rms pressure of 10−5 Pa, what is the target strength,
backscattering cross section, and distance to the scatterer?

Solution The peak backscattered signal results when the beam points toward the
scatterer, so the normalization of F requires the D in Eq. (1) to be 100 N/m. The time
delay is understood to include the pulse duration, so that 2rs should be 3 × 1500 m,
yielding rs = 2250 m, with c = 1500 m taken for the speed of sound in water. Then,
since Iback is (ρc)−1 times the square of the backscattered rms pressure, Eq. (2)
yields

10−5 = (100)

(
1

2250

)2 (σback

4π

)1/2
,

which in turn yields σback/4π = 0.256m2, σback = 3.32m2, and TS = −5.9dB,
with 1 m taken as the reference length in Eq. (9.1.10).
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9.2.2 Inhomogeneities and the Born Approximation

Scattering-measurement systems for inhomogeneous media are usually designed
so that the signal received during any given time interval is virtually certain to be
that which was scattered within a known spatial region (scattering volume) within
the propagation medium. The size and dimensions of this scattering volume are
controlled by the radiation pattern of the transmitter, by the directivity pattern of
the receiving system, by the duration and signature characteristics of the incident
pulse, and by the sampling interval and signal processing system for the echo
signal (see Fig. 9.6). For the present, we assume that such a design is achieved and,
moreover, that the signal extracted from the echo has proceeded along a straight
line from transmitter to scattering volume and from there along a straight line to the
receiving system. Thus, we neglect multiple scattering, whereby the propagation
direction changes more than once in the sound wave’s progress from transmitter to
receiver.

Fig. 9.6 Scattering volume in a bistatic sounding experiment when the transmitter and receiver
are both characterized by narrow beam widths
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The Born approximation accompanies the assumption that the wave scattered
by the volume is independent of what has been scattered elsewhere. The term,
which originated with the analogous quantum-mechanical scattering problem,15 in
the present context implies what results when p̂(xs) under the integral sign in Eq.
(9.1.20) is replaced by the complex amplitude of the incident wave alone. Doing
such is the same as solving the integral equation by iteration, with the first iteration
accepted as satisfactory. Although this requires in general that the scattered wave in
the steady state be much weaker than the incident wave wherever the dominant
inhomogeneities occur, no simple criteria involving magnitudes of Δ1 and Δ2
establish the upper limits of the approximation’s validity. It should, however, yield
a good estimate of the scattered field if Δ1| 
 1 and |Δ2| 
 1 and if the path
integrals of both k|Δ1| and k|Δ2| are small compared with unity.

The modification of Eq. (9.1.20) to when the pulse in Eq. (1) is incident, with
subsequent application of the Born approximation, yields the scattered wave in the
form (applicable for bistatic as well as monostatic configurations)

psc ≈ −k2D

4π

∫∫∫ ′
Δeff(xs)

F (θs, φs, t − rs/c − R/c)

rsR
dVs. (9.2.3)

Δeff(xs) = Δ1(xs) − es · eRΔ2(xs). (9.2.4)

Here rs is the distance |xs | from the origin (center of transmitter) to the scattering
point; R = |x −xs | is the distance from scattering point xs to reception point x; the
unit vectors es and eR point from the origin to xs and from xs to x. The derivation
here neglects the transverse gradients of F and assumes16 that rs and R are both
much larger than 1/k for points within the scattering volume. (Note that the es and
eR appearing here are analogous to the ek and er in the preceding section.)

15M. Born, “Quantum mechanics of collision processes,” Z. Phys. 38:803–827 (1926); J. Mathews
and R. L. Walker, Mathematical Methods of Physics, Benjamin, New York, 1965, p. 289.
16The stated assumption is what enables Δ1 and Δ2 to be combined into a single function Δeff(xs ).
A more comprehensive model that takes into account ambient-flow deviations δv (as in turbulence,
for example) from a state nominally at rest yields (approximately)

Δeff(xs ) ≈ Δ1(xs ) − (es · eR)

[
Δ2(xs ) − 2

co
es · δv

]

≈ δ(ρc2)

ρc2 − (es · eR)

[
δ(ρc2)

ρc2 − 2

c
δ(c + es · v)

]
,

so that the scattering can be regarded as being caused by fluctuations in bulk modulus ρc2 and
in the wave speed c + es · v in the direction of propagation. For derivations leading to this, see
G. K. Batchelor, “Wave scattering due to turbulence,” in F. S. Sherman (ed.), Symposium on Naval
Hydrodynamics, National Academy of Sciences, Washington, 1957, pp. 409–423; E. H. Brown and
F. F. Hall, Jr., “Advances in atmospheric acoustics,” Rev. Geophys. Space Phys. 16:47–110 (1978).
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For the monostatic configuration, es · eR approximates to −1, so that Eqs.
(9.1.19b) yield

Δeff(x) ≈ 2δ(ρc)

ρc
(backscatter), (9.2.5)

where δ(ρc) is the deviation of the characteristic impedance of the medium from
its nominal value ρc (the subscript zero being now omitted). This concurs with the
results in Sect. 3.6 for reflection at normal incidence from an interface separating
two fluids, where reflection arises from discontinuities in impedance rather than in
sound speed or density per se.

For a single clustered inhomogeneity of dimensions much smaller than a wave-
length, the Born approximation leads to the replacement of the Φν in Eq. (9.1.25b)
by xν , so that Eq. (9.1.21) agrees with Eq. (3) above. The resulting Born approxima-
tion for the backscattering cross section, identified from Eqs. (9.1.13) and (9.1.25),
is consequently

σback =
[

1

π1/2

k2

ρc

∫∫∫
δ(ρc)dV

]2

. (9.2.6)

9.2.3 Scattering Volumes Delimited by Electroacoustic
Transducers

In order to refine the concept of a scattering volume further, it is convenient
to regard the transmitter and receiver explicitly as electroacoustic transducers
(see Sect. 4.10), so that a single function itr(t), loudspeaker excitation current,
characterizes the transmission, and a second function erec(t), microphone open-
circuit voltage, characterizes the reception. Analogous quantities can be defined
for mechano-acoustic transducers: a rigid piston oscillating in a finite baffle is
characterized by a normal velocity vn(t); one acting as a receiver is characterized by
the force exerted on the piston face by the impinging sound wave, the piston being
held virtually motionless. The physical design of the two transducers is immaterial
for the discussion that follows provided the time-dependent functions we use are
linearly related to the transmitted and incident acoustic fields, but the electroacoustic
realizations of the model are most representative of typical applications.

When driven at constant frequency ω by a current of complex amplitude ı̂tr, the
transmitting transducer produces a far-field radiated acoustic pressure,

p̂ = −iωρ

4π
MtrF̂tr(θ, φ)(r

−1eikr )ı̂tr, (9.2.7)

in the direction with angular coordinates θ, φ. Here F̂tr(θ, φ), whose phase is of
minor interest, is normalized so that the transmitter radiation pattern |F̂tr|2 is 1 when
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θ = 0. The remaining constant factor ωρMtr/4π is determined by the ratio r|p̂|/|ı̂tr|
along that axis. The quantity Mtr so introduced is a convenient description of the
transducer’s ability to transform electric current into far-field pressure (as explained
below).

The analogous description of a receiving transducer sets

êrec = MrecF̂rec(θ, φ)p̂ (9.2.8)

to describe the voltage caused by a plane wave nominally having amplitude p̂ at
the transducer face and arriving from direction θ, φ. Here the receiver directivity
function |F̂ 2

rec is normalized to 1 at θ = 0. The constant Mrec is the microphone
response at normal incidence, with units of volts per pascal. Equivalently, if a
point source of volume velocity amplitude (source strength) Û is located a great
distance away at a point with coordinates (r, θ, φ) so that the p̂ in Eq. (8) is
−(iωρ/4π)Ûr−1eikr , that equation becomes

êrec = −iωρ

4π
MrecF̂rec(θ, φ)(r

−1eikr )Û . (9.2.8a)

Comparison of this equation with Eq. (7) and reference to the reciprocity theo-
rems of Sects. 4.9 and 4.10 indicate that if a transducer is a reciprocal transducer,
then

Mtr = Mrec, F̂tr(θ, φ) = ±F̂rec(θ, φ). (9.2.9)

Although we do not necessarily assume that the transducers are reciprocal in the
discussion below, the possibility provides the rationale for the use of the symbol
Mtr in Eq. (7).

The incorporation of Eqs. (7) and (8) into the scattering model proceeds with
the observation, from Eq. (3), that the scattered wave originates from a distributed
source with source volume velocity per unit volume (source strength density)

dUs

dVs
= Δeff(xs)

ρc2

∂

∂t
pi(xs , t). (9.2.10)

The receiver voltage is the superposition of the incremental contributions (8a) from
each elemental volume; the incident pressure is as given by Eq. (7). An appropriate
relabeling and juxtaposition of coordinate systems consequently yields

êrec = iωρk2

(4π)2
MrecMtr ı̂tr

∫∫∫
F̀rec|F̂trΔeff

eik(R+rs )

rsR
dVs, (9.2.11)

erec(t) = −ρk2

(4π)2 MrecMtr

∫∫∫
|F̂recF̂tr|Δeff

rsR

d

dt
itr dVs. (9.2.11a)
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The second version, in which ditr/dt is evaluated at t − R/c − rs/c − ε/ω, is a
restatement of the first with the time dependence explicitly inserted, ε representing
the position-dependent phase of F̂rec(eR)F̂tr(es). The unit vectors eR and es
(denoting directions) and the distances R and rs here have the same meanings as
in Eq. (3).

Although both versions of Eq. (11) are derived for constant-frequency propaga-
tion, the latter version should also apply to pulse propagation, whereby itr(t) is of
nearly constant frequency in the interval 0 < t < τ and is zero or nearly zero
outside that interval. The voltage output recorded during any small interval centered
at t depends primarily on the scattering within a volume (see Fig. 9.7) between the
ellipsoids t = (R + rs)/c and t = τ + (R + rs)/c. The volume is further restricted
if (as is typically the case and as is assumed in what follows) the transmitter and
receiver patterns are narrow-beam and if, for the bistatic case, the beams are directed
to intersect in a localized region centered at a point x̄s and at distances r̄s and R̄

from the transmitter and receiver. For the monostatic case, we consider the beams
to be coaxial and rely on the finite pulse duration to delimit the scattering to a finite
volume.

Since the scattering reaching a receiver in the bistatic configuration comes from a
finite volume regardless of whether or not the pulse duration is short, for simplicity
we here discuss first bistatic sounding assuming constant-frequency transmission.
Since |F̂tr| and |F̂rec| are 1 for direction ēs from origin to x̄s and for direction ēR
from x̄s to the receiver center, the scattering volume consists primarily of all points
where |F̂tr| · |F̂rec| is greater than, say, 1

2 . An estimate of its size is

ΔVs =
∫∫∫

|F̂tr|2|F̂rec|2dVs, (9.2.12)

as explained below, in the derivation of Eq. (19).

Fig. 9.7 Concentric prolate spheroids delimiting region of possible scatterer locations for a
bistatic pulse-sounding experiment. The given circumstances are such that the pulse transmission
began at time 0 and ended at time τ ; reception is taking place at time t
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The assumption that the scattering volume has dimensions much smaller than r̄s
and R̄ allows the rs and R in the denominator of the integrand in Eq. (11) to be
replaced by r̄s and R̄. Additional substitutions from Eqs. (7) and (8) consequently
yield

p̂sc,ap = p̂i

(4π)1/2

eikR̄

R̄
Ψ, (9.2.13)

Ψ = −k2

(4π)1/2

∫∫∫ ∣∣∣F̂trF̂rec

∣∣∣ eiεΔeffe
ik(R−R̄+rs−r̄s )dVs, (9.2.14)

where p̂sc,ap is the apparent pressure impinging on the receiver from the direction
of the scattering volume center and p̂i is the incident wave’s acoustic pressure at
the volume’s center x̄s . The distinction between p̂sc,ap and p̂sc arises because the
receiver weighs pressure contributions associated with different arrival directions
differently.

9.2.4 Acoustic Radar Equation

The above formulation extends readily to monostatic sounding with a reciprocal
transducer from a single localized scatterer at a point with coordinates r̄s , θ̄s ,φ̄. The
quantity Ψ in Eq. (14) is replaced by one such that

|Ψ |2 =
∣∣∣F̂ (θ̄s , φ̄s)

∣∣∣4 σback, (9.2.15)

where σback is as given by Eq. (6) for a small weak inhomogeneity. Equation (13)
then yields the acoustic radar equation17

Isc

(4πr2Ii)o

(e2
rec)av

(e2
rec)av,o

= 1

(4π)2

σback

r̄4
s

∣∣∣F̂ (θ̄s , φ̄s)

∣∣∣4 , (9.2.16)

where

(e2
rec)av

(e2
rec)av,o

= Isc,ap

Isc

17So called because it is the acoustical counterpart of the free-space radar transmission equation
(widely referred to as the radar equation) given, for example, by D. E. Kerr, Propagation of Short
Radio Waves, McGraw-Hill, New York, 1951, reprinted by Dover, New York, 1965, p. 33. Kerr’s
equation, rewritten in the present text’s notation and with application of his eqs. (13), (14), and
(19), is the same as our Eq. (16).
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is the ratio of mean square voltage recorded to what would have been recorded
if a signal had been of the same intensity incident from θ = 0. Here Isc is the
actual acoustic intensity returning to the transducer, while Isc,ap is its apparent value
when the returning wave is regarded as having come from the θ = 0 direction.
The quantity (4πr2Ii)o, equal to 4πr2 times the transmitted intensity in the θ = 0
direction at far-field distance r , can be regarded as acoustic power output times the
directive gain associated with that direction; (4πr2Ii)o|F̂ (θ̄s , φ̄s)|2 is power output
times directive gain associated with the direction θ̄s , φ̄s .

9.2.5 Incoherent Scattering

If the inhomogeneities causing scattering are dispersed throughout the scattering
volume, the relative phases of contributions from different volume elements in
Eq. (14) are approximately taken into account with the substitution

R − R̄ + rs − r̄s ≈ (ēs − ēR) · ξ , (9.2.17)

which results from a truncated power-series expansion in the components of ξ =
xs − x̄s . With the abbreviation Δk to represent the change (ēR − ēs)k in wave-
number vector undergone during the scattering, Eq. (14) yields

|Ψ |2 = k4

4π

∫
· · ·

∫
Φ(ξ)Φ∗(ξ ′)Δeff(ξ)Δeff(ξ

′)eiΔk·(ξ ′−ξ)dVξdVξ ′ , (9.2.18)

where we also use the abbreviation Φ(ξ) for |F̂trF̂rec|eiε as evaluated at the position
x̄s + ξ .

If Δeff(ξ) in different regions appears to be statistically indistinguishable, the
idealization of a random medium18 is appropriate. The notion of a statistically
homogeneous random process whose correlation disappears over a relatively short
distance allows Δeff(ξ)Δeff(ξ

′) to be replaced by its ensemble average or, equiva-
lently, by the local spatial average of Δeff(ξ)Δeff(ξ +Δξ); this average is the spatial
autocorrelation function R(Δξ ;Δeff). The incoherent-scattering model, whereby
the acoustic power scattered by moderately distant inhomogeneities are additive,
results when the autocorrelation function is negligibly small for any Δξ whose

18Frequently cited references on acoustic waves in random media are L. A. Chernov, Wave
Propagation in a Random Medium, 1958, 1960 trans. R. A. Silverman, reprinted by Dover, New
York, 1967; V. I. Tatarski, Wave Propagation in a Turbulent Medium, 1961 trans. R. A. Silverman,
reprinted by Dover, New York, 1967; V. I. Tatarski, The Effects of the Turbulent Atmosphere on
Wave Propagation, 1967, 1970, 1971 trans. by Israel Program for Scientific Translations, available
from U.S. Department of Commerce, National Technical Information Service, Springfield, VA
22151. Brown and Hall, “Advances in Atmospheric Acoustics,” list and appraise much of the
literature pertaining to the subject.
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magnitude is comparable to or larger than a characteristic length over which Φ(ξ)

changes appreciably. Such assumptions reduce Eq. (18) to

|Ψ |2 = η(k,Δk) ΔVs, (9.2.19)

where ΔVs is as defined by Eq. (12) and where

η(k,Δk) = k4

4π

∫∫∫
R(Δξ ;Δeff)e

iΔk·Δξ d(Δξx) d(Δξy) d(Δξz) (9.2.20)

= 1
4π

2k4S(Δk;Δeff). (9.2.20a)

Here S(Δk;Δeff), defined implicitly by the two versions of Eq. (20), is recognized
with reference to the Wiener-Khintchine theorem (see Sect. 2.10) as the spectral
density of Δeff(ξ) in wave-number space. The normalization adopted is such that

〈Δ2
eff〉 =

∫∫ ∞

o

∫
S(Δk;Δeff) d(Δkx) d(Δky) d(Δky) (9.2.21)

gives the mean squared value of Δeff(ξ). The nominal propagation-medium selec-
tion is here assumed to yield 〈Δeff〉 = 0.

Equation (19), in conjunction with Eq. (13), leads to the bistatic acoustic
sounding equation

Isc,ap

(4πr2Ii)o
= η ΔVs

(4π)2r̄2
s R̄

2
, (9.2.22)

with η identified as the apparent bistatic cross section per unit volume. The
implication here that the scattered intensity is proportional to scattering volume,
which is the distinguishing feature of incoherent scattering, requires that inhomo-
geneities causing scattering be randomly dispersed and that any correlation length
associated with the inhomogeneities be small compared with the scattering volume’s
dimensions. In contrast, if the scattering volume is small in terms of a correlation
length, the far-field acoustic-pressure contributions scattered by different volume
elements are in phase and reinforce each other; the scattering is then coherent, and
the apparent bistatic cross section is proportional to the square of the scattering
volume.

9.2.6 The Echosonde Equation

The incoherent-scattering idealization allows a lucid interpretation of pulse-echo
measurements of scattering from inhomogeneous media. Equation (13), with such
an idealization, implies that for the monostatic case
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δ

(
E

A

)
sc,ap

= (4πr2Ii)oδt

(4π)2

η|F̂ |4δVs

r4
s

(9.2.23)

is the apparent backscatter energy received per unit area due to scattering during
time interval δt from volume element δVs at a distant point rs, θs, φs . The quantity
(4πr2Ii)o is representative of the power the transmitter was radiating at time t −
2rs/c. Hence the total apparent backscattered energy per unit area received up to
time t is

(
E

A

)
sc,ap

= 1

(4π)2 −
∫∫∫

η|F̂ |4
r4
s

[∫ t−2rs/c

−∞
(4πr2Ii)odt

′
]
dVs, (9.2.24)

where (4πr2Ii)o is zero up until t ′ = 0 and is zero for t ′ > τ . Taking the time
derivative and subsequently transforming the rs integration into one over t ′ = t −
2rs/c yields

Isc,ap = c/2

(4π)2

∫ τ

o

[∫∫
η|F̂ |4
r2
s

dΩs

]
(4πr2Ii)odt

′ (9.2.25)

for the apparent backscattered intensity. The quantity in brackets here is understood
to be evaluated at rs = (t − t ′)c/2. Consideration is limited to reception times t that
are greater than the pulse duration τ .

If the time t is further taken to be much greater than τ , Eq. (25) approximates
to19

Isc,ap ≈ cτ/2

(4π)2

ηΔΩs

r̄2
s

(4πr2Ii)o, (9.2.26)

with

ΔΩs = ∫∫ |F̂ |4dΩs (9.2.27)

interpreted as the solid angle being probed. The quantity (4πr2Ii)o now represents
a time average, over the pulse duration τ , of transmitted power times directive gain
of the transmitter. The radial distance r̄s is approximately ct/2 and represents an

19This is analogous to the definition in R. E. Huschke (ed.), Glossary of Meteorology, American
Meteorological Society, Boston, 1959, of the radar storm-detection equation, with η identified as
the radar reflectivity of the echoing volume of the storm per unit volume. A derivation due to H.
Goldstein appears in Kerr, Propagation of Short Radio Waves, pp. 588–591.
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average distance to the scattering volume [extending from rs = (t − τ)c/2 to rs =
tc/2]. The quantity η is the average backscattering cross section per unit volume
[Eq. (20a) with Δk = 2kez, where ez points along the beam’s axis] for the spherical
shell of solid angle ΔΩs . As before, Isc,ap is the apparent acoustic intensity of the
backscattered wave at the transducer, with account taken of the directional response
characteristics during reception.

The applicability of the incoherent-scattering assumption to the derivation of
Eq. (26) requires cτ and r̄s (ΔΩs)

1/2 be large compared with a correlation length
of the inhomogeneities. If this is not so but the scattering medium is nevertheless
random, the prediction (26) is an ensemble average of possible outcomes.

The generalization of the above considerations to pulse-echo sounding with the
bistatic configuration yields

Isc,ap = η

(4π)2
(4πr2Ii)0

∫∫∫ ′′ |F̂tr|2|F̂rec|2
r2
s R

2
dVs, (9.2.28)

where the double prime on the integral indicates that the region of integration is
restricted to that lying between the prolate spheroids rs + R = tc and rs + R =
(t − τ)c.

The similarities of Eq. (28) with Eq. (26) are emphasized with the introduction
of a dimensionless aspect factor A, equal to

A = R̄2

(cτ/2)ΔΩtr

∫∫∫ ′′ |F̂tr|2|F̂rec|2
rss R

2 dVs, (9.2.29)

where

ΔΩtr =
∫∫

|F̂tr|2dΩs (9.2.30)

is the apparent beam width in steradians of the transmitted beam and R̄ is the
distance from the receiver to the intersection of the transmitted beam’s axis with
the spheroid R + rs = ct . Insertion of these definitions into Eq. (28) yields the
echosonde equation20

Isc,ap ≈ cτ/2

(4π)2

ηΔΩtrA
R̄2

(4πr2Ii)o. (9.2.31)

20The label is attributed to W. D. Neff by Brown and Hall in their review, “Advances in atmospheric
acoustics.” The correspondence of our Eq. (31) with the Brown and Hall version emerges with the
neglect of background winds and of attenuation along paths from transmitter to scattering volume
and from scattering volume to receiver. The following identifications of Brown and Hall’s symbols
with those used here also apply:

PR

gεRAR

= Isc,ap, εTPT = (4πr2Ii )o
ΔΩtr

4π
, Rs = R̄, σs = η

4π
, lp = cτ,
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Fig. 9.8 Parameters used in example discussed in text. Quantities d, γtr, and l are specified; the
width of the transmitted beam is also given. The objective is to determine the bistatic cross section
per unit volume

For the monostatic configuration, the aspect factor A becomes ΔΩs/ΔΩtr; when
a reciprocal transducer is used to receive as well as transmit, the A must be less than
1 but approaches 1 for a sharp-edged beam. If |F̂ |2 varies with angle as exp(−αθ2),
where α is somewhat larger than 1, then A is 1

2 ; if it varies as 1/(1 + αθ2)2, then A
is 1

3 .

Example A transmitter in air sends out a 5-kHz pulse of 10 W acoustic power and
pulse length cτ = 3.3m. The transmitter beam with width ΔΩtr of the order of 0.1
sr is aimed at an angle of γtr = 45◦ with the ground. An omnidirectional receiver at
a distance d of 100m (see Fig. 9.8) receives sound of intensity Isc = 10−14W/m2

after an interval of l/c = 420 ms. Make the idealizations that sound travels with

where PR is received electric power, εR is acoustical-to-electrical conversion efficiency of the
receiver when a plane wave is incident at normal incidence, the acoustical power being taken
as receiver area AR times incident intensity. The g is a receiver directivity gain equal to ratio
of apparent incident intensity at the receiver to actual incident intensity; εTPT is acoustic
power transmitted; PT is electric power consumed by transmitter; lp is pulse length; and σb
is the differential scattering cross section per unit volume. Appropriate translations between
terminology and symbols for analogous concepts that have arisen in other subfields (underwater
acoustics, ultrasonic nondestructive testing, biomedical ultrasonics) are usually easily effected if
the principles and approximations leading to Eq. (31) are understood.
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constant speed of 340 m/s and that attenuation is negligible, to obtain a lower limit
for the bistatic cross section per unit volume causing the scattering.

Solution The problem statement and trigonometric principles require

(l − r̄s )
2 = r̄2

s + d2 − 2r̄sd cos γtr, R̄ = l − r̄s , (9.2.32)

r̄s = l2 − d2

2l − 2d cos γtr
, h = r̄s sin γtr, sin γrec = h

R̄
. (9.2.33)

The omnidirectional receiver assumption implies |F̂rec|2 = 1. The aspect factor
accordingly reduces to approximately A ≈ δrs/(cτ/2), where δrs is the incremental
radial distance the transmitter beam traverses in going through the scattering
volume. Taking the differential of the expression for rs in terms of l yields

δrs = l2 + d2 − 2ld cos γtr

2(l − d cos γtr)2
δl, A = l2 + d2 − 2ld cos γtr

(l − d cos γtr)2
, (9.2.34)

where the latter results from the identification of δl as cτ . Inserting the numbers
cited above then gives r̄s = 72m,R̄ = 71m, h = 51,m, γrec = 46◦, and A = 2.0.
Consequently, Eq. (31) states that

10−14 = (3.3/2)η

(4π)2

[
(2.0)(4π)(10)

(71)2

]
,

which yields η = 1.9 × 10−11 m2/m3.

9.3 The Doppler Effect

The classic prototype for the Doppler effect21 (frequency shift associated with
motion) is a constant-frequency sound source moving at constant subsonic speed
V through a homogeneous medium. Wave crests emerge (see Fig. 9.9) from the

21Johann C. Doppler, who first propounded the principle in 1842 (although for a phenomenon that
it is inadequate to explain fully), gives an account of it in “Remarks on my theory of the colored
light from double stars, with regard to the objections raised by Dr. Ballot of Utrecht,” Ann. Phys.
Chem. 68:1–35 (1846). A historical appraisal is given by J. Scheiner, “Johann Christian Doppler
and the principle named after him,” Himmel Erde 8:260–271 (1896). Rayleigh, Theory of Sound,
vol. 2, 2d ed., pp. 154–156, summarizes early experimental work on the acoustical Doppler effect
by B. Ballot, S. Russell, E. Mach, R. König, and A. M. Mayer. See also the historical comments
by A. Wood, Acoustics, 2d ed., 1960, Dover, New York, 1966, pp. 324–331. For discussions of the
Doppler shift in electromagnetism from the viewpoint of the special theory of relativity, see J. D.
Jackson, Classical Electrodynamics, Wiley, New York, 1962, pp. 360–364; and D. S. Jones, The
Theory of Electromagnetism, Pergamon, Oxford, 1964, pp. 115–130.
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Fig. 9.9 Prototype of the Doppler shift. Wave crests leave a moving source (speed V ) at intervals
of the source period Δt with result that crests are closer together ahead of the source than behind
the source

source at intervals of 2π/ω; each spreads out from its point of origin as a sphere
with radius growing with speed dR/dt = c. The successively generated spheres
are closer together ahead of the source but farther apart behind the source. Since the
number of crests passing a stationary listener per unit time determines the frequency
associated with the disturbance, the frequency received is higher ahead of the source
but lower behind the source. A common instance of this Doppler shift is the drop in
frequency of a train whistle as heard by someone when a locomotive speeds by.

9.3.1 Doppler Shift for a Moving Source

The magnitude of the frequency shift for the circumstances just described can be
predicted by an extension of the geometric-acoustics model introduced in Sect. 8.1.
Near the source trajectory, taken as the x axis, the phase φ(x, t) of the disturbance
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is ωoτ at x = V τ , where ωo is the intrinsic frequency at the source. Since surfaces
of constant phase move at constant speed c, one accordingly has the parametric
description

φ(x, t) = ωoτ, (9.3.1a)

|x − V τex | = (t − τ)c. (9.3.1b)

Since the latter implies

(x − V τ)2 + r2 = (t − τ)2c2, (9.3.2)

with r2 = y2 + z2 and τ = φ/ωo, it in turn yields

φ(x, t)

ωo

= c2t − V x

c2 − V 2 −
[
x2 + r2 − t2c2

c2 − V 2 +
(
c2t − V x

c2 − V 2

)2]1/2

. (9.3.3)

The sign of the radical here is selected to be such that φ/ωo → t − (x2 + r2)1/2/c

in the limit V → 0, as required by Eq. (1b).
The frequency ω(x, t) perceived by a stationary listener is ∂φ/∂t , with x held

fixed in the differentiation. Although this can be derived directly from Eq. (3), it is
more instructive to extract ω by implicit differentiation of Eq. (1b); doing so gives

− ω

ωo

V ex · R
R

=
(

1 − ω

ωo

)
c, (9.3.4)

so that

ω = ωoc

c − V cos θ
. (9.3.5)

Here R = x−V τex is the vector-ray displacement to the reception point x from the
point where the ray left the source’s trajectory; the angle θ(x, t) is that between the
vector R and the velocity V ex . The frequency shift therefore depends on only the
velocity component directed toward the listener. The result holds regardless of the
detailed time history of the trajectory; the Doppler-shifted frequency at a given time
and position is affected only by the source’s velocity and frequency at the instant of
generation of the wavelet currently being received. The source does not have to be
traveling with constant velocity or in a straight line for Eq. (5) to apply22; however,
determination of the point on the trajectory from which the wavelet originates
requires additional labor to match the kinematics, possibly a graphical solution if
the motion is not rectilinear.

22See, for example, M. V. Lowson, “The sound field for singularities in motion,” Proc. R. Soc.
Land. A286:559–572 (1965).
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9.3.2 Galilean Transformations

A transformation from one coordinate system to a second moving at constant speed
relative to the first, with the classical assumption that velocities add vectorially,
is a Galilean transformation. A Doppler shift accompanies any such change in
coordinate system because the frequency is not a Galilean invariant.

Let x2(x1, t) describe the position in coordinate system 2 of a fixed point x1 in
coordinate system 1 such that

x2(x1, t) = x1 − (t − to)v2;1, (9.3.6)

with x2 equaling x1 at time to and with v2;1 denoting the velocity of the second
system’s axes with respect to the first. If φ1(x1, t) and φ2(x2, t) describe phases
of the same acoustic disturbance, the fact that wave crests appear as wave crests
regardless of the coordinate system’s velocity requires

φ1(x2 + (t − t0)v2;1, t) = φ2(x2, t). (9.3.7)

In either coordinate system, the wave-number vector k is such that k = −∇φ,
while the angular frequency ω is such that ω = ∂φ/∂t . Consequently, differentiating
Eq. (7) with respect to one of the components of x2 or with respect to t and then
setting t to to yield

k2 = k1, ω2 = ω1 − v2;1 · k1 (9.3.8)

for the Galilean transformations of wave-number vector and angular frequency.
A derivation of Eq. (5) from Eq. (8) proceeds with the selection of a system

moving with the source as coordinate system 1 and with a system at rest as
coordinate system 2. For coordinate system 1, the boundary conditions imposed
by the vibrating source can be replaced by normal displacement oscillations on a
motionless surface; a linear acoustic model therefore applies, and the disturbance
appears to have angular frequency ωo everywhere, even though the ambient medium
is moving. (This presumes low-amplitude oscillations and neglects any turbulence
associated with the ambient flow past the source.) In coordinate system 2, on the
other hand, the absence of an ambient flow allows one to use the plane-wave relation
ωn = ck and to equate ray direction with that of k. Thus we have

k2 = k1 = ω2

c
eR, ω1 = ωo, (9.3.9)

where eR is the unit vector R/R appearing in Eq. (4). Then, since v2;1 = −v,
where v is the velocity of the source with respect to a motionless ambient medium,
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Eq. (8) yields

ω2 = ωo + v · eR
ω2

c
, ω2 = ωo

1 − v · eR/c
, (9.3.10)

which is equivalent to Eq. (5).

9.3.3 Echoes from Moving Targets

A scatterer’s motion can cause a Doppler shift in the echo detected by a distant
receiver.23 This in turn allows a deduction from the echo’s frequency of one of
the velocity components. The relation between the two can be understood from the
consideration of a coordinate system (labeled by 2) moving with the scatterer (see
Fig. 9.10). A volume V surrounding the scatterer is presumed to be such that within
it and in terms of coordinate system 2 the medium’s properties and the scatterer’s
nominal location are time-independent.

The discussion here presumes a bistatic measurement configuration; the ray
connecting transmitter and scatterer enters V at point A; that connecting scatterer
and receiver leaves V at B. Since the scatterer is moving, A and B also move with
respect to the transmitter and receiver. We accordingly further refine the definition
of their positions so that (1) A and B are not moving in terms of coordinate system
2 and (2) they occupy appropriate instantaneous positions in terms of coordinate
system 1. The latter are determined by the choice of the time of echo reception
and by the time history of the corresponding broken-ray trajectory connecting
transmitter to scatterer to receiver. Here coordinate system 1 is that in which the
transmitter and receiver appear motionless.

When examined in terms of coordinate system 2, the incident and scattered waves
appear to have the same frequency, which we here denote as ω2. Thus, with kA and
kB denoting the incident and scattered signals’ wave-number vectors at A and B,
respectively, the Galilean transformation relations (8) imply

ωA,1 = ω2 + v2;1 · kA ωB,1 = ω2 + v2;1 · kB (9.3.11)

23Acoustical applications of the Doppler effect date back to World War II reports on underwater
sound by C. H. Eckart and C. L. Pekeris; citations and a brief summary of wartime work are
given by E. Gerjuoy and A. Yaspan, Physics of Sound in the Sea, 1946, vol. 8 of Summary
Technical Report of Division 6, National Defense Research Committee (U.S.), reprinted 1969, U. S.
Government Printing Office, Washington, pp. 329–331, 552. Underwater acoustic applications and
related system problems are summarized by J. W. Horton, Fundamentals of Sonar, 2d ed., United
States Naval Institute, Annapolis, Md., 1959, pp. 364–378, and by C. S. Clay and H. Medwin,
Acoustical Oceanography: Principles and Applications, Wiley-Interscience, New York, 1977, pp.
334–337.
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Fig. 9.10 Construction used to derive Doppler shift of pulse scattered by an inhomogeneity
drifting along with the ambient flow at velocity v2,1 relative to transmitter and receiver. Volume V
and coordinate system x2, y2, z2 move so that the scatterer appears at rest. Ray from source to
scatterer enters V at A; ray from scatterer to receiver leaves V at B

for the angular frequencies at A and B as measured in coordinate system 1. These,
however, are the transmitted and received frequencies, ωtr and ωrec, while v2;1 is the
velocity vsc of the scatterer, so elimination of ω2 yields

ωrec − ωtr = Vsc · (kB − kA) (9.3.12)

The simplest idealization accompanying the application of the above relation is
that, apart from the scatterer and its wake, the ambient medium is homogeneous and
at rest relative to the transmitter and receiver. Then kA and kB become (ωtr/c)ni

and (ωrec/c)nsc, where ni and nsc are unit vectors in the directions of the incident
and scattered waves. The Doppler shift to first order in vsc/c accordingly satisfies

ωrec − ωtr

ωtr
= vsc

c
· (nsc − ni ) (9.3.13)

= vsc

c
· ebi2 sin 1

2Δθ, (9.3.13a)
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where, in the latter version, the deflection angle Δθ is that between nsc and ni , while
ebi is the unit vector in the direction nsc − ni , which bisects the triangle with sides
ni ,nsc and ni + nsc and is perpendicular to ni + nsc.

For the monostatic echo-sounding configuration, nsc is −ni , and so the right
side of Eq. (13) becomes −2vsc · ni/c, with the result that the Doppler shift
is proportional to twice the component of the scatterer’s velocity toward the
transmitter.

9.3.4 Doppler-Shift Velocimeters

In typical applications24 where the Doppler shift is used to measure ambient
fluid velocity, the scatterer is presumed to be drifting along with the flow but
transmitter and receiver are outside the flow. The measurements ordinarily require
the idealization (see Fig. 9.11) that the ambient velocity and acoustical properties
appear unidirectional and stratified in the plane that contains transmitter and
scatterer and is tangential to the scatterer’s velocity vector. The same should
apply for the plane containing receiver, scatterer, and the scatterer’s velocity. Then
the translational invariance parallel to vsc between the transmitter and scatterer
yields a version of Snell’s law (in accordance with the trace-velocity matching
principle discussed in Sect. 3.5) that the component of k parallel to vsc should be
constant all along the incident-wave path. This will hold even if the ray path is
refracted25 or if the propagation is not wholly describable in terms of concepts of
geometrical acoustics. An analogous deduction concerns the scattered-wave path.
The corresponding wave-number-vector components, before and after scattering,
however, are not necessarily the same.

Given that the transmitter and receiver are each in a region without ambient
flow and given the idealizations just described, Eq. (12) yields (to first order in
the Doppler shift)

24The applications currently receiving principal attention in the archival literature are the mea-
surement of flow velocities in blood vessels and the remote sensing of tropospheric winds; these
date back to S. Satamura, “Study of the flow patterns in peripheral arteries by ultrasonics,” J.
Acoust. Soc. Jap. 15:151–158 (1959); D. L. Franklin, W. A. Schlegel, and R. F. Rushner, “Blood
flow measured by Doppler frequency shift of backscattered ultrasound,” Science 132:564–565
(1961); G. Kelton and P. Bricout, “Wind velocity measurements Using sonic techniques,” Bull. Am.
Meteorol. Soc. 45:571–580 (1964); and C. G. Little, “Acoustic methods for the remote probing of
the lower atmosphere,” Proc. IEEE 57:571–578 (1969). Other applications discerned from recent
patents are the measurement of subsurface-ocean-current velocities and the measurement of flow
rates in ducts.
25T. M. Georges and S. F. Clifford, “Acoustic sounding in a refracting atmosphere,” J. Acoust. Soc.
Am. 52:1397–1405 (1972); “Estimating refractive effects in acoustic sounding,” ibid. 55:934–936
(1974).
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Fig. 9.11 Sketch exemplifying how the Doppler shift evolves in a monostatic pulse-echo exper-
iment when the scatterer is drifting along with the fluid. Because of z-dependent ambient flow,
the ray path from transmitter to scatterer is not the same as the echo path from scatterer back
to transmitter. If the difference between the two wave-number vectors has a nonzero component
parallel to the scatterer velocity vsc, a Doppler shift results

V = (ωrec − ωtr)c

ωtr(ev ·nrec − ev ·ntr)
(9.3.14)

for the speed of the flow at the position of the scatterer. Here ev is the unit vector in
the direction of the flow; the unit vectors, ntr and nrec, denote propagation directions
of the transmitted and received waves at the transmitter and receiver, respectively.
Ideally, the sounding experiment’s design is such that ntr and nrec (or at least their
components along the direction of interest) are well-defined quantities. Then if ev is
known, a measurement of the Doppler shift determines V .

If the direction of v is not known but the flow is stratified with the z coordinate,
the x and y components of v are determined by two separate experiments: one with
ntr and nrec lying in the xz plane, the other with them lying in the yz plane. Equation
(14) applies to the first experiment’s results with V replaced by Vx and with ev
replaced by ex .
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Fig. 9.12 Ultrasonic determination of the volume of blood flowing per unit time through a blood
vessel

Example (Volume-Blood-Flow-Computation) An experimental procedure devised
by D. W. Baker26 for measuring volume of blood flowing per unit time in a blood
vessel is as follows. The transducer used consists of two separate but closely spaced
ceramic elements in a common housing; one element is used as a transmitter,
the other as a receiver. For our present purposes, the system can be regarded as
monostatic and as highly directional. Since the vessel is not visible, it is first
necessary to locate it, to determine its orientation and radius. Moving the transducer
over the surface of the skin and monitoring the intensity of Doppler-shifted echoes
determines the vertical plane containing the vessel (with the skin’s surface defining
the horizontal plane). The transducer is then switched to a pulse-echo mode of
operation, and its beam is kept confined to the previously determined vertical plane
(see Fig. 9.12). The distance r of the transducer from the vessel centerline when the

26D. W. Baker, “Pulsed ultrasonic Doppler blood-flow sensing,” IEEE Trans. Sonics Ultrason. SU-
17:170–185 (1970).
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transducer is pointing at angle θ with the flow is determined from the time average
of the echo delays from the near and far sides of the vessel. When the transducer
is rotated through angle Δθ, r decreases to r1 while θ changes to θ1 = θ + Δθ .
The quantities r, r1, and Δθ are measured; how does one infer θ? Next the echo
corresponding to the angle θ is monitored and the spectral density of the Doppler-
shifted portion of the echo is used to derive an average frequency shift Δf for the
backscatter from the flowing blood. How does one use this to determine the volume
flow rate in the vessel?

Solution To determine the angle θ , we ignore the minor variations of the sound
speed and density in tissue and blood from the values appropriate to water and
assume the sound speed c to be 1500 m/s; refraction is negligible. Measurements of
time delays are therefore equivalent to measurements of distance intervals (divided
by c). A brief trigonometric analysis demonstrates that r1 sinΔθ and r − r1 cosΔθ

are lengths of opposite and adjacent sides of a right-angle triangle with interior angle
θ . Hence

θ = tan−1 r1 sinΔθ

r − r1 cosΔθ
. (9.3.15)

The radius R of the vessel is then deduced from the time delay Δt of the echoes
from the near and far sides of the vessel when the transducer beam makes angle θ

with the vessel centerline; c Δt should be 4R/(sin θ), so R = 1
4cΔt sin θ . The extra

factor of 1
2 is because the second echo traverses an extra distance of one round trip

across the vessel; the factor sin θ is because the ray traverses the vessel obliquely.

Scattering of sound by blood27 is caused by red cells (erythrocytes); normal
human blood, although predominantly water, contains 5 × 1015 red cells per cubic
meter; a typical cell has a volume of 87×10−18m3, a density of 1092 kg/m3, and an
apparent adiabatic bulk modulus ρc2 exceeding that of water by a factor of 1.35. The
surrounding fluid (blood plasma) has a density of 1021 kg/m3 and a bulk modulus
only 1.13 times that of water; the scattering is significantly affected by the fluid’s
viscosity, which is 1.8 times that of water. However, insofar as the present example
is concerned, the only necessary assumptions are that the red cells are uniformly
distributed across the stream and that the backscattered power from any area element
of the cross section is proportional to the area. This allows the conclusion that Δf
(the averaging being weighted by the spectral density) is proportional to V̄ , the
cross-sectional area average of the flow velocity. If the flow is obliquely toward the
transducer, ev ·ntr is − cos θ and ev ·nrec is + cos θ ; so Eq. (14) yields

27K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Angular dependence of scattering of ultrasound
from blood,” IEEE Trans. Biomed. Eng. BME-24:325–331 (1977); E. L. Cartstensen, K. Li, and
H. P. Schwan, “Determination of the acoustic properties of blood and Its components,” J. Acoust.
Soc. Am. 25:286–299 (1953).
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V̄ = Δf c

2ftr cos θ
(9.3.16)

for V̄ , where ftr is the transmitted frequency in hertz. The corresponding volumetric
flow rate Q is πR2V̄ , where the radius R is as determined above.

9.4 Acoustic Fields Near Caustics

The geometrical-acoustics model, described in the previous chapter, leads to the
implausible prediction that amplitudes are infinite along surfaces (caustics) where
adjacent rays intersect and where ray-tube areas vanish. Such hypothetical surfaces
(which can emerge even in the middle of a homogeneous medium) do, however,
describe the central structural forms to which characteristic wave patterns28 are
attached. Because such patterns develop where geometrical acoustics would at first
glance be regarded as applicable but where it is actually not applicable, the patterns
are diffraction phenomena.

We initially limit our considerations to a homogeneous nonmoving medium and
to a constant-frequency field independent of the z coordinate, so that the rays are
all straight lines parallel to the xy plane. The portion of the overall field of interest
is that associated (see Fig. 9.13) with a family of rays each member of which is
tangential to a curved caustic surface. On the convex side, two rays pass through
each point. One ray has yet to touch the caustic; the other has already touched it.
On the concave side, there are no rays of the considered family. Within any small
region, the caustic surface is characterized by its radius of curvature Rc, which is
assumed much larger than 1/k.

We orient our coordinate system in such a way that the point of interest on the
caustic is the origin and such that the caustic is tangential to the x axis and bends
into the region y < 0. Let the eikonal τ(x) associated with the incident rays be 0
at the origin. The gradient ∇τ is tangent to the caustic with a positive x component
and has magnitude 1/c, so

∇τ ≈ (ex cos θ − ey sin θ)/c, (9.4.1)

28The theory dates back to G. B. Airy, “On the intensity of light in the neighborhood of a caustic,”
Trans. Camb. Phil. Soc. 6:379–401 (1838); the exposition here is largely inspired by that of R.
B. Buchal and J. B. Keller, “Boundary layer problems in diffraction theory,” Comm. Pure Appl.
Math. 13:85–144 (1960). The limitation that the choice for the caustic’s radius of curvature is not
precisely defined when one seeks to determine the field at some distance from the caustic and
when Rc varies along the caustic is overcome in D. Ludwig, “Uniform asymptotic expansions
at a caustic,” Commun. Pure Appl. Math. 19:215–250 (1966); and Yu. A. Kravtsov, “Two new
asymptotic methods in the theory of wave propagation in inhomogeneous media (Review),” Sov.
Phys. Acoust. 14(1):1–17 (1968).
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Fig. 9.13 Ray geometry in the vicinity of a caustic when the ambient medium is homogeneous

where θ(x, y) is such that

y + (Rc − Rc cos θ)

Rc sin θ − x
= tan θ.

When x = 0, this yields cos θ = Rc/(y + Rc). The corresponding value of sin θ is
(2yRc +y2)1/2/(y +Rc), which is approximately (2y/Rc)

1/2. Consequently, along
the line x = 0, y > 0, Eq. (1) integrates to cτ = −(8y3/9Rc)

1/2. Since the eikonal
equation (∇τ)2 = 1/c2 requires ∂τ/∂x = (1/c)(1−2y/Rc)

1/2 along the same line,
near the origin one has

τ ≈ 1

c

[
x − yx

Rc

−
(

8y3

9Rc

)1/2]
. (9.4.2)
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Ray-tube area near a caustic is proportional [see Eq. (8.5.7)] to −1/∇2τ , and
so the above predicts that it varies with y as y1/2. Consequently, the geometrical-
acoustics prediction of the incident field near a caustic is

p̂i = P

(
Rc

16y

)1/4

eik(x−yx/Rc)e−i(2/3)|η|3/2, (9.4.3)

where |η| = (2k2/Rc)
1/3y(y > 0). The normalization takes P to be the amplitude

at a distance Rc/16 from the caustic. Alternatively, since y ≈ l2/2Rc, where l is
distance the ray has yet to travel before it touches the caustic, P corresponds to
l ≈ Rc/81/2.

The field associated with rays propagating away from the caustic also obeys
the laws of geometrical acoustics at moderate values of y. The eikonal for these
rays (apart from a possible additive constant) must be of the form of Eq. (2) but
with the last term changed in sign. Thus, the overall field near the origin should
asymptotically (ky � 1, y 
 Rc, x 
 Rc) be

p̂i + p̂away = P

(
Rc

16y

)1/4

eik(x−yx/Rc)
(
e−i(2/3)|η|3/2 + Rei(2/3)|η|3/2

)
,

(9.4.4)

where R is a constant. Our task is to find a solution of the Helmholtz equation valid
near the origin that asymptotically approaches Eq. (4) at moderate positive values
of y and approaches 0 at large negative values of y (on the nonilluminated side).

If one assumes that p̂ is of the form eik(x−yx/Rc)F (x, y) and inserts this into
the Helmholtz equation, the result is a cumbersome partial-differential equation for
F . However, with the neglect of fourth and higher-order terms in (1/kRc)

1/3 and
with the restriction to values of y and x of the order of 1/k or less, considerable
simplification results. Since we anticipate that the magnitude of ∂F/∂y will be of
the order of k(kRc)

−1/3 times that of F , we discard terms like −(2ikx/Rc)∂F/∂y

and (−k2x2/R2
c )F in comparison with, say, ∂2F/∂y2. This allows a solution not

depending on x and yields the ordinary differential equation

d2F

dy2 + 2k2y

Rc

F = 0,
d2F

dη2 − ηF = 0, (9.4.5)

where the second version follows from the first with the abbreviation

η = −
(

2k2

Rc

)1/3

y, (9.4.6)

which is consistent with the use of |η| in Eqs. (3) and (4).
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9.4.1 The Airy Function

Apart from a multiplicative constant, the only solution of Eq. (5) having the desired
property of going to 0 as η → ∞(y → −∞) is the Airy function, defined29 for real
η as

Ai(η) = 1

π

∫ ∞

o

cos

(
s3

3
+ ηs

)
ds (9.4.7a)

= 1

2π

∫
CAi

ei(s
3/3+ηs) ds. (9.4.7b)

In the latter version, which holds for arbitrary complex η, the contour CAi begins
at |s| = ∞ on the line where the phase of s is 5π/6 and terminates at |s| = ∞
on the line where the phase of s is π/6. A demonstration that the second version is
equivalent to the first for real η results from a deformation of CAi to the real axis;
that either satisfies Eq. (5) follows from

∂2

∂η2
ei(s

3/3+ηs) =
(
i
∂

∂s
+ η

)
ei(s

3/3+ηs).

An asymptotic expression for Ai(η) at large |η| is derived from Eq. (7b) for when
−2π/3 < φ < 2π/3 (φ denoting phase of η) by deforming CAi to a steepest-descent
path,30 s = s(l) with l real, passing through the saddle point at s = eiπ/2η1/2, at
which ds/dl = e−iφ/4. Since the integrand is sharply peaked at the saddle point,

s3/3 + ηs can be approximated by i
(

2
3

)
η3/2 + i|η|1/2l2, where l is distance along

the path from the saddle point. Thus, we find

Ai(η) → e−(2/3)η3/2

2π1/2η1/4 , −2π

3
< φ <

2π

3
. (9.4.8)

If 2π/3 < φ < 4π/3, contour CAi is stretched so that its midpoint extends to −i∞
on the negative imaginary axis. The left segment is deformed to a steepest-descent
path passing through the saddle point at s = eiπ/2η1/2, at which ds/dl = e−iφ/4,
while the right segment is deformed to one passing through a saddle point at s =
−eiπ/2η1/2, at which ds/dl = eiπ/2eiφ/4. Then, with approximations similar to
those described above, we find

29Various definitions are in the literature. That adopted here is as given by H. A. Antosiewićz, in
M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York,
1965, pp. 446–452, 475–478.
30G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable, McGraw-Hill,
New York, 1966, pp. 263–266.
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Ai(η) → 1

2π1/2η1/4

(
e−(2/3)η3/2 + ie(2/3)η3/2

)
,

2π

3
< φ <

4π

3
. (9.4.9)

The apparent discontinuity along the lines φ = 2π/3 and φ = 4π/3 suggested by a
comparison of Eqs. (8) and (9) is nonexistent because e(2/3)η3/2

is negligibly small at
large |η| along the first line and because the second of the two terms constituting (9),
when evaluated at φ = 4π/3, is the same as the first term evaluated at φ = −2π/3.

If η is real and negative, Eq. (9), with η = |η|eiπ , yields

Ai(η) → eiπ/4

2π1/2|η|1/4

(
e−i(2/3)|η|3/2 − iei(2/3)|η|3/2

)

= 1

π1/2|η|1/4
cos

(
2
3 |η|3/2 − π

4

)
η < 0, (9.4.10)

Thus, Ai(η), when considered as a function of real η, is oscillatory for η < 0 (see
Fig. 9.14), Ai(0) is 0.355 · ··; for subsequent negative values of η, Ai(η) rises to a
peak value of 0.536 at η = −1.019, reaches its first zero at η = −2.338, reaches a
minimum value of −0.419 at η = −3.248, reaches a second zero at η = −4.088,
and reaches a second maximum value of 0.380 at η = −4.820. The nth zero occurs
asymptotically at η = −( 3

2 )
2/3[n − 1

4 )π ]2/3. For the problem of interest here, an
increment Δη corresponds to k Δy = (kRc/2)1/3(−Δη) where kRc � 1, so that
intervals between successive undulations along a line transverse to the caustic are
of the order of a wavelength or greater.

The first version of Eq. (10) is comparable to the geometrical-acoustics solution
of Eq. (4) for the field on the illuminated side of the caustic. Consequently, we have

p̂ = Pπ1/221/12e−iπ/4(kRc)
1/6eik(x−yx/Rc)Ai(η) (9.4.11)

as the solution of the Helmholtz equation that matches Eq. (4) in the limit ky � 1.
Equation (10) also requires, in Eq. (4), the identification R = e−iπ/2.

Since the maximum value of Ai(η) is 0.536, the peak pressure magnification31

at a caustic is 0.536π1/221/12(kRc)
1/6, or 1.01(kRc)

1/6, relative to what the
geometric-acoustics model would predict for the incident wave at a transverse
distance of Rc/16 from a caustic or at a propagation distance of Rc/81/2 = Rc/2.83
from where the ray grazes the caustic. The indicated sixth-root dependence on
frequency of this magnification is very weak; increasing the frequency by a factor
of 10 increases the magnification by a factor of only 1.47.

31A comparable analysis based on the uniform asymptotic expression is given by D. Ludwig,
“Strength of caustics,” J. Acoust. Soc. Am. 43:1179–1180 (1968).
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Fig. 9.14 The Airy function for real values of its argument

9.4.2 Generalization to Inhomogeneous Media

If an inhomogeneous medium varies slowly over distances comparable to a wave-
length, the acoustic pressure in any local region approximately satisfies the wave
equation, providing the medium appears locally at rest in the selected (possibly
moving) coordinate system. The rays are curved, but as indicated by the analysis in
Sect. 8.3, the plane of curvature and the radius of curvature will be nearly the same
for each ray in the vicinity of any given fixed point substantially removed from the
source.

For most situations of interest, an appropriate idealization is that each line on
the caustic surface traced out by successively intersecting adjacent rays lies locally
in the same plane as the curved rays that graze the caustic. Another idealization is
that the curvature of the caustic surface is such that the propagation direction of a
grazing ray coincides with one of the principal directions of curvature. Then, with
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Fig. 9.15 Curved rays near a curved caustic in an inhomogeneous medium. Circumstances
assumed in the sketch are for when the sound speed decreases on the illuminated side with distance
from the caustic

an appropriate coordinate system, the geometry of the ray system in the vicinity of
a point on the caustic32 is as sketched in Fig. 9.15; the ray proceeding locally in the
+x direction and grazing the caustic at the origin has a radius of curvature Rray; the
caustic has a principal radius of curvature Rc at the same point, the sing convention
being such that positive Rray corresponds to a bending in the +y direction; positive
Rc corresponds to a bending in the −y direction.

32Caustics in inhomogeneous media are discussed by B. D. Seckler and J. B. Keller, “Geometrical
theory of diffraction in inhomogeneous media,” J. Acoust. Soc. Am.31:192–205 (1959); “Asymp-
totic theory of diffraction in inhomogeneous media,” ibid. 31:206–216 (1959); D. A. Sachs and
A. Silbiger, “Focusing and refraction of harmonic sound and transient pulses in stratified media,”
ibid. 49:824–840 (1971).
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For the ray grazing the caustic at the origin, its distance |y′| from the nearest
point on the caustic increases with x approximately as

|y′| = x2

2R′
c

,
1

R′
c

= 1

Rray
+ 1

Rc

. (9.4.12)

Thus, if one were to choose a curvilinear orthogonal coordinate system (x′ ≈
x + yx/Rray and y′ ≈ y − x2/2Rray) such that x′ ≈ x, y′ ≈ y in the vicinity
of the origin and the ray passing through the origin appears to be straight, the
apparent radius of curvature of the caustic would be R′

c. Since the form of the wave
equation is only slightly altered by the switch in coordinate system, the analysis
leading to Eq. (11) is still applicable, providing one substitutes R′

c for Rc. Since
x′ −x′y′/R′

c is equivalent in this approximation to x −xy/Rc, the substitution need
not be made in the exponential factor providing one interprets Eq. (11) in terms of
the original coordinate system; y is still regarded as the transverse distance of the
point of observation from the caustic.

9.4.3 Field Near a Turning Point

An application of the analogy just described would be when the ray system consists
(see Fig. 9.16) of a family of similar rays cycling33 between upper (yU ) and lower
(yL) turning points in a region where the sound speed c(y) has a minimum between
yL and yU . Successive rays differ only by a displacement parallel to the x axis, so the
planes y = yL and y = yU are caustics; 1/Rc = 0 for both surfaces. Consequently,
R′
c is Rray, which, from Eq. (8.3.3), is c/|dc/dy| evaluated at the caustic. Equation

(11) therefore becomes

p̂U,L ≈ PU,Lπ
1/221/12e−iπ/4

(
ω

|dc/dy|
)1/6

U,L

eikx Ai(ηU,L), (9.4.13)

with

ηU = −
(

2ω2
∣∣∣∣dcdy

∣∣∣∣
)1/3

U

yU − y

c
, ηL = −

(
2ω2

∣∣∣∣dcdy
∣∣∣∣
)1/3

L

y − yL

c
,

(9.4.14)

where k = ω/c and c = c(yL) = c(yU ).
These expressions hold only near yU and yL, respectively. Also, within this

context, the quantities PL and PU should be regarded as slowly varying functions of

33N. A. Haskell, “Asymptotic approximation for the normal modes in sound channel wave
propagation,” J. Appl. Phys. 22:157–168 (1951); I. Tolstoy, “Phase changes and pulse deformations
in acoustics,” J. Acoust. Soc. Am. 44:675–683 (1968).
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Fig. 9.16 Caustics formed by a family of similar rays cycling between upper and lower turning
points in a height region where the sound-speed profile has a minimum

x. Given fixed yU and yL, they may be independent of x if the net phase shift along
a complete ray cycle is an integer multiple of 2π , but this occurs only for certain
discrete frequencies. Alternatively, for fixed ω, it occurs for certain discrete values
of k = ω/c(yL) = ω/c(yU ); each such value kn(ω) of k corresponds, however,
to a different pair of turning points. Channeled waves with dependence on x as
eikx [where k = kn(ω)] are natural guided modes analogous to the waveguide
modes discussed in Sect. 7.1. Their existence does not depend on the validity of
the geometrical-acoustics approximation or on the presence of two internal turning
points. Such natural modes furnish a cogent explanation of acoustic fields at large
horizontal distances from sources in the atmosphere and oceans. A discussion34 of
how they emerge in theoretical formulations is beyond the scope of this text, but the
analysis in the following section (directed toward a different problem) bears some
similarity to the guided-mode theory of long-range sound propagation.

9.4.4 Phase Shift at a Caustic

The identification of R = e−iπ/2 in Eq. (4) implies that a ray undergoes a phase drop
of π/2 every time it grazes a caustic. Thus, the net phase change over a long path is
ω Δτ−nπ/2, where Δτ is the travel time predicted by the ray-tracing equations and

34See, for example, L. M. Brekhovskikh, Waves in Layered Media, Academic, New York, 1960,
pp. 454–460.
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n is the number of caustics grazed along this path. The π/2 phase shift at a caustic is
consistent with the purely geometrical-acoustics prediction that the amplitude varies
inversely with the square root of ray-tube area. Beyond the caustic, the ray-tube area
is formally negative, so predictions like that of Eq. (8.5.4) would still apply if we
interpreted (−|A|)−1/2 as e−iπ/2|A|−1/2; the analysis leading to Eq. (11) tells us
which of the two possible square roots of −1 should be used.

With this prescription, the geometrical-acoustic formulation35 can be used even
when caustics are present. For a given far-field point, one determines all the possible
ray paths connecting source and receiver, computes amplitude and phases (using
the geometrical-acoustics theory and setting A = |A|) for each ray’s contribution,
shifts the phases by integer multiples of π/2 to account for the caustics, and
then superimposes the various individual ray contributions. This assumes that the
receiver is not near a caustic; if it is, the contribution from two of the rays is replaced
by an expression of the form of Eq. (11). The Blokhintzev invariant for each ray tube
is determined from the wave field at moderately close distances to the source before
refraction has an appreciable effect on wave amplitudes.

The π/2 phase shift at a caustic has a significant effect on waveforms from a
transient source36 (a detonation, for example). Suppose a distant point receives two
distinct arrivals corresponding to two different ray paths; the first ray to arrive never
grazed a caustic, but the second did so once. Nominally, one would expect the two
waveforms to be similar, differing only in arrival times and peak amplitudes, but
the second ray’s remembrance of its π/2 phase shift at the caustic changes this
expectation. If the first arrival p1 is f (t−τ1) and has a Fourier transform f̂ (ω)eiωτ 1,
the second arrival p2 will have a Fourier transform Kf̂ (ω)eiωτ 2e

−iπ/2, for ω > 0,
where K is a positive constant. However, p2 is real, so its Fourier transform for
ω < 0 is the complex conjugate (causing e−iπ/2 → eiπ/2) of that for ω > 0. Thus,
we have p2 = KfH(t − τ2), where fH (t) is the Hilbert transform of f (t) (see
Sect. 3.6). Although p2(t) is dissimilar to p1(t), there is a definite mathematical
relation between the two waveform shapes.

If the second ray had encountered two caustics instead of only one, the net
experienced phase shift would be π , corresponding to a change in sign, so that
the second arrival’s waveform would resemble the negative of that of the first
(p → −p).

35I. M. Blatstein, A. V. Newman, and H. Uberall, “A Comparison of ray theory, modified ray
theory, and normal-mode theory for a deep-ocean arbitrary velocity profile,” J. Acoust. Soc. Am.
55:1336–1338 (1974).
36R. M. Barash, “Evidence of phase shift at caustics,” J. Acoust. Soc. Am. 43:378–380 (1968); R.
H. Mellen, “Impulse propagation in underwater sound channels,” ibid. 40:500–501 (1966).
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9.5 Shadow Zones and Creeping Waves

To obtain insight into how sound penetrates into shadow zones (regions without
direct rays from the source), we begin with the particular example37 of a source near
the ground at height zo in a medium whose sound speed c(z) decreases linearly with
height at lower altitudes. (The analysis applies to an underwater source in water with
sound speed increasing linearly with increasing depth, but for simplicity we refer to
z as the upward direction and to the surface z = 0 as the ground.) This decrease
causes the rays initially leaving the source in nearly horizontal directions to bend
upward with a curvature radius of R = c/|dc/dz|. One ray, the limiting ray, barely
grazes the ground, leaving a shadow zone (see Fig. 9.17) consisting of points where
w > (2Rzo)

1/2 + (2Rz)1/2, given that the horizontal distance w is substantially less
than R. The analysis below is directed toward the prediction of the resulting field in
such a shadow zone when w is substantially larger than a wavelength.

Fig. 9.17 Shadow zone resulting from a source at height zo above a plane bounding a fluid in
which the sound speed decreases linearly with height

37C. L. Pekeris, “Theory of propagation of sound in a half-space of variable sound velocity
under conditions of formation of a shadow zone,” J. Acoust. Soc. Am. 18:295–315 (1946); D. C.
Pridmore-Brown and U. Ingard, “Sound propagation into a shadow zone in a temperature-stratified
atmosphere above a plane boundary,” ibid. 27:36–42 (1955).
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9.5.1 Point Source Above a Locally Reacting Surface
in a Stratified Medium

The source (monopole amplitude Ŝ) is emitting sound of angular frequency ω, so
with the neglect of density gradients, the complex amplitude of the acoustic pressure
satisfies the inhomogeneous Helmholtz equation with −4πŜδ(x)δ(y)δ(z − zo) on
the right side and with k2 replaced by ω2/c2(z).

The expression adopted as a starting point for development of a solution is a
double Fourier transform in x and y:

p̂ = − Ŝ

π
lim
ε→0

∫ ∞

−∞

∫
e−ε2(α2+β2)eiαxeiβyZ(z, α, β) dα dβ. (9.5.1)

This will satisfy the inhomogeneous Helmholtz equation if the function Z satisfies

d2Z

dz2 +
[

ω2

c2(z)
− k2

]
Z = δ(z − zo), (9.5.2)

where k2 is used as an abbreviation for α2 +β2. The demonstration that such yields
a solution rests on the identification for the Dirac delta function

lim
ε→0

∫ ∞

−∞
e−ε2α2

eiαx dx = 2πδ(x) (9.5.3)

developed in Sect. 2.8.
Since the field is cylindrically symmetric, Eq. (1) is unchanged if we replace y by

0 and set x = w. Changing the integration variables to k and θ , where α = k cos θ
and β = k sin θ , allows one integration (that over θ ) to be performed, since, from
(2), Z may be presumed independent of θ . The integral over θ from 0 to 2π of
exp (ikw cos θ) is 2πJo(kw) [see Eq. (5.4.6)], so we obtain

p̂ = −Ŝ lim
ε→0

∫ ∞

o

e−ε2k2
2 Jo(kw)Z(z, k)kdk. (9.5.4)

The restriction of our interest to larger values of ωw/c(0) suggests a replacement
of the Bessel function by its asymptotic limit,38 which in turn decomposes into

Jo(η) ≈
(

1

2π

)1/2

e−iπ/4
[

1

η1/2
eiη − 1

(−η)1/2
e−iη

]
, (9.5.5)

38A relevant footnote appears in Sec. 5.5; see also Eq. (5.7.8).
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where, for η > 0, (−η)1/2 is understood to be eiπ/2η1/2. Thus, with Z(z, k)

regarded as an even function of k, we can rewrite (4) as

p̂ ≈ −
(

2

πw

)1/2

Ŝe−iπ/4
∫ ∞

−∞
k1/2eikwZ(z, k)dk, (9.5.6)

where k1/2 is eiπ/2|k|1/2 when k is negative. This integral is now regarded as a
contour integral with k1/2 = |k|1/2 exp(iφk/2) and with the phase φk of k restricted
to values between −π/2 and 3π/2. The convergence factor exp(−ε2k2) in Eq. (4)
is discarded because if the convergence is marginal, the contour can always be
deformed away from the real axis so that eikw goes exponentially to zero when
|k| → ∞ on either end of the contour.

As regards the function Z(z, k) that satisfies Eq. (2), we can conceive, when
k is real and positive, of two solutions, ψ(z, k) and Φ(z, k), of the homogeneous
equation that satisfy an upper boundary condition conforming to the Sommerfeld
radiation condition and a lower boundary condition at z = 0, respectively. The upper
boundary condition is that (for real k) ψ either dies out exponentially or represents
a wave propagating obliquely upward; the lower boundary condition corresponding
to a locally reacting surface of specific impedance ZS is that

dΦ

dz
+ i

koρc

ZS

Φ = 0 at z = 0, (9.5.7)

where ko = ω/c(0); for a rigid surface, dΦ/dz = 0 (ZS → ∞), while for a
pressure-release surface (as for the ocean’s upper surface), Φ = 0 at z = 0. The
functions ψ and Φ for complex k are understood to be analytic except at branch
lines, none of which are constructed so that they cross the real axis.

The solution Z(z, k) of the inhomogeneous equation (2) is Aψ(z, k) for z >

zo and is BΦ(z, k) for z < z0, where the constants A and B are such that Z is
continuous at zo but has a discontinuity in slope there of 1. Thus, we have

Z(z, k) = ψ(z>, k)Φ(z<, k)

[(dψ/dz)Φ − (dΦ/dz)ψ]z0

, (9.5.8)

with z< and z> representing the smaller and larger of zo and z. Since both ψ and
Φ satisfy the homogeneous-differential-equation version of (2), the denominator
expression (the wronskian of ψ and Φ) in (8) is independent of zo; Eq. (7) therefore
allows it to be reexpressed as

(
dψ

dz
Φ − dΦ

dz
ψ

)
zo

=
(
dψ

dz
+ ikoρc

ZS

ψ

)
o

Φ(0, k). (9.5.9)

Insofar as we are interested only in the disturbance at lower altitudes, we suppose
c(z) to decrease indefinitely with increasing height. This idealization makes it
possible to predict whether a given candidate for ψ(z, k) will satisfy the upper
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boundary condition from its behavior at moderately small values of z; the differen-
tial equation is approximated by replacing 1/c2(z) by [1/c2(0)](1 + 2z/R), where
R = c(0)/|dc/dz|z=0 is the radius of curvature of the ray initially propagating
horizontally from the source. With this approximation, the homogeneous equation
becomes

d2ψ

dz2
+
(
k2
o − k2 + 2k2

oz

R

)
ψ = 0, (9.5.10)

where we abbreviate ko for ω/c(0). The differential equation is of the same form as
in Eq. (9.4.5); one possible solution is the Airy function Ai(τ̃ − y), where

τ̃ = (k2 − k2
o)l

2, y = z

l
, l =

(
R

2k2
o

)1/3

(9.5.11)

are convenient abbreviations. Other solutions are Ai((τ̃ − y)ei2π/3) and Ai((τ̃ −
y)e−i2π/3). There are only two linearly independent solutions; any constant times a
solution is also a solution. Two recommended39 after a study of various solutions of
similar problems are

v(η) = π1/2 Ai(η), w1(η) = 2π1/2eiπ/6 Ai(ηei2π/3), (9.5.12)

with η = τ̃ − y.
Fock’s w1(η) is chosen because it has the asymptotic behavior [derivable from

Eq. (9.4.8) and (9.4.9)]

w1(τ̃ − y) → eiπ/4

y1/4 ei(2/3)y3/2
e−iτ̃ y1/2

y → ∞, (9.5.13)

which is representative of a wave propagating obliquely upward. Consequently,
w1(τ̃ − y) is an appropriate ψ(z, k).

The function Φ(z, k) that satisfies Eq. (7) can be taken as

Φ(z, k) = v(τ̃ − y) − v′(τ̃ ) − qv(τ̃ )

w′
1(τ̂ ) − qw1(τ̃ )

w1(τ̃ − y), (9.5.14)

with the abbreviation q = ikolρc/ZS . Such substitutions reduce Eq. (8) to

Z(z, k) = w1(τ̃ − y>)Φ(z<, k)l

v′(τ̃ )w1(τ̃ ) − w′
1(τ̃ )v(τ̃ )

= −w1(τ̃ − y>)Φ(Z<, k)l. (9.5.15)

39V. A. Fock, Electromagnetic Diffraction and Propagation Problems, Pergamon, London, 1965,
pp. 237, 379–381; N. A. Logan, General Research in Diffraction Theory, vol. 1, Lockheed
Missiles Space Div. Rep. LMSD-288087, December 1959, pp. 5-1 to 5-13, available from National
Technical Information Service, Springfield, VA 22161, accession number AD 241228.
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The second version results because the wronskian v′w1 − w′
1v of the two solutions

of the Airy differential equation is a constant; its value of −1 can be derived after
an insertion of the asymptotic formulas into the wronskian expression.

For lower-altitude reception sites, within and near the shadow zone, the dominant
contribution to the integral (6) comes from values of k that are not substantially
different from ko. This is anticipated because the integral can be regarded as a
superposition of plane and evanescent waves and because waves propagating with
horizontal phase velocities of the order of c(0) = ω/ko predominate near the ground
at larger horizontal distances. Consequently, we make approximations consistent
with such an anticipation at the outset; the results eventually derived will support the
hypothesis. In particular, we replace the multiplicative factor k1/2 in the integrand
by k

1/2
o , and we approximate k2 − k2

o = (k + ko)(k − ko) in expression (11) for τ̃
by 2ko(k − ko) so that τ̃ → τ , where τ = (2kol2)(k − ko).

Changing the integration variable to τ in Eq. (6) consequently reduces the
complex pressure amplitude to a standard expression

p̂ = Ŝ

w
eikowV (ξ, yo, y, q), (9.5.16)

where

V (ξ, yo, y, q) = e−iπ/4
(
ξ

π

)1/2 ∫ ∞

−∞
eiξτw1(τ − y>)

[
v(τ − y<)

− v′(τ ) − qv(τ)

w′
1(τ ) − qw1(τ )

w1(τ − y<)

]
dτ

(9.5.17)

is Fock’s form40 of the van der Pol–Bremmer diffraction formula. Here ξ abbrevi-
ates w/2kol2 or, equivalently, ξ = (koR/2)1/3w/R; the quantity yo is z0/l, so that
yo = (2k2

oR
2)1/3(zo/R).

9.5.2 Residues Series for the Shadow Zone

The definitions (12) and the asymptotic relations (9.4.8) and (9.4.9) lead to the
conclusion that the integrand in Eq. (17) goes to zero as τ → ∞ in the upper
half plane, Imτ > 0, if ξ − y

1/2
o − y1/2 > 0. The latter is equivalent to the condition

40Fock, Electromagnetic Diffraction and Propagation Problems, pp. 239–241; B. van der Pol and
H. Bremmer, “Propagation of radio waves over a finitely conducting spherical earth,” Phil. Mag. (7)
25:817–837 (1938). Other representations of analogous formulas are reviewed by Logan, Lockheed
Missles Space Div. Rep. LMSD-288087. That latter’s authoritative analysis of the interrelations
between various published diffraction formulas compels acceptance of his nomenclature choices.
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w > (2Rzo)
1/2 + (2Rz)1/2 that the listener is in the shadow zone. The integral for

such circumstances can be evaluated by a contour deformation and becomes 2πi
times the sum of those residues corresponding to poles in the upper half plane. Such
poles are the zeros τn (for n = 1, 2, . . .) of the expression w′

1(τ ) − qw1(τ ) that
appears in the integrand’s denominator.

Near τ = τn, the denominator function w′
1 − qw1 approximates to [w′′

1(τn) −
qw′

1(τn)](τ − τn) or, because w′
1(τn) = qw1(τn) and because w′′

1(τ ) is τw1(τ )

from the differential equation (9.4.5), to (τn − q2)w1(τn)(τ − τn). This makes an
implicit identification possible for the residues. Also, the wronskian relation v′w1 −
w′

1v = −1 and the definition w′
1(τn) = qw1(τn) requires that v′(τn) − qv(τn) =

−1/w1(τn). Consequently, the residue series representation for V becomes

V (ξ, yo, y, q) = (4πξ)1/2eiπ/4
∑
n

eiτnξ w1(τn − yo)w1(τn − y)

(τn − q2)[w1(τn)]2 , (9.5.18)

where it is understood that ξ > y
1/2
o + y1/2. Alternately, because w1(τn) is

w′
1(τn)/q, we can replace the denominator in the above by [(τn/q2) − 1][w′

1(τn)]2.
The first version is appropriate for the limiting case q → 0, ZS → ∞, which
corresponds to a rigid ground; the second version is appropriate for the limiting
case q → ∞, ZS → 0, which corresponds to a pressure-release surface.

Since one or the other of the two limiting cases41 just mentioned approximate
mate most circumstances of interest, and since the zeros of the Airy function Ai(η)
or its derivative Ai′(η) are all real, we replace τn by bne

−i2π/3 in what follows.
For the rigid surface, bn is a′

n, where a′
1, a′

2, . . . are the roots of Ai′(a′
n) = 0,

while for the pressure-release surface, bn is an, where a1, a2, . . . are the roots of
Ai(an) = 0. These identifications follow from Eq. (12) and the requirement that the
τn satisfy w′

1(τn) − qw1(τn) = 0. Since the a′
n and the an are all negative, each of

the corresponding τn will lie in the first quadrant of the complex τ plane along the
line where the phase of τ is π/3. The imaginary parts of successive τn’s therefore
increase with successive n, so if ξ is sufficiently large, given fixed y and yo, the sum
(18) approximates to just its leading term. In this manner, we obtain for the rigid
boundary and pressure-release surfaces, respectively,

41The bn are the roots of Ai′(b) + ieiπ/3(ρc/ZS)k0lAi(b) = 0, so for |ρc/ZS |kol 
 1 (nearly
rigid surface), one has bn ≈ a′

n + e−iπ/6(ρc/ZS)k0l/a
′
n, while for |ρoc/ZS |kol � 1 (nearly soft

surface), one has bn ≈ an + eiπ/6ZS/ρck0l. Since kol = (k0R/2)1/3 increases with frequency,
any surface of finite impedance will appear nearly soft within the context of the present theory if
the frequency is sufficiently high. For a frequency of 1000 Hz, for c = 340m/s, and for a ground
impedance of ZS = 5ρc(1 + i) (see Fig. 3.5), |ρc/ZS |kol is 0.30R1/3, where R is curvature radius
in meters. Thus, for an atmospheric profile where R > 10, 000m, the boundary condition is more
properly idealized as that of a pressure-release surface. This was pointed out by R. Onyeonwu,
“Diffraction of sonic boom past the nominal edge of the corridor,” J. Acoust. Soc. Am. 58:326–330
(1975).
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V (ξ, yo, y, 0) ≈ (4πξ)1/2e−iπ/12 exp(ia′
1ξe

−i2π/3)
f1(yo)f1(y)

(−a′
1)

, (9.5.19a)

V (ξ, yo, y,∞) ≈ (4πξ)1/2e−iπ/12 exp(ia1ξe
−i2π/3)g1(yo)g1(y), (9.5.19b)

where we use the abbreviations

f1(y) = Ai(a′
1 − yei2π/3)

Ai(a′
1)

= w1(a
′
1e

−i2π/3 − y)

2π1/2eiπ/6Ai(a′
1)

, (9.5.20a)

g1(y) = Ai(a1 − yei2π/3)

Ai′(a1)
= w1(a1e

−i2π/3 − y)

2π1/2eiπ/6Ai′(a1)
, (9.5.20b)

with ei2π/3 = (−1 + i
√

3)/2, a′
1 = −1.0188, Ai(a′

1) = 0.5357, a1 = −2.3381,
and Ai′(a1) = 0.7012. In either case, the truncation is a justifiable approximation42

if ξ − y
1/2
o − y1/2 is somewhat larger than 1.

If both y and yo are moderately large, the functions w1(b1e
−i2π/3 − y) and

w1(b1e
−i2π/3 − yo) can be replaced by asymptotic expressions of the form of Eq.

(13). Doing so reduces the leading term of Eq. (18) to

V ≈ eiπ/12ξ1/2ei(2/3)y3/2
ei(2/3)y3/2

o

K1(q)y
1/4
o y1/4

exp[e−iπ/6b1(ξ − y
1/2
o − y1/2)], (9.5.21)

K1(q) = (4π)1/2(−b1 + q2ei2π/3)[Ai(b1)]2. (9.5.22)

= (4π)1/2
(

1 − b1

q2 e
−i2π/3

)
[Ai′(b1)]2. (9.5.22a)

where the two versions are appropriate to the limits q → 0 (rigid surface) and
q → ∞ (pressure-release surface), respectively. In particular, K1(0) = 1.036 and
K1(∞) = 1.743.

42The criterion that emerges from a comparison of Eqs. (18) and (21) is that

| exp[e−iπ/6(b2 − b1)(ξ − y
1/2
o − y1/2)]| 
 1,

which is approximately satisfied if ξ − y
1/2
o is larger than 2/{Re[(−b2 + b1)e

−iπ/6]}; this quantity
equals 1.034 and 1.3198 for the rigid surface and for the pressure-release surface, respectively.
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9.5.3 Creeping Waves

An implication of Eqs. (16) and (18) is that within the shadow zone and on the
surface, the amplitude of acoustic pressure or of any other acoustic field quantity
must asymptotically decrease with distance w along the surface as w−1/2e−αw,
where the attenuation coefficient α (nepers per meter) is given by

α = Re(−e−iπ/6b1)

(
ko

2R2

)1/3

, (9.5.23)

= n

2c
f 1/3

(
−dc

dz

)2/3

o

, (9.5.23a)

with n = 2π1/3Re(−e−iπ/6b1) and with f denoting the frequency in hertz. For
a rigid surface, n is 2.58, while for a pressure release surface, n is 5.93. The
corresponding speed (phase velocity) at which lines of constant phase move along
the surface is similarly deduced to be

vph = c(0)

1 + Im(e−iπ/6b1)/(2k2
0R

2)1/3
, (9.5.24)

and is always less than the sound speed c(0).
The weak attenuation and slightly retarded phase velocity are two distinguishing

characteristics of a creeping wave.43 Such waves move along surfaces with ray
paths (see Fig. 9.18) that are everywhere perpendicular to surfaces of constant
phase (given an absence of ambient flow tangential to the surface). In the example
considered here, the creeping-wave rays are straight horizontal lines extending
radially from the source, but in other instances the rays curve along the surface.
In addition to a weak exponential decay with propagation distance, the amplitude
along the surface varies inversely with the square root of the perpendicular distance
(ray-strip width) between adjacent rays propagating along the surface. In the above
example, ray-strip width is proportional to w, so a factor of w−1/2 emerges from the
insertion of (21) into (16).

For propagation along a curved surface in a homogeneous medium,44 the
requirement that the creeping-wave rays be perpendicular to the surfaces of constant

43The term Kriechwelle was introduced by W. Franz and K. Depperman, “Theory of diffraction
by a cylinder with consideration of the creeping wave,” Ann. Phys. (6)10:361–373 (1952). The
prediction of such waves dates back to G. N. Watson, ‘ The diffraction of electric waves by the
earth,” Proc. R. Soc. Lond.A95:83–99 (1919). That the wave penetrating into the shadow zone
above a plane boundary in a stratified medium can be regarded as a creeping wave has been pointed
out by G. D. Malyuzhinets, “Development in our concepts of diffraction phenomena (On the 130th
anniversary of the death of Thomas Young),” Sov. Phys. Usp. 69:749–758 (1959).
44R. M. Lewis, N. Bleistein, and D. Ludwig, “Uniform asymptotic theory of creeping waves,”
Commun. Pure Appl. Math. 20:295–328 (1967); J. B. Keller, “Diffraction by a convex cylinder,”
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Fig. 9.18 Concept of a creeping wave propagating along a surface. If the sound speed is constant,
the creeping-wave ray is a geodesic. The amplitude on the surface decreases as the reciprocal of
the square root of strip width and decreases exponentially with distance along path

phase and that they move with a speed nearly equal to the sound speed leads to
the recognition that the paths are geodesics; the path connecting two points on the
surface is the shortest of all possible paths. (This property is analogous to Fermat’s
principle of least time.) For the two idealizations of principal interest, a sphere and
a circular cylinder, the paths are great circles and helices, respectively.

If a creeping wave is propagating along a curved surface in a homogeneous
medium, one can locally orient the coordinate system and origin so that the surface
is given by z = −x2/2R1 − y2/2R2, where R1 and R2 denote the surface’s two
principal radii of curvature. The disturbance near the origin is taken of the form
eikxξ eikyηF (ζ ), where ξ ≈ x − xz/R1, η ≈ y − yz/R2, and ζ ≈ z + x2/2R1 +
y2/2R2. Approximations45 similar to those described in the derivations of Eqs. (10)
and (9.4.5) then result in the differential equation

d2F

dζ 2 +
(
k2
o − k2 + 2k2ζ

Reff

)
F = 0, (9.5.25)

where

k2
o = ω2

c2
, k2 = k2

x + k2
y, R−1

eff = R−1
1 cos2 θk + R−1

2 sin2 θk, (9.5.26)

IRE Trans. Antennas Prop. 4:312–321 (1956); B. R. Levy and J. B. Keller, “Diffraction by a smooth
object,” Commun. Pure Appl. Math. 12:159–209 (1959).
45In the analogous theory of radio-wave propagation along the surface of a spherical earth,
this is known as the earth-flattening approximation: J. C. Schelleng, C. R. Burrows, and B. B.
Ferrell, “Ultra-short-wave propagation,” Proc. Inst. Radio Eng. 21:427–463 (1933); C. L. Pekeris,
“Accuracy of the earth-flattening approximation in the theory of microwave propagation,” Phys.
Rev. 70:518–522 (1946); “The field of a microwave dipole antenna in the vicinity of the horizon,”
J. Appl. Phys. 18:667–680 (1947).
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Fig. 9.19 Shedding of rays by a creeping wave: (a) flat surface bounding a fluid where the sound
speed increases linearly with height; (b) curved surface bounding a fluid of constant sound speed

where θk is the direction of (kx, ky) relative to the x axis. Given ζ 
 Reff, the k2

in the last term can be approximated by k2
o , so one recovers Eq. (10) but with a

new interpretation of R; ζ is interpreted as distance transverse to the surface. The
boundary condition and the selection of the least attenuated wave then leads to an
Airy function of the form w1(τ1 − ζ/ leff) just as in the leading term of Eq. (18),
only with z/l replaced by ζ/ leff, where leff = (Reff/2k2

o)
1/3.

9.5.4 Ray Shedding by a Creeping Wave

The implication of Eq. (21) is that deep within the shadow zone but not near
the surface (z somewhat larger than l) the disturbance propagates along ordinary
geometrical-acoustics rays. The origin of these rays,46 however, is not the source
but the creeping wave (see Fig. 9.19). This identification emerges if we write the
product (16) with the insertion of Eq. (21) for V as

p̂ = eiπ/12(R2/4k0)
1/6Ŝe−αΔw exp[iωτTR(z0) + i(ω/vph)Δw + iωτTR(z)]
w1/2[K1(q)/21/2][(2Rz0)(2Rz)]1/4

,

(9.5.27)

46That shedded rays are present has been demonstrated by schlieren photographs of acoustic pulses
incident on cylinders. See, for example, W. G. Neubauer, “Experimental measurement of ‘creeping’
waves on solid aluminum cylinders in water using pulses,” J. Acoust. Soc. Am. 44:298–299 (1968).
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where

Δw = w − (2Rzo)
1/2 − (2Rz)1/2. (9.5.28a)

coτTR(z) = (2Rz)1/2 + 2

3

(
2z3

R

)1/2

. (9.5.28b)

Here (2Rzo)
1/2 is the horizontal distance from the source to the edge of the

shadow zone; (2Rz)1/2 is the horizontal distance from surface to listener along a
ray that leaves the ground at the grazing angle and subsequently passes through
the listener position. Such a ray would leave the ground at (wo, 0), where wo =
w − (2Rz)1/2. The quantity τTR(z) can be identified as the travel time along such a
ray segment. The latter follows from Eqs. (8.4.2), which predict that dτTR/dw will
be co/c

2 since sw = 1/co for a ray initially tangential to the surface. The quantity
co/c

2 is approximately (1 + 2z/R)/co, but z is (w − wo)
2/2R along the ray, so

dτTR/dw integrates to coτTR = (w − wo) + 1
3 (w − wo)

2/R2. Then, replacing
w − wo by (2Rz)1/2, we obtain Eq. (28b).

Similarly τTR(zo) corresponds to travel time along the ray that goes from source
to edge of shadow zone at the surface, a horizontal distance of (2Rzo)

1/2. The phase
change ωτTR(zo) + (ω/vph)Δw + ωτTR(z) therefore corresponds to a broken ray
path that travels from source to ground with the sound speed, then along the ground
a distance Δw with the phase velocity vph, and then from ground to listener with the
sound speed.

The above observation yields the interpretation that the sound reaching the
listener at w, z is shed by the creeping wave at wo, 0. This view is further supported
by the attenuation factor e−αΔw. The disturbance at w, z is carried by the creeping
wave over only the interval [(2Rzo)

1/2, 0] to [wo, 0], a net distance of Δw.
The factors of w1/2 and (2Rz)1/4 in the denominator of Eq. (27) are similarly

interpreted in terms of geometrical acoustics; their product is proportional to the
square root of the ray-tube area associated with the ray passing through the listener
location. Two rays successively shed at wo and wo + δwo will have an approximate
perpendicular separation δz ≈ −δ[(w − wo)

2/2R], or (w − wo)(δwo/R), after
traversing a distance w − wo. Thus ray-tube area varies with z as w − wo, or as
(2Rz)1/2. The cylindrical spreading (which began at the source) creates the other
factor of w in the ray-tube-area expression.

9.6 Source or Listener on the Edge of a Wedge

A prototype for theories of diffraction by edges is that of the field in the vicinity of a
rigid wedge-shaped obstacle. The edge of the wedge coincides with the z axis; one
face occupies the half plane y = 0, x > 0 in such a way that it is given by φ = 0
in a cylindrical coordinate system, x = r cosφ, y = r sinφ. The other face is at
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Fig. 9.20 Parameters for description of propagation in wedge-limited regions: (a) propagation
outside a wedge of exterior angle β; (b) propagation inside a wedge

φ = β, so the wedge exterior consists of points for which φ is between 0 and β (see
Fig. 9.20).

Exact solutions of the wave equation for the exterior region of such a wedge are
somewhat intricate, but simple expressions emerge for various limiting cases. We
here begin with the simplest, that where either the source or the listener is on the
edge.

9.6.1 Source on Edge

Let a point source of time-dependent monopole amplitude S(t) be at z = zS on the
edge (rS = 0), the source being such that p(x, t) would be S(t − R/c)/R without
the wedge present, with R denoting the radial distance [r2 + (z − zS)

2]1/2 from the
source.

The boundary condition at the wedge faces is satisfied by the free-space solution,
because it predicts a radial flow. However, the free-space solution does not give the
correct rate of mass flow out from the source (through a surface close to the source)
into the region exterior to the wedge. The net rate ṁ(t) that mass flows from the
source must, according to Eq. (4.3.9) and Euler’s equation, be such that

dṁ

dt
= 4πS(t). (9.6.1)

The definition of S(t) is such that this holds regardless of the location of the source
and in particular when the source is adjacent to a solid surface. This is consistent,
for example, with what is obtained when a source is near a flat rigid plane and the
field is determined by the method of images.
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When the source is on the edge, the expelled mass flows into a solid angle

Δ� =
∫ β

o

∫ π

o

sin θ dθ dφ = 2β, (9.6.2)

rather than into 4π steradians, as for free-space radiation. Thus the time rate of
change of mass flow rate per solid angle must be 4πS(t)/2β when the wedge is
present and is enhanced relative to the free-space case by a factor of 2π/β. Such
reasoning results in the solution47

p = 2π

β

S(t − R/c)

R
(9.6.3)

for the acoustic pressure resulting from a point source on a wedge of exterior angle
β, where 0 < β < 2π .

Since the time-averaged acoustic intensity is proportional to the mean squared
acoustic pressure for a spherically spreading wave, Eq. (3) implies that the intensity
is enhanced by a factor of (2π/β)2 relative to when the source is in a free
environment. The energy spreads into 2β sr, so the enhancement of the acoustic
power output is

P
Pff

= 2βR2(2π/β)2Iff

4πR2Iff
= 2π

β
, (9.6.4)

which is consistent with what would be derived by the method of images (see
Sect. 5.1) for the special cases β = π and β = π/2.

9.6.2 Listener on the Edge

When the listener (rather than the source) is on the edge, Eq. (3) also applies,
because of the principle of reciprocity; R is interpreted, as before, as distance from
source to listener. The field, however, will not be spherically symmetric unless the
source is also on the edge.

Example Suppose a wave from a distant source impinges on a thin rigid screen.
The acoustic-pressure amplitude at a given point on the edge would nominally be
Po without the barrier present. What is its value at the same point when the screen
is present?

47Rayleigh, The Theory of Sound, vol. 2, pp. 112–113. The applicability of Rayleigh’s analysis for
a point source at the vertex of a rigid cone of given solid angle to a source on a wedge’s edge is
pointed out by R. V. Waterhouse, “Diffraction effects in a random sound field,” J. Acoust. Soc. Am.
35:1610–1620 (1963).
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Solution In this case, β is 2π , so reciprocity considerations and Eq. (3) imply that
the amplitude will also be Po when the screen is present. There may be a marked
change in the amplitude at points not on the edge of the screen, however.

9.7 Contour-Integral Solution for Diffraction by a Wedge

To solve the more difficult boundary-value problem48 with a harmonic point source
at an arbitrary point (zS set to zero for simplicity) near a rigid wedge, we seek
a complex pressure amplitude p̂ that satisfies the Helmholtz equation (1.8.13)
everywhere outside the wedge except at xS ; near xS it should be of the form
Ŝ/|x − xS | plus a bounded function; it should also satisfy the rigid-wall boundary
condition ∂p̂/∂φ = 0 at the faces (φ = 0, φ = β) of the wedge. In addition, at large
distances from the source and the edge, the solution must satisfy the Sommerfeld
radiation condition.

To describe the solution, it is convenient to introduce a wedge index ν = π/β

(≥ 1
2 ) and a function R(ζ ), where

R(ζ ) = (r2 + r2
S − 2rrS cos ζ + z2)1/2 (9.7.1)

is the distance in the free-space Green’s function

G(ζ ) = 1

R(ζ )
eikR(ζ ). (9.7.2)

Thus R(φ−φS) represents the direct distance between source and listener; ŜG(φ−
φS) would be the solution without the wedge present. We shall be interested in
values of R(ζ ) when ζ is complex, and in order to specify uniquely which square
root is implied by (1), we define R(ζ ) so that it is positive for real ζ and analytic
except at branch cuts [at which the phase of R(ζ ) has a discontinuity of π ] that
extend vertically up and down from branch points above and below the real axis,
respectively (see Fig. 9.21). These branch points, at which R = 0, are found from
(1) to be at 2πl ± iα, where l is any integer and where

α = cosh−1 r2 + r2
S + z2

2rrS
. (9.7.3)

48H. M. MacDonald, “A class of diffraction problems,” Proc. Lond. Math. Soc. 14:410–427 (1915);
T. J. I’A. Bromwich, “Diffraction of waves by a wedge,” ibid. 14:450–463 (1915). A bibliography
including references to earlier work by H. Poincaré (1892), A. Sommerfeld (1896), and MacDonald
(1902) is given by H. G. Garnir, Bull. Soc. R. Sci. Liege, 21:207–231 (1952).
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Fig. 9.21 Branch cuts in the complex ζ plane for the function G(ζ ). Indicated closed contour is
appropriate for integer wedge index ν. The contributions from the two vertical contours passing
through −π and π cancel each other for ν an integer

The function G(ζ − φ) satisfies the Helmholtz equation, so the superposition
principle requires any contour integral of the form

p̂ = Ŝ

∫
C

f (ζ )G(ζ − φ)dζ (9.7.4)

to satisfy the Helmholtz equation, given position-independent contour C and
function f (ζ ). This expression, moreover, will satisfy the Sommerfeld radiation
condition. Alternatively, we may change the variable of integration to ζ −φ, rename
it as ζ , and have

p̂ = Ŝ

∫
Cφ

f (ζ + φ)G(ζ )dζ. (9.7.5)
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Insofar as Cφ can be deformed without crossing any poles or branch cuts into a
contour C independent of φ for any φ between 0 and β, we can take Cφ to be
independent of φ and the same as the original contour C. The task is then to find
appropriate f (ζ + φ) and C in order that Eq. (5), with Cφ → C, will represent a
solution of the boundary-value problem posed above.

9.7.1 Method of Images for Integer Wedge Index

If the wedge index ν is an integer, the problem can be solved by the method of
images introduced in Sect. 5.1. Locations of the 2ν − 1 images (see Fig. 9.22a)
required to ensure that the boundary conditions will be satisfied are found in a
manner similar to that used to develop (Sect. 3.4) the solution for the transient
disturbance caused by a vibrating piston in a tube with a rigid end. The solution
for integer ν is consequently

p̂ = Ŝ

ν−1∑
m=0

[
G
(

2mπ

ν
− φS − φ

)
+ G

(
2mπ

ν
+ φs − φ

)]
. (9.7.6)

Alternatively, we can express the sum by a contour integral

p̂ = Ŝ

2πi

∫
C

G(ζ )[h(ζ + φ + φS) + h(ζ + φ − φS)]dζ, (9.7.7)

where h(ζ ) has poles at ζ = 2mβ = 2πm/ν and the residue of h(ζ ) at each such
pole is unity. The contour C is understood to encircle one pole each for which m =
0(modν), m = 1(modν), . . . , m = ν − 1(modν) (see Fig. 9.22b). A choice for h(ζ )
is

h(ζ ) = ν

2
cot

(ν
2
ζ
)
. (9.7.8)

The residue at the pole, ζ = 2mβ, is 1 because cosmπ = (−1)m and because
sin[(ν/2)ζ ] → (−1)m[(ν/2)ζ − mπ ] as ζ → 2mπ/ν. The additional restriction
that h(ζ ) repeat itself at intervals of 2π assures that this choice for h(ζ ) is unique
except for an arbitrary additive constant, which is of no consequence. A possible
choice for the contour C is one encircling all poles between −π and π .

The closed-contour choice for C is satisfactory for integer ν, but when ν is a
noninteger, the number of enclosed poles varies with φ and the integral therefore
becomes a discontinuous function of φ. To circumvent this difficulty, we pick
another integration contour that does not cross the real axis. For integer ν, we note
that the integrand repeats itself at intervals of 2π , so integration along a downward
path from π + i∞ to π − i∞ will exactly cancel one along an upward path from
−π − i∞ to −π + i∞. Thus the value of (7) for integer ν is unchanged if we
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Fig. 9.22 (a) Images for a source within a 60◦ wedge (β = π/3, ν = 3). (b) Deformed contour
for integration that yields the sum of free-space fields of the source and its images. (c) Deformed
contour appropriate for when the listener is arbitrarily close to the source. Contour CP gives field
with 1/R singularity; contours CA and CB give finite contributions at the source

add additional contours that go parallel to the imaginary axis up and down the lines
ζR = −π and ζR = π , respectively. The overall contour can then be split into
contours CU , and CL, where CU goes from π + i∞ to π , then arcs above the real
axis from π to −π , then goes from −π to −π+i∞; CL is CU ’s inversion (ζ → −ζ )

through the origin. Alternatively, since G(ζ ) → 0 as ζI → ∞ for −2π < ζR < −π

and 0 < ζR < π , we can deform CU to any contour (see Fig. 9.22b) that starts at
ζI = ∞ for some ζR between 0 and π , then goes down and passes below the branch
point at iα, and then goes back to ζI → +∞ in the region where ζR is between
−2π and −π . The corresponding deformed CL can be taken as the inversion of
CU , starting at ζI = −∞ with −π > ζR < 0, passing above −iα, and ending at
ζI → −∞ with π < ζR < 2π .
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9.7.2 Generalization to Noninteger Wedge Indices

The claim is now made that Eq. (7) with h(ζ ) given by Eq. (8) and with C =
CU + CL (where CU and CL are the contours described above) is also the solution
of the boundary-value problem for arbitrary ν (including ν < 1). (Recall that the
preceding derivation presumed that ν is an integer.) To verify that our candidate
solution has the requisite properties, we first note that R(ζ ) = R(−ζ ) and that CU

is the inversion of CL, so that (7) can be reexpressed

p̂ = Ŝ

2πi

∫
CL

G(ζ )Σh dζ, (9.7.9)

Σh =
2∑

n,m=1

ν

2
cot

(ν
2

[ζ + (−1)nφ + (−1)mφS]
)
. (9.7.10)

In the latter expression, the sum extends over all sign combinations of ±φ±φS . Note
that the sum includes the terms h(ζ + φ + φS), h(ζ + φ − φS), −h(−ζ + φ + φS),
and −h(−ζ + φ − φS), where the last two are the inversions ζ → −ζ , with a sign
change (since dζ on CU goes to −dζ on CL when ζ → −ζ ) of the first and second
terms.

Expression (9) satisfies the Helmholtz equation because G(ζ ) satisfies

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ζ 2
+ ∂2

∂z2
+ k2

)
G(ζ ) = 0,

which in turn implies

(∇2 + k2)p̂ = Ŝ

2πi

∫
CL

1

r2

[
G(ζ ) ∂2

∂φ2 Σh − Σh
∂2G
∂ζ 2

]
dζ.

Since G(ζ ) vanishes exponentially at the endpoints of CL, the second term above
can be integrated by parts twice, thereby transferring the operator ∂2/∂ζ 2 from G to
Σh. The integrand then contains the factor

(
∂2

∂φ2 − ∂2

∂ζ 2

)
Σ,h = 0,

which (as demonstrated in Sect. 1.7) is identically zero because Σh is a sum of
terms that depend on ζ and φ only through one of the combinations ζ + φ or ζ − φ.

Next we check that Eq. (9) exhibits the proper singular behavior near the source
location. When r → rS , z → 0, φ → φS , one finds that α → 0 and that a pole of
h(ζ + φ − φS) approaches the origin. To isolate the effect of the pole, we deform
CL +CU into CA +CB +CP , where CA, CB , and CP are as sketched in Fig. 9.22c.
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The contributions from CA and CB are bounded while that from CP gives ŜG(φS −
φ), which is just the direct wave from the source.

The boundary condition ∂p̂/∂φ = 0 at φ = 0 is guaranteed by Eq. (10) because
h(ζ ) is an odd function of its argument, so Σh is even in φ for fixed ζ and φS . The
other boundary condition, ∂p̂/∂φ = 0 at φ = β, follows because h(ζ ) is periodic in
ζ with period 2β; if one replaces φ by 2β − φ in Σh, uses the periodicity property,
and recognizes that each term is odd in its argument, one finds Σh unchanged, so it
must be even about φ = β.

The Sommerfeld radiation condition is satisfied by Eq. (9) because G(ζ ) for all
finite ζ satisfies this condition. (The asymptotic expressions derived in the following
section support this inference.)

The limit rS → 0 of Eq. (9) must, according to Eq. (9.6.3), yield
(2π/β)ŜR−1eikR . That such is indeed the case is demonstrated beginning with
the expansion49 (Im ζ < 0)

Σh = 2iν
∞∑
n=0

εne
−iνnζ cos νnφ cos νnφS, (9.7.11)

such that

p̂ = 2π

β
Ŝ

∞∑
n=0

εn cos νnφ cos νnφS Iνn, (9.7.12)

with

Iνn = 1

2π

∫
CL

G(ζ )e−iνnζ dζ. (9.7.13)

49A. A. Tuzhilin, “New representations of diffraction fields in wedge-shaped regions with ideal
boundaries,” Sov. Phys. Acoust. 9:168–172 (1963). Equation (11) is most easily derived from a
power-series expansion of Σh in u = e−iνζ , with the cotangents in Eq. (10) expressed in terms of
exponentials. Tuzhilin’s expression (given without a derivation) for what is here termed Iνn is

Iνn = i

(
πk

2R1

)1/2 ∞∑
s=0

H
(1)
nν+1/2+2s (kR1)

s!Γ (nν + 1 + s)

(
krrS

2R1

)νn+s

where R1 is (r2 + r2
S + z2)1/2 and H

(1)
μ (kR1) is the Hankel function of the first kind with

(noninteger) index μ. The properties of the latter are such that

Iνn ≈ e−iνnπ/2

Γ (1 + νn)

(
krrS

2R1

)νn

R−1
1 eikR1

when kR1 is large compared with 1 and when krrS/2R1 is small. See, for example, G. N. Watson,
A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge University Press, Cambridge,
1922, p. 197.
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Here εn is 1 for n = 0 and is 2 for n ≥ 1. The result derived in Sect. 9.6 emerges
when rS → 0, because Io → R−1eikR and Iνn → 0(n ≥ 1) in this limit.

9.8 Geometrical-Acoustic and Diffracted-Wave
Contributions for the Wedge Problem

Here the contour solution for a point source in the vicinity of a wedge is applied to
determine an asymptotic approximation for the field. The contour CL in Eq. (9.7.9)
can be deformed50 into one crossing the real axis at ζ = 0 and at ζ = π , provided
one adds an additional contour that encircles the poles between 0 and π in the
counterclockwise sense. Since G(ζ ) → 0 as ζI → ∞ for ζR between 0 and π ,
the deformed CL contour can be split into left and right segments that terminate
and originate at ζ = π/2 + i∞ (see Fig. 9.23). The left segment can be taken as
symmetric with respect to inversions through the origin and the integrand is odd in
ζ ; thus the integral along the left segment vanishes identically, and we are left with a
contour Cπ (the right segment) plus a counterclockwise contour encircling the poles
between 0 and π .

9.8.1 The Geometrical Acoustics Portion of the Field

The poles of Σh occur when sin[(π/2β)(ζ ±φ±φS)] vanishes or when ζ ±φ±φS

is 2βl, where l is any integer; the residue of Σh at each such pole is unity; however,
we must include only poles at points ζP , where 0 < ζP < π . The residue theorem
accordingly yields, for the geometrical-acoustics field,

p̂GA = Ŝ
∑
l

′ G(2βl − φS − φ) + Ŝ
∑
l

′G(2βl + φS − φ), (9.8.1)

where both sums extend over all values of l for which the indicated argument is −π

and π .
Each included term represents a spherical wave diverging from an image and

corresponds to a possible ray path that connects source and listener. The direct-ray
term ŜG(φS − φ) corresponds to the l = 0 term in the second sum and is present
only if |φ−φS | < π . The ray reflected once from the φ = 0 face corresponds to the
l = 0 term in the first sum and is present only if φS +φ < π . The ray reflected once
from the φ = β face corresponds to the l = 1 term in the first sum and is present

50F. J. W. Whipple, “Diffraction by a wedge and kindred problems,” Proc. Lond. Math. Soc.
16:481–500 (1919).
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Fig. 9.23 Deformed contour in the complex ζ plane, yielding asymptotic representation for sound
diffraction by a rigid wedge. The integral along the contour segment passing through the origin
vanishes because of symmetry

only if 2β−φS −φ < π . (Recall that both φ and φS are between 0 and β.) A similar
physical interpretation can be given for each of the other terms.

If β > π/2(ν < 2), the only possible terms are those where the arguments of
the Green’s functions are φS − φ (direct), φ + φS (0 face), 2β − φS − φ (β face)
2β + φS − φ (0 face then β face), and −2β + φS − φ (β face then 0 face). The
second and third possibilities both occur if either the fourth or fifth is realized, but
the fourth and fifth are mutually exclusive. If β is between π/2 and π , there is
always one singly reflected ray path, but a doubly reflected path is possible only if
|φS − φ| > 2β − π . For this range of β, there are two or three paths if |φS − φ| is
less than 2β − π and four paths if |φS − φ| > 2β − π (see Fig. 9.24a).

If β > π(ν < 1), so that source and listener are in the exterior region of a
wedge, one has a direct ray if |φ − φS | < π , a ray reflected from the φ = 0 face
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Fig. 9.24 (a) Possible singly reflected ray paths connecting source and listener when the wedge
angle β is between π/2 and π . (b) Ranges of φ and φS in which various wave contributions are
expected for wedge with exterior angle β greater than π

if φ + φS < π , and a ray reflected from the φ = β face if φ + φS > 2β − π ; the
last two possibilities are mutually exclusive. If φ + φS is between 2β − π and π ,
moreover, there is no reflected path. If φS > π and φ < φS − π , or if φS < β − π

and φ > π+φS , there is neither a direct path nor a reflected path (see Fig. 9.24b). In
such circumstances, the listener is in a shadow zone, and any nontrivial estimation
of the acoustic field requires an evaluation of the contribution to p̂ from the contour
Cπ .
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9.8.2 The Diffracted Wave

The contour Cπ term is simply what is left over when one has constructed a solution
according to geometrical-acoustic principles; consequently it is identified as the
diffracted wave p̂diffr. A less abstract representation results from the deformation of
Cπ to coincide with the line ζR = π . If one sets ζ = π − is, then dζ = −i ds and s

range from −∞ to ∞. Since cos(π − is) is − cosh s, the quantity G(π − is) is even
in s, so we need only keep terms even in s in the remainder of the integrand. Thus,
after some manipulation of trigonometric identities, we can make the substitution

cot
[ν

2
(x − is)

]
→ sin νx

cosh νs − cos νx
,

and the diffracted-wave contribution becomes51

p̂diffr = − Ŝ

4β

∫ ∞

−∞
G(π − is)

4∑
q=1

sin νxq

cosh νs − cos νxq
ds, (9.8.2)

and we use the abbreviations x1, x2, x3, and x4 for π+φ+φS , π−φ−φS , π+φ−φS ,
and π − φ + φS .

Next we can combine the x1 and x2 terms together and the x3 and x4 terms
together, with the result

p̂diffr = Ŝ sin νπ

2β

∫ ∞

−∞
G(π − is)[Fν(s, φ + φS) + Fν(s, φ − φS)] ds, (9.8.3)

where we use the abbreviation

Fν(s, φ) =

(cos νπ − cos νφ) − (cosh νs − 1) cos νφ

(cosh νs − 1)2 + 2(cosh νs − 1)(1 − cos νφ cos νπ) + (cos νπ − cos νφ)2
.

(9.8.4)

The presence of the factor sin νπ here demonstrates explicitly that there is no
diffracted-wave contribution if ν is an integer.

51Numerical calculations (which agree remarkably with experimental results) of this integral have
been carried out by P. Ambaud and A. Bergassoli, “The problem of the wedge in acoustics,”
Acustica 27:291–298 (1972).
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The transient solution52 for the wedge-diffraction problem follows directly from
Eqs. (1) and (2) if the source time variation S(t) is regarded as the integral from
−∞ to ∞ of Ŝ(ω)e−iωt .

9.8.3 Asymptotic Expression for the Diffracted Wave

To derive an approximate expression for the diffracted wave in the limit where
both kr and krs are large compared with 1, we regard s as a complex variable and
deform the integration contour to a steepest-descent path along which the real part
of R is constant and equal to its value at s = 0 but on which the imaginary part
increases without limit as one moves in either direction away from s = 0. Then
|eikR| decreases in the most rapid manner achievable by a contour deformation.
Since for small s

R(π − is) = (r2 + r2
S + 2rrS cosh s + z2)1/2 ≈ L + rrS

2L
s2, (9.8.5)

the path considered makes an angle of π/4 with the real axis at s = 0. [Here L2 is
used as an abbreviation for (r + rs)

2 + z2.]

52To derive the transient expression for the diffracted wave, one uses the symmetry of the
integrand in Eqs. (2) and (3) and replaces the integration range from 0 to ∞ with a simultaneous
multiplication by 2. Then one changes the variable of integration to ξ = R(π − is) so that

cosh s = 1 + ξ2 − L2

2rrs
, s = 2 tanh−1

(
ξ2 − L2

ξ2 − Q2

)1/2

,

L2 = (r + rS)
2 + z2, Q2 = (r − rS)

2 + z2,

G(π − is) ds = 2eiωξ/cdξ
(ξ2 − L2)1/2(ξ2 − Q2)1/2 ,

where ξ ranges from L to ∞. Then the Fourier integral theorem (2.8.4) allows the identification

pdiffr = − 1

β

∫ ∞

L

S

(
t − ξ

c

)
Kν(ξ, L,Q, φ, φS)dξ,

Kν = 1

(ξ2 − L2)1/2(ξ2 − Q2)1/2

4∑
q=1

sin νxq

cosh νs − cos νxq
,

where s is given in terms of ξ . The unit impulse response results with S(t − ξ/c) set to δ(t − ξ/c),
so that

p̄diffr,ui = − c

β
Kν(ct, L,Q, φ, φS)H(ct − L),

where H denotes the Heaviside unit step function. Equivalent expressions are derived using a
different method by M. A. Biot and I. Tolstoy, “Formulation of wave propagation in infinite media
by normal coordinates with an application to diffraction,” J. Acoust. Soc. Am. 29:381–391 (1957).
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If krrS/2L � 1, the dominant contribution to the integral comes from very small
values of s, so in the denominator of R−1eikR it is sufficient to set s = 0 so that
R−1 becomes L−1. Also it is sufficient to use Eq. (5) as an approximation for the R
in the exponent. However, for the factors Fν(s, φ ± φS) the possibility exists that
for certain values of φ ± φS , where cos νπ = cos ν(φ ± φS), the integrand may be
singular at s = 0, so we keep the s2 term in the denominator. In the numerator, it
is sufficient to set s = 0. Then, with the aid of the algebraic identity (M + is)−1 +
(M − is)−1 = 2M/(M2 + s2) we have

Fν(x, φ) ≈ 1

2ν(1 − cos νπ cos νφ)1/2

[
1

Mν(φ) + is
+ 1

Mν(φ) − is

]
,

(9.8.6)

Mν(φ) = cos νπ − cos νφ

ν(1 − cos νπ cos νφ)1/2 . (9.8.7)

Consequently, the diffracted wave becomes

p̂diffr = Ŝ

2π

eikL

L

∑
+,−

sin νπ

[1 − cos νπ cos ν(φ ± φS)]1/2

∫ ∞

−∞
ei(π/2)Γ 2s2

ds

Mν(φ ± φS) + is
,

(9.8.8)

where we again take advantage of the symmetry of the contour and where we
abbreviate

Γ =
(
krrS

πL

)1/2

=
(

2rrS
λL

)1/2

. (9.8.9)

A further change of integration variable to u such that s = (2/π)1/2Γ −1eiπ/4u

reduces p̂diffr to the form53

p̂diffr = Ŝ
eikL

L

eiπ/4

√
2

∑
+,−

sin νπ

[1 − cos νπ cos ν(φ ± φS)]1/2 AD(ΓMν(φ ± φS)),

(9.8.10)

53The result is due in essence to W. Pauli, “On asymptotic series for functions in the theory
of diffraction of light,” Phys. Rev. 54:924–931 (1938). Various different versions existing in the
literature are equivalent in the limit of large Γ because if F(φ) is any nonzero function that equals
1 whenever ψ(φ) is 0, then

AD(Γ Fψ) ≈ F−1AD(Γ ψ),

and because, if 1/ψ(φ) = 1/ψ1(φ) + 1/ψ2(φ), where ψ1 and ψ2 have different zeros, then

AD(Γ ψ) ≈ ψ1 + ψ2

ψ1 − ψ2
[AD(Γ ψ2) − AD(Γ ψ1)].

The version in the text applies for any ν, φ, and φS .
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where AD(X) is the diffraction integral

AD(X) = 1

π21/2

∫ ∞

−∞
e−u2

du

(π/2)1/2X − e−iπ/4u
= sign (X) [f (|X|) − ig(|X|)],

(9.8.11)

which previously appeared as Eq. (5.8.9) and which is discussed in some detail in
Sect. 5.8.

Equation (10) gives us a uniform asymptotic expression for the diffracted field,
valid for large values of Γ and for any wedge angle β between 0 and 2π . The total
asymptotic solution is p̂GA + p̂diffr, where p̂GA is given by Eq. (1).

9.8.4 Physical Interpretation of the Diffracted Wave

If the quantities Mν(φ ± φS) are not small in magnitude, the diffraction integral
AD(X) is approximated by its asymptotic form 1/πX and p̂diffr reduces to

p̂diffr = Ŝ

2β

(
2π

kLrrS

)1/2

ei(kL+π/4)Dν(φ, φS), (9.8.12)

Dν(φ, φS) = sin νπ

cos νπ − cos ν(φ + φS)
+ sin νπ

cos νπ − cos ν(φ − φS)
. (9.8.13)

The decrease in amplitude with increasing frequency here displayed is in accord
with the notion that the geometrical-acoustics solution is a high-frequency approxi-
mation; the diffracted wave vanishes if k → ∞.

The diffracted wave, however, can also be interpreted in terms of geometrical-

acoustic concepts. The quantity L = [
(r + rS)

2 + z2
]1/2

is the shortest distance of
a broken line that goes from the source to the edge and thence to the listener (see
Fig. 9.25). This diffracted path touches the edge at zE = [rS/(r + rS)]z, and there
both incident and diffracted rays make the same angle, γ = tan−1[(r + rS)/z], with
the diffracting edge. (This is Keller’s law of edge diffraction and follows from the
extended interpretation of Fermat’s principle discussed in Sect. 8.1.)

Since the phase variation of p̂diffr is predominantly that of eikL, the diffracted
wavefronts are surfaces of constant L. Thus, diffracted rays move in the direction of
∇L, or of

n = r + rS

L
er + z

L
ez = rer + (z − zE)ez

[r2 + (z − zE)2]1/2 . (9.8.14)

The latter version substantiates the assertion that the diffracted ray originates at the
point zE on the edge. (Recall that in a homogeneous medium the rays are straight
lines.)
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Fig. 9.25 Broken ray path from source to edge to listener in shadow zone; angle γ is made by
both segments with the edge. The listener lies on a diffracted wavefront at a point where the two
principal radii of curvature are L and r

Since a surface of constant L (with rS fixed) is circularly symmetric (see
Fig. 9.25), one of the two principal radii of curvature at a given point on the
wavefront is r . Since any cross section through the z axis is an arc of a circle centered
at (−rS, 0), the other principal radius of curvature is the circle radius or L. Thus
the quantity (rL)1/2 is the geometric mean of the two principal radii of curvature.
Since this is proportional to the square root of ray-tube area, the amplitude variation
with r and z in the approximation represented by Eq. (12) is wholly consistent with
the geometrical-acoustic prediction of Eq. (8.5.8). Thus one can conclude that, for
the most part, the diffracted wave propagates according to the laws of geometrical
acoustics.



564 9 Scattering and Diffraction

With the interpretation just described, one can reconstruct the expression (12),
starting from the premise that near the edge the diffracted field is

p̂diffr ≈ p̂ince
iπ/4

2βr1/2

[
2π

k sin γ

]1/2

Dν(φ, φS), (9.8.15)

where p̂inc is the incident wave’s complex amplitude at the point where the
diffracted ray leaves the edge and γ is the angle that the ray makes with the edge.
The angle-dependent factor Dν here implies that the edge acts as a directional source
of acoustic energy.

In the same spirit, one concludes that Eq. (15) holds for a wave incident from
any source, regardless of whether the source can be idealized as omnidirectional. In
particular, it is applicable when the incident wave is regarded as either an obliquely
incident plane wave or a cylindrical wave. In each such case one determines the
diffracted wave path and the point zE on the edge at which the received diffracted
ray originates along with the incident acoustic pressure at this point. The apparent
value of rS , determined by the local variation of γ with distance along the edge, is
rS = ∓(sin2 γ )/(dγ /dzE), where the two sign choices apply to when the incident
ray is proceeding obliquely in the +z or the −z direction. With such a substitution,
Eq. (15) leads, for larger r , to

p̂diffr = p̂inc

2β

(2π)1/2ei(ks+π/4)

(kr)1/2(sin γ ∓ sdγ /dzE)1/2
Dν(φ, φS), (9.8.16)

where s = r/(sin γ ) is distance along the diffracted ray from the edge. The
applicable result for an incident plane wave is obtained by setting dγ /dzE = 0.

The factor Dν(φ, φS) becomes singular if cos ν (φ ∓ φS) = cos νπ or,
equivalently if 2βl ± φ ± φS = π for any integer l and any sign combination.
This, however, is just the condition that a pole in the ζ plane be at ζ = π and thus
lie on the contour Cπ . Alternatively, any value of φ for which such a condition holds
marks the transition between the presence or absence of some geometrical-acoustics
ray path. Thus, if the region of absence of such a ray is regarded as a shadow zone
for such a geometrical-acoustics wave, the transitional value of φ corresponds to
the shadow-zone boundary. When there are no geometrical-acoustic paths on one
side of the boundary, the region there is one of total shadow (from the standpoint of
geometrical acoustics).

The use of the diffraction integral AD(X) rather than its asymptotic expression
1/(πX) in Eq. (12), on the other hand, leads to a finite prediction for the diffracted
wave. Since AD(X) is discontinuous at X = 0 [AD(0+) = (1 − i)/2, AD(0−) =
−(1−i)/2], the quantity p̂diffr will be discontinuous at each shadow-zone boundary.
The discontinuity at any such φ is

Δpdiffr = Ŝ
eikL

L
= (p̂diffr)Mν=0+ − (p̂diffr)Mν=0− , (9.8.17)
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since cos ν(φ ± φS) is cos νπ and 1 − cos ν(φ ± φS) cos νπ is sin2 νπ if Mν(φ +
φS) is 0. (The shadow-zone boundaries predicted for integer ν are merged in pairs
such that the discontinuity from illumination to shadow for any one geometrical-
acoustics term is exactly canceled by a discontinuity from shadow to illumination
for a second geometrical-acoustics term; the geometrical-acoustics sum for integer
ν has no discontinuities.)

The overall solution is continuous, so that each discontinuity in p̂diffr is com-
pensated by an equal and opposite discontinuity in p̂GA. To demonstrate this, let
a shadow-zone boundary be at, say, φsz = 2βl + φS − π . Then if φ is slightly
less than φsz, one will be in the shadow zone for the geometrical-acoustics term
ŜG(2βl + φS − φ). The net discontinuity in p̂GA at φsz is accordingly ŜL−1eikL.
However, Mν(φ − φS) for φ near φsz has a sign opposite to that of φ − φsz, so
Eq. (17) predicts Δp̂diffr to be opposite to Δp̂GA such that the sum p̂GA + p̂diffr is
continuous at φ = φsz.

Although the diffracted field near shadow-zone boundaries cannot be wholly
interpreted in terms of diffracted rays emanating from the edge, we can nevertheless
reexpress Eq. (10) in terms of parameters characterizing such rays. In particular, one
can write, in a manner similar to Eq. (16),

p̂diffr = p̂ince
i(ks+π/4)

√
2

sin γ

sin γ ∓ s dγ /dzE

∑
+,−

sin νπ AD(ΓMν(φ ± φS))

[1 − cos νπ cos ν(φ ± φS)]1/2 ,

(9.8.18)

with

Γ =
[

(kr/π) sin2 γ

sin γ ∓ s dγ /dzE

]1/2

, (9.8.19)

where the various symbols appearing here have the same meaning as in Eq. (16).
Again, the result for an incident plane wave54 is obtained by setting dγ /dzE = 0.

54For plane waves incident on a thin screen (β = 2π , ν = 1
2 ), Eq. (18) reduces to the exact result

p̂diffr = −p̂ince
i(ks+π/4)

√
2

∑
+,−

AD

[(
4kr

π
sin γ

)1/2

cos 1
2 (φ ± φs)

]
.

which, for normal incidence (s = r, sin γ = 1), was first derived by A. Sommerfeld,
“Mathematical theory of diffraction,” Math. Ann. 47:317–374 (1896). An English translation (R.
J. Nagem, M. Zampolli, and G. Sandri) was published by Birkhäuser, Boston, 2004.
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9.9 Applications of Wedge-Diffraction Theory

The asymptotic expression for diffraction by a wedge simplifies further when the
listener is near the shadow-zone boundary, yielding a method for rapid estimation
of a barrier’s insertion loss. The present section discusses this simplification and
gives examples of how geometrical acoustics can augment the basic model so that
it applies to situations in which edge diffraction takes place under less idealized
circumstances.

9.9.1 Insertion Loss of Single-Edged Barriers

We first consider the case when source and listener are at distant points on opposite
sides of an acute wedge with exterior angle β. The source angle φS is between π

and β but close to neither limit. Estimates are desired regarding the effectiveness of
the wedge as a barrier to sound when the listener is near or only slightly within the
shadow zone, such that φ is less than φS − π but yet not close to the nearer side
(φ = 0) of the wedge.

Because we are interested in the behavior near the edge of the shadow zone, we
write Δφ = φ−(φS−π) and regard |Δφ| as small compared with 1. Then the φ−φS

term dominates in Eq. (9.8.10), so we discard the φ + φS term. We set Δφ = 0 in
the coefficient of AD(ΓMν), but since Mν(φ − φS) vanishes when Δφ = 0, we
express Mν(φ−φS) to first order in Δφ. Such steps reduce the overall field near the
shadow-zone boundary to

p̂ ≈ Ŝ
eikR

R
H(X) + Ŝ

eikL

L

eiπ/4

√
2

AD(−X). (9.9.1)

where X = Γ Δφ and R is the direct path distance from the source; the Heaviside
unit step function H(X) is 0 in the shadow zone and 1 in the illuminated region.

Expansion of R in a power series in Δφ yields, to second order,

R =
[
r2 + r2

S + z2 − 2rrS cos(π − Δφ)
]1/2

≈ [L2 − rrS(Δφ)2]1/2 ≈ L − 1

2

rrS

L
(Δφ)2, (9.9.2)

so the X = ΓΔφ in Eq. (1), with Γ taken from Eq. (9.8.9), is such that

X2 = 2k

π
(L − R) = 2NF , NF = L − R

λ/2
. (9.9.3)
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Fig. 9.26 Geometrical definition of Fresnel number NF = (L−R)/(λ/2) for circumstances when
the z coordinates of source and listener are the same. Indicated circular arcs have radii of r and R.
The path length L is rS + r

The quantity NF is identified as the Fresnel number (see Fig. 9.26), i.e., excess
distance of shortest diffracted path from source to edge to listener in units of half
wavelengths; this appears also in the discussion in Sect. 5.8 of radiation from a
baffled piston source.

Since AD(X) is odd in X, since k(L − R) ≈ (π/2)X2, and since L/R ≈ 1 for
the listener locations of interest, Eq. (1) reduces to

p̂ ≈ Ŝ
eikR

R

[
H(X) − eiπ/4

21/2 AD(X)ei(π/2)X2
]
. (9.9.4)

The quantity appearing here in brackets is the same as in Eq. (5.8.18), so the field
near the shadow-zone boundary is similar to that at the edge of a “beam” of sound
radiated by a baffled piston.

The insertion loss of the barrier, as predicted55 by the approximation above, is

IL = −10 log

∣∣∣∣H(X) − eiπ/4

21/2
AD(X)ei(π/2)X2

∣∣∣∣
2

(9.9.5)

55Z. Maekawa, “Noise reduction by screens,” pap. F-13, Proc. 5th Int. Congr. Acoust. G. Thone,
Liège, 1965. The discrepancies between Maekawa’s Kirchhoff-theory result, appearing here as
Eq. (5), and his empirical chart of thin-screen barrier attenuation versus Fresnel number are
explained by U. J. Kurze, “Noise reduction by barriers,” J. Acoust. Soc. Am. 55:504–518 (1974).
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or 10 times the logarithm of the reciprocal of the characteristic single-edge
diffraction pattern plotted in Fig. 5.13.

Within the illuminated region the insertion loss oscillates between negative and
positive values because of the interference between direct and diffracted waves. The
peak negative insertion loss, occurring at X = +1.2 (NF = 0.7), is −10 log 1.28 ≈
−1dB. The insertion loss is 0 dB at X = 0.8 (NF = 0.3) and is positive for all other
X closer to, and into, the shadow zone. The approximations (5.8.13) lead to

IL ≈ 20 log 2 − 20

ln 10
X ≈ 6 − 8.7X (9.9.6)

for X near 0, such that IL ≈ 6 + 12.28 (NF )
1/2 on the shadow side and for small

Fresnel number. This, however, is a fair approximation only up to NF ≈ 0.1. For
larger values of NF , the asymptotic formulas of Eq. (5.8.12) become increasingly
valid, so that

IL ≈ 10 log(4π2NF ) ≈ 16 + 10 logNF (9.9.7)

is a good approximation for NF > 2 on the shadow side. (This presumes, however,
that |Δφ| remains small.)

Equations (4) and (5) are remarkable in that they are independent of the wedge
exterior angle β. In the small Δφ limit, all wedges diffract the same. A diffraction
boundary layer that marks the transition from illumination to shadow can be
regarded as a function of only one dimensionless parameter, which can be taken
as the Fresnel number NF . Such conclusions are the same as those yielded by the
Fresnel–Kirchhoff approximation (see Sect. 5.2), so the claim that the latter can be
valid for small deflections is substantiated.

Although the above analysis presumes that |Δφ| is small, it does not require
Γ |Δφ| to be small; so the use of asymptotic expressions for f (X) and g(X) in the
derivation of Eq. (7) is not inconsistent. It would not be unreasonable, given that,
say, 2 dB accuracy is acceptable, to apply Eq. (7) for any point in the shadow zone
where |Δφ| is less than, say, 20◦ provided Γ |Δφ| exceeds 2.

Example (Barrier on Rigid Ground) An omnidirectional source resting on the
ground and generating 500-Hz sound is 15 m from a barrier 5 m high. A point
20 m farther on the opposite side of the barrier at 2 m height would receive a sound-
pressure level of 90 dB re 20 μPa without the barrier present. Estimate the level
when the barrier is present.

Solution There are two diffracted paths56 connecting the source, edge, and listener
(see Fig. 9.27), the second having an intermediate ground reflection between the

56A general analysis when neither source or listener is on the ground and when the ground has finite
impedance is given by H. G. Jonasson, “Sound reduction by barriers on the ground,” J. Sound Vib.
22:113–126 (1972).
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Fig. 9.27 Possible paths connecting source and listener and passing over a barrier on the ground;
the source is on the ground, and the listener is above the ground. Distances cited correspond to the
example discussed in the text

edge and listener. The two path lengths, L1 and L2, are [(15)2 + (5)2]1/2 +[(20)2 +
(3)2]1/2 = 36.04 m and [(15)2 + (5)2]1/2 + [(20)2 + (7)2]1/2 = 37.00m. The two
direct distances, R1 and R2, are both [(35)2 + (2)2]1/2 = 35.06m. Consequently,
with c taken as 340 m/s so that λ = 0.68m, the two Fresnel numbers are NF1 =
2.88 and NF2 = 5.71. The two waves arrive with amplitudes corresponding to
sound-pressure levels, from Eq. (7), of 90 − 10 log [(4π2)(2.88)] = 69.4dB and
90 − 10 log [(4π2)(5.71)] = 66.5dB. Their phase difference is (kL2 + π/4) −
(kL1 + π/4), according to Eq. (1) and to the asymptotic approximation 1/πX for
AD(X), or (2π/0.68)(0.96) = 8.87 rad (508 − 360 = 148◦). The sound-pressure
level corresponding to the algebraic sum of the two diffracted arrivals is therefore

Lp = 10 log |1069.4/20 + ei8.871066.5/20|2

= 10 log[1069.4/10 + 1066.5/10 + 2(1069.4/101066.5/10)1/2 cos 148◦]
= 64.1 dB (9.9.8)

If the ground on the listener side of the barrier were perfectly absorbing instead of
perfectly reflecting, Lp at the considered reception site would be 69.4 dB instead
(5.3 dB higher).

9.9.2 Far Field of a Source on the Side of a Building

The sound reaching a distant listener in front of a building (see Fig. 9.28) from a
source on the side is described by Eq. (9.8.10) with β = 3π/2, ν = 2/3, and
φS = β, as for a source on one side of a 90◦ (interior-angle) wedge. If the listener
is sufficiently distant and the ground is perfectly reflecting, the field is described
by twice that of Eq. (9.8.10). In the limit r � rS , the parameter Γ reduces to
(krS/π)

1/2, and L−1eikL approximates to r−1eikreikrS .
Another factor of 2 emerges because cos ν(φ ± β) = − cos νφ requires that

the two terms associated with φ + φS and φ − φS be the same in Eq. (9.8.10).
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Fig. 9.28 Geometry adopted for discussion of diffraction of sound around the corner of a building.
The source is on the ground adjacent to the building’s side; r is much larger than rS

In the direct-wave term (present only if φ > π/2), a factor of 2 is included
because the reflected wave coincides with it; another factor 2 accounts for ground
reflection. Also, since r � rS , the factor R−1eikR approximates to eikrSsinφr−1eikr .
Consequently, the far field becomes

p̂ = ŜF̂ (φ)
eikr

r
(9.9.9)

with

F̂ (φ) = 4eikrS sinφH
(
φ − π

2

)
− 61/2eiπ/4eikrSAD(X)

[1 − 1
2 cos(2φ/3)]1/2

(9.9.10)

X = 3

2

(
krS

π

)1/2 1
2 − cos(2φ/3)

[1 − 1
2 cos(2φ/3)]1/2

(9.9.11)

Our interest here is in values of φ between 0 and, say, 3π/4(135◦); the above
result neglects diffraction from all but one comer of the building, so it may not
be applicable near φ = 0 when r extends beyond the front of the building. Neither
may it be applicable near φ = 3π/2(270◦) when r extends behind the rear of the
building.

The description in Eq. (9) is that of the spherical spreading in the far field of a
directional sound source. Its form dispels any misconception that diffracted waves
always spread cylindrically (amplitude proportional to r−1/2), although such may
be a good approximation in the other limit when r 
 rS .

The quantity |F̂ (φ)|2 describes the source’s far-field radiation pattern. Its value
is 4 for φ = π/2 and, given krS moderately large compared with 1, it approaches 16
at larger φ − π/2. On the shadow side (φ < π/2), the asymptotic limit of AD(X)

yields for φ − π/2 negative and not small
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|F̂ (φ)|2 → 8/(3πkrS)

[cos (2φ/3) − 1
2 ]2

(9.9.12)

where the limiting expression is bounded from below by 32/(3 πkrS), occurring
when φ = 0. Thus the far-field intensity ultimately decreases with distance rS from
the comer as 1/krS for any fixed angle φ less than π/2.

Near φ = π/2, we can set sinφ ≈ 1 − (Δφ)2/2, 1 − 1
2 cos(2φ/3) ≈ 3

4 , and
cos(2φ/3) − 1

2 ≈ −Δφ/
√

3, where Δφ = φ − π/2, such that Eq. (10) yields for
the radiation pattern in the transition region

|F̂ (φ)|2 = 16

∣∣∣∣H(X̄) − eiπ/4

21/2 AD(X̄)ei(π/2)X̄2
∣∣∣∣
2

(9.9.13)

with

X̄ =
(
krS

π

)1/2

Δφ (9.9.14)

Thus the characteristic single-edge diffraction pattern, plotted in Fig. 5.13, emerges
once again.

9.9.3 Backscattering from an Edge

Anomalous echoes of higher-frequency sound can often be explained in terms of
diffraction by edges. The analysis in Sect. 9.8 applies both when the source is in
the interior of a wedge-shaped region and when it is exterior to a wedge-shaped
obstacle. In either case, the echo from the edge is predicted by Eq. (9.8.10) with
r = rS , z = zS , φ = φS , such that L = 2r and Γ = (kr/2π)1/2 = (r/λ)1/2. This
yields

p̂diffr = Ŝ
ei2kr

2r
eiπ/4

[
− cos

νπ

2
AD

((
2r

λ

)1/2

ν−1 sin
νπ

2

)

+ 2−1/2 sin νπ

(1 − cos νπ cos 2νφ)1/2
AD

(( r
λ

)1/2
Mν(2φ)

)]
(9.9.15)

for the backscattered echo.
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Among the particular cases for which the above result simplifies is that when
φ = 0 (or equivalently φ = β), which yields

p̂diffr = −Ŝ
ei2kr

r
eiπ/14 cos

νπ

2
AD

((
2r

λ

)1/2

ν−1 sin
νπ

2

)

≈ − Ŝ

β
cot

[νπ
2

](λ

2

)1/2
ei(2kr+π/4)

r3/2 (9.9.16)

The latter results when the asymptotic limit, 1/πX for AD(X), applies and is valid
for moderately large r/λ provided sin(νπ/2) is not inordinately small.

Insight into how “strong” such an echo would appear to be can be obtained by
comparing the above with the reflection from a wall making 90◦ with the surface
φ = 0, this wall being also at distance r . The latter would give an echo p̂refl =
2S(2r)−1ei2kr , where the extra factor of 2 is because the source rests on a rigid
surface. The relative weakness of the diffracted echo is accordingly

∣∣p̂diffr
∣∣∣∣p̂refl
∣∣ =

∣∣∣cot
νπ

2

∣∣∣ 1

β

(
λ

2r

)1/2

(9.9.17)

Thus for a source (see Fig. 9.29) on an interior surface of a 150◦ wedge (β =
5π/6, ν = 6

5 ), one obtains an amplitude ratio of |cot(3π/5)|(λ/2r)1/26/5π =
0.0878(λ/r)1/2.

Alternatively, one can characterize the edge-diffracted echo by how much farther
removed a perfectly reflecting surface that returns an echo of the same amplitude
would be. If the latter is at distance r∗, then r/r∗ = ∣∣p̂diffr

∣∣ / ∣∣p̂refl
∣∣. For example,

for the 150◦ wedge example mentioned above, the edge-diffracted wave from

Fig. 9.29 Echoes generated by a source on an interior surface of a 150◦ wedge. The diffracted
echoes radiate from the intersection of the two planes
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an edge 10 wavelengths away appears to come from a reflector at a distance of
(10)3/2λ/0.0878 = 360 wavelengths.

9.10 Problems

9.1 Derive formulas for the target strength of a fixed rigid sphere of radius a

appropriate to the limiting cases of (a) ka 
 1 and (b) ka � 1.
(c) What effect does a doubling of frequency have on target strength in

these two limits?
9.2 A harmonic plane wave impinges obliquely on a circular disk of radius a

centered at the origin. The disk’s faces are parallel to the xy plane, and the
incident wave has propagation direction nk = ex sin θk + ez cos θk .

(a) Determine an expression for the differential cross section of the disk in
the limit ka 
 1. Use the spherical coordinates θ and φ.

(b) What is the backscattering cross section for the disk under the same
circumstances?

(c) What is the target strength?
(d) Explain in simple terms whatever results when θk is set to π/2 in your

answers to parts (a) to (c).

9.3 Prove that the tensor Meff whose Cartesian elements are given by
Eq. (9.1.25b) is symmetric.

9.4 Derive the expression (9.1.41) for the scattering of sound by a Helmholtz
resonator in an open space when the incident sound’s frequency is close to
the resonance frequency.

9.5 A solid sphere of radius a and mass M can move back and forth along the z

axis about its equilibrium position at z = 0 under the influence of a spring
with spring constant ksp N/m. A plane wave of angular frequency ω and
acoustic-pressure amplitude P propagating in the +z direction impinges on
the sphere, causes it to vibrate, and gives rise to a scattered wave. Consider M
and ksp to be such that a resonance scattering occurs at an incident frequency
for which ka 
 1.

(a) At what ω does the resonance scattering occur?
(b) Show that the scattered wave is predominantly dipole.
(c) Give an expression for the scattered field at frequencies near the

resonance frequency.
(d) What is the total scattering cross section at the resonance frequency?
(e) How does the result in part (d) compare with the upper limit of λ2/π

that results (see Sect. 9.1) for monopole resonance scattering?

9.6 A fluid contains a large number of similar discrete scattering centers, each
of which is small compared with the average distance between scatterers.
Given that multiple scattering can be neglected and that the scatterers are
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randomly dispersed, give a heuristic argument or else refute the hypothesis
that when the scattering volume is sufficiently large, the scattering from
individual scatterers can be regarded as incoherent.

9.7 A narrow-beam but broadband sound wave whose pressure variation has
spectral density p2

f (f ) is incident on a bubble with radius a, resonance
frequency fres, and acoustic resistance RA.

(a) Estimate in the limit of small RA the total energy scattered per unit time
out of the incident beam by the bubble.

(b) Suppose that there are N bubbles per unit volume and that each such
bubble has a slightly different resonance frequency but the numbers
a, fres, RA are roughly representative of all the bubbles. Discuss how
the spectral density of the acoustic pressure decreases with increasing
propagation distance along the axis of the incident beam.

9.8 Sound is propagating along a rigid-walled narrow tube under circum-
stances for which the Webster horn equation (7.8.5a) is applicable. Consider
|(A′)2 → 2AA′′| to be much smaller than 4k2A2 and use the Born
approximation to predict the echo returned back to x = 0 when a narrow-
band pulse A1/2p = f (t − x/c) is propagating down the axis of the tube.
Discuss the feasibility of deriving the x dependence of the tube’s cross-
sectional area A(x) from the results of pulse-echo soundings.

9.9 A narrow-beam reciprocal transducer whose far field is as described by
Eq. (9.2.7) transmits a pulse of nearly constant frequency along the z axis.
The ambient medium is nearly homogeneous except for a weak planar
discontinuity at z = h, where ρ and c change by small increments δρ and
δc. The echo from this discontinuity is subsequently received by the same
transducer when it is in its reception mode.

(a) What is the apparent mean squared pressure received by the transducer
during the duration of the echo?

(b) What is the apparent backscattering cross-section?
(c) What is the apparent target strength?

9.10 Answer the questions in Problem 9.9 when the planar surface of discontinuity
is tilted so that its unit normal makes an angle φ with respect to the z axis.
The discontinuity plane continues to pass through the point (0, 0, h). Let the
beam pattern of the transducer be described by |F̂tr|2 = e−αθ2

, where α is
somewhat larger than 1, and discuss what variations result in the answers
when φ is small but nonzero.

9.11 The transmitter and receiver in a bistatic echo-sounding configuration both
have narrow beam patterns described by |F̂tr(θ, φ)|2 = e−αθ2

, where α

is substantially larger than 1. Both transmitter and receiver beams make a
45◦ angle with the ground and lie in a common vertical plane. The two
beams intersect at height L/2, where L is the transmitter–receiver separation
distance. Determine, to lowest nonvanishing order in 1/α and cτ/L, a simple
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expression (or a numerical value) for the aspect factor A that appears in
Eq. (9.2.29).

9.12 A moving sound source of nominal angular frequency ωo moves at speed
V = c/3 along the x axis past a listener at x = 0 and at cylindrical radial
distance r .

(a) Determine an expression for ω/ωo in terms of ct/r , where t = 0 is
the time the source passes the origin. Here ω is the angular frequency
perceived by the listener.

(b) Give a sketch of (ω − ωo)/ωo versus ct/r . Explain any asymmetries
between the +t and −t portions of the curve.

9.13 Two vehicles, one from the north and the other from the east, approach an
intersection in such a way that they are likely to collide at the origin at time
t = 0. Both vehicles have speed c/10. The southward-moving vehicle sounds
a warning device of frequency fo Hz. What is the frequency detected by
passengers in the westward-moving vehicle, and how does it vary with time?
Assume that the two vehicles barely miss each other at the intersection and
that the warning device continues to sound past the intersection.

9.14 A spherical inhomogeneity of mass m and radius a, where m is slightly larger
than the displaced fluid mass md , is drifting along with the flow at height h in
a medium where the ambient velocity varies with height z as vo = exV z/h.
A nearly sinusoidal pulse of angular frequency ωo is transmitted by a point
source resting on a rigid ground at the origin. The source has monopole
amplitude Ŝ, and the transmission pulse-excitation time is such that the pulse
impinges on the moving inhomogeneity when it is at x = L, y = 0, z = h.
Consider the sound speed c and ambient density ρ to be constant and L to
be substantially larger than h but less than (2ch2/V )1/2. Use geometrical
acoustics and the approximation in which ray paths resemble arcs of circles
to determine the incident wave impinging on the inhomogeneity and to
trace the evolution of the scattered pulse back to the transmitter (which also
functions as a receiver).

(a) What is the delay time (to first order in V/c) before reception of the
backscattered pulse?

(b) From what direction does the echo appear to come?
(c) What Doppler shift is evidenced by the echo’s frequency?
(d) What is the rms amplitude of the acoustic pressure in the echo pulse

returned to the transducer?

9.15 The incoming portion of the acoustic pressure in a conically converging
wave of wave number k has complex amplitude approximately described in
cylindrical coordinates by

p̂i ≈ K

w1/2 e
−ikw sin θ̄ eikz cos θ̄
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at larger kw, with specified constants K and θ̄ . Develop a theory analogous
to that given in Sect. 9.4 to explain (a) the amplitude of the resulting
overall disturbance near w = 0 and (b) the phase shift associated with ray
passage past the focus of a conically converging-diverging ray tube. [The
solution requires the use of a Bessel function and of its asymptotic limiting
expression. See, for example, J. N. Brune, J. E. Nafe, and L. E. Alsop, Bull.
Seismal. Soc. Am. 51:247–257 (1961).]

9.16 In an atmosphere whose temperature decreases with height near a rigid
ground (z = 0), the sound field near a point (0, 0, 0) on the inner border of
a zone of abnormal audibility (see Sect. 8.4) has the following ray structure.
Each ray is an arc of a circle of radius R and moves parallel to the xz plane,
bending upward with increasing x. A caustic surface described by the plane,
z = −(tanα)x, intersects the ground at the origin with a grazing angle α,
so that no rays pass through the region x < 0, z < −(tanα)x. Devise an
applicable expression for the complex acoustic-pressure amplitude along the
ground near x = 0. Choose the normalization to be such that p̂(0, 0, 0) is
P . Sketch |p̂/P |2 versus x/R for kR = 100 and α = 15◦. Here k is ω/c,
with ω equaling the angular frequency and c equaling the sound speed at the
ground.

9.17 (a) Derive the equation corresponding to (9.5.13) that gives the asymptotic
behavior of w1(τ − η) at large positive η.

(b) Show that the function Φ that represents the phase of eikoxeiξτ w1(τ −η),
with ξ = (koR/2)1/3x/R and η = (2k2

0R
2)1/3z/R, is an approximate

solution of the eikonal equation

(
∂�

∂x

)2

+
(
∂�

∂z

)2

= k2
o

(1 − z/R)2

when z 
 R and w1(τ − η) is replaced by the large η asymptotic limit.
(c) Verify that the corresponding ray paths are such that dx/dz > 0 and that

they are propagating obliquely upward when dx/dt is positive.

9.18 (a) Show that the acoustic energy shed per unit time and area by a creeping
wave propagating along a surface of finite impedance is approximately
given by either of the two expressions

(p2
cw)av,0

ρc

1

4π

(2/kR)1/3

|Ai(b1)|2 or ρc(v2
z,cw)av,0

1

4π

(kR/2)1/3

|Ai′(b1)|2

where (p2
cw)av,0 is the mean squared pressure of the creeping wave at

the surface and (v2
z,cw)av,0 is the corresponding normal component of

the fluid velocity. What expression and numerical coefficient would you
use for the limiting case of (b) a rigid surface and (c) a pressure-release
surface?
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9.19 A creeping wave propagating along a surface of finite impedance loses
energy because of ray shedding and because of absorption at the surface.
Show that the ratio of the absorption loss to the ray-shedding loss is

4πRe[Ai′(b1)Ai∗(b1)e
iπ/6].

What limiting expressions, proportional to Re(1/ZS) or ReZS , are applicable
when |ZS | is much greater or much less than ρckl?

9.20 Develop a heuristic argument supporting the conclusion that the energy per
unit surface area associated with a creeping wave is ėav/2αc. Here ėav is
the energy lost per unit time area and time due to ray shedding and surface
absorption and α is the exponential decay rate (nepers per meter) associated
with the creeping wave. Show that this result, in conjunction with that in
Problem 9.18, leads to l/3.2 for the approximate boundary-layer thickness
of a creeping wave propagating along a rigid surface.

9.21 A point harmonic source is adjacent (θ = 0) to a large (kR � 1) rigid sphere
of radius R in an otherwise unbounded homogeneous medium.

(a) Use the earth-flattening approximation and the results in Sect. 9.5 to
argue that the acoustic pressure near the sphere (but θ not near 0 or π )
has complex amplitude approximately given by

p̂ = ŜeikRθ

Rθ1/2(sin θ)1/2
V

(
Rθ

2kl2
, 0,

r − R

l
, 0

)
,

where l = (R/2k2)1/3.
(b) Show that the leading term in the residue series for V leads to a creeping-

wave description for the field.
(c) Why is the denominator factor θ1/2(sin θ)1/2 given above in (a) a better

choice than simply θ?
(d) Give a numerical value for Rp̂/Ŝ when kR = 100, r = R, and θ = π/2.

9.22 (a) For the circumstances described in Problem 9.21, show that the field
in the shadow zone at points near neither the sphere’s surface nor the
shadow-zone boundary is approximately

p̂ = Ŝe−iπ/12ei(ω/vph)RΔθ0e−αRΔθ0eiωτTR

[2krl2 sin θ ]1/2[cτTR/(2Rl)1/2]1/2[−a′
1Ai(a′

1)]
,

where Δθo and τTR refer to the path of least travel time that connects
source and reception point. The path follows the surface through angle
Δθo, then traverses a distance cτTR along a straight line that is tangential
to the sphere. Assume that αR is substantially larger than 1. Hint: Match
a geometrical acoustics field to the large (r − R)/l limit of the result
from Problem 9.21.
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(b) Show that the result in (a) reduces for r � kR2 and θ > π/2 to

p̂ → Ŝ
eikr

r

e−iπ/12ei(ω/vph)R(θ−π/2)e−αR(θ−π/2)

(2kl2 sin θ)1/2(2Rl)−1/4
[−a′

1 Ai(a′
1)
] ,

providing θ is not close to π . Sketch the resulting radiation pattern and
discuss its dependence on frequency.

9.23 Apply the concepts implied by the statements in Problem 9.15 to extend the
solution of part (b) of Problem 9.22 to points near and including those where
θ = π .

9.24 The principle of reciprocity can transform the results in Probs. 9.22 and 9.23
to the solution for the acoustic pressure on the shadow side of the surface of
a large rigid sphere when a plane wave is incident.

(a) Explain why this is so and summarize the desired solution.
(b) Interpret the solution from part (a) in terms of creeping waves.

9.25 The analogy between sound penetration into a shadow zone caused by
upward refraction of rays in a stratified medium and sound diffraction around
a curved surface is demonstrated by the following two exercises.

(a) Show that the function ξ−1/2V (ξ, ηo, η, q) in Eq. (9.5.17) is a solution
of the parabolic equation

(
∂2

∂η2 + η + i∂

∂ξ

)
ξ−1/2V = 0,

with the boundary condition

(
∂

∂η
+ q

)
ξ−1/2V = 0 at η = 0.

(b) Show that if a plane wave impinges at normal incidence (toward the
+x direction) on a very wide barrier with a cylindrical locally reacting
top, the acoustic-pressure amplitude near the barrier top is approximately
(ε 
 1)

p̂ = ei2ξ/ε
2
e−i(2/3)η3/2

F(ξ, η),

where F(ξ, η) satisfies the parabolic equation and ε = (2/kR)1/3. Here
R is the radius of the top and ξ and η are related to Cartesian coordinates
x and y (see the figure) by the transformation

x = Rεξ − 1
6Rε3(ξ3 − 3ξη + 2η3/2), y ≈ 1

2Rε2(ξ2 − η).
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Problem 9-25

The surface η = 0 corresponds to the barrier top. (See the paper by
V. A. Fock and L. A. Weinstein, reprinted in Fock, Electromagnetic
Diffraction and Propagation Problems, pp. 171–187.)

9.26 A point source is at distance R from an exterior comer (a point where three
edges meet) of a large rectangular rigid box. Given that P is the pressure
amplitude that would be measured at the same point if the box were not
present, what is the pressure amplitude at the corner?

9.27 The source and the listener are adjacent but on opposite sides (z = zS , r =
rS ,φ = 0, φS = β ) of a thin rigid screen (β = 2π ). Given that the source
has monopole amplitude Ŝ and that kr � 1, what is the acoustic-pressure
amplitude at the listener location?

9.28 Verify that the Sommerfeld solution (page 495n.) for plane-wave diffraction
by a thin screen (β = 2π) reduces to

p̂ = p̂inc

[
1 − 2(1 − i)

(
kr

π

)1/2

cos
φ

2
cos

φS

2

]
,

in the limit kr 
 1. Is this consistent with Eq. (9.7.12)? What does this
imply concerning the fluid velocity near the edge? Show that r1/2 cosφ/2 is
a solution of Laplace’s equation and discuss the significance of this fact.

9.29 A heuristic simplified method for prediction of barrier insertion loss pro-
posed by R. S. Redfearn, Phil. Mag. (7)30:223–236 (1940), leads to an
insertion loss that is a function of h/λ and φ when z = zS , where h and
φ are the quantities indicated in the figure.

(a) Show that such an assumption is consistent for small φ with the Fresnel
number approximation and that, in such a limit, NF is approximately
(h/λ)φ.
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Problem 9-29

(b) Show that an alternative substitution for the Fresnel number is
(h2/λ)(r−1 + r−1

S ) [Z. Maekawa, Appl. Acoust. 1:157–173 (1968)].

9.30 A square thin rigid plate occupies the region, −a < x < a, −a < y < a,
of the z = 0 plane. A harmonic point source of monopole amplitude Ŝ is
directly in front (z = 0+) of the plate’s center. Consider ka as large and
consider the field on the z > 0 side to be made up of a direct-plus-reflected
wave combination plus diffracted waves from each of the four plate edges.

(a) Determine an expression for the complex acoustic-pressure amplitude
along the +z axis.

(b) Describe the locations of any points along the axis where interference
from the diffracted waves may cause the acoustic pressure to be inordi-
nately small.

(c) Repeat part (a) for the −z axis.

9.31 A point source lies on the φS = β interior surface of a 120◦ wedge (γ =
3
2 ).

(a) Given that krS and kr are both large, express the bistatic reflected field
for points near the plane φ = 60◦ in terms of single-edge diffraction
formulas.

(b) What corresponds to a Fresnel number for the circumstances just
described?
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9.32 A square plate of dimensions a on a side is at sufficient distance R from an
acoustic transmitter to be regarded as being in the far field; ka, however, is
substantially larger than 1. Use edge-diffraction theory to estimate the target
strength of the plate when the incident propagation direction is normal to the
plate. Take the transmitter to be omnidirectional and reciprocal and take R to
be substantially larger than ka2.

9.33 The question of whether interior or exterior edges cause the stronger echoes
arises in the following example. The terrain is flat and coincides with the
z = 0 plane for x < 0. Between x = 0 and x = 40λ, the terrain slopes
upward, rising 3 units for every 4 horizontal units, to a height of 30λ. Beyond
x = 40λ, the terrain is once again level. The transitions from level to sloped
and from sloped to level at x = 0 and x = 40λ are abrupt in terms of a
wavelength λ. When an omnidirectional transducer at x = −110λ, y = 0,
z = 0 transmits a pulse of nearly constant frequency, it subsequently receives
two echoes. What is the ratio of the amplitude of the second echo to that of
the first echo?

9.34 A simple method for estimating diffraction around thick barriers (double-
edge diffraction) rests on the following heuristic concepts. When the direct
wave from the source strikes the nearest edge, it excites a diffracted wave that
travels along the barrier top to the farther edge; there the incident diffracted
wave gives rise to a second diffracted wave that travels to the listener on the
far side of the barrier. The propagation from source to edge, edge to edge,
and from edge to listener is in accord with geometrical-acoustic principles;
the generation of diffracted waves by an incident wave at an edge is predicted
with Eq. (9.8.16). Apply the method just described when source and listener
are on opposite sides of a long rigid rectangular three-sided barrier of width
10λ. A point source of monopole amplitude Ŝ is adjacent to one side at a
distance 10λ from the top and the listener is adjacent to the opposite side
(z = zS), also at a distance 10λ from the top. What is the complex pressure
amplitude at the listener location?



Chapter 10
Effects of Viscosity and Other Dissipative
Processes

Phenomena that cannot be explained within the strict confines of the ideal fluid-
dynamic equations include attenuation of sound, radiation caused by flow past
obstacles, wave structure near a shock front, acoustic streaming, and finite ampli-
tudes of resonating systems. Pertinent physical processes are not necessarily the
same for each phenomenon, but the processes commonly entering into consideration
involve viscosity, thermal conduction, or relaxation. We here first consider viscosity
and thermal conductivity and show how the fluid-dynamic equations are modified
when these processes are taken into account. Subsequent sections explore the basic
acoustical implications of the resulting equations. Relaxation processes occupy our
attention in the final portions of the chapter.

10.1 The Navier–Stokes–Fourier Model

10.1.1 The Stress Tensor

To include viscosity in the basic fluid-dynamic equations, one must first abandon
the assumption that the force exerted per unit area by adjacent fluid particles on
the surface enclosing a given fluid particle is normal to the surface. Consideration
of phenomena involving viscosity, e.g., the drag on a solid body when fluid is
flowing past it, requires that this force f S(n, x) per unit area also have a tangential
component (see Fig. 10.1). The assumption is made, however, that the molecular
interactions between adjacent fluid particles are of such short range that f S(n, x)

is independent of the detailed shape and volume of the fluid particle considered,
so that it depends only on the point x on the surface at which it is applied, on the
outward normal n of the surface at x, and on time t .

Newton’s third law applied to neighboring fluid particles requires that
f S(−n, x) = −f S(n, x). Furthermore, the requirement that the net force on
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Fig. 10.1 Surface force on an area element of an internal surface in a viscous fluid

a tetrahedron-shaped fluid particle divided by the mass of that particle be finite in
the limit as the volume becomes zero leads to the relation1

f S(n, x) = (n ·ex)f S(ex, x)+ (n ·ey)f S(ey, x)+ (n ·ez)f S(ez, x), (10.1.1)

where ex, ey, ez are unit vectors in the x, y, z (or x1, x2, x3) directions. The
three Cartesian components of this vector equation take the form (Cauchy’s stress
relation)

1G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967, pp. 1–
10; Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1965, pp.
62–65. The proof is due to A.-L. Cauchy.
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ei ·f S(n, x) =
3∑

j=1

σij (x)nj , i = 1, 2, 3, (10.1.2)

where

σij (x) = ei ·f S(ej , x), i, j = 1, 2, 3 (10.1.3)

represents the ith component of the force exerted per unit area at a point x on the
surface of a fluid particle where the outward normal is in direction ej .

The nine quantities σij (x) constitute the components of the stress tensor; the off-
diagonal elements are the shear stresses. If the components are known for any one
given Cartesian coordinate system, the components appropriate to any other choice
of axes can be derived from Eqs. (2) and from the geometrical properties of vectors.
The stress tensor must be symmetric, σij (x) = σji(x), because the net torque about
the center of any fluid particle corresponds to a finite angular acceleration, even in
the limit when the particle size becomes vanishingly small.

The expression (2) for the Cartesian components of f S(n, x) allows the net
surface force on a given fluid particle to be written as

3∑
i=1

3∑
j=1

ei

∫ ∫
[σij (x)ej ] ·ndS =

∑
ij

ei

∫ ∫ ∫
∇ · (σijej )dV,

where the latter integral is over the volume of the particle. Consequently, the steps
in Sect. 1.3, which led there to Euler’s equation, lead here instead to the Cauchy
equation of motion

ρ
Dv

Dt
=
∑
ij

ei
∂σij

∂xj
. (10.1.4)

Without any additional assumptions concerning the stress tensor, this holds equally
well for solids and fluids.

10.1.2 The Energy Equation

A basic law of mechanics2 is that the net rate of change of energy within a moving
fluid particle (occupying time-dependent volume V ∗) must be equal to the rate at

2For an extensive discussion and references, see Y. Elkana, The Discovery of the Conservation of
Energy, Harvard University Press, Cambridge, Mass., 1974.
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which work is done on it by the surface forces plus the net rate at which heat energy
is flowing into it. Thus we write

d

dt

∫ ∫ ∫
V ∗

( 1
2ρv

2 + ρu)dV =
∫ ∫

S∗
f S · vdS −

∫ ∫
S∗

q ·ndS, (10.1.5)

where u is the internal energy per unit mass within the particle and q is the heat-flux
vector, defined so that −q ·n is heat flowing per unit area into the volume at a point
on the surface where the outward unit normal is n. The left side of this can be argued,
in a manner similar to that in which Eq. (1.3.5) was derived, to be equivalent to the
volume integral of ρ(D/Dt)( 1

2v
2 + u). Also, with the components of f S , given by

Eq. (2), one has f S · v = �(σij viej ) · n, so Gauss’s theorem transforms both of
the surface integrals in (5) into volume integrals. The result applies for an arbitrary
volume, and thus the equation holds for the integrands themselves; so we obtain the
Fourier– Kirchhoff–Neumann energy equation3

ρ
D

Dt
( 1

2v
2 + u) =

∑
ij

∂

∂xj
σij vi − ∇ · q. (10.1.6)

A simplification in the above results if one subtracts from it the dot product of v

with the momentum equation, this product being

ρv · Dv

Dt
= ρ

D

Dt
( 1

2v
2) =

∑
ij

vi
∂σij

∂xj
=
∑
ij

∂

∂xj
viσij −

∑
ij

σij
∂vi

∂xj
. (10.1.7)

Thus, with the subtraction, one has

ρ
Du

Dt
=
∑
ij

σij
∂vi

∂xj
− ∇ · q, (10.1.8)

which replaces the ideal-fluid relation Ds/Dt = 0.

10.1.3 Constitutive Relations for a Fluid

Relations between the σij , q, and other variables describing the dynamical and
thermodynamical state of the fluid are called constitutive equations. The Navier–
Stokes model adopted here is a generalization of the observation that, for common

3The name is suggested by C. Truesdell, Continuum Mechanics, vol. I, The Mechanical Founda-
tions of Elasticity and Fluid Mechanics, Gordon and Breach, New York, 1966, p. 40.
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types of fluids (newtonian4 fluids), the shear stress is proportional to the rate of
shear. For a steady unidirectional flow in which v has only an x component vx(y),
the stress component σxy is found for such a fluid to equal μ∂vx/∂y, where the
viscosity μ is independent of vx and of its spatial variation.

The generalization of the newtonian constitutive relation to an arbitrary state of
motion is that any shear-stress component (i �= j) must be a linear combination
of the spatial derivatives ∂vi/∂xj and that the shear stresses vanish when all the
∂vi/∂xj are zero. Furthermore, the relation between the σij and the ∂vi/∂xj must
be independent of the choice of coordinate system. To determine such a relation,
it is expedient to first define σn as the average normal component (one-third of
the trace) of the stress tensor. Then the tensor with components σij − σnδij is a
symmetric tensor with zero trace. The only way this can be linearly related to the
∂vi/∂xj in a form independent of choice of coordinate system is for its components
to be linear combinations5 of the components of whatever tensors can be formed
from the ∂vi/∂xj that are also symmetric and also have zero trace. Apart from a
multiplicative constant, there is only one such tensor, so

σij − σnδij = μφij , (10.1.9)

φij = ∂vi

∂xj
+ ∂vj

∂xi
− 2

3∇ · vδij . (10.1.10)

The components φij of the rate-of-shear tensor have the desired properties because
φij = φji and �φii = 0. That the proportionality factor is the viscosity μ follows
from the requirement that (9) must imply σxy = μ∂vx/∂y when v = exvx(y).

In regard to the first term on the right side of the energy equation (8), Eqs. (9)
and (10) lead to

∑
ij

σij
∂vi

∂xj
= −σn

ρ

Dρ

Dt
+ μ

2

∑
ij

φ2
ij , (10.1.11)

because �φii = 0 and because the mass-conservation equation (1.2.4) implies ∇ ·
v = −ρ−1Dρ/Dt . Thus (8) becomes

ρ

(
Du

Dt
− σn

Dρ−1

Dt

)
= μ

2

∑
ij

φ2
ij − ∇ · q. (10.1.12)

4The term derives from a statement in F. Cajori, Newton’s Principia: Motte’s Translation Revised,
University of California, Berkeley, 1947, p. 385: “The resistance arising from the want of lubricity
in the parts of a fluid, is, other things being equal, proportional to the velocity with which the parts
of the fluid are separated from one another.”
5A proof along such lines follows from the analysis of M. Reiner, “A mathematical theory of
dilatancy,” Am. J. Math. 67:350–362 (1945). See, for example, C.-S. Yih, Fluid Mechanics,
McGraw-Hill, New York, 1969, pp. 26–32. The original derivation of Eq. (9) from continuum-
mechanical principles is due to G. G. Stokes, “On the theories of the internal friction of fluids in
motion, and of the equilibrium and motion of elastic solids,” Trans. Camb. Phil. Soc. 8:75–102
(1845).
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For quasi-static processes (disturbances of low frequency and with little spatial
variation), the fluid may be regarded as being in local thermodynamic equilibrium.
In this limit, particular values of internal energy u per unit mass and specific (per
unit mass) volume 1/ρ correspond to an entropy s(u, 1/ρ) per unit mass whose
differential ds is (1/T )du + (p/T )d(1/ρ), where p and T are the pressure and
temperature corresponding to the equilibrium state associated with the values of u
and 1/ρ. In the equilibrium state, σn must also be taken as −p. Also, for near-
equilibrium states, one expects that q should be proportional to ∇T but oppositely
directed to ∇T because heat flows from high temperature to low temperature, so
one would adopt Fourier’s law,6 q = −κ∇T , where κ is the coefficient of thermal
conductivity (referred to for brevity as the thermal conductivity).

Within the context of the above discussion, the simplest assumptions7 concerning
σn and q are that σn = −p and q = −κ∇T , where p and T have the same relation
to u and 1/ρ as for a fluid in equilibrium. Also, since the equation of state s =
s(u, 1/ρ) should be independent of time for any fluid particle, one has

T
Ds

Dt
= Du

Dt
+ p

D

Dt

1

ρ
. (10.1.13)

The right side here, with σn = −p, is the quantity in parentheses in Eq. (12).
The assumptions just stated allow us to write (8) as the Navier–Stokes equation8

ρ
Dv

Dt
= −∇p +

∑
ij

ei
∂

∂xj

(
μφij

)
, (10.1.14)

and to write (12) as the Kirchhoff–Fourier equation9

ρT
Ds

Dt
= μ

2

∑
ij

φ2
ij + ∇ · (κ∇T ), (10.1.15)

where it is understood that the relations between s, ρ, T , and p are the same as for
the fluid in equilibrium. Those thermodynamic relations, plus the mass-conservation
relation (1.2.4), along with the two equations above and with some specification

6J. Fourier, The Analytical Theory of Heat, 1822, trans. by A. Freeman, 1878; reprinted by Dover,
New York, 1955, p. 52.
7Stokes’ original derivation gave (in the notation of the present text) σn = −p+μB∇·v, where μB

is the bulk viscosity. The modification to the fluid-dynamic equations caused by the bulk viscosity
is discussed in Sect. 10.7; here we proceed as if it were zero.
8The origins of this appear in nineteenth-century works by Navier (1822), Poisson (1829), Saint-
Venant (1843), and Stokes (1845), the last work being of greatest influence on the subsequent
development of fluid mechanics. For the original references, see Yih, Fluid Mechanics, pp. 58–59.
9The terminology is somewhat inaccurate since neither Kirchhoff nor Fourier used the concept of
entropy in their relevant publications, but it is convenient to refer to Eq. (15) and to the overall
model by brief names.
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for κ and μ, constitute what we here call the Navier–Stokes–Fourier model of a
compressible fluid. The model’s chief limitation from the standpoint of acoustics, as
discussed in Sects. 10.7 and 10.8, is that it often fails to explain the actual values
and the frequency dependence of sound attenuation in extended regions remote
from solid boundaries. In other instances, however, it is adequate for understanding
phenomena not explicable with the ideal fluid-dynamic equations.

10.1.4 Values of Viscosity and Thermal Conductivity

For gases, μ and κ are functions of temperature T only. For air, in particular, the
data and detailed calculations based on the molecular structure of its constituents
and on kinetic theory are consistent with the semiempirical formulas10

μ

μo

=
(
T

To

)3/2
To + TS

T + TS

, (10.1.16a)

κ

κo
=
(
T

To

)3/2
To + TAe

−TB/To

T + TAe−TB/T
, (10.1.16b)

where μo and κo correspond to temperature To. If these formulas hold for any given
choice of To, they also hold for any other choice of To. The constants TS , TA, and
TB are TS = 110.4 K, TA = 245.4 K, and TB = 27.6 K. If To is 300 K (27 ◦C), then
μo = 1.846 × 10−5 kg/(m · s) and κo = 2.624 × 10−2 W/(m · K).

10.1.5 Transport Properties of Water

Typical values for the viscosity and thermal conductivity11 of water are μ = 1.002×
10−3 kg/(m·s) and κ = 0.597 W/(m·K) for distilled water at 20 ◦C and atmospheric
pressure. Since the corresponding values for seawater are μ = 1.081×10−3 kg/(m ·
s) and κ = 0.574 W/(m · K), salinity effects are minor, less than 8 or 4% for μ or
κ . The variation due to pressure changes at fixed temperature is less than 5% up to
pressures of the order of 10,000 atm (109 Pa) in the case of μ, and it is expected
that the pressure dependence of κ is also weak. Thus, one may regard μ and κ as
functions only of temperature for most purposes.

10J. Hilsenrath et al., Tables of Thermodynamic and Transport Properties of Air, etc., Pergamon
Press, Oxford, 1960, pp. 7, 10, 11, 26, 57–62. Equation (16a) is due to W. Sutherland, ‘The
viscosity of gases and molecular force,” Phil. Mag. (5)36:507–531 (1893).
11The values cited are extracted from the Handbook of Chemistry and Physics, 49th ed., Chemical
Rubber, Cleveland, 1968, and from R. A. Horne, Marine Chemistry, Wiley-Interscience, New York,
1969.
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The viscosity of pure water decreases with temperature (the opposite from that
of air) from 1.787 × 10−3 at 0 ◦C to 0.2818 × 10−3 at 100 ◦C. An approximate
expression (accurate to 1% between 10 and 30 ◦C) for the dependence near 20 ◦C is

μ = 1.002 × 10−3e−0.0248ΔT , (10.1.17a)

where ΔT is the difference between the temperature and 20 ◦C. The temperature
dependence of κ is relatively weak; an approximate fit to the data near 20 ◦C is

κ = 0.597 + 0.0017ΔT − 7.5 × 10−6(ΔT )2. (10.1.17b)

A dimensionless quantity characterizing the relative magnitudes of μ and κ is the
Prandtl number, Pr = μcp/κ , where cp is the specific heat at constant pressure. For
gases, an approximate kinetic-theory analysis12 suggests that Pr is 4γ /(9γ − 5),
where γ is the specific-heat ratio. For a diatomic gas (γ = 1.4), this gives Pr =
0.737, and for air this value is not markedly different over the temperature range of
normal interest from what would be computed from the actual values of μ, cp, and
κ . [With cp = γR/(γ − 1), R = 287, γ = 1.4 (see Sect. 1.9), and with μ and κ as
given by Eqs. (16), one finds Pr at 300 K is 0.707.]

For water, the temperature dependence of the Prandtl number is roughly the
same as that of the viscosity. The value at 20 ◦C for Pr is 7.0, about 10 times the
corresponding value for air.

10.2 Linear Acoustic Equations and Energy Dissipation

Linear acoustic equations governing small-amplitude disturbances result from the
discard of terms of second order in the deviations of p, ρ, v, T , s from their
ambient values po, ρo, vo, To, so. For simplicity, we here regard the ambient state
as homogeneous and quiescent, such that vo = 0 and po, ρo, To, and so are
independent of position and time.

10.2.1 Linear Acoustic Equations

The deviations p′, ρ′, T ′, s′ are related by the thermodynamic equations of state,
ρ = ρ(p, s) and T = T (p, s), whose linearized versions give ρ′ and T ′ as
linear combinations of p′ and s′. With the thermodynamic identities (∂ρ/∂s)p =

12A. Eucken, “On the thermal conductivity, the specific heat, and the internal friction of gases,”
Phys. Z. 14:324–332 (1913). For a commentary and suggested replacements, see S. Chapman
and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University
Press, Cambridge, 1939, 1952, p. 237; M. J. Lighthill, “Viscosity effects in sound waves of
finite amplitude,” in G. K. Batchelor and R. M. Davies (eds.), Surveys in Mechanics, Cambridge
University Press, London, 1956, pp. 250–351, especially p. 259.



10.2 Linear Acoustic Equations and Energy Dissipation 591

−ρβT/cp and (∂T /∂p)S = Tβ/ρcp, the coefficients can be expressed in terms
of cp = T (∂s/∂T )p, c2 = (∂p/∂ρ)S , and β = ρ[∂(1/ρ)/∂T ]p (representing the
specific heat at constant pressure, the sound speed squared, and the coefficient of
thermal expansion). One has, in particular,

ρ′ = 1

c2 p −
(
ρβT

cp

)
0
s, (10.2.1a)

T ′ =
(

Tβ

ρcp

)
o

p +
(
T

cp

)
o

s, (10.2.1b)

where, for convenience in subsequent writing, the primes on p′ and s′ have been
omitted and the coefficients are understood to be evaluated at the ambient state.
(For an ideal gas, p = ρRT implies β = 1/T , so βT can be replaced by 1 in the
above.)

The remaining linear equations for the model come from the conservation-of-
mass relation (1.2.4), the Navier–Stokes equation (10.1.14), and the Kirchhoff–
Fourier equation (10.1.15). The quantities φij and ∇T are automatically first order,
so μ and κ need only be taken to zero order and are constants for any given choice
of ambient state. Thus, the linear equations reduce to

∂ρ′

∂t
+ ρo∇ · v = 0, (10.2.2a)

ρo
∂v

∂t
= −∇p +

∑
ij

μei
∂φij

∂xj
, (10.2.2b)

ρoTo
∂s

∂t
= κ∇2T ′, (10.2.2c)

where we adhere to our previous convention of omitting unnecessary primes.
Alternatively, with the definition (10.1.10) for the components of the rate-of-shear
tensor, Eq. (2b) can be written as

ρo
∂v

∂t
= −∇p + μ[∇2v + 1

3∇(∇ · v)]. (10.2.2b’)

For a given ambient state, the coefficients 1/c2, (ρβT /cp)o, ρo, κ , etc., in Eqs. (1)
and (2) can be regarded as numerical constants.

10.2.2 The Energy Conservation-Dissipation Corollary

We here examine the changes the model described by Eqs. (1) and (2) above
necessitates in the acoustic energy-conservation law (1.11.2). Taking the dot product
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of Eq. (2b) with v and adding to it p/ρo times (2a) and T ′/To times (2c) yields

∂

∂t
( 1

2ρov
2) + p

ρo

∂ρ′

∂t
+ ρoT

′ ∂s
∂t

= −∇ · (pv) + μ
∑
ij

∂

∂xj
viφij − μ

∑
ij

φij

∂vi

∂xj

+ κ

To
∇ · (T ′∇T ′) − κ

To
(∇T ′)2. (10.2.3)

The sum of the second and third terms on the left side reduces, because of Eqs. (1),
to

p

ρo

∂ρ′

∂t
+ ρoT

′ ∂s
∂t

= ∂

∂t

[
1

2

p2

ρoc2
+ 1

2

(
ρT

cp

)
o

s2
]

Also, as in the derivation of Eq. (10.1.11), we can replace the sum over i and j of
φij ∂vi/∂xj by a similar sum over 1

2φ
2
ij .

The substitutions just described reduce Eq. (3) to

∂w

∂t
+ ∇ · I = −D (10.2.4)

where

w = 1
2ρov

2 + 1

2

p2

ρoc2 + 1

2

(
ρT

cp

)
o

s2, (10.2.5a)

I = pv − μ
∑
ij

ej viφij − κ

To
T ′∇T ′, (10.2.5b)

D = 1
2μ
∑
ij

φ2
ij + κ

To
(∇T ′)2, (10.2.5c)

These equations should be compared with the analogous acoustic-energy-
conservation theorem in Sect. 1.11 that results when viscosity and thermal
conduction are neglected.

The energy interpretation of Eq. (4) is most apparent when both sides are
integrated over some fixed control volume, so that an application of Gauss’s theorem
yields

d

dt

∫ ∫ ∫
wdV +

∫ ∫
I ·ndS = −

∫ ∫ ∫
DdV (10.2.6)

Here the first term on the left is the time rate of change of disturbance energy in
the control volume; the second term is the net rate at which such energy is flowing
out through the control volume’s surface. Therefore the nonzero term on the right
(with the indicated minus sign) must be the negative of the rate at which energy is
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“unaccountably” being lost. Since what is lost in this context is said to be dissipated,
D is the energy dissipated13 per unit volume and time. The two terms in expression
(5c) for D are the rates of energy dissipation per unit volume caused by viscosity
and thermal conduction, respectively. Their nonnegative values are in accord with
the expectation that the net energy associated with any disturbance must always
decrease after the cessation of the source excitation.

Our expression for the disturbance energy w per unit volume in Eq. (5a) includes
an additional term proportional to the square of the entropy deviation s. For
disturbances normally classified as sound, this term is negligibly small compared
with the other two, but there are other types of disturbances characterized primarily
by heat conduction for which this term dominates. As regards the energy-flux vector
I , the dot product of the second term in (5b) with n is the power transmitted per
unit area by viscous stresses across a surface with unit normal n; its contribution
to the surface integral in (6) is the work done per unit time and surface area by the
viscous stresses on the environment external to the control volume. The first two
terms in (5b) combine to give [in accord with Eq. (10.1.9)] −�σ ′

ij viej , where σ ′
ij is

the deviation of the corresponding stress tensor component from its ambient value
−poδij . The net contribution of these terms to I ·n is accordingly −f ′

S
(n, x, t) ·v,

where −f ′
S

is the deviation of the force per unit area exerted by the control volume
on its external environment. The third term in (5b) represents the flux of disturbance
energy associated with heat conduction, but because of the factor T ′/To, it cannot
be interpreted literally as heat energy flowing per unit area and time.

10.2.3 Attenuation of Plane Sound Waves

A simple application of the energy conservation-dissipation theorem is the calcula-
tion of the attenuation of a plane wave propagating in the +x1 direction (specified by
unit vector e1 = ex) through a medium with small μ and κ . The relations between
the acoustic pressure p, fluid velocity v, temperature deviation T ′, and their spatial
dependences are then nearly the same over any local region as predicted by the
idealized model discussed in Chap. 1. Thus v ≈ e1p/ρoc and T ′ ≈ (Tβ/ρcp)0p.
Also, since the dependence of these on t and x is approximately such that they vary
only with t − x1/c, one has [with ∇f (t − x1/c) = −(e1/c)∂f/∂t]

∇T ′ ≈
(

Tβ

ρcp

)
o

(−e1

c

)
∂p

∂t
, (10.2.7a)

13Alternatively, D may be regarded as To times the rate per unit volume at which entropy is
being irreversibly generated by the disturbance. See, for example, R. C. Tolman and P. C. Fine,
“On the irreversible production of entropy,” Rev. Mod. Phys. 20:51–77 (1948); C. Eckart, “The
thermodynamics of irreversible processes,” Phys. Rev. 58:267–269 (1940).
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∇ · v = ∂v1

∂x1
≈ − 1

ρoc2

∂p

∂t
, (10.2.7b)

φ11 = 4

3

∂v1

∂x1
, φ22 = φ33 = −2

3

∂v1

∂x1
, (10.2.7c)

so [with the thermodynamic identity γ − 1 = Tβ2c2/cp from Eq. (1.9.9)]

(∇T ′)2 ≈
(

T

ρ2cpc4

)
o

(γ − 1)

(
∂p

∂t

)2

, (10.2.8)

∑
ij

φ2
ij ≈ 8

3

(∂p/∂t)2

(ρoc2)2 . (10.2.9)

Thus the dissipation, Eq. (5c), per unit volume and time is approximately

D ≈
[

4
3μ + (γ − 1)κ

cp

]
(∂p/∂t)2

(ρoc2)2 , (10.2.10)

For a plane wave of constant angular frequency ω, in the absence of viscosity and
thermal conductivity, the time average of (∂p/∂t)2 is ω2(p2)av or ω2ρocIav, where
Iav is the intensity in the direction of propagation. Consequently, to lowest nonzero
order in κ and μ, Eq. (10) implies

Dav ≈ 2αclIav, (10.2.11)

where we use the abbreviations14 (cl for classical)

αcl = ω2δcl

c3
, δcl = μ

2ρo

(
4

3
+ γ − 1

Pr

)
, (10.2.12)

and Pr is the Prandtl number μcp/κ .
Since the time average of the energy conservation-dissipation theorem, Eq. (4),

requires, for plane waves propagating in the x direction, that dIav/dx = −Dav, the
approximation (11) yields

Iav = Iav,0e
−2αclx, |p̂| = |p̂|x=0e

−αclx. (10.2.13)

14The original derivations of αcl proceeded along lines analogous to those described below in
the derivations of Eq. (10.3.6) and (10.8.10). The result without thermal conductivity is due to
Stokes, “On the Theories of the Internal Friction.” The inclusion of thermal conduction was carried
through for an ideal gas by G. Kirchhoff, “On the influence of heat conduction in a gas on sound
propagation,” Ann. Phys. Chem. (5)134:177–193 (1868). The generalization to other classes of
fluids is due to P. Langevin, whose work was reported by P. Biquard, “On the absorption of
ultrasonic waves by liquids,” Ann. Phys. (11)6:195–304 (1936).
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The second version follows because Iav is proportional to the square of any field
amplitude associated with the disturbance. Thus αcl gives the attenuation of the
disturbance in nepers per meter as predicted by the Navier–Stokes–Fourier model
to lowest order in μ and κ .

Except for a monatomic gas,15 the classical attenuation coefficient αcl is
generally not in accord with experiment and gives an underestimate. Extended
models that remove such discrepancies are discussed in Sect. 10.7; however, the
Navier–Stokes–Fourier model is often sufficient when the bulk of the disturbance
energy is being dissipated within a wavelength or less from a solid surface.

10.3 Vorticity, Entropy, and Acoustic Modes

At frequencies of normal interest, any disturbance governed by the linear equations
derived in the previous section can be considered as a superposition of vorticity,
entropy, and acoustic modal wave fields.16 The individual modal fields satisfy
equations considerably simpler than those for the disturbance as a whole and
are uncoupled in the linear approximation except at boundaries. To show such
a decomposition is possible and to arrive at the appropriate equations for the
component fields, we begin with an analysis of plane-wave disturbances.

10.3.1 Dispersion Relations for the Component Modes17

A plane-wave disturbance of angular frequency ω in a homogeneous time-
independent medium is one for which each field quantity (ψn denoting one of
these) varies with t and x as

ψn(x, t) = Re
{
ψ̂ne

−iωt eik·x} . (10.3.1)

15M. Greenspan, “Propagation of sound in rarefied helium,” J. Acoust. Soc. Am. 22:568–571
(1951); “Propagation of sound in five monatomic gases,” ibid. 28:644–648 (1956). Greenspan’s
data show that the so-called classical theory is valid if ρoc2/ωμγ is greater than 10.
16Although this point of view was implicit in Kirchhoff’s (1868) solution for sound attenuation
in a circular tube, its modern origins began with L. Cremer, “On the acoustic boundary layer
outside a rigid Wwll,” Arch. Elektr. Uebertrag. 2:136–139 (1948); P. A. Lagerstrom, J. D. Cole,
and L. Trilling, “Problems in the theory of the viscous compressible Fluids,” Calif. Inst. Technol.
Guggenheim Aeronaut. Lab. Rep. Off. Nav. Res., 1949 (reprinted 1950); and L. S. G. Kovasznay,
“Turbulence in supersonic flow,” J. Aeronaut. Sci. 20:657–674, 682 (1953).
17The discussion here is comparable to that developed by E. O. Astrom (1950) and others for
electromagnetic disturbances in an ionized gas with an impressed ambient magnetic field. See, for
example, T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York, 1962, pp. 11–13.
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where the wave-number vector k is the same for each field quantity. The number ψ̂n

is independent of x and t and is in general complex, as are the components of k.
For an isotropic medium, where there is no preferred direction in space (as for the
model in the previous section but not when gravity is taken into account), any set of
values (kx, ky, kz) yielding an appropriate k2 = k2

x + k2
y + k2

z is possible. However,

there are only a small number of k2 for a given ω for which a nontrivial solution (at
least one ψ̂n not zero) exists. (In the present case, there are three such values.) The
resulting relations between k2 and ω are the dispersion relations for the possible
modes of propagation.

Given that k2 has one of the allowed values, there is at least one set of ψ̂n’s for
which the governing equations are satisfied by the substitution (1). The equations
do, however, impose linear relations (generically called polarization relations18)
between the members of the set. A procedure for finding the possible k2’s and the
corresponding polarization relations begins with a formal substitution of expressions
like (1) into the governing linear partial-differential equations; all the requisite
differentiations are then carried out, and each such equation is written in the form

Re
{
(something)e−iωt eik·x} = 0.

One subsequently argues that this will be true in general only if the “something” is
zero. This leads to the prescription that all such amplitude equations emerge from
the original partial-differential equations with the replacement of ∂/∂x by ikx , ∂/∂y
by iky , ∂/∂z by ikz, ∂/∂t by −iω, and ψn by ψ̂n. In this manner, Eqs. (10.2.2) are
replaced by

ω

(
p̂

c2
− ρβT

cp
ŝ

)
− ρk · v̂ = 0, (10.3.2a)

−iωρv̂ = −ikp̂ − μ(k2v̂ + 1
3kk · v̂), (10.3.2b)

iωŝ = κ

ρcp
k2
(
ŝ + β

ρ
p̂

)
. (10.3.2c)

In writing these, we have also used Eqs. (10.2.1) to replace ρ̂′ and T̂ ′ by the
corresponding expressions in terms of p̂ and ŝ. (Here and in what follows the
subscript 0 is omitted on symbols for ambient quantities whenever the risk of
misinterpretation is small.)

Taking the cross product and dot products, respectively, of k with Eq. (2b) yields

(−iωρ + μk2)(k × v̂) = 0, (10.3.3a)

(ωρ + i 4
3μk

2)k · v̂ = k2p̂. (10.3.3b)

18C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights,” Can. J. Phys. 38:1441–
1481 (1960).
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The first of these allows two possibilities: k × v̂ = 0 or k2 = iωρ/μ. The first
possibility requires v̂ be parallel to k. The second possibility, with k2 replaced by
iωρ/μ in Eqs. (3b), (2a), and (2c), requires zero values for k ·v̂, p̂, and ŝ (providing
ω �= 0). In particular, k and v̂ must be perpendicular. This gives us one possible
plane-wave mode for the fluid: k × v̂ �= 0, k · v̂ = 0, the remaining field quantities,
p, ρ′, T ′, and s, all zero; k2 is iωρ/μ.

Returning to the first possibility (k × v̂ = 0), we simplify our algebra if we
abbreviate

X = c2k2

ω2
, εμ = i

4

3

μω

ρc2
, (10.3.4a)

εκ = iκω

ρc2cp
. (10.3.4b)

Equations (2c) and (3b), with k · v̂ taken from (2a), represent two simultaneous
linear equations for ŝ and p̂, which can be written, with the definitions (4) and with
the thermodynamic identity γ − 1 = β2T c2/cp [see Eq. (1.9.9)], as

[
1 + εκX εκX

−(γ − 1)(1 + εμX) 1 + εμX − X

] [
ŝ

βp̂/ρ

]
=
[

0
0

]
. (10.3.5)

A nontrivial solution of Eq. (5) exists only if the determinant of coefficients van-
ishes, yielding the following quadratic equation19 (Kirchhoff’s dispersion relation):

(−εκ + γ εμεκ)X
2 + (εμ + γ εκ − 1)X + 1 = 0. (10.3.6)

The radical resulting from the exact solution of this is awkward to handle when one
considers generalizations to phenomena not describable as plane waves of constant
frequency. However, for all conceivable cases of interest, both |εμ| and |εκ | are
much less than 1, so the roots can be expressed as truncated power series in εμ and
εκ , causing the following approximate dispersion and polarization relations to result
from Eqs. (5) and (6):

X ≈ 1 + εμ + (γ − 1)εκ , ŝ ≈ −εκβp̂

ρ
, (10.3.7a)

X ≈ − 1

εκ
+ (γ − 1)

(
1 − εμ

εκ

)
,

βp̂

ρ
≈ (γ − 1)(εκ − εμ)ŝ. (10.3.7b)

19Given first for an ideal gas by G. Kirchhoff (1868). An extensive discussion of its solutions
without the restriction that |εμ| and |εκ | be small and with the bulk viscosity included (such
that 4μ/3 is replaced by 4μ/3 + μB ) is given by C. Truesdell, “Precise theory of the absorption
and dispersion of forced plane infinitesimal waves according to the Navier–Stokes equations,” J.
Ration. Mech. Anal. 2:643–730 (1953).
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10.3.2 A Generalization Based on the Superposition Principle

Each of the three dispersion relations derived above can be written

k2 + f (iω) = 0, (10.3.8)

where f (iω) is a power series in iω with real coefficients. If a ψn(x, t) described
by Eq. (1) has a wave-number vector that conforms to one such dispersion relation,
then

Re
{
[−k2 − f (iω)]ψ̂ne

−iωt eik·x} = 0. (10.3.9)

However, in this context −k2 is equivalent to ∇2 and iω is equivalent to −∂/∂t , so
one could alternatively write

[
∇2 − f

(
− ∂

∂t

)]
ψn(x, t) = 0. (10.3.10)

Furthermore, this is true for any superposition of plane-wave disturbances that
conform to the same dispersion relation. Similarly, the polarization relations
associated with each dispersion relation lead to partial-differential equations.20

10.3.3 Vorticity Mode

The dispersion relation k2 = iωρ/μ leads to the diffusion equation

∇2vvor = ρ

μ

∂vvor

∂t
. (10.3.11)

The corresponding polarization relations, as explained in the sentences following
Eq. (3), must be

∇ · vvor = 0, pvor = svor = T ′
vor = ρ′

vor = 0. (10.3.12)

These correspond to an incompressible flow that does not alter any of the thermody-
namic state variables. Since of the three classes of disturbance fields this is the only
one for which the vorticity ∇ × v is nonzero, we refer to it as the vorticity-mode
field.

20L. Trilling, “On thermally induced sound fields,” J. Acoust. Soc. Am. 27:425–431 (1955).
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10.3.4 Acoustic Mode

The dispersion relation in Eq. (7a), given the definitions (4), leads to the partial-
differential equation

∇2pac − 1

c2

∂2pac

∂t2 + 2

c4 δcl
∂3pac

∂t3 = 0, (10.3.13)

where δcl is defined by Eq. (10.2.12). This may be regarded as the wave equation for
acoustic disturbances with a slight correction for viscosity and thermal conduction.
The differential-equation versions of the polarization relations for this mode, with
all terms of first or higher order in εμ and εκ deleted, are

∇ × vac = 0, sac = 0, ρ
∂vac

∂t
≈ −∇pac,

T ′
ac ≈

(
Tβ

ρcp

)
o

pac, ρ′
ac ≈ pac

c2 . (10.3.14)

The first of these follows from k × v̂ = 0, the second from Eq. (7a), the third from
(2b), and the fourth and fifth from Eqs. (10.2.1) with sac ≈ 0.

10.3.5 The Entropy Mode

The dispersion relation in Eq. (7b), with the retention of only the leading term,
−1/εκ , on the right side, leads to the thermal-diffusion equation of conduction heat
transfer:

∇2sent = ρcp

κ

∂sent

∂t
; (10.3.15)

the same equation being satisfied for all components of the field, T ′
ent in particular.

(The development leading to this is the explanation of why cp rather than cv should
appear in the coefficient of ∂T /∂t in the thermal-diffusion equation.)

The differential-equation versions of the polarization relations for this mode,
with all terms of first or higher order in εκ and εμ deleted, are

pent ≈ 0, vent ≈
(
βT κ

ρc2
p

)
o

∇sent, ∇ × vent = 0,

T ′ ≈
(
T

cp

)
o

sent, ρ′
ent ≈ −

(
ρβT

cp

)
0
sent. (10.3.16)
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The first follows from the polarization relation in Eq. (7b); the third from k× v̂ = 0;
the fourth and fifth from Eqs. (10.2.1) with pent ≈ 0. To develop the equation for
vent, it is insufficient to set p̂ent to 0 in Eq. (2b) because |k| is large; instead, use
Eq. (3b) to eliminate the k · v̂ term in (2b) and thereby obtain [ωρ + i( 4

3 )μk
2]v̂

for kp̂. Substitution of k2 and p̂ from Eq. (7b) then yields, with some manipulation
[involving the definitions (4) and the thermodynamic identity for γ−1], the equation
v̂ = −i(βT κ/ρc2

p)okŝ, so the second relation in Eq. (16) results. The velocity v̂ent

is small but not negligible because the dispersion relation k2 = iωρcp/κ allows the
possibility that |∇sent| will be much larger than (ω/c)|sent|.

Since Eqs. (16) indicate that vent ≈ (βκ/ρcp)o∇T ′
ent, in this mode (with β > 0)

the fluid flows from colder regions toward hotter regions. Although this might
contradict one’s intuition, it is dictated by the conservation of mass. At a local
temperature maximum, the diffusion equation (15) predicts that the temperature
is decreasing with time; thermodynamic considerations (with p ≈ 0) require the
density to be simultaneously increasing with time. The fluid flows toward the
temperature maximum to cause this density increase.

The label “entropy mode” applies because entropy fluctuations are a major
feature; in contrast, entropy fluctuations are totally absent in the vorticity mode, and
they are relatively small compared with those of, say, βp/ρ0 in the acoustic mode.

10.4 Acoustic Boundary-Layer Theory

Any superposition of vorticity-, acoustic-, and entropy-mode fields will satisfy
the linear equations for a fluid with finite viscosity and thermal conductivity.
The converse statement, that any disturbance satisfying those equations can be
represented as such a superposition, is, for brevity, not proved here but may be
considered a reasonable premise21 with which to begin an analysis of any given
boundary-value problem. Thus we write, for example,

v = vvor + vac + vent. (10.4.1)

for the acoustic fluid velocity.

21A proof for an ideal gas with a Prandtl number of 3
4 is given by T. Y. Wu, “Small perturbations in

the unsteady flow of a compressible, viscous, and heat-conducting Fluid,” J. Math. Phys. 35:13–27
(1956). A general proof could be constructed beginning with the proposition that any solution of

(∇2 + λ1)(∇2 + λ2)(∇2 + λ3)ψ = 0

can be written ψ1 + ψ2 + ψ3, where (∇2 + λi)ψi = 0 and no two of the λi are equal. (The latter
premise is not valid in the limit ω = 0.) The one-dimensional version of this is a fundamental
theorem for homogeneous linear differential equations of arbitrary order with constant coefficients.
See, for example, R. Courant, Differential and Integral Calculus, vol. 2, Wiley-Interscience,
Glasgow, 1936, pp. 438–442.
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For a given ω, the dispersion relations, k2 = iωρ/μ and k2 ≈ iωρcp/κ , for the
vorticity and entropy modes are such that the imaginary part of k (associated with
attenuation) for such modes is much larger than ω/c. This suggests that the vorticity-
and entropy-mode fields die out rapidly with increasing distances from boundaries,
interfaces, and sources. Consequently, one expects a disturbance in an extended
space to be primarily made up of the acoustic-mode field (or else be inordinately
small) except near such perturbations.

Measures of how far from a boundary the vorticity- and entropy-mode fields
extend are the respective values of 1/|kI |. These boundary-layer thicknesses lvor
and lent are [with i1/2 = (1 + i)/21/2]

lvor =
(

2μ

ωp

)1/2

, lent =
(

2κ

ωρcp

)1/2

= lvor

(Pr)1/2 . (10.4.2)

While these lengths are not necessarily small (they tend toward ∞ as ω → 0), they
are nevertheless much less than the corresponding acoustic wavelength divided by
2π ,

2πlvor

λac
=
(ω
c

)
lvor =

(
2ωμ

ρc2

)1/2


 1.

[For example, for 500 Hz in air, with μ = 1.85×10−5, ρ = 1.2, c = 340 (SI units),
lvor is 10−4 m, while λac is 0.68 m; the ratio above is 10−3.]

In previous chapters it has tacitly been assumed that the physical dimensions
of the space and sources are much larger than lvor and lent. Thus, for example, the
analysis in Sect. 7.3 of low-frequency sound in ducts presumes, for a circular duct
of radius a, that ω be low enough to ensure that ω 
 c/a but still high enough to
ensure that lvor 
 a. Although this forces ω to lie between 2μ/ρa2 and c/a, these
limits often encompass a wide range. In the present section we continue to assume
that lvor and lent are much smaller than the physical dimensions, but we recognize
the presence of vorticity-mode and entropy-mode boundary layers.

10.4.1 Boundary Conditions at a Solid Surface

Once viscosity is taken into account, the requirement that the normal component of
fluid velocity be continuous at an interface is no longer sufficient (along with the
other conditions of continuity of pressure and of causality, described in Chap. 3)
to guarantee a unique solution of the fluid-dynamic equations. This is so because
the Navier–Stokes equation, unlike Euler’s equation, is not of first order in the
spatial derivatives. An additional condition invariably imposed is that the tangential
components of velocity also be continuous, the rationale being that a fluid should
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not slide any more freely with respect to an interface than it does with itself; this lack
of slip is observed when the motion is examined sufficiently close to an interface.22

The surface force per unit area f S(n, x) must also be continuous (in accord with
Newton’s third law) across any interface with unit normal n. Thus, if n is in the x1
direction, Eq. (10.1.2) requires that σ11, r12 = σ21, and σ13 = σ31 all be continuous.
The other components, σ22, σ23 = σ32, and σ33, however, can be discontinuous.
Similarly, conservation of energy requires that q · n, the normal component of
the heat flux vector, be continuous at an interface. In addition, the temperature is
continuous.

Since solids are generally much better conductors of heat than fluids, the require-
ments that q · n and T be continuous at a solid–fluid interface are often replaced
by the simpler requirement that the solid’s surface be at ambient temperature, or
equivalently that

T ′ = 0 (10.4.3)

at the surface. A brief analysis suggests that the criteria for this being a valid
replacement are23

(ρcpκ)fluid 
 (ρcpκ)solid, (10.4.4a)

(κρcp)
1/2
fluid 
 ω1/2(ρcp)solid

(
volume

surface

)
solid

. (10.4.4b)

The premise on which (3) is based is that although an external disturbance may
impart heat to the solid, it also periodically extracts heat; the extra energy within
the solid at any given time is never sufficient to change the average temperature
within the solid perceptibly and since the body is a good conductor, the average
temperature is the same as the surface temperature.

10.4.2 Vorticity- and Entropy-Mode Fields Near a Solid
Surface24

We consider a solid–fluid interface nominally occupying the xy plane with the z axis
pointing into the fluid (see Fig. 10.2). The disturbance is assumed to have constant

22A. H. Shapiro, Shape and Flow: The Fluid Dynamics of Drag, Doubleday, Garden City, N.Y.,
1961, pp. 59–63.
23The first equation results from an analysis of plane-wave reflection at normal incidence from an
elastic half space with finite thermal conductivity. The second is based on a computation of the
heat flow into the solid that uses the plane-wave result; this energy is assumed to be uniformly
distributed within the solid, and the requirement is imposed that the peak temperature rise within
the solid be substantially less than the peak temperature rise of the incident wave.
24Cremer, “On the acoustic boundary layer . . ..”
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Fig. 10.2 (a) Concept of an acoustic boundary layer. (b) Vorticity-mode portion of oscillating
fluid velocity at a surface; vx,vor is confined within an envelope that dies exponentially as e−z/lvor .
The lines of constant phase have apparent upward phase velocity of ωlvor; moving nodal lines are
at intervals of πlvor

angular frequency ω, where ω is such that both μω/ρc2 and κω/ρc2cp are much
less than 1. This allows us to take the polarization relations for the acoustic and
entropy modes in the approximate forms Eqs. (10.3.14) and (10.3.16).

Since the boundary conditions discussed above apply to the sum of the three
modal fields, rather than to each individually, we first do not consider them
explicitly. However, since we are interested in cases when vorticity- and entropy-
mode fields are caused by sound of much longer wavelength than lvor or lent, we
assume that these fields vary much more rapidly with the z coordinate than with the
x and y coordinates and consequently approximate the operator ∇2 by ∂2/∂z2 in
the two diffusion equations. Note also that the solution of the equation

∂2

∂z2
ψ̂(x, y, z) = −2i

l2
ψ̂(x, y, z) (10.4.5)

is

ψ̂(x, y, z) = ψ̂(x, y, 0)e−(1−i)z/ l . (10.4.6)

The sign in the exponent is chosen such that the solution is bounded at large
distances from the wall. Applied to Eqs. (10.3.11) and (10.3.15), this approximate
result leads to the prediction that the complex spatially dependent amplitudes of
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the components of the vorticity- and entropy-mode fields should vary with z as in
Eq. (6), where l = lvor for the vorticity mode and l = lent for the entropy mode.
Thus, in the modal relations (10.3.12) and (10.3.16) between the complex spatially
dependent amplitudes, one can replace ∂/∂z wherever it appears by −(1 − i)/ lvor
and −(1 − i)/ lent for the vorticity- and entropy-mode fields, respectively.

Applying the prescription just described yields the z-independent relations

∇
T

· v̂vor,T − (1 − i)v̂vor · n

lvor
= 0, (10.4.7a)

v̂ent,T = βκ

ρcp
∇T T̂

′
ent ≈ 0, (10.4.7b)

v̂ent ·n = − βκ

ρcp
(1 − i)

T̂ ′
ent

lent
, (10.4.7c)

where the subscript T (for tangential) denotes the tangential component and n = ez
is the unit vector normal to the surface. The approximation v̂ent,T ≈ 0 is in accord
with the expectation |∇

T
T̂ ′

ent| 
 |T̂ ′
ent|/lent.

10.4.3 Boundary Condition on the Acoustic-Mode Field

If the surface is oscillating as a rigid body such that every material point on the
surface has a velocity with complex amplitude v̂wall, the no-slip condition requires

v̂wall = v̂vor + v̂ac + v̂ent (at z = 0), (10.4.8)

at the surface’s nominal location. If, in addition, the solid is highly conducting and
has a high “capacity for storing heat,” Eq. (3) requires

T ′
ent + T ′

ac = 0 (10.4.9)

at the surface.
Taking the horizontal divergence (operating with ∇

T
·) of (8) and using Eqs. (7)

yields

0 = (1 − i)v̂vor · n

lvor
+ ∇

T
· v̂ac,T . (10.4.10)

Similarly the normal component of (8) gives [with (7c) replacing v̂ent ·n]

v̂wall ·n = v̂vor ·n + v̂ac ·n − βκ

ρcp
(1 − i)

T̂ ′
ent

lent
. (10.4.11)
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With an elimination of v̂vor · n from these, the subsequent replacement of T̂ ′
ent by

−T̂ ′
ac, of T̂ ′

ac by (Tβ/ρcp)op̂
′
ac [from (10.3.14)], of κ by ωρcpl

2
ent/2 [from Eq. (2)],

and of β2To by (γ − 1)cp/c2 (a thermodynamic identity), one obtains

v̂wall ·n = v̂ac ·n − (1 + i)
lvor

2
∇

T
· v̂ac,T + (1 − i)(γ − 1)

ω

c

lent

2

p̂ac

ρc
(10.4.12)

at the surface (z = 0). Because this involves only the acoustic-mode field variables,
it represents an approximate boundary condition for that modal field. In the limit
lvor → 0 and lent → 0 it reduces to the commonly applied boundary condition
v̂wall ·n = v̂ac ·n.

The analysis above also suggests that within the boundary layer the flow field
associated with the vorticity mode is approximately described by

v̂vor ≈ (v̂wall,T − v̂ac,T )z=0 e
−(1−i)z/ lvor , (10.4.13)

the vertical component being negligible in comparison. Similarly, the entropy-
mode-field temperature is approximately

T̂ ′
ent = −

(
Tβ

ρcp

)
0
(p̂ac)z=0 e

−(1−i)z/ lent . (10.4.14)

In this approximation, the acoustic field variables at the surface suffice to determine
the vorticity- and entropy-mode fields. Alternatively, since p̂ac and the tangential
velocity v̂ac,T are expected to vary insignificantly over distance intervals comparable
to lent and lvor, the quantities v̂ac,T and p̂ac at z = 0 can be interpreted as the total
disturbance pressure and tangential fluid velocity just outside the boundary layer,
e.g. at z = 10lvor.

Insofar as the two boundary conditions can be adequately approximated by
vwall · n = vac · n at z = 0, the ideal acoustic model (with viscosity and thermal
conductivity neglected and with slip relative to boundaries allowed) produces
accurate predictions except near solid surfaces. If one wants to know the tangential
velocity and the temperature near such surfaces, one need only add expressions (13)
and (14) to the predictions of the ideal acoustic model.

10.4.4 Energy Loss from the Acoustic Mode at a Boundary

In most instances, one is not interested in the total energy loss per se but in the
energy irreversibly lost from the acoustic-mode field, because this loss accounts for
the attenuation of sound. Since the acoustic-mode field constitutes a solution of the
overall set of equations developed in Sect. 10.2, the energy-conservation-dissipation
theorem applies equally to that field by itself. The net power flowing out of that field
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(into other modal fields) at a boundary per unit area is very nearly −pacvac ·n since
the other terms contributing to the acoustic intensity are considerably smaller for
the acoustic-mode field. The time average of this, with the normal component v̂ac ·n
taken from the boundary condition (12) and with a vector identity for p̂∗∇

T
· v̂ac,T ,

is

−(I ac ·n)av = −1

2
Re
{
p̂∗v̂wall ·n

}− 1

2

lvor

2
∇ · (Re

{
(1 + i)p̂∗v̂ac,T

})

+ 1

2

lvor

2
Re
{
(1 + i)∇T p̂

∗ · v̂ac,T
}+ 1

2

lent

2
(γ − 1)

ω

c

|p̂ac|2
ρc

. (10.4.15)

The first term is the negative of the work done per unit time and area by the
wall motion against the surface pressure on the fluid; the second term is a total
derivative and therefore averages out to zero over a sufficiently large area and is
of no consequence as regards the calculation of irreversible energy loss. The third
term can be reexpressed with ∇

T
p̂ac = iωρv̂ac,T , so with lvor and lent replaced by

Eqs. (2) we identify

(
d2E

dAdt

)
diss

=
(ωρμ

2

)1/2
(v2

ac,T )av + (γ − 1)

(
ωρκ

2cp

)1/2
(p2)av

(pc)2
(10.4.16)

as the energy dissipated per unit area and time at the surface.25

10.4.5 Plane-Wave Reflection at a Solid Surface

The boundary condition (12) allows an examination of the effects of viscosity and
thermal conduction on the reflection of plane waves. For a plane wave at angle
of incidence θi (see Fig. 10.3), the trace-velocity matching principle requires that
all field quantities vary with t and with tangential coordinates in the combination
t − ni,T · x, so c∇

T
p is −ni,T ∂p/∂t . The component ni,T of the unit vector in the

direction of incidence is such that ni,T ·ni,T = sin2 θi . Consequently, an application
of the divergence operator to the tangential portion vac,T = ni,T p/ρc of the plane-
wave relation (which holds for sum of incident and reflected waves) yields

∇
T

· vac,T = − sin2 θi

ρc2

∂p

∂t
. (10.4.17)

25R. F. Lambert, “Wall viscosity and heat conduction losses in rigid tubes,” J. Acoust. Soc. Am.
23:480–481 (1951).
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Fig. 10.3 Definitions of symbols used in discussion of the reflection of a plane acoustic wave at a
rigid wall when viscosity and thermal conduction are taken into account

Subsequent insertion of the above into Eq. (12), with the wall assumed motion-
less, leads to

1

Z
= − v̂ac ·nwall

p̂
= 1

2 (1 − i)
ω

ρc2
[lvor sin2 θi + (γ − 1)lent]

= e−iπ/4

ρc
ημ(ω)

[
sin2 θi + γ − 1

(Pr)1/2

]
(10.4.18)

as the apparent specific admittance (reciprocal of specific impedance) of the surface.
Here and in what follows, we abbreviate

ημ(ω) =
(
ωμ

ρc2

)1/2

, ηκ(ω) = (γ − 1)

(
ωκ

ρc2cp

)1/2

, (10.4.19)

such that ηκ/ημ = (γ −1)/(Pr)1/2 (approximately 0.48 for air). Because Z depends
on θi , the surface cannot be regarded as locally reacting.

Insertion of the above expression for Z into Eq. (3.3.4) yields the reflection coef-
ficient for the acoustic pressure. The absorption coefficient 1−|R|2 is subsequently
found to be

α(θi) = 4η̄
√

2 cos θi

(
√

2 cos θi + η̄)2 + η̄2
, (10.4.20)

where η̄ is used as an abbreviation for ημ sin2 θi + ηκ . When θi is 0, this has the
approximate value (since ηκ 
 1)

α(0) = 2
√

2ηκ . (10.4.21)
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Fig. 10.4 Angular dependence of absorption coefficient α(θi) for reflection from a rigid wall with
acoustic boundary layer taken into account. The absorption coefficient is largest for angles near
grazing incidence and (in such a limit) is a function only of (π/2 − θi)/(ημ + ηκ), where ημ is
(ωμ/ρc2)1/2 and ηκ/ημ is (γ − 1)/(Pr)1/2

With increasing θi , the absorption coefficient rises to a maximum (see Fig. 10.4)
and then drops to zero at grazing incidence, θi = π/2. Because η̄ is generally small
compared with 1, the maximum occurs when θi is close to π/2, so its location can
be determined by setting η̄ equal to ημ + ηκ in Eq. (20). Doing this and setting
the derivative to zero yields θi = cos−1(ημ + ηκ), which in turn is approximately
π/2 − ημ − ηκ . The corresponding maximum value is

αmax = 4
√

2

(
√

2 + 1)2 + 1
= 0.828. (10.4.22)

Such a large value, however, is not representative for typical choices of θi . At
θi = 45◦, for example, Eq. (20) yields approximately 4η̄ when ηκ and ημ are
small compared with 1; so the mirror-reflection model is usually an excellent first
approximation.

The specific impedance in Eq. (18) also implies that the phase φR of the reflection
coefficient |R|eiφR increases from 0 to π as θi varies from 0 to π/2. However, when
ημ and ηκ are small, φR remains close to 0 until θi approaches grazing incidence.
The value π/2 for φR is obtained when θi has that value for which α = αmax.

The absorption coefficient α(θi) in Eq. (20) is compatible with the expression,
Eq. (16), for the rate at which energy is absorbed by the surface because (p2)av is
|1 + R|2(p2

i )av and because (v2
ac,T )av is |1 + R|2(p2

i )av(sin2 θi)/(ρc)
2. Since the
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incident energy per unit area and time is (p2
i )av(cos θi)/ρc, Eqs. (16) and (18) lead

to

α = |1 + R|2η̄√
2 cos θi

= 4Re {ρc/Z cos θi}
|1 + (ρc/Z cos θi)|2 , (10.4.23)

which is the same as 1 − |R|2.

10.5 Attenuation and Dispersion in Ducts and Thin Tubes

The effects of viscosity and thermal conduction on sound in ducts26 are much
greater than for propagation in free space because of the boundary conditions
imposed by the duct walls. Here we consider the walls to be rigid and always at
ambient temperature, so v = 0 and T ′ = 0 at the walls. Two limiting cases are of
principal interest, i.e., when a representative cross-sectional dimension is (1) much
larger and (2) much smaller than the boundary-layer thicknesses lvor and lent.

10.5.1 Propagation in Wide Ducts

We consider the duct to be large enough for the boundary layers to occupy a very
small fraction of the duct’s cross-sectional area A. If a nominally plane wave is
propagating down the duct, most of the disturbance is associated with the acoustic-
mode field and, for the most part, the field quantities vary only with distance x along
the axis of the duct (see Fig. 10.5a).

An approximate equation for the pressure perturbation can be derived by
variational techniques.27 Starting with the partial-differential equation (10.3.13),
recognizing that pac ≈ p, and letting p = Re[p̂(x, y, z)e−iωt ] yields

∇2p̂ + Mp̂ = 0, M = ω2

c2 + 2iω3δcl

c4 . (10.5.1)

26H. Helmholtz, “On the influence of friction in the air on sound motion,” Verhandl. Naturhist.
Med. Ver. Heidelberg 3:16–20 (1863), reprinted in Wissenschaftliche Abhandlungen, vol. 1, Barth,
Leipzig, 1882, pp. 383–387; Kirchhoff, “On the influence of heat conduction”; D. E. Weston, “The
theory of the propagation of plane sound waves in tubes,” Proc. Phys. Soc. (Lond.) B66:695–709
(1953).
27S. H. Crandall, D. C. Karnopp, E. F. Kurtz, Jr., and D. C. Pridmore-Brown, Dynamics of
Mechanical and Electromechanical Systems, McGraw-Hill, New York, 1968, pp. 336–343, 417–
424; P. M. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1, McGraw-Hill, 1953,
pp. 301–318.
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Fig. 10.5 (a) Duct of variable cross-sectional area A(x) and perimeter LP . (b) Circular duct of
radius a. The indicated geometries are used in the discussion of thermoviscous effects on sound
propagation in ducts

Multiplying Eq. (1) by a small variation δp̂, recognizing that δp̂∇2p̂ is
∇·(δp̂∇p̂)−δ[ 1

2 (∇p̂)2] and (δp̂)p̂ is δ( 1
2 p̂

2) to first order, subsequently integrating
over a slice of the duct between x1 and x2, applying Gauss’s theorem, and requiring
that δp̂ = 0 at x1 and x2 gives

δ

∫ x2

x1

(∫ ∫ [
1
2M(p̂)2 − 1

2 (∇p̂)2
]
dA

)
dx +

∫ x2

x1

(� (
δp̂
)∇p̂ ·nwalldl

)
dx = 0,

(10.5.2)

where l denotes the distance around the perimeter of the duct.
The disturbance resembles a plane wave, so to lowest nonvanishing order in κ

and μ, Eq. (10.4.18) gives the boundary condition

∇p̂ ·nwall = iωρ

Z
p̂,

ρc

Z
= e−iπ/4[ημ(ω) + ηκ(ω)], (10.5.3)

where the apparent specific impedance is evaluated with θi = π/2 (grazing
incidence). Thus our variational indicator becomes

δ

∫ x2

x1

{∫ ∫ [
t
2Mp̂2 − 1

2 (∇p̂)2
]
dA + iωρ

2Z

�
p̂2dl

}
dx = 0. (10.5.4)
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If we restrict our set of trial functions to those which vary with x only (which
approximates the actual case), then the “best choice” for p̂(x) is such that

δ

∫ x2

x1

{[
1
2Mp̂2 − 1

2

(
∂p̂

∂x

)2
]
A + iωρ

2Z
p̂2LP

}
dx = 0, (10.5.5)

where LP is the perimeter of the duct cross section.
Upon taking the variation of the above integral, using

1

2
δ

(
∂p̂

∂x

)2

= ∂p̂

∂x

∂(δp̂)

∂x
,

then integrating by parts, and invoking the requirement that δp̂ vanish at x1 and x2,
we obtain an expression of the form

∫ x2

x1

(something) δp̂ dx = 0.

But the factor (something) must be zero because of the arbitrariness in x1 and x2, so

d

dx

(
A
dp̂

dx

)
+
(
MA + iωρ

Z
LP

)
p̂ = 0 (10.5.6)

is the appropriate partial-differential equation for p̂(x).
The above equation when A and LP vary with x is the generalization of the

Webster horn equation (Sect. 7.8) that includes dissipation effects. The interest here
is in the uniform-duct case where A and LP are independent of x, such that Eq. (6)
has solutions of the form p̂eikx , where k2A is the coefficient of p̂ in Eq. (6). With M

and Z taken from Eqs. (1) and (3), the square of the complex wave number becomes

k2 = ω2

c2 + 2iω

c
[αcl + (1 − i)αwalls], (10.5.7)

where

αwalls = 2−3/2ημ(ω)

[
1 + γ − 1

(Pr)1/2

]
LP

A
. (10.5.8)

The quantity ημ is (ωμ/ρc2)1/2, as defined in Eq. (10.4.19).
For the frequencies of interest, αcl and αwalls are much less than ω/c. (The latter

assertion stems from the restriction that lvor and lent be much smaller than A/LP .)
Consequently, the square root of (7) is approximately ω/c +iαcl+(1+i)αwalls. The
frequencies are nevertheless assumed sufficiently low to ensure that αcl 
 αwalls,
so we discard the iαcl term. This implies that the dissipation within the interior of
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the duct is much less than that within the boundary layer. The two assumptions
αwalls 
 ω/c and αwalls � αcl restrict ω to the range

(
LP

A

)2
μ

8ρ

 ω 


[
9

32

(
LP

A

)2
ρc4

μ

]1/3

. (10.5.9)

Because μ/ρc is of the order of 5 × 10−8 and 7 × 10−10 m for air and water,
respectively, such a range exists for any macroscopic value of A/LP .

The approximations just described lead to the dispersion relation28

k = ω

c
+ (1 + i)αwalls (10.5.10)

for the propagation of sound waves in a duct.
The attenuation coefficient αwalls, given by the imaginary part of the above

expression, varies with ω as ω1/2 and thus has a relatively strong dependence on
frequency at lower frequencies. Another feature is that the real part of k is not
identically ω/c but is shifted. Thus, a traveling wave p = RePe−iωt eikx is of the
form (taking the constant P as real) Pe−αx cos(ωt−kRx), where the apparent phase
velocity vph = ω/kR is

vph = ω

ω/c + ΔkR
≈ c − c2

ω
ΔkR ≈ c − c2αwalls

ω
. (10.5.11)

This is lower than the speed of sound in an open space by an increment that
varies as ω−1/2 and becomes larger the smaller the frequency. Thus, sound in
pipes travels slower than sound in open air. [A pulse of sound of nearly constant
angular frequency travels with a group velocity29 vg of the order of 1/(dkR/dω) or
1/(c−1 + 1

2ΔkR/ω) since ΔkR varies with ω as ω1/2. This would give c − vg ≈
1
2 (c−vph) so the group would travel with only half the reduction in speed of a point
of constant phase. However, vg is still less than c.]

10.5.2 Propagation in Narrow Tubes

In the other limit, when the cross-sectional dimensions of the tube are very small or
when the frequency is sufficiently low, the boundary layer encompasses the entire
duct and the theory of Sect. 10.4 is no longer applicable. For simplicity, we here limit
our consideration to a circular cylinder (Fig. 10.5b) whose radius a is sufficiently

28This was experimentally verified by W. P. Mason, “The propagation characteristics of sound
tubes and acoustic filters,” Phys. Rev. 31:283–295 (1928).
29P. S. H. Henry, “The tube effect in sound-velocity measurements,” Proc. Phys. Soc. 43:340–361
(1931).
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small for the criteria ωρa2/μ 
 1 and ωρa2cp/κ 
 1 to be satisfied. The analysis
can be carried out for arbitrary radius a with some exactitude in terms of Bessel
functions of complex argument, but here we confine ourselves to a brief heuristic
derivation for the small a case30 that leads to the same results as the exact solution
in the same limit.

Our starting point is the x component of the linearized version (10.2.2b’) of the
Navier–Stokes equation

ρo
∂vx

∂t
= −∂p

∂x
+ μ

[
∇2vx + 1

3

∂

∂x
∇ · v

]
. (10.5.12)

Given that ωρ 
 μ/a2 (as assumed above) and presupposing that ∇2vx is of the
order of vx/a2, we discard the inertial term on the left side at the outset. The fluid
is flowing for the most part in the +x direction and this, in conjunction with the
requirement vx = 0 at r = a, suggests that the radial velocity’s contribution to the
right side is minor. Also, we anticipate that the r dependence of vx will be much
greater than its x dependence (as is so for a steady flow), so we discard all terms
involving x derivatives of vx . This leaves us with

1

r

∂

∂r

(
r
∂vx

∂r

)
= 1

μ

∂p

∂x
. (10.5.13)

The no-slip requirement, vx = 0 at r = a, implies that vx should vary relatively
strongly with r , but we anticipate that the r dependence of ∂p/∂x will be minor,
so we integrate the above treating ∂p/∂x as being independent of r . One constant
of integration is obtained from the requirement that vx be finite at r = 0, the other
from vx = 0 at r = a, so the result31 is

vx = − 1

4μ

∂p

∂x
(a2 − r2). (10.5.14)

Another assumption, compatible with the restriction ωρa2cp/κ 
 1, is that
the implication of the linearized version of the Kirchhoff–Fourier equation and the
boundary condition T ′ ≈ 0 at r = a is that T ′ ≈ 0 throughout the interior of the
tube; i.e., the flow is isothermal. This would then require, from Eqs. (10.2.1), that

ρ′ ≈
(

1

c2 + β2T

cp

)
p = 1

c2
T

p, (10.5.15)

where cT = c/γ 1/2 is the isothermal sound speed (see Sect. 1.10).

30J. W. S. Rayleigh, “On porous bodies in relation to sound,” Phil. Mag. (5)16:181–186 (1883).
31This is the fundamental result for Poiseuille flow, steady flow of an incompressible viscous fluid
in a circular tube. The term stems from Poiseuille’s experimental discovery (1840–1841, 1846)
that the mass flowing per unit time through a tube is proportional to −a4dp/dx. See H. Lamb,
Hydrodynamics, 6th ed., reprinted by Dover, New York, 1945, pp. 585–586.
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The conservation-of-mass equation (10.2.2a) with the above substitution for ρ′
becomes

1

c2
T

∂p

∂t
+ ρ

(
∂vx

∂x
+ 1

r

∂

∂r
rvr

)
= 0, (10.5.16)

and a subsequent integration over the cross-sectional area of the tube, with the
boundary condition vr = 0 at r = a, yields

1

c2
T

∂

∂t

∫∫
pdA + ρo

∂

∂x

∫∫
vxdA = 0. (10.5.17)

But, since vx is approximately given by Eq. (14), and since p is nearly independent
of r , this approximates to

∂2p

∂x2 = 8μ

ρc2
T a

2

∂p

∂t
, (10.5.18)

which is a diffusion equation.
The volume velocity Ux through the tube, defined by the integral of vx over a

cross-sectional area, satisfies the same differential equation and is related to p by
what results32 from integrating both sides of (14) over a cross-sectional area:

Ux = −πa4

8μ

∂p

∂x
. (10.5.19)

Also, in terms of Ux , Eq. (17) leads to

πa2 ∂p

∂t
= −ρc2

T

∂Ux

∂x
. (10.5.20)

The last two equations have the energy corollary

∂

∂t

(
πa2

2ρ2
T

p2

)
+ ∂

∂x
pUx = − 8μ

πa4 U
2
x , (10.5.21)

with the identification of pUx as power transported in the +x direction and of
(8μ/πa4)U2

x as energy dissipated per unit time and per unit distance along the tube

32For a tube of other than circular cross section, Eqs. (19) and (20) remain valid providing πa2

is replaced by the tube cross-sectional area and 8μ/a2 is replaced by a coefficient of resistance R

that is proportional to μ and depends on the size and shape of the cross section. See H. Lamb, The
Dynamical Theory of Sound, 2d ed., 1925, reprinted by Dover, New York, 1960, pp. 197–199. For
an elliptical cross section, R is 4μ(a2 + b2)/a2b2, where a, b are semiaxes, this result being due
to Boussinesq (1868).
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axis. (We have no kinetic-energy term because we discarded the inertial term in the
Navier–Stokes equation. For the type of flow considered, the time rate of change of
kinetic energy is always much less than the rate at which energy is being dissipated
by viscosity at the walls.)

The differential equation (18) predicts that a constant-frequency disturbance
traveling in the +x direction in a tube of infinite length will be such that the complex
wave number ω/vph + iα is eiπ/4(8μω/ρc2

T a
2)1/2, so

vph = cT

(
ρωa2

4μ

)1/2

, and α =
(

4μω

ρc2
T a

2

)1/2

(10.5.22)

describe the phase velocity and attenuation coefficient. For the considered range of
frequencies, one has vph 
 cT , α � ω/c, and so the disturbance is traveling slowly
with a high attenuation.

10.5.3 Slab with Circular Pores

A rudimentary model of a porous material33 consists of a thick rigid slab (see
Fig. 10.6) with many long cylindrical holes bored perpendicular to its face. If the
number of such holes per unit area is N , and if each has radius a (such that the
porosity is Nπa2), what is the absorption coefficient of the slab?

If p̂ is the complex pressure amplitude just outside the slab, the volume velocity
flowing into the pores per unit area of slab is Û/A = Np̂/ZA,h, where ZA,h is the
acoustic impedance of a single hole. The ratio p̂/(Û/A), however, is the apparent
specific impedance ZS of the slab. Equation (20) gives

ZA,h = ρc2
T

πa2

k

ω
=
(

8μρc2
T

π2ωa6

)1/2

eiπ/4, (10.5.23)

with the wave number k identified as eiπ/4(8μω/ρc2
T a

2)1/2. Consequently,

ZS

ρc
= 1

Nπa2

(
8μ

ρωγa2

)1/2

eiπ/14, (10.5.24)

33The modern theory of sound propagation in porous materials involves the porosity, the apparent
compressibility of the fluid, the flow resistivity, and a structure factor, equal to the ratio of apparent
to actual densities of the fluid in the pores: C. Zwikker and C. W. Kosten, Sound Absorbing
Materials, Elsevier, Amsterdam, 1949; L. L. Beranek, Acoustic Measurements, Wiley, New York,
1949, pp. 844–860; P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, New York,
1968, pp. 252–255.



616 10 Effects of Viscosity and Other Dissipative Processes

Fig. 10.6 Rudimentary
model of a porous material: a
thick slab with many circular
holes drilled perpendicular to
the face

and the corresponding absorption coefficient results when this replaces Z/ρc in the
second version of Eq. (10.4.23).

For normal incidence and in the low-frequency limit, the absorption
coefficient is

α(0) = Nπa2
(
ρωγ a2

μ

)1/2

, (10.5.25)

and increases with ω as ω1/2 and with pore radius a, for fixed N , as a3. However, the
larger the a is the thicker the slab must be to permit the assumption that reflections
from the far ends of the pores have negligible effect. The analysis here presumes that
the thickness is somewhat larger than the reciprocal of the attenuation coefficient α
in Eq. (22).

10.6 Viscosity Effects on Sound Radiation

The coupling of vorticity-mode and acoustic-mode fields at a surface affects the
radiation of sound from that surface. To see how this is possible, we extend the
analysis of sound generation, developed in Chap. 4, to include viscous effects.
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10.6.1 Revision of the Kirchhoff-Helmholtz Theorem

A general result, expressing pressure external to a surface in terms of field quantities
on the surface, can be derived in a manner similar to that described in Sect. 4.6. For
simplicity, we ignore thermal conduction and take (from Sect. 10.3) the governing
equations for a field of constant angular frequency ω = ck to be

v = vac + vvor, ∇ × v̂ac = 0, ∇ · v̂vor = 0, (10.6.1)

−iωρv̂vor = μ∇2v̂vor, −iωρv̂ac = −∇p̂, (10.6.2)

−iωp̂ + ρc2∇ · v̂ac = 0. (10.6.3)

Here the far-field viscous attenuation of the acoustic-mode field is neglected.
From the above equations, it follows with some vector identities34 that, for any

function G,

∇ · (iωρGv̂ac − p̂∇G) = −p̂(∇2 + k2)G, (10.6.4)

∇ · [iωρGv̂vor − μ(∇ × v̂vor) × ∇G] = 0. (10.6.5)

The sum of these two relations in turn implies

∇ · [iωρGv̂ − p̂∇G − μ (∇ × v̂) × ∇G
] = −p̂(∇2 + k2)G. (10.6.6)

The derivation now proceeds as in Sect. 4.6 with the integration of Eq. (6) over
the volume external to a closed surface S and with G taken as the free-space
Green’s function. The Kirchhoff-Helmholtz theorem of Eq. (4.6.6) is consequently
replaced35 by

p(x, t) = ρ

4π

∫ ∫
v̇n(xS, t − R/c)

R
dS

34Note that (with vvor replaced by A)

∇ · [(∇ × A) × ∇G] = (∇G) · [∇ × (∇ × A)] − (∇ × A) · (∇ × ∇G),

= (∇G) · [∇(∇ ·A) − ∇2A] = −(∇G) · (∇2A) if ∇ ·A = 0.

35This is similar to, and can be regarded as a special case of, the fundamental aeroacoustic theorem
derived and extended in the following papers: N. Curle, “The influence of solid boundaries on
aerodynamic sound,” Proc. R. Soc. Lond. A286:559–572 (1965); W. F. Möhring, E.-A. Müller, and
F. F. Obermeier, “Sound generation by unsteady flow as a singular perturbation problem,” Acustica
21:184–188 (1969); J. E. Ffowcs-Williams and D. L. Hawkings, “Sound generation by turbulence
and surfaces in arbitrary motion,” Phil. Trans. R. Soc. Lond. A264:321–342 (1969).
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+ 1

4πc

∫ ∫
eR ·nS

(
∂

∂t
+ c

R

)
p(xS, t − R/c)

R
dS

− μ

4πc

∫ ∫
nS ·

(
∂

∂t
+ c

R

)
eR × Ω(xS, t − R/c)

R
dS, (10.6.7)

where Ω = ∇×v is the vorticity. The assumptions adopted in the derivation are the
same as in Sect. 4.6, except that here the existence of the vorticity mode is taken into
account. It is required in addition that the vorticity-mode field vanish sufficiently
rapidly at great distances from the source that the integral over the outer sphere can
be discarded.

The multipole expansion of Eqs. (4.6.8) and (4.6.9) is similarly modified;
retention of only the monopole and dipole terms yields

p = S
(
t − r

c

)
− ∇ · D(t − r/c)

r
, (10.6.8)

with

S(t) = ρ

4π

∫ ∫
v̇ ·nSdS, (10.6.9a)

D(t) = 1

4π

∫ ∫
(ρxS v̇ ·nS + nSp + μnS × Ω)dS, (10.6.9b)

The distinction from the inviscid case is the term μnS × Ω in the integrand of (9b).

10.6.2 Transversely Oscillating Rigid Bodies

For a transversely oscillating rigid body, the quantity S(t) is zero and v̇ = v̇C is
constant along the surface, so the operator ∇ can be regarded as having only an nS

component in the evaluation of Ω at the surface. Consequently

nS × (∇ × v) = nS × [nS × (nS ·∇)v] = −[(nS ·∇)v]T , (10.6.10)

where the subscript T denotes the component tangential to the surface. Since the
tangential derivative of any Cartesian component of v is zero at the surface, one can
rewrite this as

nS × Ω = −
∑
ij

nS · ei

(
∂vi

∂xj
+ ∂vj

∂xi

)
ej,T ≈ −

∑
ij

nS · eiφijej , (10.6.11)

where φij is the rate of shear tensor. [The indicated approximation makes negligible
change in Eq. (9b), provided |p̂| � μ|∇ · v̂|. Moreover, it is consistent with the
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neglect of the viscous term in Eq. (2b).] Consequently, the second and third terms
in Eq. (9b) combine to give

nSp+μnS ×Ω = −
∑
ij

(nS ·ei )(−pδij +μφij )ej = −f S(nS, xS), (10.6.12)

where f S(nS, xS) is the force per unit area exerted on the surface by the external
fluid.

With the substitution (12) and with the surface integral of xS v̇ · nS replaced
by v̇Cρ

−1md , as in Eq. (4.7.11), the function D(t) appropriate to the dipole field
reduces to

D(t) = 1

4π
[md v̇C(t) + F (t)] , (10.6.13)

where md is the displaced mass and where F (t) is the force exerted on the fluid
by the body [opposite in sense to f S(nS, xS)]. This is exactly the same as results
when viscosity is ignored; here, however, F (t) can include a force caused by shear
stresses as well as a force caused by surface pressures.

10.6.3 Stokes Flow Limit

An example that can be analyzed in some detail36 is that of a transversely oscillating
sphere of radius a. If the oscillation is very slow, such that (ωρ/μ)1/2a 
 1, then
the force F (t) is the same as for low-Reynolds-number incompressible flow (see
Fig. 10.7) past a sphere; the governing equations are what results when inertial terms
and nonlinear terms are neglected in the Navier–Stokes equation. The solution, due
to Stokes,37 gives

F (t) = 6πaμvC(t). (10.6.14)

In the same limit the inertial term in D(t) is negligible, so the far-field acoustic
pressure in Eq. (8) reduces to

p = − 3
2aμ∇ ·

(
vC(t − r/c)

r

)
. (10.6.15)

36Lamb, Hydrodynamics, 6th ed., pp. 654–657.
37G. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,”
Trans. Camb. Phil. Soc. vol. 9 (1851), reprinted in Mathematical and Physical Papers, vol. 3,
Johnson Reprint, New York, 1966, pp. 1–141; G. K. Batchelor, An Introduction to Fluid Dynamics,
Cambridge University Press, London, 1967, pp. 230–234.
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Fig. 10.7 Streamlines about a transversely oscillating sphere in the Stokes’ flow limit. Each
streamline is a line along which sin2 θ(3r/a − a/r) is constant (After H. Lamb, Hydrodynamics,
6th ed., Dover Publications, New York, 1945, p. 599)

10.6.4 Thin-Boundary-Layer Approximation

If the frequency is high enough (for the transversely oscillating sphere example just
discussed) to ensure that (ωρ/μ)1/2a � 1, the boundary-layer model of Sect. 10.4
is applicable. The boundary condition perceived at the surface of the sphere (see
Fig. 10.8) by the acoustic-mode field is identified from Eq. (10.4.12) as (at r = a)

v̂C cos θ = v̂ac,r − (1 + i)
lvor

2

1

a sin θ

∂

∂θ
(v̂ac,θ sin θ). (10.6.16)

The above boundary condition is satisfied if we take the solution of the Helmholtz
equation in a form analogous to that adopted in Sect. 4.2:

p̂ = iωρv̂Ca
3B cos θ

∂

∂r

eik(r−a)

r
. (10.6.17)
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Fig. 10.8 Boundary
conditions and geometry for
discussion of radiation from a
transversely oscillating
sphere in a viscous fluid

The second of Eqs. (2) then requires that

v̂ac,r = a3v̂CB

(
cos θ

r3

)
(2 − 2ikr − k2r2)eik(r−a), (10.6.18a)

v̂ac,θ = a3v̂CB

(
sin θ

r2

)
(1 − ikr)eik(r−a). (10.6.18b)

The constant B is therefore identified from (16) as being such that

1 = (2 − 2ika − k2a2)B − (1 + i)
lvor

a
(1 − ika)B. (10.6.19)

This implies that in the limit of small ka the effect of viscosity on the pressure
amplitude is to multiply it by a factor

p̂withμ

p̂noμ
= 1

1 − (1 + i)(lvor/2a)
. (10.6.20)

For the thin-boundary-layer case, (lvor/a) 
 1, the magnitude of the above factor is
greater than 1, so viscosity increases the sound radiation, given that the amplitude
of oscillation remains constant. This is consistent with the Stokes-flow-limit result
(15), which predicts the amplitude to increase linearly with μ. An increase in
viscosity increases the force that the fluid exerts on the oscillating sphere; the
reaction to this force, equal and opposite, generates the sound; more force, more
sound.
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10.6.5 Gutin’s Principle

A principle38 implied by Eqs. (8) and (13) is that forces exerted on a surface generate
sound regardless of how such forces originate. Thus, if a flow past a cylinder39

(Fig. 10.9) generates sound (aeolian tones), one can regard it as being caused by the
reactions to the fluctuations of the forces, e.g., lift and drag, exerted by the unsteady
flow on the cylinder. Superposition of such forces yields

p(x, t) = −∇ ·
{

1

4π

∫ [
ρπa2v̇c

(
l, t−R

c

)
+ f

(
l, t−R

c

)]
1

R
dl

}
,

(10.6.21)
where

l = distance along cylinder

R = |x − xc(l)| = distance of listener from contributing element of cylinder

f (l, t) = force that element exerts per unit cylinder length on
surrounding fluid

If the cylinder is constrained not to move, one is left with just the force contribution.
The principle just described reduces the problem of determining the sound

field to the problem of determining the force. The latter, however, may be nearly
independent of the compressibility of the fluid, such that its analysis can be guided
by a model of incompressible flow. Even if the force is unsteady and random,
similitude considerations can yield gross predictions. For example, aeolian tones
of a nonmoving cylinder are usually of nearly constant frequency (for Reynolds
number between 50 and 104). The frequency should be a function of the nominal
steady-flow velocity U past the cylinder, of the fluid density ρ, of the viscosity μ,
of the cylinder diameter d = 2a, and of nothing else. Dimensional considerations40

then require that the Strouhal number,

S = f d

U
, (10.6.22)

38L. Gutin, “On the sound field of a rotating airscrew,” Phys. Z. Sowjetunion, 9:57–71 (1936).
39P. Leehey and C. E. Hanson, “Aeolian tones associated with resonant vibration,” J. Sound Vib.
13:465–483 (1970); O. M. Phillips, “The intensity of aeolian tones,” J. Fluid Mech. 1:607–624
(1956).
40J. W. S. Rayleigh, The Theory of Sound, vol. 2, 2d ed., 1896, reprinted by Dover, New York,
1945, pp. 412–414; V. Strouhal, “On a special type of tone excitation,” Ann. Phys. n.s., 5:216–
251 (1878); L. S. G. Kovásznay, “Hot-wire investigation of the wake behind cylinders at low
Reynolds numbers,” Proc. R. Soc. Lond. A198:174–190 (1969); T. von Kármán, “On the resistance
mechanism which a moving body in a fluid experiences,” Nachr. K. Ges. Wiss. Goettingen, Math.
Phys. Kl. 1912:547–556 (1912).
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Fig. 10.9 Concepts applicable to the generation of aeolian tones by flow past a cylinder. The
acoustic field can be regarded as being caused by the fluctuating portions of the forces (reactions
to lift and drag) exerted by the cylinder on the fluid

depend only on the Reynolds number Re = Uρd/μ. Experiments indicate that
S = 0.13 when Re = 50, it increases to 0.2 at Re = 300, and thereafter remains
nearly constant up to Re ≈ 104. Thereafter the sound is not narrow-band, so the
identification of a unique Strouhal number becomes difficult. The force is associated
with the alternate shedding of oppositely rotating vortices from the top and the
bottom of the cylinder. These vortices move downstream from the cylinder in an
array called the von Kármán vortex street.

10.6.6 Helicopter Rotor Noise

The classical application of Gutin’s principle is to sound radiation by a rotating
helicopter rotor (see Fig. 10.10). The simplest model41 considers the blades to be
infinitesimally thin and the lift and drag forces (caused by viscosity) on the blades
to be time-independent. The force exerted on the air, however, is fluctuating because
the blades are rotating. Thus, when the helicopter is hovering, the force per unit area

41For later work and improved models, see I. E. Garrick and E. W. Watkins, “A theoretical study
of the effect of forward speed on the free-space sound pressure field around helicopters,” NACA
TR1198, 1954; M. V. Lowson and J. B. Ollerhead, “A theoretical study of helicopter rotor noise,”
J. Sound Vib. 9:197–222 (1969); J. W. Leverton and F. W. Taylor, “Helicopter blade slap,” ibid.,
4:345–357 (1966); A. R. George, “Helicopter noise: state of the art,” J. Aircraft, 15:707–715
(1978).
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Fig. 10.10 Geometry and parameters adopted for discussion of sound radiation by x a helicopter
rotor

of rotor acting on the air due to blade n (defined such that its integral over an annular
segment of area wΔwΔφ is the force on that segment) is

w−1[−fL(w)ez + fD(w)eφ]δ(2π)(φ − φn − ωRt), (10.6.23)

where fL(w) and fD(w) are the lift and drag forces per unit blade length at radial
distance w from the hub. The function δ(2π)(φ) is defined so that it behaves like a
delta function near wherever its argument is an integer multiple of 2π . Thus it is
described formally by the Fourier series, as in Eq. (2.7.1),

δ(2π)(φ) = 1

2π

∞∑
ν=−∞

eiνφ. (10.6.24)

With the argument taken as φ − φn − ωnt , the singularities occur at the angular
position, φn + ωRt , mod 2π , of the nth blade, where ωR is the angular velocity of
the rotor.

With the forces on the air as described above, the superposition principle, in
conjunction with Eqs. (8) and (13), then leads to

p = − 1

4π
∇ ·

[∫ 2π

o

∫ L

o

f

(
l, φ′, t − R

c

)
1

R
ldldφ′

]
, (10.6.25)
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where

f (w, φ, t) =
NB∑
n=1

w−1[−fLez − (sinφ)fDex

+ (cosφ)fDey]δ(2π)(φ − φn − ωRt) (10.6.26)

represents the force per unit area of rotor plane exerted on the fluid by the NB blades.
Here L is the length of a blade and R is distance from the integration point.

If the blades are symmetrically spaced, so that φn = 2πn/NB , the sum over n of
the δ(2π)(φ − φn − ωRt) becomes, from Eq. (24),

NB

2π

∞∑
ν=−∞

exp
[
iν
(
φ − ωRt + ωR

c
R
)] Iν

NB

,

where

Iν

NB

= NB
−1

NB∑
n=1

e−i2πνn/NB

=
{

1 ν = integermultipleofNB

0 otherwise

Consequently, Eq. (25) reduces to

p =
∞∑

m=0

εmRe
{
p̂me

−iωmt
}
, (10.6.27)

where

p̂m = − 1

4π
∇ ·

[∫ 2π

o

∫ L

o

f̂m(l, φ
′)R−1eikmRldldφ′

]
, (10.6.28)

f̂m(w, φ) = NB

2π

1

w
[−fLez − (sinφ)fDex + (cosφ)fDey]eimNBφ. (10.6.29)

Here εm = 1 for m = 0 and εm = 2 for m ≥ 1; the quantity ωm = mNBωR is the
(m − 1)th harmonic of the blade-passage frequency, while km is ωm/c.

The far-field approximation results when R is replaced by r in the denominator
and by r− l sin θ cos(φ−φ′) in the exponential in Eq. (28). With subsequent discard
of terms smaller than 1/r resulting after the divergence operation, one obtains

p̂m = −eikmr

4πr
ikmer ·

[∫ 2π

o

∫ L

o

f̂m(l, φ
′)e−ikml sin θ cos(φ−φ′)ldldφ′

]
, (10.6.30)
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where er is the unit vector in the radial direction. The insertion, into the above, of
the expression in Eq. (29) subsequently yields

p̂m = i(−i)NkmNBe
ikmreiNφ

4πr

[
cos θ

∫ L

o

fL(l)JN(kml sin θ)dl

− N

km

∫ L

o

l−1fD(l)JN(kml sin θ)dl

]
. (10.6.31)

Here we abbreviate NBm by N and recognize that

iN

2π

∫ 2π

0
eiNφ′

e−iX cosφ′
dφ′ = JN(X) (10.6.32)

is the Bessel function of N th order.42

The above results imply that the received sound is composed of the blade-
passage frequency and its harmonics. On the axis itself (θ = 0) there is no pressure
fluctuation. Since

JN(X) ≈ (X/2)N

N ! , for X 
 1,

the fundamental (m = 1) dominates for points near the axis; the amplitude for small
θ varies as (sin θ)NB and with rotation frequency as (ωR)

NB .
Another implication is that the pressure amplitude should be roughly propor-

tional to the weight W of the helicopter. This follows from

W = NB

∫ L

o

fL(w)dw.

with the assumption that the length distributions of fL and fD and the lift-to-drag
ratio fL/fD do not vary with the weight carried by the helicopter.

42G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge University Press,
London, 1944, pp. 17, 20. Watson’s eq. (3), p. 20, leads to

JN(X) = 1

2π

∫ 5π/2

π/2
ei(Nθ−X sin θ)dθ,

which, with θ replaced by φ′ + π/2, yields Eq. (32) above. Note also that (32) implies, with sinφ′
replaced by (eiφ

′ − e−iφ′
)/2i,

iN

2π

∫ 2τ

o

(sinφ′)eiNφ′
e−iX cosφ′

dφ′ = 1

2i

[
1

i
JN+1(X) − iJN−1(X)

]
= −1

2

2N

X
JN(X),

where the second equality follows from Watson’s eq. (1), p. 17.
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These conclusions are not wholly valid for actual helicopter noise, but they serve
as convenient comparison standards in the discussion of data and of more realistic
models.

10.7 Relaxation Processes

The fluid-dynamic models resulting for different fluids43 when relaxation processes
are taken into account have some similarities, although the details vary from fluid to
fluid. In the present text, the analysis of relaxation processes is restricted to dilute
gases, but the relevant analogous results for water are cited.

10.7.1 Partitioning of Internal Energy

The internal energy u per unit mass of a parcel of gas can be regarded as a sum of
energies of individual molecules. Each molecule has a translational kinetic energy
(defined relative to the average flow velocity), a rotational kinetic energy, and an
energy of internal vibration (the latter two are negligible for a monatomic molecule)
that can be any one of a discrete set44 of possible values. Thus, we write

u = utr + urot +
∑
ν

uν, (10.7.1)

where uν is the vibrational energy, per unit mass of fluid, of all molecules of species
ν, for example, O2, N2,CO2, or H2O. At temperatures of nominal interest, most
molecules are in their ground vibrational state; uν is taken as zero if all are in the

43R. T. Beyer and S. V. Letcher. Physical Ultrasonics, Academic, New York, 1969, pp. 91–182; J. J.
Markham, R. T. Beyer, and R. B. Lindsay, “Absorption of sound in fluids,” Rev. Mod. Phys. 23:353–
411 (195l). Speculations that relaxation processes may play a role in sound propagation date back
to Rayleigh (1899), J. H. Jeans (1904), and A. Einstein (1920). Pertinent early experimental papers
are those of G. W. Pierce (1925), who discovered the anomalous frequency dependence of the
phase velocity of sound in air, and of V. O. Knudsen (1931, 1933), who gave the first precise
measurements of the absorption of sound in air and discovered its anomalous dependence on
humidity. The early theoretical explanations were developed by K. F. Herzfeld and F. O. Rice
(1928), H. O. Kneser (1931, 1933, 1935), and P. S. H. Henry (1932). Eight of these papers are
reprinted in R. B. Lindsay, Physical Acoustics, Dowden, Hutchinson and Ross, Stroudsburg, Pa.,
1974.
44This is a consequence of the quantum theory. Internal vibrations of a diatomic molecule are
analogous to those of a harmonic oscillator with natural angular frequency ων . The quantized
energy levels are (n+ 1

2 )(h/2π)ων , where h = 6.623×10−23J·s is Planck’s constant. Thus, kT ∗
ν is

(h/2π)ων . See, for example, E. C. Kemble, The Fundamental Principles of Quantum Mechanics,
McGraw-Hill, New York, 1937, pp. 155–157: L. I. Schiff, Quantum Mechanics, McGraw-Hill,
New York, 1955, pp. 60–62, 298–307.
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ground state. Then, with kT ∗
ν denoting the difference in energies between the ground

state and the first excited state, uν approximates to

uν = (n)
nν

n
fν1kT

∗
ν , (10.7.2)

where k = 1.380 × 10−23 J/K = Boltzmann’s constant; T ∗
ν = molecular constant,

K; n = total number of molecules per unit mass of fluid; nν/n = fraction of all
molecules that are of species ν; fν1 = fraction of molecules of species v in first
excited state.

The neglect of higher-order states presumes that T ∗
ν is much larger than the

ambient temperature.
When the fluid is in internal equilibrium at temperature T , the theory of

statistical thermodynamics requires that there be an average energy45 1
2kT for each

translational and rotational degree of freedom of a molecule. Thus, utr would be
3
2nkT and urot would be 1

2 (dof−3)nkT where dof is the average number of degrees
of freedom per molecule. If the fluid is not in internal equilibrium, we nevertheless
define apparent temperatures Ttr and Trot for translation and rotation, such that

utr = 3
2RTtr, urot = 1

2

5 − 3γ

γ − 1
RTrot. (10.7.3)

Here we have replaced nk by the gas constant R [287 J/(kg · K) for air] and dof by
2/(γ − 1).

Another prediction46 for a gas in internal equilibrium is that the vibrational
population ratio fν1/fν0 is exp(−T ∗

ν /T ). With this as a guide, we define the
apparent vibration temperature Tν for molecules of species ν such that

uν = nν

n
RT ∗

ν exp

(
−T ∗

ν

Tν

)
, (10.7.4)

where exp(−T ∗
ν /Tν) is presumed to be much less than 1.

If the gas is in equilibrium, Ttr, Trot, and the Tν are the same, so for any given
value of u, the ratios of the energies have definite values. If the actual ratios are not
appropriate for equilibrium, and if u is constant, the long-term tendency should be
so for energy to be transferred between deposition modes until eventually Ttr, Trot,

45A general proof is given by D. ter Haar, Elements of Statistical Mechanics, Rinehart, New York,
1954, pp. 30–32. The key assumption, dating back to Boltzmann (1871), is that the probability den-
sity function in generalized coordinate-momentum space is proportional to exp[−H(p, q)/kT ],
where H is the Hamiltonian.
46This is a consequence (ter Haar, Elements of Statistical Mechanics, pp. 22–25, 46–50) of the
quantum-mechanical version of the Boltzmann distribution, which requires the relative populations
of nondegenerate energy states to be proportional to exp(−En/kT ), where En is the energy level
associated with the nth state.
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and the Tν , are all equal. Processes by which this occurs are relaxation processes;
their characteristic time durations are relaxation times.

10.7.2 The Bulk Viscosity

The small departure of the rotational and translational modes of molecular motion
from mutual thermodynamic equilibrium can be taken into account with a bulk
viscosity μB . Since the molecular vibrational energies uν are much smaller than
utr or urot, an appropriate definition of an equivalent equilibrium temperature T for
the fluid when it is not in equilibrium is such that, from Eqs. (3),

utr + urot = RT

γ − 1
. (10.7.5)

For a dilute gas, kinetic theory predicts47 that the average normal stress is
− 2

3ρutr, so the pressure in the Navier–Stokes equation should be ρRTtr, rather than
ρRT ; this accordingly requires

σn = −ptr = −ρRTtr = −p + ρR(T − Ttr). (10.7.6)

An alternate expression for the second term results from examination of the time
rate of change of translational energy per unit mass. Conservation of energy, with
the neglect of heat conduction, then leads to

Dutr

Dt
+ ptr

D

Dt

1

ρ
= nṄcΔεtr = −Durot

Dt
, (10.7.7)

where Ṅc is the number of collisions any given molecule has per unit time and Δ εtr
(equal to −Δεrot) is the average translational energy gained in each such collision.
The quantity Δεtr should vanish if Ttr equals Trot, so it approximates for gases nearly
in equilibrium to βrotk(Trot − Ttr), where βrot depends on T only. On the left side
of (7), we approximate Ttr by T in the same spirit in substitutions from Eqs. (3)
and (6), obtaining to first order in the ratio of the derivatives of the thermodynamic
variables to Ṅc,

Trot − Ttr = 1

βrotRṄc

(
utr

u

Du

Dt
+ p

D

Dt

1

ρ

)
. (10.7.8)

47J. G. Kirkwood, “The statistical mechanical theory of transport rocesses, I: General theory,” J.
Chem. Phys. 14:180–201 (1946).
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But Du/Dt is approximately −pDρ−1/Dt , and Trot − Ttr approximates to
−(u/urot)(Ttr − T ) because of Eqs. (3) and (5), so

T − Ttr = 1

βrotRṄc

u2
rot

u2 p
D

Dt

1

ρ
. (10.7.9)

Also, conservation of mass requires Dρ−1/Dt to be ρ−1∇ ·v, so Eq. (6) reduces to

− σn = p − μB∇ · v, μB = p

βrotṄc

u2
rot

u2 . (10.7.10)

Since p = ρRT , and since Ṅc should be proportional to ρ at fixed T , the bulk
viscosity48 μB should be a function of temperature only. Also, the bulk viscosity
should be zero for a monatomic gas, since urot = 0 for such a gas.

10.7.3 Instantaneous Entropy Function

At any given instant, one can associate with the fluid an instantaneous entropy
function49 s(u, ρ−1, Tν) such that

T ds = du + pdρ−1 +
∑
ν

AνdTν, (10.7.11)

where the affinities Aν are defined by this equation. The statistical-thermodynamics
definition of entropy in terms of probabilities of molecules being in various states,
in conjunction with the assumption that the vibrational states are statistically
independent of the translational and rotational energies, requires50

s = sfr(utr + urot,ρ
−1) +

∑
ν

sν(Tν), (10.7.12)

48The mechanism (structural relaxation) underlying water’s bulk viscosity has a different physical
origin; L. Hall, “The origin of ultrasonic absorption in water,” Phys. Rev. 73:775–781 (1948).
49This is a chief tenet of irreversible thermodynamics. See, for example, S. R. de Groot and P.
Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962. The analysis in the
present text is similar to that developed by J. Meixner, “Absorption and dispersion of sound in
gases with chemically reacting and excitable components,” Ann. Phys. (5)43:470–487 (1943);
“General theory of sound absorption in gases and liquids under the consideration of transport
phenomena,” Acustica 2:101–109 (1952); “Flows of fluid media with internal transformations and
bulk viscosity,” Z. Phys. 131:456–469 (1952).
50This follows from a formulation given by L. D. Landau and E. M. Lifshitz, Statistical Physics,
Pergamon, London, 1959, pp. 116–119.
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where sfr is the entropy that would result were the vibrational degrees of freedom
frozen and sν is the entropy associated with the internal vibrations of the νth species
of molecules. The former satisfies

T dsfr = d(utr + urot) + pdρ−1,

which, with utr + urot = cv,frT and p = ρRT , integrates to

sfr = cv,fr ln

(
u −

∑
ν

uν

)
+ R ln ρ−1 + const. (10.7.13)

Here cv,fr, identified as R/(γ − 1) from Eq. (5), is the coefficient of specific heat
at constant volume when the vibrational degrees of freedom are frozen. The sν are
such that Tνdsν = duν , so Eq. (4), with T ∗

ν � Tν , yields sν ≈ uν/Tν . The affinity
Aν is consequently identified, from Eqs. (11) to (13), as

Aν = T

( −cv,fr

utr + urot

duν

dTν
+ 1

Tν

duν

dTν

)
=
(
T

Tν
− 1

)
cvν, (10.7.14)

where

cvν = duν

dTν
= nv

n
R

(
T ∗
ν

Tν

)2

e−T ∗
ν /Tν (10.7.15)

is the specific heat associated with the internal vibrations of the ν-type molecules.

10.7.4 Fluid-Dynamic Equations with Relaxation lncluded51

In regard to the energy equation (10.1.12), Eqs. (10) and (11) allow us to write

Du

Dt
− σn

Dρ−1

Dt
= T

Ds

Dt
−
∑
ν

Aν

DTν

Dt
− μB∇ · v

Dρ−1

Dt
. (10.7.16)

Since Dρ−1/Dt is ρ−1∇ ·v and since ∇ ·q is T∇ ·(q/T )+ (q/T ) ·∇T , the above
transforms Eq. (10.1.12) into the entropy-balance equation

ρ
Ds

Dt
+ ∇ · q

T
= σS, (10.7.17)

51Equations (16) to (19) apply to other fluids (including seawater) if the Tν are replaced by
appropriate “internal variables” nν . For freshwater, no internal variables are needed if a bulk
viscosity is included in the formulation.
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where

T σS = μB(∇ · v)2 + 1
2μ
∑
ij

φ2
ij + κ

T
(∇T )2 + ρ

∑
ν

Aν

DTν

Dt
. (10.7.18)

Similarly, the Navier–Stokes equation (10.1.14), with the introduction of the bulk
viscosity, becomes

ρ
Dv

Dt
= −∇p + ∇(μB∇ · v) + μ

∑
ij

ei
∂φij

∂xj
. (10.7.19)

An alternate version of Eq. (17) resulting with the substitution,52 sfr + Σsν , for
s, is

ρ
Dsfr

Dt
+
∑
ν

ρ

Tν
cvν

DTν

Dt
− ∇ ·

( κ
T

∇T
)

= σS. (10.7.20)

52For liquids, an appropriate decomposition is

s(u, ρ−1, nν) ≈ seq(p, ρ−1) + Δs,

where seq(p, ρ
−1) is the equilibrium value that corresponds to the local instantaneous value of p

[as defined by Eq. (11) with Tν replaced by nν ]; the quantity Δs is of first order in the Aν . For
seawater, where the relaxation processes are chemical, a simplified model takes Δs = Δs1 +Δs2,
with

Δsν = cp(ΔK−1
T )ν

βT
Δξν, ρAν

Dnν

Dt
= (ΔK−1

T )ν
(Δξν)

2

τν
, Δξν = nν − neν(p, T )

∂neν(p, T )/∂p
,

where the Δξν satisfy the relaxation equations
(

D

Dt
+ 1

τν

)
Δξν = −Dp

Dt
.

The quantity n1 is the number of dissolved B(OH)3 (boric acid) molecules per unit mass of
water as a whole that are in the fully associated state (rather than being broken into two spatially
separated ions); n2 is the analogous number of dissolved MgSO4 (magnesium sulfate) molecules;
the superscript e denotes the equilibrium value. In the above relations, β is the coefficient of
volume expansion; (ΔK−1

T )ν is the contribution of the dissolved molecules of species ν to the
isothermal compressibility (reciprocal of bulk modulus). The theory that a pressure-dependent
chemical reaction can cause absorption and dispersion of sound is due to L. N. Liebermann,
“Sound propagation in chemically active media,” Phys. Rev. 76:1520–1524 (1949) and was further
developed by M. Eigen and K. Tamm, “Sound absorption in electrolyte solutions as a sequence of
chemical reactions,” Z. Elektrochem. 66:93–121 (1962). The identifications of MgSO4 and B(OH)3
as the principal contributors to relaxation processes in seawater are due to O. B. Wilson, Jr. and
R. W. Leonard, “Sound absorption in aqueous solutions of magnesium sulfate and in sea water,” J.
Acoust. Soc. Am. 23:624A (1951) and to E. Yeager, F. Fisher, J. Miceli, and R. Bressel, “Origin of
the low-frequency sound absorption in sea water,” ibid. 53:1705–1707 (1973).
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Note that if sfr is regarded as a function of any two of the variables p, ρ, or T , then
it is independent of the Tν . The thermodynamic identities relating sfr, p, T , and ρ

are the same as when there are no molecular vibrations.

10.7.5 The Relaxation Equations

The fluid-dynamic model must be supplemented by one additional equation for
each vibrational temperature Tν included as a thermodynamic variable. (For air,
detailed experiments and calculations53 based on molecular kinetics suggest it is
sufficient to include only the temperatures associated with O2 and N2 vibrations.)
The appropriate additional equations evolve from the counterpart of Eq. (7) for
Duν/Dt ,

Duν

Dt
= cuν

DTν

Dt
= nνṄcνΔεν, (10.7.21)

where Ṅcν is the number of collisions a molecule of type ν has per unit time. The
average vibrational energy Δεν acquired per collision depends on the differences
T −Tν and Tν′ −Tν , but since the bulk of the energy resides in molecular translation
and rotation, we set Δεν = βνk(T − Tν) and thereby assume that it is independent
of the other vibrational temperatures. This yields the relaxation equation54

DTν

Dt
= 1

τν
(T − Tν), withτν = cvν

nνkβνṄcν

. (10.7.22)

The above equation implies that if T is suddenly increased by an increment
ΔT , a time τν will lapse before the incremental change in Tν is (1 − e−1)ΔT .
Consequently, τν is the relaxation time for the vibrational energy of type ν. Since
τν is inversely proportional to Ṅcν , and since the latter is proportional to p or to ρ

when T and the relative molecular proportions are held constant, the relaxation time
τν is inversely proportional to the pressure at fixed T . As explained further below,
1/2πτν is called the relaxation frequency.

53J. E. Piercy, “Noise Propagation in the Open Atmosphere,” pap. presented at 84th Meet. Acoust.
Soc. Am., Miami Beach, Fl., November 1972; and L. C. Sutherland, J. E. Piercy, H. E. Bass, and L.
B. Evans, “A Method for Calculating the Absorption of Sound in the Atmosphere,” pap. presented
at 88th Meet., St. Louis, Mo., November 1974, rev. November 1975. The analysis in these papers
constitutes part of the background for the absorption calculation procedure in ANSI Standard
S1.26/ASA23-1978, American National Standard Method for the Calculation of the Absorption of
Sound by the Atmosphere. More extensive models are described by L. B. Evans, H. E. Bass, and
L. C. Sutherland, “Atmospheric absorption of sound: theoretical predictions,” J. Acoust. Soc. Am.
51:1565–1575 (1972), and by H. E. Bass, H.-J. Bauer, and L. B. Evans, “Atmospheric absorption
of sound: analytical expressions,” ibid. 52:821–825 (1972).
54K. F. Herzfeld and F. O. Rice, “Dispersion and absorption of high frequency sound waves,” Phys.
Rev. 31:691–695 (1928).
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10.7.6 Numerical Values for the Constants of the Model

For air, the viscosity μ and the thermal conductivity κ are as given in Sect. 10.1; the
bulk viscosity μB deduced from acoustic absorption data reported by Greenspan is
such that55

μB = 0.60μ (10.7.23)

Greenspan’s experiments were carried out at room temperature, but it is believed
that the ratio μB/μ should be relatively insensitive to temperature variations.56

The characteristic molecular-vibration temperatures57 T ∗
ν (ν = 1, 2) for O2 and

N2 are 2239 and 3352 K. The corresponding fractions nν/n are approximately 0.21
and 0.78 for air. These numbers, when inserted into Eq. (15), lead to the following
values:

T , ◦C −10 0 10 20 30 40

cv1/R 0.0031 0.0039 0.0048 0.0059 0.0071 0.0084

cv2/R 0.00037 0.00055 0.00079 0.00118 0.00150 0.00201

The relaxation times τ1 and τ2 are sensitive to the fraction h of air molecules
that are H2O molecules; an O2 molecule or an N2 molecule colliding with a H2O
molecule is much more likely to experience a change in vibrational energy than
when colliding with another O2 or N2 molecule. Experimental data and calculations
carried out for a CO2 fraction of 3.1 × 10−5 (representative of normal air) yield the
semiempirical formulas58 (see Fig. 10.11)

pref

p

1

2πτ1
= 24 + 4.41 × 106h

0.05 + 100h

0.391 + 100h
, (10.7.24a)

55M. Greenspan, “Rotational relaxation in nitrogen, oxygen, and air,” J. Acoust. Soc. Am. 31:155–
160 (1959); P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972, pp.
230–232; Bass, Bauer, and Evans, “Atmospheric absorption . . . : analytical expressions.”
56The ratio μB/μ for water is nearly independent of temperature, ranging from 3.01 to 2.72 as T

varies from 0 to 60 ◦C. Experimental results are given by J. M. M. Pinkerton, “A Pulse Method for
the Measurement of Ultrasonic Absorption in Liquids: Results for Water,” Nature, 160:128–129
(1947). Other constants appropriate for seawater are cited further below, p. 558n.
57These are the values used in the ANSI Standard, American National Standard for the Calculation
of the Absorption of Sound in the Atmosphere, 1978.
58The first relation is due to J. E. Piercy, “Comparison of Standard Methods of Calculating the
Attenuation of Sound in Air with Laboratory Measurements,” presented orally to 82nd Meet.
Acoust. Soc. Am., Denver, Co., October 1971; the second is due to Sutherland, Piercy, Bass,
and Evans. “A method for calculating the absorption of sound” and is based in major part on
experimental data of C. M. Harris and W. Tempest (1965).
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Fig. 10.11 Relaxation frequencies f1 = 1/2πτ1 and f2 = 1/2πτ2 versus water-vapor fraction h

for O2 and N2 internal vibrations in air at atmospheric pressure

pref

p

1

2πτ2
=
(
Tref

T

)1/2

(9 + 3.5 × 104he−F ), (10.7.24b)

F = 6.142

[(
Tref

T

)1/3

− 1

]
, (10.7.24c)

where pref = 1.013 × 105 Pa and Tref = 293.16 K. (These equations should be
accurate to within 10% between 0 and 40 ◦C.) The relative humidity RH (expressed
as percentage) is defined such that
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h = 10−2(RH)pvp(T )

p
, (10.7.25)

where pvp(T ) is the vapor pressure of water at temperature T . Representative values
of pvp(T ) are

T , ◦C 5 10 15 20 30 40

pvp(T ), Pa 872 1228 1705 2338 4243 7376

10.8 Absorption of Sound

10.8.1 Linear Acoustic Equations for Air

For a homogeneous quiescent medium, the equations developed in the previous
section, with the neglect of nonlinear terms, yield59

∂ρ′

∂t
+ ρo∇ · v = 0, (10.8.1a)

ρo
∂v

∂t
= −∇p + μB∇(∇ · v) + μ

∑
ij

ei
∂φij

∂xj
, (10.8.1b)

ρo
∂sfr

∂t
+
∑
ν

( ρ
T

)
o
cvν

∂Tν

∂t
− κ

To
∇2T ′ = 0, (10.8.1c)

∂Tν

∂t
= 1

τν
(T ′ − Tν), (10.8.1d)

ρ′ = 1

c2 p −
(
ρβT

cp

)
o

sfr, (10.8.1e)

59For seawater, the corresponding versions of (1c) and (d), resulting from the relations on p. 632n.,
are

ρo
∂s′

eq

∂t
+
∑
ν

[
ρcp(ΔK−1

T )ν

βT

]
o

∂(Δξν)

∂t
= κ

To
∇2T ′, (i)

(
∂

∂t
+ 1

τν

)
Δξν = − ∂p

∂t
. (ii)

Equations (1e) and (1f ) remain unchanged except that sfr should be replaced by s′
eq. Whether the

thermodynamic coefficients are evaluated at the equilibrium state or the frozen state makes little
quantitative difference in the predictions.
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T ′ =
(

Tβ

ρcp

)
o

p +
(
T

cp

)
o

sfr, (10.8.1f)

φij = ∂vi

∂xj
+ ∂vj

∂xi
− 2

3∇ · vδij . (10.8.1g)

Here Eq. (1a) is a restatement of the linearized version of the conservation-of-mass
equation; Eqs. (1b) to (1d) are the linearized versions of Eqs. (10.7.19) to (10.7.21);
Eqs. (1e) to (1g) are restatements of Eqs. (10.2.1a), (10.2.1b) and (10.1.10). The
primes on v′, p′, s′

fr, and T ′
ν have been deleted, so sfr, for example, here represents

the deviation from its ambient value of the entropy for the gas when molecular
vibrations are frozen. The thermodynamic coefficients in Eqs. (1e) and (1f ) are
those appropriate to such a frozen state, although the deviations from the values
appropriate to a gas in thermodynamic equilibrium are slight. For a gas, β is 1/To,
cp is γR/(γ − 1), c2 is γRTo, and γ is (dof + 2)/dof.

10.8.2 Energy Corollary

An energy-conservation-dissipation theorem,

∂w

∂t
+ ∇ · I = −D (10.8.2)

also holds for the model represented by Eqs. (1). A derivation similar to that
described in Sect. 10.2 leads to the identifications

w = 1
2ρov

2 + 1

2

p2

ρoc2 + 1

2

(
ρT

cp

)
o

s2
fr +

∑
ν

1

2

(ρcvν
T

)
o
T 2
ν , (10.8.3a)

I = pv − μBv(∇ · v) − μ
∑
ij

viφijej − κT −1
o T ′∇T ′, (10.8.3b)

D = μB(∇ · v)2 + 1

2
μ
∑
ij

φ2
ij + κT −1

o (∇T )2 +
∑
ν

(
ρocvν

T τν

)
o

(T ′ − Tν)
2,

(10.8.3c)

Thus, the molecular vibrations contribute additive terms to the acoustic energy
density and to the rate D of acoustic-energy dissipation60 per unit volume.

60M. J. Lighthill, “Viscosity effects in sound waves of finite amplitude,” in G. K. Batchelor and
R. M. Davies (eds.), Surveys in Mechanics, Cambridge University Press, London, 1956, eqs. (13),
(18), and (63).
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10.8.3 Dispersion Relation for Plane Traveling Waves

The bulk viscosity and the vibrational relaxation terms in Eqs. (1) are of significance
only for the acoustic mode. Here we examine the changes these terms necessitate
in the corresponding dispersion relation. Setting v = vex , v = Rev̂eikxe−iωt , T ′ =
ReT̂ eikxe−iωt , etc., we find that Eqs. (1a) and (1b) imply

k2p̂ =
(
ω2 + iωk2 μB + 4

3μ

ρ0

)
ρ̂, (10.8.4)

while Eqs. (1c) and (1d) imply

iωρoŝfr =
[( κ

T

)
o
k2 −

(
iωρ

T

)
o

∑ .

cvν
1 − iωτν

]
T̂ . (10.8.5)

Also, Eqs. (1e) and (1f ) lead to

ρ̂ = p̂

c2 − (βT /cp)
2
0(ŝfr/T̂ )p̂

1 − (T /cp)0(ŝfr/T̂ )
, (10.8.6)

where (βT /cp)
2
o is recognized as being (γ − 1)To/cpc2. Then, with Eq. (4), we

obtain the dispersion relation

k2

ω2 + iωk2(μB + 4
3μ)/ρ0

= 1

c2 − (γ − 1)To(ŝfr/T̂ )/cpc
2

1 − (T /cp)o(ŝfr/T̂ )
, (10.8.7)

where ŝfr/T̂ is as given by Eq. (5).
For the acoustic mode, k2 is approximately ω2/c2, and for the frequencies of

interest we can assume that ωκ/ρocpc2 
 1 and ωμ/ρoc
2 
 1; it is also true that

cvν/cp 
 1. Consequently, we ignore terms of second order in these quantities.
This implies that the denominator in the second term on the right side of Eq. (7) can
be set to 1 and that when both sides are multiplied by the denominator on the left
side, terms involving products of μB and μ with κ and the cvν can be discarded; the
algebraic steps therefore yield

k2 = ω2

c2 + iω3 μB + 4
3μ + (γ − 1)κ/cp

ρ0c4 + (γ − 1)
ω2

c2

∑
ν

cvν/cp

1 − iωτν
, (10.8.8)
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which in turn has the approximate square root61

k = ω

c
+ iα′

cl + 1
2 (γ − 1)

ω

c

∑
ν

cvν/cp

1 − iωτν
, (10.8.9)

= ω

co
+ iα′

cl + 1
2 (γ − 1)

ω

c

∑
ν

cvν

cp

iωτν

1 − iωτν
, (10.8.9a)

= ω

co
+ iα′

cl + 1

π

ω

c

∑
ν

(ανλ)m
iωτν

1 − iωτν
, (10.8.9b)

where

co = c

1 + π−1
∑
ν

(ανλ)m
, (10.8.10a)

(ανλ)m = π

2

(γ − 1)cvν
cp

, (10.8.10b)

α′
cl = ω2μ

2ρ0c3

[
4

3
+ μB

μ
+ (γ − 1)κ

cpμ

]
= ω2

c3 δ′
cl. (10.8.10c)

Since k/ω in the limit as ω → 0 is 1/co, the speed co is the phase velocity in
the limit of zero frequency and represents the equilibrium sound speed, while c here
represents the phase velocity (frozen sound speed) in the high-frequency limit where
ωτν � 1 for each relaxation time τν . Note also that α′

cl is the classical absorption
coefficient of Eq. (10.2.12) with 4

3 replaced by 4
3 + μB/μ.

10.8.4 Absorption by Relaxation Processes

The absorption coefficient (nepers per meter), represented by the imaginary part of
the expression (9b) for k, decomposes into

61A comparable derivation based on the linear acoustic equations for seawater leads also to a
dispersion relation of the form of Eq. (9b) but with

(ανλ)m = π

2
ρoc

2(ΔK−1
T )ν,

where (ΔK−1
T )ν is the contribution of the dissolved molecules of species v to the isothermal

compressibility (see p. 632n.). In both cases the co in Eq. (9b) is the phase velocity in the limit of
zero frequency.
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Fig. 10.12 (a) Frequency dependence of absorption per wavelength for a single relaxation process.
(b) Variation of phase velocity with frequency. Horizontal axis is frequency in units of the
relaxation frequency

α = α′
cl +

∑
ν

αν, αν = 1

λ
(ανλ)m

2ωτν
1 + (ωτν)2 , (10.8.11)

so that (see Fig. 10.12)

ανλ

(ανλ)m
= 2

fν/f + f/fν
,

f

fν
= ωτν. (10.8.12)

Here λ = 2πc/ω is the nominal wavelength of sound of angular frequency ω, so ανλ

is the attenuation (in nepers) due to the ν-type relaxation process for propagation
through a distance of 1 wavelength. Since 2ωτν/[1 + (ωτν)

2] has a maximum value
of 1, occurring when ωτν = 1, the quantity (ανλ)m is the maximum absorption per
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wavelength associated with the ν-type relaxation process. Typical values62 for air at
20 ◦C are 0.0059(π/2)(γ − 1)2/γ = 0.0011 for (α1λ)m (O2 vibrational relaxation)
and 0. 00118(π/2)(γ − 1)2/γ = 0.0002 for (α2λ)m (N2 vibrational relaxation).

The frequency dependence of αν indicated by Eq. (12) is characteristic of
attenuation coefficients associated with relaxation processes. The quantity αν

increases monotonically with ω, but ανλ has a maximum. At low frequencies,
ω 
 1/τν , αν increases quadratically with ω so that

αν ≈ τν

πc
(ανλ)mω

2, ω 
 1

τν
, (10.8.13)

while at high frequencies it approaches a constant value,

αν ≈ (ανλ)m

πcτν
, ω � 1

τν
. (10.8.14)

The transition between these two limiting expressions occurs near the relaxation
frequency fν . If the fν are all widely spaced, they and the corresponding values
(ανλ)m can be identified from an experimental tabulation of α versus ω. If, for
example, there are two relaxation frequencies f1 and f2, with f1 > 8f2, then a
log-log plot (see Fig. 10.13) of α versus f will resemble straight lines with slope
d(lnα)/d(ln f ), equal to 2 over the frequency intervals of 0 < f < f2/2, 2f2 <

f < f1/2, and 2f1 < f . As one moves upward in frequency, the successive line
segments will be displaced downward, although α will increase monotonically with
frequency f . From the highest-frequency segment, one identifies the coefficient
α′

cl/f
2. Then a plot of (α − α′

cl)λ versus f should have a peak value of (α1λ)m at

62For seawater, an analysis by F. H. Fisher and V. P. Simmons, “Sound absorption in sea water,” J.
Acoust. Soc. Am. 62:558–564 (1977), suggests the values

α′
cl

f 2 =(55.9−2.37TC + 0.0477T 2
C − 0.000348T 3

C)(1 − 3.84 × 10−4P + 7.57 × 10−8P 2)×10−15,

2

c
(α1λ)m = S

35
(1.03 + 0.0236TC − 0.000522T 2

C) × 10−8,

2

c
(α2λ)m = S

35
(5.62 + 0.0752TC)(1 − 10.3 × 10−4P + 3.7 × 10−7P 2) × 10−8,

f1 = 1

2πτ1
= 1320T e−1700/T , f2 = 1

2πτ2
= 15.5 × 106T e−3052/T .

Here the subscripts 1 and 2 refer to boric acid B(OH)3 and magnesium sulfate MgSO4,
respectively. The quantities Tc and P represent temperature in degrees Celsius and pressure in
atmospheres (1atm = 1.01325 × 105 Pa), while T is absolute temperature (Tc + 273); the quantity
S is salinity in parts per thousand. Estimated uncertainties in the expressions for (α1λ)m and f1
are of the order of ±10% and ±25%, while those for (α2λ)m and f2 are of the order of ±5% and
±4%; that for α′

cl/f
2 is of the order of ±4%. Fisher and Simmons point out also that there are

unresolved discrepancies between the model’s predictions and field measurements.
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Fig. 10.13 Log-log plot of sound-absorption coefficient versus frequency for sound in air at 20 ◦C
at 1 atm pressure and with a water-vapor fraction h of 4.676 × 10−3 (RH = 20%). The two
relaxation frequencies are 12,500 Hz (O2) and 173 Hz (N2)

a frequency f1. [This presumes that (α2λ)mf2 is substantially less than (α1λ)mf1.]
Then, to determine (α2λ)m and f2 one plots (α − α′

cl − α1)λ versus f , where α1 is
taken from Eq. (12).

In the low-frequency limit, the absorption due to a relaxation process is indistin-
guishable from that due to an additional increment

ΔμB = 2ρoc2τν

π
(ανλ)m (10.8.15)
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being added to the bulk viscosity.63 Consequently, the apparent bulk viscosity within
a given frequency range is composed of contributions from all relaxation processes
whose relaxation frequencies are higher than the upper limit of that frequency
range. In the model described in the preceding section for air, μB was ascribed
to rotational relaxation; since the rotational relaxation frequency is much higher
than any acoustical frequency of interest, the inclusion of this process with the bulk
viscosity is appropriate.

10.8.5 Phase-Velocity Changes Due to Relaxation Processes

A fundamental property of a relaxation process is that different frequencies propa-
gate with different phase velocities, so the propagation is dispersive. Taking the real
part kR of the k in Eq. (9b) and neglecting second-order terms in (kR −ω/c)/(ω/c).
we find

ω

kR
= vph = co + c

π

∑
ν

(ανλ)mω
2τ 2

ν

1 + ω2τ 2
ν

, (10.8.16)

= c − c

π

∑
ν

(ανλ)m

1 + ω2τ 2
ν

, (10.8.16a)

where co and c, as noted previously, are the low- and high-frequency limits of
the phase velocity. Thus, with increasing frequency, the phase velocity increases
monotonically from co to c. Over any frequency decade centered at an isolated
relaxation frequency, the phase velocity increases (see Fig. 10.12) by an increment
Δcν equal to (c/π)(ανλ)m. In air at 20 ◦C, the corresponding increments are 0.11
and 0.023 m/s for the O2 and N2 vibrational relaxation processes, respectively.

For gases, the two limiting sound speeds are associated with the values γo and γfr
of the specific-heat ratio γ appropriate to the equilibrium and frozen states, given
by

γo = cp,fr + �cuν

cv,fr + �cvν
, γfr = cp,fr

cv,fr
, (10.8.17)

where cp,fr and cv,fr are the specific heats that result when the molecular vibrations
are frozen. The corresponding sound speeds, co and cfr, are (γoRT )1/2 and
(γfrRT )1/2. [The latter is what is denoted by c in Eqs. (9) and (10).] From this

63L. Tisza, “Supersonic absorption and Stokes’s viscosity relation,” Phys. Rev. 61:531–536 (1942);
J. Meixner, “Flows of fluid media with internal transformations and bulk viscosity,” Z. Phys.
131:456–469 (1952).
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point of view,64 the phase velocity in Eqs. (16) can be regarded as the sound speed
in a gas whose apparent specific-heat ratio increases monotonically from γo to γfr
as ω ranges from 0 to ∞.

10.9 Problems

10.1 Suppose Eqs. (10.1.16) with particular choices of μo, κo, and To yield values
of μ′

o and κ ′
o at temperature T ′

o. Prove that the predicted values of μ and κ at
any third temperature T are unchanged when μo, κo, and To are replaced by
μ′
o, κ

′
o, and T ′

o.
10.2 What fractional error (order of magnitude) would result in the plane-wave

attenuation coefficient of water if thermal conduction is neglected at the
outset?

10.3 Show that the components of the viscous portion of the stress tensor are given
in spherical coordinates by

σrr = 2μ

(
∂vr

∂r
− 1

3∇ · v

)
, σθθ = 2μ

(
1

r

∂vθ

∂θ
+ vr

r
− 1

3∇ · v

)
,

σφφ = 2μ

(
1

r sin θ

∂vφ

∂φ
+ vr

r
+ vθ cot θ

r
− 1

3∇ · v

)
,

σrθ = μ

(
r
∂

∂r

vθ

r
+ 1

r

∂vr

∂θ

)
, σrφ = μ

(
1

r sin θ

∂vr

∂φ
+ r

∂

∂r

vφ

r

)
,

σφθ = μ

(
sin θ

r

∂

∂θ

vφ

sin θ
+ 1

r sin θ

∂vθ

∂φ

)
.

10.4 A model for explaining sonically induced rises in ambient temperature takes
the ambient temperature to satisfy

ρcp
∂T

∂t
− ∇ · (κ∇T ) = Dac,

where Dac is the acoustic energy dissipated per unit time and volume.
Discuss a possible rationale for this equation, starting from the Navier–
Stokes-Kirchhoff fluid dynamic model of Sect. 10.1. Suppose plane waves
are at normal incidence from a first medium, with negligible attenuation and
thermal conductivity, onto a second medium, within which the attenuation is
α Np/m and the thermal conductivity is κ . If the intensity of the incident wave

64H. O. Kneser, “The dispersion theory of sound,” Ann. Phys. (5)20:761–776 (1931); P. S. H.
Henry, “The energy exchanges between molecules,” Proc. Camb. Phil. Soc. 28:249–255 (1932).
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is I (time-averaged), and if ρc for both media are the same, what steady-state
temperature perturbation can be expected in medium 2? (Assume αλ 
 1.)

10.5 (a) Show that the acoustic pressure in a plane wave propagating in the +x

direction through a medium for which Eqs. (10.2.1) and (10.2.2) are
applicable approximately satisfies either

∂p

∂x
+ 1

c

∂p

∂t
+ δcl

c3

∂2p

∂t2 = 0, or
∂p

∂x
+ 1

c

∂p

∂t
+ δcl

c

∂2p

∂x2 = 0.

(b) Hence show that if p is given by f (x) at t = 0, then

p(x, t) =
∫ ∞

−∞
G(x − ct − ξ, 4tδcl)f (ξ)dξ,

where

G(x, y2) = (πy2)−1/2e−(x/y)2.

(c) Suppose that f (x) is P sin(πx/L) for x between −L and L and is 0 for
other values of x. Take L to be 10δcl/c. Determine the pulse’s waveform
versus x at a time such that (4tδcl)

1/2 is 3L. Make any approximations
that seem appropriate and if necessary evaluate the integral numerically.
Sketch your result.

10.6 The superposition principle requires that the energy-conservation-dissipation
theorem, Eq. (10.2.4), hold for the acoustic-, vorticity-, and entropy-mode
fields separately. Show that this is so and give the appropriate expressions for
w, I , and D for each of the mode fields in as simple a form as possible that is
consistent with the approximations entailed in the tabulations in Sect. 10.3.

10.7 A large flat immovable surface of a solid with high thermal conductivity
is adjacent to a fluid with thermal conductivity κ , sound speed c, ambient
density ρ, specific-heat ratio γ , coefficient of volume expansion β, and
coefficient cp of specific heat at constant pressure. The surface temperature
of the solid is made to oscillate about ambient temperature To with a
deviation (ΔT )S cosωt . Determine the resulting acoustic disturbance within
the fluid at large distances from the surface to lowest nonvanishing order in
κ and (ΔT )S .

10.8 A plane wave of constant frequency is incident on a rigid immovable sphere
for which ka 
 1 but a/lvor � 1. Estimate, to lowest nonvanishing order
in μ and ka, how much energy is dissipated per unit time in the viscous
boundary layer when the incident wave’s time-averaged intensity is I . (The
ratio of these two quantities is the absorption cross section.)

10.9 Estimate the attenuation in nepers per meter of the higher modes in a
rectangular duct. Assume that the attenuation is due solely to thermal- and
viscous-energy dissipation within the boundary layers at the duct walls. Use
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Eq. (10.5.2) as a starting point and replace ∇p̂ ·nwall by iωρv̂ac ·nwall, where
the latter is identified from Eq. (10.4.12). Take

p̂ = ψ̂(x) cos
nyπy

Ly

cos
nzπz

Lz

,

and derive from the variational principle a differential equation for ψ̂(x)

whose solution of the form eikx determines α = Imk.
10.10 A Helmholtz resonator resembling a bottle with a long neck has a resonance

frequency of 250 Hz and a neck 5 cm long with a 1-cm inner diameter. Use
one of the models discussed in Sect. 10.5 for sound waves in tubes to estimate
the resistive part of the acoustic impedance of the resonator. Assuming that
the resonator is in air at 27 ◦C, determine which is dominant: loss of energy
through viscous friction or through radiation out the mouth. What is the Q

of the resonator?
10.11 How should the absorption coefficient in Eq. (10.5.25) for reflection from a

thick slab with cylindrical holes be modified when the angle of incidence θi
is not zero?

10.12 Modify the model leading to Eq. (10.5.25) to account for the finite thickness
h of the slab. Determine an expression for the transmission loss of the slab.

10.13 (a) If a flat rigid surface of extensive area is oscillating tangential to itself
with displacement Reξ̂ e−iωt , show that the force exerted on the adjacent
fluid per unit area of surface is

f = −ωμ

lvor
Re[(1 + i)ξ̂ e−iωt ],

where lvor → (2μ/ωρ)1′2.
(b) Estimate the force exerted on the adjoining fluid by a thin circular disk

of radius a that is oscillating in such a manner in the limit a � lvor.
(Assume a laminar boundary layer.)

(c) Given that ka 
 1, what would be the far-field acoustic pressure and the
time-averaged radiated acoustic power for the circumstances of (b)?

10.14 Given that the force amplitude on a cylinder immersed in a nominally steady
flow is nearly independent of viscosity over a wide range of Reynolds
number, how should the radiated acoustic power associated with the aeolian
tone vary with the nominal velocity of the flow past the cylinder?

10.15 A steady flow past an obstacle of characteristic dimension a causes a
radiation of sound. Assume that Gutin’s principle applies and that the
frequencies of interest are such that ka 
 1. If the Reynolds number of the
incoming flow is held constant, how would you expect the radiated acoustic
power to vary with the velocity (much slower than the sound speed) of the
flow? Devise a similitude theory for the sound radiation that expresses the
spectral density of the far-field acoustic pressure in terms of dimensionless
parameters, including the Strouhal number f a/U and the Reynolds number
Uρa/μ.



10.9 Problems 647

10.16 The m = 0 term in the far-field acoustic pressure of a helicopter rotor is
responsible for the transmission of the helicopter weight W to the ground. A
helicopter’s rotor has six blades, each 6 m long, and is rotating at 200 r/min;
it slowly flies at 100 m altitude over the ground. If the helicopter mass is
3000 kg, what would you estimate as the nonoscillating part of the pressure
increment at the ground caused by the helicopter’s passage?

10.17 Some additional simplification in the helicopter-noise model discussed in
Sect. 10.6 results when fL(l) and fD(l) are assumed to be concentrated
at radial distance Leff such that fL(l) = (W/NB)δ(l − Leff), fD(l) =
fL(l)/RL/D , where RL/D ≈ 0.2 is the lift-to-drag ratio. For such circum-
stances determine and sketch the radiation patterns for the fundamental and
first two harmonics (m = 1, 2, 3) when (NBωR/c)Leff is 0.1. (Approximate
the Bessel functions by the leading term in their power-series expansions.)

10.18 A Bessel function of large order is well approximated over the range of
arguments where the function has its largest values by the expression (M.
Abramowitz and I. Stegun (eds.), Handbook of Mathematical Functions,
Dover, New York, 1965, p. 367)

JN(z) ≈
(

2

N

)1/3

Ai

[
−
(

2

N

)1/3

(z − N)

]
,

where Ai(η) is the Airy function. Using this approximation and the properties
of the Airy function, discuss the radiation of helicopter noise by the higher
harmonics of the blade-passage frequency for the circumstances described
in Problem 10.17 but with NB(ωR/c)Leff not fixed. For what threshold
value of the latter parameter does the radiated power begin to rise abruptly?
Within what range of angle θ does the sound appear to be concentrated when
NB(ωR/c)Leff has a specified value that exceeds this threshold?

10.19 Use the energy-conservation-dissipation theorem, Eq. (10.8.2), to derive the
absorption coefficient for constant-frequency plane-wave sound propagation
in air, following a procedure analogous to that in the derivation of Eq.
(10.2.11).

10.20 Carry through the steps leading to Eq. (10.8.9b) for a gas with μ,μB , and
κ set to zero and with only one relaxation process. Show that the resulting
dispersion relation can be written

k = ω

co
+ ω(c−1

o − c−1∞ )
iωτν

1 − iωτν
,

where c∞ is the sound speed in the high-frequency limit. If p(x, t) describes
a transient plane wave propagating in the +x direction, each Fourier
component p̂e−iωt eikx of which satisfies this dispersion relation, what
partial-differential equation would be appropriate for p(x, t)?
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10.21 The Sabine–Franklin reverberation-time formula (6.1.12) can be modified to
take into account absorption within the interior of a room if one assumes the
field is a superposition of a large number of plane waves, each of which is
attenuated by αpl Np per unit propagation distance.

(a) What is the resulting modified version of the formula for T60?
(b) If the room has dimensions 8 by 8 by 4 m and a nominal reverberation

time of 6 s, what must αpl be to cause a 10% reduction in the
reverberation time?

(c) Discuss possible circumstances for which αpl might have a value of this
magnitude.

10.22 Sound of frequency 2000 Hz is propagating in the plane-wave mode in a
square duct of dimensions a on a side. The air temperature is 20 ◦C, the
relative humidity is such that the relaxation frequency for O2 vibrations
is 2000 Hz. How large must the dimension a be before the dissipation by
molecular relaxation within the interior of the duct exceeds that within the
thermoviscous boundary layer?

10.23 A sound wave of 5000 Hz frequency is propagating through air at 20 ◦C
with ambient pressure of 105 Pa. Plot the absorption coefficient in nepers per
meter versus relative humidity. At what relative humidity is α a maximum?
What is the corresponding value of α?

10.24 With as little mathematical detail as possible explain why the contributions
to the attenuation coefficient from different mechanisms are usually assumed
to be additive.

10.25 Carry through the derivation of the dispersion relation (10.8.9b), taking the
linear acoustic equations for seawater as a starting point.

10.26 Determine the magnitudes of the contributions from the different mecha-
nisms (viscosity, thermal conduction, bulk viscosity, O2 vibrational relax-
ation, and N2 vibrational relaxation) to the plane-wave attenuation for 50-Hz
sound in air at 10 ◦C. Carry out the calculation for relative humidities of
0, 50, and 100%. Repeat the calculation for a frequency of 5000 Hz. What
inferences would you draw concerning the relative importances of the various
mechanisms over the range of audible frequencies?

10.27 An airplane flying at 3000 m causes a sound-pressure level of 90 dB on the
ground for the octave band centered at 500 Hz. The humidity is not measured,
but the ambient temperature is 20 ◦C. To estimate an upper limit for the
sound-pressure level to be expected under similar circumstances, a noise-
control consultant assumes that the number 90 dB applies when the humidity
is such that the attenuation from airplane to the ground is a maximum but
the upper-limit number applies when the humidity causes the attenuation to
be minimal. What is the calculated upper limit? What would it be were the
plane to fly at 6000 m instead?



Chapter 11
Nonlinear Effects in Sound Propagation

Acoustics is ordinarily concerned only with small-amplitude disturbances, so
nonlinear effects are typically of minor significance. There are instances, however,
when a small nonlinear term in the fluid-dynamic equations can lead to novel
and substantial phenomena. In some instances, e.g., shock waves, the predominant
behavior develops because of a long-term accumulation of small nonlinear perturba-
tions. In other instances, e.g., radiation pressure, nonlinear effects cause a small but
nonzero magnitude to be associated with a physical entity, the existence of which
the linear model precludes.

The present chapter is concerned primarily with instances of the first type and
in particular with how cumulative nonlinear effects distort acoustic waveforms
propagating through fluids.

11.1 Nonlinear Steepening

To study nonlinear aspects of sound propagation, we begin with the ideal fluid-
dynamic equations with the neglect of viscous and other dissipative terms. The
restriction of our attention to one-dimensional flow allows us to recast the basic
model in the form

∂ρ

∂t
+ ∂

∂x
ρv = 0, (11.1.1a)

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= −∂p

∂x
, (11.1.1b)

ρ = ρ(p, s), (11.1.1c)

s = const. (11.1.1d)
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Here, in our initial discussions, the specific entropy s is considered initially constant
so that it is always constant. This enables us to regard ρ and c = (∂ρ/∂p)−1/2 as
functions of the total pressure p.

11.1.1 Plane Waves in Homogeneous Media

Particular solutions1 analogous to plane waves traveling in the +x or −x directions
(v′ ≈ ±p′/ρoc2) result from the stipulation that v be a single-valued function of
p, so that ∂v/∂t = (dv/dp)∂p/∂t , etc. This assumption inserted into the mass
conservation equation and into Euler’s equation yields

dρ

dp

∂p

∂t
+ d(ρv)

dp

∂p

∂x
= 0, (11.1.2a)

ρ
dv

dp

∂p

∂t
+
(
ρv

dv

dp
+ 1

)
∂p

∂x
= 0. (11.1.2b)

These will be equivalent if the determinant of coefficients vanishes; such a condi-
tion, with dρ/dp = 1/c2, leads to dv/dp = ±1/ρc. The choice of the plus sign
corresponds to propagation in the +x direction and reduces either (2a) or (2b) to
the nonlinear partial-differential equation

∂p

∂t
+ (v + c)

∂p

∂x
= 0. (11.1.3)

1An alternate approach defines

λ(ρ) =
∫ ρ

ρo

c(ρ)

ρ
dρ,

so that (subscripts denoting partial derivatives) ρt = (ρ/c)λt , px = ρcλx , etc., and Eqs. (1) reduce
to

λt + vλx + cvx = 0, vt + vvx + cλx = 0, (i)

or

(λ + v)t + (v + c)(λ + v)x = 0, (λ − v)t + (v − c)(λ − v)x = 0. (ii)

A particular solution (simple wave) results with v = λ, yielding

vt + (v + c)vx = 0, pt + (v + c)px = 0, (iii)

which is the same as Eq. (3). [B. Riemann, “On the propagation of plane air waves of finite
amplitude,” Abhandl. Ges. Wiss. Goettingen (1860), reprinted in The Collected Works of Bernhard
Riemann, Dover, New York, 1953, pp. 156–175.]
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Fig. 11.1 Evolution of an acoustic-pressure waveform in a plane traveling wave. Each amplitude
portion travels with a characteristic amplitude-dependent speed c(p) + v(p)

The implication of Eq. (3) is that if p(xobs(t), t) represents the pressure at a mov-
ing observation point xobs(t), then p will appear constant in time if dxobs/dt = v+c.
This time invariance follows from a comparison of the equation dp(xobs, t)/dt = 0
with (3). Since v + c is a function of p, and since p appears constant to someone
moving with speed v + c, each point with fixed pressure amplitude p appears to
move with constant (time-independent) velocity, although two points of different
amplitudes move with different velocities (see Fig. 11.1).

A parametric description of the solution results with the specification of p(x, t)
at time t = 0. Setting p = po + p′(x, t) and p′(x, 0) = f (x) yields2

p′(x, t) = f (φ), x = φ + (v + c)t, (11.1.4)

p′ = f (x − (v + c)t), (11.1.4a)

where v and c are evaluated at po + f (φ); at time t , the point at which p′ equals
f (φ) is displaced a distance (v + c)t beyond where x is φ.

For given t , a plot of p′(x, t) versus x results from letting φ run through all
values for which f (φ) is nonzero, simultaneously tabulating p′ and x from Eqs. (4).
A possibility, ignored at this point but discussed further below, is that the resulting
graph of p′ versus x may not be single-valued.

For small-amplitude acoustic waves, the relations dv/dp = 1/ρc and
c = c(p) yield

v ≈ p′

ρoco
, c ≈ co +

(
∂c

∂p

)
o

p′, (11.1.5)

2S. Earnshaw, “On the mathematical theory of sound,” Phil. Trans. R. Soc. Land. 150:133–148
(1859). A similar result for a gas in which p is directly proportional to ρ had been obtained
somewhat earlier by S. D. Poisson, “Memoir on the theory of sound,” J. Ec. Polytech. 7:319–392
(1808).
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where the ambient fluid velocity vo is presumed zero. The derivative (∂c/∂p)o (at
constant entropy) is evaluated at the ambient state and is therefore constant.

The two expressions in Eq. (5) combine into

c + v ≈ co + βop
′

ρoco
≈ co + βov, (11.1.6)

where the constant β0 (which should not be confused with the coefficient of volume
expansion) is

βo = 1 +
(
ρc

∂c

∂p

)
o

= 1

2

(
ρ3c4 ∂

2ρ−1

∂p2

)
o

(11.1.7)

(The second version here follows from ∂ρ−1/∂p = −ρ−2c−2.) Alternatively, if
p is regarded as a function of s and ρ, then ∂c2/∂p is (∂c2/∂ρ)/(∂p/∂ρ) or
(∂2p/∂ρ2)/(∂p/∂ρ), which leads to

βo = 1 + 1

2

B

A
, A =

(
ρ
∂p

∂ρ

)
o

, B =
(
ρ2 ∂

2p

∂ρ2

)
o

, (11.1.8)

where A and B are coefficients in the expansion of p(ρ, s) at fixed s. The two
contributions, 1 and 1

2B/A, to βo are associated with the deviations v′ = v−v0 and
c − co of fluid velocity and sound speed from their ambient values.

For an ideal gas, where p is proportional to ργ at fixed entropy, one finds A =
γpo and B = γ (γ − 1)po, so B/A is γ − 1 and βo is (γ + 1)/2. In the case of air
(γ = 1.4), βo = 1.2. For liquids,3 B/A is typically of the order of 4 to 12, so from
this viewpoint, liquids are more nonlinear than gases. For water, B/A ranges from
4.2 to 6.1 and βo from 3.1 to 4.1 as the temperature varies from 0 to 100 ◦C. The
values at 20 ◦C are B/A = 5.0 and βo = 3.5. For seawater, the values are slightly
higher: B/A = 5.25 and βo = 3.6 at 20 ◦C. There is no thermodynamic reason why
βo should be positive, but it is so invariably.

The approximation (6) allows restatement of Eqs. (4) in the form

p(x, t) = f (φ) x = φ +
(
c + β

f (φ)

ρc

)
t, (11.1.9)

where we adopt the convention of dropping the prime on p′ and the subscript on
ρo, βo, and co, so that p now represents acoustic pressure and c represents ambient
sound speed. If the term βf (φ)/ρc is ignored in the second of Eqs. (9), one recovers

3R. T. Beyer, “Parameter of nonlinearity in fluids,” J. Acoust. Soc. Am. 32:719–721 (1960); A. B.
Coppens et al., “Parameter of nonlinearity in fluids, II,” ibid. 38:797–804 (1965); M. P. Hagelberg,
G. Holton, and S. Kao, “Calculation of B/A for water from measurements of ultrasonic velocity
versus temperature and pressure to 10,000 kg/cm2,” ibid. 41:564–567 (1967).
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the familiar expression p = f (x − ct) for a traveling plane wave in the linear
acoustics approximation.

An alternate formulation results with the specification of p versus t at x = 0,
The wave slowness dt/dx for a moving point of fixed acoustic-pressure amplitude
p is approximately

dt

dx
≈ 1

c + βp/ρc
≈ 1

c
− βp

ρc3 , (11.1.10)

so the appropriate counterpart of Eqs. (9) is

p(x, t) = g(ψ), t = ψ + x

c
− x

c2

βg

ρc
, (11.1.11)

where g(t) is p(0, t) and t is ψ when x = 0. Here it is assumed that βp 
 ρc2

(with p denoting acoustic pressure and ρ ambient density).

11.1.2 Steepening of Waveforms

Since β > 0, an implication of Eqs. (9) is that waveform portions with higher
overpressures move faster than those with lower overpressures; pressure crests
move faster than pressure troughs. Portions of the waveform (Fig. 11.2) for which
dp/dx < 0 (where pressure is increasing with time) become steeper with increasing
time and propagation distance. At time t that portion characterized by a given φ will
have a slope

dp

dx
= df (φ)/dφ

∂x(t, φ)/∂φ
= f ′(φ)

1 + [βf ′(φ)/ρc]t . (11.1.12)

If f ′(φ) < 0, the slope dp/dx approaches −∞ when t approaches
(ρc/β)/[−f ′(φ)], this time corresponding to a propagation distance on the order
of (ρc2/β)/[−f ′(φ)]. For low-amplitude sound waves, the distance is typically
very large (greater than 600 m for a 100-Hz sound wave in air with an amplitude
corresponding to 80 dB re 20 μPa). Nevertheless, the possibility that dp/dx

will become very large is often realized, particularly at moderate distances from
strongly driven underwater transducers. After the earliest time (onset time of shock)
this occurs, the plot of p versus x derived from Eqs. (9) will be multivalued.
The resolution of this dilemma is given in Sect. 11.3, after we have examined the
steepening process in more detail.
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Fig. 11.2 Characteristic curves in the xt plane for a waveform advancing in the +x direction.
Each characteristic is described by x = φ + [c + βf (φ)/ρc]t , where f (x) describes the acoustic
pressure at t = 0; the parameter φ is constant along a characteristic, such that each characteristic
has constant slope equal to the reciprocal of the actual wave speed. Onset of a shock occurs when
two adjacent characteristics first intersect

11.2 Generation of Harmonics

An implication of Eqs. (11.1.11) is that higher harmonics develop with increasing
propagation distance from a source of constant frequency. Let us suppose, for
example, that the x = 0 version of the waveform is

g(ψ) = Po sinωψ, (11.2.1)

so that Eqs. (11.1.11) become

p = Po sinωψ, ωt ′ = ωψ − σ sinωψ, (11.2.2)
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with

σ = x

x̄
, x̄ = ρc2

βkPo

, t ′ = t − x

c
. (11.2.3)

Here the shock-formation distance4 x̄ is the earliest value of x for which ωψ ceases
to be a single-valued function of ωt ′. In the present section, attention is confined to
values of x for which x < x̄, so σ < 1. Since dissipation is neglected, the analysis
applies only to situations where nonlinear effects dominate dissipation.

11.2.1 Fourier-Series Representation

The waveform described by Eqs. (2) is a periodic function of ωt ′ for fixed σ . This
is so because increasing ωt ′ by 2π must cause ωψ to increase by 2π if the second
of Eqs. (2) is to be satisfied; but increasing ωψ by 2π leaves p unchanged. Another
deduction is that p must be odd in ωt ′. Consequently, the Fourier-series expansion
(2.7.1) for p takes the form

p =
∞∑
n=1

pn,pk(σ ) sin nωt ′, (11.2.4)

where the Fourier coefficients pn,pk(σ ) are such that

pn,pk(σ ) = 2

π

∫ π

o

p(θ, σ ) sin nθdθ, (11.2.5)

when p is regarded as a function of θ = ωt ′ and σ .
Changing the variable of integration to ξ = ωψ , so that θ = ξ − σ sin ξ and

p = Po sin ξ , reduces the integral above to

pn,pk(σ ) = 2Po

π

∫ π

o

sin ξ sin[n(ξ − σ sin ξ)](1 − σ cos ξ)dξ,

= 2Po

πn

∫ π

o

cos[n(ξ − σ sin ξ)] cos ξdξ,

4For air, with ρ = 1.2kg/m3, c = 340m/s, and β = 1.2, the value of x̄ in meters is 6.3 × 106/f Po

when the frequency f is in hertz and Po is in pascals. For water, with ρ = 1000kg/m3, c =
1500m/s, β = 3.5, the corresponding value of x̄ is 15.3 × 1010/f Po, so that, for example, a
frequency of 200 kHz and a peak pressure amplitude of 104 Pa yield an x̄ of 77 m.
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where the second version results after an integration by parts. This can also be
written, however, as

pn,pk(σ ) = 2Po

πnσ

∫ π

o

(cos nθ)[1 − (1 − σ cos ξ)]dξ

= 2Po

πnσ

∫ π

o

(
cos nθ − 1

n

d

dξ
sin nθ

)
dξ

= 2Po

πnσ

∫ π

o

cos[n(ξ − σ sin ξ)]dξ

= 2Po

nσ
Jn(nσ), (11.2.6)

where Jn(nσ) is the Bessel function5 of order n.
Insertion of the above into Eq. (4) yields the Fubini–Ghiron solution6

p = Po

∞∑
n=1

2

nσ
Jn(nσ) sin

[
nω

(
t − x

c

)]
. (11.2.7)

(It must be stressed, however, that this is inapplicable beyond σ = 1.)
Reference to the power-series expansion of the Bessel function shows

2

nσ
Jn(nσ) →

(nσ
2

)n−1 1

n!
[

1 − (nσ)2

4(n + 1)
+ . . .

]
, (11.2.8)

so the amplitude of the fundamental (n = 1) decreases for small σ as

p1,pk(σ ) ≈ Po

(
1 − σ 2

8

)
, (11.2.9)

while the second harmonic (n = 2) grows as

p2,pk(σ ) ≈ Po

σ

2
, (11.2.10)

5G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge, 1944, pp. 16, 20.
The identity in Eq. (12), which yields

∞∑
n=1

(nσ)−2J 2
n (nσ) = 1

4

is attributed by Watson, p. 572, to N. Nielsen (1901).
6E. Fubini-Ghiron, “Anomalies in acoustic wave propagation of large amplitude,” Alta Freq.
4:530–581 (1935); D. T. Blackstock, “Propagation of plane sound waves of finite amplitude in
nondissipative fluids,” J. Acoust. Soc. Am. 34:9–30 (1962).
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Fig. 11.3 Amplitudes of harmonics (units of Po) versus distance x in units of x̄ for a plane wave
that is sinusoidal at x = 0; depicted curves without energy dissipation

and therefore varies linearly with x; higher harmonics grow more slowly (see
Fig. 11.3).

11.2.2 Conservation of Energy

The growth of the harmonics must be at the expense of the fundamental. Since the
model represented by Eq. (2) incorporates no dissipation mechanisms, one expects
the energy per cycle to be independent of σ :

d

dσ

∫ 2π

o

p2(θ, σ )dθ = 0. (11.2.11)

To show that this follows from (2), change the integration variable to ξ = ωψ so
that the left side above becomes

d

dσ

∫ 2π

o

P 2
o sin2 ξ(1 − σ cos ξ)dξ = −P 2

o

∫ 2π

o

sin2 ξ cos ξ dξ,

which integrates to zero.
Parseval’s theorem (see Sect. 2.7) consequently requires that

∞∑
n=1

p2
n,pk(σ ) = P 2

o (11.2.12)
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be independent of σ (providing σ < 1). This deduction is consistent with Eqs. (9)
and (10); the decrease of p2

1,pk for small σ is compensated by the growth of p2
2,pk.

11.3 Weak-Shock Theory

11.3.1 The Rankine–Hugoniot Relations

The resolution of the multivalued waveform dilemma,7 which was a major unsolved
problem during most of the nineteenth century, came with the discovery and
physical understanding of shock waves. The governing partial differential equations
require the assumption (see Sects. 1.2 and 1.3) that ρ, v, and p are continuous.
If they are not, then one must back up to the original integral equations. For a
fixed control volume of unit cross section and with fixed endpoints x1 and x2,
conservation of mass requires (see Fig. 11.4)

d

dt

∫ x2

x1

ρ dx = (ρv)x1 − (ρv)x2 , (11.3.1a)

or that the time rate of change of mass in the volume be the difference of the rate at
which mass is flowing in at x1 minus that at which it is flowing out at x2. (Here the
subscript denotes the point at which the indicated quantity is evaluated.)

Similarly, the time rate of change of momentum in the volume is equal to the rate
(per unit area) (ρv)x1(v)x1 momentum is flowing in minus that rate (ρv)x2(v)x2 at
which it is flowing out plus the net force (per unit area) px1 − px2 exerted on the
control volume:

d

dt

∫ x2

x1

ρvdx = (ρv2 + p)x1 − (ρv2 + p)x2 . (11.3.1b)

A third relation comes from the consideration of the time rate of change of energy
(energy density equal to 1

2ρv
2 plus ρu, where 1

2ρv
2 represents kinetic energy per

unit volume and u represents internal energy per unit mass). For the control volume,
this should equal the rate ( 1

2ρv
2 +ρu)x1vx1 energy is being convected in by the flow

minus the rate at which it is convected out plus the rate (pv)x1 − (pv)x2 at which
work is being done on the control volume by external pressures, or

d

dt

∫ x2

x1

ρ( 1
2v

2+u)dx = [( 1
2ρv

2+ρu+p)v]x1−[( 1
2ρv

2+ρu+p)v]x2 . (11.3.1c)

7J. Challis, “On the velocity of sound,” Phil. Mag. (3)32:494–499 (1848); G. G. Stokes, “On a
difficulty in the theory of sound,” ibid. 33:349–356 (1848); G. B. Airy, “The Astronomer Royal on
a difficulty in the problem of sound,” ibid., 34:401–405 (1849).
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Fig. 11.4 Fixed control volume containing a moving surface of discontinuity

If one considers x1 and x2 as arbitrary and all quantities as continuous and
differentiable, the first two of these lead to the one-dimensional partial-differential
equations displayed in Sects. 1.2 and 1.3. To derive Ds/Dt = 0, one uses the second
law of thermodynamics in the form (1.4.4) with ds replaced by Ds/Dt , etc., and
eliminates Dv2/Dt from the differential-equation version of (1c) by using what
results from the product of v with Euler’s equation. If discontinuities are present,
however, these steps cannot be carried through.

To see what results when a discontinuity is present, one postulates a moving point
xsh(t) (eventually identified as the location of a shock) between x1 and x2, at which
p, v, ρ, u are discontinuous. Each of the integrals over x in Eqs. (1) can be split into
integrals from x1 to xsh and from xsh to x2. Then, standard rules for differentiation
yield, for example,

d

dt

∫ x2

x1

ρdx = (ρ− − ρ+)vsh +
∫ xsh−

x1

∂ρ

∂t
dx +

∫ x2

xsh+
∂ρ

∂t
dx,

where ρ− and ρ+ represent the values of ρ on the −x and +x sides of the
discontinuity and vsh = dxsh/dt is the velocity of the discontinuity surface. In the
limit in which x1 and x2 are arbitrarily close to xsh, the integrals on the right become
negligible and (ρv)x1 → (ρv)−, (ρv)x2 → (ρv)+, so Eq. (1a) yields

[ρ(v − vsh)]+ = [ρ(v − vsh)]−. (11.3.2a)
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In a similar manner, Eqs. (1b) and (1c) imply

[ρv(v − vsh) + p]+ = [ρv(v − vsh) + p]−, (11.3.2b)

[ρ( 1
2v

2 + u)(v − vsh) + ρv]+ = [ρ( 1
2v

2 + u)(v − vsh) + pv]−. (11.3.2c)

Equations (2) are the Rankine–Hugoniot relations.8

An equivalent way of writing the second relation above is to subtract from it vsh
times the first, so that

[ρ(v − vsh)
2 + p]+ = [ρ(v − vsh)

2 + p]−. (11.3.2b’)

Similarly Eq. (2c) minus vsh times (2b) plus v2
sh/2 times (2a) all divided by (2a)

yields

[h + 1
2 (v − vsh)

2]+ = [h + 1
2 (v − vsh)

2]−, (11.3.2c’)

where we abbreviate h = u + p/ρ for the enthalpy per unit mass. In dividing by
[ρ(v − vsh)]+ we have ruled out contact discontinuities from consideration (for
which v+ = v− = vsh, p+ = p−, ρ+ �= ρ−). The analysis here applies to shock
waves, for which v+ �= vsh.

With the abbreviations Δv = v− −v+, Δh = h− −h+, vav = (v+ +v−)/2, etc.,
Eqs. (2a), (2b′), and (2c′) yield, after some algebraic manipulations,9

Δp = Δh

(1/ρ)av
, Δv = (vsh − vav)

Δρ

ρav
,

(vsh − vav)
2 = − (ρ−1)2

avΔp

Δ(ρ−1)
, (Δv)2 = −Δρ−1Δp. (11.3.3)

It follows from these that Δp, Δρ, Δh, and Δv/(vsh − vav) must all have the same
sign.

One further restriction comes from the inequality version of the second law of
thermodynamics. If the shock is advancing in the +x direction relative to the fluid,

8W. J. M. Rankine, “On the thermodynamic theory of waves of finite longitudinal disturbance,”
Phil. Trans. R. Soc. Land. 160:277–288 (1870); H. Hugoniot, “On the propagation of movement
through a body and especially through an ideal gas,” J. Ec. Polytech. 58:1–125 (1889); G. I. Taylor,
“The conditions necessary for discontinuous motion in gases,” Proc. R. Soc. Land. A84:371–377
(1910). When the flow is not perpendicular to the shock front, the above still hold with v+ and v−
interpreted at the normal components of v+ and v−. The tangential component of the velocity must
be continuous across the shock surface. See, for example, L. D. Landau and E. M. Lifshitz, Fluid
Mechanics, Pergamon, London, 1959, pp. 317–319.
9W. D. Hayes, “The basic theory of gasdynamic discontinuities,” in H. W. Emmons (ed.),
Fundamentals of Gas Dynamics, Princeton University Press, Princeton, N.J., 1958, pp. 416–481.
The first of Eqs. (3) is the Hugoniot equation; the corresponding plot of p− versus 1/ρ− for fixed
p+ and 1/ρ+ is a Hugoniot diagram.
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so that vsh − vav > 0, then s− ≥ s+; a fluid particle’s entropy cannot be decreased
by passage of the shock, so Δs and vsh − vav have the same sign. (Below it is
demonstrated that Δs and Δp must have the same sign, so Δp and vsh − vav have
the same sign.)

11.3.2 Weak Shocks

If |Δρ|/ρav 
 1, the consequences of the first of Eqs. (3) can be explored by
expanding h(p, s) in a Taylor series in δp = p − pav and δs = s − sav, the various
coefficients being denoted by h0, h0

p, h0
s , h0

pp, h0
ps , etc., such that, for example, h0

ps

is ∂2h/(∂p ∂s) evaluated at pav and sav. To obtain h+, one sets δp = −Δp/2,
δs = −Δs/2 in this expansion; to obtain h−, one sets δp = Δp/2, δs = Δs/2. An
expansion for ρ−1 follows from the thermodynamic identity ρ−1 = ∂h/∂p. (Note
that dh = T ds + ρ−1dp follows from T ds = du+ pdρ−1 and h = u+ p/ρ.) The
so-derived expansions for (ρ−1)+ and (ρ−1)− in terms of Δs and Δp lead in turn to

Δh − (ρ−1)avΔp = h0
s Δs − 1

12h
0
ppp(Δp)

3 − 1
8h

0
pps(Δp)

2Δs − · · · . (11.3.4)

The left side of this is zero, according to Eq. (3); the resulting equation, when solved
by iteration for Δs in terms of Δp, yields, to lowest nonvanishing order,

Δs = h0
ppp

12h0
s

(Δp)3. (11.3.5)

The entropy change is consequently very small for a weak shock.
An implication of Eq. (5) is that, to first order in Δp, the ratio Δρ−1/Δp can

be approximated by the average of the derivatives ∂ρ−1/∂p at x = x+
sh and x = x−

sh
with entropy held fixed in the differentiation. This in turn approximates to −ρ−2

av c−2
av .

Similarly, Δρ approximates to Δp/c2
av. Consequently, Eqs. (3) yield

vsh − vav = ±cav, Δv = ± Δp

ρavcav
. (11.3.6)

where the + signs correspond to a shock advancing in the +x direction relative to
the fluid. Similar reasoning allows one to reexpress Eq. (5) as10

Δs =
(
∂2ρ−1/∂p2

12T

)
av
(Δp)3 =

(
β

6ρ3c4T

)
av
(Δp)3, (11.3.7)

10R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York,
1948, pp. 142–144.
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where β, equal to 1 + ρc∂c/∂p or 1 + 1
2B/A, is identified from the thermodynamic

identity in Eq. (11.1.7).
Since β > 0, the discontinuities Δs and Δp must have the same sign, so the

second law of thermodynamics requires p− > p+ (or Δp > 0) for a shock
advancing in the +x direction. The pressure behind the shock front is higher because
the specific entropy must be higher.

11.3.3 The Equal-Area Rule

The chief implication of the foregoing analysis11 is that once a discontinuity is
formed, it moves with a speed vsh = vav + cav, that is, with the average of the wave
speeds behind and ahead of the shock. If f (φ−) is the acoustic pressure behind the
shock and f (φ+) that in front of the shock, the shock speed must at that particular
instant (with vo = 0) be

vsh = c + 1
2β

f (φ+) + f (φ−)
ρc

. (11.3.8)

The location xsh of the shock is given by the second of Eqs. (11.1.9) with φ set equal
to either φ+ or φ−. As the shock moves, φ− decreases and φ+ increases; the portion
f (φ) for φ−(t) < φ < φ+(t) of the initial waveform does not contribute to the
actual waveform at time t . The waveform so constructed is single-valued, although
discontinuous.

Determination of the location of a shock at any instant is facilitated by the
following theorem.12 Suppose one constructs the curve of p versus x from
Eqs. (11.1.9) and that over the interval xa to xb the function p is triple-valued, the
plot resembling a backward S (see Fig. 11.5). The shock location xsh is denoted by
a vertical line connecting the upper and lower portions of the S, crossing the curve
at some point fint and thereby delimiting two areas, a lower area extending to the
left of the line x = xsh and an upper area to the right of this line. The assertion is
that xsh must be such that these two areas are the same; the waveform with shock is
then as sketched in Fig. 11.5 with the vertical line replacing the two arcs of the S.

11L. D. Landau, “On shock waves,” J. Phys. (USSR) 6:229–230 (1942), “On shock waves at large
distances from the place of their origin,” ibid. 9:496–500 (1945); S. Chandrasekhar, “On the decay
of plane shock waves,” Ballist. Res. Lab. Rep. 423, Aberdeen Proving Ground, Md., 1943; H. A.
Bethe and K. Fuchs, “Asymptotic theory for small blast pressure,” in “Blast Wave,” Los Alamos
Sci. Lab. Rep. LA 2000, August 1947, pp. 135–176.
12L. D. Landau, “On shock waves,” “On shock waves at large distances,” G. B. Whitham, “The
flow pattern of a supersonic projectile,” Commun. Pure Appl. Math. 5:301–348 (1952).
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Fig. 11.5 The equal-area rule for determination of the location of a shock; the two equal shaded
areas are replaced by a discontinuity in the waveform

Proof of the theorem results because the total area, with due regard to sign, is
given by

A(t) = −
∫ φ+(t)

φ−(t)

[x(φ, t) − xsh(t)]
df (φ)

dφ
dφ. (11.3.9)

Since x(φ−, t) and x(φ+, t) are both xsh(t), the integrand vanishes at the upper
and lower limits. The derivative dA(t)/dt is consequently given by an analogous
expression; note that x(φ, t) is replaced by ∂x(φ, t)/∂t or by c + βf (φ)/ρc, from
Eq. (11.1.9). The resulting integral is readily performed, yielding

dA(t)

dt
= −[f (φ+) − f (φ−)]

{
c − vsh + 1

2

β

ρc
[f (φ+) + f (φ−)]

}
.

The factor in braces here, however, is zero because of Eq. (8), so one concludes that
dA(t)/dt is zero. But A(t) = 0 at the instant the shock was first formed, so A(t) is
always zero and the equal-area rule is verified.

The general theory discussed in this section, known as the weak-shock theory,
is with the formal neglect of viscosity and other dissipative effects. (An alternate
theory, based on the Burgers equation, is described in Sects. 11.6 and 11.7.) Its
principal implications, i.e., nonlinear steepening, the formation of shocks, and their
subsequent propagation according to the equal area rule, are valid for the most part
only if the inequality

βpω

ρc3 > α (11.3.10)

is satisfied. Here p is a representative acoustic-pressure amplitude, ω is a represen-
tative angular frequency for the waveform, and α is the linear-acoustics plane-wave
attenuation coefficient in nepers per meter for waves of angular frequency ω.
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The inequality follows from the heuristic consideration13 that if the waveform
is sinusoidal, |dp/dx| at a point moving with speed c is increasing at a rate
β(dp/dx)2/ρc according to Eq. (11.1.12) because of nonlinear effects. Attenuation
alone would cause it to decrease at a rate αc|dp/dx|. For the first effect to
predominate, one must have β|dp/dx|/ρc > αc. But |dp/dx| is of the order of
pω/c, where p is the peak amplitude, so Eq. (10) results. (Representative values
of α can be deduced from the analysis in Sect. 10.8.) The equal-area rule implies
that the peak amplitude decreases with distance, so eventually a point is reached at
which the inequality (10) is no longer satisfied and beyond which the weak-shock
theory is no longer applicable.

11.4 N Waves and Anomalous Energy Dissipation

11.4.1 Plane-Wave Propagation of an N Wave

The N-wave shape (see Fig. 11.6) is often asymptotically realized at large propaga-
tion distances by a transient pulse.14 (A “proof” of this is given in Sect. 11.8.) Here
we suppose that the N-wave shape has already been realized at the time we choose
to call t = 0, so that p(x, 0) = f (x), where

f (φ) =
⎧⎨
⎩
P0φ

L0
−L0 < φ < L0

0 φ < −L0andφ > L0

(11.4.1)

where Po is the initial peak amplitude and Lo is the initial length of the positive and
negative phases.

The location of the front shock is easier to determine from Eq. (11.3.8) than
from the equal-area rule. Since f (φ+) = 0 and f (φ−) = Poφ−/Lo, the velocity
and position of the front shock are given by

vsh = c + 1

2

φ−
τN

, xsh = ct +
(

1 + t

τN

)
φ−, (11.4.2)

where we abbreviate

τN = L0ρc

βP0
. (11.4.3)

13Z. A. Gol’berg, “On the propagation of plane waves of finite amplitude,” Sov. Phys. Acoust.
3:329–347 (1957).
14D. T. Blackstock, “Connection between the Fay and Fubini solutions for plane sound waves of
finite amplitude,” J. Acoust. Soc. Am. 39:1019–1026 (1966); Landau and Lifshitz, Fluid Mechanics,
pp. 372–375.
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Fig. 11.6 Sketch of an N
wave

Equating the time derivative of xsh(t) to vsh(t) leads to an ordinary differential
equation for φ−(t), which integrates, with the initial condition, φ−(0) = L0, to

φ−(t) = Lo

(1 + t/τN)1/2 . (11.4.4)

Then Eq. (2) gives

xsh − ct = L(t) =
(

1 + t

τN

)1/2

Lo, (11.4.5)

where L(t) is identified as the length of the positive phase at time t . The
corresponding shock amplitude Poφ−/Lo is similarly

P(t) = Po

(1 + t/τN)1/2 (11.4.6)

“Once an N-wave, always an N-wave” follows from Eq. (1) and from the second
of Eqs. (11.1.9); φ varies linearly with x between the two shocks at fixed t , so
from Eq. (1), p(x, t) must also. The second shock is found from reasoning similar
to that above to be at ct − L(t); the pressure just ahead of this shock is −P(t).
Consequently, p(x, t) = Poφ/Lo can be written as

p(x, t) = P(t)

L(t)
(x − ct) (11.4.7)

for −L(t) < x − ct < L(t). Outside this range of x, the acoustic pressure p(x, t)

is zero. Equation (7) describes an N-shaped wave with peak pressure P(t) and with
L(t) for its positive and negative phase lengths. The zero crossing at x = ct moves
with speed c, but the initial shock moves with speed c + βP (t)/2ρc; the second
shock moves with speed c − βP (t)/2ρc. As the wave propagates, its length 2L(t)
increases, but the overpressure decreases; the product L(t)P (t) = LoPo remains
constant.



666 11 Nonlinear Effects in Sound Propagation

11.4.2 Dissipation of Acoustic Energy

In the absence of shocks, nonlinear effects do not change the net acoustic energy
associated with a pulse; they merely cause a rearrangement of the frequency
distribution of the energy. The demonstration of this is similar to that of Eq.
(11.2.11); the energy density is p2/ρc2 for a traveling wave because v ≈ p/ρc.
The net energy per unit area transverse to propagation direction for a pulse of finite
duration is then

E(t) = 1

ρc2

∫ ∞

−∞
p2dx. (11.4.8)

If Eqs. (11.1.9) are valid for a single-valued description of the pulse, this can
alternatively be written

E(t) = 1

ρc2

∫ ∞

−∞
f 2(φ)

∂x

∂φ
dφ = 1

ρc2

∫ ∞

−∞
f 2(φ)

(
1 + βf ′(φ)t

ρc

)
dφ.

(11.4.9)

The second term, however, integrates to zero since f 3(φ) → 0 as φ → ±∞.
Consequently, E(t) is independent of time.

On the other hand, if a shock is present, the integral must be broken into integrals
from −∞ to φ−(t) and φ+(t) to ∞. The time derivative of E(t) consequently yields,
with some algebraic manipulation, the relation

ρc2 dE(t)

dt
= f 2(φ−)

d

dt

[
φ− + βf (φ−)t

ρc

]

− f 2(φ+)
d

dt

[
φ+ + βf (φ+)t

ρc

]
− 2β

3ρc
[f 3(φ−) − f 3(φ+)].

(11.4.10)

The first two quantities here in brackets [see Eq. (11.1.9)] are xsh − ct , so their
time derivatives [see Eq. (11.3.8)] are both 1

2 [f (φ+) + f (φ−)]β/ρc. Then, with
additional manipulations Eq. (10) yields15

dE

dt
= − β

6ρ2c3
[f (φ−) − f (φ+)]3 = −ρcToΔs, (11.4.11)

where the latter version follows from Eq. (11.3.7). Since Δs > 0, the presence of
the shock causes the energy in the wave to decrease with time.

15I. Rudnick, “On the attenuation of a repeated sawtooth shock wave,” J. Acoust. Soc. Am.
25:1012–1013 (1953).
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The validity of Eq. (11) is substantiated by our N-wave example, for which
E(t) = 2

3P
2L/ρc2 decreases with t as 1/(1 + t/τN)1/2. With P(t), L(t), and τN

taken from Eqs. (6), (5), and (3), we find

dE

dt
= − 1

3ρc2

P 2
o Lo/τN

(1 + t/τN)3/2
= −βP 3(t)

3ρ2c3
. (11.4.12)

The extra factor of 2 detected from a comparison of this with Eq. (11) is because the
N wave has two shocks.

Why do we find a dissipation of acoustic energy when no dissipation mechanisms
are explicitly taken into account? An explanation proceeds from the observation
that if the model were modified to include a typical dissipation mechanism such
as viscosity, the resulting solutions would never be discontinuous. However, if
the coefficient characterizing the dissipation were gradually reduced in magnitude,
regions of steep gradients would become evident. In the limit as the coefficient
approaches zero, these steep gradients approach discontinuities with all the prop-
erties of the shocks predicted by the ideal-fluid model. The dissipation rate per unit
area transverse to the propagation direction approaches a limit independent of the
magnitude of the dissipation coefficient. Thus, one can regard the dissipation at a
shock as caused by some physical mechanism, but given that the real dissipation
mechanisms are weak, it is a fortunate occurrence16 that the magnitude of the
dissipation is nearly independent of the nature and strength of the mechanism.

11.5 Evolution of Sawtooth Waveforms

A plane wave with sufficient amplitude and generated by a transducer oscillating at
constant frequency approaches a sawtooth shape at large distances.17 To investigate
the transition, we let p(0, t) = Po sinωt be the acoustic pressure at the face of
the transducer. With the neglect of ambient flow, the pressure amplitude Po sinωto
created at time t0 will be at a point

x =
[
c + βPo

ρc
sinωto

]
(t − to) (11.5.1)

at time t ; the quantity in brackets is the speed of the wave portion with amplitude
Po sinωto. The above, along with p = Po sinωto, yields a parametric description of
the distorted waveform, with which one can construct p versus x for any given t .
(The description is equivalent to that in Sect. 11.2 given that βPo 
 ρc2.)

16See, for example, the comments by W. Heisenberg, “Nonlinear problems in physics,” Phys. Today
20(5):27–33 (May 1967).
17Whitham, “The flow pattern of a supersonic projectile”; Blackstock, “Connection between the
Fay and Fubini solutions.”
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Fig. 11.7 Waveform segment of a plane traveling wave generated by a single cycle of an
oscillating transducer. (a) Segment before first formation of shock; (b) after shock formation but
before peak (at B) overtakes trough (at C); (c) after peak overtakes trough. Transitions occur
at t̄ and at (π/2)t̄ . Vertical coordinate is ratio of acoustic pressure p to peak amplitude Po that
waveform has before peak overtakes trough

A single cycle of the waveform (see Fig. 11.7) generated at times to between
−π/ω and π/ω nominally lies between x = ct − cπ/ω and x = ct + cπ/ω.
The portion generated between to = −π/ω and to = −π/2ω is such that ωto =
− sin−1(p/Po) − π , with the arc sine understood to be between −π/2 and π/2.
Similarly, the portion generated between to = −π/2ω and to = π/2ω is such that
ωto = sin−1(p/Po), while the portion generated between to = π/2ω and to = τ/ω

is such that ωto = π − sin−1(p/Po). These expressions for to, when inserted into
Eq. (1), give three relations for x in terms of p, which (for low-amplitude acoustic
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waves where βp/ρc2 
 1 but t may be large) approximate to

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ct + βpt

ρc
+ c

ω

(
π + sin−1 p

Po

)
, − π

ω
< to < − π

2ω

ct + βpt

ρc
− c

ω
sin−1 p

Po

, − π

2ω
< to <

π

2ω

ct + βpt

ρc
− c

ω

(
π − sin−1 p

Po

)
,

π

2ω
< t0 <

π

ω

(11.5.2a)

(11.5.2b)

(11.5.2c)

The corresponding ranges of p are 0 to −Po, −Po to P0, and Po to 0.
If the above three curves for x versus p are each plotted with t fixed, taking

p as varying over the ranges specified, the composite curve will be of one of the
forms sketched in Fig. 11.7. The tail portion between A and B corresponds to the
first equation, the middle portion between B and C to the second equation, and the
leading portion between C and D to the third equation. The curve so constructed
is always such that it is symmetric under inversions (x − ct → ct − x, p → −p)
about the point x = ct , p = 0. Consequently, the equal-area rule requires that if a
shock is present it must be at x = ct , so the shock is moving at the ambient sound
speed c.

The earliest time a shock forms for the waveform segment considered above is
when Eq. (11.1.12) predicts ∂x/∂p = 0 at p = 0. This is when

t = t̄ = ρc2

Po

1

βω
= x̄

c
, (11.5.3)

where x̄ is the same as defined by Eq. (11.2.3). The shock at x = ct for t > f̄

continues to grow up until point B reaches x = ct . This occurs when the x predicted
by Eq. (2c) is ct at p = Po, such that βPot/ρc = (c/ω)π/2, or when t = (π/2)t̄ .
Up until this time the peak amplitude of the waveform is still Po.

After time t = (π/2)t̄ , the shock at x = ct erodes the wave peak, and the
waveform resembles a sawtooth. The peak amplitude pmax at times t > (π/2)t̄ for
the waveform segment considered is found by setting the x of Eq. (2c) equal to ct ,
giving

t

t̄
= π − sin−1(pmax/Po)

pmax/Po

, (11.5.4)

so the following tabulation results:

pmax/P0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

t/t̄ 1.57 2.25 2.77 3.38 4.16 5.24 6.83 9.46 14.70 30.41
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For t/t̄ > 3, a good approximation (to within 4%) results from setting
sin−1(pmax/Po) ≈ pmax/Po, such that (4) yields

pmax = πPo

1 + t/t̄
. (11.5.5)

In the same limit, Eq. (2c) reduces to

p

pmax
= 1 + ω

cπ
(x − ct) (11.5.6)

for the description of the positive phase behind the shock (x − ct between −cπ/ω

and 0). Similar considerations hold for the peak underpressure and the negative
phase before the shock; the waveform remains symmetric under inversions about
x = ct , p = 0. The net discontinuity in pressure at the shock is 2pmax.

Because the transducer oscillations are periodic, the foregoing analysis applies
to any cycle of the overall waveform; each cycle has the same history, given an
appropriate shift in time origin. Thus at a given point where x > x̄ the disturbance
passing by will have shocks at time intervals of Δt = 2π/ω. The received signal
will have the same period. At x greater than approximately 3x̄, the waveform will
be nearly sawtooth in shape, and the peak overpressure of each cycle will be given
by Eq. (5) with t replaced by x/c. After each shock, each with net discontinuity
2pmax, the pressure decreases linearly with increasing time until p reaches −pmax;
then another shock arrives, and the cycle repeats itself (see Fig. 11.8a).

When considered as a function of x for fixed t , the disturbance is not periodic,
although zero crossings are equally spaced at intervals of πc/ω. Beyond x = x̄,
there are shocks at intervals of Δx = 2πc/ω. Beyond x = (π/2)x̄, the successive
peak amplitudes are smaller and smaller, all smaller than Po, (see Fig. 11.8b).

The expression describing the waveform in the sawtooth limit when σ = x/x̄ is
larger than, say, 3 can be taken as

p = πPo

1 + σ
fST(ωt

′), t ′ = t − x

c
, (11.5.7)

where the sawtooth wave function is

fST(ωt
′) = 1 − ωt ′

π
, 0 < ωt ′ < 2π, (11.5.8)
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Fig. 11.8 (a) Sketch of acoustic pressure versus time at a point sufficiently distant from an
oscillating transducer for a sawtooth profile to have formed. (b) Sketch of acoustic pressure versus
x for a particular instant of time, showing the evolution of the sawtooth profile

and is periodic in ωt ′ with period 2π . The pressure has the equivalent Fourier-series
representation

p =
∞∑
n=1

2Po/n

1 + σ
sin
[
nω

(
t − x

c

)]
, (11.5.9)

which differs from the σ < 1 version, Eq. (11.2.7), in that 1/(1 + σ) replaces
Jn(nσ)/σ .

At large distances, such that 1 + x/x̄ ≈ x/x̄, the peak overpressure at fixed x

becomes

pmax(x) ≈ Poπx̄

x
= πρc3

βωx
, (11.5.10)

which is independent of Po and which decreases inversely with x. The only feature
characteristic of the excitation that remains is the driving frequency.
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The phenomenon described by Eq. (10) leads to the concept of saturation.18 At
a fixed far-field value of x, the received peak pressure varies with Po as

pmax = Po , Po <
πρc3

2βxω
, (11.5.11a)

pmax ≈ πPo

1 + (xβω/ρc3)Po

, Po >
3ρc3

βxω
, (11.5.11b)

so one infers that pmax increases monotonically with Po; but regardless of how high
Po is raised, pmax cannot exceed the saturation value in Eq. (10), which gives the
theoretical upper limit to what can be received at a distance x from a transducer
oscillating at angular frequency ω. The amplitude is within 90◦ of the upper limit
when Po is greater than 9ρc3/βωx.

The above discussion, based on the weak-shock theory, presumes that Po is
somewhat less than ρc2 (say, less than 0.1ρc2). The neglect of dissipative mech-
anisms requires, moreover, that pmax be greater than 3αρc3/ωβ [see Eq. (11.3.10)].
Consequently, Eq. (10) implies that, for the analysis to be applicable, x should be
less than π/3α ≈ 1/α, where α is the plane-wave attenuation coefficient. The
sawtooth region therefore extends from x ≈ (π/2)ρc3/βωPo to x ≈ 1/α. As
discussed further in Sect. 11.7, beyond the upper distance (the “old-age” region),
the wave resembles a sinusoidal wave whose peak amplitude decreases as e−αx .

11.6 Nonlinear Dissipative Waves

The dispersion relation derived in Sect. 10.8 for plane acoustic waves can be
augmented to account for nonlinear distortion. We here discuss an approximate
model for nonlinear propagation in a dissipative medium that results from such an
augmentation.

18The possibility that finite-amplitude effects may limit the acoustic efficiency of a sound source
was suggested by L. V. King, “On the propagation of sound in the free atmosphere and the acoustic
efficiency of fog-signal machinery: An account of experiments carried ut at Father Point, Quebec,
September, 1913,” Phil. Trans. R. Soc. Lond. A218:211–293 (1919). The first correctly interpreted
observation of saturation is due to C. H. Allen, Finite Amplitude Distortion in a Spherically
Diverging Sound Wave in Air, Ph.D. thesis, Pennsylvania State University, 1950. For recent
reviews, see J. A. Shooter, T. G. Muir, and D. T. Blackstock, “Acoustic saturation of spherical
waves in water,” J. Acoust. Soc. Am. 55:54–62 (1974); D. A. Webster and D. T. Blackstock, “Finite-
amplitude saturation of plane sound waves in air,” ibid. 62:518–523 (1977).
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11.6.1 Approximate Equations for Transient Plane Waves

The dispersion relation (10.8.9b) with the abbreviations

δ = μ

2ρ

[
4

3
+ μB

μ
+ (γ − 1)κ

cpμ

]
, (11.6.1a)

c

π
(ανλ)m = (Δc)ν, (11.6.1b)

can equivalently be written to the same order of approximation [first order in δ and
(Δc)ν] as

ω = ck − ik2δ − k
∑
ν

iωτν(Δc)ν

1 − iωτν
, (11.6.2)

where c is the equilibrium sound speed and (Δc)ν is the increment in the phase
velocity at high frequencies attributable to the freezing of the νth relaxation process.

For any plane wave of constant frequency governed by the dispersion relation (2),
we can take the acoustic pressure to be Rep̂e−iωt eikx , and we can define variables
pν = Rep̂νe

iωt eikx , where p̂ν = −iωτνp̂/(1 − iωτν). Thus, Eq. (2) leads to the
coupled partial-differential equations

∂p

∂t
= −c

∂p

∂x
+ δ

∂2p

∂x2
−
∑
ν

(Δc)ν
∂pν

∂x
, (11.6.3a)

(
1 + τν

∂

∂t

)
pν = τν

δp

∂t
. (11.6.3b)

The superposition principle requires that these also apply for transient pulses.
For a gas, the physical interpretation of the pν is that

pν =
(
ρcp

βT

)
0
(T ′ − Tν), (11.6.4)

where Tν is the deviation from its ambient value of the temperature associated
with the internal vibrations of molecules of species ν. This identification follows
from Eqs. (10.8.1d) and (10.8.1f). The entropy deviation sfr from its ambient value
is small, so T ′ ≈ (Tβ/ρcp)op. Consequently, the relaxation equation (10.8.1d)
becomes (1 + τν∂/∂t)Tν = (Tβ/ρcp)op, which yields Eq. (3b). (Here β is the
coefficient of volume expansion; in the remainder of the section, it denotes the sum
1 + B/2A, where B/A is the parameter of nonlinearity.)
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11.6.2 Modification to Include Nonlinear Effects

The principal effect the nonlinear terms in the fluid-dynamic equations have on
traveling acoustic waves in a nondissipative medium is that the wave speed becomes
c + βp/ρc rather than c (see Sect. 11.1). This suggests that if the attenuation per
wavelength is small, a comparable substitution will be appropriate in Eqs. (3). Since
the second and third terms on the right side of (3a) should typically be much smaller
in magnitude than the first term, it is a good approximation19 for low-amplitude
plane waves to account for the amplitude dependence of wave speed in the first term
only. Doing this yields

∂p

∂t
+ c

∂p

∂x
+ βp

ρc

∂p

∂x
− δ

∂2p

∂x2 +
∑
ν

(Δc)ν
∂pν

∂x
= 0, (11.6.5)

or, equivalently, in terms of the particle velocity v = p/ρc in the propagation
direction,

vt + (c + βv)vx = δvxx −
∑
ν

(Δc)νvν,x . (11.6.5a)

Here the t and x subscripts denote partial derivatives; the resulting model for plane-
wave propagation is completed by Eq. (3b) with p and pν replaced by v and vν .

11.6.3 The Burgers Equation

For a fluid without relaxation processes, e.g., monatomic gases or pure water, Eq.
(5a), with the (Δc)ν set to zero, reduces to the Burgers equation.20 With suitable

19This technique for obtaining an approximate nonlinear equation for propagation in a dispersive
medium is sometimes referred to as Whitham’s rule. Less heuristic derivations with various degrees
of generality are given by P. A. Lagerstrom, J. D. Cole, and L. Trilling, “Problems in the theory
of viscous compressible fluids,” Calif. Inst. Tech. Guggenheim Aeronaut. Lab. Rep. Of. Nav. Res.,
1949; M. J. Lighthill, “Viscosity effects in sound waves of finite amplitude,” in G. K. Batchelor
and R. M. Davies (eds.), Surveys in Mechanics, Cambridge University Press, London, 1956; Hayes,
“The basic theory of gasdynamic discontinuities”; and H. Ockendon and D. A. Spence, “Non-linear
wave propagation in a relaxing gas,” J. Fluid Mech. 39:329–345 (1969).
20H. Bateman, “Some recent researches on the motion of fluids,” Mon. Weather Rev. 43:163–
170 (1915); the equation later emerged in a mathematical model of turbulence proposed by J.
M. Burgers (1939, 1940) and summarized in his “A mathematical model illustrating the theory
of turbulence,” in R. von Mises and T. von Kármán (eds.), Adv. Appl. Mech., vol. 10, Academic,
New York, 1948. Its recent extensive applications to nonlinear acoustics originated with the work
of Lagerstrom, Cole, and Trilling, “Problems in the theory of viscous compressible fluids,” and
with J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,” Q. Appl. Math.
9:225–231 (1951).
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redefinitions of the parameters c and δ, we can also use this as an approximate
description21 for nonlinear propagation of an initially constant-frequency wave
when the dispersion relation (2) is well approximated by c∗k = ω + i(ω/c∗)2δ∗
for a wide range of ω centered at the waveform’s initial frequency with particular
choices for c∗ and δ∗.

For propagation in air at 1 atm pressure and at 20 ◦C, the order of magnitude
of δ∗ is 1.9 × 10−6m2/s above the O2 vibrational relaxation frequency; this value
is augmented in accord with Eq. (10.8.15) by an amount 6.4/f1 between the two
relaxation frequencies and by an additional amount 1.2/f2 below the N2 vibrational
relaxation frequency f2. Similarly, in seawater at 10 ◦C, 1 atm pressure, and 35◦/oo
salinity, the Fisher–Simmons tabulation22 suggests

δ∗ =

⎧⎪⎪⎨
⎪⎪⎩

3.1 × 10−6m2/s above 91 kHz

6.3 × 10−5m2/s from 920 Hz to 91 kHz

1.2 × 10−3m2/s below 920 Hz

A standard representation of the Burgers equation results if we regard v as a
function of x′ = x − ct and t rather than of x and t . Then, since the time derivative
of v at fixed x is (∂/∂t − c∂/∂x′)v(x′, t), the truncated version of Eq. (5a) reduces
(with subscripts denoting partial derivatives) to

vt + βvvx′ = δvx′x′ . (11.6.6)

The solution of this in the limit β → 0, δ → 0 is v = f (x − ct), which is the
linear-acoustics expression for a plane wave in an ideal fluid.

An equation that is equivalent to the same order of approximation results if one
regards v as a function of t ′ = t − x/c and x. In the small nonlinear term βvvx
and in the dissipative term δvxx in Eq. (5a), setting ∂/∂x equal to its approximate
equivalent −(1/c)∂/∂t yields23

vx − β

c2
vvt ′ = δ

c3
vt ′t ′ . (11.6.7)

As discussed further in Sect. 11.7, this version is especially convenient for studies of
boundary-value problems when v is specified as a function of t at some fixed value
of x.

21D. T. Blackstock, “Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves,”
J. Acoust. Soc. Am. 36:534–542 (1964).
22F. H. Fisher and V. P. Simmons, “Sound absorption in sea water,” J. Acoust. Soc. Am. 62:558–564
(1977). (See Section 10-8 of the present text.)
23J. S. Mendousse, “Nonlinear dissipative distortion of progressive sound waves at moderate
amplitudes,” J. Acoust. Soc. Am. 25:51–54 (1953).
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Fig. 11.9 Profile of the shock structure of the early portion of a weak shock governed by the
Burgers equation. The shock is advancing into a medium originally at rest

11.6.4 Rise Times and Thicknesses of Weak Shocks

The weak-shock model discussed in Sect. 11.3 leads to abrupt discontinuities, but
when the model incorporates dissipation processes, such discontinuities become
instead transition regions over which the pressure and fluid velocity change rapidly.
Insight24 into the nature of the transition results from consideration of the idealized
model (see Fig. 11.9) of a wave moving without change of form in the x direction
with speed V . For x � V t , p and v should be zero, while for x 
 V t , p and ρcv

approach the shock overpressure psh.
The assumption v = v(x − V t), when inserted into Eq. (5a) with the (Δc)ν set

to zero, yields (with ξ = x − V t)

(c − V + βv)vξ = δvξξ , (11.6.8)

which integrates, with the boundary condition v → 0 as ξ → ∞, to

(c − V )v + 1
2βv

2 = δvξ . (11.6.9)

24The study of shock structure dates back to Taylor, “The conditions necessary for discontinuous
motion in gases,” and to R. Becker, “Shock waves and detonations,” Z. Phys. 8:321–362 (1922).
The latter’s result for an ideal gas with finite viscosity and thermal conductivity reduces to that
given here in the weak-shock limit.
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The other boundary condition, that v → psh/ρc as ξ → −∞, requires V = c +
1
2βpsh/ρc, which is the speed predicted by the weak-shock theory. This recognition
reduces (9) (with the abbreviation vsh = psh/ρc) to

1

vξ
= dξ

dv
= − 2δ/β

v(vsh − v)
= −2δ/β

vsh

(
1

v
+ 1

vsh − v

)
, (11.6.10)

which in turn integrates to

ξβvsh

2δ
= − ln

(
v

vsh − v

)
, (11.6.11)

v

vsh
= p

psh
= exp(−4ξ/ l)

1 + exp(−4ξ/ l)
= 1

2

(
1 − tanh

2ξ

l

)
, (11.6.12)

l = 8δ

βvsh
= 4μc

βpsh

[
4

3
+ μB

μ
+ (γ − 1)κ

cpμ

]
. (11.6.13)

In Eq. (12), the constant of integration has been chosen such that v/vsh = 1
2 at ξ = 0

(x = V t).
The thickness parameter l has the property

l = vsh

(−dv/dξ)
v= 1

2 vsh

, (11.6.14)

so a straight line tangent to the waveform at its half-peak point (ξ = 0) reaches
from the line v = vsh to the line v = 0 over a distance interval of l. This accordingly
allows us to regard l as the shock thickness. From an analogous point of view, l/c is
the shock rise time. Both are inversely proportional to the shock overpressure.

11.6.5 Relaxation Effects on Shock Structure

To examine how a relaxation process affects the propagation of a weak shock, we
consider a medium with only one such process. The application of the operator
(1 + τ∂/∂t) in such a case to both sides of Eq. (5a) then yields,25 with the help of
Eq. (3b),

(
1 + τ

∂

∂t

)
[vt + (c + Δc + βv)vx − δvxx] = (Δc)vx. (11.6.15)

25A. L. Polyakova, S. I. Soluyan, and R. V. Khokhlov, “Propagation of finite disturbances in a
relaxing medium,” Sov. Phys. Accoust. 8(1):78–82 (1962); Ockendon and Spence, “Nonlinear wave
propagation”; O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics,
Consultants Bureau, New York, 1977, pp. 88–96.
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As in the preceding discussion, we assume that v is of the form v(ξ), where ξ = x−
V t , and that v → vsh as ξ → −∞. The latter requirement leads to V = c + 1

2βvsh,
so the following ordinary differential equation for v results:

(
1 − V τ

d

dξ

)[
v(v − vsh) − vshl

4
vξ

]
= V τφvshvξ , (11.6.16)

where l is the characteristic length given by Eq. (13) and where

φ = 2Δc

βvsh
= 2ρc

Δc

βpsh
(11.6.17)

is a dimensionless quantity that measures the relative strength of the relaxation
process and of the nonlinearity. The limit φ → 0 yields the same differential
equation (9) as neglect of relaxation processes.

If l + 4V τφ is substantially larger than V τ , the differential equation (16) can be
approximated by setting the operator 1 −V τd/dξ equal to 1 on the left side, so that
Eq. (12) results but with l replaced by an augmented shock thickness

l∗ = l + 4V τφ ≈ l + 4cτφ. (11.6.18)

The conclusion is the same as that from a low-frequency approximation to the
relaxation process’s contribution to the dispersion relation, so that the bulk viscosity
is augmented by an amount ΔμB given by Eq. (10.8.15). This applies in particular
for shocks sufficiently weak to ensure that φ � 1. Any semblance of a shock in the
waveform will be lost if l∗ is larger than one-fourth a representative wavelength.
Under such circumstances, the weak-shock theory discussed in Sec.10.3 loses
applicability, even as a gross approximation.

The differential equation (16) is difficult to solve in general, but some insight
results from setting l to zero at the outset, so that

1

V τvξ
= d

dv

ξ

V τ
= (φ − 1)vsh + 2v

v(v − vsh)
= 1 + φ

v − vsh
− φ − 1

v
, (11.6.19)

which integrates to

eξ/V τ = (const)(vsh − v)1+φv1−φ. (11.6.20)

At this point, one must distinguish between the cases φ < 1 and φ > 1. If φ < 1,
the frozen sound speed c + Δc is less than the wave speed c + 1

2βvsh, so the only
possibility for a wave advancing into an undisturbed medium is for the waveform to
begin with a discontinuity of net overpressure ρcvf (f for front), where vf < vsh.
This discontinuity must move with a speed c + Δc + (β/2)vf ; one uses the frozen
sound speed here rather than the equilibrium sound speed because the fluid just
behind the discontinuity must behave as if the internal degrees of freedom were
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frozen over any time interval small compared with the relaxation time τ . The speed
c + Δc + (β/2)vf must be the same as V , however, so we identify vf = (1 −
φ)vsh. If ξ = 0 locates the discontinuous beginning of the waveform, the constant
of integration in (20) must be such that v = (1 − φ)vsh when ξ = 0. Thus, we have
(φ < 1)

v = 0, ξ > 0, (11.6.21a)

eξ/V τ =
(

1 − v/vsh

φ

)1+φ (
v/vsh

1 − φ

)1−φ

, 1 − φ <
v

vsh
< 1. (11.6.21b)

In the other case, when φ > 1, the waveform is continuous and has a precursor
(which arises because the frozen sound speed exceeds the nominal shock velocity).
To pinpoint the region of transition near ξ = 0, we choose the constant of integration
to be such that v = vsh/2 when ξ = 0. Thus, Eq. (20) yields (φ > 1)

eξ/V τ = (2 − 2v/vsh)
φ+1

(2v/vsh)φ−1 , 0 < v < vsh, (11.6.22)

which in turn leads to

4V τφ = vsh

(dv/dξ)
v= 1

2 vsh

, (11.6.23)

so 4V τφ ≈ 4cτφ can be regarded as the apparent shock thickness for the case φ >

1. However, the waveform is not symmetric about the half-peak crossing, except in
the limit when φ � 1. In the latter case, Eq. (22) reduces to Eq. (12) but with l

replaced by 4V τφ.
Plots of v/vsh = p/psh versus ξ/V τ , derived from Eqs. (21) and (22), are given

in Fig. 11.10 for various values of φ. From the inspection of such plots and from
the analysis above, one concludes that the relaxation process has relatively little
effect on the transition region if the overpressure amplitude is such that φ < 0.2.
In the other limit, when the overpressure is sufficiently low for φ to be greater
than, say, 4, the effect of a relaxation process can be formally taken into account by
the thermoviscous model, i.e., that leading to the Burgers equation, with a suitable
augmentation of the bulk viscosity. This presumes that l + 4V τφ is substantially
smaller than one-fourth of a representative wave-length of the disturbance. In the
opposite circumstance, the nonlinear effects would be of negligible importance
compared with dissipation and dispersion.

For sound in air, the value of Δc at 20 ◦C is 0.11 m/s for O2 vibrational relaxation
and is 0.023 m/s for the N2 vibrational relaxation. The corresponding values of
ρcΔc/β are 39.0 and 7.8 Pa, respectively. Consequently, these relaxation processes
have minor influence on shock structure if psh > 200 Pa. If psh < 2Pa, the presence
of relaxation processes is accounted for by an appropriate augmentation of the bulk
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Fig. 11.10 Profiles of the leading portions of shock waves of various amplitude in a medium with
a single relaxation process and with viscosity and thermal conduction neglected. The parameter
φ is 2ρcΔc/βpsh, where Δc is the difference between frozen sound speed and equilibrium sound
speed, psh is the shock overpressure, and β is 1 + 1

2B/A. (a) If φ < 1, the asymptotic waveform
begins with a discontinuity, while (b) if φ > 1, it has a precursor and no discontinuity

viscosity, providing the shock duration is somewhat longer than what the model
would predict for the rise time.

11.7 Transition to Old Age

The gradual rounding of the shocks in a sawtooth waveform results ultimately in
a sinusoidal waveform. We here complete the discussion of the example begun in
Sect. 11.2 with an analysis of the corresponding solution of Mendousse’s version,
Eq. (11.6.7), of the Burgers equation.
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11.7.1 Reduction to the Linear Diffusion Equation

The insertion26 of

v(x, t ′) = a
Ft ′(x, t ′)
F (x, t ′)

(11.7.1)

into Eq. (11.6.7), where a is a constant, yields the differential equation

F 2(Ft ′x − δc−3Ft ′t ′t ′)−FFt ′ [Fx − (3δc−3 − βac−2)Ft ′t ′ ]
+ (Ft ′)

3(βac−2 − 2δc−3) = 0. (11.7.2)

Consequently, Eq. (1) satisfies the Mendousse–Burgers equation if

a = 2δ

βc
, (11.7.3)

Fx = δc−3Ft ′t ′ . (11.7.4)

Thus, the problem of solving the nonlinear partial-differential equation is reduced
to that of solving the linear diffusion equation.

11.7.2 Solution of the Boundary-Value Problem

If the acoustic pressure at x = 0 is Po sinωt , as in Sect. 11.2, the function F should
satisfy the boundary condition

Po

ρc
sinωt = 2δ

βc

∂

∂t
(lnF), x = 0

or

F = exp

(
−Γ

2
cosωt

)
, x = 0, (11.7.5)

Γ = βPo

ρωδ
= c3/δ

ω2x̄
. (11.7.6)

26Cole, “On a quasi-linear parabolic equation”; E. Hopf, “The partial differential equation
ut + uux = μuxx ,” Commun. Pure Appl. Math. 3:201–230 (1950); the adaption to Eq. (11.6.7)
of this technique for solving quasi-linear partial-differential equations is included in Mendousse,
“Nonlinear dissipative distortion.”
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The diffusion equation (4) is separable and has particular solutions

e−n2ω2(δ/c3)x cos nωt ′ = e−n2αx cos nωt ′,

where α = ω2δ/c3 (or, equivalently, α = 1/Γ x̄) is the attenuation coefficient for
plane-wave propagation. Since the boundary condition in Eq. (5) requires that F be
even in t ′ and periodic with period 2π/ω, we can set

F =
∞∑
n=0

Ane
−n2αx cos nωt ′, (11.7.7)

where the coefficients An satisfy

∞∑
n=0

An cos nωt = e−(Γ/2) cosωt . (11.7.8)

This subsequently yields [see Eq. (2.7.3)]

An = εn

π

∫ π

o

cos nθe−(Γ/2) cos θ dθ (11.7.9a)

= εn(−1)nIn

(
Γ

2

)
(11.7.9b)

for the Fourier coefficients. Here εn is 1 for n = 0 and is 2 for n ≥ 1; the In are the
modified Bessel functions27

In(z) = (−i)nJn(iz) =
∞∑

m=0

(z/2)n+2m

m!(n + m)! . (11.7.10)

Putting the above An into Eq. (7), then inserting the resultant into Eq. (1), with
α = 2δ/βc recognized as 2Po/ρcωΓ and with ρcv recognized as p, yields

p

P0
=

4

Γ

∞∑
n=1

(−1)n+1In

(
Γ

2

)
ne−n2σ/Γ sin nωt ′

Io

(
Γ

2

)
+ 2

∞∑
n=1

(−1)nIn

(
Γ

2

)
e−n2σ/Γ cos nωt ′

, (11.7.11)

where we replace αx by the equivalent σ/Γ , with σ = x/x̄.

27G. N. Watson, A Treatise on the Theory of Bessel Functions, 2d ed., Cambridge University Press,
London, 1944, pp. 77–80.
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11.7.3 Relative Importances of Nonlinear and Dissipative
Effects

The parameter Γ in the above solution serves as a measure of the predominance
of nonlinear effects over dissipative effects. The inequality Γ > 1 is equivalent to
that of Eq. (11.3.10) and marks the transition from primarily dissipatively controlled
waveform distortion to primarily nonlinear distortion. Because the problem formu-
lation reduces to that in Sect. 11.2 when δ = 0, the above result must reduce to
the Fubini–Ghiron solution, Eq. (11.2.7), in the limit Γ − ∞, σ < 1, although the
correspondence is obscured by the mathematical representations. However, in the
event σ/Γ is of the order of, say, 0.2 or larger, the factors e−n2σ/Γ in the various
terms above indicate that the Fubini–Ghiron solution is then a poor approximation.

In the Γ 
 1 limit, Eq. (11) reduces to

p ≈ Poe
−αx sin

[
ω
(
t − x

c

)]
, (11.7.12)

which is the same as would be obtained if nonlinear terms had been neglected at
the outset. Thus, one need not be concerned about such nonlinear effects within the
present context if the driving amplitude is sufficiently weak. For sound in pure water,
for example, where δ is of the order of 3 × 10−6m2/s, β ≈ 3.5, setting Γ = 1 gives
Po/f ≈ 0.0054 Pa/Hz, so if f = 20kHz, the nonlinear effects should be minor,
even in an accumulative sense, if Po is substantially less than 100 Pa. The tendency
for nonlinear steepening is nullified by the greater erosion of the higher-frequency
harmonics by the dissipative processes.

11.7.4 Transition from Sawtooth to Old Age

The sawtooth solution described by Eq. (11.5.9) must correspond to Eq. (11.7.11),
in the limit Γ → ∞, with σ somewhat greater than 3. The demonstration28 of this
results from a replacement of In(Γ/2) in Eq. (11) by its approximate asymptotic
limit

In

(
Γ

2

)
≈ Io

(
Γ

2

)
e−n2/Γ , (11.7.13)

28D. T. Blackstock, “Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves,”
J. Acoust. Soc. Am. 36:534–542 (1964). A heuristic justification of Eq. (13) proceeds from the
recursion relation (Watson, p. 79)

Iν+1(Γ/2) − Iν−1(Γ/2)

(ν + 1) − (ν − 1)
= −2ν

Γ
Iν

(
Γ

2

)
to

d

dν
Iν

(
Γ

2

)
= −2ν

Γ
Iν

(
Γ

2

)

which integrates to Eq. (13).
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such that

p

Po

= 1

Γ

[
(∂/∂z)θ4(z, q)

θ4(z, q)

]
2z=ωt ′,q=e−(σ+1)/Γ

, (11.7.14)

where

θ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn2
cos 2nz (11.7.15)

is the theta function of the fourth type. The indicated logarithmic derivative29 of
θ4(z, q) can be shown, moreover, to be

2
∞∑
n=1

sin 2nz
1
2 (q

−n − qn)
(11.7.16)

so the above result becomes

p

Po

≈ 2

Γ

∞∑
n=1

sin[nω(t − x/c)]
sinh[n(σ + 1)/Γ ] (11.7.17)

Since the hyperbolic sine equals its argument n(σ + 1)/Γ when Γ is large, this
expression for p/Po reduces to a sawtooth series, Eq. (11.5.9), in the limit Γ → ∞,
σ remaining finite.

The old-age limit is realized when the waveform once again has a sinusoidal
form, such that the fundamental component dominates. This implies that (σ +1)/Γ
is of the order of, say, 2 or more. In this limit, (17) becomes

p

Po

≈ 4

Γ
e−1/Γ e−αx sin

[
ω
(
t − x

c

)]
, (11.7.18)

or, since Γ as given by Eq. (6) is presumed large,

p ≈ 4ωρδ

β
e−αx sin

[
ω
(
t − x

c

)]
. (11.7.19)

29A proof is outlined by E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th
ed., Cambridge University Press, Cambridge, 1927, p. 489. Applicable numerical results for the
evaluation of the logarithmic derivative are given by L. M. Milne-Thomson, “Jacobian elliptic
functions and Theta functions,” in M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical
Functions, Dover, New York, 1965, pp. 567–585.
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This is independent of the driving amplitude (or of the value of Po), so the existence
of a saturation limit, predicted in Sect. 11.5, is upheld, even when dissipation is
taken into account.

Note that Eqs. (12) and (18), holding in the limit of large σ for Γ 
 1 and
Γ � 1, respectively, are special cases of the large σ limit of Eq. (11), i.e.,

p ≈ 4ωρδ

β

I1(Γ /2)

I0(Γ /2)
e−αx sin

[
ω
(
t − x

c

)]
. (11.7.20)

The saturation upper limit results when I1/Io is replaced by its asymptotic value
of 1,

A numerical example of the foregoing considerations would be a sinusoidally
driven plane wave of original amplitude Po = 104 Pa and frequency 200 kHz
propagating through water; δ = 3 × 10−6m2/s, β = 3.5, c = 1500m/s,
ρ = 103kg/m3. Equations (6) yield x̄ = 77m, Γ = 19. Shocks therefore start
to form at x = 77m; the sawtooth regime begins at x ≈ (π/2)77 = 121m; old
age is realized at x ≈ (2Γ − 1)x̄ = 2800m. The saturation amplitude at 2800m is
(4ωρδ/β)e−α/Γ ≈ 600 Pa and does not increase with further increase of Po.

11.8 Nonlinear Effects in Converging and Diverging Waves

A wedding30 of the nonlinear theory of plane-wave propagation to geometrical
acoustics results with the assumptions that nonlinear effects do not appreciably alter
directions of wavefront normals or alter ray-tube areas. In what follows, we proceed
without explicit consideration of dissipation processes.

11.8.1 Corrected Travel Time Along Ray Path

The linear acoustics theory predicts that acoustic pressure along a ray path (see
Fig. 11.11) varies with path distance l as

p = B(l)g (t − τ(l)) , (11.8.1)

30W. D. Hayes, R. C. Haefeli, and H. E. Kulsrud, “Sonic boom propagation in a stratified
atmosphere, with computer program,” NASA CR-1299, 1969; G. B. Whitham, “On the propagation
of weak shock waves,” J. Fluid Mech. 1:290–318 (1956). The most notable circumstances for
which the weak-shock-ray-theory wedding breaks down are those of caustics: W. D. Hayes,
“Similarity rules for nonlinear acoustic propagation through a caustic” in 2d Conf. Sonic Boom
Res., Washington, 1968, NASA SP-180, pp. 165–171; R. Seebass, “Nonlinear acoustic behavior
at a caustic,” 3d Conf. Sonic Boom Res., NASA SP-255, 1971, pp. 87–120; F. Obermeier, “The
behavior of asonic boom in the neighborhood of a caustic,” Max Planck Inst. Strömungsforschung,
Rep. 28, Göttingen, 1976.
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Fig. 11.11 Geometry used in
the determination of the
nonlinear acoustics correction
to the travel time along a
curved ray path in an
inhomogeneous moving fluid

where B(l) continually adjusts to preserve the Blokhintzev invariant, Eq. (8.6.13),
such that

d

dl

(
B2(l)(c + v ·n)|v + cn|A

ρc3

)
= 0. (11.8.2)

Here A(l) is the ray-tube area along the path, and τ(l) is ray travel time from a given
reference point.

The ray construction requires, moreover, that p/B(l) = g(ψ) appear constant
(or, alternatively, that ψ = t − τ appear constant) to someone moving with the trace
velocity of a wavefront along the ray. If cn is the speed of a wavefront normal to
itself, then cn/(eray · n) is the trace velocity, where eray is the unit vector in the ray
direction and n is the unit vector normal to the wavefront. The integral along the ray
path of the reciprocal of this trace velocity gives the nominal travel time of the ray

τ(l) =
∫ l

o

eray ·n

c + v ·n
dl, (11.8.3)

where c + v ·n is recognized as cn.
The nonlinear acoustic modification of the above formulation, resulting from

Eq. (11.1.6), is such that

c + v ·n → co + vo ·n + βp

ρoco
=(eray ·n)

(
dτ

dl

)−1

+(eray ·n)
dA

dl

(
dτ

dl

)−2

g(ψ), (11.8.4)
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where τ(l) is as defined above in terms of ambient quantities and the age variable
A (l) is defined as

A (l) =
∫ l

o

βB(l)eray ·n

ρc(c + v ·n)2 dl, (11.8.5)

For propagation in a homogeneous medium without ambient flow, eray equals n

and c + v · n is c, so the nominal travel time τ(l), amplitude factor B(l), and age
A (l) reduce to

τ(l) = l

c
, B(l) =

[
A(0)

A(l)

]1/2

,

A (l) = β

ρc3

∫ l

o

[
A(0)

A(l)

]1/2

dl, (11.8.6)

where A(l) is ray-tube area and B(l) is normalized so that p = g(t) at l = 0.
The requirement that g(ψ) appear constant to someone moving along the ray path

with the augmented trace velocity, when expressed in the manner of Eq. (11.1.3),
yields

∂g

∂t
+
[(

dτ

dl

)−1

+ dA

dl

(
dτ

dl

)−2

g(ψ)

]
∂g

∂l
= 0. (11.8.7)

Since ∂g/∂l is −(dτ/dl)∂g/∂t when nonlinear terms are neglected, little error is
incurred if such a substitution is made above in the (a priori small) nonlinear term
itself, so that the differential equation becomes

∂g

∂l
+
[
dτ

dl
− g(ψ)

dA

dl

]
∂g

∂t
= 0. (11.8.8)

This in turn integrates to the parametric solution

t = ψ + τ(l) − g(ψ)A (l), p = B(l)g(ψ), (11.8.9)

so that ψ(t, l) is t when l = 0.
Equations (9) are similar to the previously discussed Eqs. (11.1.11) and reduce

to those equations when B(l) = 1, τ(l) = l/c, and A (l) = βl/ρc3.

11.8.2 Weak Shocks

The modification of the model represented by Eqs. (9) to allow for the presence of
shocks proceeds along lines similar to those described in Sect. 11.3. A shock moves
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relative to the ambient flow with a speed c + βpav/ρc, where pav is the average of
the acoustic pressures ahead and behind the shock front; hence the shock slowness,
identified from Eq. (9), is

dtsh

dl
= dτ

dl
− 1

2 [g(ψ+) + g(ψ−)]
dA

dl
. (11.8.10)

Here ψ+ and ψ− are such that Bg(ψ−) is the pressure arriving just before the shock
and Bg(ψ+) that arriving just after the shock, so B[g(ψ+) − g(ψ−)] is the shock
overpressure, ψ− < ψ+. The portion of the initial waveform with ψ between ψ−(l)
and ψ+(l) does not contribute to the waveform received at distance l.

The equal-area rule for this model,

d

dl

∫ ψ+

ψ−
[tsh(l) − t (ψ, l)]

dg(ψ)

dψ
dψ = 0 (11.8.11)

results from Eq. (9) and from the above expression for dtsh(l)/dl. The integral
is zero where the shock is first formed and consequently is always zero. The
conclusion is not changed if g(ψ) is replaced by p(l, ψ) = B(l)g(ψ).

Application of the equal-area rule is facilitated if the integral in Eq. (11) is
integrated by parts. Subsequent insertion of t (l, ψ) from Eq. (9) yields

∫ ψ+

ψ−
g(ψ)dψ = 1

2A (l)[g2(ψ+) − g2(ψ−)]. (11.8.12)

Then, since ψ+ − ψ− = A (l) [g(ψ+) − g(ψ−)] results from the equivalence of
t (l, ψ−) and t (l, ψ+), the above relation yields in turn

∫ ψ+

ψ−
+
[
g(ψ) − g(ψ−) − 1

A (l)
(ψ − ψ−)

]
dψ = 0. (11.8.13)

A graphical interpretation (see Fig. 11.12) of the above associates the integrand
with a straight line with slope 1/A (l) extending from [ψ−, g(ψ−)] to [ψ+, g(ψ+)]
in the plane described by coordinate axes ψ and g. This straight line crosses the
curve of g(ψ) versus ψ at ψ−, ψ+, and an intermediate point. At ψ− and ψ+, the
derivative dg/dψ must be negative, so g(ψ) is below the line for ψ slightly larger
than ψ− but is above the line for ψ slightly less than ψ+. Equation (13) states that
ψ− and ψ+ must be such that the areas so delimited above the line are equal to those
below the line. The line, whose slope is fixed, is moved to a position such that the
areas cancel.

The construction also applies to the coalescence of shocks. Consider, for
example, the three-cycle waveform sketched in Fig. 11.13a. At an early stage in the
evolution (Fig. 11.13b), there are four shocks, which we number 1, 2, 3, 4. Shock
2 is moving faster [higher average g(ψ)] than shock 1, so it eventually overtakes
shock 1. However, shock 3 is moving slower than shock 2, so it never overtakes 2;
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Fig. 11.12 Graphical technique for the application of the equal-area rule to a plot of the original
undistorted waveform g(ψ). The straight line, whose slope is the reciprocal of the age variable, is
drawn so that the two shaded areas are equal. Construction yields ψ−, g(ψ−), ψ+, and g(ψ+)

Fig. 11.13 (a) Original nondistorted three-cycle waveform. (b) Intermediate form of distorted
waveform with four shocks. (c) Asymptotic waveform predicted by weak-shock theory. Shocks 1
and 2 and shocks 3 and 4 have coalesced during the time since the waveform had the shape in (b)
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instead it is overtaken by 4, so 3 and 4 coalesce. Thus, in the limit of very large
A (l), one has two shocks, the construction being as indicated in Fig. 11.13c.

11.8.3 Asymptotic Form of a Transient Pulse

The analysis just described can be extended to an arbitrary transient pulse of short
duration. In the limit of large age variable A (l), the waveform at l will typically
begin with a jump from zero g to positive g; the value of g(ψ−) for this shock must
be zero, so Eq. (12) yields

g2(ψ+) = 2

A (l)
I (ψ+), I (t) =

∫ t

−∞
g(t)dt. (11.8.14)

These suffice to determine ψ+ and g(ψ+) and therefore yield the leading
shack’s overpressure pfs = B(l)g(ψ+), where fs stands for front shock,
and, via Eq. (9), its time of arrival t (l, ψ+). For any value of ψ+(l) that
corresponds to the leading shock, I (ψ+) and g(ψ+) must be positive and
dg/dψ is less than 1/A . Also, ψ+ must increase with increasing l, possibly
with some discontinuities. In the absence of shock coalescence, I (ψ+) must
increase with l. Since the coalescence of a second shock with the leading
shock cannot result in a lower value for g(ψ+) at that particular instant, one
concludes from (14) that I (ψ+) must always increase with l. Thus, as l increases
indefinitely, I (ψ+) approaches the maximum value Imax of the integral I (t). If
Imax < 0, there will be no shock at the beginning of the waveform, the pressure
disturbance being eventually terminated by a shock instead.

Given Imax > 0, the reasoning outlined above leads to the conclusion that the
overpressure of the leading shock must approach

pfs = B(l)

[
2Imax

A (l)

]1/2

. (11.8.15a)

Similarly, the tail shock will asymptotically have a jump from −pts to 0, with

pts = B(l)

[
2Jmax

A (l)

]1/2

, (11.8.15b)

where Jmax is the maximum value of

J (t) = −
∫ ∞

t

g(t)dt = −I (∞) + I (t). (11.8.16)

To determine the asymptotic-pulse duration, note that at ψ = ψo, where
I (ψo) = Imax and J (ψo) = Jmax, the function g(ψ) is 0 and dg/dψ is negative.
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At large l, we anticipate that ψ+ for the front shock and ψ− for the tail shock will
be sufficiently close to ψo for g(ψ) to be approximated by (dg/dψ)o(ψ − ψo)

for any intermediate value of ψ . Also, in the limit of large A (l), one should have
A (l) � 1/|(dg/dψ)o|. Consequently, an expansion of the first of Eqs. (9) about
ψo yields t − ψo − τ(l) for −(dg/dψ)oA (l)(ψ − ψo). The pressure waveform,
when approximated by B(l)(dg/dψ)θ (ψ − ψo), therefore becomes

p(l, t) = − B(t)

A (l)
[t − ψo − τ(l)], (11.8.17)

which has a linear variation with time, as for an N wave. The front shock arrives
when p(l, t) = pfs, and the tail shock arrives when it is −pts; so this expression
describes the waveform for

[2JmaxA (l)]1/2 > t − ψo − τ(l) > − [2ImaxA (l)]1/2 . (11.8.18)

Outside this range of time, the quantity p(l, t) is asymptotically zero. Since A (l)

increases with l, the pulse duration, represented by the difference of the upper and
lower limits in (18), also increases.

The above analysis presumes that A (l) increases indefinitely with increasing l.
If it is bounded, the asymptotic form may not be realized.

11.9 N Waves in Inhomogeneous Media: Spherical Waves

The formulation above is here applied to the propagation of N waves under more
general circumstances than considered in Sect. 11.4. The theory is then applied to
the particular example of spherically diverging waves in a homogeneous medium.

11.9.1 N-Wave Propagation

The waveform at l = 0 is here presumed already in the form of an N wave, so that
g(t) is 0 for t < −T0, is −Pot/To for −T0 < t < To, and is 0 for t > To. The ray-
tube parameter B(l) is defined as 1 when l = 0, so Po is the N-wave over-pressure at
the initial point on the ray path. Equating the shock-slowness expression (11.8.10),
with g(ψ−) = 0, to the l derivative of the t (l, ψ+(l)) expression, derived from Eq.
(11.8.9), yields the differential equation

dψ+
dl

+ Po

To

dψ+
dl

A (l) = −1

2

Po

To
ψ+

dA

dl
. (11.9.1)
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This in turn integrates to

ψ+(l) = − T 2
0

T (l)
T (l) = To

[
1 + Po

To
A (l)

]1/2

, (11.9.2)

with the requirement that ψ+(l) = −To when l = 0.
The overpressure at the leading shock is B(l)g(ψ+) or

P(l) = B(l)Po

[
1 + Po

To
A (l)

]−1/2

. (11.9.3)

This shock arrives when t is t (ψ+, l) or, equivalently, is τ(l) − T (l). Similarly, the
acoustic pressure just before the arrival of the second shock is −P(l); this shock
arrives at time τ(l) + T (l). Between the two shocks, p(l, t) decreases linearly with
time; it is zero at t = τ(l). Thus, the received waveform at any subsequent point l
is also an N wave. The peak overpressure is P(l), and the positive-phase duration is
T (l). The quantity P(l)T (l)/B(l) is independent of l; T (l) increases with increasing
l while P(l)/B(l) decreases.

For plane waves in homogeneous media, B(l) is 1, and the age A (l) is βl/ρcs ,
so Eqs. (2) and (3) reduce, respectively, to Eq. (11.4.5), with Lo = cTo, and to
Eq. (11.4.6).

11.9.2 Waves with Spherical Spreading31

For spherically spreading waves in a homogeneous quiescent medium, the length l

may be taken as r − ro, where r is the distance from the center of the source and ro
is a reference distance. The ray-tube area is proportional to r2, so Eq. (11.8.6) yields
B(l) = ro/r . Consequently, the age variable becomes

A (r) = β

ρc3
ro ln

r

ro
. (11.9.4)

Although A (r) increases more slowly with r than it does with distance in
plane-wave propagation [where A (l) increases linearly with l], A (r) nevertheless
increases indefinitely. Consequently, spherical spreading cannot prevent the forma-
tion of shocks. Equations (11.8.9) predict that the plot of p versus t for fixed r will
be multivalued if there is a solution of dg(ψ)/dψ = 1/A (r). The smallest value of
r at which this occurs is

31Landau, “On shock waves,” “On shock waves at large distances”; D. T. Blackstock, “On plane,
spherical, and cylindrical sound waves of finite amplitude in lossless fluids,” J. Acoust. Soc. Am.
36:217–219 (1964).
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ronset = r0 exp
ρc3/βr0

[dp(r0, t)/dt]max
. (11.9.5)

The denominator in the exponent is the maximum positive value of dp/dt at r = ro.
The exponential dependence on (dp/dt)−1

max is indicative of the greater distance a
spherical wave must travel than a plane wave with the same initial waveform before
a shock is formed.

The N-wave model of Eqs. (2) and (3) applies in particular to the initial part
(positive phase) of the shock waveform received at a moderate distance r from a
sudden local release of energy in an unbounded homogeneous medium. To cast
the expressions for positive-phase duration T (r) and for the shock overpressure
into an invariant form, we first note that 1 + (Po/To)A (r) can be written as
(βro/ρc

3)(Po/To) ln(r/r∗), where r∗ is a constant satisfying

r∗ = r exp

(
−Tρc3

Pβr

)
. (11.9.6)

Although our initial derivation requires this to be evaluated with r = ro, T = To,
and P = Po, the quantity on the right with T = T (r) and P = P(r) is actually
independent of r , so it makes no difference what the choice of ro may be (given
that the positive phase resembles a half N wave) insofar as the computation of r∗ is
concerned. That the right side should be invariant follows from Eqs. (2) to (4), with
B(l) identified as ro/r . The other invariant for the propagation is P(l)T (l)/B(l), so
we set

rP (r)T (r) = (r∗)2ρcβK2, (11.9.7)

where K is a dimensionless constant. Solution of Eqs. (6) and (7) for T (r) and P(r)

then yields

T (r) = βK
r∗

c

(
ln

r

r∗
)1/2

, P (r) = Kρc2 r∗

r

(
ln

r

r∗
)−1/2

. (11.9.8)

The extrapolation to smaller values of r implies T (r) → 0, P(r) → ∞ as
r → r∗, so the model is meaningless unless r is somewhat larger than r∗. An
implication of the model is that a doubling of T requires that r increase by a factor
of e4 = 54.6.
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Example Numerical integration32 of the fluid-dynamic equations for an ideal gas
(γ = 1.4) when a finite amount of energy E is suddenly added at a point yields

P = 0.09
ρc2

γ
, T = 0.36

(
γE

ρc5

)1/3

, r = 3

(
γE

ρc2

)1/3

, (11.9.9)

for the shock overpressure and positive-phase duration at the stated radius r . What
are the corresponding extrapolations to larger values of r?

Solution Direct substitution, with γ = 1.4 and β = 1.2, of (9) into Eqs. (6) and (7)
yields

r∗ = 0.7

(
E

ρc2

)1/3

, K = 0.4,

so

cT (r) = 0.32

(
E

ρc2

)1/3 (
ln

r

r∗
)1/2

,
P (r)

ρc2 = 0.4(r∗/r)
[ln(r/r∗)]1/2 .

If E were 0.23 J, for example, one would find r∗ = 0.8 cm for an atmosphere of
ambient density 1.2 kg/m3 and sound speed 340 m/s. At a distance of 1 m, the
quantity [ln(r/r∗)]1/2 is 2.2, so that T = 25 μs and P = 200 Pa.

The model of a point energy source is usually relatively poor for laboratory-scale
sources such as a spark in air (whose region of energy deposition resembles a finite
line source33), but it should apply to sources whose physical dimensions are much
smaller than (E/ρc2)1/3. An atomic bomb, for example, would satisfy this criterion.

11.10 Ballistic Shocks: Sonic Booms

The simplest prototype of sonic-boom generation34 is a slender needle-shaped body
moving in a straight line at constant supersonic speed V > c (Mach number M =
V/c) through a homogeneous medium. We first discuss the linear acoustic theory
for the resulting disturbance and then discuss how nonlinear effects are incorporated
into the model.

32H. L. Brode, “Numerical solutions of spherical blast waves,” J. Appl. Phys. 26:766–775 (1955).
33W. M. Wright and N. W. Medendorp, “Acoustic radiation from a finite line source with N-wave
excitation,” J. Acoust. Soc. Am. 43:966–971 (1968).
34A suggested guide to the voluminous early literature on sonic booms is L. J. Runyan and E. J.
Kane, “Sonic boom literature survey,” vol. 2, “Capsule summaries,” Fed. Av. Admin. Rep. FAA-
RD-73-129-II, AD771-274, 1973, available from Nat. Tech. Inf. Serv., Springfield, Va.
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Fig. 11.14 Parameters used for discussion of sound radiation from a needle-shaped body of
revolution moving at supersonic speed V , Mach number M > 1, in a straight line. Here AB(ξ)

denotes cross-sectional area at distance ξ from the nose

11.10.1 Linear Acoustic Model for Sound Generation
by a Moving Body

The applicable theory is most simply introduced with the consideration of a cylinder
aligned along the x axis with cross-sectional area A(x, t). The radius r = (A/π)1/2

is assumed small compared with c times any characteristic time associated with its
variation. The moving surface under such circumstances can be regarded as a linear
distribution of acoustic monopoles such that volume Ȧ(x, t)dx is being exuded per
unit time by the cylinder segment between x and x+dx. The superposition principle
and Eq. (4.3.7) accordingly yield the inhomogeneous wave equation

∇2p − 1

c2

∂2p

∂t2 = −pÄ(x, t)δ(y)δ(z). (11.10.1)

The point of view leading to the above equation applies to a needle-shaped
slender body35 (see Fig. 11.14) moving at speed V if we replace A(x, t) by the
cross-sectional area of whatever portion of the body happens to be passing point x
at time t . Thus, if AB(ξ) is the area a distance ξ behind the nose of the body, then

A(x, t) = AB(V t − x), (11.10.2)

35The topic discussed here is essentially that of linearized supersonic flow about a body of
revolution, the theory of which originated with T. von Kármán and N. B. Moore, “Resistance
of slender bodies moving with supersonic velocities with special reference to projectiles,” Trans.
Am. Soc. Mech. Eng., sec. APM 54:303–310 (1932). Antecedents date back to J. Ackeret (1925,
1928) and earlier. While the sonic boom has intrinsic nonlinear features, i.e., shock waves, it was
demonstrated by G. B. Whitham that a viable theory of the sonic boom could be developed taking
the linearized flow solution as a starting point: “The behavior of supersonic flow past a body of
revolution, far from the axis,” Proc. R. Soc. Land. A201:89–109 (1950); “The flow pattern of a
supersonic projectile,” Commun. Pure Appl. Math. 5:301–348 (1952).
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where the time origin is selected so that the nose of the needle is at x = 0 when
t = 0. Here AB(ξ) is understood to be nonzero only for ξ between 0 and L, where
L is the body length.

The trace-velocity matching principle, when (2) is inserted into (1), requires that
p depend only on t and x through the combination t1 = t−x/V , so we set ∂p/∂t =
∂p/∂t1 and ∂p/∂x = −(1/V )∂p/∂t1, with the result that Eq. (1) reduces to

(
∂2

δy2
+ ∂2

∂z2

)
p −

(
1

c2
− 1

V 2

)
∂2p

∂t2
1

= −ρV 2A′′
B(V t1)δ(y)δ(z), (11.10.3)

where A′′
B(ξ) is d2AB/dξ

2.
If one introduces a bogus coordinate x∗, Eq. (3) takes the form

(∇∗)2p − 1

(c∗)2

∂2p

∂t2
1

= −ρV 2A′′
B(V t1)δ(y)δ(z),

where (∇∗)2 = ∂2

∂y2 + ∂2

∂z2 + ∂2

∂x∗∂x∗ c∗ = 1

(c−2 − V −2)1/2 = V

(M2 − 1)1/2

(11.10.4)

This, however, is the inhomogeneous wave equation36 with a new identification for
c, so the solution must be of the form of Eq. (4.3.17) with s(x∗, y, z, t1) identified
as −1/4π times the right side. Consequently, the appropriate solution of Eq. (3) is

p = 1

4π

∫ ∞

−∞
ρV 2A′′

B((V )(t1 − R/c∗))
R

dx∗, (11.10.5)

where R = [(x∗)2 + y2 + z2]1/2.
Since the above integrand is symmetric about x∗ = 0, we need only integrate

from 0 to ∞ and then multiply by 2. Changing the variable of integration to ξ =
(t1 − R/c∗)V then yields37

p = ρV 2

2π

∫ ξm

−∞
A′′

B(ξ)dξ

[(V t − x − ξ)2 − (M2 − 1)r2]1/2
, (11.10.6)

36The analogy of the homogeneous version of (3) to that for sound propagation in two dimensions
is known as von Kármán’s acoustic analogy: T. von Kármán, “Supersonic aerodynamics: principles
and applications,” J. Aeronaut. Sci. 14:373–409 (1947); J. W. Miles, “Acoustical methods in
supersonic aerodynamics,” J. Acoust. Soc. Am. 20:314–323 (1948).
37The model represented by Eq. (6) is inapplicable if A′(ξ) should be discontinuous since it would
lead to a singular prediction for p. A method of treating such contingencies is given by M. J.
Lighthill, “Supersonic flow past slender bodies of revolution, the slope of whose meridian section
is discontinuous,” Q. J. Mech. Appl. Math. 1:90–102 (1948).
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where we replace t1 by t − x/V and (x2 + y2)1/2 by the cylindrical radial distance
r . The upper limit ξm is that value of ξ for which the quantity in the radical first
becomes zero, so

ξm = V t − x − (M2 − 1)1/2r =
[
t − n · x

c

]
V, (11.10.7)

where

n = 1

M
ex + (M2 − 1)1/2

M
er (11.10.8)

is the unit vector making an angle cos−1(1/M) with the projectile’s trajectory.
Since A′′

B(ξ) is zero unless ξ is between 0 and L, expression (6) requires p to
be zero unless ξm > 0 or, equivalently, unless the listener is within a Mach cone
moving with speed V with its apex at the projectile’s nose and with an apex angle
(Mach angle) of θM = sin−1(1/M) such that (see Fig. 11.15) tan θM is the quotient
r/(V t − x) on the surface ξm = 0.

Fig. 11.15 Concept of a Mach cone. The geometry in the sketch shows that tan θM is c/(V 2−c2)
1
2

or (M2 − 1)−1/2, where θM is the Mach angle and M is the Mach number V/c
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Noting that the denominator in Eq. (6) can be expressed

[(V t − x − ξ)2 − (M2 − 1)r2]1/2 = (ξm − ξ)1/2[2(M2 − 1)1/2r + ξm − ξ ]1/2,

we anticipate that if 2(M2 − 1)1/2r � L, little error will be incurred if the ξm − ξ

term is neglected in the latter factor. Doing such reduces Eq. (6) to

p = ρV 2

21/2(M2 − 1)1/4

FW(V [t − n · x/c])
r1/2

, (11.10.9)

where the Whitham F function38 (see Fig. 11.16) is

FW(ξ) = 1

2π

∫ ξ

−∞
A′′

B(μ) dμ

(ξ − μ)1/2 (11.10.10)

= 1

2π

d2

dξ2

∫ ∞

o

AB(ξ − η) dη

η1/2
, (11.10.10a)

and is dependent on the geometry of the projectile. Note that FW(ξ) = 0 for ξ < 0.
It is understood that AB(ξ) goes to zero as ξ → 0 at least as fast as ξ3/2 so FW(ξ)

is finite near ξ = 0. Such is satisfied if the projectile has a pointed nose. Similar
restrictions are placed on the shape of the projectile at its tail.

11.10.2 Geometrical-Acoustics Interpretation

Surfaces of constant phase in the above solution are surfaces along which the
argument of FW is constant and are therefore cones of apex angle θM . The rays
are straight lines normal to this family of cones and point in the direction n. A ray
leaving the x axis at xo in a given plane passing through the x axis has coordinates
(Fig. 11.17)

x = xo + (sin θM)s, r = (cos θM)s, (11.10.11)

38The version (10a) is inapplicable for a projectile of infinite length. The modification to allow for
discontinuities in A′

B(ξ) proposed by Whitham (1962) proceeds from Lighthill’s (1948) result and
yields the Riemann–Stieltjes integral

FW (ξ, α) = 1

2π

∫ (
2

αR

)1/2

h

(
ξ − μ

αR

)
dA′

B(μ),

where R(μ) is the body radius and α is (M2 − 1)1/2. The function h(X) decreases monotonically
from 1 at X = −1, passes through 0.73, 0.56, 0.48 at X = 0, 1, 2, and asymptotically approaches
1/(2X)1/2. The integration extends up to μmax(ξ), where ξ = μmax −αR(μmax) determines μmax.
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Fig. 11.16 Whitham F function for a body of revolution whose plot of radius versus axial distance
is a segment of a parabola: (a) radius versus distance behind nose; (b) Whitham F function

where s is the distance along the ray from the trajectory. The cone normal to the ray
has principal radii of curvature, s and ∞, at the point described by these coordinates,
so the ray-tube area is proportional to s, as for cylindrical spreading.

Along the ray described by Eqs. (11), n · x is xo sin θM + s, so Eq. (9) has the
alternate description, along a given ray path,

p = ρV 2M1/2FW(−xo + (t − s/c)V )

21/2(M2 − 1)1/2s1/2 . (11.10.12)
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Fig. 11.17 Geometry used in the discussion of accumulative nonlinear effects on the pressure
waveform generated by a projectile moving at supersonic speed

With an arbitrary choice of reference point sref and with l defined as s − sref, this is
of the standard geometrical-acoustics form

p = B(l)g(t − τ(l)), (11.10.13)

with the identifications

B(l) =
( sref

s

)1/2
, τ (l) = s

c
+ xo

V
, (11.10.14a)

g(t) = ρV 2M1/2FW(V t)

(M2 − 1)1/2(2sref)1/2 , (11.10.14b)

where s = sref + l. The dependence of the amplitude on the inverse square root of
distance is the same as for cylindrical spreading.

11.10.3 Nonlinear Modifications

The analysis proceeds as if Eq. (13) described the acoustic pressure at l = 0, s = sref
such that the major nonlinear distortion is regarded to take place at s > sref. (The
result turns out to be insensitive to the choice for sref, so we eventually take the limit
sref → 0.) The formulation in Sect. 11.8 should therefore apply. Computation of the
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age variable A (l) in Eq. (11.8.5) proceeds with eray ·n = 1 and c + v ·n = c since
the model considered has no winds; the integration therefore yields

A (l) = 2
β

ρc3 sref

[(
s

sref

)1/2

− 1

]
. (11.10.15)

At large l, the signature approaches that of an N wave whose front-shock and
tail-shock pressure jumps conform to Eqs. (11.8.15). In particular, the front-shock
overpressure is

pfs =
[

2B2(l)

A (l)(2sref)1/2

]1/2 [
ρV 2M1/2

(M2 − 1)1/2

] [
max

1

V

∫ ξ

−∞
FW(ξ)dξ

]1/2

.

(11.10.16)

Equations (14a) and (15) imply, moreover, that

2B2(l)

A (l)(2sref)1/2 → ρc3

21/2βs3/2 (11.10.17)

in the limit s � sref, the resulting limit being independent of sref. Thus, with s

replaced by r/(cos θM) from Eq. (11), the above reduces to

pfs = ρc2(M2 − 1)1/8

21/4β1/2r3/4

S
1/2
max

L1/4 K, (11.10.18)

where (see Fig. 11.18) Smax is the maximum cross-sectional area of the projectile,
and

SmaxL
−1/2K2 = max

∫ ξ

−∞
FW(ξ)dξ, (11.10.19)

such that K is a dimensionless constant39 determined by only the shape of the body.

39D. L. Lansing, “Calculated effects of body shape on the bow-shock overpressures in the far field
of bodies in supersonic flow,” NASA Tech. Rep. R-76, Langley Research Center, Hampton, Va.,
1960. Lansing introduces a body shape constant Cb related to the K above such that

Cb = γ
√
π

25/4β1/2 K,

so Eq. (18) becomes

pfs = po(M
2 − 1)1/8

(r/L)3/4

2Rmax

L
Cb.

Typical values of Cb range from 0.54 to 0.81, so K ranges from 0.57 to 0.85.
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Fig. 11.18 (a) Radius profile with a discontinuous slope for a body of revolution with a conical
nose of length LN and with subsequent constant radius Rmax (eventually terminating in some
unspecified manner). (b) Corresponding early portion of Whitham F function with singularity at
ξ = LN . (c) Integral

∫ ξ

o
FW (ξ)dξ , units of R2

max/L
1/2
N , versus ξ/LN . Because the latter is bounded,

it is suggested that formal application of the equal-area rule to the waveform represented by the
linear acoustics F function (b) may yield a realistic waveform (beginning with a weak shock) at
large distances from the flight trajectory
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Although the linear acoustics model predicts amplitude to decrease as r−1/2,
the above result shows that the dissipation at the shock front causes it to decrease
as r−3/4. The Mach-number dependence, as (M2 − 1)1/8, is extremely weak; the
factor (M2 − 1)1/8 is close to 1 for any M of normal interest; e.g., it is 0.82 when
M = 1.1 and 1.30 when M = 3.

The definite integral of FW(ξ) from −∞ to ∞ must be 0 in accord with Eq.
(10a), so Eq. (11.8.16) requires Jmax = Imax. Consequently, the pressure jump at
the tail shock is the same40 as that of Eq. (18); pts = pfs.

The positive-phase duration T in the asymptotic limit is as described by
Eq. (11.8.18), so

T 2 = ρV 2M1/2

(M2 − 1)1/2 2V −1SmaxL
−1/2K2 A (l)

(2sref)1/2 . (11.10.20)

The ratio A (l)/(2sref)
1/2 in the corresponding limit is 21/2(β/ρc3)s1/2, and s is

rM/(M2 − 1)1/2; thus the theory predicts

T = 23/4β1/2MS
1/2
maxKr1/4

L1/4c(M2 − 1)3/8
. (11.10.21)

Note that the ratio

pfs

T
= ρc3(M2 − 1)1/2

2βrM
(11.10.22)

is asymptotically independent of the geometry of the projectile. The linear theory
implies a pulse duration of the order of L/V , so these asymptotic expressions are
not expected to be valid unless r is sufficiently large that 2T is somewhat larger than
L/V .

Because of the r1/4 dependence of the positive-phase duration the surfaces at
which the front and back shocks are received diverge, rather than being parallel (see
Fig. 11.19).

The extension41 of the above theory to the case when the source of the shock
is a supersonic airplane rather than a needle-shaped body of revolution presents
a number of complications outside the scope of the present text. However, the

40When lift contributions are taken into account, this is no longer exactly the case, as explained by
R. Seebass and F. E. McLean, “Far-field sonic boom waveforms,” Am. Inst. Aeronaut. Astronaut.
J. 6:1153–1155 (1968).
41W. D. Hayes, “Linearized supersonic flow,” Ph.D. thesis, California Institute of Technology,
1947; H. Lomax, “The wave drag of arbitrary configurations in linearized flow as determined
by areas and forces in oblique planes,” NACA RM A55A18, National Advisory Committee for
Aeronautics, Washington, 1955; F. Walkden, “The shock pattern of a wing-body combination, far
from the flight path,” Aeronaut. Q. 9:169–194 (1958); J. Morris, “An investigation of lifting effects
on the intensity of sonic booms,” J. R. Aeronaut. Soc. 64:610–616 (1960).
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Fig. 11.19 Summary of theoretical predictions for asymptotic form of shock wave generated by a
supersonically moving body of revolution

simpler applicable models generally used when the airplane is flying slower than
Mach 3 lead also to a Whitham F function but one which depends on azimuth
angle, vehicle Mach number, weight, and angle of attack. The analysis, given the F

function appropriate to the ray path connecting airplane flight track and observation
point, is then along the lines summarized here. Taking into account the variation of
atmospheric properties with height proceeds in the manner outlined in Sect. 11.8.

11.11 Problems

11.1 Use data for water summarized in Sect. 1.9 to derive the parameter of
nonlinearity B/A for pure water at 10 ◦C.

11.2 For a simple wave, not necessarily of low amplitude, advancing in the +x

direction through a gas of original ambient pressure po, density ρθ , and
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sound speed co, give explicit expressions for fluid velocity v(p) and sound
speed c(p) as functions of total pressure p.

11.3 Tabulations of Bessel functions indicate (see Problem 10.18) that

Jn(nσ) → 0.447

n1/3
+ 0.411(σ − 1)n1/3

in the limit of small σ − 1 and large n. Use this result to show that the
Fubini–Ghiron solution is convergent at σ = 1 but its derivative with respect
to t diverges at σ = 1 for some value of ωt ′. What does the latter imply is
occurring in the waveform as σ = 1 is approached?

11.4 Prove that the tangential component of the fluid velocity must be continuous
across a shock.

11.5 The weak-shock model predicts that a shock of overpressure psh advances
with speed c + 1

2βpsh/ρc into a medium at rest with ambient sound speed c

and ambient density. Derive an expression for the lowest nonvanishing-order
(in psh/ρc

2) correction to this, assuming that the fluid is an ideal gas.
11.6 The signature (acoustic pressure versus time) of a wave recorded at a point

x = 0 is shown in the figure. The wave propagates in a homogeneous
medium without ambient flow in the +x direction.

(a) To what distance xonset must the wave propagate before a shock is first
formed?

(b) Sketch the waveform giving expressions for peak overpressure and
positive-phase duration for x = xonset.

(c) Describe the evolution in the signature for x > xonset.

11.7 A microphone at x = 0 records a transient waveform whose early portion is
shown in the figure. The disturbance is a plane wave propagating in the +x

direction.

(a) How far must the wave propagate beyond x = 0 before the second shock
overtakes the first?

Problem 11.6
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(b) Sketch the waveform’s early portion for x less than and for x greater
than the value determined in (a) and give expressions for all times and
overpressures that characterize the waveform.

Problem 11.7

11.8 Neglecting thermal conduction, determine an expression for the ambient-
temperature rise in a fluid after the passage of an N wave of overpressure
P and positive-phase duration T .

11.9 (a) Show that the solution of the Mendousse version (11.6.7) of the Burgers
equation in the limit of small-amplitude disturbances is

v = B

x1/2

∫ t ′

−∞
v(0, τ )e−K(t ′−τ)2/x

dτ

where v(0, τ ) is the value of v at x = 0 at time τ .
(b) What are appropriate identifications for the constants K and B?
(c) Explain whether this result is consistent with the particular solution

(11.7.12).
11.10 Show that there is a logarithmic derivative substitution analogous to that

in Eq. (11.7.1) which reduces the solution of the Burgers equation (11.6.6)
to the solution of the linear diffusion equation. Explain how this technique
might yield a solution of the Burgers equation when v is specified versus x

at t = 0.
11.11 (a) Show that the approximate dispersion relation derived in Sect. 10.5 for

quasi-planar waves in a duct leads in the same spirit of approximation
for a transient pulse to the integrodifferential equation

∂p

∂t
+ c

∂p

∂x
= −δD

∂

∂t

∫ t

−∞
p(x, to)

(t − to)1/2 dto

(b) What is the appropriate identification for the parameter δD?
(c) What would be a simple modification of this equation that takes nonlin-

ear effects into account?
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11.12 (a) Show that the Burgers equation (11.6.6) has the energy-conservation-
dissipation corollary

1
2ρ(v

2)t + ρ[ 1
3βv

3 − δvvx′ ]x′ = −δρ(vx′)2

(b) Hence show that the energy dissipated (per unit time and per unit area
transverse to propagation direction) by a stepped shock of overpressure
psh is independent of δ if the propagation is governed by the Burgers
equation.

(c) How does your expression for the energy-dissipation rate compare with
the result in Eq. (11.4.11)?

11.13 An N wave measured at 10 cm from an electric spark in air has a half duration
of 10 μs and a pressure amplitude of 1600 Pa. What should these two
parameters be at 60 cm from the spark? [B. A. Davy and D. T. Blackstock, J.
Acoust. Soc. Am. 49:732–737 (1971).]

11.14 The waveform described in Problem 11.6 is a cylindrically symmetric wave
radiating outward from the z axis and corresponds to the radial distance ro,
where ro � cTo.

(a) At what value of r would a shock first be formed?
(b) Determine peak overpressure and positive-phase duration as functions

of r .

11.15 (a) Determine an expression for the age variable for a cylindrically diverging
wave.

(b) What rules apply for extrapolation from values of shock overpressure
and positive-phase duration of an N wave received at radius r1 to values
appropriate to radius r2?

11.16 A pulse propagating radially outward has the form Po sinωt for 0 < ωt <

2π and is otherwise 0 at the radius ro.

(a) Determine expressions for the asymptotic r dependence of the resulting
N-wave over-pressure P(r) and positive-phase duration T (r). Assume
Po 
 ρc2 and make whatever approximations are appropriate to the
model of a weak shock.

(b) What are the corresponding values of the constants r∗ and K that appear
in Eqs. (11.9.8)?

(c) Give numerical values appropriate for Po = 104 Pa, 2π/ω = 10μs, ro =
5 cm, the medium being air at a pressure of 105 Pa and at a temperature
of 20 ◦C. The far-field prediction is desired for a radius of 10 m.

11.17 The sound wave passing into the throat of an exponential horn, throat radius
rt and flare constant m, has pressure amplitude Po and angular frequency ω.
Determine an approximate expression for the fraction of the radiated power
that goes into the higher harmonics. Ignore dissipation and assume that the
parameters are such that no shocks are formed within the horn. Assume also
that k2 � m2 and that the horn can be regarded as a ray tube.
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11.18 A plane wave is propagating obliquely downward so that its wavefront
normal makes an angle of θ with the −z axis. The ambient medium is
idealized as an isothermal atmosphere whose density decreases exponentially
with height, so that dρ/dz = −ρ/H , where H is a constant. At height
hf the acoustic pressure is given by ε sin(2πt/T ) for 0 < t < T and is
zero otherwise. For given ρo(hf ), H , θ , T , and c, there is some value of ε
below which a shock can never be formed, regardless of how far the wave
propagates. Determine this critical value of ε.

11.19 For the circumstances described in Problem 11.18 and for θ = 0, determine
the asymptotic form of the waveform at heights h many multiples of H below
hf given that ε has one-half the critical value determined in Problem 11.18.

11.20 A typical sonic boom received on the ground below a supersonic airliner
(flying at Mach 2 and 13 km altitude) has an overpressure of 100 Pa and
a positive-phase duration of 0.1 s. If the air is at 20 ◦C and has a relative
humidity of 50%, which of the following processes should have the greatest
effect on the shape of the waveform near the shock front: viscosity, O2
vibrational relaxation, or N2 vibrational relaxation? (The prevalent view
is that atmospheric turbulence is more important for explaining waveform
shape alterations than any dissipative mechanism.)

11.21 A pressure pulse at x = 0 has the form p = K/Δ for −Δ/2 < t < Δ/2
at x = 0 and is otherwise 0. Discuss the nonlinear plane-wave propagation
of this pulse in the limit of large distance x. How does the asymptotic result
evolve when Δ is allowed to become vanishingly small?

11.22 A theory of sonic-boom generation caused by lift proceeds from the model of
a distribution of forces moving at supersonic speed through the air. Suppose
that the forces are such that Euler’s equation in the linear approximation
becomes

ρ
∂v
∂t

+ ∇p = −f(V t − x)δ(y)δ(z) where f(ξ) = ez
πFL

2L
sin

πξ

L

for 0 < ξ < L and is otherwise zero. Here FL is the total lift force, and f(ξ)
is the lift force per unit length.

(a) Determine the linearized acoustics solution for the resulting sound field
at a large distance |z| below (y = 0) the flight trajectory.

(b) What is the appropriate identification for the Whitham F function?
(c) Determine the asymptotic form of the pulse below the source when

accumulative nonlinear propagation effects are taken into account.

11.23 How should the Burgers equation be modified to apply to a spherically
spreading wave?
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11.24 (a) Determine analytical expressions for the Whitham F function of the
body depicted in Fig. 11.16.

(b) What is the corresponding value for the constant K that appears in
Eq. (11.10.19)?

11.25 Determine asymptotic expressions for the far-field pressure waveform gen-
erated by the supersonic motion of the body of revolution depicted in
Fig. 11.18.



Appendix: Answers and Hints to
Problems

1.1. d = 3; γ = 5/3; c = (γRoT /M)1/2.

1.2.
d

dt

∫∫∫
V ∗

dV =
∫∫

S∗
vn dS.

1.3.
d

dt

∫∫∫
V ∗

ρ dV =
∫∫∫

V ∗
∂ρ

∂t
dV +

∫∫
S∗

ρvn dS.

1.4. f B = −ρgez.
1.5. a) T ds = cvdT − (RT/ρ)dρ; u = cvT .

b) p = Kργ ; K = poρ
−γ
o e(s−so)/cv .

1.6. a) vo = 0; ∂po/∂t = 0; ∂ρo/∂t = 0.
b) ∂p/∂t = c2[∂ρ′/∂t + v ·∇ρo].
c) ∇ ·

(
1
ρo

∇p
)

= − ∂
∂t
(∇ · v).

1.7. a) po(z) = po(0)e
−(γg/c2)z;

dρo

dz
= −γg

c2 ρo.

b) ∂ρ′/∂t + ∂(ρovz)/∂z = 0; ∂(ρovz)/∂t = −∂p′/∂z − gρ′.
c)

∂

∂z
(p′ − c2ρ′) = (γ − 1)gρ′.

∂2p′

∂t2 + (γ − 1)g

[
−∂p′

∂z
− gρ′

]
= c2 ∂

2ρ′

∂t2 .

1.8. h = 0.0339; c = 351 m/s.
1.9. ω = c[k2

x + k2
y + k2

z ]1/2.

1.10.
∫∫∫

∇×A dV =
∫∫

n × A dS;
Dx

Dt
= v.

1.11. Take differential of ln{p(p/RT )−γ = ln{K}.
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1.12. b) f (t) = −A

2
sin ωt ; g(t) = A

2 sin ωt .

c) vx = − A

ρc
sin(ωt) cos(kx).

1.13. xn = Re{Ae−iωt eiβn}; β = 2 sin−1
(
ω2M

4k

)1/2

.

vph = ωh/β → (k/M)1/2h.

1.14. ξx,max = 2Ppk

ωρc
.

1.15. ceff = cwater

(1 − f )1/2 .

1.16. c = 340 m/s; direction 30◦ with respect
to line joining microphones 1 and 2.

1.17. c increases with depth z at rate dc/dz = 0.016 (m/s)/m.
1.18. (w)av = A2/(4ρc2)

1.19. T = 0.8 ms.

1.20. c) KE = 0 and PE = A2L

2ρc2 at t = 0;

KE = PE = A2L

4ρc2 at t = 3L/2c

d) Each wave carries away 1/2 of the lost mass.

1.21. 1.7 mW
1.22. a) p̂ = Aeikx + iBeiky

b) I av = 1

2ρc
[{A2 − AB sin k(y − x)}ex + {B2 − AB sin k(y − x)}ey]

1.23. No modifications are required.

1.24. ṁ = 4π

ω
A sinωt

1.25.
∂2vr

∂r2 + 2

r

∂vr

∂r
− 2

r2 vr − 1

c2

∂2vr

∂t2 = 0

1.26. a) 8840; b) 471 W
1.27. 2 × 10−5 W

1.28. a) ∇2p − 1

c2

(
∂2

∂t2 + α
∂

∂t

)
p = 0

b) w = 1

2
ρv2 + p2

2ρc2 ; I = pv; D = ραv2

c) k ≈ ω/c + iα/2c

1.29. E = 2

3

P 2T

ρc
1.30. Intermediate step should yield

v ·
[
ρ
∂v

∂t
+ ρv ·∇v

]
= −∇ ·pv − ρ

D

Dt
UP
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1.31.
∂2Φ

∂x2 = sin2 θ cos2 φ

c2r

(
F ′′ + 3c

r
F ′ + 3c2

r2 F

)
− 1

c2r2

(
F ′ + c

r
F
)

1.32. a) ∇ · er = 2/r; ∇ · eθ = r−1 cot θ ; ∇ · eφ = 0

∇2p = 1

r2

∂

∂r

(
r2 ∂p

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+ 1

r2 sin2 θ

∂2p

∂φ2

1.33. Power = 8πk4

5ρc
|A|2

1.34. k1 ≈ ω

c
+ iω2

2ωTCc

[(
c

cT

)2

− 1

]

k2 ≈ eiπ/4 (ωωT)
1/2

c
+ e−iπ/4 ω

c

(
ω

ωTC

)1/2
[(

c

cT

)2

− 1

]

The second root corresponds to heat conduction.
1.35. (I 2)av = (3/2)(Iav)

2

1.36. Applicable intermediate result is

iωρv̂
∗ · v̂ = −∇ · (p̂∗v̂) + iωp̂∗p̂/ρc2

1.37. Applicable intermediate results are cp = cv + R and

0 = cv

(
∂(p/ρR)

∂p

)
s

− p

(
∂ρ−1

∂p

)
s

1.38. Applicable intermediate results are

(
∂s

∂p

)
T

= −
(
∂ρ−1

∂T

)
s

;
(
∂ρ

∂T

)
p

= −ρβ;
(
∂ρ

∂p

)
T

= ρ

KT

1.39. Ir,av = 1

2πr

(
dP

dz

)
av

1.40. b)
∂2p

∂t2
− c2∇2p − 4

3

μ

ρ
∇2 ∂p

∂t
= 0

c) p = −ρ
∂Φ

∂t
+ 4

3
μ∇2Φ

d) kR ≈ ω

c
; kI ≈ 2

3

μ

ρc3 ω
2

1.41. d) vph = ±c + vo cos θ

1.42.
(I 2)av

(Iav)2
= 3

2
+ 1

2(kr)2

The corresponding result for a plane wave is 3/2.
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1.43. M = 31; d = 5.33; γ = 1.375; R = 268 J/kg · K;

c = 317 m/s

1.44. ([∂p/∂t]2)av = ω2(p2)av; (∇p ·∇p)av = k2(p2)av;

(
∂p

∂t
∇p

)
av

= −ω2ρI av

1.45. Iav,x = 1

2ρc
(|A|2 − |B|2)

1.46. P = 2π

ρc
[|B|2 + k−1ImAB∗]

1.47. a) Φ̂ = sin2 θ cosφ sinφF(r);

F(r) = A

[
−k2 − 3ik

r
+ 3

r2

]
eikr

r
;

v̂θ = 2 sin θ cos θ cosφ sinφ

r
F (r)

c) As r−2

d) Only in the limit of large r

e) All such fields can be expanded as a sum of a finite number of factored
terms, each factor being a function of only one of the three coordinates.

1.48. a) ∇ · (f∇p̂) = −f k2p̂ + ∇f ·∇p̂

b)
∫∫∫

p̂∇2p̂dV =
∫∫∫

∇ · (p̂∇p̂)dV −
∫∫∫

∇p̂ ·∇p̂dV

d) Let p̂ + εf be the good guess, where εf is a priori unknown.

2.1. 0.0628, 0.0628, 0.1885, and 0.0628 W
2.2. a) LA = 90 dB; b) 90 more looms
2.3. a) 7.2 dB; b) 3 dB; c) 0.89 dB
2.4. 69 dB (A-weighted)
2.5. L = constant − 20 log r .

The sound level drops by 6 dB per doubling of distance.
2.6. 73.2 dB
2.7. For octave band, L ≈ 93.1 dB; for flat response, L ≈ 94 dB.
2.8. Energy per unit area and frequency bandwidth (Hz) is

8P 2
pk

ρc

1

(2πf )2 [cos(2πf T ) − (2πf T )−1 sin(2πf T )]2

2.9. a) p2
f = 1.8 × 10−5(Pa)2/Hz

b) L = 4 dB
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2.10. a) L = 84.8 dB
2.11. For two machines with background, L = 86.0 dB

2.12. C+(ΔL) ≈ 10

ln 10
10−ΔL/10

2.13. Cbg(ΔL) ≈ 10

ln 10
10−ΔL/10

2.14. Sound level repeats at intervals of 0.5 s, has minimum value 82 dB,
maximum value 97 dB

2.15. a) K = 1.2337; b) Underestimates level by 0.74 dB
2.16. A# (or B$) in the third octave above middle C
2.17. Applicable intermediate result for cited special case is

L {p(t)} = Re

{
Ae−iωt

2π

∫ t

o

h(ξ)eiωξ dξ

}

2.18. The decibel loss (with Q2 = 2βxf 2
o ) is

−10 log

{√
2

Q

∫ Q
√

2

Q/
√

2
e−y2

dy

}

2.19. Dp(τ) = SoΔf
sin(πτΔf )

πτΔf
cos(π [f1 + f2]τ), where Δf = f2 − f1

2.20. Variance in (p2
b)est is 〈p2

b〉2/[TΔf ] in both cases
2.21. L125 = 10 log[10(LC+0.6)/10 − 10(LA+5.4)/10]
2.22. a) p2

f (f ) = (2 × 10−3)(f/103)4e−2(f/103)2

b) LA ≈ 87.7 dB

2.23. Occasional pass-by’s of noisy vehicles, firing of different cylinders on same
engine, atmospheric turbulence, rush hour traffic, pavement roughness and
irregularities, aerodynamic noise of flow around moving vehicles.

2.24. 0.63 m
2.25. 3 dB per doubling of distance
2.26. Ratio is 1/[TΔf ]
2.27. N > 100
2.28. I = π

12
√

3
2.29. 15, 19, or 22 keys per octave
2.30. To carry through heuristic derivation involving interchange of integration

order, insert convergence guarantor e−ετ and recognize a Dirac delta
function in limit ε → 0

2.31. Proper assumptions imply n-th peak of running time average is 1/T times
total time integral of p2

n,F where pn,F is acoustic pressure, after filtering, of
n-th pulse. Use Parseval’s theorem.

2.32. 1 − (6/π2) = 0.392
2.33. Insert a factor of e−εt2

on left side before inserting Fourier transform
relations and interchanging order of integration.
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2.34. p2
f (f ) ≈ 8π2

100

∫ 200/T

100/T
|ĝ(2πf )|2df

2.35. p̂(ω) = ippk

2πω
; pF (t) = ppk

π

∫ ωo

√
2

ωo/
√

2

sin[ω(t − τ)]
ω

dω

fraction = 1 − 1

23/2π2 = 0.964

2.36. a) v2
f (f ) = ω2F 2

f (f )

(k − mω2)2 + ω2b2

b) (v2)av = F 2
f (fr)

4mb
, where 2πfr = (k/m)1/2

2.37. If L is measured in nepers, then L1 ⊕ L2 = L1 + 1

2
ln[1 + e−2(L1−L2)].

2.38. a) Admissible. b) Admissible. c) Admissible only if b < 2a.

2.39. LE = 10 log

{
p2

pk/p
2
ref

2
√

2π2fotref

}

which decreases by 3 dB when fo doubles.

2.40. a) Derive p̂(ω) = i

2πω

∫
dp

dt
eiωtdt and let

dp

dt
equal (Δp)δ(t − to) plus a

bounded quantity. The contribution from the latter goes to zero at large
ω at least as fast as ω−2.

b) p̂(ω) = − 1

2πω2

∫
d2p

dt2
eiωtdt where

d2p

dt2
is (Δṗ)δ(t − to)

plus a bounded quantity.

2.41. a) Integrate by parts and use (d/dτ)hF (t − τ) = −(d/dt)hF (t − τ) .
b) Prove that filtering operation commutes with time and spatial differenti-

ations.

3.1. vr = −ωb sin θ sin(ωt − φ) at r = a

3.2. Applicable intermediate result is the ratio of the octave band contribution
to the mean squared pressure, when reflection is included, to that due to
incident wave alone, this ratio being

2 + 2

{
sin(Ψf2) − sin(Ψf1)

(f2 − f1)Ψ

}

where Ψ = (4πy/c) cos θI . Required minimum distance for y is 1.62 m.
3.3. Let η(t − [(x/c) sin θI ]) be the displacement of the interface, such that

(vy)
(+)
o =

(
∂

∂t
+ vo

∂

∂x

)
η

3.4.
Z

ρc
= 3

√
2

5
− i

4
√

2

5
; α = 0.723

3.5. a) θI = 85.4◦
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3.6. With Z = ρc(ζR + iζI ), one finds

α(θI ) = 4ζR cos θI
(ζR cos θI + 1)2 + (ζI cos θI )2

Values of α for any two angles of incidence allow ζR to be uniquely
determined, but one can only determine the absolute magnitude of ζI .

3.7. Z =
(

ρc

cos θI

)
Beiψ

2A − Beiψ

3.8. τ = (2ρcωπa2)2

(2ρcωπa2)2 + (keff − ω2meff)2

3.9.
1

4
k(x0

p)
2; nonoscillatory if keffmeff < (ρcπa2)2

3.10. Δf = −3.8 Hz; Q = 39.3
3.11. Right side of equation for fraction reflected,

|RI,II|2 =
[
(ρc)II sec θII − (ρc)I sec θI

(ρc)II sec θII + (ρc)I sec θI

]2

and Snell’s law equation are unchanged when the wave comes from medium
II at angle of incidence θII

3.12. cII = 5596 m/s; L = 0.070 m; 100% transmitted

3.13. k ≈ ω

c

[
1 + 2i

(500)2

]
; α ≈ ω

c

[
2+i
500

]

Ix ≈ |p̂|2
2ρc

; Iy ≈ − |p̂|2
1000ρc

|p̂|2 = P 2 exp
{

− 2(ω/c)y/500
}

exp
{

− 4(ω/c)x/(500)2
}

3.14. Z = Rf + iρc cot kL; the fraction absorbed is

4Rf ρc

(Rf + ρc)2 + (ρc cot kL)2
.

The maximum value 4Rf ρc/(Rf +ρc)2 occurs when L = (2n+1)π/2k,
with n integer.

3.15. Energy at time 10L/c is 50(ρAL)V 2
o .

3.16. No; Yes; No
3.17. At the ground, vpk = 0.005 m/s; intensity was 0.005 W/m2; at the cited

ionospheric height, vpk = 50 m/s; intensity was 0.005 W/m2.
3.18. Rf = 1.5ρc; α = 0.96; if wall not present, then RTL = 4.9 dB
3.19. a) 4792 Hz; b) 2727 Hz; c) 5455 Hz; d) Ratio is always 2:1
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3.20.
d

λ
= 1

2
− 1

2π
tan−1(X/2); ΔRTL = 10 log

[
1 + X4

4X2 + 4

]
;

X = ωmpl

ρc

3.21. Elliptical counterclockwise path:

(8/9) (δx)2 + (δy)2 = (Vo/ω)
2 exp

{
−(32)1/2ωy/c

}

Lowest point in trajectory corresponds to surface wave trough.

3.22. a)
R̂I

T̂III
= i

2

[
(ρc)I

(ρc)II
− (ρc)II

(ρc)I

]
sin(ωd/cII)

3.23. kII determined from

{(B/A)eikΔL}b
{(B/A)eikΔL}a = sin(kIIdb)

sin(kIIda)

Then ZII determined (data from either “a” or “b” experiment) from

(B/A)eikΔL = − i

2

[
(ρc)I

ZII
− ZII

(ρc)I

]
sin kIId

3.24. p = 2P

1 + ε2
{εfeven(τ,D) + fodd(τ,D)}

feven = −2 + DΨ − (τ/2) lnΦ; fodd = −τΨ − (D/2) lnΦ

Ψ = tan−1 1 − τ

D
+ tan−1 1 + τ

D
; Φ = D2 + (τ − 1)2

D2 + (τ + 1)2

where ε = βIIρIcI

ρIIcII cos θI
; D = βIId

cIIT
;

τ = t/T ; β2
II =

(
cII

cI

)2

sin2 θI − 1

3.25. p̂ = A sin(nπx/L); f = nc/2L.

3.26. fr = c/4L; Q = π/4ε; P = ρcVo/2ε

1 + 4Q2(Δf/fr)2

3.27. cW = (T /σ)1/2Φ(η); η = 2ρT 1/2

σ 3/2ω
with Φ(η) determined from numerical solution of η = Φ−3 − Φ−1.
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3.28. Applicable intermediate results are

d

dy
ln p̂ = iωρZ−1

local;
d

dy
ln v̂y = iω

ρ
(c−2 − v−2

tr )Zlocal

Mass law follows from zeroth order approximation to

Zlocal(0) − Zlocal(d) = −iω

∫ d

o

ρ dy + iω

∫ d

o

[c−2 − v−2
tr ]ρ−1Z2

localdy

where ρ = mpl/d and d is plate thickness.

4.1. p = (ρcVo)
(a
r

)
e−(c/a)(t−c−1r) if t > r/c

Half of the energy stays in near field
4.2. The quantity ect/aψ satisfies inhomogeneous ordinary differential equation

for a harmonic oscillator under influence of a transient force. Green’s
function G(t |τ) is 0 if t < τ and is (a/c) sin[(c/a)(t − τ)] if t > τ .

4.3. p = (Δp)e−s[cos s − sin s]H(s); where s = c

a

(
t − r

c
+ a

c

)

and Δp = ρcvC
a

r
cos θ is pressure jump at r � a

4.4. P = 4

3
π
ρc3(Ωa/c)6b2

4 + (Ωa/c)4

4.5. EK − EP → 1

4
md(v

2
C)av

1 + 1
2 (ka)

2

1 + 1
4 (ka)

4

4.6. Fn =
1∑

u=2−n

Fn,u(a/r)
u; Fn,u = in+1

(1 − u)!
n−2+u∑
t=0

(−1)t

t !

Gn =
∞∑

u=−1

Gn,u(kr)
u; Gn,u = iu+1+n

(u + 1)!
n−2∑
t=0

(−1)t

t !

Method of matched asymptotic expansions requires Gn+u,−u = Fn,u

4.7. p2
f (f ) = ρ2a4

r2[1 + (ka)2] ; Lb+1 − Lb ≈ 3 dB

4.8. Lb+1 − Lb ≈ 9 dB

4.9. P = 2P1

[
1 − sin kd

kd

]

where P1 is the power when only one source is active
4.10. Write Helmholtz equation, surface boundary condition, radiation condition,

and Eqs. (4.6.9) in dimensionless form using a as a length scale and v̂typ as
a velocity scale; conclude that p̂/ρcv̂typ is function of ka and x/a.

4.11. Power proportional to pM7/2/γ 5/2, equal to 0.01Pav,0 and 7500Pav,0 for
second and third cases.
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4.12. P = 2πρc

[
k2a4

1 + (ka)2
|v̂

S
|2 + k4a6

4 + (ka)4

|v̂C |2
3

]

|v̂C |/|v̂
S
| = 34.5 for equal contributions when ka = 0.1

4.13. Ratio = 3[27 + 6(ka)2 + (ka)4] + i3(ka)5

81 + 9(ka)2 − 2(ka)4 + (ka)6 ;

The real part is less than 1.25 up to ka = 1.278; the imaginary part is less
than one-fourth of the real part up to ka = 1.666.

4.14. An applicable intermediate result (kr � 1) is

p̂ ≈ − iωv̂
S
ρ

4πr
eikr

∫ π

o

e−ika cos θ
S

[
1 + ka

i + ka
cos θS

]
2πa2 sin θSdθS

4.15. In the limit of large r , the integral for p̂ reduces to

− iωρv̂C

4π

eikr

r

∫∫
eβnS ·er [1 + Der ·nS]nS · erdS

where D = β2 + β

2 + β2 + 2β
with β = −ika

4.16. |δφ| < 0.57 degrees if kr = 0.1; |δφ| < 5.7 degrees if kr = 1.0

4.17. Total power = 2π

ρc
Q2

11k
4; for one alone it is (1/5)-th of this value.

4.18. For r > a, t > 0, the acoustic pressure is nonzero only if r−a < ct < r+a,
and then has value [(Δp)/2][1 − (ct/r)]

4.19. |p̂|2 ≈ 4p2
10106

[(97)2 + (30)2]
1

k2r2
sin4 θ cos2 φ sin2 φ

Pav = 163
cp2

10

ω2ρ

p10 varies with ω as ω5, increases by factor of 32; Pav varies as ω8,
increases by factor of 256.

4.20. Pav = 2π

3ρc

A2k2a4

1 + (ka)2

4.21. t = (ln 10)
a

c

4 + (ka)4

(ka)4

M

md

; where k = 1
c

(
ksp
M

)1/2

4.22. If all four in phase, power increases by factor of 16. For the other stated
phasing, one has two perpendicular dipoles, 90◦ out of phase; radiation is
predominantly horizontal with intensity proportional to sin2 θ .

4.23. LA = 106 dB
4.24. P = 12.6 W
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4.25. Pav = 2πK2k2

3ρc

4.26. ppk = 21/210−3K1 cos θ

kr

[
1 +

(
1

kr

)2
]1/2

; k = ω1

c1

4.27. prms = 0.5 Pa

4.28. Applicable intermediate results are Φin = 2Ωa2

3π
cos η sin η sinφF 1

2 (ξ)

F 1
2 (ξ) → −16

5

( a

2r

)3 ; Φin → −4Ωa5

45π

∂2

∂y∂z

(
1

r

)

4.29. Superimpose solution represented by Eqs. (4.8.8), (4.8.10), and (4.8.11) with
result from problem 4.28. Let vC = −ΩΔ and use p = −ρ∂Φ/∂t .

4.30. A simple example is two closed loops with a common segment. Each loop
should have a voltage source and other circuit elements. Let ê1 be the voltage
of the left loop’s voltage source and let î1 be the corresponding current. You
must prove that î1/ê2 when ê1 = 0 equals î2/ê1 when ê2 = 0.

4.31. Start with Eq. (4.9.7) with surface S consisting of spheres S1 and S2
enclosing points x1 and x2, respectively. When S1 and S2 become small,
v̂b and p̂b are regarded as constant over S1, etc. One must also prove that

∫∫
n1p̂adS1 → 0 in the limit of vanishing sphere radius.

5.1. 103 dB

5.2. G = R−1eikR − R−1
I eikRI → −2d

d

dz
(r−1eikr )

where {R2, R2
I } = x2 + y2 + (z ∓ d)2

5.3.
P

Pav,ff
= 1 + 3

sin 2kd

2kd
+ 3

sin 2
√

2kd

2
√

2kd
+ sin 2

√
3kd

2
√

3kd
kd > 23 is necessary criterion

5.4. b) F(kx, ei ) = 8 cos(kxei · ex) cos(kyei · ey) cos(kzei · ez)

c) p̂ = p̂i(0, 0, 0)F (kx, ei )

5.5. a) Method of images gives combination of four free-field Green’s functions,
with appropriate signs.

b) r2|G2
k| = 16 cos2(kxS sin θ cosφ) sin2(kzS cos θ)

c) P = Pff

[
1 + sin 2kxS

2kxS
− sin 2kzS

2kzS
− sin 2k(x2

S + z2
S)

1/2

2k(x2
S + z2

S)
1/2

]

5.6. P = ρck2

2π
|v̂n|2A2

5.7. a) Pav = 4ρc(ka)2πa2|v̂n|2
5.8. a) |v̂n| = 0.32m/s b) |F̂ | = 15.5N
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5.9. a) I = ρc|v̂n|2k2a4

8π2r2

[
sin((1/2)ka sin θ cosφ)

(1/2)ka sin θ cosφ

]2

×
[

sin((1/2)ka sin θ sinφ]
(1/2)ka sin θ sinφ

]2

c) ka = 2π

5.10. η = 0.003
5.11. a) ω = 6πc/a; b) |p̂| = 2ρc|v̂n|
5.12. 6ρc|v̂n|
5.13. a) P = 1

4
ρc(ka)2πa2|v̂C |2

b)
1

12
ρc(ka)4πa2|v̂C |2

5.14. Single cycle of a sinusoidal signal, beginning at t = 3a/4c, ending at t =
5a/4c, with peak amplitude ρc|v̂n|.

5.15. b) Images at φ = (m/n)2π ± φS where m = 0, 1, 2, . . . , n − 1.
d) Power increases by factor of 6.

5.16. Applicable integral is
∫ π/2

o

sin2q θ sin θ dθ = 22q(q!)2

(2q + 1)!
5.17. a2ρc(v2

n)av
5.18. With η abbreviating w/a, one should find

vw = 2vn
πη

[K(η2) − E(η2)] for η < 1

= 2vn
π

[K(η−2) − E(η−2)] for η > 1

vw ≈ vnη/2 if η 
 1 and vw ≈ vn/2η2 if η � 1

vw/vn is always positive, but there is a logarithmic singularity at η = 1.
5.19. a) Start with

p̂ = − iωρv̂n

2π

∫ π/2

−π/2

∫ ∞

o

R−1eikRwSdwSdφS

where R = [z2 + w2
S]1/2 when x = 0

b) Applicable intermediate result is

p̂ = ρcv̂n

{
eikzH(−x) + sign(x)

2π

∫ π/2

−π/2
eikψdφ

}

where ψ = [z2 + x2 sec2 φ]1/2

5.20. z = π

4
ka2
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5.21. Applicable intermediate results are

∫∫
Ein(−ikR)dl · dls =

∫∫∫∫
[∇ ·∇SEin(−ikR)]dASdA

∇ ·∇SEin(−ikR) = ikR−1eikR

5.22. a) Applicable approximation and intermediate results are

Ein(η) ≈ η − 1

4
η2;

∫∫
R2d l · d lS = −4(Area)2

b) Applicable intermediate result is

∫∫
R dl · d lS = 2K(a) + 2K(b) − 2L(a, b) − 2L(b, a)

where K(a) =
∫ a

o

∫ a

o

|x − xS |dxdxS ;

L(a, b) =
∫ a

o

∫ a

o

[(x − xS)
2 + b2]1/2dxdxS

5.23. a) Reflection through lower wall implies z → −z; reflection through upper
wall implies z → 2h − z.

Given the abbreviations, R+,−
n = [w2 + (z ∓ zS − 2nh)2]1/2, one starts

with

p̂ = Ŝ

∞∑
n=−∞

(R+
n )−1eikR

+
n + Ŝ

∞∑
n=−∞

(R−
n )−1eikR

−
n

c) Applicable integrals are

∫ ∞+iπ/2

−∞−iπ/2
eiα cosh νdν = πiH(1)

o (α);
∫ ∞+iπ/2

−∞+iπ/2
eiβ sinh νdν = πiH(1)

o (iβ)

5.24. Derive the intermediate result

p̂ = −ρcv̂n

π

∫ 2a

o

cos−1(u/2a)
d

du
{eik[u2+z2]1/2}du,

integrate by parts, and change the integration variable to φ, where
u = 2a sinφ.
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5.25. a) With the abbreviation Φ = (k/2)[(z2 + a2)1/2 − z], one has

Iz,av = (constant)

(
1 + z

(z2 + a2)1/2

)
sin2 Φ

b) Iw,av ≈ −(constant)
wa2

2(z2 + a2)3/2
[sin2 Φ − k(z2 + a2)1/2 cosΦ sinΦ]

c) Note that Iz,av on z-axis goes to 0 when kz = 0, 2.5π , 8π , etc.
5.26. ka > 16
6.1. αc = 0.39
6.2. 4.063 mV
6.3. T60 = 13s
6.4. α = 0.625
6.5. T60 = 19.9s
6.6. Pout = 51.5 dB
6.7. T60,II = 1.6s
6.8. T60 = 6(ln 10)L/cα

6.9. T60 = 6π(ln 10)AFloor

cαLP

6.10. T60 = 6(ln 10)(2L/c)

− ln(1 − α1) − ln(1 − α2)
6.11. Start with

E′
K = 2πP ff

cV

∑ ′ [k2(n)/k2]Ψ 2(x0, n)

[k2 − k2(n)]2 + k2/c2τ 2

Take km = (0.01)(π/2)cτk2 and assume cτk � 1.
For the second part of the problem, an applicable intermediate result is

E′
K = P

cπk2

∫ km

o

dk′

(1 − k′/k)2 + (cτk)−2

6.12. RTL = 40 dB
6.13. L = 96 dB

6.14. RTL = Ro + 10 log[1 − 10−Ro/10] − 10 log

[
ln 10

10
R0

]

6.15. T60 = 14.2 s
6.16. Sound level in room 2 is also 90 dB.
6.17. 2.6 dB
6.18. N = 25
6.19. L1 = 111.8 dB
6.20. α = 0.067
6.21. Lout = 52 dB

6.22. RTL = −10 log

[
A1

A1 + A2
10−R1/10 + A2

A1 + A2
10−R2/10

]
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6.23. αd = 0.306
6.24. 2f/c = 0, 0.143, 0.20, 0.246, 0.25, 0.286, 0.288, 0.320, 0.349, 0.351,

0.380, 0.400, 0.425. The calculated N is 10.37 when true N jumps from 9
to 10. The corresponding leading term is 4.02.

6.25. Ψ = A cos

(
nxπx

Lx

)
cos

(
nyπy

Ly

)
cos

(
(nz + 1

2 )πz

Lz

)

f = c

2

⎡
⎣( nx

Lx

)2

+
(
ny

Ly

)2

+
(
(nz + 1

2 )
2

Lz

)2
⎤
⎦

1/2

6.26. There are 9 possibilities for (nx, ny, nz): the 3 permutations of (0,5,0) and
the 6 permutations of (3,4,0).

6.27. p̂ = −i
4000LxŜ

2LyLz + LxLy + LxLz

6.28. N(ω) ≈ LxLy

4π

(ω
c

)2 + 2(Lx + Ly)

π

(ω
c

)
+ 1

4
6.29. a) fSch = 46 Hz;

b) L − Lo = −12.5 dB, z = −2.88, Probability of 0.055;
c) Probability of 0.0036

7.1. a) Only the plane wave mode (ny = 0, nz = 0); b) P = 0.092 W
7.2. N = 63
7.3. a) Only ω = nΩ

b) p̂ = ρcVo

∑
q

KqnJn(ηqnr/a)e
inφeiβqnz

where J ′
n(ηqn) = 0 and βqn = [k2 − (ηqn/a)

2]1/2;

Kqn = k

βqn

∫ 1
o
Jn(ηqnξ)ξdξ∫ 1

o
J 2
n (ηqnξ)ξdξ

c) For only one spinning mode, one should have cη1n/a < ω < cη2n/a.

7.4. a) P = 6π

k2A
Pff; b) 0

7.5. a) p̂ = − i

kA
[2πρcPff]1/2eikx

b) Answer doubles when xo = λ/2. (Cancellation occurs if xo = λ/4.)

7.6. Start with Eq. (4.9.7) and use relations such as

(∫∫
v̂a ·nindS

)
2

= −D21p̂1

where the indicated integral is over side 2.
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7.7. b) Continuous-pressure two-port
c) Circuit should have capacitances C1 and C2 in series, and these should

be in parallel with capacitance C3.
7.8. a) Zright = Zleft = i(ρc/A) cot(kL/2); Zmid = −i(ρc/A) sin(kL)

b) π -network, two acoustic compliances, CA = V/(2ρc2), and an acoustic
inertance, MA = ρL/A

c) Mass between two springs

7.9.
4A1A2

(A1 + A2 + A3)2

7.10. |T |2 = (a2ωρc/4T )2

1 + (a2ωρc/4T )2

7.11. IL = 20 log

[
1 + Ab

2A

]

7.12. The fraction into the branch is
(4A/ρc)|ZL|2

|1 + (ZLA/ρc)|2 Re

(
1

ZL

− 1

ZR

)

7.13. Equations imply (πx/a)+ sign(x) ln[(α−1 + α)/2] → Φ/2B as |x| → ∞,
so Φ has apparent discontinuity at x = 0 of 4B ln[csc(πb/2a)]. Criterion
for ignoring constriction is ka ln[csc(πb/2a)] 
 π/2.

7.14.
4X

(2 + X)2
absorbed;

X2

(2 + X)2
reflected;

4

(2 + X)2
transmitted;

where X = 0.01ρcA/b

7.15. ωr = (4c2a/V )1/2

7.16. a) ZA = −i(ωρl′/A)[1 − (ω2
r /ω

2)]
b) ωr = (ρl′/A)−1/2[(V/ρc2) + G]−1/2

c) G 
 V/ρc2

7.17. a) MA = 1

(V/ρc2)(2πfr)2

b) l′ = Ac2

(V )(2πfr)2

c) |p̂in/p̂ext| = 2πc3

(V )(2πfr)3

7.18. a) RA = 1.18 × 104 kg/(s · m4); CA = 3.6 × 10−9 m4s2/kg;
MA = 1.12 × 102 kg/m4

b) Q = 15

7.19. b) ZA = ω4C2
AM

2
A − 3ω2CAMA + 1

−iωCA[2 − ω2CAMA]
c) (MACA)

1/2ωr equal to 0.6180 or 1.6180
d) 180◦ out of phase at higher resonance

7.20. ZHR = ± iρc

2A

αT

(1 − α2
T )

1/2

7.21. a) V = 0.0325 m3; b) Fraction is 0.9944; c) Fraction is 0.9946
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7.22. The excess kinetic energy is the limit as L− → ∞ and L+ → ∞ of

∫∫∫ ′ 1

2
ρ(∇Φ)2dV − (ρU2

12L+/2A+) − (ρU2
12L−/2A−)

where the volume integration extends over the region −L− < x < L+. The
integration is accomplished with aid of ∇·(Φ∇Φ) = (∇Φ)2 and with inner
region outer boundary conditions such as

Φ → Φ+∞(t) + (U/A+)x as x → ∞

7.23. a) 1.11 × 10−10 W; b) RTL = 64 dB

7.24. Psc = 32a2

π
Iav

7.25. ΔL = 10 log

[
1 +

(
ωw2

ac

)2]

7.26. Power dissipated ≈ (Rf /2πa2)|p̂ext|2
(ωMA)2 + (Rf /πa2)2

Power transmitted ≈ (ωa/2πc)(ωMA)|p̂ext|2
(ωMA)2 + (Rf /πa2)2

where MA = ρ/2a and |p̂ext|2 = 8ρcIi,av
7.27. Use a symmetrical conically converging-diverging flow over a region of

length L on each side of orifice. Then vary L. Principle of minimum
acoustic inertance yields

MA � ρ23/2

πa
[1 − (a/b)]3/2

If a/b 
 1, actual MA should be ρ/(2a)
7.28. Result for b/a 
 1 should be same as for open end of duct with infinite

flange. King’s exact answer is 0.261ρ/b. Karal’s approximate answer in the
b/a 
 1 limit is 0.270ρ/b.

7.29. Fraction of incident power that is radiated is approximately 2(ka)2

7.30. a) l = 0.310 m; b) P = 2.963 W; c) Q = 58.9; d) 750 Hz
7.31. AM/A = 8.6 and L = 0.085 m

7.32. The fraction transmitted is
4A1A4A

2
3

(A1A4 + A2
3)

2

7.33.
∂

∂t

(
ρU2

2A
+ Ap2

2ρc2

)
+ ∂

∂x
(pU) = 0

(pU)av is independent of x.
7.34. Intermediate result is Bessel’s equation (n = 0 and ξ = kx)

d2p̂

dξ2 + 1

ξ

dp̂

dξ
+ p̂ = 0
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7.35. See text’s discussion on horn design. Applicable intermediate result is
Ûdia/Ûth = 1 − ω2MACA − iωCAZth

7.36.
d2p̂

dx2 + 1

c2 (ω
2 − ω2

c )p̂ = 0, where ωc = c(2an/πb2)1/2 is the cutoff

frequency.
If b = 0.05 m, a = 0.002 m, and n is such that 10% of the area is holes,

then fc = 2000 Hz.

7.37. 10IL/10 = 1

(V + U)2 [V 2 + U2 + (1 + e)2 + (1 + e)−2V 2U2]

where e = Aout

Apipe
and (βL)2 = (kL)2 − (400/3);

U = tan(kL/2) + (ek/β) tan(βL/2);

V = cot(kL/2) + (ek/β) cot(βL/2)

8.1. Make use of relations such as

dn

dt
= [(cn + v) ·∇]n; n ·n = 1; (n ·∇)n = −n × (∇ × n);

∇ × {n/(c + v ·n)} = 0

8.2.
dx

dt
= c2s;

ds

dt
= −1

c
∇c;

d

dt
= c

d

dl
8.3. Applicable intermediate results are

TAB =
∫ qB

qA

[(dx/dq)2 + (dy/dq)2 + (dz/dq)2]1/2

c(x, y, z)
dq

1

|dx/dq|
d

dq

(
1

c|dx/dq|
dx

dq

)
= ∇ 1

c

8.4. Start with F = (ω − v · k)2 − c2k2 such that ∂F/∂ω = 2(ω − v · k), etc.
Set ki = ωsi and recognize that Ω = 1 − v · s and Ω2 = c2s2.

8.5. Applicable intermediate results are

(v ·∇)v = ∇(v2/2) and
1

ρ
∇p = 1

γ − 1
∇c2

8.6. Applicable intermediate results are
d

dt

(nφ
c

)
= −nφnw

w
and cnw = dw

dt
8.7. Plane containing path is formed by origin, initial point, and initial ray

direction
8.8. sφr, sz, and nφr/(c + unφ) are constant along a ray path
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8.9. Applicable intermediate results (with xq = dx/dq) are

cn · vray∂L/∂xq = 2x′cn · x′ − v − x′vray + 2x′v · x′ = cn

∂L

∂x
= −dl/dq

vray

[
(n · vray)

−1∇c +
3∑

k=1

sk∇vk

]

8.10. Start with ct = (h2 + w2
1)

1/2 + [z2 + (w − w1)
2]1/2 and recognize that

∂t/∂w1 = 0 implies sin θI = sin θR , where w1/h = tan θI .
8.11. Equate 0 to the derivative with respect to w1 of

t = (h2 + w2
1)

1/2

cI
+ [d2 + (w − w1)

2]1/2

cII

8.12. ct = 2(L2 − R2)1/2 + 2R sin−1(R/L)

8.13. Applicable approximations (when x/R 
 1 and |R − ct | 
 R) are

x ≈ α[1 − (ct/R)] + 20.5ct (α/R)3

z − R ≈ (ct − R)[1 − (α2/2R2)] + (α/R)410.375R

8.14. a) Both
∂

∂α
x(α, t) = 0 and

∂

∂α
z(α, t) = 0 yield the same equation for t in

terms of α.
b) Substitute for t into equations for x(α, t) and z(α, t).
c) Caustic begins with a cusp and asymptotically approaches the lines

±x/R = 0.1027(z/R) − 0.1826

8.15. R(θo) = 2H tan θo + 20H cot θo
Minimum Rmin = 12.65H obtained when tan2 θo = 10

8.16. a) With appropriate definition of angle φ, a ray has circle radius R = (H −
h)/ cosφ; the ray that grazes ground has radius R = H and touches
ground at w = [2Hh − h2]1/2.

c) cot = H ln

(
H + (2Hh − h2)1/2

H − h

)
+ [w − (2Hh − h2)1/2]

8.17. sin(x/H) = (tan θo) sinh(z/H)

8.18. b) x = d/2; additional roots (possible when d > 2b) are

x = (d/2) ± [(d/2)2 − b2]1/2

8.19. a) Ray leaving surface at angle θo with respect to z-axis has circle radius
(co/α) csc θo. Rotating radius vector makes angle θ with horizontal, such
that θ = π/2 at trajectory’s lowest point.

b) Caustic condition is (2n + 1) cos θ = cos θo
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8.20. (p2)av = ρcP

4πx2

1

1 + (x/2H)2

8.21. No. The caustic condition (∂w/∂θo)(∂z/∂θ) − (∂w/∂θ)(∂z/∂θo) = 0 is
satisfied only at the source point.

8.22. a) Applicable intermediate results are

tanh(coτ/2H) = cos θo + (z/w) sin θo;

cot θo = (w/2H) − (z/w) + (z2/2Hw)

b) w2 + {z + 2H sinh2(coτ/2H)}2 = H 2 sinh2(coτ/H)

8.23. a) v = 2e5f (t − c−1
w d − 10c−1

a H)

[ρwcw + ρa,0ca,0][10(ca/cw)H + d]
b) The ratio of intensities, source above ground and source below ground,

observed at height 10H is

2(ρwcw + ρa,0ca,0)
2

ρwcωρa,0ca,0

(
ca

cw

)2 [
1 + (cw/ca)d

10H

]2

8.24. A ray initially making small angle ε (radians) with z-axis has path

w ≈ ε

co

∫ z

o

cdz. The ray tube area is πw2 and the power passing through

ray tube is (P/4π)πε2.
8.25. One must prove that

kz,I

ρIω2 = R2kz,I

ρIω2 + T 2kz,II

ρII(ω − kxvII)2

8.26. a) Applicable intermediate results are ∇po = c2∇ρo and

(vo ·∇)v′ + (v′ ·∇)vo = ∇(v′ · vo) − vo × (∇ × v′)

b) Take dot product of first displayed equation with ρov
′+vop

′/c2; multiply
second displayed equation by v′ · vo + p′/ρo.

c) W = w + I · vo/c
2 and I ≈ wcn yield W ≈ w/Ω where Ω = c/(c +

n · vo)

8.27. b)
∂

∂t

{
A

[
1

2
ρo(v

′)2 + (p′)2

2ρoc2 + p′v′vo
c2

]}

+ ∂

∂x

{
A[p′ + ρovov

′]
[
v′ + p′vo

ρoc2

]}
= 0

d)
P 2A(vo + c)2

ρoc3 = constant
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8.28. If the lens surface is taken as flat on the source side, with thickness ho at
r = 0, and if d is distance from source side of lens to focal point, then
h(r) = ho + 0.634(d − ho) − {[0.634(d − ho)]2 − (1.224r)2}1/2 which is
the equation of an ellipse.

8.29. p̂ = Pe−ikz{1 + (−2z)−1R
1/2
o (w − Ro)

1/2 exp[ik(w − Ro)
2/(−2z)]}

8.30. a)
Iwith

Iwithout
= 8

5
+ 2

√
3√

5
cos(4π cos θ)

b) Radiation pattern given in parametric form (θi ranging from 0 to π/2)
by θ = 2θi − sin−1([3/4] sin θi);

Iwith

Iwithout
= 1 + δ + 2δ1/2 cos(2kRi cos2 θi)

Ri = (1/2)(δ−1 − 1)RC cos θi;

δ−1 + 1 = (8/3) sec θi[1 − (3/4)2 sin2 θi]1/2

8.31. (p2)av =
(

10 cosφ

5 cosφ + 1

)2 sin3 θo

sinφ

ρocoP

4πw2

where cotφ = (2wH)−1(0.19H 2 − w2); cot θo = 5(0.19H 2+w2)
9wH

8.32. With the abbreviations, ζ = z/Ro and u = w/Ro, the caustic is described
by

ζ + (1/2) = (1/2)[1 − (1 − u2/3)1/2] − u2/3(1 − u2/3)1/2 ≈ −(3/4)u2/3

9.1. a) TS = 10 log(σback/4πR2
ref); σback = (25/9)πa2(ka)4

b) σback = πa2

c) Increases TS by 12 dB and 0 dB, respectively.

9.2. a)
dσ

dΩ
= (4/9π2)a2(ka)4 cos2 θ cos2 θk

b) σback = (16/9π)a2(ka)4 cos4 θk
c) TS = 10 log(σback/4πR2

ref)

d) The flow velocity is parallel to the disk’s faces, so the disk does not
disturb the flow.

9.3. An intermediate result, obtained by the use of Gauss’s theorem, is

∫∫∫ [
(Φν − xν)

∂Δ2

∂xμ
− (Φμ − xμ)

∂Δ2

∂xν

]
dV = 0

9.4. Applicable equations are Ûinto = 4πŜ/iωρ;

p̂out = B + ikŜ; p̂out = ZHRÛinto
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9.5. a) ω2
r = ksp/(M + 1

2
Md), where Md = 4

3
πa3ρ is the displaced mass

c) D̂ ≈ (i/4)kra3MdB

(M + 1
2Md)[1 − (ωr/ω)2] + (i/6)(kra)3Md

9.6. Relative phases, associated with travel time differences, must be randomly
distributed over a range of at least 2π for the assumption to hold. Dimen-
sion of the scattering volume in the direction ei − esc must be at least
λ/[2 sin(θ/2)].

9.7. a) Energy scatter per unit time is approximately π2(a/c)f 2
resp

2
f (fres)/RA

b) Attenuation in nepers per unit propagation distance is

α(f ) = 4πa2N

[1 − (f/fres)2]2 + (2aRA/ρfres)2

With increasing x, the spectral density loses a narrow notch of frequen-
cies centered at fres.

9.8. One must solve (numerically) the integral equation

(A1/2pecho)x=0 =
∫ ∞

o

J (xo)f (t − 2xo/c)dxo

and then determine A(x) by solving the ordinary differential equation
4A2dJ/dx = (A′)2 = 2AA′′

9.9. a) (p2
sc,ap)av ≈

(
ΔΩtr

4π

)2

(kh)2
[
δ(ρc)

ρc

]2

(p2
i )av

b) σback = k2h4(ΔΩtr)
2

4π

[
δ(ρc)

ρc

]2

9.10. An approximate analysis suggests the replacement

ΔΩtr →
∫ 2π

o

∫ π

o

e−αθ2
exp{2ikh sin θ cosμ tanφ} sin θdθ dμ

which approximates to (π/α) exp[−(khφ/α)2].
9.11. A = 1

9.12. a)
ω − ωo

ωo

= 1

8
− (3/8)(ct/r)

[8 + (ct/r)2]1/2

b) At time t = 0 one is still hearing sound that left the source when x was
negative.

9.13. f/fo = 1.1526 if t < 0 and f/fo = 0.8676 if t > 0.

9.14. a) T ≈ 2

c
(h2 + L2)1/2 − VL/c2

b)
dz

dx
= h

L
− VL

2ch
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c)
ωrec − ωtr

ωtr
≈ −2V

c

L

[h2 + L2]1/2

d) σback = k4

4π

(
4

3
πa3

)2 (3(m − md)

2m + md

)2

(p2)av,echo = 2|Ŝ|2
π

σback

[h2 + L2]2

9.15. a) p̂ = (2πk sin θ)Ke−iπ/4eikz cos θ

b) R = e−iπ/2

9.16. With the abbreviations:

N3 = kR tan3 α

2 cosα
and M = (2 cosα)1/3(kR)2/3 sinα,

one finds

|p̂| = (const.)|[(Bi)′ − (N)(Ai)] + i[(Ai)′ + (N)(Bi)]|

where the Airy functions are evaluated at η = −Mx/R.
9.17. a) w1(τ − η) → (η − τ)−1/4eiπ/4 exp{i(2/3)(η − τ)3/2}

b) The problem reduces to proving that, up through first order in τ , the
quantity Φ = kox + (koR/2)1/3xτ/R − (2/3)η3/2 − τη1/2 is a good
approximate solution of

(∂Φ/∂x)2 + (∂Φ/∂y)2 = (1 + [2z/R])k2
o

c)
dx

dz
= 1 + [τ/(2k2

oR
2)1/3]

(2z/R)1/2 − (τ/2)(2R/z)1/2(2k2
oR

2)−1/3

9.18. a) Start with general expression for a creeping wave,

p̂ = F(x)Ai(b1 − yei2π/3)

where y = z/l and l = (R/2k2
o)

1/3

b) ėshead = (p2
cw)av,0

4πρc

(2/kR)1/3

(0.536)2

c) ėshed = ρc(v2
z,cw)av,0

(kR/2)1/3

4π(0.701)2

9.19. Start with same expression as suggested for Problem 9.18 and derive

ėabs = 1

2
Re

[
eiπ/6

ρωl
|F(x)|2Ai′(b1)Ai∗(b1)

]
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For a nearly “rigid” surface, the ratio is 3.61 ρckol/ZS

For a nearly “soft” surface, the ratio is 3.10 ZS/ρckol

9.20. The wave speed is nearly c, and the creeping wave energy, E , per unit area
satisfies cdE /dx = −ėav. Applicable equations are

ėshed = (4πωρl)−1(p2
cw)av,0/|Ai(a′

1)|2

α = (
√

3/2)(−a′
1)/2kl2

9.21. a) Appropriate substitution for path length is Rθ ; ray strip width is
proportional to R sin θ ; replace w/2kl2 by Rθ/2kl2; replace 1/w by
1/[Rθ1/2(sin θ)1/2]

b) Use Eq. (9.5.19a) with yo = 0 and f1(yo) = 1.
d) Rp̂/Ŝ = −0.0397 + 0.008i

9.22. a) Ai(a′
1 − yei2π/3) → exp(−ia′

1e
−i2π/3y1/2)ei(2/3)y3/2

2π1/2eiπ/12y1/4

Applicable intermediate result is

2k2l2y1/2 + 2

3
y3/2 = ωτTR

Ray tube area varies as cτTRr sin θ

b) Appropriate substitutions are cτTR → r and Δθ → θ − π/2.

9.23. Two rays arrive, with the one from the backside undergoing a phase shift.
The superimposed wave, with the abbreviation ε = R/(−z), has a factor
w−1/2e−ikz cos εe−ikw sin ε . According to Problem 9.15, this corresponds to
(2πkR/r)1/2e−iπ/4Jo(kR sin θ)eikr . In the result for Problem 9.22, one
must replace (sin θ)−1/2 by e−iπ/4(2πkR)1/2Jo(kR sin θ).

9.24. a) p̂ = p̂i

e−iπ/2 exp{i(ωR/vph)(θ − π/2)} exp{−(αR)(θ − π/2)}
(2kl2 sin θ)1/2(2Rl)−1/4[−a′

1Ai(a′
1)]

where p̂i is the acoustic pressure amplitude of the incident plane wave.
9.25. a) Both eiξτw1(τ − η) and eiξτ v(τ − η) satisfy the parabolic equation.

b) Applicable intermediate results are

∂

∂x
= ε−1R−1(1 + ε2h)−1

(
∂

∂ξ
+ 2ξ

∂

∂η

)

∂

∂y
= ε−2R−1(1 + ε2h)−1

[
−2

∂

∂η
+ ε2

(
2b

∂

∂ξ
− 2a

∂

∂η

)]

where 2a = (η − ξ2) and 2b = (ξ − η1/2)

9.26. (8/7)P

9.27. p̂diff = Ŝe2ikr eiπ/4

(πkr)1/22r
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9.28. Approximate AD(X) to first order in X. The two results are consistent and
the fluid velocity (both radial and tangential components) is infinite at the
edge. Flow locally resembles potential flow.

9.29. a) Draw a triangle, with sides r, r
S
, and R, and denote smaller interior angles

by α and β, such that their sum is φ. Then appropriate intermediate results
are

L − R = r
S
(1 − cosα) + r(1 − cosβ); h = r

S
sinα = r sinβ

9.30. a) p̂ = 2Ŝz−1eikz − 4Ŝ(πka)−1/2L−1eiπ/4eikL

where L = (z2 + a2)1/2 + a

b) Interference minima where kz + 2nπ = kL + (π/4)
c) p̂ = (4Ŝ/L)(πka)−1/2ei(kL+π/4)

9.31. a) If one lets Δφ = φ − π/3 be angular deviation from the shadow zone
boundary, with φ reckoned from other wall, then the diffraction parameter
X is −ΓΔφ and

p̂refl ≈ 2ŜR−1
I eikRI [H(X) − 2−1/2eiπ/4AD(X)ei(π/2)X2 ]

Here Γ = (krrS/πL)
1/2 and RI is distance from the image source

(obtained by reflection through the φ = 0 plane).
b) NF = (L − RI )/(λ/2)

9.32. TS = 10 log

[
k2a4

4π2R2
ref

]

9.33. |p̂2|/|p̂1| = 0.247

9.34. p̂ = iŜ

1282λ

10.1. Substitute κ ′
o = κo

(
T ′
o

To

)3/2
To + TAe

−TB/To

T ′
o + TAe

−TB/T
′
o

into κ = κ ′
o

(
T

T ′
o

)3/2
T ′
o + TAe

−TB/T
′
o

T + TAe−TB/T

10.2. Fractional error ≈ (3/4)(γ − 1)/Pr ≈ 0.00084.
10.3. The following derivatives of unit vectors are applicable:

∂er

∂θ
= eθ ; ∂eθ

∂θ
= −er ; ∂er

∂φ
= sin θeφ

∂eθ

∂φ
= cos θeφ; ∂eφ

∂φ
= −er sin θ − eθ cos θ
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10.4. Derivation from Eq. (10.1.15) starts with setting s = s+s′, where s is slowly
varying. An applicable intermediate result is

ρT
∂s

∂t
− ∇ · (κ∇T ) = μ

2

∑
ij

φ2
ij + κ

T
(∇T ′)2

For the example, the large t and large x/λ limit, one should obtain

T ≈ 2I

(
t

πκρcp

)1/2

− I

κ

(
e−2αx

2α
+ x

)

10.5. a) Approximate dispersion relations:

k ≈ ω

c
+ i

ω2

c3
δcl; k ≈ ω

c
+ i

k2

c
δcl

b) The Green’s function satisfies 4Gν − Gμμ = 0 with G(μ, 0) = δ(μ)

c) One must numerically evaluate (with s = [x − ct]/L)

p = 2P

3
√
π
e−s2/9

∫ 1

o

e−2(s′)2/9 sinh( 2
9 ss

′) sin(πs′)ds′

10.6. For the vorticity mode:

w ≈ (1/2)ρv2; I = −μ
∑
ij

ej viφij ; D = 1

2
μ
∑
ij

φ2
ij

For the entropy mode:

w ≈ 1

2

(
ρT

cp

)
o

s2; I ≈ − κ

To
T ′∇T ′; D = κ

To
(ΔT ′)2

10.7. p = (κρc2ω/cp)
1/2β(ΔT )s cos(ω[t − (x/c)] + π/4)

10.8. The absorption cross section is 6(ωμ/2ρc2)1/2πa2

10.9. The attenuation αwalls in nepers per meter is determined by

2i[(ω/c)2 − k2
y − k2

z ]1/2αwalls = lvorΨvor + (γ − 1)lentΨent

where ky = nyπ/Ly

Ψvor = [(ω/c)2 − k2
y]ε(ny)L−1

y + [(ω/c)2 − k2
z ]ε(nz)L−1

z

Ψent = (ω/c)2[ε(ny)L−1
y + ε(nz)L

−1
z ]

with ε(n) = 1 if n = 0 and equal to 2 otherwise.
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10.10. RA = 24.9 × 103 Pa · s/m3, in contrast to a radiation resistance of

1.39 × 103 Pa · s/m3; Q = 56

10.11. α(θi) ≈ α(0)/ cos θi providing cos θi � α(0).

10.12. The approximation p̂ = 0 at x = h leads to an additional factor
1 − e2ikh

1 + e2ikh

in Eq. (10.5.23), where k = (1 + i)α and α =
(

4μω

ρc2
T a

2

)1/2

. In the limit of

large |kh| the transmission loss is

RTL = 10 log

[
8μe2αh

π2a6ωγN2ρ

]

10.13. d) power = ω5πμa4

6c3
|ξ̂ |2

10.14. (p2)av and the power both vary with U as U6.

10.15. p2
f (f ) ≈ ρ2U5a3Q

c2r2 ,

where the dimensionless quantity Q is a function of the Strouhal number,
the Reynolds number, and angular coordinates.

10.16. p = W

2πh
= 0.47 Pa

10.17. If one takes NB = 6, the p̂m depend on m and θ through the factor

(RL/D cos θ − 6)
m[(m/2) sin θ ]6m

(6m)!
10.18. A marked increase is expected when ωRLeff/c goes from below unity

to above unity. If one requires the amplitude of the Airy function to
exceed 1/2 of its peak value, then [ωRLeff/c]θ lies between the limits,
1 − 0.28(ωR/ω)

2/3 and 1 + 16(ωR/ω)
2/3.

10.19. An applicable intermediate result is

((T ′ − Tν)
2)av = (ωτν)

2

1 + (ωτν)2
((T ′)2)av.

Use the approximation T ′ ≈ (Tβ/ρcp)op and the thermodynamic

relation β2 = (γ − 1)cp
c2T

10.20.
(

1 + τν
∂

∂t

)(
∂

∂x
+ 1

co

∂

∂t

)
p = (c−1

o − c−1∞ )τν
∂2p

∂t2

10.21. a) T60 = T60,n

[
1 + 2cT60,nαpl

6 ln 10

]−1

where the nominal reverberation time T60,n corresponds to αpl = 0.
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b) αpl = 3.8 × 10−4 Np/m.
c) It can occur at any frequency above 117 Hz if the humidity is right, and

at almost any frequency if the frequency is greater than 5000 Hz.

10.22. a > 2.3 m.
10.23. Maximum of 0.0155 Np/m occurs when RH ≈10.5%.
10.24. Expand the complex wave number k(ω,μ,μB, κ, cv1, cv2) in a power series

in μ, κ , etc., and keep only up through the first order terms. The coefficient
of any such term should be independent of the parameters that are associated
with dissipation.

10.25. Applicable first order intermediate result is

iωρ0ŝeq/p̂ = 2cp
πc2βTo

∑
ν

(ανλ)mω
2τν

1 − iωτν
+ k2κ(β/ρcp)o

10.26. At 50 Hz: αμ = 2.5 × 10−8, αμB
= 1.1 × 10−8, ακ = 1.0 × 10−8, and

with relative humidities of 0, 50, and 100%, αν1 = 1.0 × 10−4, 7.2 × 10−7,
and 3.0 × 10−7, while αν2 = 7.4 × 10−6, 9.3 × 10−6, and 4.9 × 10−6. At
5000 Hz: αμ = 2.5 × 10−4, αμB

= 1.1 × 10−4, ακ = 1.0 × 10−4, and with
relative humidities of 0, 50, and 100%, αν1 = 1.2 × 10−4, 6.7 × 10−3, and
3.0 × 10−3, while αν2 = 7.7 × 10−6, 1.8 × 10−4, and 3.5 × 10−4.

10.27. If the plane were flying at 3000m, the calculated upper limit would be 102.2
dB; at 6000m, it would be 114.4 dB.

11.1. B/A = 2ρc

[(
∂c

∂p

)
T

+ βT

ρcp

(
∂c

∂T

)
p

]

yields 4.7 for fresh water and 5.0 for sea water.

11.2. c = co

(
p

po

)(γ−1)/2γ

; v = 2co
γ − 1

[(
p

po

)(γ−1)/2γ

− 1

]

11.3.
∞∑

n=N

1

n4/3 converges, but
∞∑

n=N

1

n1/3 diverges

11.4. Integral form of y-th component of Euler’s equation for a stationary control
volume is

d

dt

∫∫∫
ρvydV +

∫∫
[ρvyv ·n + pny]dS = 0

A derivation similar to that of Sect. 11.3 yields

[ρvy(vx − vsh)]+ = [ρvy(vx − vsh)]−

11.5. vsh ≈ c + 1

2
β
Δp

ρc
− 1

8
β2 (Δp)

2

ρ2c3

11.6. a) xonset = ρc3To

2βPo
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b) N-wave of peak overpressure Po, positive phase duration To.

c) T/To = Po/P =
[

1 −
(
x − xonset

cτN

)]1/2

where τN = ρc2To

βPo

11.7. a) x = 2ρc3To

β(P1 + P2)
b) After coalescence (at x of part (a)), there is a shock of overpressure (P1 +

P2) that moves with speed c + (β/2ρc)(P1 + P2).

11.8. A plausible assumption is that the fluid eventually returns to its original

pressure, so T δs = cpδT and one accordingly finds δT = βP 3

3ρ3c4cp
for net

temperature increase.
11.9. b) K = c3/4δ; B = (c3/4πδ)1/2

c) Insert v(0, τ ) = sinωτ . The integration, performed using technique of
Eq. (2.8.6), yields e−αx sinωt ′.

11.10. The equation vt + βvvx′ = δvx′x′ is satisfied by

v = a
∂F (x′, t)/∂x′

F(x′, t)
provided a = −2δ/β and Ft = δFx′x′

Initial value F(x′0) determined from setting

lnF(x′, 0) = −(β/2δ)
∫ x′

o

v(ξ, 0)dξ

Initial value problem for F has solution

F(x′, t) = 1

2(πδt)1/2

∫ ∞

−∞
F(x′′, 0) exp{−(x′ − x′′)2/4δt}dx′′

11.11. b) δD = c

2
√
π

(
μ

ρc2

)1/2

[1 + (γ − 1)(Pr)−1/2]LP

A
c) In the coefficient of ∂p/∂t , one replaces c by c + βp/ρc.

11.12. a) Multiply vt + βvvx′ = δvx′x′ by ρv

b) After insertion of the expression from Eq. (11.6.23), one finds

ρδ

∫ ∞

−∞
(∂v/∂ξ)2dξ = 1

6
ρβv3

sh

c) With Δp = ρcvsh, result from (b) is that of Eq. (11.4.11).

11.13. T = 13.2μs; P = 203 Pa.
11.14. a) ronset = [√

ro + (rP /2
√
ro)
]2, where rP = ρc3To/(2βPo)
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b) T/To = (ro/r)
1/2(Po/P ) =

[
1

2
+ (1/rP )

√
ro(

√
r − √

ro)

]1/2

11.15. a) A = 2β

ρc3

√
ro(

√
r − √

ro)

b) T/To = (Po/P )(ro/r)
1/2 = [1 + (Po/To)A ]1/2

11.16. a) pfs = ro

r
[ln(r/ro)]−1/2

[
4Poρc

3

ωβro

]1/2

T =
[

4Poβro

ωρc3

]1/2

[ln(r/ro)]1/2

b) r∗ = ro; K =
[

4Po

ωρcβro

]1/2

c) K = 0.051; pfs = 15.5 Pa; T = 20.5μs.

11.17. For very low amplitudes, the fraction approximates to
1

4

(
ωPoβ

ρc3m

)2

.

11.18. εcrit = Tρf c
3 cos θ

4πβH
11.19. Asymptotic waveform given parametrically, ψ ranging from 0 to 2π , by

2πt ′/T = ψ − (1/2) sinψ; p = ε exp{(hf − z)/2H } sinψ where
ct ′ = ct − (hf − z).

11.20. The shock thickness due to classical absorption (including viscosity, bulk
viscosity, and thermal conduction) is 1.04 × 10−3 m, but O2 relaxation has
the strongest effect (φ = 1.58) and causes an increment (Δl)O2 = 8.56 ×
10−3 m to be added to the shock thickness.

11.21. For x > 2ρc3Δ2/βK , the pulse is triangular with initial shock and positive
phase duration given by

P =
[

2ρc3K

βx

]1/2

; T =
[

2βKx

ρc3

]1/2

11.22. p ≈ (M2 − 1)1/4Ψ (ξ)

2π(2r)1/2
; Ψ (ξ) = ∂

∂ξ

∫ ξ

−∞
fz(μ)dμ

(ξ − μ)1/2

where ξ = V t − x − (M2 − 1)1/2r; r = (−z)

b) FW(ξ) = (M2 − 1)1/2Ψ (ξ)

2πV 2ρ

pfs = 0.819
(M2 − 1)3/8(ρc2FL)

1/2

23/4β1/2r3/4L1/4M

T = 0.819
21/4β1/2r1/4F

1/2
L

ρ1/2c2(M2 − 1)1/8L1/4
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11.23. vr + v/r − (β/c2)vvt ′ = (δ/c3)vt ′t ′

11.24. a) FW(ξ) = 32R2
max

5L3/2 [x1/2U(x)H(x) − (x − 1)1/2V (x − 1)H(x − 1)]
where U(x) = 5 − 20x + 16x2 and V (y) = 5 + 20y + 16y2, with

x = ξ/L and y = x − 1.
b) K = 0.679.

11.25. Asymptotic N-wave given by Eqs. (11.10.18) and (11.10.21) with K =
(4/3π)1/2 = 0.651 and L replaced by LN .



Name Index

A
Ackeret, J., 699n
Adler, Laszlo, 469
Airy, George Biddell, 262n, 530n, 662n
Akay, Adnan, 181n
Alembert, Jean le Rond d, 5n, 18n, 22n
Allen, Clayton H., 676n
Alsop, Leonard E., 579n
Ambaud, P., 562n
Ando, Yoichi, 400n
Andree, C.A., 306n
Andrejev, N., 40n
Antosiewi, Henry Albert, 533n
Arago, Dominique Francois Jean, 269n
Aristotle, 3n
Arons, Arnold Boris, 154n
Astrom, E.O., 597n
Atkinson, F.V., 205n
Atvars, J., 467n

B
Baade, Peter K., 319n
Babinet, Jacques, 269n
Bach, Johann Sebastian, 67n
Backhaus, Hermann, 269n
Bagenal, Hope, 313n
Baker, Bevan Braithwaite, 201n
Baker, Donald W., 528n
Ballantine, Stuart, 232n
Ballot, see Buys Ballot
Barash, Robert M., 539n
Barnes, A., 443
Barton, Edwin Henry, 427n, 430n
Bass, Henry Ellis, 637n

Batchelor, George Keith, 510n, 586n, 592n,
623n, 641n, 678n

Bateman, Harry, 468, 678
Bauer, H.-J., 637n
Bazley, E.N., 471n
Becker, R., 680n
Bell, Alexander Graham, 72n
Bender, Erich K., 403n
Beranek, Leo Leroy

Acoustic Measurements, 619n
Acoustics, 127n, 147n, 310n, 384n, 412n
anechoic sound chambers, 132n
audience and seat absorption, 302n
impedance of commercial materials, 127n
Music, Acoustics, and Architecture, 313n
notebooks of W. C. Sabine, 292n
tiles and blankets, 167n

Berendt, Raymond D., 352
Bergassoli, A., 562
Bergmann, Peter Gabriel, 9, 481
Bernoulli, Daniel, 30n, 133n, 164n, 328n,

401n
Bernoulli, James, 164n
Bethe, Hans Albrecht, 251n, 666n
Beyer, Robert Thomas, 463n, 631n, 656n
Bies, David Alan, 167n
Biot, Jean Baptiste, 12n
Biot, Maurice Anthony, 563n
Biquard, P., 596n
Blackman, Ralph Beebe, 100n
Blackstock, David Theobald, 51n, 660n, 668n,

676n, 679n, 687n, 696n, 711n
Blake, William King, 291n
Blatstein, Ira M., 539n
Bleistein, Norman, 547n

© Springer Nature Switzerland AG 2019
A. D. Pierce, Acoustics, https://doi.org/10.1007/978-3-030-11214-1

743

https://doi.org/10.1007/978-3-030-11214-1


744 Name Index

Blokhintzev, Dmitrii Ivanovich, 466n
Boethius, Anicius Manlius Severinus, 3n
Bolt, Richard Henry, 126n, 147n, 170n
Boltzmann, Ludwig Eduard, 463
Born, Max, 249, 430n, 510n
Boussinesq, Joseph, 618n
Bouwkamp, Christoffel Jacob, 26n
Boyle, Robert, 4n
Boyle, Robert William, 156n
Brandes, Heinrich Wilhelm, 12n
Breazeale, Mack Alfred, 469n
Brekhovskikh, Leonid Maksimovich, 145n,

469n, 482n, 538n
Bremmer, A. J., 403n
Bremmer, Hendricus, 544n
Bressel, R., 636n
Bretherton, Francis P., 119n, 461n
Bricout, P., 526n
Brillouin, Jacques, 140n, 177n
Brillouin, Leon, 53n, 140n, 177n
Brode, Harold Leonard, 698n
Bromwich, Thomas John I’Anson, 553n
Brown, Edmund H., 510n
Brune, James N., 579n
Bruns, Ernst Heinrich, 430n
Brunt, David, 40n
Buchal, Robert Norman, 530n
Buchanan, R. H., 505n
Buckingham, Edgar, 321n
Burgers, Johannes Martinus, 463n, 678n
Burrows, Charles Russell, 548n
Bushnell, Vivian C., 442
Buys Ballot, Christoph H. D., 517n

C
Cagniard, Louis, 429n
Cajori, Florian, 4n, 589n
Calvert, James B., 14n
Cantrell, R.W., 463n
Carlisle, Richard W., 417n
Carrier, George Francis, 533n
Carson, John Renshaw, 91n
Carstensen, Edwin Lorenz, 526n
Cauchy, Augustin Louis, 10n, 586n
Challis, James, 662n
Chandrasekhar, Subrahmanyan, 666n
Chapman, Sydney, 592n
Chernov, Lev Aleksandrovich, 462n, 485,

512n
Christoffel, Elwin Bruno, 378n, 421
Chrysippus, 3n
Chu, Wing T., 317n
Clay, Clarence Samuel, 494n, 524n

Clifford, S. F., 526n
Coffman, John W., 14
Cohen, Morris Raphael, 3n
Cole, A. E., 447n
Cole, Julian D., 213n, 597n, 678n
Colladon, Jean-Daniel, 33n, 34n
Collins, F., 26n
Cook, John Call, 174n
Cook, Richard Kaufman, 172n, 174n, 232n,

352n, 453n
Copley, Lawrence Gordon, 26n, 210n
Coppens, Alan Berchard, 656n
Copson, Edward Thomas, 89n, 201n
Courant, Richard, 83n, 103n, 196n, 202n,

331n, 603n, 665n
Court, A., 447n
Cowling, Thomas George, 592n
Cox, Everett Franklin, 451n
Cramer, Harald, 349n
Crandall, Stephen Harry, 102n, 118n, 143n,

146n, 150n, 433n
Crary, Albert Paddock, 451n
Cremer, Lothar W., 130n
Crighton, David George, 213n
Cromer, Alan H., 464n
Cron, Benjamin F., 154
Crum, Lawrence Arthur, 319n
Cunningham, Walter Jack, 18n
Curle, Samuel Newby, 621n

D
Dahl, Norman Christian, 150n
d’Alembert, Jean le Rond, 6n, 18n, 22n
Darling, Donald Allan, 490n
Davies, Peter Owen Alfred Lawe, 403n
Davis, A. H., 326n, 327n
Davis, D. D., Jr., 405n
Davy, Bruce A., 51n, 711n
de Broglie, Louis Victor, 463n
de Groot, Sybren Ruurds, 634n
Dehn, James Theodore, 279n
Delany, Michael Edward, 471n
Den Hartog, Jacob Pieter, 136n
Depperman, K., 547n
Derbyshire, A. C., 313n
Descartes, Rene, 151n
Deschamps, Georges A., 476n
Devin, Charles, Jr., 504n
Dickinson, Philip J., 127n
Dietze, E., 310n
Dirac, Paul Adrien Maurice, 91n
Dirichlet, Peter Gustav Lejeune, 6n, 89n
Dix, Charles Hewitt, 429n



Name Index 745

Doak, Philip Ellis, 127n, 197n, 349n
Donn, William L., 451n, 454n
Doob, Joseph Leo, 345n
Doppler, Johann Christian, 520n
Dostrovsky, Sigalia, 3n, 4n, 29n
Drabkin, Israel Edward, 3n
Duda, John F., 291n
Duhamel, Jean-Marie-Constant, 328n
Duykers, Ludwig Richard Benjamin, 450n

E
Earnshaw, S., 655n
Ebbing, Charles E., 317n, 319n
Eckart, Carl Henry., 16, 40, 119, 524, 595
Edelman, Seymour, 352n
Egan, M. David, 78, 297
Ehrenfest, Paul, 463n
Eigen, Manfred, 636n
Einstein, Albert, 631n
Elkana, Yehuda, 587n
Eller, Anthony I., 504n
Ellis, Alexander John, 67, 380
Embleton, Tony Frederick Wallace, 127n,

129n, 301n, 308n, 403n, 408n,
453n, 484n

Emden, Jacob Robert, 430n
Engelke, Raymond Pierce, 431n, 481n
Ernst, Paul J., 159n
Eucken, Arnold Thomas, 592n
Euler, Leonard

continuation of the researches, 28n
elastic beams, 164n
Euler’s constant, 72n, 348n
Euler’s formula, 26, 275n
Euler’s velocity equation, 118n
letter to Lagrange, 18n
membrane vibrations, 363n
more detailed enlightenment, 121n, 133n
Newton’s derivation of sound speed, 5n
physical dissertation on sound, 45n
principles of the motion of fluids

general, 8n
propagation of sound, 18n, 22n, 121n,

133n
Eyring, Carl F., 306n
Ezekiel, F.D., 460n

F
Fahy, F.J., 336n
Feit, David, 146n, 147n
Fermat, Pierre de, 432n
Ferrell, E. B., 545n
Feshbach, Herman, 155n, 186n, 497n, 612n

Ffowcs-Williams, John Eirwyn, 621n
Fieldhouse, F. N., 86n
Finch, Robert David, 414n
Fine, Paul Charles, 595n
Finn, Bernard S., 12n
Firestone, Floyd A., 371n
Fischer, F. A., 243n
Fisher, Frederick Hendrick, 644n, 679n
Fitzpatrick, Hugh Michael, 26n, 217n
Flax, Lawrence, 469n
Fletcher, Harvey, 71n, 72n
Flinn, Edward Ambrose, 429n
Fock, Vladimir Alexandrovitch, 543n, 582n
Foldy, Leslie L., 230n
Fourier, Jean Baptiste, 14n, 590n
Frank, Ilya Mikhailovich, 186n
Frank, Philipp G., 481n
Franklin, Dean L., 526n
Franklin, William Suddards, 297n
Franz, Walter, 547n
Fresnel, Augustin Jean, 148n, 249n, 269n
Friedrichs, Kurt Otto, 434n, 665n
Frost, P. A., 179n
Fubini-Ghiron, Eugene, 660n
Fuchs, Klaus, 666n
Fujiwhara, S., 430n, 446n
Fung, Yuan-Cheng, 146n, 586n
Furrer, Willi, 295n, 313n

G
Galileo Galilei, 3n, 29n
Garnir, Henri Georges, 553n
Garrett, Christopher J. R., 119, 461n
Garrick, Isadore Edward, 627
Gassendi, Pierre, 4n, 30n
Gauss, Carl Friedrich, 7n, 201n
Gautschi, Walter, 274n
George, Albert Richard, 627n
Georges, Thomas Martin, 526n
Gerjuoy, Edward, 524n
Germain, Sophie, 164n
Goforth, Thomas Tucker, 174n
Gol’berg, Z. A., 668n
Goldstein, Herbert, 517n
Goldstein, Sydney, 417n
Goodale, W. D., Jr., 310n
Goodman, Ralph Raymond, 450n
Gossard, Earl Everett, 9n
Gray, D. E., 150n
Green, George, 7n, 120n, 184n, 188n, 459n,

460n
Greenspan, Martin, 33n, 597n, 638n
Gullstrand, Allvar, 476n



746 Name Index

Gutenberg, Beno, 445n, 455n
Gutin, L., 626n

H
Haar, D. ter, 30n, 616n
Haas, H., 306n
Haefeli, R. C., 689n
Hagelberg, Myron Paul, 656n
Hall, Freeman Franklin, Jr., 510n, 515n, 518n
Hall, Leonard, 634n
Hall, Sydney-Lynne V., 441n
Hall, William M., 127n
Halliday, David, 31n
Hamilton, D. C., 309n
Hamilton, William Rowan, 430n, 432n
Hamming, Richard Wesley, 432n
Hanna, Clinton R., 412n
Hanson, Carl E., 626n
Harkrider, David Garrison, 152n
Harper, Edward Young, 179n
Harriot, Thomas, 151n
Harris, Cyril Manton, 638n
Hart, Robert Warren, 462n
Hartig, Henry E., 361n
Hartley, R. V. L., 18n
Haskell, Norman A., 9n, 537n
Hawkings, D. L., 621n
Hayes, Wallace Dean, 441n, 462n, 464n, 664n,

678n, 689n, 707n
Heaviside, Oliver, 39n, 123n
Heckl, Manfred, 142n, 146n, 165n
Heine, Heinrich Eduard, 223n, 389n
Heisenberg, Werner, 464, 671n
Heller, Gerald S., 430n
Helmholtz, Hermann Ludwig

influence of friction in the air, 612n
Sensations of Tone, 67n, 380n
theory of air oscillations, 28n, 185n, 208n,

224n, 380n, 401n
Henney, Alan G., 469n
Henry, P. S. H., 615n, 631n, 647n
Hersh, Alan S., 380n
Herzfeld, Karl Ferdinand, 631n, 637n
Hilbert, David, 103n, 331n, 338n
Hilliard, John K., 410n
Hilsenrath, Joseph, 591n
Hines, Colin Oswald, 9n, 598n
Hodgson, Thomas H., 181n
Holmer, Curtis I., 163n
Holton, Gerald James, 656n
Hooke, Robert, 12n
Hooke, William Hines, 9n
Hopf, Eberhard, 685n

Horne, Ralph Albert, 33n, 36n, 591n
Horton, Joseph Warren, 494n, 524n
Hottel, Hoyt Clarke, 309n
Howe, Michael S., 380n
Hruska, Gale R, 132n, 291n
Hudimac, Albert A, 471n
Hugoniot, Pierre Henri, 664
Hunt, Frederick V., 3n, 169, 229n, 305n
Huntley, Ralph, 70n
Huschke, Ralph Ernest, 517n
Huygens, Christiaan, 29n, 196n, 422n
Hylleraas, Egil Andersen, 91n

I
Ingard, Karl Uno, 170, 245n, 333n, 378n,

380n, 471n, 540n, 619n

J
Jackson, John David, 507n
Jackson, R. S., 315n
Jaeger, G., 295n, 304n, 427n
James, Graeme L, 435n
Janssen, Jan H, 228n
Jardetzky, Wenceslas S, 434n
Jeans, James Hopwood, 631n
Jenkins, R. T., 417n
Jonasson, Hans, 571n
Jones (Lennard-Jones), J. E., 234
Jones, Douglas Samuel, 91n, 520n
Jones, Robert Clark, 261n
Jordan, P., 464
Joyce, Alice B., 151n
Joyce, William Baxter, 147n, 293n
Junger, Miguel Chapero, 144n, 145n, 227, 229,

315n, 372n

K
Kaladne, Alfred, 140n
Kane, Edward J, 681n
Kantor, A. J., 438n
Kao, S., 640n
Kaplun, Saul, 213n
Karal, Frank Charles, Jr, 370n
Karnopp, Dean Charles, 115n, 425n, 597n
Keenan, Joseph Henry, 17n
Keller, Joseph Bishop, 422n, 426n, 427n,

516n, 522n, 533n
Kellogg, Edward W., 7n, 122n
Kellogg, Oliver Dimon, 8n, 120n
Kelton, G., 526n
Kelvin, William Thomson, Lord, 384n
Kemble, Edwin Crawford, 615n



Name Index 747

Kennedy, Hubert Collins, 84n
Kennelly, Arthur Edwin, 124n
Kerr, Donald E., 501n, 504n
Khintchine, Aleksandr Iakovlevich, 99n
Khokhlov, R. V., 681n
King, Louis Vessot, 390n, 658n
Kirchhoff, Gustav Robert

elastic plate, 164n
influence of heat conduction, 14n, 596n,

612n
Mechanik, 39n, 181n, 202n
theory of light rays, 208n, 249n
use of delta function, 93n

Kirkwood, John Gamble, 9n, 617n
Kneser, Hans Otto, 615n, 631n
Knudsen, Vern Oliver, 73n, 297n, 615n
Koidan, Walter, 132n, 291n
Konig, Rudolph, 520n
Kosten, Cornelius Willem, 228n, 305n, 619n
Kovásznay, Leslie Steven George, 597n, 626n
Kravtsov, Yu. A., 516n
Kreith, Frank, 298n, 309n
Krook, Max, 533n
Kulsrud, Helene E., 672n
Kurokawa, K, 124n
Kurtz, Edward Fulton, Jr., 115n, 145n, 425n,

597n
Kurtze, Guenther, 147n
Kurze, Ulrich J., 556n
Kuttruff, Heinrich, 295n, 307n, 318n, 330n

L
Lagrange, Joseph Louis, 11n, 18n, 20n, 133n
Lamb, George Lawrence, Jr, 245n
Lamb, Horace:

Dynamical Theory of Sound, 217n, 219n,
490n, 618n

elastic plate in contact with water, 253n
group velocity, 143n
Hydrodynamics, 10n, 40n, 143n, 220n,

223n, 389n, 493n, 510n, 617n,
623n, 624n

problem in resonance, 506n
vertical propagation in atmosphere, 52
waves of expansion in a tube, 367n

Lambert, Robert F., 608n
Lamé, Gabriel, 195n
Lanczos, Cornelius, 228n
Landau, Lev Davidovich

Fluid Mechanics, 216n, 664n, 668n
Mechanics, 464n
shock waves, 666n, 696n
statistical physics, 16n, 634n

Langevin, Paul, 596
Lansing, Donald Leonard, 688n
Laplace, Pierre Simon, 7n, 12n
Lardner, Thomas Joseph, 150
Latta, Gordon, 89n
Lawrence, Anita B., 313n
Leehey, Patrick, 626n
Leis, Rolf, 205n
Lenihan, John Mark Anthony, 30n
Leonard, Robert Walton, 636n
Lesser, Martin B., 213n
Letcher, Stephen Vaughan, 631n
Leverton, John W., 627n
Levine, Harold, 400n, 411n, 412
Levy, Bertram R., 548n
Lewis, Robert M, 547n
Li, Kam, 529n
Liebermann, Leonard, 636n
Lifshitz, Evgenii Mikhailovich, see Landau
Lifshitz, Samuel, 315n
Lighthill, Michael James, 90n, 193n, 592n,

641n, 678n
Lin, Yu-Kweng Michael, 102n
Lindemann, Oscar A, 288
Lindsay, Robert Bruce

absorption of sound in fluids, 631n
Acoustics, 3n, 10n, 18n, 19n, 30n, 33n,

45n
Physical Acoustics, 14n, 481, 631n
Pierre Gassendi and the revival, 4n
rays in rotating fluid, 631
report to NSF, 2

Liouville, Joseph, 198n
Lippert, W. K. R., 375n
Little, Charles Gordon, 526n
Logan, Nelson A., 497n, 543n, 544n
Lomax, H., 707n
London, Albert, 310n
Lorentz, Hendrik Antoon, 197n
Love, Augustus Edward Hough, 177n
Lovett, Jack R., 33n
Lowson, Martin V, 522n
Lubman, David, 352
Ludwig, Donald, 530n, 534n, 547n
Lyamshev, L. M., 226n, 228n
Lyon, Richard Harold, 94n, 336n

M
Maa, Dah-You, 337n
MacDonald, Hector Munro, 553n
Mach, Ernst, 201n, 269n, 520n
MacLean, W. R., 232n, 319n
MacNair, W. A., 315n



748 Name Index

Maekawa, Z., 570n, 583
Maja, L., 291n
Maling, George Croswell, Jr.., 336n, 342n
Malyuzhinets, G. D., 547n
Mark, William D., 102n
Markham, Jordan Jeptha, 40n, 631n
Marriotte, Edme, 12n
Martin, W. H., 72n
Mason, Warren Perry, 213n, 369n, 401n, 615n
Mathews, Jon, 433n, 510n
Maxfield, J. P., 315n
Maxwell, James Clerk, 33n, 197n, 224n, 322n
Mayer, Alfred Marshall, 520n
Mazur, Peter, 634n
Mclachlan, Norman William, 253n, 262n,

277n, 417n
McLean, F. E., 707n
McMillan, Edwin Mattison, 230
McNicholas, John Vincent, 469n
McSkimin, Herbert J, 173n
Medendorp, Nicholas W., 698n
Medwin, Herman, 494n, 524n
Meirovich, Leonard, 134n
Meixner, J., 634n, 646n
Melcher, James Russell, 367n
Mellen, Robert Harrison, 539n
Mendousse, J. S., 679n
Mersenne, Marin, 3, 30, 67n
Meyer, Erwin, 316n
Miceli, J., 636n
Miles, John Wilder, 264n, 375n, 378n, 700n
Miller, Harry B., 232n
Milne, Edward Arthur, 253n, 430n
Milne-Thomson, Louis Melville, 253n, 688n
Minnaert, Marcel Gilles, 505n
Mohorovièiæ, Andrija, 434n
Moler, Cleve B, 432n
Molloy, Charles T, 411n, 412n
Moore, D., 405n
Moore, Norton B, 699n
Morfey, Christopher L., 391n, 463n
Morgan, W. R., 309n
Morris, J., 707n
Morrow, Charles Tabor, 84n
Morse, Philip McCord, 126n, 147n, 155n,

184n, 186n, 328n, 333n, 378n,
497n, 612n, 619n

Motte, Andrew, 4n
Muir, Thomas Gustave, Jr, 676n
Müller, Ernst-August, 621n
Muncey, R. W., 313n
Munk, Walter H., 449n, 452n
Munson, W. A, 315n

N
Nafe, John Elliott, 579
Nagarkar, Bhalchandra N, 414n
Napier, John, 72
Navier, Claude-Louis-Marie, 590n
Nayfeh, Ali Hasan, 213n
Neff, William David, 518n
Neubauer, Werner George, 549n
Newman, Alfred V., 538n
Newton, Isaac, 4, 5
Nichols, Rudolph Henry, 167n
Nickson, A. F. B., 313n
Nielsen, Niels, 660n
Norris, R. F., 306n
Nuttall, Albert H, 154n

O
Oberhettinger, Fritz, 264n
Obermeier, Frank F., 490n, 620n, 689n
Ockendon, H., 678n
Oestreicher, Hans Laurenz, 210n
Officer, Charles B, 434n
Ollerhead, John B., 627n
Olson, Harry Ferdinand, 417n
Olson, Nils, 127n, 129
O’Neil, H. T., 417n
Onyeonwu, Ronald O., 545n

P
Pande, Lalit, 95n
Papoulis, Athanasios, 96
Paris, E. T., 127n, 137n, 334n
Parkin, P. H., 313n
Parseval, Marc-Antoine, 84n
Pauli, Wolfgang, 564
Paynter, Henry Martyn, 460
Pearson, Carl E., 89n, 533n
Pearson, Karl, 164
Pederson, Melvin A., 451n
Pekeris, Chaim Leib, 524n, 540n, 548n
Penner, Merrilynn J., 315n
Phillips, Owen M., 626n
Pickett, James M., 319n
Pickett, Marshall A., 132
Pierce, George Washington, 627n
Piercy, Joseph E, 127n, 129n, 453n, 637n,

638n
Pierson, Willard James, Jr., 441n
Pinkerton, John Maurice McLean, 638n
Plancherel, Michel, 89n
Pochhammer, L., 363n



Name Index 749

Poincare, Henri, 230n, 553n
Poiseuille, Jean Leonard Marie, 613n
Poisson, Simeon Denis

equation presented in theory of attraction,
185n

general equations of equilibrium and
movement, 588n

integration of some partial differential
equations, 198n

letter to Fresnel, 269
mathematical theory of heat, 269n
memoir on elastic surfaces, 164n
memoir on theory of sound, 12n, 120n,

655n
movement of elastic fluid, 130n, 148n
movement of pendulum, 180n
two superimposed elastic fluids, 148n

Pollack, Irwin, 319n
Polyakova, A. L., 681n
Poynting, John Henry, 39n
Press, Frank, 434n
Pridmore-Brown, David C., 118n, 433n, 540n,

612n
Primakoff, Henry, 230n
Pythagoras, 3, 67n

Q
Querfeld, Charles William, 14n

R
Rainey, James T., 317
Rankine, William John Macquorn, 664n
Raphael, D., 484n
Rawlinson, W. F., 156n
Rayleigh, JohnWilliam Strutt, Lord

absorption of sound, 631n
acoustical observations, 219n
aerial and electric waves upon small

obstacles, 500n
application of the principle of reciprocity,

228n
bells, 218n
character of the complete radiation, 88n
disturbance produced by a spherical

obstacle, 490n
general theorems concerning forced

vibrations and resonance, 506n
light from the sky, 490n
modes of a vibrating system, 331
oscillations in cylindrical vessels, 363n
passage of electrical waves through tubes,

363n
porous bodies in relation to sound, 616n

pressure of vibrations, 463n
progressive waves, 143n
theorems relating to vibrations, 225n
theory of resonance, 254n
Theory of Sound: Vol., 26n, 39n, 67n,

146n, 219n
Theory of Sound:Vol2, 4n, 14n, 130n,

142n, 156n, 192n, 218n, 248n,
256n, 328n, 361n, 391n, 395n,
401n, 520n, 552n, 626n

transmission of light through an
atmosphere, 434n

waves, 42n
waves through apertures, 219n

Redfearn, R. S., 582n
Redheffer, Raymond Moos, 20n, 200n, 327n
Reed, Jack Wilson, 439n
Reid, John M., 529n
Reiner, M., 589n
Rellich, K., 205n
Resnick, Robert, 31n
Reynolds, Osborne, 4n, 11n
Ribner, Herbert Spencer, 119n, 467n
Rice, Francis Owen, 631n, 637n
Richardson, Edward Gick, 316n
Richardson, J. M., 505n
Riemann, Bernard, 654n
Rind, David H., 451n, 454
Robinson, R. W., 505n
Rogers, Peter H., 210n, 282n
Rschevkin, Sergei Nikolaevich, 282n
Rudenko, Oleg Vladimirovich, 681n
Rudnick, Isadore, 670
Runge, J., 455
Runyan, Larry J., 698
Rushner, Robert F., 526n
Russell, John Scott, 517n
Ryan, R. A., 317n
Ryshov, O. S., 463n

S
Sabine, Paul Earls, 269n
Sabine, Wallace Clement, 292n, 296
Sachs, David A., 156, 536n
Saint-Venant, A. J. C. Barre de, 590n
Salant, Richard Frank, 481
Saletan, Eugene J., 464n
Salmon, Vincent, 414n
Santon, F., 314n
Satamura, S., 526n
Savart, Felix, 401n
Scheiner, J., 520n
Schelleng, John C., 548n



750 Name Index

Schenck, Harry Allen, 210n
Schiff, Leonard I., 91n, 631n
Schlegel, W. A., 526n
Schoch, Arnold, 40n, 165n, 266n, 271n, 282n,

469n
Scholes, W. E., 313n
Schottky, Walter, 230n
Schroeder, Manfred Robert, 317n, 339n, 344n,

349n
Schubert, L. K., 467n
Schultz, Theodore John, 318n
Schuster, Arthur, 269n
Schuster, K., 328n
Schwan, Herman Paul, 529n
Schwartz, Laurent, 91n
Schwarz, Hermann Amandus, 103n, 378n, 422
Schwinger, Julian, 400n, 411n, 412
Sears, Francis Weston, 280n
Seckler, Bernard D., 536n
Seebass, A. Richard, III, 689n, 707n
Senior, Thomas Bryan Alexander, 490n, 492n
Sewell, C. J. T., 493n
Shapiro, Alan Elihu, 4n
Shapiro, Ascher Herman, 604n
Shefter, G. M., 463n
Shirley, John W., 151n
Shooter, Jack Allen, 586n., 676n
Shung, Koping K., 529n
Sigelmann, Rubens A., 529n
Silbiger, Alexander, 156, 536n
Simmons, Vernon P., 644n, 645n, 679n
Skilling, Hugh Hildreth, 226n, 369n
Skolnik, Merrill Ivan, 506n
Skudrzyk, Eugen, 228n
Sleeper, Harvey P., Jr., 132n
Slepian, J., 412n
Smith, Preston W., Jr., 335n
Smith, W. E., 463n
Sneddon, Ian Naismith, 79n., 89n
Snell, Willebrord, 151n, 430n
Sofrin, T. G., 361n, 419
Sokolnikoff, Ivan Stephen, 20n, 200, 327n
Solomon, Louis Peter, 432n, 443n
Soluyan, S. I., 681n
Sommerfeld, Arnold, 197n, 205n, 223n, 248n,

280n, 455n, 469n, 553n, 568
Spence, D. A., 678n, 681n
Spence, R. D., 251n
Stakgold, Ivar, 332n
Stegun, Irene Anne, 222n
Stenzel, Heinrich, 282n, 479n, 497n, 498
Stepanishen, Peter Richard, 264n
Stevens, G. L., 405n
Stevens, Stanley Smith, 70n

Stevenson, Arthur Francis Chesterfield, 490n
Stewart, George Walter, 368n, 382n, 405n
Stix, Thomas Howard, 597n
Stoker, James Johnston, 441n
Stokes, G. M., 405n
Stokes, George Gabriel:

communication of vibration, 177n, 180n,
218n

difficulty in the theory of sound, 662n
dynamical theory of diffraction, 249n
effect of wind, 427n, 468n
motion of pendulums, 623n
possible effect of radiation of heat, 14n
some cases of fluid motion, 117n, 184n
Stokes’ theorem in vector analysis, 19n
theories of the internal friction of fluids,

10n, 16n, 589n, 623n
Strasberg, Murray, 26n, 179n, 217n
Stratton, Julius Adams, 39n, 208n
Strouhal, Vincent, 626n
Strutt, John William, see Rayleigh
Strutt, Maximilan Julius Otto, 328n
Sturm, Jacques Charles Francois, 33n
Sullivan, Joseph W., 408n
Sutherland, Louis Carr, 127n, 637n, 638n
Sutherland, William, 591n
Swanson, Carl E., 361n

T
Tamm, Igor, 186n
Tamm, Konrad H., 636n
Tatarski, Valer’ian Il’ich, 515n
Taylor, F. W., 627n
Taylor, Geoffrey Ingram, 589n, 664n
Taylor, Hawley O., 127n
Taylor, Mary, 365n, 367n
Tedrick, Richard N., 439n
Tempest, W., 638n
Temple, George, 91n
ter Haar, D., 31n, 632n
Thiele, R., 314n, 315n
Thiessen, George Jacob, 417n, 453n, 484
Thomasson, Sven-Ingvar, 471n
Thompson, M. C., Jr., 352n
Thompson, Philip A., 638n
Thompson, William, Jr., 234
Thomson, William (Lord Kelvin), 392n
Thuras, A. L., 417n
Tichy, Jiri, 319n
Tickner, J., 284
Tisza, Laszlo, 646n
Titchmarsh, Edward Charles, 89n
Todhunter, Isaac, 164n



Name Index 751

Tolman, Richard Chace, 595n
Tolstoy, Ivan, 537n, 563
Tong, Kin Nee, 181n
Towneley, Richard, 12n
Trendelenberg, Ferdinand, 232n., 269n
Tribus, Myron, 17n
Trilling, Leon, 597n, 600n, 678n
Truesdell, Clifford Ambrose:

Brandes’ Laws of Equilibrium, 12n
Continuum Mechanics, 588n
precise theory of the absorption, 599n
rational fluid mechanics: 1687–1765, 6n,

8n, 11n, 18n
rational mechanics of flexible bodies, 6n,

22n
theory of aerial sound, 6n, 11n, 18n, 27n,

46n, 133n
Tschiegg, Carroll (Carl) Emerson, 33n
Tukey, John Wilder, 100n
Tuma, Josef, 127n
Tuzhilin, A. A., 558n
Twersky, Victor, 490n
Tyler, J. M., 361n, 419
Tyndall, John, 490

U
Uberall Herbert Michael, 539n
Ugincius, Peter, 432n
Ungar, Eric Edward, 142n, 146n, 165n, 166n
Urick, Robert Joseph, 471n

V
Vaisala, Y., 40n
Valley, Shea L., 447
Van Bladel, J., 490n
van der Pol, Balthasar, 544n
Van Dyke, Milton, 213n
Ver, Istvan L., 163n
Vetruvius, 3
von Karman, Theodore, 544n, 606n, 607n,

622n, 695n, 696n

W
Waetzmann, E., 328n
Walkden, F., 707n
Walker, Bruce, 380n
Walker, Robert Lee, 433n, 510n
Wang, Chi-Teh, 164n
Wark, Kenneth, 17n
Warren, A. G., 277n
Warshofsky, Fred, 70n
Waterhouse, Richard Valentine, 342n, 352n,

552n

Watkins, E. W., 627n
Watson, George Neville, 222n, 257n, 271n,

348n, 363n, 547n, 558n, 630n,
660n, 686n, 687n, 688n

Webster, Arthur Gordon, 123n, 413n
Webster, C., 12n
Webster, Don A., 676n
Wegel, R. L., 230n
Weinberg, Steven, 466n
Weinstein (Vainshtein). Lev Albertovich, 582
Weinstein, Marvin Stanley, 469n
Weisbach, Franz, 127n
Wenzel, Alan Richard, 471n
Weston, D. E., 612n
Weyl, Hermann, 338n
Whipple, F. J. W., 451n, 559n
White, DeWayne, 451n
Whiteside, Haven, 5n
Whitham, Gerald B., 431n, 666n, 671n, 689n,

699n, 702n
Whittaker, Edmund Taylor, 222n, 225n, 348n,

688n
Wiener, Francis M., 219n
Wiener, Norbert, 89n, 97–99
Wilcox, Calvin Hayden, 205n
Williams, Arthur Olney, Jr., 244n., 282n
Wilson, Alan Herries, 13n
Wilson, Oscar Bryan, Jr., 636n
Wilson, Wayne D., 33n
Wittig, Larry E., 146n
Wolf, Emil, 249n, 261n, 274n, 280n, 430n
Wood, Alexander, 313n
Wood, David H., 485
Woodson, Herbert Horace, 367n
Worzel, John Lamar, 447
Wright, Wayne Mitchell, 605n., 698n
Wu, Theodore Yao-Tsu, 602n
Wylie, Clarence Raymond, Jr., 181n

Y
Yaspan, Arthur, 481, 524n
Yeager, Ernest Bill, 636n
Yennie, Donald Robert, 136n., 154n
Yih, Chia-Shun, 184n, 589n, 590n
Young, Robert W., 26n, 92n, 310n, 471n
Young, Thomas, 547n
Yousri, S. N., 336n

Z
Zener, Clarence Melvin, 165n
Zwikker, Cornelius, 228n, 314n, 619n
Zwislocki, Jozef John, 315n



Subject Index

A
Abnormal sound, 451–455
Absolute temperature, 13, 30–31
Absorption coefficient

classical, 583
for plane-wave propagation, 581, 668–669
for plane-wave reflection, 124–126,

608–612
at porous wall, 619–620
random incidence, 300, 341
Sabine-Franklin, 301, 316

Absorption cross section, 649
Absorption of sound

in air, 640–641, 651
in boundary layers, 602–612
in narrow tubes, 615–619
by porous materials, 619–620
within room interiors, 651
in seawater, 577–578, 619
as source of heat, 619
at surfaces and walls, 124–130, 298–299
by thermal conduction, 595–597
by vibrational relaxation, 642–643
by viscosity, 595–597
(See also Attenuation; Dissipation)

Acceleration of fluid particle, 8–9
Acoustic approximation, 16
Acoustic compliance, 380
Acoustic-energy corollary

of Burgers’ equation, 685
with gravity included, 39n
for homogeneous medium, 38–39
for inhomogeneous medium, 441
for irrotational isentropic flow, 481
for moving media, 57, 461, 481
with thermal conduction, 601

with vibrational relaxation, 625–626
with viscosity, 601

Acoustic-energy dissipation rate, 625,
653–654

Acoustic-energy flux, 41
(See also Acoustic intensity)

Acoustic fluid velocity, 15
Acoustic-gravity waves, 9, 51, 152, 660n
Acoustic impedance, 368–369

at end of duct, 393–394
Acoustic inertance, 372–373

of duct junction, 378n, 424
estimation of, 392–402
of open-ended duct, 402
of orifice, 389–391
of slit in duct partition, 378n, 421

Acoustic intensity
along ray tube, 456
in conservation laws, 39–40
of plane wave, 41
relation to complex amplitudes, 42
of spherical wave, 44–45
in thermoviscous fluid, 601–602

Acoustic mobility, 369
Acoustic-mobility analogy, 371n
Acoustic-mobility matrix, 370
Acoustic mode of a thermoviscous fluid, 601
Acoustic power (see Power)
Acoustic pressure, 15
Acoustic radar equation, 514–515
Acoustic radiation impedance, 231, 255
Acoustic-radiation resistance, 388
Action variable, 464
Action, wave, 461–465, 486
Adiabatic bulk modulus, 32
Adiabatic compressibility, 32

© Springer Nature Switzerland AG 2019
A. D. Pierce, Acoustics, https://doi.org/10.1007/978-3-030-11214-1

753

https://doi.org/10.1007/978-3-030-11214-1


754 Subject Index

Adiabatic process, 12–13
Adjoint system of equations, 228n
Admissible variation, 225n
Aeolian tones, 626–627, 650
Aeroacoustics, 629–631, 650
Aerodynamic sound, 621, 629–631

Affinities, thermodynamic, 634–635
Age variable, 667–671
Air, properties of, 31–32, 591–592, 637–641
Airy function, 533

asymptotic expressions, 533–535, 546
Fock’s functions, 543
relation to Bessel function, 630

Airy’s differential equation, 544
Alaskan earthquake, 172
Ambient state, 15
American National Standards Institute (ANSI)

absorption of sound, 637n, 638n
band filter sets, 104n
calibration of microphones, 232n
letter symbols, 1n
preferred frequencies, 65n
sound-level meters, 74n, 100n
sound-power levels, 73n
terminology, 1n, 73n

Amplification of sound power
by baffle, 246–247
within ducts and tubes, 365–366, 416–419
by horns, 417–419
by proximity to walls, 241–242

Amplitude, 25
complex, 25
near caustics, 530–540
variation along ray paths, 455–459

Analog method of spectral analysis, 101, 104
Anechoic chamber, 132, 291
Anechoic termination, 132
Angle

of incidence, 120
of refraction, 148–151

Angular frequency, 25
Angular-momentum conservation, 52, 587
Angular velocity, 118, 216
Anomalous zone of audibility, 453
Antilogarithms, 69–71
Antinodes, 138
Aperture, diffraction by, 246–251, 262n, 269n

(See also Orifices)
Architectural acoustics, 292–360
Arete, 441
Array of sources, 196–198
Aspect factor, 518–519
Asymptotic expansions, 212

Airy functions, 533–535

auxiliary Fresnel fucntions, 276
Bessel functions, 257–258, 271
Fock’s functions, 543
matched (see Matched asymptotic

expansions)
Struve functions, 257–258

Atmosphere, sound speed in, 436, 453–454
Atmospheric acoustics, 451–455
Atomic bombs, 681
Atomic mass unit, 31
Attenuation

in air, 642–643
classical, 582–583
coefficient, 583
in ducts, 597–599
nonlinear effects on, 659–667
of N wave, 651–654
by relaxation process, 642–643
of sawtooth, 654–659
in seawater, 691–592
by thermal conduction, 682–683
by viscosity, 682–683

Auditory threshold, 71, 73
Autocorrelation function, 97

frequency, 345–346
spatial, 352–355

Autocovariance, 97
Auxiliary Fresnel functions, 274–275
Averaging time, characteristic, 100n
Avis (proposed unit), 26n
A weighting, 74, 78, 79
Axial quadrupole, 195
Axial ray, 450

B
Babinet’s principle, 269n
Background correction function, 81–83, 107
Background noise, 80
Backscattering

from edge, 574–576
from inhomogeneities, 509–511
from moving target, 524–526
from sphere, 474, 494

Backscattering cross section, 494
Baffle, 246

effect on sound power, 246
Ballistic shocks, 681–691, 694
Bands (see Frequency bands)
Barrier

curved, 581–582
double-edged, 584–585
on ground, 571–572
insertion loss, 569–572
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reciprocity, 229
single-edged, 569–572

Bel (unit), 73
Bell as sound source, 218–219
Bending modulus, 164
Bernoulli’s equation, 373
Bessel functions

asymptotic expressions, 260–261, 271
identities, 257, 636n, 660n, 738
integrals, 257, 628, 646, 669
modified, 674–676
power series, 258, 585
recursion relations, 687n
relation to Airy functions, 630
table, 258

Bessel’s differential equation, 363
Bias in spectral analysis, 100–106
Bioacoustics, 526–530
Bistatic acoustic sounding equation, 516
Bistatic configuration, 513–514
Bistatic cross section, 494
Blade-passage frequency, 629
Blankets, transmission through, 167–168
Blokhintzev invariant, 466–469, 673
Blood

acoustic properties of, 529–530
measurement of flow, 528–529

BLR (bottom-limited ray), 449n
Body force, 8
Body shape constant, 705n
Boltzmann distribution, 632n
Boltzmann’s constant, 31, 632
Boric acid in seawater, 636n
Born approximation, 509–511
Boundary conditions, 115

on displacement, 119–120
at edge of moving fluid, 153
impedance, 122–130
at interfaces, 152
linear acoustics approximation, 118
on normal velocity component, 119–120
no-slip condition, 606
at open ends of ducts, 401–402
for organ pipes, 133, 401–402
on pressure, 152
at pressure-release surface, 126
at rigid surface, 122
on stress, 623
on temperature, 620–621
thin-boundary-layer approximation,

623–625
for unique solution, 211–212

Boundary-layer theory, acoustic, 602–612
Boundary-layer thickness, 603

Boundary-value problems, 203
Boyle’s law, 12, 30
Breathing mode of bell vibrations, 218
Bright spot in shadow of disk, 269n
Brunt-Vaisala frequency, 40n
Bubbles, scattering by, 505
Buffer material for enhanced transmission, 159
Bulk modulus, 32
Bulk viscosity, 633

air, 624
water, 525n

Burgers’ equation, 661–667, 692, 693

C
Calculus of variations, 58, 433–434, 603–604
Calibration of microphones, 232–233
Cauchy’s equation of motion, 587
Cauchy’s stress relation, 586
Cauchy’s theorem for complex variables, 89
Causality, 47, 131–132, 141–142, 198–201
Caustics, 438–441, 530–540, 689n
Central-limit theorem, 345
Channeled ray, 449–450
Characteristic curves, 642
Characteristic impedance, 23, 123
Characteristic single-edge diffraction pattern,

278–281, 571, 574
Cherenkov radiation, 186n
Circuit analogs, 371–373, 381, 384
Circuit-theory principles, 371
Circular disk

diffraction by, 249n, 269n
radiation from, 219–224, 231
scattering by, 494–496

Circular piston with baffle, 252–254
far-field radiation, 261–263
field on axis, 268–269
pressure on surface, 252–254
radiation impedance, 255–256
radiation pattern, 262–263
transient solution, 264–268
transition to the far field, 271–283

Clamped electric impedance, 230
Clebsch potentials, 463n
Coalescence of shocks, 675
Cocktail party effect, 319–320, 359
Coefficient of nonlinearity, 639
Coincidence frequency, 145–146
Complex elastic modulus, 165–166
Complex number representation, 26–27
Compliance, acoustic, 380
Compressibility, 32, 643n
Compressional wave, 25



756 Subject Index

Conservation
of energy: acoustic, 39
in fluids, 13, 40–42, 587, 661
of mass, 6–8
of momentum, 8
in nonlinear propagation, 659, 661, 694

on reflection, 150–151
Consonances, musical, 3, 65–68
Constitutive relations, 588–591
Constraints, effect of, on inertance, 394–395
Constriction in duct, 378n, 375, 421
Contiguous frequency bands, 62
Continuum-mechanical model, 9–10
Control volume, 44, 646
Convective derivative, 8
Convergence zone (see Caustics)
Coupled rooms, 321–328
Creeping waves, 540–550, 580, 581
Cross-over circuitry, 417
Cross section

absorption, 649
backscattering, 494
bistatic, 494
differential, 494
per unit volume, 516

Curvature
gaussian, 476
principal radii, 476–477
tensor, 477

Curved surface, reflection from, 474–480, 483
Curvilinear coordinates, 200n
Cutoff frequency

for guided modes, 364
in horns, 416
Schroeder, 339–340

Cylinder, sound generated by flow past a,
626–627

Cylindrical coordinates, 363–364
Cylindrical source, 683
Cylindrical spreading, 243, 685

D
Damping

flow resistance, 167–168
loss factor, 165–167
in transition to steady state, 136–139

Dash pot in mechanical systems, 111, 224–225
Decade (of frequency), 65
Decay time, characteristic, 305
Decibel, 68–74

history of, 71–73
Decibel-addition function, 78–79, 107
Degrees of freedom (dof), 31–32, 635–636

Delta function, 89–92, 110, 186–187
Density

directional energy, 298
energy, 39–44
mass, 6

Diaphragm
across duct, 170, 375
of transducer, 230
(See also Piston)

Diatomic molecules, 30
Differential element.

area, 50
solid angle, 50
(See also Curvilinear coordinates)

Diffracted ray, 435, 565–568
Diffraction

by aperture, 246–251, 261n, 269n
by curved surface, 464, 536–537
by disk, 223n, 253n
at edge, 536–539
Fraunhofer, 261n
Fresnel, 261n
Fresnel-Kirchhoff theory, 246–251
geometrical theory of, 435, 559–568
multiple edges, 584–585
by orifices, 391
by sphere, 500–501, 566, 607–608
by wedge, 550–553

Diffraction boundary layer, 571
Diffraction integral, 274–275, 564
Diffraction pattern, 278–281
Diffuse field, 306, 354
Diffusion equation

for oscillations in thin tubes, 622–623
relation to Burgers’ equation, 692
relation to Mendousse-Burgers equation,

667
for thermal conduction, 601
for vorticity, 600–601

Dilatational wave speed, 149, 150
Dipole, 191–198

in duct, 419
near wall, 242
radiation pattern, 195
small oscillating body, 126–127
transversely oscillating disk, 219–224
transversely vibrating sphere, 180–184

Dipole-moment vector, 211, 216
Dirac delta function, 89–91, 110, 186–187
Directional energy density, 306
Directivity factor, 310
Directivity gain, 519n
Dirichlet conditions, 89
Disk (see Circular disk)
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Dispersion relation, 38, 625
acoustic mode, 601
in derivation of approximate wave

equations, 659–660
entropy mode, 601–602
Kirchhoff’s, 612
with relaxation, 664–667, 694
with thermal conduction, 38, 664–667
with viscosity, 57–58, 661–662
vorticity mode, 601
for wave in duct, 625, 627

Dissipation
in Burgers’ equation, 692
in energy corollary, 594–595
at shock front, 647
by thermal conduction, 594–595
in thin tubes, 612–320
by vibrational relaxation, 625–627
by viscosity, 594–595

Dissipation function, 225n
Divergence operator, 7–8, 228n
Divergence theorem, 7n
Doppler effect, 520–530
Doppler-shift velocimeters, 526–530
Duct(s)

absorption at walls, 624–631
circular, 363–364
with discontinuous cross section, 378
guided modes in, 361–367
rectangular, 329–330
resonances in, 132–134
with right-angled bend, 375n
side branch in, 382–384, 421
transient pulse propagation, 693

E
Earth-flattening approximation, 548n
Earthquake, radiation from, 172
Eccentricity of ellipse, 391
Echoes

from curved surfaces, 478–479
from edges, 574–576
from inhomogeneities, 524–526
from interfaces, 603
from spheres, 479–480, 524

Echosonde equation, 516–520
Eddies

behind cylinders, 665
in flow past objects, 223n

Edge
backscattering from, 574–576
diffraction at, 553–559
field at, 516

radiation from source on, 536–538
singularities at, 522n

Eigenfunctions, 137, 329–330
Eigenvalues, 136, 329
Eikonal equation, 430
Elastic modulus, 149, 150

complex, 165–166
Electracoustic efficiency, 255
Electrolyte solutions, 636n
Elliptical duct, 618n
Elliptical integrals, 253, 391n
Elliptical orifice, 391n
Enclosures, 321–328
End corrections, 399–400
Energy

conservation of (see Conservation of
energy)

kinetic-energy density, 41
potential-energy density, 41

Energy equation of fluid dynamics, 587
Energy flux (see Acoustic intensity)
Energy reflection coefficient, 125
Ensemble, 95–97
Entrained mass

for baffled piston, 255
for freely suspended disk, 232
in orifice, 391
for oscillating sphere, 183

Entrained-mass tensor, 492
Entropy

conservation of, 12
discontinuity at shock, 657
for fluid with internal degrees of freedom,

665
for frozen state, 640
for ideal gas, 51
irreversible production of, 595n
mode in thermoviscous flow, 613
relation to other thermodynamic variables,

617
Entropy-balance equation, 635
Equal-area rule, 649–651, 675–676
Equal temperament, 67
Equipartition theorem, 30n
Equivalent area of open windows, 301, 324
Ergodic process, 95
Error function, 108
Erythrocytes as scatterers, 529
Euler-Bernoulli plate, 164
Eulerian description, 6n
Euler-Lagrange equation, 433–434
Euler-Mascheroni constant, 348
Euler’s equation of motion for a fluid, 8–11
Euler’s formula, 26
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Euler’s velocity equation, 118n
Evanescent mode, 364–365
Exponential integral, 288
Exposure, 88, 91–92

F
Fan noise, 419
Fermat’s principle, 427–435, 548
F function, Whitham, 702, 703, 706, 708
Field, acoustic, 15
Fifth (musical interval), 67
Filters

acoustic, 403–410
band pass, 80, 98–99, 101
class III, 104, 105
ideal, 111
linear, 75–77, 92
transfer function, 77
transmission loss, 104–105

Flanged opening
of duct, 397–399
of Helmholtz resonator, 400–401

Flare constant (horns), 415
Flexural-wave speed, 140, 141, 147
Flexural waves, radiation by, 140–148

subsonic, 144–145
supersonic, 140, 141

Flow resistivity, 167
Fluid particle, 8
Focusing

by ultrasonic lens, 515
by zone plate, 286
(See also Caustics)

Force
caused by viscosity, 604–614
on disk, 211, 612
generalized, 225n
as source of sound, 180–183
on sphere, 179–180, 632
(See also Gutin’s principle)

Fourier coefficient, 83, 84
Fourier integral, 90–91
Fourier-Kirchhoff equation, 37, 38, 590
Fourier-Kirchhoff-Neumann energy equation,

588
Fourier series, 82–85
Fourier’s law, 14, 590
Fourier transform, 88–89
Fourth (musical interval), 67
Fraunhofer diffraction, 254n
Free-space Green’s function, 189
Frequencies, 26

preferred, 65

Frequency bands
center frequency, 64
compromised, 65
contiguous, 62
octave, 64–65
partitioning, 62–64
proportional, 64–68
third octave, 64
(See also Parseval’s theorem)

Frequency response, 94, 99
Frequency weighting, 74–77
Fresnel diffraction, 261n
Fresnel functions, auxiliary, 274, 276
Fresnel integrals, 275
Fresnel-Kirchhoff theory of diffraction,

249–251
Fresnel number, 280, 570–572, 583
Fresnel zones, 280–281
Fubini-Ghiron solution, 660, 687
Fundamental mode, 364

G
Gain, directivity, 519n
Galilean transformation, 58, 523–524
Gases

bulk viscosity, 633
entropy, 1
gas constant, 31
ideal, 14, 30, 51
internal degrees of freedom, 682–683
molecular weight, 31
monatomic, 597
sound speed in, 30–31
specific-heat ratio, 30

Gaussian curvature, 476n
Gaussian process, 345
Gaussian statistics, 102
Gauss’ theorem, 7, 10
Generalized functions, 90
Generation of sound

by flexural waves, 141
by fluid flow, 588
by temperature oscillations, 607
by vibrating bodies, 211–219

Geodesics, 548
Geometrical acoustics, 427–487
Geometrical theory of diffraction, 435
Geometric mean, 64
Gradient operator, 10, 223n
Gravity

in acoustic equations, 39n, 51
in fluid-dynamic equations, 51
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influence on boundary conditions, 149
reasons for neglect of, 9n

Green’s functions
in boundary-value problems, 193–203,

235–236
in constrained environment, 225, 249, 279
differential equation for, 183, 184
for Helmholtz equation, 181
for impulsive source, 185
reciprocity relation, 184, 223
singularity near source, 186
for wave equation, 186

Green’s law, 459n
Ground, impedance of, 168
Group velocity, 143n, 615
Guided waves, 361–367

(See also Duct; Horns)
Gutin’s principle, 626–627, 650

H
Hamiltonian, 464, 632n
Hankel function, 289, 497
Harmonic oscillator
Harmonics

in Fourier series, 82–85
in helicopter noise, 627–631
in horns, 402, 694
nonlinear generation of, 658–662
(See Oscillator, harmonic)

Heat conduction, effect of, on sound speed, 13,
14, 36–37

Heat flux, 14, 588
Heating caused by sound absorption, 630
Heaviside unit step function, 265
Helicopter rotor noise, 627–631, 650
Helium, acoustic properties of, 51
Helmholtz equation, 28
Helmholtz integral, 255, 287
Helmholtz resonator, 372–377

analog circuit for, 373
with baffled opening, 380
as filter, 394–401
impedance of, 372
inertance of neck, 373–374
as muffler, 394–401
reactive, 397–398
scattering by, 477
as side branch, 375–376
straight-through, 400–401
transmission matrix, 395–397

Hertz (unit), 26
Highway noise, 107
Hilbert transform, 155, 156, 471, 539

Homogeneous medium, 15, 58
Hoods, acoustic, 324n
Horns

with ambient flow, 510–511
catenoidal, 408
conical, 406
cutoff frequency, 408
exponential, 408–409
nonlinear distortion, 409, 659
Salmon’s family of, 406–407
semi-infinite model, 407–408
sinusoidal, 406n
throat impedance of, 407

Hugoniot diagram, 664n
Humidity, effects of, on sound, 32, 639, 652
Huygens’ principle, 201–202, 429
Hydrogen, influence of, on source power,

236
Hydrostatic relations, 9, 152

I
Ideal gas, 14, 30, 51
Images

method of, 118–119, 130, 237, 240, 242,
276, 279, 333, 537, 538, 540–542

of source: near corner, 237
in duct, 238
near pressure-release surface, 319
near rigid wall, 277
in room, 238
in wedge region, 554

Impedance, 120–127
acoustic, 360–361, 374
characteristic, 23, 121
mechanical, 220
slab, 157–159
specific, 121
at throat of horn, 407, 408
of traveling plane wave, 128, 397
tube, 128–137

Impedance-translation theorem, 158
Incoherence, mutual, 81
Incoherent scattering, 515–516
Incoherent sources, 81
Incompressible flow

in inner region, 229
near baffled piston, 248–253
near disk, 235–240
near oscillating sphere, 173–176
through orifice, 400–401
(See also Acoustic inertance)

Index of refraction, 430n
Inertance (See Acoustic inertance)
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Infrasound, 1, 9
from Alaskan earthquake, 172
vertical propagation in atmosphere, 52

Inhomogeneities, scattering by, 497–500
Inhomogeneous media, 430, 433–437

energy-conservation corollary, 54, 417
reciprocity theorem for, 222
wave equation for, 55–56, 485
(See also Moving media; Ray paths;

Scattering)
Inhomogeneous plane wave, 145
Initial-value problems

requirements for unique solution, 200–201
solution for one-dimensional propagation,

54
Inner expansion (see Matched asymptotic

expansions)
Insertion loss

of barriers, 569–572
of mufflers, 404–405

Instantaneous entropy function, 634–635
Institute of Electric and Electronics Engineers

(IEEE), 138n, 476n, 494n
Integer-decibel approximation, 79, 80
Integrodifferential equation for transient pulse

in absorbing duct, 710
Intensity

acoustic (see Acoustic intensity)
of radiation, 298n

Intensity level, 73
Interface, 114, 123

between air and water, 153–154
between different fluids, 148–153
between fluid and elastic solid, 146
between moving fluids, 114n, 160, 497
point source above, 469–474
(See also Boundary conditions; Reflection;

Transmission)
Internal energy

of ideal gas, 31n
rotational, 631
in second law of thermodynamics, 14
translational, 631–634
vibrational, 631

Internal variables
for air, 631–632
for seawater, 635n

International Commission on Pure and Applied
Physics, 13n

Inverse transform, 89
Ionosphere, propagation to, 172
Irreversible thermodynamics, 594

(See also Entropy; Relaxation processes)
Irrotational flow, 20, 393–394

Isentropic flows, 463n, 481
Isothermal atmosphere, propagation in, 52
Isothermal sound speed, 37–39

J
Jet, point source in, 467
Just intonation, 67

K
Keller’s law of edge diffraction, 565
Key note, 67
Kinetic energy, 41

principle of minimum, 392–393
Kinetic theory of gases, 31
Kirchhoff approximation, 240–245

for orifice transmission, 378–379
relation to rigorous diffraction theory, 244,

556
Kirchhoff-Helmholtz integral theorem,

208–211
in derivation of Rayleigh integral, 240–241
extension to include viscosity, 590, 593
integral equation for surface pressures, 213
multipole expansion of, 213–214, 622

Kirchhoff’s dispersion relation, 599
Kirchhoff’s laws of circuit analysis, 391

L
Lagrange’s equations, 225n
Lagrangian, 433n
Lagrangian description, 6
Laplace’s equation, 188, 193n, 197, 215,

221–223
Laplacian

curvilinear coordinates, 200
cylindrical coordinates, 355
oblate-spheroidal coordinates, 221
rectangular coordinates, 18
spherical coordinates, 200

Lateral wave, 469n
Layered media, 142–147

(See also Stratified media)
Least time, principle of, 432n
Le Châtelier’s principle, 16n
Legendre functions, 222n
Letter symbols, standard, 1n
Levels, 68

combining of, 77–80
exposure, 92
intensity, 73
power, 73
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sound, 74
sound-pressure, 68–69
spectrum, 85

Lift and drag forces on helicopter blades,
626–627

Lift contributions to sonic boom, 707n, 712
Lift-to-drag ratio, 630
Limiting ray, 489, 540
Limp plate, 163
Linear acoustic equations, 16–18, 221–222

constant-frequency disturbance, 28
homogeneous medium, 15
inhomogeneous medium, 248
with internal relaxation, 624
moving media, 460–461
in one-dimension, 21
with viscosity and thermal conduction, 593
(See also Wave equation(s))

Linear operator, 76, 92, 224
Liquids, properties of, 32–36, 656

(See also Seawater, properties of; Water,
properties of)

Locally reacting surface, 126–127
Local spatial average, 293
Logarithms, 68–69
Longitudinal waves, 25
Loss factor, 165–166
Loudspeakers, 231, 511

(See also Transducers)
Lumped-parameter elements, 367–373

M
Mach number, 698, 699, 707
Magnesium sulfate in seawater, 636n
Magnetic-polarizability tensor, 492n
Major interval (music), 67, 68
Mass-conservation equation, 8
Mass-law transmission loss, 163–164
Mass, point source of, 187–188
Matched asymptotic expansions, 213

radiation
from baffled pistons, 248
from vibrating bodies, 211–219

in scattering, 492, 499, 505
transmission

through duct junctions, 480
through orifices, 386–387

Material description, 6n
Materials, acoustic, 130, 146
Maxwell relations (thermodynamics), 17n, 33n
Maxwell’s demon, 322
Maxwell’s equations, 39n
Mean free path, 303–305

Measuring amplifier, 95, 100
Mechanical analogs, 381, 420
Medium, 15
Membrane, 170, 174, 421
Mendousse-Burgers equation, 685
Mercet’s principle, 35
Method of images (see Images, method of)
Microphone, 231–233

(See also Transducers)
Microphone response, 231, 232
Mile of standard cable, 72
Mobility, acoustic, 369
Mobility matrix, 225

acoustic, 370
Modal density, 337–339
Modal integrals, 342–343
Modal specific impedance, 366
Mode

fundamental, 364
guided, 361–367
natural, in tube, 136
room, 328
of thermoviscous flow

acoustic, 597, 601
entropy, 601–602
vorticity, 597, 600–601

Modified Bessel function, 686
Molecular vibrations, 637, 638, 641, 647
Molecular weight, 31
Molecules

in air, 31
dissolved in seawater, 620

Momentum, conservation of, 8
Monopole, 184–190
Monopole amplitude, 184, 189
Monopole function, 211
Monostatic configuration, 510–511
Moving coordinate system, 58, 535
Moving media

energy corollaries, 58, 486
Galilean transformation, 58, 523
linear acoustic equations, 460–461
ray acoustics of, 427–432
refraction in, 441–446
(See also Blokhintzev invariant; Doppler

effect; Wave action)
Moving source, 521–522
Moving targets, 524–526
Muddy water, 53
Mufflers

commercial, 408–410
dissipative, 405–406
expansion chamber, 407
Helmholtz resonator, 407
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Multifrequency sounds, 62, 109
Multilayer transmission, 156–159
Multipole expansions

array of point sources, 196–198
Kirchhoff-Helmholtz integral, 210–211
small vibrating body, 213, 214
source on rigid wall, 354–355

Musical notes, 26, 66–67

N
Natural frequencies, 136

(See also Resonance)
Navier-Stokes equation, 590
Navier-Stokes-Fourier model, 591
Near field

of baffled piston, 254–255, 262
of point source, 180–183, 242
(See also Matched asymptotic expansions)

Neck length, effective, 380, 400–401
Neper (unit), 72
Network theory, 370, 371
Newtonian fluid, 589
Noise reduction, 316

between adjacent rooms, 326
by decrease of reverberation, 317

Nonlinear acoustics, 653–713
Nonlinear distortion

asymptotic pulse form, 694–695
in horns, 417
of N waves, 668–671
of pulses, 676–678
of sinusoidal wave trains, 661, 668, 676,

684
Nonlinearity

coefficient of, 676–677, 686
parameter of, 656n, 677, 708

Nonlinear propagation, parametric description
of, 676, 679

Nonlinear terms
criteria for neglect, 16
incorporation into linear equations, 660

Normal-incidence surface impedance, 126
Norris-Eyring reverberation time, 306–307
Nuclear explosions, 451, 453
N waves

as asymptotic limit, 694–695
dissipation of, 670–671
energy in, 63–64, 693
Fourier spectrum, 122
in inhomogeneous media, 695–698
nonlinear propagation, 668–669
in sonic boom theory, 705
spherical-wave propagation, 696–698

O
Oblate-spheroidal coordinates, 220–221, 389,

390
Octave, 64
Old-age limit of waveforms, 687–689
Omnidirectional source, 106, 177
One-port, 371
Open-circuit acoustic impedance, 230
Open space, uniqueness theorem for,

207
Organ pipes, 133
Orifices

acoustic inertance of, 389–391
diffraction by, 391
effect on transmission loss, 398
elliptical, 391n
entrained mass in, 488
in plate of finite thickness, 399–400
with porous blanket, 425
transmission through, 386–389

Orthogonal curvilinear coordinates,
200n

Orthogonality of eigenfunctions, 331
Orthonormal set, 331
Oscillator, harmonic, 111, 134n

as mechanical analog, 381–382
radiation by, 253
response to random force, 111
scattering by, 580

Outer expansion (see Matched asymptotic
expansions)

Outgoing wave, selection of, 47, 143–144

P
Parabolic equation, 581
Parameter of nonlinearity, 656n, 677
Parseval’s theorem

for convolution of two functions, 110
Fourier series, 84
Fourier transforms, 88
multifrequency sounds, 62

Particles, fluid, 8
motion above oscillating plate, 168
motion in plane wave, 24–25

Partitions between rooms, 304
Passband of filter, 84, 94
Passive surface, 125
Pendulum with time-varying length, 464
Perforations

in muffler pipes, 408–409
in thick slabs, 620

Period, wave, 26
Phase constant, 25
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Phase shift
at caustics, 538–539
in reflection, 143

Phase space, 464
Phase velocity

of flexural waves, 146
in medium with relaxation process,

643–644, 647
Piano keyboard, 67–68
Pi (π) network, 386
Pink noise, 87
Piston

circular, with baffle (see Circular piston
with baffle)

at end of tube, 130–139
rectangular, 288
in rigid wall, 237–238

(See also Circular piston with baffle)
Piston impedance functions, 259
Plancherel’s theorem, 89n
Planck’s constant, 631n
Plane wave, 23

polarization relations, 29
(See also Dispersion relation)

Plane-wave mode in ducts, 367
Plates

coincidence frequency for, 145–146
Euler-Bernoulli model, 164
flexural waves in, 140
with internal damping, 165
radiation from, 160–168

Point energy source, 698
Point force, radiation from, 192–193
Point mass source, 187–188
Point source

mass efflux from, 551
near field of, 186
power radiation, 1184
term in Helmholtz equation, 185
term in wave equation, 186
(See also Green’s functions)

Poiseuille flow, 617n
Poisson distribution, 347–349
Poisson’s equation, 185n
Poisson’s ratio, 146, 149, 164
Poisson’s theorem, 198–201
Polarization relations, 598–599

(See also Mode, of thermoviscous flow)
Porous blanket, 167–168, 375, 425
Porous media, 223, 603
Potential, velocity, 20–21
Power

effect of nearby surfaces on, 244–246
frequency partitioning of, 63–64

measurement of, 318–319
radiated

by dipole, 229
by monopole, 184, 336
by quadrupoles, 195
by spheres, 179, 182

relation to radiation pattern, 50–51
of source in room, 349
surface integral for, 45

Power injection in room, 336
Power levels, 73
Poynting’s theorem, 39
Prandtl number, 592, 596
Precursor

refraction arrival, 434
in transient reflection, 154–155

Pressure, 9
acoustic, 15
ambient, 15
atmospheric, 32, 33, 38
decrease of, with increasing height, 39n
hydrostatic, 9
level, sound-pressure, 68–69
reference, 68, 73
relation to density, 11–15
thermodynamic, 593
translational, 617

Pressure node in traveling wave, 24
Pressure-release surface, 126, 133
Principal value of integral, 155
Probability density function, 343–344
Propagation, 3
Pulse-echo sounding, 507–509

Q
Q (quality factor), 138–139
Quadrupoles, 193–196

examples of, 193–196, 217
radiation patterns, 195
terms in multipole expansions, 197, 198

R
Radar equation, 514n
Radar reflectivity, 517n
Radar storm-detection equation, 517n
Radiation condition, 204–207
Radiation impedance

acoustic, 231, 255
of baffled circular piston, 264–268
mechanical, 257, 259
specific, 147–148
of surface with flexural vibrations, 124
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Radiation pattern, 50
of baffled circular piston, 264–268
of quadrupole sources, 193

Radiation pressure, 463n
Radiation shape factors, 309
Radiative heat transfer, 298n
Radii of curvature

average horizontal velocity, 449, 451
curvature of, 437–439
differential equations for, 432, 499
diffracted, 435, 565
integrals for, 446–448

Rayleigh dissipation function, 225n
Rayleigh integral, 246–251, 261, 268, 280
Rayleigh scattering, 213, 490, 497
Rayleigh’s lower-bound theorem, 396, 398,

399
Rayleigh’s principle, 60
Rayleigh’s theorem for Fourier transforms, 88
Rayleigh wave, 149n
Ray paths, 284, 419–423
Ray shedding by creeping wave, 549–550
Ray strip, 547, 738
Ray-tracing equations, 431, 442, 443, 481,

548
Ray tube, 457, 459

energy conservation along, 458–459
wave action conservation along, 465

Reactance (see Impedance)
Reciprocity principle, 225, 226, 228

for acoustic-mobility matrix, 370
applications of, 227, 230, 342
for circuits, 226
for Green’s function, 228–229
for transducers, 229–233
for transmission loss, 321
for transmission matrix, 403

Rectilinear propagation, law, 435
Red cells as scatterers, 529
Reflection, 115

at caustic surface, 530–540
coefficiet, 126–127
from elastic solid, 149n
at ends of tubes, 137–139
from interface, 156–159
interference with direct wave, 148, 155
from locally reacting surface, 126–127
for multilayered medium, 156–159
from pressure-release surface, 127, 134
from rigid surface, 124–126
thermoviscous effects on, 613
from thin slabs, 160–163
transient, 154–156

Refracted-surface-reflected (RSR), 449n

Refraction
at interfaces, 149, 151
Snell’s law, 151
by sound-speed gradients, 442
by wind-speed gradients, 444–446

Refraction arrival, 434, 435
Relative humidity, 52, 639
Relative response functions, 75
Relaxation equations, 636, 637
Relaxation frequencies

for air, 637, 638
for seawater, 644n

Relaxation processes, 631
of dissolved salts, 636n
of molecular vibrations, 631–633
structural, 634n

Relaxation time, 637
(See also Relaxation frequencies)

Remote sensing, 526n
Residue series, 544–546
Resonance, 134

in horns, 414, 417
in open-ended ducts, 133, 402
in oscillator, 111
in rooms, 335
in tubes, 132–134

Resonance frequency, 136
Resonance peak, 138, 139
Resonant scattering, 502–506
Resonator (see Helmholtz resonator)
Retarded time, 132, 178
Reverberant-field model, 292–293
Reverberation chamber, 291, 319
Reverberation time, 295

effect of dissipation within interior,
614

measurement of, 295, 316, 347
Norris-Eyring, 306–308
optimum, 314–316
rooms with asymmetric absorption,

308–310
Sabine, 296
Sabine-Franklin, 301

Reynolds number, 626, 650
Reynolds’ transport theorem, 11
Riemann-Stieltjes integral in sonic boom

theory, 698
Rigid body, oscillating, 180–182
Rise times of shocks, 680–681
Room acoustics, 291–357
Room constant, 310–313
Room mode, 328, 329
Rotating diffusers, 317, 319
Running time average, 95, 110, 293
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S
Sabin (unit), 294
Saddle point method, 533
Salinity, 13n, 33, 591
Salts in seawater, 635n
Saturation in nonlinear propagation, 676, 679
Sawtooth waveforms, 110, 671–676, 687–688
Scattering

by bubbles, 502–505
by disk, 494, 496
effect of inertia, 501–502
effect of surface tension, 505n
effect of thermal conduction, 504n
effect of viscosity, 493n
by Helmholtz resonator, 503, 505
by inhomogeneities in medium, 497–500
by moving body, 521–522
by red cells in blood, 529
resonant, 502–506
by sphere, 493, 496
by spheroids, 493
by surface inhomogeneities, 423
by turbulence, 510n, 523

Scattering cross section, 494–496
Scattering volume, 511–514
Schmidt orthogonalization process, 331
Schottky’s law of low-frequency reception,

231
Schroeder cutoff frequency, 339–340
Schroeder’s rule, 340
Schwarz-Christoffel transformation, 378n, 422
Schwarz inequality, 103n
Seawater, properties of, 33, 35, 591, 635, 638,

640
Second law of thermodynamics, 13n, 17n, 664,

666
Seismology of the atmosphere, 451
Sensation unit, 72
Separation constant, 329
Separation of variables method, 362
Shadow zone, 489, 540–550

behind curved body, 548
caused by intervening wedge, 550–553
external to main beam, 276–277
limiting ray for, 540
on nonilluminated side of caustic, 532
in stratified medium, 541–544
(See also Creeping waves; Diffraction)

Shear, rate of, 589
Shear stresses, 587
Shear-wave speed, 149
Shocks

coalescence of, 692
discontinuities at, 663, 664

dissipation at, 668–671
equal-area rule for, 666–668, 692
formation of, 667, 672
location of, 663, 666, 667
Rankine-Hugoniot relations for, 662–665
relaxation effects on, 681–684
speed of, 666
thicknesses, 680–681
(See also Nonlinear distortion; Sonic

booms)
Signal processing, 100, 102, 104
Similitude, 267, 626
Simple wave, 654n
Skip distance, 451, 454
Slab, transmission and reflection by,

160–164
Snell’s law, 151
SOFAR channel, 450, 452
Solid angle, 450, 452
Solid materials, properties of, 150
Sommerfeld radiation condition, 204–206
Sonic booms, 56, 107, 174, 698
Sonorous-line model, 18, 19, 53
Sound exposure, 88, 91–92
Sound level, 74
Sound-level meter

averaging time, 100n
dynamic characteristics of, 100n
frequency weightings, 74–77

Sound navigation and ranging (SONAR),
508

Sound-pressure level, 68–69
Source strength, 184, 211
Spark as sound source, 95, 698
Specific acoustic impedance, 124
Specific flow resistance, 167, 172
Specific heat coefficients, 12, 17, 635

for frozen state, 640
for internal degrees of freedom, 682
ratio of, 12, 647
for solids, 149

Specific volume, 12, 13, 41
Spectral density, 85

estimation of, 100
Speed of sound, 9, 22, 30

for air, 30–31
in blood, 528
effective, 446, 454
effect of water vapor, 32, 639, 646
for gases, 30–32
isothermal, 37
Laplace’s theory, 12–13
for liquids, 32
measurement of, 30, 34
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Speed of sound (cont.)
profile for atmosphere, 446, 451
profile for ocean, 449
for seawater, 36
for water, 33, 38

Sphere
creeping wave on, 547
diffraction by, 489, 574
radially oscillating, 177–179
reflection from, 479
scattering by, 494, 497, 499
transversely oscillating, 180–182, 622–623

Spherical aberration, 487
Spherical coordinates, 46, 49

laplacian, 200
Spherical mean, 199
Spherical spreading, 45, 243
Spherical waves, 44–51

nonlinear propagation of, 676
Spheroidal coordinates, 220
Spinning modes, 419
Square wave, 107
Standing wave, 52

outside wall, 126
in tube, 127

Stationary process, 344
Statistical room acoustics, 352
Statistical thermodynamics, 632
Steady sound, 84
Steepening of waveforms, 657–658
Steepest descents method, 533
Stochastic process, 97
Stokes’ flow, 624, 646
Stokes’ theorem, 20n
Stratified media, 446–455
Stress, average normal, 589, 633
Stress tensor, 585–587
String, vibrating, 18, 140n
Strouhal number, 626, 627
Structural relaxation, 634n
Structure factor of porous material, 619n
Struve functions

asymptotic formulas, 251
integral expressions, 287
power-series expansion, 258

Superposition principle, 23, 125, 190
Supersonic airplane, 707
Supersonic projectile, 666n, 671n, 699n
Surface forces, 8, 586–588, 604
Surface Helmholtz integral equation, 210n
Surface-limited ray, 449n
Surface tension in bubbles, 505n
Surface wave, 171, 471n
Sutherland’s formula for viscosity, 591

T
Target strength, 494, 495n, 508, 576, 577, 584
Temperament, musical, 65
Temperature

absolute, 13, 30, 645
characteristic, 631, 633
fluctuations in sound wave, 53
for molecular vibrations, 638

Terminology, standard, 1n, 73n
Thermal conduction

cause of absorption, 595–597
diffusion equation, 601
effect on sound speed, 37–39
in entropy mode, 602
in scattering by bubbles, 504

Thermal conductivity
of air, 38, 591
of solids, 591–592
of water, 591–592

Thermal-diffusion equation, 14n, 601
Thermal expansion, coefficient of, 17, 33, 593
Thermodynamic identities, 17, 36, 593, 637
Theta function, 688n
Thin-plate model, 172
Three-layered medium, 158–159
Threshold

of audibility, 70, 75, 358
of feeling, 70, 71

Time average of a product, 27
Trace velocity, 141–143, 148, 151, 152, 159,

161, 164, 175, 364, 690, 691
Trace-velocity matching principle, 141–145,

148, 151, 156, 158, 434, 446, 449,
526, 608, 700

Transducers
electroacoustic efficiency of, 255
as loudspeakers, 231–233, 239, 255, 286,

511
matrix description, 230
as microphones, 229, 231–233, 239, 511,

512
reciprocal, 230–233, 239, 512, 514, 519,

577
in scattering experiments, 511–514

Transfer functions, 77, 92–95, 104, 111
Transient waves

diffracted by wedge, 489, 563
Fourier integral representation, 91
from piston in tube, 130–139, 555
from piston in wall, 264–268
reflection at interface, 154
sound-exposure, 91–92
from transversely oscillating sphere,

235–236
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Transmission
random incidence, 359
through plates, 159n, 160–168
through porous blankets, 160–168
through walls, 321n, 322

Transmission coefficient, 154, 160, 162, 383,
472

Transmission loss, 104, 105, 142n, 160, 162,
163, 165, 166, 168, 172, 175, 310n,
321, 326, 327, 358–360, 405, 406,
425, 650, 741

Transmission matrix, 403–404
Transmission plate, 159n, 160–168, 171
Transmission unit (decibel), 72n, 73
Transport theorem, 11n, 52
Transversely oscillating body, radiation from

disk, 219–224, 246
sphere, 180–184, 211, 217

Transverse wave, 25, 141, 149
Turning point of ray

field near (for guided wave), 537–538
location of, 447, 448

Two-ports
continuous-pressure, 373, 384, 420, 730
continuous-volume-velocity, 371–373, 380,

381, 392, 420

U
Ultrasound, 1, 469n, 486, 526, 529n
Uniqueness of solutions, 198–207
Unit area acoustic impedance, 123
Unit impulse (see Dirac delta function)
Unit impulse response function, 93n
Universal gas constant, 31

V
van der Pol-Bremmer diffraction formula, 544
Vapor pressure of water, 52, 640
Variance in signal processing, 104
Variational calculus, 433n, 435n
Variation of parameters, method of, 181n
Vector identities, 39, 53, 208, 217, 227, 332,

394, 431, 462, 608, 621
Velocimeters, Doppler-shift, 526–530
Velocity potential, 16, 20–21, 47, 57, 59, 172,

181, 183, 184, 219, 223, 387, 392
Vibrational relaxation, 642, 645, 647, 652, 679,

683, 712
Vibrations

molecular, 633, 637, 638, 641, 647
radiation, damping by, 177

Virtual-mass tensor, 492n

Viscosity
of air, 591–592
artificial, 56
in boundary layers, 116n, 649
bulk, 590n, 599n, 633–635n, 638n, 642,

646n, 652, 682, 683
effect on radiation, 620–631
effect on reflection, 608–612
effect on scattering, 493n
Sutherland’s formula, 591n
of water, 592

Viscous boundary layers, 116n, 649
Viscous flow in tubes, 617–619
Viscous forces, sound generation by, 620–631,

649–650
Voice, acoustic power of, 109
Volume velocity, 229, 368, 369, 371, 372,

375–384, 386–388, 392, 393, 396,
397, 401–404, 406, 408, 410, 413,
424, 505, 512, 618, 619

von Karman’s acoustic analogy, 700n
von Karman vortex street, 627
Vortex sheet, 119n
Vortex street, 627
Vorticity, 20, 25, 597–603, 605–607, 622, 649
Vorticity mode, 600–603, 605–607, 620, 622,

740

W
Wakes

absence at acoustic frequencies, 223
vortex street, 626n, 627

Wall
boundary layer near, 611
piston in, 262, 263, 266, 267, 397, 489
source near, 243, 244
transmission through, 322
vibrating, 260

Water-air interface, 153–154
Water, properties of, 36, 591–592
Water vapor

effect on relaxation frequencies, 639, 646
effect on sound speed, 645, 646

Wave, 3
Wave action, 461–466, 485
Wave equation(s)

for acoustic-gravity waves, 51, 151
derived from dispersion relations, 676
Helmholtz equation, 28, 455
for horns, 413–414
for inhomogeneous media, 187, 190, 193,

248, 497–500, 699, 700
with internal relaxation, 681
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Wave equation(s) (cont.)
for moving media, 460–461
with nonlinear terms, 672–678
with thermal conduction, 37
for traveling waves, 26
with viscosity, 56–57
for waves in ducts, 463

Wavefront, 4, 56, 165, 201, 202, 427–439, 441,
442, 444, 449, 451, 454, 456–458,
476, 477, 480, 482, 484, 485, 565,
566, 689, 690, 712

Wavelength, 17, 29, 38, 43, 48, 49, 53, 55,
116, 117, 127, 133, 145, 159–161,
170, 172, 185, 231, 238, 243, 249,
251, 270, 280, 282, 285, 286, 292,
294, 319, 323, 337, 341, 352, 361,
373–377, 380, 401, 407, 421, 424,
426, 427, 474, 479, 480, 490n, 491,
534, 540, 570, 576, 584, 597, 603,
605, 644, 678, 682

Wave number, 28, 29, 38, 56, 57, 171, 340,
426, 431, 490, 502, 516, 523, 524,
526, 527, 578, 598, 600, 614, 618,
619, 742

Wave packet, 364, 431, 464
Wave-slowness vector, 429, 431, 444
Waves of constant frequency, 25–29, 426, 470
Weak-shock theory, 662–668, 676, 681, 682,

693
Webster horn equation, 413–416, 426, 577,

614

Wedge
diffraction by, 489, 553–560, 569, 574
source within, 287, 556

Wedge index, 553–556
Weighting of different frequencies, 74–77
White noise, 87, 103, 104, 108
Whitham F function, 702, 703, 706, 708, 713,

714
Whitham’s rule, 678
Wiener-Khintchine theorem, 97–99, 102, 516
Wind

in effective sound speed, 446
propagation against, 427, 430
refraction by gradients, 444–446
in stratosphere, 453

Windows
equivalent area of, for absorbing surface,

294, 301
transmission out of, 324

Wronskian, 542, 544, 545

Y
Young’s modulus, 146

Z
Zone(s)

of audibility, 453
Fresnel, 280, 281, 286
of silence, 453

Zone plate, 286
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