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PREFACE 

I decided to write this book when I began looking for a textbook for a 
methods of applied mathematics course that I was to teach during the 
1981-1982 academic year. There were many fine textbooks available-with 
some of the recent ones having been written by friends and colleagues for 
whom I have a great deal of respect. However, I felt that over the fifteen 
years that had elapsed since I left the Courant Institute, my research and 
point of view about the problems of interest to me had evolved in a manner 
unique to the combination of scientific experiences that have made up my 
career to date. It was my own point of view that I wanted to communicate 
in the course I was to teach. Certainly, the reader will find common ground 
here with other texts and references. However, it is my hope that I have 
communicated enough of the ideas that comprise my approach to direct 
and inverse scattering problems to have made this project worthwhile. 

Much of my success in research is based on a fundamental education in 
ray methods, in particular, and asymptotic methods, in general, to which I 
was introduced at the Courant Institute. I take the point of view that an 
exact solution to a problem in wave phenomena is not an end in itself. 
Rather, it is the asymptotic solution that provides a means of interpretation 
and a basis for understanding. The exact solution, then, only provides a 
point of departure for obtaining a meaningful solution. This point of view 
can be seen in the contents of this book, where I have made relatively short 
shrift of exact solutions on the road to asymptotic techniques for wave 
problems. 

The goal I was trying to reach appears in Chapters 8 and 9. In the former 
I discuss some asymptotic techniques for direct scattering problems. In the 
latter, I discuss the class of inverse problems in which one seeks to image 
reflecting surfaces from “backscattered” data. In order to reach this material 
in what I consider a one-year course, I have had to make some compromises 

xi 
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with more traditional subject matter in a first course in applied mathematics. 
Certainly my choices are open to criticism. However, after having gone 
through this process myself, I retract all such casual criticism of others that 
I have ever made in the past; the authors who are my predecessors now have 
my profound respect for having made the hard choices that were necessary. 

In those last two chapters, I have referenced material in all of the pre- 
ceding chapters. I believe therefore that the material “hangs together,” as 
I hoped it would. 

Throughout the book, I have used the exercises to teach additional 
material. I recommend perusal of the exercises to even the most casual 
reader. 

The student taking a course that uses this book should have a good basic 
education in classical analysis and differential equations. I make extensive 
use of complex function theory techniques, especially contour integration 
and analysis of singularities of functions of a complex variable. I also assume 
that the student has had a course in ordinary differential equations and one 
in linear algebra. 

The prerequisite that is harder to define is “some experience in applied 
mathematics.” By its very nature, applied mathematics is interdisciplinary. 
Unfortunately, it is not often practiced or taught in mathematics departments 
but as an adjunct in engineering, physics, and geophysics departments, 
often under titles that do  not necessarily indicate to the uninitiated that 
the course is really one in applied mathematics. A course in electromagnetics 
using the text by Jackson is a perfect example. I can only suggest that the 
student who has taken courses in complementary disciplines or who has 
on-the-job experience with solutions to real-world problems has an ad- 
vantage over the student lacking that background. 

Richard Courant said that the applied mathematician stands “in active 
and reciprocal relation” to the other sciences and to society. I am an ad- 
herent to that point of view. I have made some attempt in the text to draw 
on my experience in applications to give meaning to some of the text material. 
However, it is difficult to do much of that in the press of space on the mathe- 
matical material itself. It is my hope that each instructor using this textbook 
will have an equivalent store of experience to bring to the classroom or that 
the self-taught person has some resource of experience to provide a context 
for the material. 

My objective in Chapter 1, on nonlinear first-order partial differential 
equations, is to discuss the eikonal equation-rays and wave front propaga- 
tion. In particular, I wanted to present all of the anomalous cases that lead 

+ Constance Reid, “Courant in Gottingen and New York, The Story of an Improbable 
Mathematician,” Springer-Verlag, New York, 1976. 
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to focusing, caustics, and various diffraction phenomena. My interest in 
these more exotic aspects of ray theory first arose from a research project 
at the Courant Institute with R. M. Lewis and D. Ludwig on smooth-body 
diffraction. I first wrote about this material from the point of view presented 
here in a set of lecture notes as part of the North British Symposium on 
Differential Equations in Dundee, Scotland, in 1972. It is my hope that this 
chapter has profited from the additional insight I have gained over the in- 
tervening nine years. 

Chapter 2 contains some topics covering necessary machinery. I have 
tried to present coherent developments of distribution theory, (one- and 
multidimensional) stationary phase, along with a synthesis of all three of 
these subjects. In my opinion, stationary phase is the method of choice for 
analyzing Fourier representations for multidimensional wave fields. 

The discussion of the one-dimensional wave equation in Chapter 4 pro- 
vides an opportunity to present some theoretical results about the wave 
equation in a relatively simple setting while also allowing-through the 
device of studying the vibrating string in great detail-an introduction to 
complex variable methods for analysis of Fourier representations, eigen- 
function expansions, and the WKB method. It also provides an opportunity 
to use the method of stationary phase and to develop some simple ideas 
about superposition of waves and dispersion relations. 

In Chapter 5, on the wave equation in higher dimensions, the ideas of 
domains of dependence and influence and energy conservation are intro- 
duced. It is apparent through the sparsity of discussion of exact solutions 
in this chapter that my interests and objectives in this book are to get on to 
the Helmholtz equation, where I can address asymptotic “high-frequency” 
solutions. I have gotten to that equation in Chapter 6. I have also taken 
some pains there to discuss uniqueness of solutions for the frequency variable 
in an upper or lower half plane. This again reflects my own interests in 
“causal” solutions to wave problems. Also in this chapter I have addressed 
the equivalence between the Sommerfeld radiation condition for the Helm- 
holtz equation and the outward propagation of energy for the wave equation. 

Chapter 7 discusses the method of steepest descents, which I have brought 
to bear with great success on many problems in wave theory. This method 
requires a strong grounding in certain aspects of complex function theory. 
However, the gain is well worth the pain! 

The difficulty here and in the final two chapters was to filter from all 
of the ideas I would have liked to address those that would make up a com- 
plete introduction to the subject matter. The size of these last chapters 
attests to the difficulty I had in achieving that goal! 

Finally, in Chapters 8 and 9, I have tried to give the reader a basic intro- 
duction to the methods that have dominated my research career and will 
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probably continue to do so. To me there is a vitality and richness of experi- 
ence associated with the implementation of these methods on problems in 
seismic exploration and nondestructive testing. In both areas, I have found 
that we with labels reading “applied mathematician” are late to the area; 
we have much catching up to do on methods that work and also have much 
to contribute to help make these methods work better. 

A particular bias of mine will become apparent when the reader discovers 
that one-dimensional inverse problems are relegated to the exercises in 
Chapter 9. In my own research, I tend to examine only those one-dimensional 
inverse problems that arise as specializations of three-dimensional real- 
world inverse problems. I believe that the alternative-the development of 
sophisticated methods that do not extend from one to higher dimensions- 
teaches the student and the researcher the wrong lessons. A standard joke in 
our research group is that “only graduate students study the one-dimensional 
inverse problem!” 

I owe a great debt of gratitude to the students in that first course-Mourad 
Lahlou, Dennis Nesser, Michael Shields, Marc Thuillard, Shelby Worley, 
and Bruce Zuver-for suffering through the first draft of much of this 
material. Often, these people would return to class after one week and 
explain to me how I meant to write the exercises. Shelby Worley and Mourad 
Lahlou were especially helpful in finding typos and errors. 

I also recognize the important contribution to my growth as an applied 
mathematician made by the various contract monitors who have supported 
my research over the years: Stuart Brodsky at ONR and Milton E. Rose 
at DOE/ERDA, who supported my early efforts in inverse problems-work 
that was obviously primitive when viewed from the present perspective, ten 
years later; Hugo Bezdek and J. Michael McKisic at ONR, who supported 
our group’s work in an ocean acoustics program even though we were 
mathematicians ; Charles Holland at ONR, who has continued the support 
program begun under Stuart Brodsky. The encouragement, recognition, and 
financial support provided through these people have been essential elements 
in our continued success. 

I owe a special debt of thanks to my colleagues Jack K. Cohen, Frank G. 
Hagin, and John A. DeSanto, all of whom have supported and encouraged 
me throughout this project and all of whom have taken up some of the slack 
in joint efforts caused by my distraction from those efforts during the writing 
of this book. In addition, Jack Cohen provided many suggestions to improve 
the exposition in Chapters 1-4. 

I entered the entire text on a word processor, using the Interactive Cor- 
poration Unix System on a PDP/ll. I used NROFF-based macros called 
-ms and -neqn. I am extremely grateful to Mourad Lahlou for writing a 
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filter to allow the commands of these files to be reinterpreted as print com- 
mands for an NEC Spinwriter. I created large amounts of the text off-line 
on my own Northstar Advantage Micro-Computer. I then transmitted 
the material to the mainframe with a smart terminal program. Near the end 
of this project, the University of Denver, where I had been printing, changed 
operating systems. The National Center for Atmospheric Research in 
Boulder allowed me time on their PDP running the Interactive Unix System. 
I shall be eternally grateful for their assistance, which was crucial to the timely 
completion of this project. 

I shall probably never write by hand again! 



1 FIRST-ORDER PARTIAL 
DIFFERENTIAL EQUATIONS 

In this chapter, we shall develop the theory of first-order linear and 
nonlinear partial differential equations. An important example of the latter is 
the eikonal equation, which characterizes the propagation of wave fronts and 
discontinuities for the acoustic wave equation, Maxwell’s equations, and the 
equations of elastic wave propagation. In this development, the calculus of 
curves and surfaces will play an important role. Thus, a review of this 
material might be in order for the reader. Two possible sources [Kreyszig, 
1959; Lipschutz, 19691 for this material are listed in the references at the 
end of the chapter. 

1.1 FIRST-ORDER QUASI-LINEAR DIFFERENTIAL EQUATIONS 

We shall begin our discussion with a study of a function of two variables 
u(x,  y). This will allow us to represent the solution as a surface in three-dimen- 
sional space or as a family of level curves in two-space. Both representations 
will prove useful to us. Thus, we shall consider the equation 

a(x, Y ,  u)u, + b(x,  y ,  u)u, = C ( X ,  y ,  u). (1.1.1) 

When a and b are independent of ci and c is linear in u, this equation is a linear 
first-order partial differential equation for u. Otherwise, the equation is called 
quasi-linear. 

For increments along the solution surface, we recall that 

U ,  dx  + U, dy = du. (1.1.2) 

This equation states that the normal vector ( u x ,  u,, - 1) is perpendicular at 
1 



2 1 First-Order Partial Differential Equations 

each point to any tangent vector (dx, dy, du) to the surface. Comparison of 
(1.1.1) and ( I .  I .2) suggests that we view the solution surface as being made up 
of a family of curves on each of which the direction of the tangent to the 
curve at each point is given by the set of direction numbers (a, b, c). These 
curves are called the characteristic curves. See Fig. 1.1. Thus, the solution 
surface is made up of characteristic curves on which 

dx d y  du 
a b c '  
- -- ---- ( I .  1.3) 

When we think of the solution u as a family of level curves in the (x ,  y )  plane, 
the corresponding curves of interest are the projections of the characteristics 
onto that plane. These curves are called the characteristic base curves and 
sometimes (confusingly) are also called characteristic curves. 

There are really two equations in (1.1.3). In order to understand the nature 
of the solution to these two equations, let us for the moment rewrite them in 
the form 

dyidx = b/a, d u / d x  = c/a. (1 .I .4) 

If we were now given two initial values for y and u, we could obtain a solution 
curve with y and u on that curve prescribed in terms of x and the two initial 
values. The two initial values are parameters. By varying them, we would 
obtain other solution curves to the pair of equations (1.1.4). A solution surface 
would then consist of a one-parameter subset of this two-parameter family 
of curves. 

How does one obtain this one-parameter subset? We have already 
characterized the solution in terms of initial values of y and u, that is, in terms 
of the value of y and u in the plane x = 0. Let us suppose, then, that we are 
interested in a solution surface that passes through a prescribed curve in the 

Fig. 1 .I .  A solution surface u = u(x, y )  made up of characteristic curves, each of which 
is tangent to the vector with direction numbers (a, b, c) at each point on the surface u. 
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x = 0 plane. Thus, we would define a relationship between the initial values 
of y and u. This relationship reduces our two-parameter family to a one- 
parameter family. 

There is no a priori reason to single out x, or y or u for that matter. Let us 
suppose more generally that we seek a solution surface that passes through a 
prescribed curve 

x = X o ( t ) ,  y = y0(t),  u = u&). ( 1.1.5) 

Thus, the solution surface will consist of a one-parameter (7) family of 
characteristic curves passing through the prescribed curve ( I .  1.5). 

In order to facilitate the solution of( 1.1.3), we introduce a second parameter 
u along the characteristic curves. We will then require that the derivative of 
the vector (x, y ,  u) along the characteristic be proportional to the vector 
(a,  b, c). (We remark that in our momentary digression above x played the role 
of the parameter along the characteristics.) Then we rewrite (1.1.3) as 

dx/da = i a ,  dy/du = Ab, du/do = i c ,  (1.1.6) 

subject to the initial data (1.1.5) when 0 = 0. 
The choice of A is at our disposal. If we set 

A = 1/Ja2 + b2 + c 2 ,  (1.1.7) 

then the parameter u is arc length along the characteristic curves. If we set 

A = l / J m ,  ( 1.1.8) 

then u is arc length along the characteristic base curves. While one or the 
other of these may prove useful for analysis of the properties of a solution, 
when one is actually solving the equation, it is usually most convenient to set 

2 = 1, dxldu = a, dy/du = b, duldo = c. (1.1.9) 

We shall continue with the choice (1.1.9) below. 
A solution surface now consists of a two-parameter family of points 

x = x (0 ,  T), y = y(u. t), u = u(u, t). (1.1.10) 

Each choice of z “labels” a characteristic curve, while u varies along the 
characteristic. We rely on the existence and uniqueness theory for ordinary 
differential equations to assure us that we do indeed have a solution to (1.1.6). 
The method we have proposed here is known as the method of characteristics. 
We remark that the method, as presented, would seem to develop a “one- 
s ided  solution surface with the prescribed “initial curve” as an edge. The 
method could as easily have been developed in terms of a “final value” 
problem, in which case the prescribed curve contained in the solution surface 
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u would still be an edge. Of course, we do not have to redevelop the theory for 
this case but only take the attitude that cr may be positive or negative. Then, 
the prescribed curve is truly embedded in the solution surface. 

It should be noted that this still does not produce a solution surface 
u(x, y).  To do this, we must invert the first two equations in (1.1.10) to yield cr 
and z as functions of x and y and then insert that solution into the third 
equation of (1.1 .lo). Let us suppose that at some point on the initial curve 
(1.1.5) we have such a solution for 0 and T and we wish to extend the solution 
off the initial curve. A suficient condition that we be allowed to do so is 
that the Jacobian 

(1.1.11) 

is not zero. Later, when studying nonlinear first-order equations, we will 
confirm that for J # 0 (1.1.6) does yield a solution of the equation for u(x, y )  
in some neighborhood of the initial curve. Since the nonlinear case subsumes 
the linear, we will not stop to confirm this fact now. 

Let us suppose now that J = 0 at some point on the initial curve. In this 
case, (1.1.9) and (1.1.11) imply that, at that point, 

( 1.1.12) 

This means that the projection of the initial curve in the (x, y )  plane is parallel 
to the characteristic base curve at that point. Let us suppose that, nonethe- 
less, in a neighborhood of this point a solution with well-behaved partial 
derivatives exists. Then 

u, = u,x, + u,y, + u&) = uxxb + u,yb, (1.1 .I 3 )  

from which we calculate 

Thus, we conclude that 

(1.1.1 5) 

That is, if J = 0 at some point on the initial curve and u, and uy are defined 
and satisfy (1.1.1). then necessarily the initial data must satisfy the differential 
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equations of the characteristics at that point. The data are called characteristic 
initial data at that point, and the point itself is called a characteristic point. If 
J = 0 at every point on the initial curve, then the initial curve must be a 
characteristic curve, and the data satisfying (1.1.1 5)  are called characteristic 
initial data. In this case, however, we can obtain many solutions containing 
the initial curve. To do so, pass any noncharacteristic curve through the given 
initial curve. Solve the problem with this new curve as the initial curve. Of 
necessity, it contains the old initial curve as the characteristic curve in the 
solution surface emanating from the intersection of the two curves. 

Let us now suppose that the initial curve was “broken” as at the points A 
and B in Fig. 1.2 but that this curve is not characteristic. The discontinuity 
of the initial curve produces a discontinuous surface whose edges are charac- 
teristics. The initial value problems for the characteristics emanating from 
each point on the initial curve still have solutions. Thus, from this initial data 
we develop a solution as a two-sheeted surface. Of necessity, the edges of the 
two sheets are characteristics. That is, the discontinuity in the initial data 
propagates along characteristics. Indeed, for every segment of an initial curve, 
we can trace on characteristics how that segment affects the development of 
the solution surface. Therefore, we define the range ofinfluence of a section of 
the initial curve as the part of the surface traced out by the characteristics 
emanating from that section of the initial curve. Correspondingly, we define 
the domain of dependence of a noncharacteristic curve in the solution surface 
as the piece of initial curve whose characteristics pass through the prescribed 
noncharacteristic curve. See Fig. 1.3. 

The case in which J = 0 at an isolated noncharacteristic point on the 
initial curve can now be addressed. Let us consider the initial curve obtained 
by deleting a neighborhood of this critical point and also consider the two 
ranges of influence of the separate pieces of the initial curve. For each of these 
surfaces, we expect a solution surface that is well behaved in some region near 
the initial curve. When we “shrink” the excluded neighborhood of initial data 
about the critical point, we expect to develop some sort of limiting solution 

Fig. 1.2. A solution surface u emanating from a discontinuous initial curve. 



6 1 First-Order Partial Differential Equations 

UQ ,nfluence Domain 

of dependence 
an initial curve 

Fig. 1.3. (a) The range of influence of a segment of the initial curvethat  part of the 
surface generated by characteristics starting from the given section of the initial curve; (b) the 
domain of dependence of a curve in the solution surface-that section of initial curve obtained 
by tracing back along the characteristics from the given curve to the initial curve. 

surface. When both equations of (1.1.15) are satisfied (characteristic initial 
data), we expect this limiting process to yield a continuous solution surface. 
Indeed, the vanishing of J might only signal that the transformation from 
(6, z) to (x, y )  has some pathology, perhaps only multivaluedness at the 
critical point. If the second equation in (1.1.15) is not satisfied (noncharac- 
teristic initial data), we might well expect some sort of singular behavior in the 
solution surface all along the base characteristic curve through the critical 
point. It is even dangerous to speak of the full characteristic curves here 
because we do not even know in this case whether the method has any 
validity at all near the critical point. Whatever this singular behavior might 
be, we can expect that it will propagate on the characteristics. We shall see 
examples of this type of behavior in the following sections. Such examples 
are not to be avoided. They provide a richness to the theory that expands the 
class of physical phenomena that can be modeled mathematically. 

Any curve solving (1.1.3) is called a characteristic curve for (1.1.1). Every 
solution of (1.1.1) consists of a one-parameter family of such characteristics. 
These can be chosen uniquely (in the “small”) to pass through an initial curve 
so long as 

To recapitulate the major features of this development: 

ayb(r) - hxb(z) # 0 

on that curve as parameterized by z. When this condition fails, there will not 
be a solution in the ordinary sense of an invertible, differentiable transforma- 
tion from parameters (6, z) to (x, y) unless the initial curve is itself a charac- 
teristic, in which case the solution exists but is nonunique (has “many” 
solutions). 

We remark that a solution can be continued away from the initial curve 
until the procedure breaks down, that is, until some anomaly-such as those 
described earlier in the context of the initial curve-arises. 
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1.2 AN ILLUSTRATIVE EXAMPLE 

We shall consider here the following linear partial differential equation 

For this problem, 
characteristics are 

u, + uy = u. (1.2.1) 

we deduce, following (l.1.3), that the equations for the 

dx dy du 
1 1 u '  
----- - -  

These equations have the general solutions 

(1.2.2) 

y = x + c I ,  u = c2ex. (1.2.3) 

Each choice of the constants cl,  c2 produces a characteristic curve. That is, 
(1.2.3) is a two-parameter family of characteristic curves. A solution surface 
could be determined by prescribing a functional relationship between c1  and 
c2 ,  that is, by prescribing, for example, 

( I  2.4) 

(1 2.5) 

Solving for u, we conclude that 

u = e"f(y - x). (1.2.6) 

By direct substitution one can verify that this is a solution to the differential 
equation (1.2.1) for any differentiable function f'. This solution is an envelope 
of solution curves (1.2.3) to the equation (1.2.2). We shall refer to such a 
solution as an envelope solution. We could as easily characterize the envelope 
solution by setting c l  equal to an arbitrary function of c2 or by setting an 
arbitrary function of the two variables c1 and c2 equal to zero. Our particular 
choice here was motivated by the tidy form of the solution (1.2.6) expressing u 
as a function of x and y explicitly. 

In the preceding section, we considered first a problem in which a curve in 
the plane x = 0 was prescribed through which the solution curve was 
required to pass. From (1.2.6), we see that 

u = f(y), x = 0. (1.2.7) 

This is, the functional relationship between u and y in the x = 0 plane 
determines the arbitrary function f in the envelope solution. 

For example, suppose that we seek a solution to (1.2.1) that passes through 
the curve 

u = y2. x = 0. 
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The solution is 

u = e " ( y  - x)'. (1.2.8) 

Thus, we have demonstrated an envelope solution and the solution to a 
problem in which u is required to pass through a specific curve in the x = 0 
plane. 

Let us turn now to solution by the method ofcharacteristics. For (1.2.1). we 
conclude from (1.1.9) that the differential equations for the characteristic 
curves are 

dxjda  = 1, dyjda = 1, dulda = U. (I .2.9) 

The general solution to this system of equations is 

x = D + X ~ ( T ) ,  y = D + yo(z), u = u,(z)e". (1.2.10) 

Here the initial curve is defined by 

x = x,(z), y = y&), u = u,(z), fJ = 0. (1.2.11) 

We will be able to produce a solution u(x, y )  in some neighborhood of the 
initial curve if we can solve for cr and z on the initial curve (that is, we can 
solve for T when D = 0) and also the Jacobian (1.1.11) 

J = yb(t) - &(T) # 0. ( 1.2.1 2) 

As a simple example, let us suppose that the initial curve is given by 

xo(t) = T, y0(r )  = -z, u&) = t. ( 1.2.1 3 )  

Then from (1.2.10) 

x = f ~ + z ,  y = o - z ,  u = z e " .  (1.2.14) 

It is now straightforward to solve for cr and z in terms of x and y and to 
substitute these values in the expression for u. The result is 

u = +[x - y ] e  (x+y)i2. (1.2.1 5) 

We leave as an exercise that this solution is really of the form (1.2.6). 
Now let us suppose that 

xo(t) = yo(z )  = t. ( 1.2.1 6) 

In this case, J is identically zero on the initial curve. Thust a solution will only 
exist if uo satisfies the characteristic differential equations (1.1.15). For 
example, we may take 

uo = e', (1.2.1 7) 
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and then we obtain a solution by passing an arbitrary noncharacteristic curve 
through a point of the prescribed initial curve. Alternatively, we can deter- 
mine all solutions containing this characteristic initial data by exploiting our 
envelope solution (1.2.6) and restricting the function f '  to contain the charac- 
teristic curve defined by (1.2.16) and (1.2.17). Substitution of the latter two 
equations into the former yields 

f ( 0 )  = 1. (1.2.18) 

Thus, any differentiable function satisfying this condition will produce a 
solution (1.2.6) of (1.2.1). Clearly, the solution is nonunique. 

Now we shall create a problem in which J = 0 at only one point. Then we 
shall choose data for u so that the full set of data is or is not characteristic at  
that point. We begin by setting 

X o ( T )  = 5, yo(T) = it2, ( 1.2.1 9) 

so that 

xb = yb = 1, T = 1. (1.2.20) 

and J (1.2.12) is zero at  this point. There are many functions u0(z) that will 
make the initial data characteristic at one point. As an example, we choose 
the function 

U o ( z )  = 3(2 + T 3 ) ,  (1.2.21) 

which, along with ( I  .2.19), can be seen to satisfy the characteristic equations 
(1.1.15) at the point z = 1. 

For these initial data, the solution (1.2.10) is 

x = g + T ,  y = g + + T ~ ,  u = +[2 + z3]eu. (1.2.22) 

In Fig. 1.4, we depict the initial base curve (a parabola) and the base charac- 
teristics, which are straight lines at a slope equal to unity. It is seen that the 
base characteristics form a double covering of a portion ofthe (x, y )  plane, with 
the boundary of that double covering passing tangentially through the initial 
curve at the point where J = 0. 

Solving for 0 and T in (1.2.22), we find 

and then 
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Fig. 1.4. Base initial curve (1 2 .1  9) and base characteristics from (1.2.22) 

From this expression, we calculate that 

u y =  * 2 expjx - (1 ,/-)I { 1 - 2(x - y ) }  l iZ 

[(I J'W)' - +[(l k ,/I - 2(x - Y ) ) ~  + 211. (1.2.25) 

One can see that this partial derivative is defined everywhere except on the 
straight line 

2(x - y )  = 1. (1.2.26) 

This is the base characteristic that passes through the special point T = 1. On 
examining the expression for u, in the limit as one approaches this charac- 
teristic, one finds that it has a finite limit. Furthermore, u, has the same 
pathology and the partial differential equation (1.2.1) is satisfied, even in this 
limit. Therefore, the characteristic data have produced a double surface over a 
portion of the (x, y )  plane on which the partial derivatives remain finite in the 
limit as one approaches the edge of the two surfaces. 

On the other hand, let us change the data for u in such a manner that they 
are no longer characteristic data. A simple way to do this is to change the 
constant 2 in (1.2.21) to any other value. The effect of this will be to change the 
constant 2 in the second line of (1.2.25) to this same new value. In this case, 
that second line no longer has a zero limit as the base characteristic (1.2.26) is 
approached, and uy becomes infinite in this limit, as docs u,. This is really not 
so severe as one might expect. Actually, all that has happened is that the 
surface has become vertical above this base characteristic in the sense that 
the normal to the surface is horizontal. By setting x = y in (1.2.24), we see 
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that in three-space, the singularity lies on the characteristic through the 
singular point. That is, the singularity of the data propagates on the charac- 
teristic curve through the singular point whether or not the value of u at the 
critical point on the initial curve is such that the data are characteristic. 

The purpose of these last cases was to demonstrate that failure of the 
conditions leading to a straightforward solution by the method of character- 
istics does not mean that there is no solution. On the contrary, the situation 
in which J = 0 at one or more points enriches the class of solutions. The 
reader is cautioned not to abandon a problem because of the presence of a 
point at which the data are such that J = 0. 

Exercises 

1.1 

obtain the envelope solution 

(a) Verify by direct substitution that (1.2.6) is a solution of (1.2.1). 
(b) Solve (1.2.2) by finding x and u as functions of y and constants and 

u = e Y g ( x  - y), 

Reconcile this solution with the solution (1.2.6). 
(c) Show that the solution (1.2.15) is of the form (1.2.6). 
(d) Find the most general choice of uo to combine with (1.2.16) to create 

characteristic data for (1.2.1). 
1.2 Repeat the steps of this section for the equation 

u, + uy = 1. 
That is : 

(a) Find the envelope solution. 
(b) Find the solution by the method of characteristics, analogous to the 

form (1.2. lo), for arbitrary initial data. 
(c) Obtain a solution for u(x,  y )  for the data (1.2.13). 
(d) For the initial base curve (1.2.16), find uo to make the data character- 

(e) Now take the data (1.2.19) and 
istic and characterize the class of nonunique solutions to this problem. 

u&) = 4.2 
and solve for u. 
1.3 Find u satisfying 

(x + l)u, + yu, = u 

x = o ,  y - - u  = I .  

passing through the curve 
2 2  
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1.4 (a) Show that the envelope solution of the equation 

uu, + yu, = u2 

y = e-'/Uf(ue-X ). 

can be written as 

(b) Show that for the initial curve x,(z) ,   yo(^), uo(z) the solution can be 
written as 

U O ( d  

1 - ou,(z)' 
x = x0 ( t )  - ln[l - au,(z)], y = yo(z)e". u = 

1.3 FIRST-ORDER NONLINEAR DIFFERENTIAL EQUATIONS 

We now consider the equation 

F(x, y ,  u, p, 4) = 0, p = u,, 4 = u,. (1.3.1) 

To ensure that this is, in fact, a partial differential equation, we require that 
either or both 

F, # 0, F, # 0. (1 3.2) 

We shall develop a solution technique for (1.3.1) by replacing this equation 
with quasi-linear equations to which the theory of Section 1.1 applies. We 
note that for a solution to (1.3.1), small increments in x and y produce no 
change in the value of F ;  that is, 

(1.3.3) 

Here we have assumed that the solution is sufficiently smooth to allow the 
interchange of orders of differentiation 

0 = AF = [F, + pF, + F,p, + Fqpy]  A X  

+ [F, + 4Fu + F,q, + F&,1 AY. 

Py = 4,. (1.3.4) 

Since the increments in x and y are independent, their coefficients must 
each be zero. Thus, 

F,p, + F,/J,, = -F,  - pF,, F,q, + Fqqy = - F ,  - qF,. (1.3.5) 

If (1.3.1) does not depend explicitly on u, then neither does (1.3.5). If (1.3.1) 
does depend on u, we can think of solving for u and substituting into (1 3.5). In 
either case, we obtain a simultaneous system of quasi-linear partial differ- 
ential equations for p and q. Significantly, the base characteristics for these 
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two equations are the same, and we can view the equations as describing the 
simultaneous propagation of p and 9 along these base characteristics. Thus. 
by exploiting our linear theory, 

(1.3.6) 

We calculate the change in u along these base characteristics as 

du = p dx + 4 d y  = [ p F ,  + qF,](dx/F,).  (1.3.7) 

By dividing here, we obtain an equation for du that completes the set of 
equations in (1.3.6). The result is 

Having deduced this full set of equations, we can now abandon the inter- 
mediary step of eliminating u in order to obtain (1.3.6). 

The determination of u for each (x, y )  on a base characteristic defines a 
characteristic curve in three-space. Here, however, we also solve for p and 4. 
That is, a solution of this system of equations yields at each point on the 
characteristic curve a normal direction of the solution surface as well. 
Alternatively, we can think of the solution as a characteristic curve and a dif- 
ferential element of tangent plane at  each point. Together, the characteristic 
curve and planar element yield a characteristic strip. See Fig. 1.5. 

As in the quasi-linear case, it will be helpful for us to introduce a parameter 
u along the characteristic strips and rewrite (1.3.8) as 

Fig. 1.5. A characteristic strip consisting of a characteristic curve and differential elements 
of tangent planes. 
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We have the same options for i, as discussed in Section 1.1 and proceed with 
our discussion here with 1 = 1: 

d x / d a  = F,, d y l d o  = F,, d u l d o  = pF, + qF,, 
(1.3.10) 

Since the derivation of this system of equations started from (1.3.3), it 
follows that F = const for any solution of (13.10). That is, F = const is an 
integral of this system. The condition that this constant is zero is simply a 
constraint on the constants of integration of the solution to (1.3.10). Thus, 
(1.3.1) will be satisfied everywhere on the characteristic strip solving (1.3.10) 
if it is satisfied at one point on the strip. 

The reader is cautioned that we have not yet confirmed that the system 
(1.3.10) yields a solution surface. Indeed, we do not have a solution surface at 
all (we have only a characteristic strip) and therefore no way to relate p and q 
to u, and u,. A solution surface will consist of a one-parameter family of char- 
acteristic strips. We shall now demonstrate how one might find this family. 

d p j d o  = - F, - PF,, dqlda = - F, - qF,. 

Let us suppose that we seek a solution passing through the curve 

x = X O ( 4  y = Y O ( 4  u = uo(4. (1.3.1 1) 

This one-parameter ( T )  family of values of x ,  y ,  and u provides initial data 
(at D = 0) for the first three unknowns in (1.3.10). Now data for p and q, say, 
po(.) and qo(r), are required. We obtain one equation for these functions by 
imposing (1.3.1) and a second equation from the data (1.3.1 1) themselves 
through differentiation. That is, 

W 0 ( 7 ) ,  Y ~ T ) ,  u d ~ ) ?  p o ( 4 ,  q o ( 4 )  = 0, 

u A ( T )  = p o ( ~ ) x b ( ~ )  + ~ O ( ~ ) Y A ( T ) .  
( 1.3.1 2) 

We use these equations to obtain initial values 

P = PO(Th 4 = 40(4 (1.3.1 3) 

that, together with (1.3.1 l), provide initial data for the system of equations 
( 1.3.1 0). 

If we have a solution to (1.3.12) at one point, say, T ~ ,  then a sufficient 
condition that we be able to solve for these functions in a neighborhood of 
this point is that 

( 1.3.14) 

If this condition holds everywhere on the initial curve (1.3.1 l), then we can 
solve for the functions p o  and go all along the curve. We will assume this. In 
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view of the differential equations (1.3.10), this equation can be rewritten as 

(1.3.1 5) 

Thus, in order that a solution to (1.3.12) at one point be extendible to a 
solution everywhere on the initial curve, it is sufficient that the projection of 
the initial curve on the (x, y )  plane not be a base characteristic. We remark 
that for (1.3.1) being truly nonlinear there may be more than one solution for 
po and qo at zo. Each such pair for which (1.3.14) holds provides a different 
set of initial data for (1.3.10) and hence a different solution surface. 

We solve (1.3.10) for functions 

Next, we show that at  least in some neighborhood of the initial curve the 
values of p and q obtained here are the partial derivatives of u. To this end, we 
introduce the functions 

For J # 0, if we could show that U = 0 and V = 0, then we could conclude 
that p = u, and q = u,,. The former of these, i.e., U = 0, follows from (1.3.10). 
To check that V = 0,. we differentiate with respect to c and calculate 

av a2U a2x ap ax a2Y a4 aY - P m - - - -  4- - - -  ac anaT  an az aoaz an at 

[: : :] ax ay a u  ap aq 
= 0 + -F, + -F, + ~- F, + -F* + - F ,  + aT at aT a7 az p -  + q -  - - F, 

The solution to this equation is 

V(a, z) = V(0,z )  exp 1 - J dsJ. 
0 
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However, V(0, t) = 0 by the second equation in (1.3.12). Thus, V 3 0 and p 
and q are indeed u, and u,, respectively, at least in some neighborhood of the 
initial curve. The same condition, that J # 0 on the initial curve, also allows 
us to invert the first two equations in (1.3.16) to obtain both (r and z as 
functions of x and y and to substitute into the third equation in (1.3.16) to 
obtain u(x, y ) ,  again in some neighborhood of the initial curve. We remark 
that this solution can be continued so long as 

J(o, t) = det [ z: z ]  # 0. ( 1.3. I 8) 

Just as for the case of linear equations in Section 1.1, the method we have 
described is called method of characteristics. To  recapitulate: 

In order to find a solution surface u satisfying (1.3.1) and passing through the 
initial curve (1.3.1 l), we solve the system of ordinary differential equations 
(1.3.10) subject to the initial conditions (1.3.1 1) and (1.3.13), the latter being 
determined as a solution of (1.3.1 2). We obtain a solution (1.3.16). By solving 
for CJ and z in terms of x and y, we then find a solution surface u(x,  y)- This 
process can be carried out in some neighborhood of the initial curve so long 
as (1.3.14) holds on the initial curve. 

As with the quasi-linear case, J = 0 in (1.3.14) does not necessarily imply 
that there is no solution. Rather, it signals that the method as proposed may 
break down in some (perhaps nonfatal) manner. As in Section 1.1, let us first 
examine the situation in which J = 0 everywhere on the initial curve and in 
which the method of characteristics is to produce a well-behaved solution 
anyway. As a first consequence of J = 0 in (1.3.14), 

Now we calculate 

Here (1.3.19) was used. We conclude from this result that 

( 1.3.19) 

(1.3.20) 

That is, just as in the quasi-linear case, the initial curve must be a character- 
istic curve. However, for the nonlinear equation, the data po and qo are 
deduced as part of the method. Therefore, we should examine these values in 
this characteristic case as well. We calculate pb and qb exactly as we calculated 
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ub and conclude that these functions must satisfy the characteristic equations 
as well : 

"(" . (1.3.21) Pb(4 - - xbb) - Y b ( 4  - - ub(4 - - - 
FP Fq POF, + 4oFq F x  + POF" F, + qoF" 

- 

Therefore, it is necessary that the initial data form a Characteristic strip. 
Now suppose that we pass a noncharacteristic curve through this charac- 

teristic initial strip. This is to be a new initial curve. However, at the point of 
intersection of the two curves, the deduced initial data for p and q must 
agree with the data po  and qo. Then the solution surface will contain the 
characteristic initial strip. Thus, as in the quasi-linear case, there are still 
many solutions. However, now these solutions not only contain a curve, 
they contain a strip and therefore all meet tangentially along the original 
characteristic initial strip. See Fig. 1.6. 

If we give up the continuity of second partial derivatives, then (1.3.4) need 
not be true and we cannot deduce (1.3.20). If we give up the second equation 
in (1.3.20), then the initial curve is not a characteristic curve, although the 
initial base curve is still a base characteristic curve. In this case, the normal to 
the surface, being normal both to the initial curve and to the characteristic 
curves, must be horizontal. Thus, the normal has third component zero and 
is not well described by a set of direction numbers with third component 
equal to unity. Of course, each of these anomalies can exist at a single point as 
well as on a segment of the initial curve. We expand our idea of solution to 
include all of them. 

Exercises 

1.5 Suppose that J = 0 at a point on the initial curve and the second 
equation in (1.3.20) is not satisfied but that there is a solution surface anyway. 

Fig. 1.6. A family of solution surfaces through a characteristic initial strip. 
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Show that necessarily the normal to the solution surface must be horizontal at 
that point. 
1.6 Derive the last two equations in (1.3.21). Note the point at which (1.3.4) 
is used in this derivation. 

1.4 EXAMPLES-THE EIKONAL EQUATION- 
AND MORE THEORY 

We shall discuss the equation 

p 2  + q 2  = 1, p = u,, q = uy .  (1.4.1) 

This is the eikonal equation. It arises in the analysis of the propagation of 
waves in many problems in mathematical physics. Perhaps the easiest to 
visualize is the case of shallow water waves. In that theory, the wave crests or 
troughs or any curves of constant phase are the level curves of 

u(x, y)  - cot = const, (1.4.2) 

with t being time. As time progresses, the waves are seen to propagate in the 

The eikonal equation also describes the propagation of cylindrical waves 
[there is no z dependence in (1.4.1)] in optics, acoustics, electromagnetics, 
and elasticity. The results of the analysis of this equation are usually mean- 
ingful only when the wavelength, the shortest distance between wave crests, is 
small compared to the other dimensions of the problem, such as the radius of 
curvature of the level curve or the distance of propagation since initiation of 
the wave. If u is a “typical dimension” and A a “typical wavelength,” then 
this condition is 

a/A >> I?  (1.4.3) 

From this description it is seen that this is a situation in which the solution 
is more meaningfully depicted in terms of the level curves in the (x ,  y) plane 
and therefore in terms of the base characteristics rather than the full charac- 
teristics. Indeed, in geometrical optics, the base characteristics are just the 
rays along which light propagates. Consequently, the terminology of optics 
is often borrowed in the other physical examples cited. 

With the right side equal to unity in (1.4.1), the “medium” in which the 
waves propagate is homogeneous or uniform. In an inhomogeneous medium, 
the right side should be replaced by the index of refraction 

n2(x, Y )  = c ; / c2 (x ,  Y ) .  (1.4.4) 

( x ,  Y )  plane. 

’ Read >> as much greater than; in practice, typically at least 3 
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Here co is a constant ‘&reference speed” (e.g., the speed of light in vacuum) and 
c(x, y)  the variable speed of the medium. 

For (1.4.1), 

w, Y ,  u, P, 4)  = P 2  + q2 - 1. (1.4.5) 

The equations of the characteristics (1.3.10) are 

= 0, - dq = 0. (1.4.6) dx dY du dP 
= 2, - - = 2p, - = 2q, - 

do do do do do 

From the first two equations here we conclude that the tangent direction to 
the base characteristic at each point is the direction of the normal ( p ,  q) to the 
level curve of u. That is, the base characteristics, or rays, are the orthogonal 
trajectories to the wave fronts. This.is true even for a variable index of refrac- 
tion. From the last two equations here we conclude that p and q are constant 
on the rays (this is true only for the homogeneous case) and that therefore the 
rays are straight lines. 

The solution to the system of equations (1.4.6) is 

x = x ,  + 2p,o, y = yo + 2q,a, 

P = P o >  4 = 4 0 ,  p ; + 4 ; = 1 .  

u = u, + 20, 
(1.4.7) 

We remark that along each ray the equation for u here is exactly of the form 
of (1.4.2), with o playing the role of a scaled time and u,, independent of that 
time like variable. Thus, the concept of propagation of a wave may be 
identified with movement along rays from one level curve to the next. By 
eliminating p o ,  q,, and o, we can rewrite this solution as 

( x  - xo)2 + ( y  - yo)2 = (u - uo)2. (1.4.8) 

This is a three-parameter family of solutions to (1.4.1). In fact, it is the general 
solution to (1.4.1). 

With this problem as a model, it is 
perhaps easier to see that (1.3.1) will always have a general solution with three 
parameters. The five differential equations (1.3.9) will have, as a general 
solution in terms of B, five functions of B and initial values, that is, five con- 
stants of integration. These five equations and the original partial differential 
equation (13.1) are six equations relating the eleven variables, x, y, u, p ,  q, 
x,, y o ,  u,  , p ,  , q,  , and o. We use five of these equations to evaluate five of the 
variables in terms of the other six and substitute into the sixth equation. This 
is then one equation in six unknowns, preferably, x, y, u, and any three of the 
parameters. This is a three-parameter family of solutions. Thus, a general 
solution to the set of characteristic equations leads to a three-parameter 
family of solutions of the original differential equation. 

Digression (the General Solution) 
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Digression (the Conoidal Solution) If the parameters xg, y o ,  and uo in 
(1.4.7) are taken to be fixed constants, then the solution we obtain is a right 
circular cone. That a conic surface solution exists is also a typical feature of 
the general equation (1.3.1). At a fixed point, (1.3.1) is a relation between p 
and q. All of the normals satisfying this relationship at that point form a cone. 
The tangent planes associated with these normals have an envelope that is 
also a cone whose generators are at right angles to the generators of the 
previous cone. See Fig. 1.7. The continuation of this cone forms a solution 
that is called the conoidal solution. 

The question arises as to how one finds this conoidal solution for the more 
general problem. One starts from the general solution to (1.3.10), fixing the 
initial values of x, y, and u so that the cone starts at the desired point. One 
then imposes the original equation (1.3.1) on the initial data to obtain a 
functional relationship between p o  and qo and thus defines these variables as 
a function of a single parameter (which may be one of them). The representa- 
tion of x, y, and u in terms of this parameter and c is the conoidal solution. It 
is to be expected that this solution will not have first partial derivatives at the 
apex of the cone. Indeed, this can be seen for the specific example (1.4.8). 

Now let us suppose that we seek a solution passing through the initial 
curve (1.3.11), xo, yo ,  uo. The equations (1.3.12) for p o  and qo are 

p:, + q; = 1, pox;  + qoyb = u;. (1.4.9) 

Here the condition J # 0 in (1.3.18) is 

det [: # 0. (1.4.1 0) 

At each point on the initial curve at which we can solve (1.4.9), we find two 

/ Cone of normais 

A tangent plane & /1 Envelope of 

Fig. 1.7. The cone of normal directions and the cone formed as the envelope of tangent 
planes. 
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solutions, and (1.4.10) will ensure that for each of them the base characteristic 
(or ray) is not parallel to the base initial curve. 

Let us set 

po = cos M ( T ) ,  qo = sin a(+ 
(1.4.1 1) 

x b / J m  = cos o(T), y ; / J m  = sin #(TI. 
Then 

U ; / J X b z  -k YbZ = COS(f?(z) - a(.)). ( 1.4.1 2) 

Thus, 

lubl I Jm. (1.4.13) 

When equality holds, 01 = # or 0 + n:; the base characteristics are tangent to 
the initial curve; and J = 0, which we have assumed, for the present is not 
true. If 

lubl > J z - G F ,  (1.4.14) 

no real solution to (1.4.9) exists and no real solution surface exists. This is not a 
contradiction of our theory in that there must be a solution p o  and qo at a 
point before we can even think of extending that solution to the entire 
initial curve. 

We now continue with strict inequality holding in (1.4.13). Now, given a 
solution ct1(7), 0 < a1 < n:, then a2 = 20(2) - 0 1 ~  is also a solution. Note that 
the relative angles d(z)  - 0 1 ~  and O(z) - r 2  are negatives of one another. See 
Fig. 1.8. Thus, if one ray family is associated with waves that are incident on 
the initial curve, the other ray family is associated with the rays that are 
refecfed from the initial curve. 

In fact, we now contemplate the following problem. Let us suppose that u 
does represent some wave propagating in a region having a boundary curve 
x,(z), yo(z). For this incident wave, the objective is to find the reflected wave, 
with u for both the incident and reflected waves being solutions of the 

Fig. 1.8. The two ray directions at a point on the initial curve. 
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eikonal equation on the same side of the boundary curve. On physical 
grounds, one can argue that the phase of the incident and reflected waves 
should be the same at the boundary. That is, uo is taken to be the value of this 
incident wave at the boundary curve. Necessarily, one of the solutions for po 
and qo will have to be the values associated with the incident wave. The other 
pair then are the values for the reflected wave. If we used the same pair for the 
reflected wave, then the effect would be to produce a solution that propagated 
through the boundary as time, or Q, increased and that would be unphysical. 

The representation of the solution by level curves in the (x ,y)  plane is 
fairly straightforward. At each point on the initial curve, the base character- 
istic is a straight line with direction numbers p o  and q o ,  and the level curves 
are orthogonal to the characteristics. See Fig. 1.9. We remark that the 
solution surface u(x, y) depicted in three-space will make an angle of 45" with 
the horizontal by virtue of (1.4.1) and the fact that the third direction number 
is - 1. For the motivating example, this depiction is, admittedly, of less 
interest than the representation in Fig. 1.9. 

We shall now present two examples for the eikonal equation (1.4.1). In the 
first an explicit inversion of the parametric representation will be practical, 
while in the second it will not be. 

For the first example, we set 

cos z sin z 
(1.4.15) 

1 - COST'  = 1 - COS t' 
xo(T) = uo(f) = 

The base initial curve here is the parabola y 2  = 2x + 1, which opens to the 
right with the focal point at the origin. The solutions to (1.4.9) for the initial 
data for p o  and qo are 

po = I, qo = 0, or po = -cosz, qo = -sinz. (1.4.14) 

Fig. 1.9. Representation of a solution in terms of characteristics and level curves. 
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By using the solution formulas (1.4.7), we find for the first pair of values here 
that 

sin z 
(1.4.17) 

COS T 
x(a, z) = u(a, zj = 

1 - cos z 

while the second set of data produces the solution 
cos z sin z 

x(a,zj = + 2ocosz, y(a, t j  = - cosz + 20 sin z, 
1 - cos z 

COS T 
u(a, t) = + 2a, 1 - C O S T  

(1.4.18) 

In (1.4.17), an explicit solution for u in terms of x and y is given by the first 
equation. In (1.4.18), the sum of the squares of x and y yields the square of u. 
Thus, the two explicit solutions are 

u = x ,  u = J r n - l .  (1.4.19) 

In the (x,yj plane, the level curves of the first solution are straight lines 
parallel to the y axis, while the level curves of the second solution are circles. 
If u represents the spatial part of the phase (1.421, then the first solution 
describes a wave whose crests are straight lines while the second solution 
describes a wave whose crests are circles. See Fig. 1.10. 

Let us consider a wave field that emanates from the origin. The wave 
fronts of this wave are indeed described by the second solution in (1.4.19). 
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When the wave reflects from the parabolic boundary, it produces the first 
solution as the reflected wave. We have already seen that the base character- 
istics, or rays, for these two waves make equal angles with the reflector. In 
this case, we see that the reflected wave has parallel rays, all with direction 
numbers (1,0), the first solution in (1.4.16). 

This is a well-known result for parabolic reflectors, namely, that for a 
point source at the focal point of the reflector, the reflected wave is a parallel 
beam. 

Of course, we can also interpret our result in terms of the exterior problem. 
Here the rays of the first solution in (1.4.9) are directed toward the parabola 
from the left while the rays of the second solution are directed away from the 
exterior of the parabola. Thus, we can think here of a parallel beam incident 
on the exterior of the parabola producing a reflected wave that is circular. 

For some applications, the explicit solutions (1.4.19) are certainly more 
useful. However, for others, the representations (1.4.1 7) and (1.4.18) in terms 
of rays and propagation of the phase along those rays will prove more useful. 
For a more complete understanding, both are desirable. 

Again, wc remark on the representation in three-space. The first solution 
surface in (1.4.19) is a plane through the y axis making an angle of 45" with 
the x axis, while the second is a right circular cone-conic angle 45"-through 
the origin. 

As a second example, we take the initial data 

xo = T, yo = 0, uo = +arctan t. ( I  .4.20) 

For this initial data we find the solutions of (1.4.7) to be 

In terms of these values, the solution (1.4.7) is 

X(O, T) = t + 2p,(r, y(O,  z) = 2q,O, 

@(a, t) = $ arctan t + 20. 
(1.4.22) 

In order to eliminate o and z here, we must solve a quartic equation. Such a 
solution would not be particularly edifying. On the other hand, a qualitative 
depiction of the solution as level curves in the (x, y )  plane is possible. We see 
from (1.4.21) that the ray directions are symmetric about the origin on the 
initial line. Furthermore, the ray making the smallest angle with the x axis 
passes through the origin. In the limit as z -+ m, the ray directions become 
vertical. Figure 1.11 is a qualitative depiction of the solution with upper 
sign for q,,. 
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Fig. 1.11. The level curves and rays for the solution (1.4.22). 

It can be seen in Fig. 1.1 1 that the base characteristics cross. In fact, they 
form one envelope above the x axis and another symmetrically placed with 
respect to the origin. The base characteristics initiated from the positive x 
axis remain to the right of the upper envelope; those from the negative x axis 
stay to the left of the lower envelope. The envelope is called an edge ofregres- 
sion or a caustic. Along this curve, J = 0. The verification of this is outlined in 
the exercises. However, the caustic is not a base characteristic in this example 

Fig. 1.12. An edge of regression or a caustic. 
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Fig. 1.13. Solution surface depiction for caustic anomaly. 

because the base characteristics must be straight. Therefore, the solution 
surface must be horizontal above the caustic according to Exercise 1.9. 
Figure 1.12 is a larger depiction of an edge of regression, and Fig. 1.13 depicts 
a solution surface with the same anomaly. 

Exercises 

1.7 Suppose that U is a solution of the equation 

u,, + u,, - (1/C2)Urr = 0. 

Introduce 5 = +(x, y )  - cot and any other two functions of x, y ,  and t as new 
independent variables of integration. Show that the coefficient of U,, is 

with n2 defined by (1.4.4). If 4 satisfies the eikonal equation, what effect will 
discontinuities in U,,  have on the solution? 
1.8 Let U be a solution of 

Uxx + uyy + (w”c2)U = 0. 

Assume a solution of the form 
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with A being a power series in inverse powers of o whose coefficients are 
functions of x and y. Substitute this form into the equation for U. Conclude 
that the leading order term is of order o2 for “large” co and that this term will 
be zero if 4 satisfies the eikonal equation, with the right side n2 as given 
by (1.4.4). 
1.9 Suppose that a set of base characteristics is given by 

x = f h 4 ,  y = do, 4. 
Then we solve for n in the first equation and substitute into the second to 
obtain y as a function of x and 7.  The envelope of this set of curves is defined 
by this equation and the equation obtained by setting its 7 derivative equal 
to zero. Show that if this latter equation is satisfied, then J = 0. Here J is 
the Jacobian of the transformation from (x, y) to (T, [r). 

1.5 PROPAGATION OF WAVE FRONTS 

We shall develop here some phenomena of wave propagation as deduced 
from the eikonal equation in its more general form 

p 2  + qz = d ( X ,  y). (1.5.1) 

Let us suppose that a wave front from the left in Fig. 1.14 is incident on the 
boundary curve 

x = x,(z), Y = Y O ( 4  (1 5 2 )  

depicted in the figure. Here it is assumed that the medium is such that 

on the left of the boundary curve, 
on the right of the boundary curve. 

(1.5.3) 1, 
n2(X’ = {ci /c:, 

Fig. 1.14. A wave incident from the left on an interface across which nz changes. 
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Although we have already introduced the reflected wave in the preceding 
section, we shall repeat that discussion here as part of this more general 
discussion of propagation. Let us denote the wave incident at the boundary 
by uI .  We anticipate that this wave will give rise to two other waves, one 
reflected back into the left medium and denoted by uR and another transmitted 
into the right medium and denoted by uT. 

On physical grounds, one can argue that the three functions u I ,  uR, and uT 
have to be equal at the boundary. That is. 

uO1(z) uI(xO(z), = uOR(z) = UOT(z)* (1 5 4 )  

Thus, the jnitial values of the reflected and transmitted waves are equal to the 
(assumed known) value of the incident wave. Differentiation of these 
equations provides equations for the initial values of p and q, namely, 

(1.5.5) 

The left sides here can be interpreted as dot products of the vectors ( p ,  q) for 
each wave with a tangent to the boundary. The right sides have the same 
interpretation. That is, it also follows from the definition of uoI in (1.3.12) that 

POI& + q o 1 Y b  = 4 1 .  (1 S.6) 

Thus, these equations state that for all three waves the projection of ( p ,  q), 
the ray directions, make equal angles with the tangent to the boundary curve 
at each point. We introduce 

PORXb + q O R y b  = u b l ,  POTx; + q O T Y b  = u b I .  

tiR, and aT by setting 

qol = sin aI, pol = cos UI. 

P O R  = cos UR > q O R  = sin aR, (1.5.7) 

por = n cos aT.  qOT = n sin aT.  

Here aI is known. Note that in the last equation, we have introduced the 
scale n, which by (1.5.3) is no longer equal to unity since uT is a solution on the 
right of the boundary curve. Introduce 0 as in (1.4.1 1) to describe the direction 
numbers for the boundary curve and conclude as in that discussion that 

aR = 2e - cII. (1.5.8) 

Furthermore, as noted in the discussion in Section 1.4, the incident ray 
direction and the reflected ray direction make equal angles with the tangent 
to the boundary curve. 

To determine a T ,  we rewrite the third line in (1.5.7) as 

n cos(8 - UT) = cos(8 - El). (1.5.9) 

This equation is Snell's law, and the wave we are calling the transmitted wave 
is actually the refracted wave. Usually, Snell's law is written in terms of an 
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angle of incidence i and an angle of refraction r with respect to the normal 
to the bourudary, and then 

sin ijsin r = n. 

Equation (1 5 9 )  will have real solutions for xT so long as 

cos(e - I n. ( 1.5.1 0) 

We proceed for the moment under the assumption that strict inequality holds 
here. In this case, (1.5.9) admits two solutions: one directed into the right 
medium, the other not; we choose the former, and identify this ray as the 
transmitted ray. 

We have now determined the initial values of xo, yo, uo , po ,and q, for both 
the reflected and transmitted waves. Thus, for each of these, determination of 
the function describing the equiphase curves is reduced to the solution of the 
characteristic equations (1.3.10) with known initial data. 

Let us suppose now that there is some zo such that for t < to strict 
inequality holds in (1.5.10) but equality holds at zo and (1.5.10) fails for larger 
values of e. First, for z > zo there is no transmitted wave since (1.5.9) will have 
no real solution. We say them that the incident wave is totally reflected, and 
the reflected and transmitted rays initiated at (xo(zo), yo(zo)) are called the 
critically reflected ray and the critically transmitted or critically refracted ray, 
respectively. See Fig. 1.15. 

Right at T ~ ,  with equality holding in (1.5. lo), the solution to (1.5.9) is that 
aT = 8. That is, the critically transmitted ray is directed tangent to the 
boundary. For this case, J = 0 in (1.3.14). Also, by (1 S.4) and (1.5.5), uOr is 
the proper data to make the initial curve a characteristic curve at that point. 

Let us now contemplate a new set of initial data initiating from that point 
and remaining characteristic all along the boundary curve in the direction of 

Critically 
refracted ray 

*ray Refracted 

Reflected w ray 

Fig. 1.15. A critically 

Incident ray 

reflected ray and a critically transmitted (refracted) ray. 
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( poT(zo 1, qOT(zo)). That is, let us contemplate that because this transmitted 
ray is initiated tangent to the boundary, it actually “splits” into two rays, one 
the ordinary transmitted ray and the other a ray that “clings” to the boundary. 
This latter ray is called the creeping ray, and the wave associated with it is 
called the creeping wave. For this new ray to continue along the boundary, J 
as defined by (1.3.14) must remain zero. Let us denote this new data set by 
subscript C (for creeping, critical, or characteristic). Then on the boundary 
curve, we require for uoc that 

With these values of poc and qoc defined, we find uoc by setting 

uhc = xbpoc + ybqoc = n J m .  ( 1.5.1 2) 

Integration of this equation yields the creeping wave. The initial data for this 
equation are prescribed at the critical point zo to be 

uoc(z0) = UO,(% ). (1 5 1  3) 

We now consider this creeping wave as new boundary data for the eikonal 
equation in both media. If the boundary curves toward the left medium as in 
Fig. 1.16, then at each z > zo a tangential transmitted ray is initiated and 
produces another wave field in the right medium. This wave phenomenon is 
called smooth-body diffraction. If the boundary is straight or curved op- 
positely, this family of rays and its associated wave field will not occur. 
However, these data also provide initial data for a new wave field in the left 
medium. For this wave, the rays make the same angle with the initial curve at 
each point as does the reflected ray at zo . The verification of this is left to the 
exercises. When the boundary curve is straight, this family of rays is therefore 
parallel. Hence, the wave fronts are straight lines. This wave is called the 
lateral wave or head wave. 

Creeping ray 

Incident 4 ray 

Head rays 

Critically Diffracted 
reflected ray ray5 

Fig. 1 .I 6. Creeping rays, smooth-body diffracted rays, and head rays. 
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reflected 

Reflected 

Fig. 1.17. Creeping mode and smooth-body diffracted wave in the left medium. 

Let us suppose now that the curvature is the reverse of what it was in 
Figs. 1.14-1.16 and that there is a point on the boundary, say, with T = T,, 
at which the incident ray is tangent to the boundary. Thus, c(, = 0, and from 
(1.5.8) aR = 8 as well. Now it follows from (1.5.5) and (1.5.6) that the data 
uOR are such that the boundary curve is a characteristic curve at this point. As 
in the preceding discussion, we allow this tangent reflected ray to split into 
two rays: one the straight ray satisfying the differential equations (1.3.10) 
and the other the boundary curve itself. Of course, for this latter ray, the wave 
will propagate only if we make u along that ray be characteristic data and 
satisfy (1.5.12). Thus, we generate another type of creeping wave, in the right 
medium this time. Associated with this boundary data will be another 
smooth-body diffracted wave field. See Fig. 1.17. 

We shall consider now the problem of the scattering o f a  plane wave by a 
circular cylinder. By scattering we generally mean everything but the incident 
wave. Here we shall limit the discussion to a description of the reflected, 
creeping, and smooth-body diffracted waves. The use of the terms plane wave 
and circular cylinder is a consequence of viewing this problem as a three- 
dimensional problem in which there is no dependence on the third variable. 
This is traditional, and the term is applied even when the problem being 
modeled really is two-dimensional, such as in the propagation of a small- 
amplitude surface wave in water. 

We suppose that in the region of the plane exterior to a circle of radius a, u 
satisfies the eikonal equation. We shall not consider the transmission 
problem in the interior of the cylinder. All wave fields are to satisfy (1.4.1). We 
suppose that the incident wave is generated far away on the left and propa- 
gates parallel to the x axis toward the scatterer. Thus, within a constant, 
we shall take 

u, = x. ( 1.5.14) 
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However, some care is necessary here. Those rays propagating from the left 
with I yl I a wilI be incident on the scatterer. the cylinder. On the other hand, 
rays for which I y I > a will pass above or below the cylinder. In this manner, 
the geometrical optics shadow is generated. 

We introduce as the parameter T the polar angle in the (x, y )  plane. Thus, 

yo = a sin z, (1.5.15) 

We remark that for this parameterization, H, defined by (1.4.1 l), is related 

0 = - (3~/2) .  ( 1.5.1 6) 

We require that uR satisfy (1.5.4) in the z range prescribed in (1.5.1 5). The 

sin(z - a R )  = sin t. (1.5.1 7) 

Here a, is defined by (1 57) .  One solution, namely, aR = 0, would yield the 
incident wave. Therefore, we choose the other solution of (1.5.7): 

aR = 22 - n. (1.5.18) 

u,, = x, = a cos z, n/2 < z < 3n/2. 

to T by 

Because of this simple relationship, we will not use H at all. 

equation (1.5.5) for pOR and q,, now becomes 

Then from (1.5.7), 

pOR = -cos 27, qoR = - sin 22. ( 1.5.19) 

This equation and (1.5.15) provide all of the data for the solution formula 
(1.4.7), and we obtain the parametric representation of the reflected wave 

x = a cos z - 20 cos 22, y = a sin z - 20  sin 2r, 
(1.5.20) 

The points of the cylinder at which z = 4 2  or 3n/2 are points at which the 
incident and reflected ray directions are tangent to the cylinder and the data 
uo, = uOR are characteristic data. We shall develop the creeping and smooth- 
body diffracted waves for the critical point at which z = 3z/2. Using ( I  .5.1 I)- 
(1.5.13) and (1.5.15), we find that 

poc = -sinz, qoc = COST, uoc = a [ z  - (3~/2) ] ,  z > 3n/2. (1.5.21) 

This value becomes boundary data for a new field, the smooth-body diffracted 
field, which we shall call uOD. We use this initial data along with the definition 
of the boundary curve in (1.5.15) in (1.4.7) and find that 

(1.5.22) 

(1.5.23) 

u, = a cos z + 20. 

x = a cos z - 20 sin T ,  y = a sin T + 20 cos z, 

uOD = a [ T  - (3n/2)] + 2a. 
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We remark that for the tangent ray at z = n/2, the vectors (pol,  qo,) and 
(x;, y;), are antiparallel. Thus, we must adjust ( 1  5 1 1 )  accordingly in de- 
veloping the creeping wave originating at this point. Clearly, the only 
necessary adjustment is to reverse the signs in that equation so that ( poc ,  qoc) 
and (pol, qo,) are colinear at the initiation of uoc. We leave as an exercise the 
determination of uoc and uoD originating from n/2. Figure 1.18a depicts the 
rays for this problem, and Fig. 1.18b depicts the level curves of uI , uR, and uD. 
The ray families we have described here are those that would be developed 
when using geometrical optics and the geometrical theory of diffraction to 
analyze the problem of scattering by a circular cylinder. Complete analysis of 
this problem is quite deep. However, an understanding of these ray families 
in advance is certainly an aid to that analysis. 

Fig. 1.18. (a) Ray families for scattering by a circular cylinder and (b) wave fronts for 
scattering by a circular cylinder. 
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Fig. 1.19. Diffraction from a point 

Let us turn now to another type of diffraction phenomenon and consider a 
boundary that has a discontinuity in it, such as in Fig. 1.19. We remark that 
the reflected fields generated from the two sides of the discontinuity will 
continue to exist, as in the preceding discussion. However, they will end 
abruptly on the base characteristics emanating from the two edges of the 
discontinuity. We anticipate that this point on the interface will provide a new 
source point for wave generation. As a single point at which u is prescribed 
(to be uI), this must be the initial point of a conoidal wave. In the diagram, 
one can see how this new type of diffracted wave (edge diffraction) connects 
the two disjoint reflected waves. 

This ends our discussion of scattering phenomena. Through extended 
solution techniques for the eikonal equation, we have described the major 
primary scattering effects. Of course, each of these waves may, in turn, be 
rescattered and the analysis may be continued to treat those waves as well. 

The rays generated by the various phenomena just described are consistent 
with Fermat’s principle in a generalized form, which can be stated as follows. 

Define the travel time t between two points (x,,, yo) and (xl, yl) by 

where s is an arc-length variable and 

(1 524)  
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Then the actual ray path connecting these two points is a local minimum 
among all ray paths connecting these two points. Thus, in a homogeneous 
medium : 

(1) The direct path connecting two points is a straight line. 
(2) The path of the reflected ray is the extremum among all paths that 

(3) Snell's law provides the minimum refracted ray path. 
(4) The head-ray path is the minimum among paths that propagate to the 

(5) The smooth-body diffracted-ray path is the minimum among paths 

touch the boundary at one point. 

interface, then in the second medium and back again in the first medium. 

that connect two points lacking a line-of-sight path. 

Exercises 

1.10 The purpose of this exercise is to determine the angle of the head rays 
with the boundary curve. Introduce the wave uH in the left medium having as 
boundary data the creeping wave data uoc. Introduce pH, q H ,  and aH as in 
the preceding discussion. Show that the equation for uH is 

cos(8 - aH) = n 

and that at the critical point the angle of reflection satisfies 

cos(8 - aR) = n. 

What can you conclude about the relationship between the angle of reflection 
at the critical point and the angle that each head ray makes with the boundary 
curve? 
1.11 The objective of this exercise is to carry out for an explicit case the 
analysis of the preceding discussion to develop the representations of u, ,  uR, 
uT, uc,  and uH . (The complete ray family for this exercise is shown in Fig. 1.20.) 
Let us suppose in that discussion that the boundary is the line x = 0 and that 
n < 1 .  (Why is there no smooth-body diffracted wave in this example?) 

(a) Let uI be a circular wave (the conoidal solution) originating at the 
point ( -  L, 0) in the (x, y) plane. Let z be the angle that the incident rays make 
with the x axis. Derive the following parametric representation for u, : 

x = - L + 20 cos z, y = 2n sin z, uI = 20, 

and eliminate the parameters to confirm that this is indeed a circular wave 
centered at ( -  L, 0). 
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Fig. 1.20. The rays of Exercise 1 .I 1 for tan T,, = 3. 

(b) Show that for uR 

pOR = -cos z, qOR = sin z 

and 

x = - 2 a c o s ~ ,  y = Ltanz  + 2as inq  u = Lsecz + 20. 

Eliminate the parameters here to verify that this is a circular wave centered 
at the image point (L, 0). 

(c) Show that for the transmitted wave uT, 

POT = Jm, qOT = sin z 

and 

x = 20,,/-, y = L tan z + 2a sin z, u = L sec z + 2a. 

(d) Verify that there are two critical values of z for which the refracted 
ray is tangent to the boundary (vertical) and that they are given by 

sin’ z0 = n’. 

Because of the symmetry of the problem, continue with only the positive 
root. Next, show that 

u& = nL sec’ z 

and that 

uoc(r) = nL tan z + L J ~ .  
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(e) To determine uOH, first verify that 

POH = -4-9 YOH = n, 
and then show that 

x = -2aJI-SII, y = L t a n r  + 2an, 

uH = nL tan z + L,/= + AT. 

Finally, eliminate the parameters to obtain 

UH = -xJ1-.’ + yn + Ld-, 
1.12 The objective of this exercise is to develop the wave fields for scattering 
by an edge. Suppose that n = 1 everywhere in the (x, y) plane but that there 
is a boundary that consists of the half line x = 0, y < 0. Suppose further that 
there is an incident plane wave from the upper left with direction (p, q) = 

(a) Show that there is a ray associated with u, such that below this ray 
all rays of uI are incident on the boundary while above this ray all rays miss 
the boundary entirely. This ray defines the shadow boundary of the incident 
field. 

(b) Find the reflected wave and show that it, too, has a shadow boundary. 
(c) Find the edge-diffracted wave from the point (0,O). See Fig. 1.21. 

1.13 Consider an ellipse with major axis along the x axis. Next, consider a 
source and receiver of light at one focal point of the ellipse. Assume that the 
medium is homogeneous. Show that there are two reflected rays that contact 
the ellipse on the x axis and that for the one nearer the source/receiver point, 
the arc length (1 524)  is a minimum while for the other it is a maximum. 

( 2 / f i ,  -1IJS). 

Fun and Games 

Many of these waves can be generated with simple equipment. Fill a 
cookie pan with about 1 cm of water. Use a piece of wood across the narrower 
dimension of the pan to generate a wave in the pan with a short, firm push. A 
second board that stands higher than the depth of the water and is held in 
place serves as a reflector. If the scatterer is shorter than the width of the pan, 
an edge-diffracted wave will be visible behind it. Use a can about the size of a 
tuna fish can as the scatterer, and observe the reflected waves as well as the 
smooth-body diffracted waves in the geometrical shadow. Somewhat more 
difficult to see is the refracted wave. Submerge a thin board to decrease the 
depth of the water in half of the cookie pan. Use the source generator in the 
deeper part to send a wave at an angle toward the shallower part of the pan. 
Believerscan see the refracted wave generated in the shallower part of the pan. 
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Fig. 1.21. The wave field for diffraction by a straight edge. 

1.6 VARIABLE INDEX OF REFRACTION 

In this section, we shall make a few remarks about the case of variable n 

p 2  + q2 = n Z ( x , y )  (1.6.1) 

and discuss one example. First, we shall write the characteristic equations 
with 1 = 1/2n and distinguish the independent parameter for this case by 
denoting it by s rather than by 0. This is the choice of &noted in (1.1.8)-for 
which the parameter s is arc length along the base characteristics, or rays. In 
vector form, we write the characteristic equations as 

k = pin, u = n, p = Vn, 

for the eikonal equation 

(1.6.2) 
x = (x, Y ) ,  P = ( P ,  419 ( -1  = 

By differentiating the equation for x here, we obtain the equation 

= (I/n)[Vn - k(Vn*x)]/n. (1.6.3) 
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The left side-the second derivative of the position vector with respect to arc 
length-is the curvature uector for the rays. When the initial point of this 
vector is at the point x, the terminal point is at the center of a circle making 
second-order contact with the ray. The right side of this equation is the 
gradient of n minus its projection on the tangent to the ray and hence is that 
part of the gradient that is perpendicular to the ray. Thus, the ray “turns” 
toward the normal component of the gradient of n, and the gradient of n lies 
in the plane of the tangent and principul normal of the ray. 

For shallow water waves of small amplitude 

n = const(gh}-l/’. (1.6.4) 

Here g is the acceleration due to gravity and h the depth of the water. Thus, 
the direction of increasing n is the direction of decreasing depth. Conse- 
quently, the rays tend to turn toward shallower water, and the wave fronts 
then tend to become parallel to the level curves of h. This means that wave 
fronts that are propagating obliquely toward a beach will tend to turn 
parallel to the beach and “run up,” ultimately breaking after this simple linear 
model breaks down. Aerial photographs demonstrating this phenomenon 
can be found in Stoker [1957]. To continue the fun and games from the 
preceding section, the reader can refer to a photograph in Stoker [ 19571 of an 
experiment with a lens-shaped obstacle submerged in a pan of water. 

We remark that the vector form of the equations is equally valid in three 
or higher dimensions and hence so is the conclusion. 

AN EXAMPLE WITH VARIABLE n 

We consider now a two-dimensional example in which n is a function of x 
alone and monotonic, as is Fig. 1.22. We shall consider here the conoidal 
solution emanating from the origin. Because of the symmetry in y, we will 
only discuss y 2 0. 

We anticipate that rays will tend to turn toward the right, toward 
increasingn. Thus, rays starting out to the right will continue in that direction. 

I -- 
Fig. 1.22. A monotonic index of refraction with left limit no and right limit n, .  
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However, for rays that start out toward the left, it is not quite so straight- 
forward. This tendency to turn may actually cause these rays to change 
direction (toward the right) entirely. To see how this occurs, let us look more 
carefully at the characteristic equations. To do so. we will not use the repre- 
sentation above with arc length as parameter, but instead we choose ;1 in 
(1.3.9) to be and rewrite the characteristic equations (1.3.9) as 

du d p  dn 
- n--, d4 = 0. (1.6.5) - _  dx dY - P ,  - = q ,  - = n 2 ,  _ _  da da do dx do da 

Observe that the last of these equations implies that q is a constant, which 
allows us to quickly determinep as well from the eikonal equation itself. Thus, 

4 = 403 p = + J F q .  - (1.6.6) 

For rays in the upper half plane, qo must be nonnegative. Furthermore, 
the square root in (1.6.6) must be real. Hence, qo is restricted to the range 

0 5 4 0  I n(0). (1.6.7) 

The rays are labeled by the parameter qo . For p given by the upper sign in 
(1.6.6), the rays are initially inclined toward the right: n(x)  continually 
increases along the ray, as does p ,  while q remains constant. Thus, the tangent 
to the ray becomes progressively more horizontal. On the ray for which 

90 = n(O), J T q  = 0, (1.6.8) 

p must be increasing initially according to (1.6.5), and this ray turns to the 
right as well. 

Now let us consider the lower sign in (1.6.6). This family of rays is initially 
directed toward the left. For a subset of these rays on which 

nn < q o  < n(O), (1.6.9) 

there is a value of x, say, xq ,  such that 

4 x q )  = 40. (1.6.10) 

From (1.6.6), p = 0 at x = xq and the ray tangent is vertical at this point. 
Again, from (1.6.5), p must continue to increase at this point and hence must 
be given by the positive square root in (1.6.6) beyond this point on the ray. 
For those values of qo such that 

0 I qO I no,  (1.6.11) 

p is never zero on the left, and the ray continues to progress to the left. The 
ray picture is shown in Fig. 1.23. 

For this example, it is reasonable to use x as the independent parameter on 
the rays and to express the solution of (1.6.5) as first integrals with respect to x 
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Fig. 1.23. Ray family for a monotonic n(x). 

(1.612) 

with the rays labeled by the parameter qo. Thus, the ray family and wave 
field are described parametrically by (1.6.6) and 

0 I x, 0 I 90 I n(0);  

x, I x 5 0 ,  0 4 qo < n(0); (1.6.13) 

In (1.6.13), xq = -a for 4 ,  < no. 

(1.6.14) 

Exercises 

1.14 The purpose of this exercise is to carry out the discussion in this section 
for a specific choice of n(x) .  Define 

x <  - 1 ,  
-1 I x I 1, 
1 < x. 

+ $(no + n , ) ( x  + l), 
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(a) Show that the solution (1.6.12) for this example in the region 
0 I x I 1 is given by 

In these equations we have set n = f(nl + no)  and fi = i ( n l  - no). 
(b) Suppose that no < qo < 6. Find xg and verify that - 1 < xq < 0. 
(c) Find the solutions (1.6.13) and (1.6.14). In particular, show that 

(1.6.14) becomes 

3 

n 40 40 

u = qo(x - 2x,). 

(d) 
(e) 

(f)  

Find the transmitted waves in x > 1, x < - 1. 
Discuss the wave reflected from x = -1 without carrying out the 

Discuss the wave reflected from x = 1, and give special emphasis to 
details of the computation. 

those rays for which no < qo < ii. 

1.7 HIGHER DIMENSIONS 

We shall now consider the equation in m independent variables, 

F(x, u, P) = 0, x = (x,, . . .. &), p = ( P I , .  . .) pm); 
(1.7.1) 

dU 
p .  = ~ , j = 1 ,  ..., m. ’ r?xj 

Although we lose our geometrical intuition here, we can derive the system 
analogous to (1.3.9), namely, 

j = 1, ..., m, 

(1 -7.2) 
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Data for u are now to be prescribed on some ( m  - 1)-dimensional initial 
manifold, which we denote by S. We represent S and the data on it by 
introducing (m - 1) parameters and setting 

x = x,(t), = u g ( t ) ,  t = (TI )...) T m - 1 ) .  (1.7.3) 

The vector function xo describes S, and then uo gives the value of u at each 
point of S.  By differentiating these equations with respect to the z;s, we obtain 
a system of (m - 1) equations for the initial values of the vector p on S, 
denoted by pjo : 

(1.7.4) 

This system, along with the original equation (1.7.1) with x and u replaced by 
their initial values xg(t) and uo(t), is a system of m equations for the m 
unknowns po(t). If this system has a solution at a point t = to and if 

J = det 

on S ,  we can continue this 

... 

. . .  

(1.7.5) 

solution everywhere on S. Then we solve for 
x(o, t), p(a, T), and u(o, T) and invert this solution in some neighborhood of the 
initial manifold to find a solution u(x). This solution has continuous second 
partial derivatives. As in the two-dimensional discussion of the preceding 
sections, there is a rich set of anomalies that can occur when J = 0. The 
earlier discussions should be viewed as a basis for identifying and analyzing 
these anomalous cases. 

When there are three independent variables, it is still possible to represent 
the solution pictorially in terms of the level surfaces of u and to exploit our 
visual conceptualization in order to understand the nature of the solution. In 
higher dimensions, we cannot do that and must content ourselves with 
analytical and numerical representations. We remark that with 1 = 1 and F 
independent of u, the system (1.7.2) is just the set of Hamilton-Jacobi 
equations for a system of rn particles, with Hamiltonian F + au/do and time a. 
The generalized Fermat principle is the principle of least action. For this case, 
the hypersurface u, which is the action, is not as important as are the 
trajectories of the particles, that is, the rays. 
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2 THE DIRAC DELTA FUNCTION, 
FOURIER TRANSFORMS, 
AND ASYMPTOTICS 

The purpose of this chapter is to develop some tools that will aid in the 
discussion of solutions of partial differential equations in subsequent 
chapters. The introduction of the Dirac delta function and related distri- 
butions will allow us to develop Green’s functions and the associated repre- 
sentations of solutions. Fourier transforms will help us to develop integral 
representations of Green’s functions and through them integral equations 
equivalent to problems involving partial differential equations and integral 
representations of solutions. We shall develop enough asymptotic theory to 
allow us to analyze integral representations of solutions and to interpret 
them in terms of special functions whose wavelike character is familiar. 

2.1 THE DIRAC DELTA FUNCTION 
AND RELATED DISTRIBUTIONS 

Distributions are an extension of the idea of ordinary functions. They were 
first introduced because they fill a need not met by ordinary functions in the 
modeling of physical phenomena. These are phenomena that occur over 
extremely short duration in time and/or space and would be best modeled as 
occurring at a point. However, despite this “point duration,” it is necessary 
that an integral of the modeling function be finite and nonzero, representing, 
for example, the total intensity in a source or the total change in some 
physical variable across a surface. Clearly, ordinary functions cannot 
fulfill this requirement; thus, the need for distributions is evident. 

45 
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THE DIRAC DELTA FUNCTION 

Let us consider the sequence of functions {s,,(x)} such that for each n, 

(2.1.1) 

Let us think of each s, as representing a source density and then the integrals 
of these functions as representing the total source strength. It is apparent 
that the source strength remains constant, equal to one, while the density of 
the source is progressively increased in magnitude over a progressively 
narrowing interval around the origin. 

The pointwise limit of this sequence everywhere but at the origin is zero. At 
the origin, the function increases beyond all bound. Neither of these facts is 
quite so important as the fact that the sequence of integrals of s, will have 
limit unity on any interval containing the origin and will have limit zero on 
any interval not containing the origin. Although the limit of the sequence s , ~  
as an ordinary function having this property makes little sense at all, we 
extend the idea of a function to include objects defined by sequences like 
this and call this new type of function a distribution. We denote the limit by 
b(x), called the Dirac delta function. 

THE SIFTING PROPERTY OF THE DELTA FUNCTION 

We define the action of the delta function by its sifting property; namely, 
that for an appropriate class of functions, 

I[ f (x) l  = Sp f ( X ) W d X  = S(0). (2.1.2) 
- m  

With the delta function defined as the limit of a sequence of functions, this 
integral is to be interpreted as the limit of the sequence of integrals with 6 
replaced by s,. The function f ( x )  must certainly be continuous at the origin 
and then behave sufficiently well for each integral in the sequence to make 
sense. The class of functions that are continuous at the origin, absolutely 
integrable, and bounded on the whole line is an appropriate class of functions 
for which (2.1.2) holds. However, in the development of the theory in this 
section, we shall use as test functions those that have enough derivatives 
and sufficient decay at infinity to allow all of the indicated operations. 

It is very tempting to think of the delta function as being a function that is 
zero everywhere but at the origin, where it is “SO infinite” that it has finite 
integral. Indeed, the creation of this function was motivated by just such an 
idea. However, in an attempt to clothe the delta function in mathematical 
respectability, we find that the cloak actually came from a Pandora’s box, 
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containing, among others, sequences that should dispel the notion of the 
delta function as an ordinary function. For example, let us consider the 
sequence 

At x = 0, sn(x)  is negative, with its magnitude exceeding all bounds in the 
limit as n +- co. On the other hand, at x = + ) n  the function is positive, with 
its magnitude exceeding all bounds as +- co. Thus, this function has no 
limit at all at the origin (even if we allow k m as a limit), while the pointwise 
limit anywhere but at the origin is zero. As another myth-dispelling example, 
we consider the sequence 

{fin nnx)/nx, x + 0, 
x = 0. 

s,(x) = (2.1.4) 

Let us consider a punctured neighborhood of the origin, say, 0 < 1x1 < 5.  
In this interval, there are no pointwise limits at all! Despite the strange 
pointwise nature of these two functions, both have the property that as for 
the original sequence, 

lim s,(x)dx = I s n+cc  
(2.1.5) 

on any interval containing the origin but the limit is zero on any interval not 
containing the origin. Furthermore, using this property, we can show that 
these sequences exhibit the sifting property [(2.1.2)] on a class of test 
functions. 

We now derive some properties of the delta function that arise from the 
sifting property. As two simple examples, 

f ( x )d (x  - x 0 )  dx = f ( x  + x0)6(x)  dx 1 f(x0) (2.1.6) 

and 

1 
6(ax) = -6(x). 

l a /  
(2.1.7) 
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Similarly, let us suppose that g ( x )  is a function for which g ( x , )  = 0 but 
g ‘ ( x , )  # 0. Then, on an interval in x containing only this zero of g ( x ) ,  

&g(x)) = Ig‘(x0)l -‘m - xo) .  (2.1.8) 

INTEGRALS AND DERIVATIVES OF THE DELTA FUNCTION 

We consider now the function 

H ( x )  = b ( x ’ ) d x ’ .  L 
We can verify by using the delta sequence (2.1.1) that 

0, x < 0, 
I ,  x > 0. 

H ( x )  = 

(2.1.9) 

(2.1.1 0) 

The fact that the function is not defined at one point will cause no difficulty. 
We shall return to this later. This function is known as the Heauisidejunction. 
Since the Heaviside function can be identified as an ordinary function, there 
is no need to discuss further integrals of the delta function as distributions. 
On the other hand, we introduce the derivative S’(x),  which again must be 
understood by its action on test functions: 

f ( x ) b ’ ( x ) d x  = - f ’ ( x ) 6 ( x ) d x  = - f ’ (O).  (2.1.11) s: rw 
Thus, we interpret 6’(x) as that distribution for which the sifting property is 
that it produces - f ’ (O).  Clearly, this process can be repeated to interpret the 
higher derivatives of the delta function. 

PRODUCTS OF DELTA FUNCTIONS 

The product 6 ( x ) 6 ( x )  makes no sense at all. since the sifting property would 
require that the delta function itself be evaluated at a point. That is, the delta 
function is itself outside the class of test functions for which it itself makes 
sense. On the other hand, it is not unreasonable to define a delta function in 
two variables. Thus, we introduce the distribution 6 ( x ) 6 (  y) in the ( x ,  y) 
plane as that distribution for which 

jYm f ( x ,  Y ) & W ( Y )  d x  dY = f’(0,O). (2.1.1 2) 

Again, we think of this result as being applied on sufficiently differentiable test 
functions that vanish outside a finite region. Clearly, this idea can be extended 
to higher dimensions. Furthermore, the derivatives and integrals of these 
multidimensional delta functions can be defined by extending the ideas of 
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differentiation and integration from one dimension. We remark that at times 
the two-dimensional delta function will be written as 6(x,  y )  or d(x), the 
latter used equally well for delta functions of higher dimension. 

Now we consider the distribution 6(g, (x, y))S(gz(x, y)) .  Here we assume 
that the level curves g1 (x, y) = 0 and g2(x,  y )  = 0 intersect nontangentially 
at a point (xo, yo).  More precisely, we assume that the cross product of the 
gradients has nonzero magnitude, that is, we introduce the Jacobian 

and require that 

Let us consider now the integral 

I = jD f ( x ,  Y)6(gl(xl Y)? 92(x. Y ) )  dx dY. (2.1 .15) 

Here D is some domain containing (xo, y o )  but no other zero of both g1 and 
.q2.  We further assume that G is not zero over the domain D. If it were, we 
could “shrink the domain without affecting the integral at all to a domain on 
which this were true. Now, we introduce g1 and g2 as new variables of 
integration. Thus. 

Here D’ is the image of D under the transformation from (x ,  y )  to (gl , g2).  
Since ( xo ,  y o )  was in D, (0,O) must be in D’. The integral has now been 
reduced to the form (2.1.12). Thus, 

I = f(xo5Y0)iIJI. (2.1.1 7) 

Let us now consider the distribution 6(x)6( y )  in cylindrical coordinates. 
This result can be extended to higher dimensions. 

Thus, we write the identity 

j” 6(46(Y)  dx dy = b, W ) 6 ( Y ) P  dP d 4  = 1. (2.1.1 8) 

with D denoting the entire (x, y) plane and p, 4 the polar radius and angle, 
respectively. We seek the representation of the product of delta functions in 
terms of distributions in p and 4. 
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First, we observe that the support of such a distribution-the domain in 
which the distribution is nonzero-must be the origin itself. Thus, only the 
form of the distribution with support at the origin is at issue. We will only 
consider the class of functions that are single valued at the origin. Therefore, 
there will be no angular dependence of the distribution; integration with 
respect to q5 only introduces a multiplier of 274 and we must have 

such that 

(2.1.1 9) 

(2.1.20) 

Integration of the delta function with one endpoint being its support point is 
not well defined. Returning to the definition of the delta function, we remark 
that the sequence of test functions that are used to obtain the limiting 
integral (2.1.5) could be chosen with any fraction of its weight being on the 
positive half interval and the complementary weight on the negative half 
interval. Thus, we must make a convention consistent with the fact that we 
will consider test function that are nonzero only for p positive. Hence, a 
sequence { s , ( p ) )  used to define d(p)  must also be nonzero only for positive 
values of p. That is, 

1: d ( P ) d P  = 1. (2.1.21) 

This, in turn, leads us to conclude that 

4 P )  = 1/P (2.1.22) 

&46(Y) = 6 ( P ) / 2 W  (2.1 2 3 )  

(2.1 2 4 )  

and 

Similarly, 

6(x)6(y)6(z) = d(p)b(z ) /2np  = 6(r)/471r2, 

with r the spherical radius. These results play an important role in deter- 
mining Green’s functions in polar coordinates in that they provide the proper 
“weight” to the delta function in the radial variable. 

Exercises 

2.1 Suppose that f(x) is a differentiable function everywhere on the interval 
[a, b]  except at xo in the interval, where it is discontinuous. Define the jump 
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in f ( x )  at that point to be a. Define g(x)  by 

(a) Show that 

f ( x )  = g(x)  + a H ( x  - xo). 

(b) Show that 

f ’ ( x )  = g’(x) + a6(x - xo) .  

y” + a(x)y’ + b(x)y = 6(x - xo). 

(c) Suppose that y is a solution of the ordinary differential equation 

If u(x)  and b(x)  are continuous, examine the possibility that y (x )  is discon- 
tinuous at x o ,  and explain why this cannot occur. Then conclude that this 
equation is equivalent to the homogeneous equation plus the conditions that 
y(x) be continuous at xo but that y’ be discontinuous with 

y’(x0 +) - y’(x0 -) = 1. 

2.2 Suppose that a surface S is parameterized by two variables sl, s2. 
Introduce a third coordinate 0, which is an oriented distance normal to S (i.e., 
a “signed distance, positive on one side of S and negative on the other side). 
Define the singular function y ( x )  of the surface S to be 

y(x) = d(0). 

Show that for any “test function” f(x), 

sp, f(X)Y(X)dV = {(XI dS. h 

JD6(X - XO)S(Y - Y0)dXdY = 4% # P ( P  - POP(# - 4o)PdPd4 = 1. JD, 

That is, the singular function provides a means of writing a surface integral 
as a volume integral. 
2 3  Suppose that the point ( x o ,  yo), different from the origin, has the polar 
coordinates (po,  #o). Set 

Conclude that A ( p o ,  40) = lipo and hence that 

6(x - X O M Y  - Yo) = ( l /P )S(P  - PO)S(4 - 40). 

2.4 Define 

s,(x) = (sinnx)/.nx, n = 1,2, .  ... 
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(a) Show that 

s n ( x ) d x  = 1 

for all n. 
(b) Use integration by parts to obtain an absolutely convergent integral, 

and estimate that integral to show that 

(c) Use (b) to conclude that for any xo > 0, 
r xn 

(d) Show that s,(x) does not have a limit as n -+ a3 at x = z/2. 

2.2 FOURIER TRANSFORMS 

We begin our discussion of Fourier transforms from the analysis of 
complex Fourier series. Thus. let us suppose that U ( x )  is defined on the 
interval ( -L,  L). The complex Fourier series representation for U ( x )  is 

Here the coeficients n, are defined by 

(2.2.1) 

(2.2.2) 

If U 2  has a finite integral on ( -  L, L), the sum of the squares of the coefficients 
is finite as well, and the series converges to the function U in a “square 
integral sense.” That is, 

(2.2.3) 

If U ( x )  is “piecewise smooth”; that is, if it has a continuous derivative at all 
but a finite number of points on [ - L, L ] ,  then (i) the series converges to the 
function at every point of continuity and (ii) the series converges to the 
mean of the left and right limits +[ f ( x  + 0)  + f ( x  - O ) ]  at each point of 
discontinuity. 
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The series representation extends U ( x )  as a periodic function of period 2L. 
Alternatively, we can take the point of view that the series provides a repre- 
sentation for periodic functions of period 2L.  We propose now to extend the 
period 2 L ,  ultimately to define a representation for functions whose period is 
the whole line, that is, to functions that are not periodic at all. We introduce a 
continuous variable k, discretized by setting 

k, = n.n/L, Ak = .n/L. (2.2.4) 

Then we rewrite (2.2.1) and (2.2.2) as 

U ( x )  = - Akeikn" j:L u(t)e-iknt d c .  (2.2.5) 

We can now contemplate taking the limit L + 00. Heuristically, in this limit 
the sum would appear to be the discretization of an integral with respect to a 
continuous variable k on the whole line. Furthermore, the interval of inte- 
gration on the explicit integral here also becomes the entire line in the limit. 
Thus, formally at least, if we define the Fourier transform u(k)  of the function 

1 "  
2.n n -  -a 

Uix) by 

(2.2.6) 

then 

U ( x )  = J u(k)eik"dk.  
2z - *  

(2.2.7) 

The functions U ( x )  and u ( k )  are called a Fourier transform pair; u(k)  is the 
forward transform of U ( x ) ,  and U ( x )  is the inverse transform of u(k).  Notice 
that the two transforms differ only in a sign in the exponent and in the 
multiplier. In fact, if u(k)  were redefined with a multiplier { 2 7 ~ } - " ~ ,  then the 
same factor would appear in the inverse transform, and only the change in 
sign in the exponent would distinguish the two. Thus, we could have as 
easily defined the forward transform (2.2.6) with a plus sign in the exponent 
and the inverse transjbrm in (2.2.7) with a minus sign in the exponent. We 
shall use these transform pairs for spatial variables and the pair with the 
opposite sign for temporal (time) transforms. The reason for this will be 
explained when we discuss applications of multifold transforms. 

One class of functions for which (2.2.6) and (2.2.7) hold is the class of 
square integrable functions. Furthermore. 

I U(x)I2 dx = - lu(k)12 dk. (2.2.8) 
2.n S' p' 
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A second class of functions are those for which I U(x)I has a bounded 
integral. In this case, u(k)  is bounded and (Riemann-Lebesgue lemma) 
l im,kl-m lu(k)l = 0. This still does not guarantee that the transform can be 
inverted for this class of functions. However, it is sufficient to assume, in 
addition, that the function U ( x )  is of bounded variation, that is. that the sum of 
increments of the function plus the sum of decrements of the function on the 
entire line is bounded. In this case, 

U ( x  + 0) + U ( x  
~ _ _ _ _  u(k)eikx dk.  

2 2n: 
(2.2.9) 

The set of numbers {u,,} in the discrete case or the function u(k)  in the 
continuous case is called the spectrum of the function V ( x ) .  For the discrete 
case, the coefficients u, are the amplitudes of each discrete wave number, or 
inverse wavelength, 2nn:/L. For the continuous case, u(k)dk  is an average 
amplitude for the packet of continuous wave numbers in an interval dk 
containing k. Thus, u(k)  itself is a spectral density, that is, spectrum per unit 
length in k, for the function U ( x ) .  

An alternative representation uses in place of the wave number k the 
spatial frequency 

k = 2n:fx. (2.2.1 0) 

Direct substitution in (2.2.6) and (2.2.9) yields 

u(k)  = ii(f,) = U ( x ) e - 2 n r f x x  dx,  

(2.2.1 1) 
s_a 

U ( x  + 0) + U ( x  - 0) OLi 

= i i ( j x ) e 2 n ' ~ x x d  f. 
2 

Note that with this definition the square integrals of b' and u are equal. This 
form of the Fourier transform is particularly useful for numerical computa- 
tion. However, in analytical work, it requires writing many more factors of 
2n and so is used less often. 

Another version of the basic Fourier inversion theorem is particularly 
useful when dealing with solutions of initial value problems in which the 
function of interest is zero up to some finite time. Thus, we will state this 
result as the transform of a function of the variable t with transform variable 
co. Let us define the halftransforms 

U +  (0) = U(t)e to*  dt, u-  (0) = U(t)e''' dt.  (2.2.12) 

Now the Fourier transform of U(t)  might not exist because of the behavior of 
the function at infinity. However, let us suppose that the exponential decay 

s: I:m 
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provided by Im w being sufficiently large and positive in the first integral 
(say, Tm w > a) and sufficiently large and negative in the second integral 
(say, Tm w < b) that the function U(t)e-""W', defined on one of these half 
intervals, does satisfy one of the possible sets of conditions for Fourier 
inversion to be valid. Then with o = p + i r ] ,  

U(t)e-"' ,  t > 0, 
t < 0, 

q > a, (2.2.13) u + ( p  + iq)e-iptdp = 

or 

A similar result holds for u ~, namely, 

These two half-transform inversion formulas can be viewed as contour 
integrals in the complex o plane. The right sides, U(t) ,  should be viewed in 
the context of what has been discussed. That is, equality here could be, for 
example, in the square integral sense, analogous to Eq. (2.2.3) for the discrete 
case or in a mean value sense, as in (2.2.9), for example. If b > a, then the 
two choices of r] could be the same, the results could be added, and the ordi- 
nary transform would be obtained, however, for real p but not necessarily 
for real w = p + iq. 

Given any of a number of conditions on U(t) ,  u+ and u- are analytic in 
their respective half planes of validity. Indeed, formally, differentiation with 
respect to w amounts to multiplication by it under the integral sign. That is, 

du + 
__ = 1: itU(t)e'"'dt, 
d o  

(2.2.1 6) 

with a similar result for u- . This result is valid under many circumstances. A 
simple constraint would be U continuous and bounded or alternatively, U of 
bounded variation. Unfortunately, the Latter choice would preclude functions 
that might grow no worse than a linear exponential. Thus, we take our func- 
tions to be of bounded variation on any finite interval and growing no worse 
than a linear exponential. Now with these transforms analytic in their 
respective half planes, all of the theory of contour integration for analytic 
functions of a complex variable can be brought to bear to calculate the 
inverse transform. Furthermore, for these functions, the contour of inte- 
gration in (2.2.14) need only be chosen to be above all singularities of u, and 
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in (2.2.15) below all singularities of u- . When U(t) is a solution of an initial 
value problem, we define U to be zero for t < 0. Consequently, for such 
functions, 

and we have only (2.2.14) with the integral interpreted as a contour integral in 
the complex w plane and with q chosen above the singularities of u, . 

u-(w)  E 0, 

The dual result to (2.2.16) is not quite the same. That is, 1; U’(t)e’w’ dt  = - U(O+) - iw U(r)eiw‘ dt 

(2.2.17) 

Thus, the Fourier transform of the derivative has multiplier -iw on the 
transform of the function itself and an additive term - U(0+). This result is 
valid for any class of functions for which the integration by parts operation 
used here is justified. These results are completely equivalent to results for 
the one-sided Laplace transform with iw = - s ; see Exercise 3.2. 

One should note that the signs of the multipliers iw in (2.2.17) and if in 
(2.2.16) depend on the definition of the transform. The signs here would be 
reversed for the choice of signs used in the spatial transforms (2.2.6) and (2.2.7). 
Furthermore, for those transforms, there are no “endpoint contributions” 
from integration by parts. Thus, we have the transform pairs 

1: 
= - U ( 0  +) - iwu, (a). 

u‘(k) ~ - ixU(x); U’(x)  ~ + iku(k). (2.2.18) 

We close this section with an identity known as the convolution theorem. 
We define the convolution of the functions U(x)  and V(x)  by 

W(X) = U(X) * V(X) = V(<)U(x - <) d<  (2.2.19) 1:- 
and calculate 

w(k) = W(x)e- ‘k”  dx s_ 
= lym d x j m  d<  V ( ( ) U ( x  - <)ePlkx 

- rC 

d5 V(<)e-ikt sm dx U(x)e-”” 
- m  

= u(k)v(k). (2.2.20) 
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Here we have moved the differentials close to the integral signs to emphasize 
the order of integration. The interchange of order in the third line is valid for 
test functions and then for functions that can be attained as a limit of test 
functions. The fourth line is achieved by “shifting” the variable of integration 
x by 5 .  Thus, the Fourier transform of the convolution of two functions is the 
product of their two transforms. 

Exercises 

2.5 (a) Show that 

- , - ikb/a U(ax  - b) ____- 
la1 [:I ’ 

with the transform defined by (2.2.6). 
(b) Verify that if W(x)  = a U ( x )  + h V ( x ) ,  then 

w(k) = au(k) + bv(k). 

(c) If F ( x )  has Fourier transform ikg(k),  then 

F ( x ’ )  dx’ l 
and G(x) differ at most by a constant. 
2.6 (a) Suppose that the function U ( x )  in (2.2.6) is a test function from the 
class of infinitely differentiable functions that vanish outside a finite interval. 
Show that if U ( x )  is even (odd), then u(k) is also even (odd). 

(b) Suppose that U J x )  is a sequence of test functions as in (a). Suppose 
that the limit u(k)  of the sequence u,(k) exists. Show that if every function in 
the sequence U,(x) is even (odd), then u(k) is even (odd). 

2.7 Define the box function B(x, L) by 

B(x,  L) = H(x + L/2) - H(x - L/2), 

with H defined by (2.1.10). That is, B is the function that is equal to unity on 
the interval (- L/2, L/2). 

(a) Show that 

& f X ,  L) = (sin f x n ~ ) / n f x .  

(b) Check by direct calculation that with the possible exceptions of the 

(c) Use Exercise 2.4 to conclude that 
points f L/2, B(x, L) is the inverse transform of 6(x, L). 

6(x)-- 1. 
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That is, the Dirac delta function and the function that is identically equal to 
one are a Fourier transform pair. 
2.8 Delhe 

T(x, L) = B(x, L) * B(x, L). 

(a) Show that the graph of T is an isosceles triangle centered at the origin 

(b) Use the convolution theorem to conclude that 
with base length 3L and height L. 

t ( X ,  L) = [-k-] 2 sin(k~/2) * 

2.9 (a) Show from (2.2.19) that convolution is commutative. That is, 

v * u =  u*v. 
(b) Show from (2.2.20) that convolution is commutative. 

2.3 FOURIER TRANSFORMS OF DISTRIBUTIONS 

We have already seen in Exercise 2.7 that the Dirac delta function and the 
function that is identically equal to one are a Fourier transform pair. That is, 

G(x)e- ikx dx  = 1, s_ 
and, perhaps more surprisingly, 

l e ikx  d k  = 6(x). 

(2.3.1) 

(2.3.2) 

Both of these results follow from the exercises. 

which the function is continuous that 
Alternatively, from (2.2.6) and (2.2.7), we can write for U ( x )  at a point at 

U(x) = Jm dk Im d t  u ( t ) e i k ( x - c ) .  (2.3.3) 

The iterated integration here merely performs the sifting operation of the 
Dirac delta function. Thus, if we rewrite the right side as an integral of U with 
some other “function,” that function must indeed be the Dirac delta function. 
Formally, then, by interchanging orders of integration, we conclude that 

27L - 0 0  -00  

(2.3.4) 
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In order to justify that interchange, it would be necessary first to truncate the 
integral in k, and then we shall have returned to Exercise 2.7. 

Let us now consider the function 

-1, x < o ,  
U(x) = sign(x) = 0, x = 0, (2.3.5) 

+ 1 ,  x > o .  

(2.3.6) 

i 
For this function, 

U’(x) = 26(x), 

and therefore by using (2.2.18), 

U’ (X)  __ iku(k) = 2. (2.3.7) 

We cannot find the Fourier transform of U ( x )  by simply dividing by ik. The 
difficulty is that there is a whole class of functions that have the same deriv- 
ative U’(x)  but differ from U ( x )  only by an arbitrary constant. Division here 
produces one of these but not necessarily the function defined by (2.2.6). 
However, if the functions differ by an arbitrary constant, their Fourier 
transforms differ at worst by the Fourier transform of a constant. Since we 
know the Fourier transform of the constant one, we know all of these 
transforms. Thus, we conclude that 

u(k) = (2/ik) + C6(k), (2.3.8) 

with C an arbitrary constant to be determined. To find C, we note that U ( x )  
is odd and, therefore, so is u(k) by Exercise 2.6. However, by specializing 
(2.1.7) to the case a = - 1, we see that the delta function is euen. Consequently, 
C = 0 and 

sign(x) ~ 2/ik (2.3.9) 

after all ! 
We have now created a Fourier transform that as an ordinary function is 

singular at the origin. We remark, however, that this transform was not 
deduced from operations on ordinary functions but by imposing a property 
about the Fourier transform of ordinary functions (2.2.18) on the transform 
of a distribution (2.3.7). We show later in Exercise 2.10 how (2.3.9) can be 
deduced as the limit of a sequence of transforms. The limiting process leads 
us to the conclusion that we should interpret l / i k  as a distribution whose 
integral with test functions should be interpreted as a Cauchy principal 
value. That is, 

(2.3.10) 
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We remark that except for the value at the origin, 

H(x) = +(sign(x) + 11, (2.3.1 1) 

from which it follows that 

h(k)  = (l/ik) + nd(k). (2.3.12) 

We see here that the Fourier inversion of h(k)  produces a function that has 
the value one-half at x = 0, consistent with (2.2.9). Often, H(x) is defined 
this way so that it agrees with the transform of h(k). 

Exercise 

2.10 Consider the sequence of functions defined by 

, x < o ,  
U X )  = 0, x = 0, i ePxin, x > 0. 

- 

(a) Use the fact that 

1 - e-x/n = Jy e-td< 

to estimate the difference between S ,  and sign(x) to conclude that 

for each fixed x > 0 and 

Iim Is,(x) + 11 = o 
n-r m 

for each fixed x < 0. 
(b) Let s,(k) be the Fourier transform of S,(x) defined by (2.2.6). Show that 

s,(k) = s , f (k)  + ~ i ( k ) ,  $ ( k )  = [ i (k  T i / n ) ] - ' .  

(c) Introduce a class of test functions that are analytic for complex k in 
some strip containing the real k axis and that decays to zero at least to some 
algebraic order in k as I kl --t co in that strip. For u(k) such a test function, 
consider the integrals 

m 

I,  = f s,(k)u(k)dk. 
- m  



2.4 Multidimensional Fourier Transforms 61 

Rewrite this integral as the sum 

In = 1,' + r,, 1: = J, S+(k)U(k)dk. 

Show that 

lim I,' = f dk T zu(O), 
n-t  w 

and by summing conclude that the Fourier transform of sign(x) is a distri- 
bution that when integrated with test functions, produces twice the Cauchy 
principal value. 

2.4 MULTIDIMENSIONAL FOURIER TRANSFORMS 

Let us now define the multifold Fourier transform 

U(x)e-"'"dx, .-.dx,, 

k = (k ,  * . * k , ) ,  x = (x, *..x,). (2.4.1) 

The inversion formula associated with this transform is 

u(k)e&'"dk, ... d k , .  (2.4.2) 

As mentioned earlier, we will use transforms of opposite sign in space and 
time. Thus, for example, given a function U(x, t )  that is identically equal to 
zero for t negative, we define 

u(k, o) = J: dt lrn dx, . . . dx, U(x, t)ei(ot-k.x). (2.4.3) 
- m  

The inverse transform in this case is 
m 

. (2.4.4) ~ ( x , t )  = [,,,,+~ k d w  J-wdk, ...dk,u(k,w)ei'k'x-"'' 
1 

Here C is a contour in the complex w plane, passing above all singularities 
of the integrand and along which Re w ranges from - 00 to + co. When we 
can justify moving the contour down to the real axis, the integrand has the 
form of a plane wave whose phase is constant when 

k - x  - wt = const. 
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These planes can be seen to propagate in the direction of k with velocity 
vector wkjk * k. Had we not used transforms of opposite sign in space and 
time, the velocity vector would have carried a (nuisance) minus sign, which 
would have persisted throughout our computations. 

As in the one-dimensional case, we conclude that the multidimensional 
Dirac delta function and unity are a Fourier transform pair; in particular, 

(2.4.5) 

We shall discuss now an example of a Fourier inversion that will be of use 
in the study of the wave equation. We consider the following function in 
three dimensions (rn = 3): 

Here the contour C must pass above the poles of the integrand at w = f c k .  
Let us consider the o integration first and view it as the limit of finite 

integrals on which 1 w I I R. For t < 0, we close this path of integration with a 
semicircle of radius R in the upper half w plane. The integral around this 
closed contour-C extended by a semicircle-is zero because the integrand 
is analytic in the interior of the domain of integration. We leave it to the 
exercises to verify that the integral on the semicircle decays to zero as the 
radius, R + co. Thus, 

V(X, t )  = 0, t < 0. (2.4.7) 

Now let us suppose that t > 0. In this case, we can close the contour of 
integration in the lower half plane and determine the integral by summing 
residues. The result is 

eik.x[eickt - e - i c k t ] k - l  d k ,  d k ,  d k 3 ,  (2.4.8) 

We introduce spherical polar coordinates r, k ,  8,$, with the angle 0 measured 
from the vector x. Thus, 
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Clearly, the integral in k makes no sense as an ordinary integral. However, in 
light of our definition of the delta function as a Fourier integral, we reserve 
judgment on this integral until the angular integration has been carried out. 
The symbol R indicates integration over the entire 471 sr (steradians) of solid 
angle in three-dimensional space. 

Integration in 4 produces a multiplier of 271; integration in 0 then yields 

In the pair of integrals containing the exponent -ikr, we replace k by - k  
and obtain in place of (2.4.10) 

We now use the result (2.3.2) to conclude that 

C 
U(x, t )  = - [S ( r  - ct) - 6(r + c t ) ] .  

471r 
(2.4.1 2 )  

In this expression, both t and r are positive. Consequently, the function r + ct 
is never zero in the range of these variables, and we can replace the second 
distribution by zero. In the first distribution we use the result (2.1.7) to 
rewrite U as 

U(x, t )  = S( t  - r/c)/4nr. (2.4. I 3) 

In this example, we have exploited the complex Fourier transform and 
our interpretation of a divergent integral as a distribution to obtain a mean- 
ingful (in the sense of distributions) expression for a multifold Fourier 
transform. This is not atypical. The function U is the response to a point 
source at (0,O) for the acoustic wave equation. It is an idealized model of the 
propagation of sound from a handclap. To the extent that speech can be 
viewed as a series of such pulses of sound, it models the propagation of an 
elemental component of speech. We see then that each such pulse of sound 
passes a point in space in an extremely short interval of time. Thus, we are 
able to hear the elements of speech separately and synthesize them into 
words that carry meaning. 

Exercise 2.13 carries out the same analysis in two dimensions. Here it is 
seen that an algebraic (square root) singularity propagates with speed c but is 
followed by a "tail" that decays to zero at each spatial point at a rate of 
only lit. 
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Pity the poor resident of flatland! Each sound pulse impacts on the 
listener but leaves a trailing residue to obscure the sounds that follow as 

IInnnHnnnnnnnnnnnnnnnnunnnnnnnnnnnnnnnnnnnnnnnnnnnnn . . .  
OOOOOOOOOOOOOOOOOOOQOOQOOOOOOOOOOOO~OOOOOOO~OOOOOOO . . .  
w ~ w w w w w w w w w w w w w w C W W W W W W w w w w ~ w . .  , 

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn n . . .  
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA . . .  
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR . . .  
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD . . .  

T~TTmTTTTTTTTTTTTTTTTTTTTTTTTTTTT~TTT~TTT~TTTTTTTTTTTTT . . .  
oOOOoOooOooOOOoOOOOooOOOooooOooOOOoOOoooooOO~OOOOooo . . .  

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn~nnnnn ~ ~ ~ ~ . . .  
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE~EEEE~EEEEEEEEEEE~~E ~ ~ . . .  
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA . . .  
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR . . .  

when all he/she wants to receive is the leftmost diagonal; but at each instant 
of time, the flatlander is receiving the column of this matrix. 

Exercises 

2.11 Let 

I = I e izdz ,  

where C is the semicircle on which 

R = ( z (  = const, 0 < 0 = argz < a .  

(a) Express the integral in polar coordinates, and show that on C 
I ,iz 1 I , - Z R W ,  
leizl  5 , -ZR(rr -W/n  , 

0 5 0 < 4 2 ;  

7112 I 0  571. 

(b) Use the estimate in (a) to show that (Jordan's lemma) 

11 I s 271. 

(c) Suppose that f ( z )  is analytic in the upper half z plane and 

in that half plane. Let 
r 

I = J f(z)e" dz, 
C 
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with C as defined in (a). Show that 

lim I = 0. 
R + m  

2.12 Suppose that m = 2 and that U in (2.4.1) is a function of r = {x-x} '1' 
only. 

(a) Set U = V(r) ,  and show that its Fourier transform is a function of k 
only and is given by 

u(k) = 2n T/(r)J,(kr)rdr, I: 
with J ,  the zero-order Bessel function of the first kind. 

(b) Apply (2.4.2) to show that 

(c) Define 

W(r)  = 2~V(r)r ' /~  and w(k)  = u(k)k'/', 

and deduce the formulas for the direct and inverse Hankel transform 

w(k)  = W(r)Jo(kr)(kr} ' / '  dr, W(r)  = I: ~(k)J,(kr){kr}~~~ dk .  I: 
(d) Deduce that 

6(r  - "I = j: Jo(kr)Jo(kr')k dk, r,  r' # 0. 
r 

2.13 The purpose of this exercise is to carry out the analysis of the two- 
dimensional analog of (2.4.6). Define 

(a) Carry out the w integration as in the discussion of (2.4.6) to obtain 

(b) Use the discussion of the Fourier transform of the Heaviside function 
H ( x )  in Section 2.3 to conclude that 
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Note that it is necessary to verify that the sum of integrals with Dirac delta 
functions in the integrand is zero. 

(c) For ct < r, rewrite the principal value integral as a contour integral 
passing above the poles in the complex 8 plane plus halfresidues that sum 
to zero. 

(d) Still for ct < r, introduce z = eio, and interpret the integrals of (c) as 
contour integrals in the complex z plane. Show that the integrals are zero. 

(e) Now take ct > r and use the same transformation as that in (d) to 
write U as a contour integral. Show that there are two poles interior to the - 
contour of integration given 

z* = 

( f )  Finally, show that 

by 

f 
ct - (c2t2 - r 2 } l / ’  

r 

2.5 ASYMPTOTIC EXPANSIONS 

An asymptotic expansion of a function is an approximation of a function 
in the neighborhood of a point. However, unlike the Taylor series for an 
analytic function, an asymptotic expansion need not converge to the function 
at any point at all ! Nonetheless, asymptotic expansions are quite adequate 
for approximating functions in a sense to be defined. (Extensive discussions of 
error analysis can be found in Olver [1974] .) Furthermore, as will be seen in 
the exercises, the statement of Taylor’s theorem for the approximation of a 
function by a power series with remainder is, in fact, a statement about an 
asymptotic expansion. Indeed, Taylor’s theorem does not guarantee the 
convergence of the series to the function; when the series converges, the 
function is analytic. Thus, the reader has already encountered asymptotic 
expansions early in the study of calculus. 

Asymptotic expansions are usually of greatest value in approximating 
functions in the neighborhood of an essential singularity in the complex plane 
of the independent variable. In our implementation, the essential singularity 
will be the point at infinity. Thus, we will develop all of our machinery for 
deriving asymptotic expansions about the point at infinity, although in the 
exercises, we will also discuss expansions about the origin, which for this 
discussion will be equivalent to any finite point. 
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We remark that the reader may well have already been introduced to 
asymptotic expansions in another context without having had the fact 
pointed out. For example, Stirling’s formula for the approximation to IZ ! for 
large values of IZ is the leading term of an asymptotic expansion. Also, the 
representation of the Bessel functions as a linear combination of sines and 
cosines, each multiplied by a series in inverse powers of the independent 
variable, is an asymptotic expansion. Finally, the representation of a radi- 
ation pattern as eik’/kr multiplied by an amplitude function is really the 
leading term of an asymptotic series. 

The reader might well wonder at this point what the independent variable 
is that is “in the neighborhood of infinity” in wave problems in order to make 
these expansions useful. These approximations will be valid “in the high- 
frequency” limit. Then the question arises of what high frequency is. One 
answer to this question is that the frequencies of interest should be associated 
with wave periods that are “small” compared to the “natural” physical time 
scales of the problem at hand. Thus, if T is a time scale and f a frequency in 
hertz, then 

27cfT >> 1. 

In practice, the left side being at least equal to 3 seems to suffice for asymp- 
totic expansions to be sufficiently accurate for interpretational purposes. 
Often at this value, the actual numerical accuracy is well within the bounds of 
interest as well. We remark that these condition can be reinterpreted as a 
condition on wavelengths when we have a “rule” for relating frequency and 
wave number (a dispersion relation). In this case, the requirement would be 
that the wavelengths of interest should be sufficiently small compared to 
the natural length scales of the problem at hand. 

In the next few chapters, the functions whose asymptotic expansions we 
seek will be represented by Fourier integrals. Thus, after a preliminary dis- 
cussion of asymptotic expansions in general, we shall focus our attention in 
subsequent sections of this chapter on the asymptotic expansion of Fourier 
integrals. 

ORDER ESTIMATES 

We begin our development of asymptotic expansions with the concept of 0 
estimates (read large O H )  and o estimates (read small oh). Given two functions 
f ( A )  and g(;l), we shall say that f ( A )  is large OH ofg(;l) in some neighborhood 
of infinity if 

I f ( 4  2 kls(4l, 1 2 10, (2.5.1) 



68 2 Dirac Delta Function, Fourier Transforms, Asymptotics 

for some positive constant k and some positive I , .  We write then 

f(4 = 0(9(4), 1 + 0.  (2.5.2) 

We shall say that f ( I )  is  small oh ofg(A) if the constant k can be taken to be 
arbitrarily small. That is, if 

(2.5.3) 

we write 

f(4 = 4dm, 1 + 0. (2.5.4) 

Both of these types of estimates are called order estimates. In particular, 
(2.5.2) is to read as f ( I )  is of the order of g(I). Simple examples of 0 and o are 

e - *  = o ( I - ~ ) ,  A+ CQ, any n, 

and 

I + m .  - l j i  - - W), 
Qualitatively, the first example is a statement of the fact that e-' vanishes 
faster than any power of I as I approaches infinity; the second example 
states that e -  l i d  behaves like 1 as I approaches infinity. This latter estimate is 
sharp in that any positive power of I would provide a grosser estimate than 
O(1) of the behavior of the function-e-"' = o(I"), I + co, n > 0-and 
any negative power would not provide an estimate-e-'/* # O(In),  
I + m , n < O .  

We remark that the first example is not symmetric while the second 
example is; that is, 

R-" z o(e-") ,  any n ;  1 = O(e-"*)), I +  00. 

Another nonsymmetric example is 

sin I = 0(1), I +  00. 

On the one hand, the right side provides a useful bound on the function 
sin I ;  however, it fails to characterize the oscillatory behavior of this function. 
Thus, the right side provides a gauge of the gross features of the sine function, 
perhaps useful in error estimates but not sufficient to be a simplification that 
retains useful qualitative information. 

ASYMPTOTIC POWER SERIES 

An extremely important set of functions to be compared to one another 
are the powers of I themselves; thus, 

I-'ntk) = o ( K " ) ,  I +  x), any k > 0, anyn. (2.5.5) 
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That is, the more negative the power of I ,  the more rapid the decay to zero 
as I approaches infinity. This motivates our first definition of an asymptotic 
expansion, namely, an asymptotic power series. We will say that f(il) has an 
asymptotic power series to order N at infinity if 

N - 1  

f ( A )  - c a n X "  = o ( 2 - N )  
n = l  

or 
N -  1 

f(1) - c a,L-" = o(I-"-I) ) 
n = O  

and write 
N - 1  

(2.5.6) 

(2.5.7) 

Here the coefficients an are constants. We read the symbol - as is asymp- 
totically equal to or, more succinctly, is asymptotic to. If (2.5.6) is true for all N ,  
then we can replace N - 1 in the upper limit, here by m. However, this does 
not imply convergence of the series but only that (2.5.6) is true for all N .  

Simple examples of asymptotic expansions at infinity can be obtained by 
considering Taylor series about the origin and replacing il by l/A. A richer 
example is provided by the function 

(2.5.8) 

This function is related to the exponentid integral but has been scaled so as to 
produce a power series as 1 approaches infinity. Integration by parts- 
integrating the exponential and differentiating the power of t-yields the 
result 

NP1(- l)"n! - c 1" - - E(A; N )  
n = O  

We claim that, in fact, E ( i ; N )  is O(I-") .  To verify this, estimate the 
and algebraic term in the integrand by its maximum value, namely, A-N- 

integrate the exponential. The result is 

IE(a;N)j I N Q - N  = o ( L - N ) .  (2.5.10) 

For fixed 1, this bound on the error can be seen to decrease for increasing N 
so long as N I but to increase for increasing N above this limit. Thus, the 



70 2 Dirac Delta Function, Fourier Transforms, Asymptotics 

approximation would seem to be optimal for I and N approximately equal. 
Furthermore, from the exact expression for the error, it can be seen that at 
fixed 1 the error is never zero and, in fact, increases beyond all bounds as N 
approaches infinity. 

Therefore, it is prudent to ask how good the approximation (2.5.9) really 
is. Table 2.1, taken from Bleistein and Handelsman [1975], demonstrates the 
accuracy of this expansion. In Table 2.1, S ,  is the sum to N .  It can be seen 
that S ,  is the best approximation at 1 = 1, S ,  the best approximation at 
I = 2, and so on. 

Since (2.5.10) is true for each choice of N ,  we can write 

(2.5.1 1) 

It can be seen that this series does not converge for any finite value of 1. 
Nonetheless, the sum has meaning as an asymptotic power series in the sense 
defined by (2.5.6) and confirmed for this example by (2.5.9) and (2.5.10). 

ASYMPTOTIC SEQUENCES 

We shall find in the applications in subsequent chapters that asymptotic 
power series will not suffice to characterize the approximate representations 
we derive. Thus, we introduce the concept of an asymptotic sequence of 
functions. Let us suppose that the sequence {$,(A)} is such that 

$ n + l  = o(4"(I)) ,  , l-+co, n = 1,2 ,.... (2.5.1 2) 

Such a sequence of functions will be called an asymptotic sequence. We shall 
say that f ( I )  has an asymptotic expansion with respect to the sequence 
{4,(1)) to order N if 

(2.5.13) 

(2.5.14) 

Again, if (2.5.1 3)  holds for all N ,  we can replace N by 00. This is understood 
only to mean that (2.5.13) is true for all N and implies nothing about the 
convergence of the series. 

We remark that the negative integer powers that arose in the asymptotic 
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Table 2.1 " 

1 0.59634 1 0 2.0000 -4.0000 
2 0.72266 1 0.5000 1.0000 0.2500 1.7500 
3 0.78625 1 0.667 0.8999 0.6667 0.9626 0.4688 
5 0.85212 1 0.8000 0.8800 0.8352 0.8736 0.8352 0.8820 

10 0.91563 I 0.9000 0.9200 0.9140 0.9164 0.9152 0.91592 0.91542 0.91581 0.91544 
100 0.99019 I 0.9900 0.9902 0.99019 

a From Bleistein and Handelsman [1975b]. 

power series above are an asymptotic sequence. Thus, the fundamental 
asymptotic expansion is subsumed under this broader class of asymptotic 
expansions. 

Another example of elements of an asymptotic sequence is 

c$,(A) = eia*/d", n = 1,2, .... (2.5.15) 

The reader should verify that these functions satisfy (2.5.12). A sequence of 
exactly this form arises in analyzing the integral 

(2.5.16) 

Integration by parts here-integrating the oscillatory exponential-yields 

We leave it as an exercise to confirm that this result is an asymptotic 
expansion with respect to the sequence defined by (2.5.1 5). 

Other examples of elements of asymptotic sequences are 

a - n + a ,  any c r ;  a-n/3e-12 .  9 Jn(1,'JI (2.5.18) 

The function J, is the Bessel function of the first kind of order n. 

AUXILIARY SEQUENCES 

One further extension of the basic concept of an asymptotic expansion will 
prove useful, namely, the concept of an auxiliary sequence. To motivate this 
extension, let us suppose that by some formal method we have obtained a 
series representation of f ( L )  of the form 

n!cosnl 
f(4 = 1 ~ 

n = O  an . 
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The occurrence of the inverse powers of A here would suggest that this is an 
asymptotic expansion. However, if we set 

&(I)  = (cosnA)/A", n = l,2, .. . )  

then we cannot verify (2.5.12). The reason is that for each n, the right side of 
(2.5.12) would have zeros at finite I values arbitrarily large, that is, "arbi- 
trarily close to infinity" at points at which the left side is not zero; thus, the 
requirement (2.5.3) cannot be satisfied for this sequence. On the other hand, it 
would be reasonable to expect that along with the formal result here one 
might have derived the following result for finite sums: 

Thus, the error terms at each step are bounded by an asymptotic sequence 
even though the A dependence of each term in the series is not an element of 
an asymptotic sequence. It would be reasonable to expect that an approxi- 
mation such as this would be as accurate as an asymptotic power series. This 
suggests the following extension. Suppose that {4,(A)} is an asymptotic 
sequence as above. Suppose further that there is another sequence { & ( I ) }  
such that 

N-1 

f(J-) - 1 antn(A) = O(+N(I)), 3 , - + C c ,  
n = O  

or (2.5.19) 
N - 1  

n-0 

Then the series here is an asymptotic expansion with respect to the auxiliary 
sequence {&(A)} to order N ,  and we write 

N- 1 

(2.5.20) 
f l = O  

It is to be understood in context that this is an asymptotic expansion with 
respect to an auxiliary sequence. Again, if (2.5.19) is true for all N ,  then we 
replace N - 1 by co in (2.5.20), and this is to be understood to mean only that 
(2.5.19) is true for all N .  

Exercises 

2.14 (a) With the definitions of 0 and o estimates at infinity as a model, 
define 0 and o estimates at a finite point, say, x = 0. 
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(b) In the definition of an asymptotic power series at infinity, set A = I/x 
and f(l/x) = g(x) and deduce a definition of an asymptotic powers series 
near x = O + .  Note that the 0 estimate of the remainder produced by direct 
substitution should be consistent with the definition stated in (a). 

(c) State Taylor’s theorem with remainder, and verify that it is of the 
form of the definition in (b) except that now the coefficients are of a prescribed 
form. 
2.15 (a) Use the Riemann-Lebesgue lemma to show that the remainder 
in (2.5.17) is o(I-”). 

Show that the remainder in (2.5.17) is actually 0(KN-’) .  [ H i n t :  
Integrate by parts one more time.] 
2.16 Show that the following are asymptotic sequences in the indicated 
limits. 

(a) {ApEn},  Re CI, > Re 
(b) ((x - x,P,}, ct, as in (a), x+xo.  
(c) { [ g ( I ) ] ” ) , I + ~ , ~ i m , , , g ( i l ) = O , y ( ~ ) # O , ~ ~ ~ ~ <  a. 

(b) 

n = 1,2,. . ., I I  + 00. 

2.6 ASYMPTOTIC EXPANSIONS OF FOURIER INTEGRALS 
WITH MONOTONIC PHASE 

Our objective is to develop methods for obtaining the asymptotic expan- 
sion or, more realistically. one or two terms of the expansion of a function 
defined by an integral of the form 

I (A)  = f ( t )e ia40ct)  dt ,  Jab (2.6.1) 

with f and 4 real. We shall begin more modestly and consider the integral 

I ( I )  = f(t)eiar d t .  
l a b  

(2.6.2) 

We have already encountered one example such as this [(2.5.16)] and were 
able to obtain an expansion by the straightforward technique of integration 
by parts.  Qualitatively, the method “works” because each integration of the 
exponential produces a power of I in the denominator. Therefore, under the 
assumption that f has sufficient derivatives to allow the indicated operations 
to be carried out, we integrate by parts to find that 

N - 1  ( -  1)” (-1)N 
I@) = C [f@)(b)eiab - f ( n ) ( a ) e i ’ a ]  + - (u )N la f‘”(t)e”‘ dt .  (2.6.3) 

n = O  
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If f has ( N  + 1) integrable derivatives, we can integrate by parts one more 
time and conclude that the second line here is O(A-"-').  If only the Nth 
derivative is absolutely integrable, then by the Riemann-Lebesgue lemma, 
Z(1) = o(1) and the remainder is o(A-"). In either case, the series in the first 
line provides an asymptotic expansion to order N of the integral Z(2). 

As a first extension of this result, let us consider (2.6.1) under the assump 
tion that 

4'(t) # 0, a I t 5 b. (2.6.4) 
We rewrite (2.6.1) as 

(2.6.5) 

Now integration by parts can be carried out once to yield 

Repeating this process yields 

As in the discussion of (2.6.3), if another integration by parts could be carried 
out, we would estimate that the second line here is 0(2 -" - ' ) ;  if the integrand 
were only absolutely integrable, by transforming to $(t)  as a new variable of 
integration and applying the Riemann-Lebesgue lemma, we would find the 
second line to be o(A-"). In either case, the first line is an asymptotic 
expansion to order N .  

We shall make some qualitative remarks about the result (2.6.7). First, 
it is apparent that this process can be carried out so long as 

(i) $'(t)  is nonzero on the closed interval of integration and 
(ii) all of the derivatives of f ( t )  and 4(t) exist up to the order required. 

Therefore, we see that there are certain important points insofar as the 
asymptotic expansion of the integral is concerned. These important points 
are called critical points; they are exactly the points at which the preceding 
list fails. That is, the critical points are points at which 

(i) points at which $'(t) = 0, 
(ii) points at which some derivative off or 4 fails to be continuous, and 
(iii) endpoints of integration. 
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We can think of the endpoints of integration as a special case of case (ii), 
in which the function f itself fails to be continuous in the sense that it “jumps” 
from zero to its interior value. Indeed, i f f  were zero at one of its endpoints, 
we would see that the series associated with that endpoint would be of lower 
order than if the value of f there were nonzero. In fact, if f and all of its 
derivatives vanished at each of the endpoints, then in (2.6.7) I(d) = 0 to all 
algebraic orders in I I .  

Another observation from (2.6.7) is that the result can be viewed as a sum 
of contributions from each of the critical points, that is, from each endpoint of 
integration. Indeed, if f and all of its derivatives vanished only at t = b, we 
would obtain an asymptotic expansion that depended only on the local 
properties of f near t = a. Conversely, for a function that with all of its 
derivatives vanished at a, we would obtain an expansion that depended only 
on the values of the function f at t = b. 

It would be desirable when an integral has many critical points (more 
than one) to devise a mechanism for isolating those critical points. Then for 
the purposes of derivation and calculation, we could think of the contribution 
from each critical point separately. A mechanism for doing this has been 
devised. It is called the van der Corput neutralizer. This is a function that 
isolates a critical point without itself introducing new contributions to the 
asymptotic expansion of an integral. 

The simplest type of neutralizer is a function q = q(t,  a l ,  a2 ) that depends 
on two parameters a1 and u z ,  with ctl < a2,  and is infinitely differentiable 
for all t. Furthermore, 

(2.6.8) 

In Exercise 2.19, an explicit van der Corput neutralizer is developed. 
Let us suppose now that we are given an integral with many critical points. 

We first decompose the integral into a sum of integrals in which each of the 
latter has only two critical points at its left and right endpoints. In particular, 
let us suppose that the integral (2.6.1) is just such an integral with endpoints a 
and b and any of the critical points cited earlier at these endpoints. We then set 

I (2)  = Ia(J-1 + It,(AL (2.6.9) 

where 

Ia (d )  = [I - q(t ,  ctl, a2 )]f(t)eiA@’(t)  dt ,  

q(t, a l ,  az)f(t)ei’@’(‘) dt, 

.lab 
(2.6.10) 
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and a < a1 < az < b. The integral I,  has a critical point at t = a only, while 
I ,  has a critical point at t = b only. Furthermore, since 1 - q E 1 at t = a, 
with all of its derivatives equal to zero there, we can expect that the asymp- 
totic expansion of I ,  will depend only on the local properties of f and 4 near 
t = a. In particular, let us suppose that we introduce the neutralizer function 
in the case in which (2.6.4) is true near t = a. Then choosing a2 so that this is 
true everywhere on [a, b] where 1 - q is nonzero, we find that 

We remark that a similar result holds for I , ,  the only differences being that a 
is replaced by h and that the power of -1 is reduced by one. 

Thus, viewing our integration by parts result in the larger context, we can 
now think of these differences as characterizing the distinctions between 
contributions at left ( t  = a) and right ( t  = b) endpoints, contributions in 
which both f and 4 are differentiable to all orders and 4' is nonzero at the 
endpoint. 

Exercises 

2.17 Calculate the asymptotic expansion as 2 -+ co of 

jlz - t * e i i t 2  dt .  

2.18 Rederive the result (2.6.7) in the following manner: Introduce a new 
variable of integration u = $(t) in (2.6.1) and thereby express that integral as 
one of the form (2.6.2). Express your answer in the form (2.6.3) in the new 
variable u, and reintroduce t to obtain (2.6.7). 
2.19 Let 

Show that one choice of q is 

2.20 ldentify the critical points of the following integrals. 

exp{ iL[x cos e + y sin 0 - ct sign(sin e)] ] 
{ 1 - COS2 0) 

do. 



2.7 The Method of Stationary Phase 77 

2.21 
expansion of this integral as a special case of (2.6.7). 

Suppose that i is replaced by - i  in (2.6.2). Derive the asymptotic 

2.7 THE METHOD OF STATIONARY PHASE 

We are now prepared to consider a critical point at which 4‘ vanishes. 
Such a point is called a stationary point. If the second derivative does not 
vanish there, the stationary point is called simple or of order one. Higher- 
order stationary points are classified by the last vanishing derivative. Thus, 
at a stationary point of order two, both the first and second derivatives 
vanish, and so on. 

Let us consider, therefore, the integral 

Ia (A)  = f(t)e’““‘) dt. Jab (2.7.1) 

Here by the notation I , ,  we mean to imply that f vanishes “infinitely 
smoothly” away from some right neighborhood about the left endpoint a. 
That is, we assume the integrand has been multiplied by a neutralizer even 
though we do not explicitly write it down. The left endpoint t = a is assumed 
to be a simple stationary point, so that 

&(a) = 0, I$”(u) # 0. (2.7.2) 

Because of the neutralizer, there are no other critical points on the domain 
of integration. 

Let us introduce a new variable of integration u by the equation 

uz = p { + ( t )  - 4(a) } ,  p = sign4”(u). 

Here multiplication by p ensures that u2 is positive everywhere of interest on 
the integral of integration (why?); then we set 

u = JIM) - ml. (2.7.3) 

We have chosen the positive square root here so that u increases from zero 
as t increases from a. In fact, near t = a, 

u = Jml ( t  - a) + O(( t  - a)2). (2.7.4) 

This transformation can be inverted to yield 

t = a + J m u  + O(u2). (2.7.5) 

In terms of the new variable of integration I ,  can be written as 
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Here the function F(u) is defined by 

(2.7.7) 

and x 2  is the right endpoint of the support of f(t); u2 plays the same role here 
as it did in the discussion of the neutralizer in the preceding section. We 
remark that since f(t) vanishes infinitely smoothly at a2,  so must F(u)  at 
4(aZ). That is, the only critical point is still the left endpoint. 

Remarkably, the asymptotic expansion of this integral can be calculated 
by integration by parts. The method of derivation was formulated by Erdelyi 
[1955, 19561. To carry out the integration, introduce the iterated integrals 

Here the path of integration is a ray in the complex r~ plane starting from the 
endpoint u and ending at infinity in a direction in which the exponential 
decays to zero. We leave it to the exercises to verify that these functions are 
iterated integrals of the exponential appearing in (2.7.6). Furthermore, we 
can show that 

Here the gamma function 

T(z) = f:' t ' - l e - 'd t ,  Rez > 0; T ( n  + 1) = n ! .  (2.7.10) 

We are now prepared to calculate the integral (2.7.6) by integration by 
parts. The result is 

Another integration by parts here allows us to conclude that the error is 
O(A-'Nf1)'2). Therefore, the first line provides an asymptotic expansion with 
respect to the auxiliary sequence 

This asymptotic expansion has the disadvantage that it is expressed in 
terms of the auxiliary function F, which arose through a transformation of 
coordinates. We see, however, that the result does not depend on global 
properties of F but only on local properties, namely, F and its derivatives, 

' I i 2  1. 
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near the critical point u = 0. This, in turn, depends on the power series for f 
and 4 near t = a. It is straightforward but tedious to carry out the power 
series expansions necessary to obtain all Fcn)(0). We first write F in terms off 
and 4, expand those functions in powers of ( t  - a), expand this variable in 
terms of u from (2.7.3), and substitute into the expression for F. This yields 
the coefficient of each power of u in the series expansion of I;, thereby yielding 
the coefficients in (2.7.1 1). 

According to Bleistein and Handelsman [ 2 ] ,  this process has been 
carried out sufficiently far to yield three terms of the asymptotic expansion in 
terms of the original functions. For our purposes, two terms will suffice. The 
result is 

Here we have used the facts that r($) = fl, r(1) = 1. 
If the stationary point of interest were at the right endpoint of integration 

t = b, then the derivation would change as described briefly below. First, 
replace (2.7.1) by 

I&) = f(t)e""") dt .  (2.7.13) Jab 
Here it is understood that the only critical point is at t = b, where 

$'(b) = 0, +"(b) # 0. (2.7.14) 

We again introduce a change of variable of integration 

uz = p { 4 ( t )  - $ ( h ) ) ;  p = sign $"(h). (2.7.1 5 )  

However, we now choose the negative square root in solving for u, 

I.4 = - 1 4(t) - m)/ (2.7.16) 

so that u increases from zero as t decreases from b. 
In the result r(2.7.1 l)], we need only replace a by b and change the sign of 

the second line in order to obtain the asymptotic expansion of I&). The 
result is 
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In fact, if the entire series for I ,  and I ,  is generated, the signs of the latter will 
alternate compared with the signs of the former. Consequently, for an interior 
simple stationary point, the first, third, etc., terms will add, while the second, 

That is, only half-integer powers will appear in this combined series, while all 
powers of the form 

Thus, if t = c is an interior simple stationary point of I @ ) ,  then to the same 
order of accuracy as the preceding expansions, 

fourth, etc., terms will cancel, leaving a series in powers ,...}. 

1 will appear in either of the former series. 

(2.7.18) 

This last result is often referred to as the stationary phase formula. The reader 
is cautioned, however, that this phenomenon of left and right-endpoint terms 
adding is not generally true for higher-order stationary points. 

As a simple application of (2.7.18), we consider the integral representation 
of the Bessel function of the first kind of integer order n :  

This is a sum of two integrals for which 4 = T sin t. Both of these phases 
have a simple interior stationary point at t = n/2, with 4"(n/2) = f l .  
Applying (2.7.18) to this example yields 

cos[A - nn/2 - n/4]. (2.7.20) [y2 C e' +i[ l -nn/Z -x/41) iv 1 
Jn(A) - -- 

J2nl  f 

Actually, this is the leading order expansion for noninteger values of n as well. 
The method used here to derive the stationary phase formulas can be 

generalized to treat a stationary point of arbitrary (not necessarily integer) 
order and also to integrable algebraic behavior in f(t). Furthermore, 
multiples of log t can be introduced as well. The method requires an appro- 
priate transformation to a new variable u, definition of the iterated in-iegrals 
completely analogous to our functions k(-"), and expression of the resulting 
integrals from u = 0 in terms of gamma functions. We shall state some results 
along these lines below. 

Let us suppose that near t = a+ 

W )  - $(a) = $At - a)a + o((t - a)a), o! > 0, 

y > 0. 
(2.7.21) 

f ( t )  = f , ( t  - a)(Y-l) + o((t - a)?-'), 
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Then 

Similarly, let us suppose that near t = b-  

(2.7.2 3) 
,f'(t) = fb(b - t y - l  + o((b - t)"-l), 6 > 0. 

Then 

In both of these results, the asymptotic expansion of the integral depends 
only on asymptotic properties of the amplitude and phase near the endpoint 
of interest. The only global dependence in these results is manifested in the 
gamma function with complex multiplier, which really arises from the 
feature that the function with the large parameter in it (and consequent vapid 
variation) is the Fourier kernel. Another feature of interest is the dependence 
of the asymptotic order of the results (2.7.22) and (2.7.24) on the order of 
vanishing of the phase and amplitude at the critical point. Let us consider 
1, (or I , , ) ,  which is O ( X y i U )  when f = O((t - and 4 = O((t - a).). We 
see that this power of A becomes more negative (la becomes asymptotically 
smaller) when the order of vanishing of the amplitude f increases, but this 
power of A becomes less negatiue ( I ,  becomes asymptotically larger) when the 
order of vanishing of the phase 4 (order of stationarity) increases. 

Exercises 

2.22 Consider the sequence of functions { k ( - " - ' ) }  defined by (2.7.8). 
(a) Show that 

(b) Show that 

(c) For u = 0 in (2.7.8), introduce the variable of integration 
= ; I - ~ / Z ~ ~ ~ P X / ~  

7 

and verify (2.7.9) by using the definition (2.7.10). 
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2.23 Write the explicit results for (2.7.22) and (2.7.24) for the cases listed 
below. 

(a) 1, + I,, a = B = y = 6 = 1. Compare with the leading term ob- 
tained by integration by parts. (They should agree !) 

(b) I a ,  a = 3, y = 1 .  Express the coefficients in terms of derivatives 
of j and 4. 

(c) I,, B = 3, 6 = 1. Express the result as in (b). 
(d) I , ,  a = 1, y = l. 2 

(e) I , ,  B = 1, 6 = +. 
(f) Z,,a = 2 9 y = 2 2. 

2.24 Calculate the leading order contribution from each critical point to 
the asymptotic expansion of the following integrals. 

(a) ~ ( n )  = J; e W + c o s r )  dt .  
(b) I @ )  = J A  { 1 - t2}-’/2ei’t’  d t .  
(c) Both of these examples have a second-order stationary point. Con- 

sider the introduction of a change of variable of integration such as (2.7.3), 
and develop the asymptotic expansion along the lines of the discussion in 
this section sufficiently far to estimate that the error in each expansion here 
is o(A-”’). 
2.25 (a) From the definition of the Bessel function [(2.7.19)], write a 
representation for Ja(Ar) valid for A, an integer. Show that for r > 1, 

(b) For r = 1, show that 

~ ~ ( 1 )  - I-(+)/~~/~&W’~. 

2.8 MULTIDIMENSIONAL FOURIER INTEGRALS 

We consider integrals of the form 

I@) = f(x)eia@(xx) dx , x = (X1,X2,...,Xrn). (2.8.1) 

Here Cp is real, D is a bounded connected domain in Euclidean m-dimensional 
space, and dx denotes the volume element in m-space. 

Our treatment of one-dimensional integrals in the previous two sections 
might lead us to expect that the asymptotic expansion of this integral will 
depend on the nature of the integrand in the neighborhood of certain possible 

I 
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critical paints. 'These are 

(i) points in D at which V 4  = 0, 
(ii) points at which f or 4 fails to be infinitely differentiable, and 
(iii) all points on dD, the boundary of D. 

Points at which V$ vanishes are stationary points, and points on dD corre- 
spond to the endpoints of integration in the one-dimensional integrals. Of 
course, the critical nature of these points can only be established by deter- 
mining associated contributions to the asymptotic expansion of I(,?). We will 
assume for the moment that f and 4 are infinitely differentiable on D, D, 
and its boundary dD and that V 4  # 0 on that domain. Then if our list is 
correct, only the critical points of type (iii) are possible. 

In order to check this, we will calculate an alternative representation of 
I( ,?)  by integration by parts, which in higher dimensions means by the 
divergence theorem. In order to use the divergence theorem, we need the 
identity 

We now substitute the right side here into (2.8.1) and apply the divergence 
theorem to the first term to obtain 

o = (crl,~2,..',crm-l), 1L = = 4(W) .  
Here do is the "surface area element" on the (m - 1)-dimensional boundary 
aD and .fi the unit outward normal to that boundary. We see that the first 
term is an integral over the boundary while the second term is an integral 
of the same form as I itseyexcept that it is multiplied by (i,?)-'. It is reasonable 
to expect that this second term is asymptotically of lower order than I and, 
therefore, that the leading term must arise from the first integral, that is, 
from the boundury. 

Admittedly, we know no more about the asymptotic expansion of (rn - 1)- 
dimensional integrals (except when m = 2) than we do about m-dimensional 
integrals. However, that will be remedied later. For now, let us proceed to 
apply this process recursively to obtain 

(2.8.4) 

gntl = .fi*Hn; n = 1,2 ,...; f O  = f .  
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We have replaced Z(A) by a sum of integrals over the boundary plus a volume 
integral like I itself multiplied by an arbitrarily large negative power of 1. 
Thus, we conclude that the asymptotic expansion in this case is dominated by 
the boundary integrals. Furthermore, if f(x) and all of its derivatives vanished 
on the boundary, then, in fact, all of the boundary integrals are zero and 

Z(A) = O(A-”), any N .  

We can use this last observation to isolate the critical points, much as we 
did for one-dimensional integrals. Let us suppose that we have identified a 
number of critical points in the domain D. Introduce a multidimensional 
van der Corput neutralizer function to isolate each of those critical points. 
This can be accomplished by introducing either a neutralizer function of 
radial distance for each critical point or a product of one-dimensional 
neutralizers in each independent variable for each critical point. Subtracting 
the sum of these neutralizers from unity yields a function that isolates the 
boundary as the only set of critical points. Then, of course, we would have to 
apply our methods for multidimensional integrals to this (m - 1)-dimen- 
sional integral. Thus, we can now think of our integral I in (2.8.1) as having 
only one critical point for the purposes of deriving asymptotic expansions. 
Then, a sum of contributions from the critical points of interest will yield 
an asymptotic expansion. 

Actually, our goal will be much more modest. We shall derive the asymp- 
totic expansion of I @ )  for the case in which the integrand has only one 
singularity, a simple stationary point. A stationary point xo will be called 
simple if 

where A is called the Hessian matrix Tor 4. We will now assume that I as 
defined by (2.8.1) has only this critical point in the domain of integration D 
and vanishes “infinitely smoothly” at the boundary. Our goal is to obtain the 
leading term of the asymptotic expansion of I@). 

The properties of the matrix A will play a crucial role in this development. 
To begin, let us denote the positive eigenvalues of A by A1 1, . . . , A,, r I rn, 
and the negative eignevalues of A by &+ Ar + z ,  . . . , A m .  The signature of A, 
to be denoted by sgn A, is the difference in the number of positive and 
negative eigenvalues given by 

sgn A = 2r - m. (2.8.6) 
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Because A is a symmetric matrix, there exists an orthogonal matrix QJ which 
“diagonalizes” the matrix A ;  that is, 

QTAQ = diag[l,, ..., A,]. 

Here diag denotes a matrix with only diagonal elements as listed inside the 
brackets. 

We think of the vector x - xo as a horizontal array and introduce a new 
set of variables of integration by the matrix equation 

( X  - x ~ ) ~  = QRzT, 
(2.8.7) 

R = diag[1;1’2, ..., lA , .+ l / -1 /2 ,  ..., l lml-1/2] .  

We remark that 

qqx) - &xo) E + ( X  - xo)A(x  - xo)’. (2.8.8) 

After the transformation (2.8.7), 

O(z) = +(x(z))  - +(x0) z Z~RQ’AQRzT 1 x A[ zj” - f 41. (2.8.9) 

Remarkably, this approximate result can be made exact. That is, there exists 
a change of variables that in some neighborhood of the stationary point, now 
z = 0, is (i) infinitely differentiable, (ii) one-to-one, and (iii) transforms the 
phase exactly into a sum of signed squares;$ thus, 

(2.8.10) 

2 j = 1  j = r +  1 

t j  = h,(z) = z j  + o( l z l ) ,  j = 1 ,..., m. 

Furthermore, 
m 

W S ) )  = 4(x(z (S) ) )  - m o )  = - 1 tj” - 1 E:]. (2.8.11) 2 ’[ j = 1  j = r + l  

The transformation from x to 6 yields a new representation of the integral 
(2.8.1): 

r(1) = eiJ.44xo) JD Fon”(5)eiApP’512 d 5 .  (2.8.12) 

Here we have explicitly introduced the neutralizer function denoted by n”(Q. 
This will play a crucial role in the analysis that follows. Also, in this equation, 

is the image of D under the change of variable of integration 

P = ( t ~ * * * . , t r ,  - t r + ~ , . * . ,  - t m ) ?  Fo(t)fi(t) = f ( x ( S ) ) J ( t ) ,  (2.8.13) 

A real matrix Q is orthogonal if its transpose is its inverse: QQ’ = I; the superscript T 
denotes transpose. 

* Proof by J.  Milnor. 
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and J is the Jacobian of the change of variables 

J = det - . I [::I1 (2.8.14) 

We remark that J can be calculated as a product of Jacobians of the trans- 
formations from x to z and from z to {. At the stationary point, from (2.8.10) 
the latter transformation has Jacobian equal to unity, while from (2.8.7) the 
former transformation has Jacobian equal to 1 det A 1 - ' I 2 .  Thus, 

J ( 0 )  = (det A1 - l i Z .  (2.8.15) 

We now set 

Fo(5) = FO(0) + P Ho * (2.8.16) 

The vector function Ho is not uniquely determined. However, one choice of 
this vector is 

The ambiguity in H will not affect the asymptotic expansion. 
We substitute (2.8.16) into (2.8.12) and write this result as 

where 

(2.8.1 8) 
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r and 
(2.8.19) 

J B  

We shall deal with I, first. We remark that the factor p in the amplitude is 
proportional to the gradient of the phase. Thus, this integral can be calcu- 
lated by the divergence theorem. That is, we write 

1 
iA p * Hofi(&iiP'k = - [V * [Hoii(&i'.P'S] - V * [Hofi(~)]ei'pP.k] 

and apply the divergence theorem to the integral of the first term on the 
right side of this equation. The result is 

Zl(A) = -7 [fiVg.Ho + Ho*Vcii]e''vy2d~. (2.8.20) 
12 's B 

There are no boundary terms here because the neutralizer and its derivatives 
vanish on the boundary. This integral is of the same form as I (A)  itself except 
for the multiplier I/iA. Thus, we anticipate that this integral is of lower order 
asymptotically than Z(A) and that the leading order expansion must come 
from the first term. Furthermore, the second term of the integrand in I ,  (A) 
has no critical points at all because the gradient of the neutralizer is identically 
zero at the critical point and is infinitely differentiable. The first term in I, (A) 
is an integrand exactly like the integrand in I(A), and we could contemplate 
continuing the expansion process that led to (2.8.17) recursively, continuing 
from this integral. This process is discussed by Bleistein and Handelsman 

Let us now turn to Io(A). We contemplate the effect of replacing the 
neutralizer f i  by a product of one-dimensional neutralizers along the coordi- 
nate axes. The difference of these two functions is an infinitely differentiable 
function that is identically zero at the critical point. The integral of this 
difference has no critical points at all and as has been shown, is asymptotically 
zero to all orders in A. Therefore, we can write 

[1975a,b]. 

Each integral in this product can by approximated asymptotically by our 
one-dimensional stationary phase formula for an interior stationary point 
[(2.7.19)], The result is 

Io(A) - [2.n/3L]m/2e'SgnA"'4. (2.8.22) 

Here one factor of [2z/A] '/' arises from each one-dimensional integral. For 
each p, = t j ,  we obtain a factor elni4; for each pj = - l j ,  we obtain a factor 
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. The multiplier sgn A counts those occurrences of positive and negative 
signs. In order to determine the leading term of the asymptotic expansion of 
I @ ) ,  it is only necessary to determine the amplitude F,,. This is done by 
using (2.8.1 3) and (2.8.15). Finally, we collect these results and substitute into 
(2.8.18) to obtain 

- i n /4  

This is the multidimensional stationary phase formula. 
Notice that the one-dimensional stationary phase formula r(2.7.1 8)] 

agrees with this result for rn = 1. The fact that the leading terms in (2.7.12) 
and (2.7.13) are half of the result (2.7.18) has its analogy in rn dimensions. In 
particular, if (p has a simple stationary point at a “smooth” point on the 
boundary of D, then the contribution from that point is indeed half the result 
(2.8.23). For a stationary point at a “corner’’ on the boundary, only a few 
results are known; this is still an open area for research. 

Exercises 

2.26 Suppose in (2.8.1) that # has no stationary points in b so that (2.8.3) is 
true. Show that the stationary points of # are those points on the boundary 
where V# is normal to the boundary. Thus, conclude that even a linear phase 
const. x can have boundary stationary points in an integral in two or more 
dimensions. 
2.27 In (2.8.1), let rn = 3 and view the integral after diagonalization of the 
exponent as an iterated integral in three variables. Using your knowledge of 
the asymptotic order of one-dimensional integrals, estimate the asymptotic 
order of I @ )  for each of the following cases. 

(a) (p has a simple stationary point, and f and 4 are “smooth.” 
(b) As in (a) except that one of the eigenvalues of the Hessian matrix is 

zero and the third directional derivative in the direction of that eigenvector 
is nonzero. 

(c) As in (a) except that the amplitude has a simple zero in one of the 
principal directions. 

(d) Phase as in (b) but amplitude as in (c). 
2.28 In (2.8.1), suppose that 

f(x) = sin x, , 

#(x) = sin x1 cos x2 sin M cos fl + sin x1 sin x2 sin M sin fl + cos x1 cos x ,  

and D is the domain 0 5 x1 I n, 0 I x2 I 2n. Find the asymptotic 
of I to order 2 - l .  
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3 SECOND-ORDER PARTIAL 
DIFFERENTIAL EQUATIONS 

Before beginning our discussions of specific second-order partial differ- 
ential equations, we shall make some general remarks about such equations 
in this chapter. By second order we mean an equation that includes derivatives 
up to and including second-order partial derivatives of the unknown function 
and none of higher order. If the equation is written in the form 

then the partial derivative of F with respect to one of its second derivative 
arguments should be nonzero. We shall not be dealing with such a general 
equation but with “much simpler” linear second-order equations. 

We shall be concerned with analytical solution techniques, both exact and 
approximate. The kind of solution we mean here is the solution to a problem 
that consists of both a partial differential equation for an unknown function 
in some prescribed domain of the independent variables and a set of data 
on the boundaryt of the domain. These data will consist of functional 
relationships among the unknown and its directional derivatives directed 
out of the boundary. 

Such a problem for an unknown function arises from an attempt to use 
mathematics to model some physical or other observable phenomenon. Thus, 
a priori there is no reason to expect that this problem will have a solution at 
all. In fact, there are three properties of interest, namely, 

(i) the existence of a solution, 
(ii) the uniqueness of the solution, 

(iii) the continuous dependence of the solution on the data. 

’ In this general context, initial data can be viewed as a form of boundary data on the 
boundary t = 0. 

90 
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When a particular type of problem-equation plus data-is known to 
exhibit all three of these properties, it is said to be well posed in the sense 
of Hadamard. 

There is an interesting result as regards the existence and uniqueness of a 
solution to a particular class of problems. It deals with the most natural 
extension of the initial value problem for ordinary differential equations to 
partial differential equations. 

Suppose that U satisfies a partial differential equation of order n in rn 
independent variables. Suppose that one particular derivative of order n with 
respect to one variable is singled out so that the form of the equation is 
a"U/axl equals a function G of the independent variables, U, and all other 
derivatives to order n. We suppose further that "initial data," U ,  and its 
derivatives to order n - 1 with respect to x1 are given at x1 = 0. Choose a 
fixed point on this initial manifold by fixing the values of the other inde- 
pendent variables, and consider finding a solution about this point by formal 
power series methods. If in some neighborhood of this initial point, all of the 
power series deduced from these initial data converge and the power series 
expansion of G converges in all its variables, then the power series solution 
will also converge in some neighborhood of this point to provide a unique 
solution of the initial value problem. 

The preceding is a paraphrase of the Cauchy-Kowaleski theorem. More 
generally, the (rn - 1)-dimensional initial manifold could be any analytic 
surface in rn-dimensional space, with the function and (n - 1) directional 
derivatives out of the manifold being prescribed. Also, the power series need 
not be about the origin in all variables; straightforward translation of the 
dependent and independent variables overcomes this constraint. It is only 
additionally necessary now that the partial differential equation can be 
solved for the nth derivative off the surface. 

This generalization of the initial value problem is called the Cauchy 
problem. The data, U ,  and (n - 1) directional derivatives out of the surface 
are called Cauchy data. Thus, in Chapter 1, we studied the Cauchy problem 
for first-order equations. We did not solve that problem by power series. 
However, in order to solve on the manifold (curve, surface, etc.) where U was 
given, it was necessary that we be able to solve for the first directional 
derivative out of that manifold. In this case, existence and uniqueness in 
some neighborhood of the initial manifold were confirmed. Although we did 
not speak to the question of continuous dependence on the initial data, that 
is true as well. 

While the Cauchy-Kowaleski theorem does guarantee existence and 
uniqueness, it does not speak to the issue of continuous dependence on the 
data. In fact, as we shall see from subsequent examples, it cannot, because the 
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initial value problem does not always satisfy this criterion; that is, for some 
problems, the initial value problem is ill posed. 

3.1 PROTOTYPE SECOND-ORDER EQUATIONS 

There are three second-order partial differential equations of interest to 
us here. One of these is the wave equation 

1 
AU - 7 U,, = F(x, t ) .  

c 

Here 

(3.1.1) 

(3.1.2) 

is the Luplace operutor. In one spatial dimension, this equation models the 
“vibrating string,” with U being the small-amplitude transverse motions of 
the string under tension and applied transverse force F. The equation also 
models the dynamics of a vibrating wire, such as a guitar strong, when the 
amplitude of the transverse motions is sufficiently small to make the stlfSness 
of the wire unimportant to the model. An adequately precise meaning of 
small requires a discussion of the assumptions made to deduce this simple 
equation from the governing physical laws of the dynamical system at hand. 
This discussion is outside the scope of this book. In two spatial dimensions, 
the wave-equation models the dynamics of small-amplitude vibrations of a 
stretched membrane or certain small-amplitude waves on the surface of the 
water. In three dimensions, it models the propagation of acoustic waves and 
special cases of elastic and electromagnetic waves. 

The second prototype equation is the Helmholtz or reduced wave equation 

AU + (w’/c’)U = F(x). (3.1.3) 

This equation arises by applying the Fourier transform in t to the wave 
equation. The case w = 0 is of interest in its own right; it is called the potentiul 
equation or Laplace equation : 

AU = F(x). (3.1.4) 

The function U could be an electrostatic potential (voltage), with its gradient 
being a force per unit charge. Alternatively, U might be a fluid potential with 
its gradient a flow velocity vector. Note from the second example that the 
lack of time dependence does not imply a lack of motion, but only an absence 
of variation of that motion with time. This equation can model wave motion 
through the time dependence of boundary data, such as when it models 
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fluid flow in the interior of the ocean with a time-dependent boundary 
condition at the surface. (See Whitham [1974, Section 13.31.) 

The third prototype equation is the heat or diffusion equation 

AU - KU, = F(x, t).  (3.1.5) 

As its name implies, this equation models the flow of heat and other difluusive 
processes. One discussion of this equation will be limited to comparisons with 
the wave equation and reduced wave equation for qualitative purposes only. 

We remark that the second-order operators appearing in (3.1.4) are 
extremely special cases of the most general second-order operator 

n 
a Z u  

LU = 1 aij-. 
i , j = l  axi axj 

In the preceding prototypes, the coefficients aij are f 1 or 0. Thus, we might 
contemplate the process of “diagonalizing” the general second-order operator 
by a transformation of coordinates to yield an operator with coefficients L- 1 
or 0, as in our prototypes. When the coefficients a,, are constants, a linear 
transformation of type (2.8.7) will achieve this end. When the coefficients are 
variable, it is possible to achieve the same diagonalization globally only in 
two dimensions. In higher dimensions, we can diagonalize the operator only 
locally in the neighborhood of a point. (For a more complete discussion, see 
Garabedian [ 19641 .) 

In either case, whether the diagonalization is achieved locally or globally, 
the process suggests a means of classifying second-order operators by means 
of the properties of the eigenvalues of the matrix of coefficients. Thus, if all 
of the eigenvalues are nonzero and of one sign, the second-order operator 
can be reduced to the Laplace operator in all independent variables. This 
type of equation is called elliptic. If all eigenvalues are nonzero and exactly 
one of them is of opposite sign from the others, the second-order operator 
can be diagonalized to the wave operator in all variables. This type of 
equation is called hyperbolic. Again, with all eigenvalues nonzero, if there are 
at least two of each sign, the equation is called ultrahyperbolic. Finally, if at 
least one eigenvalue is zero, the equation is called parabolic. Note that the 
heat equation is a special case of the latter in which all of the nonzero eigen- 
values are of the same sign and exactly one eigenvalue is equal to zero but 
the first derivative in the same “direction,” time, is nonzero. 

The question arises as to what type of problems we should consider for 
each of the prototype equations. Surely, one guide to the answer would be to 
consider a phenomenon that each equation models and to examine the sort 
of information that “naturally” arises from the modeled problem. Returning 
to the wave equation in one space dimension, we can think of the guitar string 
as a model. Here we would expect to know how each end of the string is held 
as well as how the string is “plucked.” The former constitutes one piece of 
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boundary data at each end of the string, that is, at each boundary point. The 
latter takes the form of both source information and initial data. That is, 
the following actions are possible: 

(i) an initial displacement is imparted to the string, 
(ii) an initial velocity is imparted to the string, and 

(iii) a force is continuously applied to the string. 

Thus, we are led to an initial boundary-value problem for the displacement 
of the string, which involves the wave equation in one space dimension, 
Cauchy data at the initial time, and a boundary condition at each point of the 
boundary. Clearly, analogous problems can be devised in higher dimensions. 
The extent of well-posedness for these problems has been extensively studied 
and will be discussed in subsequent chapters. 

As we have already mentioned, the Helmholtz equation (3.1.3) arises as 
the Fourier transform of the wave equation. Thus, we might expect that an 
appropriate problem for this equation can be deduced from the problems 
for the wave equation. One might expect here to consider problems in which 
the initial data for the wave equation are exchanged for additional source 
terms, while boundary data for the wave equation would lead to (Fourier 
time-transformed) boundary data for the Helmholtz equation. Hence, an 
appropriate problem to consider would be one in which a source term is 
prescribed along with one boundary condition at each point of the boundary. 

Similarly, a problem in which boundary data and source information 
are prescribed would be expected for Laplace’s equation. 

Finally, for the heat equation, we note that only a first derivative in t 
appears. Thus, for this equation, it is appropriate to impose one initial 
condition and one boundary condition at each boundary point. 

Implicit in our discussion has been the assumption that the domain of 
interest in time is semi-infinite, extending from zero to infinity. It is possible 
that the spatial domain of interest is semi-infinite or infinite as well. In this 
case, an appropriate “condition at infinity” will replace the boundary 
condition. This will be clarified in context. 

3.2 SOME SIMPLE EXAMPLES 

Let us consider the following problem for U :  

U ( x ,  0) = f’(x), UJX, 0) = 0. (3.2.1) 
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Here c is a constant. By direct substitution, we can verify that the solution to 
this problem for U is 

U ( x ,  t )  = 4 [ f ( x  - ct) + f ( x  + ct)] (3.2.2) 

so long as the function f has two derivatives with respect to its argument. 
Although this problem is extremely simple, some interesting observations 

of a general nature are exhibited by the solution. First, we note that small 
changes in f’ produce small changes in the solution U.  We shall later prove 
that the solution is unique, as well, for data taken from a large class of 
functions. That is, the solution to this problem is well posed. Second, suppose 
that f were discontinuous at a point xo . Then, so long as the “rays” x f ct = 
xo are avoided, the solution (3.2.2) remains valid. Of course, the limits as 
x f ct approaches xo from above or below are not the same but exhibit half 
the discontinuity at the initial point (xo, 0). That is, the discontinuity in the 
data propagates along these rays, or characteristics, of the second-order 
equation. We shall have much more to say about the characteristics of the 
wave equation in the next chapter. 

To recapitulate: We have demonstrated (i) existence, (ii) claimed unique- 
ness, and (iii) indicated continuous dependence of the solution on the data. 
Furthermore, we have seen, at least formally, that this equation admits 
solutions with discontinuous data and the discontinuities of the data p r o p  
agate on trajectories in space-time, which we shall again call characteristics. 

In Eq. (3.2.1), there is really no distinction between space and time except 
the writer’s arbitrary choice of labeling one independent variable by x and the 
other by t. Thus, we could as easily consider an “initial value problem” in x 
by imposing data at x = 0 for U and U,. Indeed, we could just consider the 
problem above with x and t interchanged and thereby demonstrate the exis- 
tence and continuous dependence of the solution on the data as well as the 
propagation of the discontinuities on characteristics. 

This interchangeability of x and t does not carry over into higher spatial 
dimensions. In particular, let us now consider the problem 

1 .  U(0,  y, t )  = -* sin ny sin t, 
n 

(3.2.3) 

sin ny sin t, n > 1 .  J.“-1 
n2 L‘JO, Y, t) = 
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The solution to this problem is 

1 
n2 

U(X, y, t )  = - sin ny sin t exp[x{n2 - 1) (3.2.4) 

It can be seen here that as n + 00, the data approach zero while the solution 
increases beyond all bounds for any x > 0. Indeed, even for finite n > 1, the 
solution increases beyond all bounds as x + m. Most often, the phenomeno- 
logical process being modeled will preclude such solutions. When such 
solutions are not precluded by the model, the researcher would be well 
advised to reexamine hisher assumptions leading to the mathematical model. 

This example is a slight variant on an example suggested by Hadamard for 
Laplace’s equation. This form has relevance to exploration geophysics. Let 
us suppose that an acoustic source is set off at or near the surface of the earth. 
A signal propagates into the earth and reflects energy from inhomogeneities 
in the earth back up to the surface. The objective is to map those inhomo- 
geneities from observations of the upward propagating wave. In the simplest 
model, this reduces to a Cauchy problem of the type (3.2.4) to downward 
continue the upward propagating wave back to the anomalies that produced 
it. From this example, it can be seen that this problem admits exponentially 
growing solutions. Whether or not they occur depends on the sign of n 2  - 1, 
that is, on the relative oscillation rates in the transverse dimension and time 
of the observed data. Even when one can guarantee on physical grounds that 
the actual wave field does not have such exponential modes, it may be that 
they arise through the presence of noise in the observed data. Thus, ill- 
posedness in the sense of Hadamard is an extremely practical and meaningful 
concept. 

We turn now to two problems for Laplace’s equation in two dimensions. 
First, we consider the problem 

AU = 0, r = Jm < 1 ;  U = f (0 ) ,  r = 1. (3.2.5) 

Here 0 is the polar angle measured from the x axis. We obtain the solution by 
Fourier series, assuming that 

(3.2.6) ao(r) V ( r ,  0) = - + C a,(r) cos n o  + h,(r) sin nf?. 
2 n = 1  

Recalling that in polar coordinates Laplace’s equation has the form 

we obtain the following equations for the coeflicients of the series: 

(3.2.7) 

d2u 1 du n2 -+  - - - - u  = 0 , u = a n , b , , n = O , l ,  .... (3 -2.8) 
dr2 r dr r2 
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Modulo a constant scale factor, these equations have the solutions 

a, = 1, logr; a,,b, = r+", n = 1,2 ,.... (3.2.9) 

In order that U and its derivatives remain bounded in the domain of interest, 
we choose from among these solutions only the nonnegative powers of r. 
Thus, the solution U is of the form 

m 

(3.2.10) C O  U(r ,  0) = - + r" [cn cos nt3 + d,  sin no], 
2 n = l  

with constants c, and d, to be determined. We now impose the boundary 
condition in (3.2.5) and find that these constants are the Fourier coefficients 
of the function f :  

c, = - 

d, = &Jo f (4)s inn4d& 

f'(4) cos n 4  d 4 ,  
(3.2.1 1) 

in JO2" 

2 n  

n = O,l, .... 

As with the wave equation, we have demonstrated existence by exhibiting a 
solution. Again, we do not address the question of uniqueness (which holds). 
As for continuous dependence on the data, that holds but is not so transparent 
from the Fourier representation of the solution. The reader should be 
cautioned, however, that this need not be the case for all elliptic partial 
differential equations or for all types of boundary conditions. In particular, 
the Helmholtz equation on a bounded domain admits eigensolutions for 
particular choices of w. See Exercise 3.1. 

We present now the more traditional Hadamard example. Thus, we 
consider the problem 

AU = 0, x > 0; U(0,  y) = 0, U,(O,y) = n - l  sinny. (3.2.12) 

The solution to this problem is 

U = n p 2  sinh n x  sin ny. (3.2.1 3) 

Again, it is seen that the data approach zero with increasing n but that the 
solution increases beyond all bounds for increasing n and x # 0. Further- 
more, for any n, the solution increases beyond all bounds for I x I approaching 
infinity. 

Finally, we turn to problems for the heat equation. Let us consider first 
the initial value problem 

a2u au 
a x 2  at 

= 0, U ( x ,  0) = f (x ) .  (3.2.14) 
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We leave it to the exercises to show that the solution to this problem is 

f(t)exp(- (x - t I2/4t)dt .  (3.2.1 5 )  
1 

U ( x ,  t )  = ~ 

2 4 2  --u, 

It is straightforward to check by formal differentiation under the integral 
sign that U does indeed satisfy the differential equation. It is less apparent 
that U satisfies the initial condition. In fact, it does so only in the limit as t ap- 
proaches O +  ; that is, the limiting process here defines a Dirac delta function. 

The solution exhibits continuous dependence on the data. Indeed, this 
problem is well posed. 

The ill-posed problem for Laplace's equation [(3.2.12)] also provides an 
example for the heat equation in two spatial dimensions and time. 

We have demonstrated now both well-posed and ill-posed problems for 
the three major classifications of second-order equations. These issues will 
remain of concern to us in the chapters that follow. 

Exercises 

3.1 Consider the Helmholtz equation in the form 

AU + A2U = 0. 

(a) Let the domain of interest be the square 1x1 I n, 14'1 I n. Verify 
that the functions 

Unm(x, y) = sin nx sin my, n, m = 1 ,2 , .  . ., 
satisfy this equation so long as 

A = A,, = J F T - 2 .  
Furthermore, each U,, is zero everywhere on the boundary. 

(b) Derive the analogous result for the interior of the unit circle. 
(c) What are the implications of this exercise as regards the uniqueness 

Using the results (2.2.12) and (2.2.14) for the one-sided Fourier trans- 
of solutions of the Helmholtz equation on a bounded domain? 
3.2 
form, introduce s, w = is, and deduce the L,aplace transform formulas 

U(t)e-'* dt, Re s > q ,  

and 
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3.3 

Call it u(x, s). By applying this transform to (3.2.14), obtain the problem 

Solve the problem (3.2.14) as follows: 
(a) Introduce the Laplace transform of U(x. t )  as defined in Exercise 3.2. 

u”(x, s) - su(x, s) = - f ( x ) .  

(b) Derive the solution to this problem, analytic in the right half s plane, 

1 ”  
u(x, s) = ~ 2JrS, s ( t ) e x P ( - f i ( x  - t l ) d t >  

where J. is defined by -z  < arg s I z. 
(c) Conclude that 

(d) Interchange the order of integration and verify that the integral 
over s is zero for t < 0, except possibly when x = 5 .  

(e) For t > 0, except possibly at x = 5 ,  justify deforming the contour in s 
onto a “keyhole” contour around the negative s axis, i.e., about the line 
args = fn. 

( f )  Introduce f i  = q and obtain 

1 “  c + i m  

2nl .I-m J c - i m  
U(X, t )  = -. d t  f(0 drl exP(-?(x - 51 + q2t),  

where again c > 0. 
(g) Finally, set q = io and calculate the integral in q to obtain (3.2.15). 
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4 THE WAVE EQUATION 
IN ONE SPACE DIMENSION 

This chapter will be devoted to the study of the wave equation in one space 
dimension. In Chapter 5, the wave equation in two and three dimensions will 
be discussed. As noted in Chapter 3, in one space dimension, there is really no 
distinction between space and time as far as the equation itself is concerned, 
while in higher dimensions, there is one second derivative whose coefficient is 
opposite in sign to the coefficients of all the other second derivatives. A 
number of the consequences of this observation will be demonstrated in this 
chapter. We begin with a discussion of the wave equation in one space 
dimension and then discuss the equation in higher dimensions. 

4.1 CHARACTERISTICS FOR THE WAVE EQUATION 
IN ONE SPACE DIMENSION 

Let us consider the wave equation 

U,, - F 2 U , ,  = F ( x ,  t, U ,  U,, Ut). (4.1.1) 

We contemplate the possibility of introducing new variables in this equation: 

5 = W? t), v = 9 ( X >  t )  (4.1.2) 

to be chosen so that the equation in the new variables <, g does not contain a 
second derivative with respect to at least one of these new variables. Thus, 
we set 

U(X, t )  = V(<,  v )  (4.1.3) 
100 
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and note that the second derivatives with respect to x and t can be rewritten 
as second derivatives with respect to t and to yield the following form of 
the wave operator: 

v,, - c-*vt, = V&f - c-”?] + V,,[$X’ - c-’$;] 

+ 2V<q[4x$x - c-”r+,I + .... (4.1.4) 

Here the ellipses ( . .) denote terms involving first derivatives with respect to 
5: and q .  

Setting the coefficient of Vcr or V,, equal to zero leads to the requirement 
that 4 or t,b be a solution of the same quadratic first-order partial differential 
equation. We can set both of these coefficients equal to zero by choosing 4 
and $ to satisfy the two distinct linear first-order equations 

4, + c-l(bt = 0, +, - c - l$ t  = 0. (4.1.5) 

Then (4.1.1) has the form 

Vtq = Fl(5, ‘I, v, v<, v,,. (4.1.6) 

Thus, we see that (4.1.1) can be satisfied by a function that has a discon- 
tinuous first directional derivative along one of the space-time directions 
defined by the normals to the level curves of the solutions to (4.1.5). That is, 
the level curves themselves are boundaries across which the solution may 
have a discontinuous first derivative. As in the one-dimensional theory of 
Chapter 1, these curves are called characteristics. 

Associated with the solutions of (4.1.5) are characteristics for those two 
first-order partial differential equations. These are called bicharacteristics of 
the second-order equation (4.1.1). With t as an independent parameter on the 
bicharacteristics, we find that the characteristic equations for (4.1.5) take 
the form 

= 0. (4.1.7) - -c, - - 0  and - - c,  -- 
dt dt dt dt 

d$ dx dx d 4  -=  

We see here that the bicharacteristics are just the curves along which 4 or II/ 
is constant; that is, in this one-space-dimensional problem, they are the 
characteristics themselves. Furthermore, if a characteristic is viewed as a 
point in space moving at a prescribed speed as time progresses, then from 
(4.1.7), that speed has magnitude c, and we call this the characteristic speed. 
As in the first-order theory of Chapter 1, we see that the discontinuities 
propagate along the characteristics; that is, second derivatives with respect 
to 5: and q may be singular without affecting the solvability of (4.1.4). 
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Fig. 4.1. The domain of integration for the integral in (4.1.8). 

We shall now develop an integral equation for U from which we can 
develop some insight into the nature of the solution. Toward this end, we 
consider the integral 

1 
I = jD [ u,, - c“ u,,] dx’ dt’, (4.1.8) 

where the domain of integration D is as shown in Fig. 4.1. The curves C2 and 
C, are the characteristics through the point (x, t ) .  They are depicted as 
straight lines, as they would be if c were constant. However, we will proceed 
for a few lines with variable c, then specialize below to constant c, and 
continue the discussion of the case of variable c in Exercise 4.2. 

We apply the divergence theorem to rewrite (4.1.8) as 

(4.1 -9) 

Here d D  is the boundary of the domain D, A the unit outward normal to do, 
and cr an arc-length variable along dD directed counterclockwise. We remark 
that if x and t are given parametrically in terms of cr, then the unit normal is 
given by 

A = [(dtlda), - (dx/daj]. (4.1 . 1 0 j 

On C, , cr is just x and A = (0, - 1). On C2 and C, , c is an arc-length parameter 
on the characteristics of (4.1.5) for $ and 4, respectively. Thus, on C, and 
C, , respectively, 

dx 

(4.1.1 1) 
c l  z - J i z ’  z JZ’ A==LJm-Jm’ 

[ J I G 7  4 4 .  

- C  dt 1 I 
- - - 

-1 -1 c - - A =  _ - ~  - C  d t  - - - - 
dx 
d o  ,/=’ dcr $17~’’ 
Now we can rewrite the integrand in (4.1.9) as follows: On C , ,  

(4.1.1 2) 
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and on C,, 

1 dU A. [/ - -u  =--, [ x’ c: ‘1 c do 
(4.1.14) 

We now use these results in (4.1.9) to conclude that 

We specialize to the case of constant c. Now the integrals over C, and C ,  
can be carried out explicitly. We use these results and the partial differential 
equation (4.1.1) for U to conclude that 

U ( x  - ct.0) + U ( x  + ct ,O)  
Uf(x’, 0)  dx‘ 

2 
U ( x ,  t )  = 

- f lD F(x’ ,  t’,  U ,  U x ,  U , )  dx’ dt’. (4.1.1 6) 

Here we have used the fact that for constant c, the values of x1 and x2 are 
explicitly known in terms of (x, t ) .  This formula expresses U ( x ,  t )  in terms of 
its values and the values of its first derivatives in between and on the 
characteristics that pass through (x, t). 

Let us suppose that we are given a Cauchy problem with data on t = 0, 
that is, an initial value problem with U and U, given at  t = 0. In the simplest 
case, where F = 0, the first line is a solution, the d’Alembert solution. When F 
is a function of x and t only, (4.1.16) is still a solution now to the inhomo- 
geneous problem with known source. When F depends on any or all of its 
last three arguments, (4.1.16) is an integral equation for U.  One approach to 
solving this integral equation is the method of successive approximations, 
that is, iteration. Under relatively “mild” conditions on F ,  one can prove 
existence, uniqueness, and continuous dependence of the solution on the 
data. This remains true even if the Cauchy data are given on some more 
general curve in (x, t ) ,  In the next chapter, we shall discuss the constraints on 
such more general initial curves in the context of problems in two and three 



104 4 The Wave Equation in One Space Dimension 

dimensions. Those results are easily specialized to one space dimension. 
(Also see Garabedian [ 19641 .) 

If the data and Fare “smooth,” then so is the solution. Now let us suppose 
that x j  < x1 is a point of discontinuity for the initial data for U. The solution 
formula (4.1.16) remains valid because this discontinuity does not affect this 
formula at all. Indeed, we can take a limit from the right; that is, we can 
decrease x so long as in doing so we keep C ,  to the right of x, . We can further 
take this characteristic right up to x3 so long as we interpret the data as a 
right limit and the solution likewise. Similarly, we can start from the left side 
and take left limits so long as we interpret the data and the solution likewise. 
This is simply another demonstration that the discontinuity of the data 
propagates along the characteristics. However, here we have allowed a 
discontinuity in the function U itself by the expedient of interpreting all 
processes as one-sided limits along the characteristic emanating from the 
discontinuity. 

Note that there is also a characteristic of type 9 through the point x3. 
Correspondingly, the discontinuity in the data propagates in the opposite 
direction along this characteristic. 

It can also be seen from (4.1.16) that data outside of the domain D do not 
affect the solution at (x, t ) .  That is, data cannot propagate faster than the 
characteristic speed c. This property is called causa/ity, and the domain D 
itself is called the domain ofdependence of the point (x, t).  On the other hand, 
let us consider the region above any point (forward in time) bounded left and 
right by the two characteristics through that point. This is the region in 
which the solution is affected by the data at the given point. This region is 
called the range of inpuence of that point. 

Exercises 

4.1 
in (4.1.6), conclude that 

(a) Suppose that F = 0 in (4.1.1 ) and c is constant. By direct integration 

with f’ and g arbitrary functions of 5 and q having one derivative. 
(b) Suppose now that these initial data are given 

U ( x ,  0) = Uo(x), Ut(X, 0) = U1(xj. 

Express f and g in terms of U ,  and U ,  for this problem. 
4.2 (a) Suppose that AB is a characteristic curve of type I), that is, of the 
same type as C, as defined by (4.1.1 1) directed from t’ = 0 to t’ = t. Suppose 
that B is the directed arc length from A to B and A is a unit normal directed to 
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the right of the oriented characteristic. Show that 

Here t ‘  is a function of x‘ as defined by the characteristic differential equation 
(4.1.11). 

(b) Repeat the process for the case in which AB is a characteristic of type 
$as defined by (4.1.1 1) for C , ,  and show that the result here is just the negative 
of the result in (a). In this case, the characteristic is directed from time 
t‘ = t to t’ = 0. 
4.3 Suppose that in (4.1.1) c is a function of x. Use the results of the preceding 
problem to show that in this case the formula (4.1.16) is replaced by 

What are the implications of this result as regards the domain of dependence 
of the point ( x ,  t)? 
4.4 (a) Assume that F = 0 in (4.1.1). Use the solution formula (4.1.16) to 
solve the two initial value problems 

U ( x ,  0) = UO(X), Ur(X, 0) = *CUb(X). 

(b) Specialize the solution of (a) to the case U,,(x) = 6 ( x  - x 3 ) .  
(c) Apply the solution formula to the problem in which 

V ( x ,  0) = 0, Ut(x ,  0) = C%(X - x3), F = 0. 

(d) Solve the problem in which 

U(x,O)  = U,(x,O) = 0, F(x,  t )  = - 6 ( x  - X 3 ) 8 ( t  - O + ) .  

4.2 THE INITIAL BOUNDARY VALUE PROBLEM 

We consider now the following problem for U with constant c : 

u,, - c -2u r ,  = F(x,  t), - L  < x < L, t > 0, c = const; 

U ( x ,  0) = f ( x ) ,  Ut (x ,  0) = g(x); (4.2.1) 

U ( + L ,  t )  = h,( t ) ,  h,(O) = f ( + L ) ,  dh*(O)ldt = g(+L). 
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Fig. 4.2. The ( x ,  t )  domain for this problem. 

In Fig. 4.2, we show the domain of interest for this problem, decomposed into 
subdomains I-IV, whose boundaries are characteristics. We shall demon- 
strate how the solution is obtained on each of these subdomains by an 
extension of the method used in the preceding section. In this section, we 
shall use the single letters of the figure to denote points in the domain. In the 
next section, we shall return to use of the explicit (x, t )  values. The method 
described here will explicitly demonstrate the domains of dependence for 
points in the separate regions and will also introduce the solution to problems 
other than the Cauchy problem for U.  In each case, we shall consider the 
integral of U,, - c - ~ U ~ ,  over a prescribed domain and show by the diver- 
gence theorem that this integral is given in terms of the value of U at the 
point of interest and in terms of other points at which the solution is known. 
Thus, by integrating the source F over the same domain, we obtain a simple 
linear algebraic equation for U at the point of interest and hence determine U .  

We have already determined the solution (4.1.1 6) in region I in this manner. 
Therefore, we shall consider the solution at a point (x, t) in region 11. By 
integrating over the diamond-shaped region ABCP, we find that 

1 1 1 + ;[u(n) - U ( P ) ]  - $U(B) - U ( A ) ]  + - [ U ( C )  - U ( B ) ] .  (4.2.2) 
C 

Because this sum is equal to the integral of the source term over the same 
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domain ABCP, we can solve for U ( P ) .  The result is 

U ( P )  = U ( A )  + U ( C )  - U ( B )  - F(x' ,  t ' )  dx' dt' .  (4.2.3) 

Here the solution is expressed in terms of the values of U on the left 
boundary and on the characteristic through BC. The problem for U in which 
the data are given on a characteristic and a noncharacteristic is called a 
Goursat problem. Thus, (4.2.3) is a solution to a Goursat problem for U .  

By integrating over the domain BDEC, we can express the difference 
U ( B )  - U ( C )  in terms of initial values as 

2 LCP 

1 
2 

V(C)  - U ( B )  = ~ [U(E)  - U(D)]  + 
C 

F(x' ,  t ' )  dx' dt' 

Using this result in (4.2.3) yields 

1 
2 

U ( P )  = U ( A )  + - [ U ( E )  - U(D)]  + 
n 

- f j A D E p  F(x' ,  t ' )  dx' dt'. 

(4.2.4) 

(4.2.5) 

The solution formula (4.2.5) expresses U ( P )  in terms of the initial and 
boundary values and the source and demonstrates the domain of dependence 
for this point. We remark that this formula could also be obtained as follows. 
Extend the initial data and source as odd functions about the left endpoint. 
Remove the boundary and use the method of the preceding section to solve 
for U(P).  Add the effect due to the nonzero boundary data. We leave the 
verification as an exercise. 

In contrast, when U, is prescribed on the boundary instead of U ,  we would 
extend the data as an evenfunction about the left endpoint. The solution to 
this problem is outlined in Exercise 4.7. 

For the special case in which the only nonzero datum is a Dirac delta for U 
itself located at D, we see that half of this delta function propagates to the left 
at characteristic speed and reflects at the boundary but also changes sign and 
then propagates to the right from the boundary in region TI, again at 
characteristic speed, but now as the negative of its value in region I. 

This result can be seen experimentally as follows. Fix the end of a length of 
rope or wire (3-5 m long) to a wall or pole. At the other end, snap the rope 
smartly in the vertical direction to create a ripplelike disturbance, which will 
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propagate along the rope. When it reflects from the fixed end, it will exhibit 
the sign reversal demonstrated by the solution formula. 

In region 111, the solution is determined in exactly the same way as was 
used here to obtain the solution in region 11 except that now the domains of 
integration touch the right boundary. We leave this calculation to the 
exercises. 

Let us now consider the point Q, and integrate over the domain F G H Q  : 

1 1 1 + p[U(H) - U(G)]  - p[U(G)  - U ( F ) ]  + - [ U ( F )  - U(Q)]. (4.2.6) 
C 

From this result it follows that 

C 
U ( Q )  = U ( F )  + U ( H )  - U ( G )  - F(x' ,  t ' )  dx' dr'. (4.2.7) 

The solution at Q has now been expressed in terms of function values on the 
two characteristics below Q. The problem in which boundary data are given 
on two characteristics is called the characteristic Goursat problem. Thus, 
(4.2.7) is a solution formula for the characteristic Goursat problem. The 
solution at G is determined by the method introduced in the preceding 
section, which provides the solution for points in region I. The point F is on 
the boundary of region 11, and, hence, the solution at this point is obtained 
by the method described above for points in region 11. The solution at H is 
determined in a completely analogous manner applied to region III. 

Exercises 

4.5 Let S be a point in region 111 of Fig. 4.2. Develop solution formulas 
analogous to (4.2.3) and (4.2.5) for U(S).  
4.6 Derive the solution formula (4.2.5) in the following manner: Extend the 
initial data and source as odd functions about the left endpoint. Solve the 
initial value problem (disregarding the boundary) by the method of Section 
4.1. Use the method of Section 4.2 to solve the boundary value problem with 
zero source and initial data. Add the solutions. 
4.7 (a) Suppose that on the left boundary U ,  is given instead of U .  
Integrate U,, - c-'Utt over the domain AOD to determine U ( A )  in terms 



4.3 The Initial Boundary Value Problem Continued 109 

of the source in AOD and the data on O A  and OD. The result is 

1 
2 

U ( P )  = - [U(E)  + U ( D ) ]  + 

Ux(O, t ' )  dt' - c [; J + IAOD] F(x', t ' )  dx' dt' .  
+ ' J O A  A D E P  

(b) Obtain the solution at P in the following manner: Extend the initial 
data and source as evenfunctions about the left endpoint. Solve for U ( P )  by 
the method of Section 4.1. Now solve the problem for the prescribed 
boundary data with zero source and initial data by the method of (a). Add 
the two solutions. 

4.3 THE INITIAL BOUNDARY VALUE PROBLEM CONTINUED 

We consider again the problem defined by (4.2.1). Now we shall use 
Fourier transform to derive the solution. Thus. we introduce the one-sided 
Fourier transform (2.1.12) 

u(x, w )  = U(x ,  t)e'"'dt. (4.3.1) 

By applying this transform to the problem (4.2.1), we obtain the following 
problem for u :  

s: 

w . 4  f G(x, 0) = F - 7 + i0--; 
C C 2  

(4.3.2) 

u( + L ,  0) = h,(w). 
In this equation, we have used the tilde to denote the Fourier transform of the 
data. We remark that we expect that the solution will be bounded and, 
therefore, we expect that the Fourier transform (4.3.1) is defined for Im 0 > 0. 

In order to solve for u, we introduce two solutions of the homogeneous 
differential equation in (4.3.2): 

u2(x, w) = sin[w(x - L ) / c ] .  (4.3.3) 

The function u I  is zero at the left endpoint of the interval [ - L, L] whereas 
it is nonzero at the right endpoint; the function u2 is zero at the right endpoint 

u,(x,  w)  = sin[w(x + L)/c] ,  
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of the interval [ -L,  L ]  but nonzero at the left endpoint. We remark further 
that the Wronskian 

du, du, w . 2wL W ( o )  = u1 ~ - u2 - =  sin - 
dx dx c c 

(4.3.4) 

of the two solutions is nonzero for o in the upper half plane. Thus, these 
solutions are linearly independent in the upper half w plane. 

We solve the problem (4.3.2) by the method of variation of parameters 
[Ince, 19561. The result is 

+ u,(x,  W )  - - ~ - ( u I )  + G(x', u ) u ~ ( x ' ,  o ) d x '  [ :- 
This leads to the following solution formula for U :  

U ( x ,  t) = - 
271 s w dwe-i"' sin(2ol/c) 

(4.3.6) 

Insight into this representation can be gained by considering special cases. 
Let us suppose that 

F = q = h , = O ,  (4.3.7) 

sb that only f ,  the initial value of U itself, is nonzero. We use (4.3.2) to express 
the integrand directly in terms of f ,  and we also rewrite the integrand in a 
somewhat contracted form as 

U ( x ,  t )  = - 
2nc s sin(2wLlc) dwe-i"'  

In this equation, 

x ,  = min(x, x'), x, = max(x, x ' ) .  (4.3.9) 
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The convergence of the o integral here is not guaranteed. To ensure 
convergence, we require that the x’ integral produce a locally integrable 
function of w that vanishes as 1 Re 0 1  + co. The latter requirement is 
guaranteed by the Riemann-Lebesgue lemma so long as I f ( x ) l  is integrable. 
Actually, this assures integrability in o as well, but we will assume the 
stronger condition that f is piecewise differentiable. While this will not affect 
the exponential behavior in w of the x‘ integral, it will introduce algebraic 
decay l/w as can be confirmed by integration by parts. 

The objective now is to calculate the o integral by using complex function 
theory and, more precisely. by “closing” the contour of integration in an 
appropriate half plane and summing residues when appropriate. Thus, we 
view the integral as the limit of finite integrals on which 1 Re w I < R. First, we 
consider closing the contour of integration with a semicircle of radius R in 
the upper half plane. When R + co, the integral on the semicircular contour 
will approach zero so long as the coefficient of iw in the exponent is positive. 
By writing the sine functions as complex exponentials, we can verify that the 
worst case to be considered is 

> 0. (4.3.10) 2L L + x ,  x>  - L x>  - x< - t + - - -  +-- - -t  + 
c c C c 

This is always true for r negative. Thus, the integral on the semicircle 
approaches zero with increasing R for t negative. Because the closed contour 
contains no singularities in its interior, we conclude that the representation 
(4.3.8) for U is zero for f negative. 

For t positive, (4.3.10) is not true for all choices of x and x’ ,  and we consider 
replacing the semicircle in the upper half plane with one in the lower half 
plane. The integral on this contour will approach zero with increasing radius 
whenever the coefficient of iw in the exponent is negative. Worst-case analysis 
in this case leads to the requirement that 

< 0. (4.3.11) -t--+---- 2L L + x ,  x,-L x ,  -x> 
- - - t +  

C C c C 

This will always be true for t positive. 
Thus, for t positive, we must examine the singularities of the integrand 

below the path of integration in (4.3.8). These are (i) a removable singularity 
at w = 0 and (ii) simple poles at the zeros of the sine function in the denom- 
inator in which 2wLlcn is an integer. The denominator arose from the 
Wronskian of the two solutions u I  and u 2 .  Thus, when the denominator is 
zero, these two solutions must be linearly dependent. Indeed, let us define 

w, = nnc/2L, k ,  = w,/c, n = k l ,  k2 ,.... (4.3.12) 
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Then it follows from (4.3.3) that 

u l ( x ,  0,) = sin[knx + (nn/2)] = (-  l)nu2(x, co,,). (4.3.13) 

These functions are eigenfunctions of the differential operator d 2u/dx2, and 
the sequence - ( ~ , / c ) ~  are eigenualues of the same operator. That is, these 
functions satisfy the homogeneous equation in the form 

d2U/dX2 = - ( W , 2 / 2 ) U ,  

subject to homogeneous boundary conditions. 
It can now be seen that the semicircular contour with which we close the 

given path of integration must not pass through these poles on the real o axis. 
Thus, choose the radius of the semicircle to be a half-integer multiple of .nc/2L 
and let that integer increase beyond all bounds. The residue sum then 
becomes a series solution for U .  After some manipulation, which we leave to 
the exercises, the following result is obtained: 

o[) 

U ( x ,  t) = 2 coso,,tsin 
n = l  

Evaluation of this result at t = 0 yields 

In the first line of this equation, the right side is to be recognized as the Fourier 
series for the function f(x) on the interval (- L, L )  continued to the interval 
( -  3L, - L) as an odd function of x about x = - L. As noted in the preceding 
section, this is exactly the extension of the initial data that is required in order 
to solve a problem in which the boundary datum at x = - L is the value of U 
itself. Thus, the series solution satisfies the initial conditions; each term in the 
series satisfies the boundary condition and because of (4.3.12), each term 
satisfies the homogeneous wave equation as well. 

Digression (Eigenfunction Expansions) It has been seen here that the 
function f had a series expansion in terms of the eigenfunctions of the differ- 
ential equation with prescribed boundary conditions. When a class of 
functions have series representations in terms of a sequence of functions, the 
sequence is called complete. Completeness of eigenfunctions of a differential 
operator is a more general property. Indeed, consider the eigenvalue problem 
on ( -L ,  L): 

+ qu = Au, oIu(-L) + PU'(-L) = 0, yu(L) + 6u'(L) = 0, dx dx 
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with LY, p, y, and 6 real; p differentiable; and q continuous. Then the eigen- 
values are discrete, and the eigenfunctions are complete and orthogonal. 
More precisely, suppose that we denote the sequence of eigenfunctions by 
{v, 1. Then, with appropriate scaling, 

1, n = m, 
0, n # m; 

that is, the set of { v, } is orthonormal. Furthermore, square integrable functions 
have series representations in terms of the eigenfunctions in the sense that 

lim [ f  - fnvn] *  dx = 0. 
N + e  - L  n = O  

Here 
L 

f, = 1 f(X’)V.(X’)dX’ 
- L  

are the Fourier coefficients of the function f with respect to the sequence of 
eigenfunctions. (For further discussion, see Titchmarsh [ 19621 and Cod- 
dington and Levinson [ 19551 .) 

We return now’ to the representation (4.3.8) and consider another method 
of analyzing this result. We begin by setting 

This expansion converges absolutely and uniformly in R e o  for Imw 
bounded from below by a- positive number, which is true on the contour 
of integration. 

This result is substituted into (4.3.8), and the sine functions are rewritten 
as complex exponentials to yield the representation 

(4.3.17) 
U,(x, t )  = - dwexp (-iotn,: 2 i w ~  

1 { 4nc 

f (x’) dx’. 11 io[x + x‘] - io[x + x’] 
C 
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Here 
t ,  = t - 4nL/c, n = 0, 1,2 ,.... (4.3.18) 

We remark that U, is exactly like Uo with t = to replaced by t,. Further- 
more, the analysis that allowed us to conclude that U was zero for t negative 
allows us here to conclude that the same is true for U,  when t ,  is negative. 
Thus, let us consider only U,. 

We can perform the co integration first if we view the result as a dis- 
tribution. Indeed, each of the four integrals to be calculated can be recognized 
as a variant on the Fourier representation on the Dirac delta function (2.3.2). 
Thus, the result of calculating the integral in co is 

11- 12L + x + "'I) - s( i  - [2L - x - x'] 
- b(t - 

C C 

(4.3.1 9) 

The delta functions "act" or have their support at the zeros of their 
arguments, which are given by 

x; = x - ct, x; = x + ct, x; = x + C t  - 4L, 

x i  = x - ct + 4L, x; = -x + ct - 2L, x; = -x - ct + 2L. 
(4.3.20) 

In Fig. 4.3, Fig. 4.2 is repeated and extended. The boundaries between the 
subregions and the equations for these boundaries are indicated. Because the 
x' integration in (4.3.19) is over the interval ( -  L,  L), the integration will yield 
a nonzero contribution from a delta function only for its zero, as given by 
(4.3.20), in this interval. Thus, we obtain contributions to the integral in 
(4.3.19) only in the following regions: 

x;, I, 111; x;, I, 11; x;. VI, VII; 

x i ,  v,  VII; x;, 11: IV, VI; x;, 111, IV, v .  
(4.3.2 1) 

These results can be confirmed by checking that in the indicated ranges, the 
zero of the delta function lies between - L and L. For (x, t )  in the unshown 
triangular regions above V and VI, the roots x; and x i  still lie in ( -L,  L). 
But for this exception, none of these delta functions "acts" in any but the 
indicated regions. Thus, for example, in region I, the solution is 

U(x, t) = 4 [ f ( x  + Ct) + f ( x  - ct)] . (4.3.22) 

Note here that the factor of l/c in (4.3.19) is used in the evaluation of the delta 
function in accordance with (2.1.7). This solution is exactly the contribution 
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L 

Fig. 4.3. The regions in which the delta functions of (4.3.1 9) have support. 

from initial data in the solution formula (4.1.16). Clearly, evaluation of 
(4.3.19) with the guidance of (4.3.20) and (4.3.21) will yield the contribution 
from initial data in each of the regions and agree with the results of Section 4.2. 

Let us now consider the case in which the given data are 

f = g = h , = O  (4.3.23) 

but the source F ( x ,  t )  is nonzero. In this case, we obtain from (4.3.2) and (4.3.6) 

U(x ,  t )  = - 271 s m sin(2wL/c) 

A first inclination here might be to close the contour of integration again and 
obtain a solution as a residue sum. However, some care must be taken, 
because F" is a function of w while ,f was not. Thus, the analytic continuation 
to the lower half w plane of F" could introduce new singularities that were not 
present in the preceding case. Indeed, F" could have a brunch point at any or 
even all of the poles of the integrand, precluding evaluation by residue sum 
for those singularities. Consequently, we cannot, in general, calculate the 
solution by closing contours in the o plane. However, let us consider two 
special cases to demonstrate some of the possibilities. 
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First, let us suppose that 

F(x, t )  = 6(x - Xo)r-"', ff > 0. (4.3.25) 

In this case, 

F(x',w) = i6(x' - xo)/(w + ia). (4.3.26) 

Thus, we see that in addition to the residue sum obtained in the preceding 
case, we now obtain a residue at the pole introduced by the analytic con- 
tinuation to the lower half w plane of the Fourier transform of the source 
term. The result is 

(4.3.27) 

In this equation, 

and w, and k, are as defined in (4.3.12). 
As a second example, let us consider the source 

F(x, t )  = t-''2 6(x - xo) sin at. (4.3.29) 

In this case, 

The square roots here must be analytic functions in the upper half u 
plane. Furthermore, both square roots are positive for o real and larger 
than a. We make them single valued in the w plane in the standard manner of 
introducing branch cuts extending from the branch points at * a  to the 
point at infinity. The only question that remains is in which direction at 
infinity these branch cuts should be directed. In fact, all that matters is that 
they be extended to infinity in such a manner as not to contradict the analy- 
ticity and concurrent single-valuedness of each square root in the upper half 
w plane. With no loss of generality, we take the branch cuts to be straight lines 
extending downward from the branch points to infinity. 

We have now given enough information to define both square roots in a 
single-valued manner in the entire (cut) w plane. Indeed, we can define a 
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unique square root in the entire w plane now by prescribing the angular range 
or argument of the difference w - cc (or w t a). In order that the square 
root(s) be positive on the far-right real axis and that the branch cuts be 
vertical, it is necessary that 

-(n/2) I arg(w f a) < 3n/2. (4.3.31) 

Here the only freedom of choice left is which side has equality. In fact, 
because our transform is defined originally in the upper half plane, this 
choice has no effect on the solution in the domain of definition. We need 
only remain consistent when we deform the contour of integration into the 
lower half plane for analysis of the solution. 

We will not carry out the analysis of this example here. However, we note 
that in closing the contour of integration in the lower half w plane, it is 
necessary to include keyholelike contours around the branch points. In 
Fig. 4.4, we depict an example of this with f c c  lying between the origin and 
the first poles of the integrand. Thus, the solution to this problem is given as a 
residue sum plus a sum of two loop contour integrals. See Exercise 4.13. 

Now let us consider using the alternative formal method, which required 
integrating with respect to w first. Here, however, the dependence of on w 
again makes the procedure not so straightforward as for the initial value 
problem. We must first rewrite F" as an integral with respect to t' as follows: 

c S dwe-'"' j" dx,j: 
2n wsin(2wllc) -L 

U ( x ,  t) = - dt' eiwf'F(x' ,  t ' )  

(4.3.32) 

As above, we use (4.3.16) and rewrite the sine functions in the numerator as 

Fig. 4.4. An example of the closed contour for (4.3.24) and (4.3.30) 
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complex exponentials to obtain 
m 

V(X! t )  = 1 Y,b! t ) ;  

F(x’ ,  t ‘ )  dx‘. 
iw[x + x’] - iw [x  + x‘] 

- exp( )+exp(  C 

Here t, is again defined by (4.3.18). 
The major differences between this result and (4.3.1 7) are (i) the integration 

with respect to t‘ and (ii) the division by w under the integral sign. Again, 
formally, we interchange orders of integration and consider the w integral 
first. This requires that we calculate the inverse Fourier transform of the 
function l/ia. The reader should note, however, that this is not the principal 
value function introduced in Section 2.3, since this. inverse transform is 
defined as an integral above the singularities in the w plane. Indeed, we need 
only use the result that 

with H the Heaviside function (2.1.10). Thus, we find that 

v, = - ; [: dt’ [:L dx’ F(x’ ,  t ’ )  

(4.3.35) 

The effect of the Heaviside functions is to define the domain of integration 
in (x’, t’). We shall demonstrate this fact in only one case. The first Heaviside 
function, with n = 0, is positive for 

c(t  - t ’ )  > +(x - x’), (4.3.36) 

which is equivalent to the two conditions 

ct - x > Ct’ - x‘, ct + x > C t ‘  + XI. (4.3.37) 
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In region I of Figure 4.3, these constraints define the domain of influence of 
the point (x, t). Thus. for this (x, t), the true domain of integration for this 
term is just the domain of integration depicted in Fig. 4.1. Furthermore, all 
other Heaviside functions in (4.3.35) have negative argument in region I and 
are therefore equal to zero. Consequently, the sum reproduces the solution 
formula of the preceding sections for this special data in region I. In exactly 
this manner, the Heaviside functions define the domain of integration for all 
regions of the (x, t )  domain. 

To complete this discussion, we consider the case in which the only 
nonzero data are the function h, at the right end. In this case, the solution 
formula (4.3.6) takes on the somewhat simpler form 

sin[w(x + L)/c] - 
U(x, t )  = - h + e -iw' do. (4.3.3 8) 

27r ' S  sin(2wL/c) 

As in the case of a source distribution, we cannot predict the nature of the 
singularities of the analytic continuation of h, in the lower half w plane. Thus, 
just as in the source problems discussed earlier, we anticipate a residue sum 
plus other contributions to the solution formula. Alternatively, 

oc 

U(x3 t )  = C Wn(x,t); 
n = O  

(4.3 39) 

W,,(x, t )  = 1 - d o  exp 
27r 

(--iot,,~+ 2 i w ~  

- i w [ x  + L ] )  - exp (i"["c+ L ] ) ]  
C 

dt' h(t') exp(iot'). 

Here t, is again defined by (4.3.18). 

nizing the integrals in w as delta functions. For n = 0, the result is 
We evaluate again by interchanging the order of integration and recog- 

This integral is readily evaluated to yield 

W" = h ( l +  +)+ + 5) - h ( t  -+yo + X?). 
(4.3.41) 

The first term here characterizes the propagation of the prescribed data h(t) 
along the characteristic in the direction of decreasing x with increasing time. 
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The Heaviside function is needed because its argument must be positive in 
order that the delta function in the integrand in (4.3.40) have its support in 
the interval of integration. The second term characterizes the reflection from 
the opposite endpoint, with change in sign, as predicted in the preceding 
section. Subsequent terms n > 0 produce multiple reflections of the pre- 
scribed boundary value. 

Exercises 

4.8 Derive the solution (4.3.5) to the problem (4.3.2). 
4.9 Let 

fl(w) = f ( x ) e i w x i c  dx, 
jLL 

with f continuous on [ - L, L ] .  
(a) Show that f le iwLic  is bounded in the upper half w plane. 
(b) Show that fle-i"L/c is bounded in the lower half w plane. 
(c) Is f ,  differentiable with respect to o? Why? 
(d) Summarize the properties of jl and explain the relevance to the 

discussion following (4.3.8) and (4.3.9). 
4.10 Verify (4.3.1 1). 
4.11 Verify (4.3.14). 
4.12 Verify (4.3.20) and (4.3.21). 
4.13 Complete the analysis of the solution U for F given by (4.3.29) by using 
the method of closing the contour of integration in the lower half w plane. 
Assume that 01 is not one of the values w, given by (4.3.12). 
4.14 Describe the domains of integration imposed by the Heaviside 
functions in (4.3.35) for n = 0. 
4.15 Verify (4.3.34). 
4.16 (a) Solve the problem for U when the only nonzero datum is given by 
the function 

h + ( t )  = h(t - to ) ,  0 < to < 2L/c. 

(b) Replace to in (a) with 47cL/c < t ,  < 6nL/c. 

4.4 THE ADJOINT EQUATION AND THE RIEMA" FUNCTION 

For linear ordinary differential equations, an important tool for generating 
integral representations of solutions is the Greedsfunction. One approach to 
the development of these functions is via distributions. More precisely, the 
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source in the ordinary differential equation developed for the Green’s 
function is a Dirac delta function. In the next two sections, we shall discuss 
the analogous technique for the wave equation in one space dimension. How- 
ever, here there are two alternative approaches, one in which the source 
is taken to be a delta function the other in which part of the initial data is 
taken to be a distribution. The solution to the former type of problem is again 
called a Green‘s function, while the solution to the latter is called a Riemann 
function. It is the latter that will be developed in this section; the former will 
be developed in the next section. 

We introduce the general linear hyperbolic operator 

2u = u,, - c-2uti + au, + put + yu. (4.4.1) 

In this operator equation, via a simple transformation, it would be possible 
to make the coefficient of U,, equal to - 1. However, the second-order wave 
operator is the hyperbolic operator of interest throughout, and this trans- 
formation would tend to obscure the dependence of the results that follow on 
the characteristic speed c. We shall assume that c is a function of x only but 
that a, p, and y may be functions of x and t .  

For the ordinary differential equation, another differential operator lip *, 
called the adjoint operator, is generated and has the property that VLfU - 
U 2 * V  is an exact differential of lower order than lip. Then, integration of 
this difference produces an expression involving only boundary data. Using 
this as a guideline, we seek an adjoint operator so that the same difference 
expression produces a divergence. Then, integration over an appropriate 
domain in space-time will produce an expression completely in terms of 
“boundary data” in space-time. The quotes here are used to remind the 
reader that part of our boundary might be at a prescribed value oft and that 
this use of the term boundary data is generic. 

We calculate that 

at a [  c 1 d 
V Y U  = - [ V U x  + LYVU] + - - I v u ,  + pvu + yvu ax 

a 
= -“vUx  - uv, + a V U ]  
ax 

1 + - - - ( V U ,  - uv, - gvu) 
at a [  c2 

1 1 + u v,, - - v,, - (aV), - (pv), + yv . [ c2  
(4.4.2) 
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The last line in this calculation defines the adjoint operator; that is, 

1 
C 2  

9 * V  = v,, - - v,, - (CIV), - (BV),  + yv (4.4.3) 

and 

a VYPU - u9*v  = - _ [ V U x  - UV,  + OrVU] 
ox 

+ -- - y ( V U t  - UV,) + pvu . (4.4.4) 
at a [  c 1 

We shall now consider the integral of this latter expression over the 
trapezoidal domain D, in Fig. 4.5 bounded by the points (x3, 0), (x4. 0), 
( t 2 ,  7), (tl, T). As in Fig. 4.1. we draw the back characteristics from the points 
of interest as if c were constant. However, for the present, we shall allow c to 
be a function of x. It should be noted that the inner domain of this figure is 
exactly the domain D of Fig. 4.1. Also, the normal derivatives are determined 
as in (4.1.10) and (4.1.11). We calculate that 

V d U  U d V  M + B C  vu]do  
c d a  J’m 

V U ]  d a  

+- -+  
= 1::::; [ - 1 

(4.4.5) 

Let us suppose that the following problem is prescribed for U :  

9 U = F ( x , t ) ,  t > 0 ,  - m < x < m ;  
(4.4.6) 

U(x, 0)  = f ( x ) ,  U,(x, 0)  = g ( x ) .  

We are now prepared to prescribe a problem for I/ so as to make this function 
a Riemann function and transform (4.4.5) into an integral representation for U 
in terms of this Riemann function. We want the boundary integral over the 
line t = 7 to produce the value U([,z), and we shall prescribe data for V 
appropriately. Furthermore, we want the integral over the line at t = 0 to 
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Fig. 4.5. The trapezoidal domain of integration for (4.4.5) with the inner triangular domain 
denoted by D. 

produce the expected dependence of U on its initial values. Consequently, 
the data at t = t will be$nal data rather than initial data, and the problem 
for V will be one that is “backward” in time. Thus, we require that 

2 ’ * V = O ,  t < t ,  - -Co<x<m; 
(4.4.7) 

V ( x ,  t; <, 7) = 0, V,(X, 7 ;  <, 7) = -CZd(X - <). 

Here we have given V four arguments to emphasize its dependence on (<, t). 
Indeed, the discussion of the domain of influence in Section 4.1 leads us to 
conclude that, in fact, V is zero on the characteristics connecting (x3, 0) with 
(cl, t) and (x4, 0) with (c2, t). Furthermore, V is also zero on the intervals 
(x3, xl) and (x2, x4). However, for V,, more care is required, since the data 
for V, is a distribution. Whether we think of the distribution itself or its 
implications as regards a discontinuity in V across t = 7, it is evident that the 
singular behavior of V at (<,z) must propagate backward in time along the 
characteristics. Thus, the integral of V, through the points x1 and x2 must 
take account of this distributional behavior. We may “shrink” the interval of 
integration (x3, x4) onto the shorter interval (xl -, x2 +) so long as we 
remember that the appending here is meant to remind us to retain all 
distributional contributions right at the endpoints. 

Using all of this information in (4.4.5), we find that 

This is a solution formula for U in terms of the Riemann function I/. This 
formalism does not provide us with a means of finding V .  However, it 
demonstrates that one need only solve this one problem (4.4.7) in order to 
have a means for solving all problems of the type (4.4.6). 

We shall now consider some special cases in which one can obtain a 
closedTforrn analytical solution for V .  First, let us suppose that 2’ is the wave 
operator itself, 

2’u = u,, - c-w, , ,  (4.4.9) 
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with c constant. In this case, ct = p = y = 0 in (4.4.1), and then 

2*v = v,, - c-zv,,, 

with c constant. That is, zip* = 9 for this example, and 2 is self-udjoint. 

(4.4.10) 

The problem (4.4.7) for V now becomes 

If instead we solve the problem 

w,, - c-2wt,  = 0, 

W(x,  0)  = 0, 

0 < t, 

W,(x, 0) = &(x) 

-03 < x < 00; 
(4.4.12) 

and then set 

v(X, t ;  5, T) = w(5 - X, T - l), (4.4.13) 

we obtain a solution to (4.4.1 1). For this problem, we simply write down the 
d’Alembert solution, that is, the first line of (4.1.16): 

X + C t  

-ct < x < C t  
= 1: 2’ 

(0, otherwise 

C 
= - [ H ( x  + c t )  - H ( x  - ct)]  

2 

C 
= -H(c t  - 1x1) 

2 

c 
= -H(c2t2 - x’). (4.4.14) 

Each of these representations is useful at times. Stated succinctly. the 
Riemann function is equal to c/2 in the domain of influence of the delta 
function and zero outside that domain. Here we continue with the third 
representation and set 

2 

V ( x , t ; t , z )  = W(x - 5,T - t )  

C 
= ~ { H ( x  - 5 + c[z - t ] )  - H(x - < - C[T - t ] ) ) .  (4.4.15) 
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This solution is to be substituted into (4.4.8). The significance of the outside 
limits on the x integral can now be seen, since for this Riemann function, 

c2 
2 V , ( X , O ; ~ , Z )  = -- [ S ( X  - + CZ) + S ( X  - < - CZ)]. (4.4.16) 

Consequently, the solution obtained from this substitution is exactly the 
result (4.1.16) except with a minor change in notation. 

As a second example, let us suppose that 

c1 = p = 0, y = -(b2/C2). (4.4.17) 

Again the operator 2 is self-adjoint with 

T * V  = Y V  = Vx, - cP2Vfl - (h2/C2)V. (4.4.18) 

The partial differential equation for U or I/ is called the Klein-Gordon 
equation. The spatial and time shifts introduced in (4.4.13) can be used here 
as well. Thus, we consider the following problem for W :  

w,, - c-zw, ,  - (h2/C2)W = 0, 

W(x,  0) = 0, Wt(X, 0; 0,O) = C Z S ( X ) .  
(4.4.19) 

To solve this problem, we introduce the one-sided Fourier transform u, 
in (2.2.12), denoted here by w(x, 0). The problem for w is 

d 2 w  w2 - h2 
w = -S(x). dX2+--- C2 

(4.4.20) 

We seek a solution that remains analytic in some upper half w plane, that is, 
above all apparent singularities of w in the w plane. Furthermore, in accord- 
ance with Exercise 2.1, w must be a solution of the homogeneous equation 
for all nonzero x ,  continuous at x = 0, but with a first derivative that is 
discontinuous, with the magnitude of that discontinuity equal to 1. 

The solutions of the homogeneous equation (4.4.20) are 

w + ( x , w )  = e i ikx . (4.4.21) 

Here 

k = , , / m / c .  (4.4.22) 

Since k must be defined in the complex o plane, it is necessary to be more 
precise here. Our task is much like that of the preceding section in which it 
was necessary to define the square roots of w CI. Indeed, we could use the 
same definitions for each of the square roots here. However, we shall proceed 
slightly differently for reasons which will become clear later. 
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We require that 

0 s arg(w k b) < 271. (4.4.23) 

This defines each square root in the w plane, with branch cuts along the real 
axis. For the product of these square roots appearing in k, the overlapping 
cuts to the right of b actually nullify in the sense that the function itself and 
its derivative have the same limits from above and below the dual cut. 
Therefore, this part of the cut can be eliminated, leaving only ajinite branch 
cut from -b to b! For these defined ranges of the argument of each factor, 
we find that when 

0 < arg(w f b) < n, 

0 < a r g J m  = f[arg(w - b) + arg(w + b)] < n. 
That is, the imaginary part of k is positive in the upper half w plane. Thus: in 
the two solutions w +  , w +  has a negative real part and w _  has a positive real 
part for x positive and w in its upper half plane. Consequently, the former 
solution decays exponentially while the latter grows if either x + 00, Im w > 
0, or x > 0, Im w -P co . Therefore, for x positive, w, is the analytic solution 
bounded in the upper half w plane, while for x negative, w -  is. Consequently, 
the solution to (4.4.20) must be proportional to w +  for x positive and to w -  
for x negative. 

The solution to (4.4.20) having the correct discontinuity at x = 0 is 

(4.4.24) 

e’klxl 
w(x,  w)  = - ~ 

2ik ’ 

and the solution to (4.4.20) is 

(4.4.25) 

(4.4.26) 

Here the path of integration is above the branch points with Re w ranging 
from - m  to 00. 

For t negative, the contour of integration can be closed in the upper half w 
plane to verify that W = 0. For t positive, we could still close the contour in 
the upper half plane so long as 1x1 > ct. That is, the solution remains zero 
outside the domain of influence of the origin. Therefore, in what follows we 
consider only 1x1 < ct. 

We seek an alternative representation of W in terms of “familiar” or 
“special” functions. First, we seek some insight by appealing to an entirely 
different problem, namely, the Helmholtz equation (3.1.3) in two spatial 

’ This function is discussed in more detail by Henrici [1974]. 
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variables x and y ,  with source a delta function with support at the origin. 
With t replaced by iy and b2 replaced by 02, that equation bears some 
similarity to the one at hand. We remarked in Section 3.1 that the two- 
dimensional problem models shallow water waves. The particular equation 
we have introduced here would model the response to a point source at the 
origin. Anyone who has ever dropped a pebble in the water has seen the waves 
spread out rudiuily. That is, the solution to the problem is cylindrically 
symmetric or is a function of x2 + yz. Similarly, here we might now anticipate 
that the solution for W will be a function of x2 - c2t2.  Thus, we might be led 
to seek a transformation that expresses W in terms of this variable (or its 
negative). 

We set 

t = p cosh 4, x = c p  sinh 4; p = d w  ; (4.4.27) 

in which case, W can be rewritten as 

sinh 4 - w cosh 41)- (4.4.28) 

This transformation introduces through p the variable of interest. The 
particular choice relating t to cosh and x to sinh ensures that ct is greater 
than 1 x 1 for real 4. We anticipate that W is independent of 4. To check this, 
we shall differentiate with respect to 4. However, before we do so, it is neces- 
sary to deform the contour of integration in such manner as to assure con- 
vergence of the differentiated integral. We deform into the lower half w plane 
outside of the branch points, so that the real part of the exponent approaches 
- co as 1wI -+ co on the contour. We now differentiate with respect to 4 
and find that 

ck 
-- dW d 4  - -'J(icp[cosh+ 4ni - 

.exp(ip[ck sinh 4 - w cosh 41) d o  

1 d  
4ni d w  

= -1 - exp(ip[ck sinh 4 - w cosh 41) d w  = 0. (4.4.29) 

The last result follows because the integrand is an exact differential of an 
expression that is zero at the endpoints of integration. Thus, W is independent 
of 4 and is a function of p alone, as predicted. 

The integrand in (4.4.28) can now be greatly simplified by setting 4 = 0. 
The result is 

- i p o  

w = - -  
4ni 

(4.4.30) 
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We again view the contour of integration as the limit of integrals over finite 
paths closed on a semicircle in the lower half w plane. However, in this 
example, although we can justify this by taking the limit as the radius of the 
semicircle approaches infinity, we will deform the contour of integration in 
just the opposite manner! That is, we think of “shrinking” the contour 
around the finite branch cut connecting - b to b; see Fig. 4.6. We remark that 
if we had used semi-infinite branch cuts extending down to -ico in the 
complex plane, then this closed contour would have extended onto a lower 
Riemann sheet of the multivalued square root function. Although this would 
not have affected the evaluation at all, it would have affected the geometrical 
depiction of the contour integral. It was in anticipation of this step that we 
chose a finite branch cut for t h s  example. 

On the circular part of the contour in the figure, the square root is of order 
l/G, where d is the distance from the branch point to the contour. The 
length of path is 2nd = O(d) .  The remainder of the integrand is O(1) in d. 
Multiplying these estimates together reveals that the integrals on the circles 
are each O(,J?) and, hence, approach zero with d. This is the analog in the 
complex plane of the fact that inverse square root is an integrable singularity 
on the real line. As for the part of the contour along the cut, on the upper half 
of the branch cut, the square root in the integrand has argument i3l/2; on the 
lower half, its argument is the negative of that. Thus, the integral on the upper 
and lower sides of the branch cut sum to just twice the value on the upper 
half of the branch cut. Therefore, 

W(X, t )  = - dw 
231 s* -+/=2 e - i w p  

= ..I,,[hJ+]H(c’f~ t’ - xz - x’). 
2 

(4.4.3 1) 

Fig. 4.6. The contour of integration around the branch cut. 
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Here in the middle equation, we have rescaled w by b. In the last equation, we 
have identified the integral with the Bessel function of the first kind J,. (See, 
for example, Gradshteyn and Ryzhik [1965, Section 8.41, Eq. 101.) We have 
further reintroduced the Heaviside function here, which characterizes the 
fact that W is given by this function only inside the domain of influence of the 
point x = 0, t = 0 and is zero outside. As in the preceding example, this is 
particularly important in evaluating the integral over the initial line t = 0 
in (4.4.8), since the Heaviside function has a delta function as its derivative, 
which again produces two contributions at the endpoints x 1  - and x2 + . In 
order to evaluate Vt(x,  t ;  5 ,  z), we proceed as follows: 

(i) Use (4.4.13) to express V in terms of W ;  
(ii) use the fourth representation of the Heaviside function in (4.4.14); 

it is easiest to differentiate with respect to t ;  and 
(iii) use the fact that Jb = - J ,  . It then follows that 

c 
cb(z - t ) J , ( b J ( z  - t)2 - ( 4  - x)’/c’) 

2 J ( T  - t)2 - (t - x)’/c2 

In this result, we have evaluated Jo  at the zero of the delta function. 

following representation of the solution: 
We use this result in (4.4.8) along with the data in (4.4.6) to obtain the 

1 
U(5,  = 2 [ f ( 5  - cz) + f ( 5  + c41  

- i l l D F ‘ ( x ,  t )J , (bJ(z  - t)’ - (t - ~ ) ’ / c ’ ) d x  d t .  (4.4.33) 

As a check, setting b = 0 again leads to the former result. 

Exercises 

4.17 If y is replaced by its negative in (4.4.17), then the effect is to replace b 
by ib throughout the subsequent analysis and, hence, in (4.4.31) to replace Jo 
by I , ,  the modlJied Bessel function of the,first kind of order zero. Confirm this 
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result by using the same method as was used to obtain (4.4.31) to determine 
the Riemann function in this case. Take care to define the square root of 
o2 + b2 properly and to calculate the inverse transform as an integral above 
all singularities in the complex o plane. 
4.18 (a) Suppose that in (4.4.1), all coefficients are constant. Introduce 
the transformation 

I/ = We(ax-BczO/Z, 

and show that the problem for V [(4.4.7)] leads to the following problem 
for W :  

Y * W = O ,  t < z ,  - c o < x < c o ;  

W ( X ,  7; 4, z) = 0, 

with new values of a, 8, and y ,  

w,(x, z; 4, z) = $c2e-(a~+~cZr)’2S(x - c), 

L? = p = 0, 7 = y + $(p”c” - .”. 
(b) Show that for consistency of dimensions in (4.4.1), a must have the 

dimension of inverse length, /.I the dimension of time over length square, 
and y the dimension of inverse length square. 

4.19 Use the preceding exercise to determine the solution V ( x ,  t ,  5 ,  z) to 
(4.4.7) for constant coefficients in terms of the solution of Exercise 4.17 or in 
terms of the solution (4.4.31). 

(c) Show that 7 has the same dimension as y. 

4.5 THE GREEN’S FUNCTION 

We continue the discussion of the preceding section by developing the 
Green’s function. We consider again the identity (4.4.4), with the auxiliary 
function V denoted instead by G. The domain D, used in (4.4.5) is to be 
slightly modified as well with the upper boundary above the time T, say, at z + . 

Given the problem (4.4.6) for U ,  we introduce the following problem for G :  

Y * G  = - S ( X  - <)S(t - t), t < 7 + ,  -a < x < C O ;  

G ( x ,  z; 4 ,  z) = G,(x ,  z; 4, z) = 0. 
(4.5.1) 

The arguments of the preceding section regarding the domain in which V is 
nonzero follow exactly along the same lines for G.  Thus, by using (4.5.1) in 
(4.4.5) with I/ replaced by G, we obtain the representation 

U(4 ,7 )  = [::-+ [A [GU,  - U G , ]  - BUG ]I r = O  dx - lD GF dx d t .  (4.5.2) 
c- 
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This is the solution formula for U in terms of the Green’s function G. We 
remark that the formula is identical with (4.4.8). Thus, it would be reasonable 
to expect that, in fact, G and I/ are one and the same function. To check this, 
let us consider the following problem for U :  

9 u  = -6(x - x’)6(t  - l ’ ) ,  

U(5 ,  Z) = V(X‘, t‘ ; l ,  z), 

U(x ,  0) = U,(X, 0) = 0. (4.5.3) 

(4.5.4) 

For this problem, the solutions to (4.4.8) and (4.5.2) are, respectively, 

U(5,  t) = G(x’, t ‘ ;  5 ,  t). 
By uniqueness of the solution, we conclude that G and V are the same. 

The question arises then of why there are two approaches leading to the 
same result. It is, to this user, a matter of point of view. In dealing with a 
problem in which the main structure arises through initial data, we prefer to 
think in terms of the Riemann function. When the structure arises through 
source and/or boundary data, we prefer to think in terms of the Green’s 
function. 

Note in this derivation that we could have formally integrated over all 
space and time and eliminated the boundary terms “at infinity” by arguments 
based on causality, that is, that the response to data in a finite part of space 
could not have propagated to infinity in a finite time. 

We shall use causality in analyzing the initial boundary value problem 

9 U = F ,  O < t ,  - L < x < + L ;  
(4.5.5) 

V(x, 0) = m, UAX, 0) = dx), U ( + L ,  t )  = h + ( t ) .  

This is a generalization of the problem considered in Section 4.2. 

( - L , L )  and all positive time, with V replaced by G: 
We begin by considering the integral of the identity (4.4.4) over the domain 

J:L dx Jb” dt [ G Y U  - U U * G ]  

= j: [GU, - UG, + aGU] dt I :L 
+ [I, [$ [GU, - UG,] - /3GU (4.5.6) 

The problem for G now is a modification of the problem (4.5.1) on ( - co, m) 
or in free space. The range of x in (4.5.1) is now restricted to the interval 
(-L, L) and at these endpoints; in order to eliminate the dependence of the 
solution on the data we do not know, we require that 

G(+L, t ;  c, T) = 0. (4.5.7) 
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Now substituting (4.5.1) and (4.5.7) into (4.5.6) yields the solution formula 

(4.5.8) 

Here we rely on the domain of influence of the source for the Green’s function 
to restrict the domains of integration so as to agree with the domains of 
Section 4.2. Indeed, for ( 5 ,  z) in region I of Fig. 4.2, the support of the Green’s 
function is just the domain of influence of Fig. 4.1, and the integral over the 
boundaries in this result are, in fact, zero. Thus, this equation provides an 
expression for the solution to the general initial boundary value problem 
with U itself prescribed on the boundary. If, instead of U ,  U, were pre- 
scribed on one of the boundaries, then it can be seen from (4.5.6) that at 
the corresponding boundary, it would be necessary to set G, - clG = 0. 

Exercises 

4.20 In the initial boundary value problem (4.5.5), suppose that U, - K U  
is prescribed at one of the endpoints. Show that the Green’s function must 
satisfy 

G, - (IX + K)G = 0. 

4.21 Find the Green’s function for the problem (4.3.2). 
4.22 Find the Green’s function for the Klein-Gordon operator (4.4.17) on 
the interval (- L, L) with G = 0 at the endpoints. Proceed in the following 
manner. 

(a) Use the Fourier transform technique of Section 4.3 to obtain an 
inhomogeneous ordinary differential equation. Follow the method of that 
section to find the solution. 

(b) Expand all trigonometric functions as was done to obtain (4.3.17). 
Take care that the multiplier of 2L/c is now k instead of o. 

(c) Identify the integrals of the series with (4.4.25) and then use (4.4.30) 
to conclude that 

xln = x + 5 + (4n + 2)L, 

~3~ = x + 5 - (4n - 2)L, 

xZn = Ix - 51 + 4 n ~ ,  

xdn = lx  - 51 - (4n + 4)L. 
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4.23 
the Green's function solution to (4.4.6) is in convolution form. 

Show that for the coefficients CI, b, and y in (4.4.1) equal to constants, 

4.6 ASYMPTOTIC SOLUTION OF THE 
KLEIN-GORDON EQUATION 

We consider the following problem for U : 

U,, - c-'UU,, - (b2/c2)U = 0, 
(4.6.1) 

with b and c constant. At this point, a number of methods of solution are 
available. First, there is the Green's function/Riemann function approach 
used in the preceding two sections. Second, there is the technique of using 
Fourier transform in x or t and solving the resulting ordinary differential 
equation in the complementary variable. Third, it is observed in Exercise 4.23 
that the solution can be written as a product of Fourier transforms. We shall 
deduce a solution of this last type by transform methods. Our purpose is to 
produce a representation that lends itself to asymptotic analysis and 
interpretation. 

U(x ,  0) = f(XX Utb, 0) = g(4, 

Define ~ ( k ,  cv) by 

u(k, w)  = JYrn dx 1; dt U ( x ,  t )eCi(kx-or) .  (4.6.2) 

Here w is restricted to some upper half plane whose boundary is to be 
determined. By applying this integral transform to (4.6.1), we obtain 

(4.6.3) 

In this equation, we have used the tilde to denote the Fourier transform of 
the data. 

We solve for u here and express the inverse transform U(x ,  t )  in terms of 
that result 

The CL) integral is again an integral parallel to the real axis above all singu- 
larities of the integrand, that is, in the upper half plane of analyticity of the 
integrand. The reader who has completed Exercise 4.23 will recognize this 
solution as the product of the Fourier transform of the Green's function with 
the Fourier transform of the data. For t negative, the representation yields 
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zero in the usual manner. For t positive, we close the w contour in the lower 
half plane and calculate the integral as a sum of residues at the zeros 

The result is 

-exp(i{kx f Jm t } ) .  

(4.6.5) 

(4.6.6) 

We interpret this result as follows. The solution is made up of a super- 
position of "plane waves" in which the wave number is defined by k and the 
attendant frequency is given by a function w(k) defined by one of the dispersion 
relations (4.6.5). The amplitude of the wave at each wave number k is a 
function of the wave number spectral densities of the initial data f ( k ) ,  @(k) 
given by 

The points of constant phase of each of these waves travel at the phase 
speed given by 

vphase = w(k)/k = f J m / k ,  (4.6.7) 

which can be seen to vary with k from a minimum magnitude of the charac- 
teristic speed c to a maximum value of infinity. Thus, we see that the wave 
does not travel as a function of x & ct, as it did for the wave equation, but 
that the initial data propagate at differing speeds in accordance with their 
decomposition in the spatial Fourier domain. 

We remark that consistent with x and t having the dimensions of length 
and time, respectively, the dimensions of k and w are inverse length and time. 
Let us contemplate for a moment introducing dimensionless variables 

q = ck/b, A = bt, 8 = x/ct. (4.6.8) 

In this case, the phases in the integral (4.6.6) become 

kx T J m t  = 1[qO f Jm]. 
Thus, for 1 = bt >> 1, the integral in (4.6.6) is of the type (2.6.1) to which the 
asymptotic theory of Chapter 2 may be applied. This criterion for applying 
asymptotic methods may be viewed as large time in the units of the inverse of 
the frequency b. For example, in electromagnetic wave propagation in 
plasmas modeled by the Klein-Gordon equation, b = O(lO1o/sec) and bt 
is large after times measured in fractions of a microsecond. 
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Being aware of the large parameter that justifies asymptotic analysis, we 
prefer to proceed formally to apply our asymptotic method to the integral 
(4.6.6) in dimensional variables with “large parameter” one. Thus, we consider 
the two phase functions appearing in (4.6.6), 

(4.6.9) 

and differentiate with respect to k in anticipation of applying the method of 
stationary phase as discussed in Section 2.7. 

The stationary points occur when the first derivative here is zero. Let us 
suppose first that x is positive. Then @+ will have a stationary point at some 
positive value of k, and @~ will have a stationary point at - k. For x negative, 
the stationary point of @ is at some positive value of k, and @+ wiil have a sta- 
tionary point at the negative of that value. Thus, each phase has a stationary 
point for either sign of x .  

We could now solve for k and substitute into the stationary phase formula 
(2.7.18). However, instead of this, we prefer to write down a parametric 
solution in terms of a positive parameter k consistent with the stationary 
phase requirement. Thus, we write 

klx l  - J m t  - -  z}) 4 ’  
(4.6.1 1) 

c2k 
I x I  = J C 2 r n t .  

It is left to the reader to verify that in this representation we have properly 
accounted for the two stationary points, both when x is positive and when x 
is negative. 

As mentioned earlier, one interpretation of this result is that for a given 
( x ,  t ) ,  we solve the second line for k and insert in the first line to find U .  
Alternatively, we consider the implications of this representation for fixed k. 
Then the second line suggests that the solution is observed in some moving 
reference frame in which the observation point is propagating at a speed 
d o / d k  determined by the dispersion relation (4.6.5). The signal propagating 
at this speed is given by the first line in this last equation. We remind the 
reader that the stationarity of the phase suggests a constructive interference 
of the neighboring wave numbers as compared to wave numbers farther 
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away. Thus, the first two lines in (4.6.1 1) represent the propagation of a group 
of wave numbers in the neighborhood of k that propagate at the approximate 
speed defined by the third line in this equation. Thus, this speed, given by the k 
derivative of w, is called the group speed. 

We remark that the group speed is less than the characteristic speed c. 
Thus, the points of constant phase, which travel at the phase speed, which is 
greater than c: are moving forward through the slower moving packet 
of waves. 

There are further interpretations of this result in the context of energy 
conservation. These will be postponed until such time as we introduce the 
concept of energy. Suffice it to say, for the present, that the scaling by the 
second derivative of the phase has an interpretation in terms of conservation 
of energy. 

Exercises 

4.24 
negative in the stationarity condition and substituting into (4.6.6). 
4.25 

Verify (4.6.1 1) by separately considering the cases of x positive and x 

In (4.6.1) consider the special case in which 

f(x) = 0, g(x)  = C % ( X ) .  

In the formula (4.6.1 l), eliminate the parameter and show that the solution 
is the asymptotic expansion of (4.4.31). Use (2.7.20) to write down the 
asymptotic expansion of this latter result. 

4.7 MORE ON ASYMPTOTIC SOLUTIONS 

Our objective here is to introduce some elementary methods for devel- 
oping asymptotic solutions in the limit of high frequency for problems with 
coefficients that vary with x. Let us suppose again that we are considering a 
problem for the wave operator 

2 u  = u,, - c - 2 u , , .  (4.7.1) 

In order to address the question of frequency, let us consider this operator 
after applying the Fourier transform with respect to t :  

9 & ( X ,  w )  = u"(x,  co) + ( w 2 / c 2 ) u ( x ,  w). (4.7.2) 

Here prime denotes x differentiation. We introduce a length scale L and a 
frequency scale wo by setting x = Lt ,  w = o,q, with 5 and q dimensionless 



4.7 More on Asymptotic Solutions 137 

variables. We choose L in such a manner that over the length scale L we may 
introduce an average value of c(x), say, 2, with c(x) = Cd(<) and dO/d( 
approximately equal to unity. 

The operator in (4.7.2) can now be rewritten as 

with 
/I = w,L/Z. 

By high frequency, then, we shall mean frequencies for which the dimension- 
less parameter A is large. We remark that w,/E is a wave number associated 
with the frequency w, and that 

A = 2nE/wO 

is the wave length of waves with frequency w,. Thus, 

A = 2zL/A 

is the parameter that must be large in order that asymptotics be justified. 
With this discussion in mind, we shall proceed nonetheless by analyzing 

the dimensional operator of (4.7.2). We have already seen that the solutions of 
the homogeneous equation play a crucial role in solving a more general 
problem for u. Thus, we set 

Y , U  = 24'' + (w2/c2)u = 0. (4.7.3) 

For c constant, the solutions to this equation are complex exponentials. This 
motivates the following assumption for the form of the asymptotic solution 
for variable c: 

(4.7.4) 

We proceed formally, substituting this series solution into Eq. (4.7.3) to obtain 

[ 2 A 9 '  + A,@"] + (4.7.5) 
1 

(iw)"-' 
+- 

The coefficient of each power of o is to be set equal to zero separately. The 
leading order here is O(w2).  Thus, 

@ ' 2  = c - 2 ,  (4.7.6) 
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from which it follows that 

<D'=  + -  1 @ =  g c(y)' dY 
- c'  

(4.7.7) 

There are two roots here and, consequently, two formal series solutions to 
(4.7.3). When necessary, as in (4.7.12) and (4.7.14), we shall distinguish 
between these two solutions by using the superscripts or subscripts _+. For 
the present, we continue without the superscripts or subscripts. 

When (4.7.6) is satisfied, the first series in (4.7.5) has a multiplier of zero. To 
order o, then, we obtain a contribution only from the second series in (4.7.5) 
with n = 0, and therefore we require that 

2 A p '  + A,@'' = 0. (4.7.8) 

Multiplication by A,  and integration of the exact differential that results 
lead to the conclusion 

A@' = const. (4.7.9) 

In order that A ,  remain real, we must choose the constant positive or 
negative in accordance with the sign of @'. Since an arbitrary constant 
multiplier is of no concern here, we conclude that 

A ,  =m (4.7.10) 

for either choice of sign in (4.7.7). Thus, A ,  is determined. 

contribute to each order in o. Then for each n, 
For the subsequent coefficients, both the second and third series of (4.7.5) 

2A;+1<D' + A,+1@" = -A:, n 2 0. (4.7.1 1) 

Multiplication by _+1 and division by 2 m '  = 2/m) results in an 
exact differential on the left side and leads to the solution 

This leads to the solution 

In both of these equations, the constant B: admittedly is redundant because 
the lower limit of integration has been left open. However, this form empha- 
sizes the presence of an arbitrary additive constant. All of the coefficients in 
the formal power series (4.7.4) have now been determined, and we obtain to 
formal asymptotic solutions, say, u + ,  corresponding to the two choices of 
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sign in (4.7.7). We remark that the formal Wronskian of these two solutions 
is nonzero. In particular, 

u;u- - u I u ,  - 2io/c(x) # 0. (4.7.14) 

Thus, the solutions are asymptotically linearly independent. 
The following theorem can be proven: 

Let c(x) be continuous over the x interval of interest. Then the two formal 
solutions are actually asymptotic to two exact solutions of (4.7.2) as I w ( += co 
in a sector in the o plane in which 

Re iw/c(x) # 0. 

Thus, there are two linearly independent solutions that have u+ as their 
asymptotic expansions in the upper half o plane and two linearly independent 
solutions that have uf as their asymptotic expansions in the lower half w 
plane. The theorem does not guarantee (because it is, in general, not true) that 
the asymptotic expansions approximate the same two exact solutions in 
both half planes. This is a manifestation of a property known as the Stokes 
phenomenon for asymptotic expansions; namely, the analytic continuation 
of the asymptotic expansion of an exact solution need not be the expansion of 
the analytic continuation. The boundary across which analytic continuation 
fails is called the Stokes line. 

Luckily, we are interested in solutions in an upper half w plane. Once we 
have their asymptotic expansion in that domain, the Fourier inversion is to 
be carried out by using that asymptotic solution. Deformations of contour 
to be carried out thereafter are done for the given integrand without regard 
for its origin. 

As a simple example of this theory, let us find an asymptotic Green’s 
function; that is, let us solve the inhomogeneous equation 

u”(x, 0) + (wZ/c2)u(x, 0) = -6(x - 5 ) .  (4.7.15) 

In order that the solution to this problem be bounded in the upper half o 
plane, we require that the solution be proportional to u, for x -+ + co and 
proportional to u- for x -+ - GO. Furthermore, the importance of the point 5 
motivates us to use this point as the lower limit in all integrals. Also, the 
requirement that u be continuous at x = 5 leads to the conclusion that the 
arbitrary constants in the solutions left and right of 5 must be equal; that is, 

u - ajc(x)eiwm{l + n = l  f + [ B .  1 4  - kJ”’ X <  A : - l ( y ) m d y ] } ,  

x<  = min(x, t), x, = max(x, 5). 
(4.7.1 6) 

x’ dy  
CD = 6. co’ 
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We denote by Lu’] the jump in u’ across x = 5. By differentiating (4.7.16), 
we find that 

This jump must be equal to - 1 (Exercise 2.1~). Thus, the leading order term 
in this equation is set equal to - 1, and the jump to all lower orders in o is 
set equal to zero. This leads to the conclusion that 

A = - C  c(<)/2iw, B ,  = 0, 
(4.7.18) 

B,+l = ~ [ C ( ( ) ] ~ ’ * A ~ _ ~ ( { ) ,  n = 1,2 ,.... 

To leading order, then, 

J.c.>c(ti ei& u(x, w)  - - 
2iw 

(4.7.1 9) 

When c = const, only the first term of the asymptotic series is nonzero, 
and it yields the exacr solution for the Fourier transform of the Green’s 
function. Furthermore. if it were valid to use this result over the entire 
Fourier domain to invert this transform, the result would be 

Jcodi)H(t - a), 
2 

O(x, t )  = - (4.7.20) 

We remark that the difference between the exact solution and the leading 
order asymptotic solution (4.7.19) is O ( W - ~ ) .  Each reciprocal power of w can 
be viewed as integration with respect to t. In this sense, the difference between 
the exact Green’s function and (4.7.20) is “smoother” by one integration than 
the Heaviside function. Retaining subsequent terms in the asymptotic 
expansion would leave a progressively smoother error. In any case, (4.7.20) 
is a representation that retains the “right” discontinuity of the Green’s 
function for this problem. 

Let us turn now to the Klein-Gordon operator and consider in the 
Fourier domain 

Here for each fixed x, the branch of the square root is as in the constant 
coefficient case. Furthermore, we shall assume that b(x )  is monotonically 
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increasing from a lower limit of b,  at - GO to an upper limit of b, at + 00, 

with b’(x)  > 0 for all finite x. Although we are interested in a solution in an 
upper half o plane, we consider the solutions on the real w axis, which we 
view as having been reached as a limit of solutions from the upper half w 
plane. For w > b ,  , the solution technique is as above. To leading order, we 
obtain 

4 = k ( y , w ) d y .  (4.7.22) 

Now let us suppose that w is in the range bl < w < b z .  Then there is a 

o2 = b,(X,). (4.7.23) 

This point is called a turning point. For the moment, we are, in some sense, 
“ t ied to the real w axis because, otherwise, there is no turning point as x 
varies and the structure of the solution changes radically. We proceed, then, 
under the assumption that the Fourier inversion that we are ultimately to 
carry out is valid as an integral on the real w axis, with perhaps branches of 
square roots to be defined and integrals “through poles to be interpreted 
as principal value integrals minus half residues. 

There is also some question here as to the validity of using asymptotics 
near the turning point. Jndeed, we must take the point of view that the solu- 
tions we find will be used only for I k I L ’‘large’’ and not in the transition region 
around the tunring point. Here L denotes distance from the turning point. 

We continue the analysis with all of these disclaimers in mind. Proceeding 
as in the analysis of (4.7.3), we find now that there are two linearly independent 
solutions u+ for x > x ,  having real exponentials in their asymptotic 
representation 

s‘ u+ - k-’ /2e’@,  

point, say, x,, at which 

and the two solutions (4.7.22) for x < x, having oscillatory solutions 
(4.7.22) with fixed limit x,. 

It has already been noted that one cannot simply take the analytic 
continuation of the asymptotic expansion to determine the asymptotic 
expansion of the analytic continuation for any of these solutions. The problem 
of determining connection formulas relating the oscillatory solutions to the 
exponential solutions has been extensively studied. (See, for example, 
Erdelyi [1956] and Olver [1974] .) The solution to this problem is associated 
with the names Wentzel, Kramers, Brillouin, and Jeffreys and is called 
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WKBJ connection formulas. In particular, let us consider the two solutions 
u* in (4.7.24). The connection formulas for these two functions are 

Here $ is as defined by (4.7.24), and 4,  now with fixed limit, is defined by 

(4.7.26) 

These are asymptotic expansions of two linearly independent solutions on 
the real w axis according to whether k2 is positive or negative. They are valid 
for (kl large under the assumption that x, is a simple zero. The connection 
formulas change with the order of vanishing of k2 (see Olver [1974]). 

There are two major approaches to deriving these connection formulas. 
Both can be found in Olver [1974]. On one of the approaches, the analysis 
of a differential equation with a simple turning point is reduced to the study 
of the “canonical” problem with this character, namely, 

Here large argument means large magnitude of the independent variable x. 
This equation is Airy’s diflerential equation. The asymptotic solutions of 
(4.7.21) are expressible as multiples of the solutions of Airy’s equation. These 
solutions are called Airyfunctions. Two specific solutions of Airy’s equation, 
denoted by Ai(x) and Bi(x), have the property that they respectively decay or 
grow exponentially as x + 00. Asymptotic expansions of these functions for 
x negative and large yield the connection formulas stated in (4.7.25). 

The asymptotic expansions in (4.7.25) are, in fact, specializations to the 
real w axis of expansions valid in sectors in the complex plz-e. Indeed, one 
need only define 1 k J  in a natural way to extend those expansions off the axis. 
We remark that neither of the solutions whose asymptotic expansions are 
given in (4.7.25) remains bounded in the upper half w plane. However, 
neither solution is the Fourier transform of a solution to an initial value 
problem. On the other hand, the Green’s function. derived in Exercise 4.26 
below, is the Fourier transform of the solution to an initial value problem, 
and it does remain bounded in the upper half o plane. 

For o < b,, the two linearly independent solutions are of the type u+ for 
all x, with the fixed limit in the definition of $ no longer specified. 
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Exercises 

4.26 The object of this exercise is to find the asymptotic Green’s function 
for the Klein-Gordon operator (4.7.2 I). Therefore, consider the following 
equation : 

2,u = -6(x - 5). 
(a) For w > b,, show that the Green’s function is given by 

u(x,  t) - +iu+ (x, , w)u-(x,,  w), x, = min(x, c), x, = max(x, 4 )  
and u +  given by (4.7.21). 

(b) For b ,  < w < b,, show that 

4x5 5 )  - 4 V + ( X >  7 W)V-(X< 3 4, 
with V~ given by (4.7.25). 

(c) For w2 < b:, show that 

(d) Suppose in (b) that and x are less than x,. Write the Green’s function 
in terms of exponentials. Identify the solution as a sum of a wave incident on 
the barrier, where x = xw and a wave reflected from the same barrier. Here, 
define the direction of the wave as bring to the right when a6jax is positive 
and to the lejl when this derivative is negative. 
4.27 Formally replace kZ in the connection formulas by f(x, w) to obtain 
these formulas more generally for solutions to the equation 

u” + f(x. w)u = 0, 

under the assumption that f has a simple zero at xo and is an increasing 
function of x. 

4.28 Consider the problem for u defined by 

w2 w2 
U” + ~ u = 0, x < x,; 

c2(x) 
u” + c;(x,” - = 0, x > xo. 

Require that the solution u and its derivative u’ be continuous at the point xo. 
Define 

f I O b ( X )  

u+ -- x < xo, m’ 
m 

,LiwOlCx) 

u1* -- x > x o .  
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(a) Let u be the solution that has the asymptotic expansion 

u = {  u+ + Ru- ,  x < xo, 
Tu, * 7 x >xo. 

This solution models the problem of a wave incident from the left, reffected 
from the discontinuity (interface) and partially transmitted. Show that 

(b) Often, in modeling the wave propagating to the right, the discon- 
tinuity is ignored, and one uses the formula for the continuous solution 

.=i“+. u1*, x x < x o ’  >xo.  

The percentage error in this approximation of the transmitted wave is given 
by the transmission coefficient T in (a). Set 

c ( x ~ )  = C ,  c,(x0) = c + Ac, 

and show that 

T = 1 - ~ [ A c / c ] ~  + ~ ( ( A C ~ C ) ’ ) .  

That is, the error in the transmitted wave is quadratic in the percentage 
change in the propagation speed. 
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5 THE WAVE EQUATION 
IN TWO AND THREE DIMENSIONS 

We shall now discuss the wave equation in two and three dimensions. As 
noted in the Preface, we shall be more concerned in this chapter with certain 
qualitative features of the wave equation than with solution techniques. Thus, 
we shall discuss ill-posedness and the propagation of discontinuities, unique- 
ness, and energy conservation; Green’s functions; and the representations 
of solutions of more general problems in terms of them and then, finally, 
scattering problems. 

5.1 CHARACTERISTICS AND ILL-POSED CAUCHY PROBLEMS 

We begin again with the rn-dimensional generalization of (4.1 .l), namely, 

V 2 U  - c - ~ U ~ ~  = F(x,t, U , V U ,  U f ) .  (5.1.1) 

Here the gradient and (x) are either two- or three-dimensional. [The dis- 
cussion here will really be (rn > 1)-dimensional.] 

As in Section 4.1, we begin by considering the possibility of introducing a 
new independent variable 5 in such a manner that the second derivative with 
respect to 5 does not appear in the equation. For this problem, 

5 = 4 k  0, (5.1.2) 

and the analog of equation (4.1.4) is 

v2u - c - q t  = V,,[(@)2 - c-2qyl + .... (5.1.3) 

145 
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Thus, there is no second derivative with respect to 5 in the equation if 

(Vfj)2 - c-2fj;  = 0. (5.1.4) 

If, as in Exercise 1.7, we assume that $J is of the form 

4(x, t )  = N X )  - cot, (5.1.5) 

then the equation for 4 reduces to the eikonal equation for $ : 

(V$)2 = 2. (5.1.6) 

Consider the case rn = 2. Let us suppose that U ,  is discontinuous along 
some curve in (x, y) at t = 0. Then that curve becomes Cauchy data for the 
eikonal equation (5.1.6), and the solution describes a surface in space-time 
or, equivalently, a curve moving in space as time progresses along which the 
discontinuity in U ,  propagates. Of course, if the concept of solution is ex- 
tended as in the preceding chapter to allow for one-sided derivatives and 
differentiable solutions on either side of a surface in space-time, then the 
discontinuity could be in U itself. See Section 4.1. The discontinuity might 
exist only at a point, in which case the surface of discontinuity is the conoidal 
solution for $J emanating from that point. 

It need not be the case that the discontinuity is originally defined at a 
fixed time. It could be that the curve of discontinuity is a curve in space-time 
or a moving locus of points in space. Nonetheless, the subsequent prop- 
agation of that discontinuity must be along a surface in space-time satisfying 
(5.1.4) or (5.1.5) and (5.1.6). 

When there are three space dimensions, the initial manifold of discon- 
tinuity may be a point, a curve, or a surface. In any case, the discontinuity 
propagates in space according to the eikonal equation, as in the discussion 
following (5.1.6). 

We shall now turn to the question of Cauchy problems that admit 
exponential solutions. For the wave equation itself 

(5.1.7) v2u - c-2utt = 0, 

we seek solutions that contain real exponentials in a variable, 
m 

A = 1 Ajxj - Lot, 
j =  1 

(5.1.8) 

with A,, . . ., A m  real. If such solutions can be found, then data on A = 0 can 
be set to construct an example of an exponentially growing solution, as was 
done in Section 3.2. We try a solution of the form 

m 

U(x, t )  = e A + i M ,  M(x, t )  = c p j x j  - pot ,  (5.1.9) 
j =  1 
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with the pj's  real. Substitution of this solution into (5.1.7) yields a complex 
equation for L o , .  . .,Im, p,,, . . . , ,urn equivalent to the two real equations 

1 m 

C Ajpj - ~ d , p o  = 0. (5.1.10) 
1 m 

1 ['If - pLjz] - -['I: - p:] = 0, 
j =  1 c2  j = 1  

If 1, = 0, one can always find nontrivial values of 'Ij's and produce expo- 
nential solutions. Indeed, this was the type of example constructed in Section 
3.2. Therefore, consider the case I I ,  # 0. Then solve in the second line of this 
equation for p o  and substitute into the first line 

We now apply the Cauchy-Schwarz inequality 

to find that 

(5.1.11) 

(5.1 .12) 

In order for the right side to be nonnegative, the first factor containing a 
difference of squares must be nonnegative; that is, 

3 < f 'If. 
c2 - j = l  

(5.1 .I 3 )  

The case I. = 0 is a special case of this result. When this inequality is satisfied, 
we can create Cauchy problems with exponentially growing solutions. For 
example, the Cauchy problem for U in which 

(5.1 .I 4) 

on the hyperplane A = 0 has solution 

U(x, t )  = eh cos A.  (5.1.15) 

This solution grows exponentially with increasing A.  It is also possible to 
construct solutions that grow exponentially with f A. 
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The condition (5.1.13) can be rewritten as 

(5.1.1 6 )  

In this form, the constraint can be viewed as being applicable pointwise to an 
arbitrary function A(x, t )  for which the parameters A o ,  . . ., I ,  are the com- 
ponents of the normal vector to the surface at a point. When equality holds 
here, the tangent to this surface is also tangent to the characteristic cone 
centered at that point; compare (5.1.16) with (5.1.4), and see Fig. 5.1. For 
inequality, the normal to the initial surface lies outside the cone and the 
surface itself cuts the characteristic cone. In this case, the initial surface is 
called timelike. The coordinate planes of the spatial variables are timelike 
surfaces. It is for these surfaces then that the Cauchy problem is ill posed. 

On the other hand, let us consider the case in which (5.1.16) is violated: 

(5.1.17) 

The space-time surface t = 0 is an example of a surface satisfying this 
criterion. In this case, one cannot construct exponentially growing solutions 
to the wave equation, and it can be shown that the Cauchy problem is well 
conditioned. Surfaces on which (5.1.17) holds are called spacelike. See Fig. 5.2. 

Let us suppose that we seek a solution for the wave equation with a 
moving point source, such as an airplane in flight. This problem is equivalent 
to one in which the equation is homogeneous but nonzero Cauchy data are 

Fig. 5.1. A timelike initial surface form = 2. 
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Fig. 5.2. A spacelike initial surface form = 2. 

prescribed on some space-time curve. If the speed of the source is less than 
the characteristic speed, the initial curve is spacelike and the problem is well 
posed. If the speed of the source is greater than the characteristic speed, the 
initial curve is timelike and the problem is ill posed. 

As a second example, let us consider the seismic inverse problem men- 
tioned in Chapter 3. A signal is propagated into the earth, and the return 
signal at the earth’s surface is observed. The objective is to solve the wave 
equation downward in space and backward in time to determine from where 
the upward propagating wave came. This is a Cauchy problem with data 
given on a plane, say, z = 0, which is timelike. Hence, the problem is ill posed. 
For some purposes, the data recorded at different points are processed as 
though they arrived at delayed times varying linearly across the array of 
receivers. Thus, the space time surface of the observations is exactly of the 
form A = 0. So long as (5.1.13) is satisfied, the problem remains ill posed. It 
should be noted that this criterion can be expressed in terms of a “speed” of 
propagation across the array. The criterion is then written as 

(5.1.1 8) 

Often in practice, the receiver array gathering data for an inverse problem 
is moving, for example, an antenna array in an airplane or a towed array in 
water. However, in both of these cases, the speed of propagation of the 
observation curve is so much lower than the characteristic speed of the 
medium (light speed in the first example, sound speed in water in the second) 
that the motion of the array can be neglected. However, were sound waves to 
be recorded by an airplane, this would no longer be the case, and the effects 
of the motion of the observation surface would be of interest. 
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Exercises 

5.1 
data (5.1.14). 
5.2 

Verify that (5.1.15) is a solution to the wave equation with the Cauchy 

Solve the wave equation with the Cauchy data 

U = 1, dUldn = 0, for A = 0. 

Here A is defined by (5.1.8). 

5.2 THE ENERGY INTEGRAL, DOMAM OF DEPENDENCE, 
AND UNIQUENESS 

We shall consider here the Klein-Gordon operator 

2’U = V2U - C C ’ l J , ,  - (b2 /cZ)U,  (5.2.1) 

and introduce the product 

h2 C I i c2 

I u,9u= u, V 2 U - - U U , , - , U  

= V.[U,VU] - + b 2 U 2 ]  + ( V U ) 2 ] .  (5.2.2) 

We shall analyze the integral of this quantity (5.2.2) over a domain D 
depicted in Fig. 5.3 (in two space dimensions and time). The upper boundary 
of D is a disk in space (sphere in three dimensions) at time t , .  The lower 
surface is a disk at time t ,  . The boundary surface between these two planes 
denoted by B is assumed to be spacelike or, at worst, on the boundary of the 
class of spacelike surfaces. That is, if the normal to this surface at each point 
is denoted by 

(A, A,) = (~~>...>~m,&), (5.2.3) 

then from Section 5.1 [in particular, (5.1.17)], 

2 1-2. = 12. (5.2.4) 

We set 

I = jD U t 9 U d V d t .  (5.2.5) 

Here dV is the difleerential content in 1y1 dimensions, that is, differential 
volume when m = 3 or differential surface area when m = 2. By applying 



5.2 Energy Integral, Domain of Dependence, and Uniqueness 151 

Fig. 5.3. The domain of integration D with boundary B, B,. B, (solid line) and inner domain 
of dependence B, (broken line). 

the divergence theorem, we find that 

(VU)’ d S .  (5.2.6) 11 
Here dS is the differential content on the side boundary: 

(5.2.7) 
dx,  d x ’ d x , ,  m = 3 

d S  = 

Our objective now is to obtain an upper bound on the second line in 
(5.2.6). To do so, we first use the Cauchy-Schwarz inequality to estimate 
Ih-VUI I A / V U / .  Then use the fact that lab( I $ [ a 2  + b 2 ] ,  which follows 
from [ a  -I b ] *  = a2 i- 2ab + b2 2 0, to deduce 

This result is used in the second line of (5.2.6) to deduce that 

As a consequence of (5.2.4), the first term of the second line is nonpositive. 
Then, since the second term is also nonpositive, the second line in (5.2.8) 
cannot be positive and I is bounded by the first line 

I I -‘s 2 [ L [ U :  c2 + b 2 U 2 ]  + (VU)2 (5.2.9) 
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Let us suppose now that U is a solution of an initial value problem, with 

(5.2.10) 9 u = F(x,  t). 

Then 

I = ID U,F(x, t )  dV d t .  (5.2.1 1) 

By setting the right sides of (5.2.9) and (5.2.11) equal to one another and 
isolating the integral over B , ,  we conclude that 

2 [$ [U:  + b 2 U 2 ]  + (vu), ] I B : .  + U , F ( x , t ) d V d t .  (5.2.12) 

In the limit of equality in (5.2.4), the domain D is the domain of dependence 
of the upper region B ,  . Therefore, if F = 0 on the interior and the Cauchy 
data at t = t ,  are also zero,+ then the integral over B, is zero. Since the 
integrand is nonnegative, this could only be the case if U itself were identically 
zero on B,  . Thus, we have proven for this equation in m dimensions that the 
solution in a bounded spatial region at a prescribed time depends only on 
the data in the domain of dependence of that region. In the limit, when B,  
shrinks to a point, it follows that the solution at a point depends only on the 
data in the domain of influence of that point, interpreted as a limit from the 
exterior. This last comment again will cause us to include the “full strength” 
of distributions on the characteristic conoid. 

This same estimate provides a proof of uniqueness of the solution. To  see 
why this is so, let us suppose that there are two solutions U ,  and U,, with U 
being their difference. Then U is a solution of the problem with zero data. We 
have just verified that the only solution to that problem is U = 0. Therefore, 
U ,  = U ,  and the solution is unique. 

If B ,  were a more general spacelike initial domain, then it would be 
necessary to estimate the integral over B ,  exactly as was done for the integral 
over B. The same conclusion would follow. 

The integrand in (5.2.12) 

c P 2 [ U ;  + b 2 U 2 ]  + (VU)’ 

is the mathematical energy density for this problem. It differs from the 
physical energy density only in a scale factor. For example, if U were the 
displacement of an area or a volume element, then the appropriate multiplier 

The Cauchy data U provide V U  on the initial surface by differentiation 
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of U,, would be the mass density rather that cP2.  This rescaling would not 
change the essential character of the conclusion. 

In the absence of external forces ( F  = 0), with B ,  and B ,  extending over 
all space, and assuming that the integral on the lower surface is finite, we 
conclude that the energy at time t ,  is bounded by the energy at time t ,  . In 
particular, when the initial data are bounded to a finite region, the integral 
over B is zero for B ,  large enough. In this case, equality holds and energy i s  
conserved. It is in this sense that we identify the Klein-Gordon equation as 
energy conserving. We have already seen in the case of one space dimension 
that it is dispersive, hence, the identification of the Klein-Gordon equation 
as an energy-conserving dispersive hyperbolic equation. Of course, the limit 
b = 0 leads to the conclusion that the wave equation itself is energy 
conserving. 

Exercises 

5.3 Verify (5.2.7). 
5.4 Suppose that 

Y U  = v2u - C - ~ L J , ,  - ~ . V U  + BU, + yU = 0, a = (01, ,..., urn). 

Substitute 

u = w exp[(pc2t + a . x ) / 2 ] ,  

y - +(a2 - p”2) 2 0. 

and show that energy is conserved for W if 

5.3 THE GREEN’S FUNCTION 

We consider the following problem for the Klein-Gordon equation (with 

Y U  = V2U - c-~u,,  - (b2/C’)U = F(x, t), (5.3.1) 

with Cauchy data U and U, prescribed at t = 0. Here the spatial dimensions 
are unbounded; that is, this is a free-space problem. A solution formula 
expressing U in terms of a Green’s function will be derived here. However, 
the discussion will be much briefer than analogous discussions of earlier 
sections, relying in part on insights gained from the discussion of the one- 
dimensional problem in the preceding chapter and on the discussion of the 
domain of dependence in the preceding section. 

the wave equation resulting from the special case b = 0): 
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Thus, let us define the Green’s function as a solution of the following 
problem: 

~ ’ G ( x ,  t ;  5 , ~ )  = -6(x - 5)6(t  - z), t < z+ ;  
(5.3.2) 

G(x, z; 6, z) = G,(x, z; €,, z) = 0. 

We set 

I = ID [ G T U  - U T G ]  dV dt .  (5.3.3) 

Here the domain D should contain the domain of inzuence “backward in 
time” of the source for the Green’s function. The domain of Fig. 5.3 will 
suffice for this purpose if we require that on B, t > z. By using the divergence 
theorem, this integral is expressible as an integral in terms of the “boundary 
data” on the boundary t = 0 of D:  

r 1  
I = J I [ G U ,  - UG,]dV .  

C 2  BI 

(5.3.4) 

Here B ,  is as shown in Fig. 5.3. On the other hand, using (5.2.1) and (5.2.2) 
yields an alternative expression for the volume integral. Therefore, 

I = ID G F  dV dt + U(5, z). (5.3.5) 

Solving for U here yields 

U(5 ,  T) = I, $ [GU, - UG,] dV - (5.3.6) 

As in earlier discussions, the domain D can be shrunk here to the character- 
istic conoid of the point (€,, z). The domain B ,  is then shrunk to the domain of 
influence of the source point of the Green’s function, so long as one interprets 
this domain as a limit from the outside and takes into account the “full 
strength’ of all distributions on the boundary of the domain. 

Let us suppose now that U is to satisfy (5.3.1) in the exterior of some 
domain Do with boundary Bo . Then, when the divergence theorem is applied, 
it must be done in the new domain, all space with Do deleted for all time. Thus, 
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If the prescribed data on B, is the value of 

cos t,b(du/&) - sin $ W, 
then we require that G satisfy 

cos t,b(aG/dn) - sin +G = 0. (5.3.8) 

In this case, we can again solve for U in (5.3.7) in terms of this enlarged set 
of data: 

- jD  GF dV dt. (5.3.9) 

It is hoped that the reader has drawn the following conclusion from the 
discussion thus far in this and preceding chapters: 

Given a problem consisting of a differential equation and “data,” there is a 
fundamental or canonical problem to be addressed, namely, the problem for 
the Green’s function, for which the (homogeneous) data should be deduced 
from the data for the given problem. If the problem for the Green’s function 
does not lend itself to solution by a particular approach, it is not likely that 
the given problem will be solvable by that method either. On the other hand, 
solution for the Green’s function provides the means to determine the 
general solution. 

We consider now the determination of the free-space Green’s functions in 
two and three dimensions when h and care constant. First, let us set b = 0 in 
(5.3.2) in order to find the Green’s function for the wave equation. We employ 
the time reversal ‘t - t + t and the spatial shift x - 5 + x to replace the 
problem for G by the following problem: 

Y G  = -d(t)s(x), t > 0; G = G, = 0, t = 0. (5.3.10) 

We introduce the multifold Fourier transform of G, denoted by g and defined 
by (2.4.3), with its inversion given by (2.4.4). The Fourier transformation of 
(5.3.10) leads to the solution 

y = - [C”/(WZ - C V ) ] .  (5.3.11) 

For m = 3, the Fourier inversion is carried out in Section 2.4, Eqs. (2.4.6)- 
(2.4.13), to yield the solution 

6(z - t - r/c) 
4m 

C(x, t ;  & z) = , r = Ix - 51, m = 3. (5.3.12) 
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Similarly, from Exercise 2.13, 

For b # 0 and the problem temporally and spatially 

C L  
= - G 2 T ( C 2 k 2  + b2)' 

As in Section 2.4, we calculate the w integral by residues 

w = o ( k )  = Jm. 
Let us first consider the case m = 3. We introduce polar 

shifted as above, 

(5.3.14) 

to obtain 

(5.3.1 5) 

coordinates as in 
Section 2.4 and carry out the angular integrals as described there to obtain 
in this case 

For large k,  the modulus of the integrand is nearly unity, so that the integral 
makes sense only as a distribution. Indeed, the case b = 0 reduces to the 
result (5.3.12) after undoing the coordinate shifts. Preferring to deal with a 
convergent integral, we set 

(5.3.17) 

This integral is now in a form in which it can be analyzed as was (4.4.25). 
That is, we can show that I is a function only of p introduced in (4.4.26), with x 
now the magnitude of a vector. We leave the details to the exercises and 
state the result 

G ,  = 2niJ0(bp/c)H(ct - r), p = d m ,  r2 = x-x. (5.3.18) 
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From this result, it follows by using (5.3.17) that 

(5.3.1 9) 
C 

= - s(ct - r) + 
47cr 

As a check, note that for b = 0, this result reduces to the preceding one. 

the polar angle measures from x. Thus, 
For rn = 2, we return to (5.3.15) and introduce polar coordinates in k with 

eiwt - - iwt 

G = - $ ~ ~ k d k ~ o z f f d ~ e i h ' m b [  1. (5.3.20) 

The angular integral here can be recognized as a multiple of the Bessel 
function of the first kind and order zero, (2.7.19) with n = 0. This leads to 
the result 

(5.3.21) 

The analysis of this integral is by no means straightforward (see Watson 
[1966, Section 13.471). However, the integral is really a Bessel transform of a 
sine function, or with a change of variable of integration, it is a Fourier sine 
transform of the Bessel function. Consequently, it can be found in a number 
of appropriate tables, such as those from Erdelyi [1954, Vol. 1, p. 11 3, Eq. 
(47) or Vol. 2, p. 9, Eq. (25)],  Gradshteyn and Ryzhik [1965, p. 736, Section 
6.667, Eq. (l)], and Oberhettinger [1972, p. 12, Eq. (2.53)]. The reader is 
cautioned to use multiple sources when possible because of the possibility of 
there being typographical errors in transcription. In this regard, it should be 
noted that Gradshteyn and Ryzhik are courteous enough to provide sources. 
For the particular example, they cite Erdelyi as the source and therefore do 
not provide an independent check on that source. 

Using any of these references, we find that 

Exercises 

(5.3.22) 

5.5 
that G is a function of p only. 

For the integral (5.3.1 7), repeat the analysis (4.4.25) to (4.4.28) to confirm 
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5.6 (a) Suppose that the domain of interest for the Klein-Gordon 
equation, m = 3, is the region x3 2 0. Suppose further that G must satisfy 
(5.3.8) with $ = 0. Show that the solution G is now the difference between the 
response to a source at c3 > 0 and a source at the point - c3 .  

(b) For $ = n/2, show that the difference in (a) should be replaced 
by a sum. 

(c) Specialize each of these results to the wave equation. 

5.4 SCATTERING PROBLEMS 

A class of problems that arises in mathematical physics (and is of interest 
to the author) can be characterized as follows. In some “local” region in 
space, there is an obstacle or inhomogeneity of the medium characterized by 
variable coefficients in the governing equation. A wave is transmitted “from a 
distance” toward this region and “reacts” with it. The consequence of this 
interaction is to change the shape and character of the wave from what it 
would have been in the absence of local variations. 

Problems of this sort were described in Chapter 1, in which it was argued 
that u ( x )  - cot, with u a solution of the eikonal equation, represented the 
location in space at time t of a wavefront associated with acoustic, electro- 
magnetic, and elastic waves among others. In the examples presented there, 
we introduced the idea of an incident wave that as time progressed, impacted 
on the local region, giving rise to other waves that were collectively called 
scattered waves and individually called reflected, refracted, and diffracted 
waves. 

Let us consider the problem of a wave incident on an obstacle or scatterer, 
such as in the example beginning with the plane wave (1.5.15). In that problem, 
the plane wave is incident from the right on a circular cylinder centered at the 
origin. The question that arises is how one is to set up an appropriate problem 
for the full wave equation, modeling the same situation as was modeled more 
primitively in that example. First, the obstacle itself should be characterized 
by its location and a boundary condition describing how solutions of the 
wave equation interact with it. Thus, let us denote the domain occupied by 
the obstacle by D and its boundary by B. Then, for example, we might be 
considering a solution of the wave equation 

V 2 U  - c - ~ U ~ ,  = 0, x outside D, (5.4.1) 

satisfying a boundary condition, say, 

U(x, t )  = 0, x on B. (5.4.2) 
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The total solution is to consist of a plane wave incident from the right on the 
obstacle and the consequences of the presence of the obstacle. We can 
check that 

y(x,  t )  = 6(x - c t )  (5.4.3) 

is a solution of the wave equation. However, if the origin of the coordinate 
system is inside of D, then this solution of the equation does not also satisfy 
the boundary condition for t near zero. On the other hand, if the obstacle 
extends in the negative x direction no more than a distance L, then U, does 
satisfy the boundary condition for times less than - L/c since this solution is 
identically zero on B in that time range. 

With this added insight, it is fairly straightforward to set down initial 
conditions at an earlier time, say, t = -2L/c, in order that the solution U be 
given by (5.4.3) up to time - L/c. Those conditions are 

U ( x ,  0) = S(X + 2L), U,(X, 0) = -cS’(x + 2L). (5.4.4) 

Now, (5.4.1), (5.4.2), and (5.4.4) define an initial boundary value problem for U. 
An alternative approach to this problem more widely in use is as follows. 

We set 

U = U ,  + Us outside D (5.4.5) 

and proceed to set down an initial boundary value problem for the scattered 
wave Us ; namely, 

1 a2 v2us---u - 0  
c2 at2 s -  

outside D, t > -2L/c, 

t = -2L/c, 
(5.4.6) 

u, = -u, on B, 

the last equation following from (5.4.2) and (5.4.5). We see that Us satisfies an 
initial boundary value problem with homogeneous initial data and inhomo- 
geneous boundary data.+ Furthermore, the functions U ,  and Us are in some 
sense unphysical in that (i) U, exists for all time as if the obstacle D were not in 
place and, therefore, (ii) the mathematical scattered field Us must carry the 
“burden” of negating this unphysical incident field in regions where it is 
“blocked by the obstacle. 

This approach to scattering problems is a departure from the approach in 
Chapter 1. There the incident wave existed only in that region exterior to D 
covered by the characteristics or rays of the incident wave front. Thus, the 

Contrast with U itself. 
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incident field did not exist on the “back side” of the scatterer as it does here. 
Nonetheless, this approach leads to a more tractable mathematical problem. 

Now let us consider inhomogeneity problems. To be more precise, let us 
suppose that we are considering the wave equation (5.4.1) again, with c 
variable. Here a variation on the above theme for the problem of scattering 
by an obstacle is again possible. For example, let us suppose that c has two 
constant values in two complementary domains D,  and D, . Let us suppose 
further that a wave is incident on the boundary between these domains from 
within D , .  Then in D,  we set U = U, + Us, but in D2 we set U = U,, a 
transmitted wave, which is really another form of scattered wave. In this 
case, we impose appropriate continuity conditions on the total field at the 
boundary. Thus, U, is a discontinuous solution existing only in a part of 
space, namely, D,. However, Us and U, are also discontinuous, while the 
total solution is not. 

As a second example, let us suppose that c varies “smoothly” in some 
finite domain from some constant reference value co “at infinity.” Then we 
could proceed as in the first problem to write U as a sum, with 

For most problems of interest, closed-form analytical solutions are not 
available. Known analytical solutions are usually arrived at after applying 
Fourier transform to the time domain. Thus, discussion of such exact solu- 
tions is best postponed until after the discussion of the Helmholtz equation 
in the next chapter. 

Much insight into the nature of exact solutions can be obtained form 
approximate or, more precisely, asymptotic solutions. Here again, though, 
the most natural large parameter is a dimensionless scale connoting high 
frequency. 

The class of problems being described is collectively known as direct 
scattering problems to distinguish them from another class, the so-called 
inverse scattering problems. In this class of problems, one observes the 
scattered field, and the objective is to determine the parameters of the 
scattering mechanism. That is, the scattered field might have been the result 
of the scattering of a (known) incident wave from an obstacle, semitrans- 
parent or solid, or might be the result of scattering from an inhomogeniety. 

One other problem of a slightly different nature is included in the class of 
inverse problems, namely, the inverse source problem. Here a wave produced 
by an unknown source is observed. The objective is to determine the source. 
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This problem is fundamentally different from the others as can be seen from a 
simple count of degrees of freedom or independent variables of the solution 
versus the data. In both cases, we might contemplate observing the scattered 
field in two space dimensions (over a surface) for all time, three independent 
variables. In the former problem, the medium parameters to be determined 
are functions of three spatial variables, and the number of degrees of freedom 
of the data agrees with the number of degrees of freedom of the source, 
albeit at the expense of an interchange of space and time. In the latter problem, 
the source may be a function of time as well as all spatial variables, thus 
having more degrees of freedom than the given (observed) data. Hence, in 
general, we should expect nonuniqueness in the inverse source problem and 
uniqueness only under severe restrictions on the source-enough to reduce 
the number of independent variables by one at the very least. On the other 
hand, there are many situations in which the inverse scattering problem has 
unique solutions, in general, or at least in a subclass of “physically reasonable” 
parameter characterizations. Such problems will be discussed in Chapter 9. 

Exercises 

5.7 (a) Consider the following problem for U(x, t )  in three spatial 
dimensions : 

v2u - c-2ut, = -6(x - x,)8(t), x # 0, 

U ( x ,  0) = Ut(X, 0) = 0, 

with both U and U, continuous at x = 0. Write U as 

x < 0, 
x > 0. 

= (“ UT 7 + us’ 

Use for U, the result (2.4.13). Write down the initial boundary value problems 
for Us and U,, with the values of U, and its normal derivative at x = 0 
explicitly stated in the boundary conditions. 

(b) Repeat (a) when the continuity in normal derivative is replaced by 
continuity of c times the normal derivative. 
5.8 The purpose of this exercise is to develop a Fourier transform needed 
in the next exercise. Let G be the free-space Green’s function with source 
point at the origin given by 

s(t - r /c )  
4nr ’ G(x, t ; O ,  0) = r = 1x1 
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Define 

Show that 

Here 

In the o plane, the square root is defined to be positive when w -+ + co. Since 
k3 must be analytic in the upper half w plane, this is sufficient to define k3 
everywhere. We note that k, is negative when w+ -a and is purely 
imaginary between the two branch points k ,/m, with argument 742. 
Consequently, g is bounded and analytic in the upper half w plane for any 
choice of z. Hint: Start from the problem (5.3.10) for G and apply Fourier 
transform in x, y, and t to obtain a problem for g .  Solve the problem for g 
under the requirement that the solution must be analytic in the upper half w 
plane. 
5.9 The purpose of this exercise is to present a case in which the inverse 
source problem admits a unique solution. Suppose that U is a solution of 
the problem 

v2u - c-2utt  = -G(t)F(x), t > 0; 

U ( x , O )  = U,(X,O) = 0. 

(a) Use (5.3.9) and (5.3.12) to show that 

s(t - ( x  - Xl l /C )  
U(x ,  t )  = F(x ' )  dV'. 's Ix - XI1 

Here the integral is over all space. 
(b) Suppose that the source is confined to some sphere, say, of radius less 

than L. Suppose further that U is observed everywhere on the surface z = L. 
Introduce the same threefold Fourier transform as was introduced in the 
preceding exercise and show that 

u(k, , k , ,  L, o) = - f ( k ,  , k , ,  dz'. 
2k3 r - m  

Here k3 is as defined in the preceding exercise. 
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(c) Conclude that 

f ( k , ,  k , ,  k , )  = -2 ik ,u (k , ,  k , ,  L, 

The function F is determined by Fourier inversion over real values of 
k i  k 2 ,  k3. 

(d) Suppose that two source functions of this same type and confined to 
some finite region to one side of z = L produce the same observed field. 
Conclude that the difference between the two sources must have Fourier 
transform zero. More precisely, the Fourier transform of the source function 
is uniquely determined in the spectrum of the observations. 
5.10 Suppose that F ( x , t )  is a function with two derivatives, all of its 
arguments, vanishing outside of some finite x domain, say, I x 1 I 0. Suppose 
further that U is a solution of the problem 

V2U - c-’Utt = V 2 F  - c - ~ F , , ;  

U(X, 0) = F(x, 0), Ut(x, 0) = F((x, 0). 

Conclude that U = F and explain the implications as regards the inverse 
source problem. 
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6 THE HELMHOLTZ EQUATION 
AND OTHER ELLIPTIC EQUATIONS 

In this chapter, we shall discuss primarily the Helmholtz or reduced wuue 
equation obtained by Fourier transform in time of the wave equation. Some 
aspects of the theory will be developed for other elliptic equations having the 
Laplacian as highest-order operator. Many of the qualitative features of 
solutions of problems with this operator carry over to more general elliptic 
equations. We shall not discuss such generalizations here. The reader is 
referred to the literature for generalizations and rigorous theory. 

We have already seen some features of elliptic problems. First, in Section 
3.2, the Hadamard example was presented [Eqs. (3.2.12) and (3.2.13)l. This 
example demonstrated that the Cauchy problem is an ill-posed problem for 
Laplace’s equation in two dimensions. From the discussion in Section 5.1, 
if we set 1, = 0 in (5.1.8) and p0 = 0 in (5.1.9), the resulting solution demon- 
strates the ill-posedness of the Cauchy problem for Laplace’s equation in 
m dimensions. 

Exercise 3.1 demonstrates that the homogeneous Helmholtz equation with 
zero boundary data can have nonzero solutions under prescribed circum- 
stances. Thus, this particular elliptic equation, as well as the class ofequations 
for which it is prototypical, can have nonunique solutions. The parameter 
values (12, in Exercise 3.1) that allow these special solutions are eigenualues 
or characteristic values, while the solutions themselves are eigenfunctions or 
characteristic functions. 

Equation (4.3.2) is a one-dimensional inhomogeneous Helmholtz 
equation. In Section 4.3, the eigenvalues and eigenfunctions associated with 
the problem (4.3.2) arose as poles in the o plane of the solution formula 
for u ;  see the discussion pertaining to Eqs. (4.3.12) and (4.3.13) as well as the 
digression on eigenfunction expansions in Section 4.3. 

164 
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We shall present some general remarks on elliptic equations in the next 
section and then proceed to the class of problems of interest. 

6.1 GREEN'S IDENTITIES AND UNIQUENESS RESULTS 

Let us define the operator 

U u ( x )  = VZU(X) - qu(x). (6.1.1) 

We shall concern ourselves with problems in two or three independent 
variables, although much of what is said is readily generalized to more 
independent variables. For q = 0, dip is the Laplace operator. As already 
noted, problems for u involving the operator 9 have quite different features 
for q positive or negative, with q = 0 being more like the limit from positive 
values of q. 

When q is negative, we shall think of the operators having arisen from the 
wave operator in the time domain after Fourier transform. Thus, in that case, 

- q  = k 2  = w2/c2. (6.1.2) 

Often, the solutions we examine will have singularities in w for real w. When 
the problem of interest can be viewed as arising from an initial value problem, 
these solutions should be viewed as the limit from above of solutions in the 
upper half w plane. This will be discussed further later. 

In the problems that we shall consider, u will be required to satisfy 

U u ( x )  = f ( x ) ,  x in D, (6.1.3) 

subject to a boundary condition on the boundary of D, denoted by BD. 
There are three types of boundary conditions of interest. There is the Dirichlet 
boundury condition, or the boundary condition of thef irs t  kind, in which u 
itself is prescribed, 

u(x)  = g(x), x on BD; (6.1.4) 

the Neumann boundary condition, or the boundary condition of the second 
kind, in which the normal derivative of u is prescribed, 

du(x)/dn = g(x) ,  x on d D ;  (6.1.5) 

and the mixed boundary condition, or the boundary condition of the third kind, 

[Bu(x)/an] + xu(x) = g(x), x on BD. (6.1.6) 

The problems associated with each type of boundary condition are identified 
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in the same manner, that is, Dirichlet, Neumann, or mixed problem, respec- 
tively. It is important to note here that the normal derivative we use points 
out of the domain D on which the differential equation is to hold. 

Two important results from multidimensional calculus used in the study 
of these problems with elliptic operators are the Green’s identities. The 
following is Green’sjrst identity for two functions u(x) and v(x) having the 
necessary derivatives explicit in the identity 

j D [ ’ ; V z u  + Vt . .Vu]dV = jaD v dS. (6.1.7) 

Here d V denotes the diferential content, which means differential volume in 
three dimensions or differential surface area in two dimensions. Similarly, dS 
denotes differential surface area of the boundary of D in three dimensions or 
counterclockwise differential arc length on the boundary of D in two dimen- 
sions. The normal derivative in this equation is to be interpreted as a direc- 
tional derivative in the normal direction outward from D. If we interchange 
u and v and subtract, we obtain Green’s second identity or Green’s theorem: 

jD[uV2v - v V 2 u ] d V  = (6.1.8) 

We restate these results for the operator 9: 

(6.1.9) 

and 

[ U ~ U  - u Y u ] ~ V  = 

We shall exploit (6.1.9) to obtain some results about uniqueness of 
solutions of the problems defined by (6.1.3) and one of the conditions (6.1.4), 
(6.1.5), or (6.1.6). To study uniqueness, we consider problems with zero data, 
that is, with f = g = 0. If such problems have only the zero solution, then 
whenever a problem with nonzero data has a solution, it must indeed be 
unique. For q nonnegative, we shall consider only real solutions. Let us set 
u = u in (6.1.9) and use (6.1.3) with f = 0. In this manner, we obtain 

(,[(VU)’ + qu2]dV = la, u dS.  (6.1.11) 

For either the Dirichlet or Neumann problem, the right side is equal to 
zero here. If q is positive, then the only way for the left side to  be zero is for u 
to be zero in D .  Thus, for either of these problems, the solution to the inhomo- 
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geneous problem is unique. When q = 0 (Laplace’s equation), we can only 
conclude from the vanishing of the left side in (6.1.11) that the gradient of u 
vanishes in D. Thus, u must be a constant. For the Dirichlet problem, that 
constant is zero on the boundary and, hence, zero in the interior as well. 
Therefore, we conclude that when q = 0 and 9 is just the Laplacian, the 
Dirichlet problem has a unique solution whenever it has a solution. For the 
Neumann problem, the constant cannot be determined, since we know only 
that the normal derivative is zero on the boundary, which is true for all 
constant solutions. Thus, the Neumann problem for Laplace’s equation has 
solutions that are at best unique only up  to u constant. 

We remark that in problems in which Laplace’s equation arises, the 
solution represents a potential function-a velocity potential, electric poten- 
tial, etc.-and only the difference in function values at two points or the 
gradient of the potential is a function of physical relevance. Thus, uniqueness 
up to a constant suffices for these applications. 

Let us now consider homogeneous data for the mixed problem. In this 
case, we rewrite (6.1.11) as 

ID[(Vu)’ + q u 2 ] d V  = - ctu2dS. (6.1.12) 
I t l D  

Now for q nonnegative and cx positive, the right side is nonpositive while the 
left side is nonnegative. Thus, they must both be zero; u is a constant function 
that is zero on the boundary; u must be identically zero, and again the 
solution is unique. 

We consider now the case q = --wZ/cz. Clearly, in this case, for real 
values of o, knowing that the left side of (6.1.1 1) is zero will not allow us to 
draw any conclusions about u or its gradient in D. On the other hand, let us 
consider complex q. Now we must allow the solutions to be complex, too. 
Thus, we again consider the homogeneous problem but in (6.1.9), set u equal 
to the complex conjugate of u (u = u*) and take the imaginary part of the 
result 

(6.1.13) 

Here we see that for zero boundary data for either the Dirichlet or Neumann 
problem, the right side is zero. Hence, the left side is zero as well, which makes 
u = 0 in the interior for Im w nonzero. Consequently, for either of these 
problems, the solution is unique for o in the upper half or lower half plane. As 
noted earlier, we have already demonstrated through examples that this 
equation admits eigenvalues and eigenfunctions, that is, nontrivial solutions 
with zero data. We can now conclude that when such eigenvalues exist, they 
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must lie on the Re w axis. In terms of q then, we conclude that the eigenvalues 
occur only for certain negative values of q. 

Let us now consider the mixed problem (6.1.6) for this case. For zero data, 
we rewrite (6.1.11) as 

(6.1.14) 

If the two sides here were of opposite signs, then we could conclude that, in 
fact, both are zero. However, the sign of the left side is different in the first 
and second quadrants of the complex w plane. Thus, there is no chance to 
conclude uniqueness here by the proposed method unless c1 also depends 
on w, which we shall now assume. 

We consider first the case of w in the upper half plane and introduce the 
impedance boundary condition 

[du(x)/an] - iwZu(x) = g(x), x on do, Z > 0. (6.1.15) 

We remark that such a boundary condition in frequency domain implies a 
balance between spatial and temporal derivatives in the domain. For this 
boundary condition, we again consider the case g = 0 in order to study 
uniqueness. In this case, we write down both the real and imaginary parts 
of (6.1.12) 

In the second line here, we see that for 0 < argw < n/2, the left side is 
nonpositive and the right side nonnegative. Hence, both must be zero in this 
range of values of w. For 4 2  < arg w < n, the left side is nonnegative while 
the right side is nonpositive. Hence, again, both must be zero. Thus, for either 
of these ranges of w, u is zero in D. Finally, let us suppose that w is on the 
positive imaginary axis. In this case, let us consider the first line in (6.1.16). 
The left side is nonnegative while the right side is nonpositive. As for the 
operator (6.1.1) with q positive, we conclude that u must be zero in D. Conse- 
quently, the Helmholtz equation with impedance boundary condition 
(6.1.15) will have a unique solution whenever it has a solution for o in the 
upper half plane. When the minus sign in (6.1.15) is replaced by a plus sign, 
we obtain in similar fashion uniqueness in the lower half plane for that 
boundary condition. We remark that this situation corresponds to considering 
the Helmholtz equation as having arisen from taking the Fourier time 
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Table 6.1 

Uniqueness Results 

4 Type 4 Type 

2 0  Dirichlet - > O  Mixed, tl > 0 
> O  Neumann 
= O  Neumann 

Dirichlet 

Mixed, tl = T iwZ, Z > 0, +Im w > 0 
-w2/cz ,  Tm u) # 0 

up to const 

transform with opposite sign in the exponent. Hence, opposite sign in the 
boundary condition has the same meaning as regards differentiation with 
respect to t. Thus, this latter case is not really a new uniqueness result, but 
only one equivalent to the result with Z in (6.1.15) positive and o in the 
upper half plane. 

These conclusions are summarized in Table 6.1. 

Exercises 

6.1 Suppose that q > 0 and that we are given a Dirichlet boundary con- 
dition on part of the boundary and a Neumann boundary condition on the 
remainder of the boundary. Prove that if a solution exists, it is unique. 
6.2 Consider the following eigenvalue problem in one independent variable : 

u” + i 2 u  = 0, 1x1 < 1, +(du/dx)  - iAzu = 0, x = f l .  

Here Z is positive and not equal to 1. 

equation has as general solution 
(a) Show that up to an arbitrary multiplicative constant, the differential 

= ,iA(x-”) + ,-iA(x--a) 

with z arbitrary. 

will have nontrivial solutions when 
(b) Apply the boundary conditions and conclude that the problem for u 

1 nn 
2i 1: 21 + and c1 = ~ n aninteger. 

21 
1 = --log ~ 

(c) Locate the eigenvalues in the complex ,I plane and discuss the limits 

(d) Consider the case Z = 1. Give physical arguments to explain why 
z + o ,  z+a.  

there are no eigenvalues for this choice of Z .  
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6.3 Now consider the following eigenvalue problem on the square Ix 1 < 1, 
I Y J  < 1: 

* (du/dx) - iRZU = 0, x = & 1, 
y = f 1. i- +(du/dy) - iRZu = 0, 

v 2 u  f A2u = 0, 

(a) Show that 

1. = [ e i l c o s S ( x - a )  + - i A c c o s f l ( x - a ) ]  [ e i l  sinp(y-7) + - i l s i n P ( y -  y )  

Here, a, fl, and y are to be determined along with 1. 

solutions when 
(b) Show that cos f l  = sin fi  and that this problem has nontrivial 

6.2 SOME SPECIAL FEATURES OF LAPLACE’S EQUATION 

We shall describe here some noteworthy features of Laplace’s equation. 

Y u  = vzu. (6.2.1) 

Let us first integrate 2 u  over some finite domain D and apply the divergence 
theorem 

Thus, we consider (6.1.1) with q = 0: 

(6.2.2) 

Given a Neumann problem in D [(6.1.3) and (6.1.5)], we see from (6.2.2) that 
the data cannot be chosen arbitrarily. It is necessary that 

f ( x ) d V  = g(x)dS. b I D  
(6.2.3) 

This condition can be understood in terms of a physical phenomenon 
that it models. Let us suppose that D is a volume or surface of an incom- 
pressible fluid in steady-stute or time independent motion. Then u represents 
a potential function whose gradient is the velocity vector at each point. The 
function f represents a source/sink distribution of fluid in the interior of D, 
while g represents the density of the influx or efflux of fluid through the 
boundary. Equation (6.2.3) has the interpretation that for an incompressible 
fluid, the sources of the fluid in the interior must be balanced by the inflow or 
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outflow of fluid through the boundary. This is the mathematical manifesta- 
tion of the principle of conservation of mass for an incompressible fluid. The 
special case f = 0 has the interpretation that the net flow into or out of D 
must be zero. 

Let us now consider the problem of determining the “singular part” of the 
Green’s function, which is also the free-space Green’s function ; this is the 
Green’s function in unbounded space. Thus, we consider the equation 

V 2 G  = -6(x - 5). (6.2.4) 

We remark that translation leaves the equation unaltered. Therefore, we 
might as well take 6 = 0. Also, introduction of a new set of coordinates that 
is a rotation of x about the source point leaves the equation unaltered. Thus, 
the equation can depend only on the radial variable r in n dimensions. 
Therefore, we consider instead of (6.2.4) the equation 

1 d  
dr  

(6.2.5) 

which applies to g only the radial part of the Laplace operator in n dimen- 
sions. Away from the origin, G satisfies a homogeneous equation, which on 
integration once with respect to r becomes 

dGjdr = c,/r”-’ (6.2.6) 

with c, to be determined. Another integration yields 

G(r)  = c2 log r ,  n = 2, C n  G(r)  = - 
(n  - 2)rn-” 

n > 2. (6.2.7) 

In order to determine c,, we integrate (6.2.4) on a small sphere about the 
source point (at the origin) and apply the divergence theorem to obtain 

Here d o n  denotes the differential solid angle in n dimensions. For example, 

dQ2 = do,  dQ,  = sin B dt? d 4 .  

The integration in (6.2.8) can now be carried out to yield 

n = 2, 

(6.2.9) 

Here Q, denotes the content-arc length in two dimensions, surface area in 
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three-of the surface of the unit sphere in n dimensions. Derivation of this 
result is outlined in Exercise 6.4. 

We conclude from (6.2.9) that 

c, = - r ( n / 2 ) / 2 7 P 2 ,  n 2 2. (6.2.10) 

We denote the Green's function that satisfies (6.2.4) by G(x; 5). Then 

I- & log r, 

Let us now define the function 

n = 2, 

n = 3, 

n 2 3. 

(6.2.1 1) 

n = 2, 

n 2 3, 
(6.2.12) 

so that G ,  = 0 on the surface of the sphere of radius a. Now we apply Green's 
theorem (6.1.8) to u and G , ,  where the domain D is the sphere of radius a 
centered at 6 and u a solution of the homogeneous Laplace equation. The 
result is 

(6.2.13) 

Here r = Ix - 6 ) .  We see that u(6) is the mean of its values on a sphere 
centered at 5 so long as the sphere is in a region D in which u is a well-behaved 
solution of Laplace's equation. Furthermore, for any point in D, we now 
conclude that such a point could not be an isolated maximum or minimum. 
If it were, it could not be the mean of its values on a surrounding sphere. 
Indeed, more generally, u could only attain a maximum at an interior point 
if it were constant. This result provides another approach to the question of 
uniqueness and provides a means for assuring continuous dependence on the 
boundary data. Suppose, for example, that we consider two problems for 
which the boundary values differ by a small amount. The difference of these 
solutions can be no larger in the interior than on the boundary. The same is 
true for the difference in opposite order. Hence, the absolute difference is 
bounded by the absolute difference of the boundary values. This constitutes 
continuous dependence on the boundary data for the Dirichlet problem for 
Laplace's equation. 
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Exercises 

6.4 The purpose of this exercise is to derive the result for Q, stated in (6.2.9). 
Let V ,  be the content-volume for n = 3, area for n = 2-of the interior of 
the n-dimensional unit sphere. Then 

v, 5 jrsl r n - 1  drdRn 

(a) Introduce the variable 
2 p = J x ;  + ...  + X,-l 

and show that 

(b) Conclude from the first representation that 

V, = Q,/n  

and from the second representation that 

n W / 2 )  
= q - 1  

Here B denotes the beta function. 

deduce the result 
(c) Equate the two values of V,, obtain a recursion relation for Q,, and 

a, = 2 ~ c " ' ~ / r ( n / 2 ) .  

6.5 In (6.2.12), let the radius of the sphere u be variable. Multiply by un- and 
integrate from zero to b to obtain the second mean value theorem, namely, 

n 4 5 )  = ~ U ( X ) d V ,  r = Ix - 51. 
b n a n  I < b 

That is, u(6) is the mean of its values in the surrounding spherical volume 
centered at 5 for any sphere in D. 
6.6 Let u be a solution of 

v 2 u  - qu = 0 

in some domain D with q positive in D. 
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(a) Show that at any point in D at which u is positive, at least one term of 
the Laplacian of u must be positive. Then u cannot have a positive maximum 
in D; explain. Similarly, u cannot have a negative minimum in D; explain. 

Use (a) to prove uniqueness for the Dirichlet or mixed problem with a 
positive or for the Neumann problem up to a constant. 

(b) 

6.3 GREEN’S FUNCTIONS 

We shall now develop the Green’s function representation of the solution 
to the class of problems for which the differential equation is given by (6.1.3). 
We begin from (6.1.10), the generalization of Green’s theorem applied to the 
operator 2‘. For the present, we do not require that q or GI be constant, 
although we shall not go much farther than theoretical development for 
nonconstant values of these parameters. We choose for v a function satisfying 
the equation 

2 u  = -6(x - 5). (6.3.1) 

Now, with u satisfying (6.1.3) and 5 in D, (6.1.10) becomes 

The choice of boundary data to be imposed on u depends on the type of 
problem satisfied by u. For each problem type, we require that u be a solution 
of the same type of problem with homogeneous boundary data. Thus, 

v(x; 5)  = 0, x on aD (Dirichlet), 

X 

X 

on 

on 

aD 

aD 

(Neumann), 

(mixed). 

(6.3.3) 
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Now in (6.3.2) we may solve for u ;  we delete the arguments under the integrals 
for brevity: 

u(5) = - f v d V  - u - d S  I L :: (Dirichlet), 

(Neumann), (6.3.4) 

We have now reduced the problem of finding a solution to a general 
problem to one of finding a Green’s function. This is of both theoretical and 
practical interest. From the theoretical point of view, existence is reduced to 
the question of existence of a Green’s function. From the practical point of 
view, any proposed solution technique for a given problem ought first to be 
tried on the Green’s function. If the solution technique is approximate-and 
most are whether they are numerical or analytical-then it had better 
produce the Green’s function with accuracy and stability as desired before 
proceeding to employ the technique more generally. 

We consider now the question of determining the Green’s functions for 
constant q. We consider first the determination of a solution of the equation 
having the “right” singularity at the source point. The Green’s function that 
does not satisfy any “particular” boundary condition will again be denoted 
by G, as in the preceding section. 

We remark that for q constant, (6.3.1) is rotationally symmetric. That is, 
as in the preceding section, the solution must be a function of r = Ix - 51 
alone, and therefore we set G = C(r).  Indeed, since the most singular part of 2’ 
near the source point must come from the Laplacian, the analysis of the 
behavior of G near this point must be exactly as it was in the preceding 
section. Thus, we shall consider the equation for G only away from this 
critical point and seek solutions that are singular at this point. Therefore, we 
consider the equation 

d2G n -  1 dG 
Ad[rn-1g]-qC=o or ~ +--- qG = 0. (6.3.5) 

dr dr2 r dr 

The case q = 0 was solved in Section 6.2; see (6.2.11). For q nonzero, the 
reader familiar with the method of Frobeniust can readily verify that the 
equation has a regular singular point at the origin and an irregular singular 

See, for example, Hildebrand [I9621 or Coddington and Levinson [1955]. 



176 6 The Helmholtz Equation and Other Elliptic Equations 

point at infinity. Thus, the solutions to this equation are related to Bessel 
functions. For q positive, the transformations 

G ( r )  = r(2-n)/2G I (  s 1 9  s = &r3 (6.3.6) 

lead to the differential equation for GI 

d2G, 1 dG, (n  - 2)' - + - - - [I + = 0. 
ds2 s ds 

(6.3.7) 

This is the equation for the modified Bessel functions of order (n - 2)/2 
and argument s. (See, for example, Abramowitz and Stegun [1965].) Two 
solutions of this equation are denoted by I and K .  The first of these is a 
function that is regular at the origin and exponentially growing at infinity. 
Hence, this solution is not of interest to us here. The second solution is 
singular at the origin and decays exponentially at infinity. This is the solution 
we seek; that is, 

G, = C,K,(s), G = C J - ~ K , ( & ~ ) ,  p = (n - 2)/2, (6.3.8) 

with Cn to be determined. 
It is important for us to  know the asymptotic behavior of Kp(&r) in 

the neighborhood of the origin. We express this result in terms of the function 
G rather than in terms of K ,  itself: 

n = 2, 
r -0. (6.3.9) I - c, log T ,  

Also, 

(6.3.10) 

In order to determine C, as we determined c, in the preceding section [in the 
discussion following (6.2.7)], we also need the result 

(n-2),12 

(6.3.1 1) 
dG ---$r[:][$] , n r 2 .  
dr 

We now are prepared to repeat the calculation (6.2.8) for this case: 

(6.3.12) 
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From this result, we conclude that 

and then 

(6.3.13) 

We turn now to the Helmholtz equation; that is, we take q to be given by 

V2G + (w2/c')G = -6(x - 4). (6.3.14) 

As above, we consider the case of constant c and conclude that G is a function 
of radial distance only. Thus, writing G = G(r),  we find that 

(6.1.2) and G to satisfy 

1 d  o2 
dr C2 

ynl - [ r n+ $1 + - G = 0 

or (6.3.15) 
d2G n - 1 dG o2 -+-- + - G = 0 .  
dr2 r dr cz 

The transformation 

leads to the differential equation 

-+- -+ d2G,  1 dG, 
dz2 z dz  

(6.3.17) 

This is the differential equation for the ordinary Bessel functions of order 
(n  - 2)/2 and argument z.  The solution that is regular at the origin is denoted 
by J ,  the solutions that are singular at the origin are denoted by Y or N and 
H ( ' )  and H @ ' .  It is these latter two that are of interest to us here. In particular, 
to leading order, asymptotically, 

H;+) e i ( ~ - ~ z / 2 - n / 4 )  -n < argz < 271, I z I  + co, 

H:+) - , / ' 7 G 3 e - ' ( ~ - p " / ~ - n / ~ ) ,  -2n < argz < n, IzI -+a, 
(6.3.18) 
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and 

2i 
Hh”(z) - - H ( y ’ ( Z )  - - log z ,  n 

(6.3.19) 

H:)(Z)- --H;)(z)-  - - r (p)  - , p z o ,  Jz1+0, - n < a r g z ~ n .  

For z given by (6.3.16), the solution that decays in the upper half w plane 
is H r ) ,  while the other solution grows in the upper half w plane and is 
therefore unacceptable. Therefore, 

G ( r )  = Cnr-pH:)(wr/c) ,  p = (n - 2)/2, (6.3.20) 

We leave it to the reader to carry out the computation for C, for this case. 

[;I-* i 
71 

with C, to be determined as it was for the result (6.3.9). 

The result is 

(6.3.21) 

We conclude then that 
P 

G(r)  = “‘3 4 2nrc HF’(wr/c), n 2 2, p = (n - 2)/2. (6.3.22) 

The cases n = 2 or 3 are of greatest interest to us. In particular, 

(6.3.23) 
1 

G(r)  = HA’)(wr/c), n = 2. 

For n = 3, the order of the Hankel function reduces to a half integer. For such 
values, these functions are expressible in terms of trigonometric functions and 
powers. Using a standard reference on Bessel functions, we can show that 

eiwr/c 

G ( r )  = __ 
471r ’ n = 3. (6.3.24) 

We have now found the singular part or free-space Green’s function for 
constant q for (6.1.1). Qualitatively, for each n and any choice of q, all of the 
Green’s functions have the same singularity at the source point. Indeed, 
since this feature arises from the r derivatives of the Laplacian, the same 
must be true for the case of variable q. 

The Green’s function u used in the representation of a solution (6.3.4) 
must also satisfy a boundary condition (6.3.3). Because this problem is 
linear, let us set 

U(X; 5) = G ( x ;  5)  + W(X; 6). (6.3.25) 

Here in a slight abuse of notation, we have returned to writing G as a function 
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of x and 4 rather than r because this discussion applies equally to the case of 
constant and variable q. Since G satisfies the inhomogeneous equation (6.3.1), 
w must satisfy the homogeneous equation 

9 w  = 0. (6.3.26) 

Furthermore, from the boundary condition, one of (6.3.3), for u,  w must 
satisfy the boundary condition 

W ( X ;  5)  = - G ( x ;  S), x on 8D (Dirichlet), 

(6.3.27) 

The question of the existence of a solution to the general boundary value 
problem(6.1.3) with (6.1.4) or (6.1.5) or (6.1.6), with constant q, is now reduced 
to the existence of the solution of the homogeneous equation (6.3.26) for w, 
with one of the boundary conditions in (6.3.27). The proof of existence either 
for w or for u itself would take us very far afield of the objectives of this text. 
Therefore, we will not address this matter but will refer the reader to the 
literature (in particular, Garabedian [ 19641, Courant and Hilbert [ 19621, 
and John [1982]) for extensive discussion of the subject. 

Existence proofs that lend themselves to consideration of data in the 
broadest class of functions are based on results for integral equations. The 
solution, say, for w(x;  t), is represented as an integral over the boundary of 
the Green’s function G ( x ;  x ’ )  multiplied by an unknown function. When the 
observation point x is moved to the boundary, a Fredholrn integral equation 
of the second kind is obtained for the unknown integrand. Existence proofs 
based on iteration or eigenfunction expansions are then possible for data of a 
type general enough to encompass models of realistic physical problems. 

Exercises 

6.7 (a) Use a standard reference on modified Bessel functions and show 
that for n = 3; the result (6.3.13) is 

G(r) = [exp( - & r)]/47cr. 

(b) Derive this result by directly solving the differential equation (6.3.5) 
with n = 3. 
6.8 The purpose of this exercise is to show how the Green’s function repre- 
sentation (6.3.2) can be deduced without the use ofdistributions. Characterize 
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the Green’s function u(x; 5 )  as a solution of the equation 

=Yu(x; 5) = 0, x # 5,  
having the singular behavior as r = 1 x - 6 I -+ 0 : 

m 2 2. 

(a) Replace the finite domain D by D‘, created from D by excluding a 
small sphere S,  around x = 5 ,  assumed to be an interior point of D.  Assume 
that u satisfies (6.1.3) in D. Apply (6.1.10) to u and u on the domain D’ to 
conclude that 

(b) Assume that u and its normal derivative are bounded and smooth in 
0. Use the estimates in part (a) and the result of Exercise 6 . 4 ~  to conclude the 
result (6.3.2) by taking the limit as the radius of the sphere S ,  approaches zero. 

6.4 PROBLEMS IN UNBOUNDED DOMAINS AND THE 
SOMMERFELD RADIATION CONDITION 

In Section 5.4, we introduced the concept of scattering problems for which 
the domain of interest was unbounded. In this section, we shall discuss such 
problems in unbounded domains for functions that are solutions of the 
inhomogeneous Helmholtz equation 

9 u ( x ;  0) = V2u(x; 0) + (w’/c”u(x; 0) = f(x; 0). (6.4.1) 

Here the source term f will be assumed to be nonzero at most in some finite 
domain; that is, f has compact support in space. The question arises of how 
one assures uniqueness in an unbounded domain. In all of the examples 
discussed up to this point, we have done so by designing a problem in the 
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time domain for which the solution started at some finite time; that is, 
the solution was causal. Then in the frequency domain, it was required 
that the solution be analytic in some upper half w plane. 

Indeed, this condition will suffice to make the solution of the Helmholtz 
equation in an unbounded domain with data-source and boundary values 
confined to a finite domain-unique. However, this condition is, in some 
sense, unphysical. It is possible to develop a criterion for uniqueness more 
closely tied to the property of “radiation” or propagation outward from the 
finite domain of the data for CL) “large enough” but real. This is the Sommerfeld 
radiation condition. It is this condition (actually, two conditions) that will be 
developed and discussed in this section. 

Let us begin by considering the free-space Green’s function in three 
dimensions (6.2.23) and note that the solution in the time domain will be a 
superposition over frequencies of the function 

- , io(r/c- t )  

G(r,  t )  = G(r)e-’”‘ = -. (6.4.2) 

We note that the surfaces of constant phase for this function are spheres 
whose radii increase with time. Indeed, Fourier inversion yields the distri- 
bution (2.4.131, which is nonzero only on these same expanding spheres. Thus, 
this function in the time domain certainly satisfies our notion of a function 
that is outgoing; that is, a function that represents a wave propagating out- 
ward toward infinity. The alternative to this solution was rejected in the 
discussion following (6.3.18) on the basis that it was not analytic in an upper 
half w plane. We remark that, in the time domain, this second solution would 
represent a wave that propagates inward for time in the range - m < t < 0, 
collapsing on the origin at t = 0, and is zero thereafter. Thus, our earlier 
criterion did pick out the outward-propagating Green’s function and reject 
the inward-propagating one. 

Far away from the domain containing the data, the solution to a problem 
of the type we defined in the first paragraph of this section should behave 
qualitatively as this Green’s function does. The reason is that any finite 
domain when measured on the scale of the range to an observation point 
receding toward infinity shrinks (in relative size) to zero. Thus, it would be 
reasonable to expect the solution to behave in the same way as the Green’s 
function in (6.4.2) in the sense that it should represent a wave propagating 
radially outward from any origin in the finite part of the plane. Of course, the 
amplitude of this radially propagating wave would be expected to have 
angular dependence arising from the specific properties of the data. 

Examination of (6.3.23) or (6.4.2) suggests as one criterion that the solution 
must decay to zero at the rate of l/r as r + a. The second criterion must 
characterize the direction of propagation, which arises from the r derivative 
of the phase. In general, it is not practical to think in terms of differentiating 

4nr 
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only the phase, since that need not be an identifiable expression for the 
solution of an arbitrary problem. However, we can see that for G, differ- 
entiation with respect to r leads to one term of order l/r arising from dif- 
ferentiation of the phase and another of order l/r2 from differentiation of the 
amplitude. Furthermore, the former term is a multiple of G itself, which for 
inward-propagating waves would be of opposite sign. Thus, we characterize 
the outward propagation of G by the two criteria 

u ( x ;  w )  = O(l/r), u,(x; w )  - (iw/c)u(x; w )  = o(l/r), r + cc. (6.4.3) 

Here r is the radial variable measured from any point in the finite part of the 
plane. (See Exercise 6.9.) These equations comprise the Sommerfeld radiation 
condition in three space dimensions.+ We state the main conclusion of this 
section in the following theorem. 

Theorem Suppose that u is a solution of (6.4.1) in an unbounded domain 
D with one or more finite “holes” on the boundary of which either Dirichlet 
or Neumann boundary conditions are prescribed. Furthermore, we suppose 
that u satisfies the Sommerfeld condition [(6.4.3)]. Then u is unique. 

For the mixed boundary condition (6.1.15), the solution is also 
unique. Note here that the normal derivative pointing out of D points into 
each of the finite “scatterers” with boundary aD. 

We shall prove this theorem and corollary at the end of this section. 
However, we shall first examine some consequences of the radiation con- 
dition, along the way establishing some preliminary results needed for the 
proof. 

We introduce a sphere S ,  centered at the origin of coordinates and 
containing all of the data for u. Thus, outside of this sphere, u satisfies a 
homogeneous equation with constant coefficient c. We suppose that u is to 
be evaluated at some point x outside this sphere. We introduce a second 
sphere S ,  large enough to contain x as well. See Fig. 6.1. 

We now apply Green’s theorem (6.1.10) to u and G, given by (6.3.23) over 
the domain between S ,  and S,. The result is’ 

Corollary 

Courant and Hilbert [1962] have noted (hat under an integral form of the radiation condi- 
tion, we can actually conclude that the term o(l/r) in the second condition here can be shown 
to be O(l/r2) in general, as is the case specifically for the Green’s function. 

* The explicit dependence of u on w is not important here and is therefore omitted. 
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Fig. 6.1. Spheres containing data (S,) and observation points (SJ; sphere of increasing 
radius (SR). 

The Sommerfeld radiation condition (6.4.3) guarantees that the second 
integral here must be zero. This can be seen in the following manner. First, 
introduce a still larger sphere S ,  whose radius R will ultimately be allowed to 
approach infinity. Because the singularity of the Green's function lies inside 
of S , ,  applying Green's theorem to the region between S, and S ,  shows the 
equality of the surface integrals: 

Here the direction of the normal on the left side is taken to be the same as it 
was in (6.4.4), that is, outward to S , ,  although this is opposite to the direction 
it would have in the application of Green's theorem. This results in like signs 
on both sides of this equation when the normal in the second line is taken as 
the ordinary outward normal. We remark that in these surface integrals, the 
normal direction is merely the radial direction. Thus, 

(6.4.6) 
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The last part of the equation here follows from applying the Sommerfeld 
condition (6.4.3). Each term on the right side here contains one factor that is 
O(l/r) and one factor that is o( l / r ) ;  hence, the entire expression is as stated. 
We note further that the surface area on the sphere S ,  is O ( R z ) .  Thus, the 
integral over as, is o(1) in R; that is, the integral decays to zero as R -+ 00. 

Consequently, the integral on the left in (6.4.5), being independent of R ,  must 
be identically equal to zero. 

This leads us to the following integral representation for u(x) outside the 
region of nonzero data: 

We remind the reader that in this region outside the support of the data, 
the Green’s function is given by 

(6.4.8) 

Let us introduce (p ,  0, &) as polar coordinates for the point < and use the 
binomial expansion to approximate Ix - 51 for values of p large compared 
to 1x1 = x. The expansion is 

2 g . x  x2 ) g  - XI = [p2 - 2 g - x  + x y  = p 1 - __ [ r2 +pi ]  

= p - s . x +  c a p ( W ; x )  (6.4.9) 

Here in the last line, we use 5 to denote a unit vector in the direction of 5. 
Also, more explicit information about the coefficients in the sum does not 
concern us. By inverting this series, we also obtain the result that 

p = l  P” 

(6.4.10) 

By substituting these series into the representation (6.4.7) and integrating 
term by term, we obtain the following representation for the outward 
radiating field : 

(6.4.1 1) 

In this equation, the leading coefficient is called the far-field scattering 
amplitude given by 

(6.4.12) 
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Here we have used the notation fi to denote a unit outward normal vector 
to the surface S ,  . By substituting the functional form (6.4.11) into the Helm- 
holtz equation in polar coordinates and equating the coefficient of each 
power of p equal to zero, we obtain the following recursion relation for the 
coefficients in the expansion: 

p 2 0. (6.4.13) 
An important consequence of this result is that the radiated field will be 
identically zero if only f o  is zero. That is, there is no nontrivial outward- 
radiated field with algebraic decay faster than l/p ! We remark, however, 
that the k vector might be complex and thus lead to exponential decay; 
still, the amplitude must be as stated. 

Let us now consider an observation point 5,  which is inside the sphere S, . 
We shall apply Green's theorem (6.1.10) to the region D', which is the domain 
D restricted to the interior of S ,  . We deduce that the boundary integral over 
as, is zero now, just as was the integral over as2 earlier. Thus, we conclude 
that u satisfies the first line of (6.3.2) but in terms of the outward-radiating 
Green's function G in place of u :  

We do not know both u and its normal derivative on the boundary 
surfaces. Hence, this equation does not provide a solution formula for u. 
However, it does provide a point of departure for solution techniques, either 
by numerical approximation or asymptotic approximation. We shall not 
discuss the former, but we shall discuss the latter in subsequent sections 
and chapters. 

We turn now to the consideration of the energy in a wave field. We 
suppose that (6.4.1) arose as the Fourier transform of a problem in the time 
domain for a function U(x, t )  after Fourier transform as given by 

u(x; O) = U(X, t)eia' dt .  lom 
The function U satisfies the equation 

1 a2u v2u - - ~ = F(x, t), 
c2 a t 2  

(6.4.15) 

(6.4.16) 

with prescribed initial and boundary data. We remark that the source for 
(6.4.1) is a linear combination of the Fourier transform of the source F and 
the initial data; see, for example, (4.3.2). 
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Again, we use the domain D’, D truncated to the interior of S, , and define 
the energy at time t ,  E(t), by the integral 

E(t) = !ID,[$ 2 
+ l V U / 2 ] d V .  (6.4.13) 

We take the derivative of this expression with respect to t and use (6.4.15) and 
the divergence theorem as follows: 

dt = J [y + Vu.vu,]dV= 6, [U*V’U + vu.vu, - UtF]dV 

(6.4.1 8) 

In the last part of the equation here, we see that the time rate of change of 
energy is made up of three terms. We interpret the first term as the flux 
(influx, positive; efflux, negative) of energy through the boundary dD; the 
second term is the flux of energy outward from the finite support of the data; 
the third term is the flux of energy due to the source. In this last term, we are 
justified in replacing D’ by D because the source is nonzero only in D’ and 
the integrals over these two domains are equal. 

Let us focus our attention now on the second term, the radiated energy. 
Therefore, we set 

(6.4.19) 

We note that the normal direction here is radially outward; hence, the normal 
derivative in this expression is just the radial derivative. By taking the 
Fourier transform of the Sommerfeld condition (6.4.3), we obtain the 
following radiation condition in the time domain: 

U(x, t )  = O(l/r), Ur(x, t )  = [ - Uz(x, t) /c] + o(l/r), r -+ 00. (6.4.20) 

Substitution of this result into (6.4.19) yields 

(6.4.21) 

Thus, for r large enough, we conclude that the rate of change of energy through 
the boundary as, i s  negative. That is, the domain D’ is “losing” energy toward 
infinity when the wave field satisfies the Sommerfeld radiation condition. 
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Thus, solutions satisfying the Sommerfeld condition behave in a manner 
that is reasonable on physical grounds. 

We close this section with proofs of the theorem on p. 182 and its corollary. 

Proof of Theorem Let us suppose that the problem (6.4.1) and (6.4.3), 
with all the data nonzero only in a finite domain, has two solutions u1 and u 2 .  
We define u then to be the difference of these two solutions. Thus, all of the 
data for u are equal to zero. We again consider the domain D'-D truncated 
to the interior ofa sphere S,-and apply Green's theorem to the pair u and u* : 

= j-, [ u* ; - u g] dS.  (6.4.22) 

In going from the first line to the second line, we have used the fact that u has 
either zero Dirichlet data or zero Neumann data. We apply the Sommerfeld 
condition (6.4.3) to conclude that 

(6.4.23) 

We use the representation (6.4.1 1) and let r -+ co to conclude that 

0 = J n m o d n .  (6.4.24) 

Here R denotes the solid angle on the unit sphere, and we have set d S  = rZdQ 
in (6.4.23). From this result, we conclude that f o  must be zero. However, we 
have already seen that this implies that the wave field is identically zero in the 
domain outside of S ,  and on the boundary as,. Thus, both u and its normal 
derivative are zero on as,. Now (6.4.14) implies that u is identically equal to 
zero. This is what we wanted to prove for u ;  the solution must be unique. 

Proof of the Corollary Now let us suppose that u satisfies a homogeneous 
mixed boundary condition (6.1.5), with g = 0 and Z > 0 on do", which is all 
or part of dD. Then from the middle part of (6.4.22) and from (6.4.23), we 
conclude that 

O = ?j.& U*U [ 1 + o (91 - dS  + 2iwZ [.,.. u*udS. (6.4.25) 

Now as we let the radius of as, approach infinity, we see that both terms are 
imaginary and of the same sign. Thus, in order for the sum to be zero, they 
must separately be zero; u is zero on i?D, and the proof is reduced to the 
preceding case. Thus, u is zero, and again the solution is unique. 
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Exercises 

6.9 (a) Let r = 16 - x 1, with x a fixed point and 6 of much larger magni- 
tude p than x, the magnitude of x. Show that 

&/dp = 1 + O ( l / p z )  = 1 + O(l/rz), p -+ co. 

(b) What are the implications of this result as regards the origin of 
coordinates in the Sommerfeld condition (6.4.3)? 
6.10 The purpose of this exercise is to demonstrate how the solution of a 
Dirichlet boundary value problem for the Helmholtz equation is reduced to 
the solution of a Fredholm integral equation of the second kind. See Fig. 6.2. 
Let S ,  denote the disc of radius E in Fig. 6.2, and define w1 by 

(a) Use the coordinate system of the figure and verify that 

d S  = r dr dB = pz secZ 4 tan 4 d0 d+. 

(b) Show that 

(c) Conclude from (b) that the one-sided limit 

wl(xo) =_ lim wl(x) = g(xo)[l + O(E)] 
Ir-0 

Fig. 6.2. Local coordinate system for Exercise 6.10. 
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(d) Let D be some exterior domain with a single boundary surface d o .  
Define 

Show that w is an outgoing solution of the Helmholtz equation. 
(e) For x “near” dD, decompose the boundary into a part S ,  as introduced 

in (a) and its complement S, .  (This decomposition is only approximate, 
since S ,  is not flat in this application.) Conclude that 

( f )  Take the limit as E -+ 0. Explain why the integral remains finite; 
confirm that the normal derivative is actually o(l/lx’ - xo I ’) and hence that 
the integral remains convergent in this limit. Thus, obtain the integral 
equation 

aG(x’; xo) 
w(xo) = - dS.  

2 

This is the Fredholm integral equation for the unknown function g when 
Dirichlet data for w are given. A similar equation can be obtained when 
Neumann data are given. (See Garabedian [1964].) 
6.11 (a) The uniqueness proof used in this section for the three-dimen- 
sional problem can also be applied to the one-dimensional problem. That is, 
suppose that u is a solution to the equation 

u”(x, 0) + ((02/CZ)U(X, 0) = f ( x ,  w), xo < x < 00, 

subject to a Neumann, Dirichlet, or mixed boundary condition at xo; the 
last of these of the form 

- u’(x, 0) - iwZu(x, w) = g(0) ,  x = xo, 

and a Sommerfeld condition 

u(x ,  w )  = 0(1), u’(x, 0) - iwu(x, w)/c = o(l), x --f co. 

Suppose further that the data-f, g, and nonconstant c-are confined to 
some finite domain in D. Then follow the outline of the proof of this section to 
prove that u is unique. [Remark: The choice of sign in the mixed boundary 
condition is equivalent to an outward normal derivative at the boundary 
point.] 

(b) Repeat (a) for a left semi-infinite domain - 30 < x < xo. For this 
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case, the mixed boundary condition and Sommerfeld condition must be 
replaced by, respectively, 

u’(x, w) - iwZu(x, w )  = g(w), x = x*, 
and 

u(x,  0) = 0(1), -u’(x, 0) - iwu(x, w)/c = o(l), x -+ 02. 

6.12 The purpose of this exercise is to prove uniqueness of the exterior 
problem in two dimensions under the appropriate Sommerfeld condition. 
Suppose that u satisfies (6.4.1) in two space dimensions in some exterior do- 
main D with Dirichlet or Neumann boundary conditions and the Sommerfeld 
radiation condition 

u = O(r ~ l”) ,  u, - iwu/c = o(r-1’2), r -+ co, 

with r the polar distance from some finite point in two dimensions. For 
uniqueness, we consider a problem with zero data; the objective is to prove 
that the solution must then be zero. 

(a) As in the discussion of this section, prove that 

lim J u*u ds = 0. 
R-. m 

S 

Here the path of integration is a circle of radius R ,  and the integral is with 
respect to arc length on that circle. 

Outside of a sphere containing the finite boundaries of D, assume 
that u has a Fourier series solution 

(b) 

W 

u = C ap(r)eiP6 
p = - w  

in the polar coordinates r and 8. Show that 

a,  = b,Hz’(or/c), 

with b, constant and H F )  the Hankel function of the first kind of order p .  
(c) Use (b) in (a) to deduce that 

m f (bpi2 = 0 
p =  - n  

and thus that 
b, = 0, all p .  

(d) As in the discussion of this section, deduce now that u must be 
identically zero and, thus, that the Dirichlet and Neumann problems have 
unique solutions. 

(e) Extend to the mixed boundary value problem. 
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6.13 
dimensions. 
6.14 Show that the function 

Use spherical harmonics and the method of proof of 6.12 in three 

u = [sin(or/c)]/r 

is a solution of the homogeneous Helmholtz equation in three dimensions. 
(a) Show that this solution does not satisfy the Sommerfeld condition 

(6.4.3). 
(b) Show that the function 

u = [sin(or/c)]/r - [sin(wa/c)]/a 

is a solution of the Helmholtz equation in the exterior of the sphere of radius a, 
satisfying a homogeneous Dirichlet condition on the boundary r = a. 

(c) What is the relevance of this result as regards the Sommerfeld 
condition and uniqueness? 

(d) Construct examples like these in two dimensions. 
(e) Define the functions 

Here the prime denotes differentiation with respect to the argument. Show 
that for r # 0 these functions satisfy the homogeneous Helmholtz equation in 
two dimensions and a homogeneous Neumann boundary condition on the 
sphere r = a. 

( f )  Construct a similar class of functions for the Dirichlet boundary 
condition. 

(g) Repeat the preceding two examples in three dimensions. 
6.15 (a) Verify that 

m r(+) Z k  
(1 + z)”2 = c - ( z (  < 1 

k = l  r(i - k )  k ! ’  

(b) Prove that (6.4.9) converges for x/p < 1 uniformly in €’ and 4 and that 

(c) Prove that, similarly, (6.4.10) converges for x/p < 1 uniformly in 6 

(d) Show that the expansion of (6.4.8) obtained by using (6.4.9) and 

(e) Conclude that (6.4.11) is convergent for p at least four times the 

and Cp, with an analogous estimate for the corresponding sum. 

(6.4.10) converges for x/p 2 

diameter of the support of the data for the problem for u. 

uniformly in 6, 4, and x. 
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6.5 SOME EXACT SOLUTIONS 

We shall discuss here a few examples of exact solutionst of the Helmholtz 
equation and as part of that discussion, introduce representations of solutions 
in cylindrical and spherical coordinates. In this context, we shall introduce 
the special functions appropriate to solutions in these coordinate systems. It 
is not our intent to be expository in the discussion of these special functions, 
but only informative. More complete discussions can be found in texts 
devoted to special functions, such as those of Watson [1966], Wittaker and 
Watson [ 19581, and Lebedex [ 19721. The last discusses these special 
functions in the context of applications, as do texts such as those by Jackson 
[1975] and Stratton [1941], among others. There are also compendia of 
information on special functions, such as those by Abramowitz and Stegun 
[ 19651, ErdClyi et al. [ 19531, and Gradshteyn and Ryzhik [ 19651, 

We shall be concerned in this section with the homogeneous Helmholtz 
equation 

VZu(x; 0) + (w’/c”u(x; 0) = 0 (6.5.1) 

in unbounded space (unless otherwise specified) in two or three space 
dimensions, with constant c. 

PLANE WAVES 

We begin by assuming a plane-wave solution to (6.5.1), namely, 

> (6.5.2) = e i k ’ ~  

with the vectors being two- or three-dimensional as dictated by the equation 
itself. Substitution into (6.5.1) reveals that this is a solution if 

k * k  = kZ = w’/c’. (6.5.3) 

More general solutions can now be obtained by Fourier superposition, 

u ( x ;  0) = [ A(k)e“’” d S k .  (6.5.4) 

The integral is over (all or part of) a sphere in three dimensions or (all or 
part of) a circle in two dimensions. The function A@) is one for which the 
integral makes sense either as an ordinary function or as a distribution. That 
this is a formal solution can be checked by direct substitution into (6.S.l). 
(In fact, that is what I mean by formal solution!) 

that is, 

k 2  = &,lc2 

A useful compendium 01’ exact and asymptotic solutions has been provided by Bowman 
e ta[ .  [1969]. 
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Recall that the convention we have adopted for our Fourier transform 
requires multiplication of a solution in frequency domain by exp( - iwt). 
Thus, in (6.5.2), the planes of constant phase propagate in the direction of 
k sign o. 

Let us consider now a plane wave incident from x, < 0 on the plane 
x1 = 0. This requires that sign k ,  = sgn m. Let us suppose that c in (6.5.1) is 
replaced by the value c1 in x1 > 0 and that the total solution and its normal 
derivative must be continuous across x, = 0. Then let us set 

x, < 0, 

xi > 0, (6.5.5) 
I - - e ik .x  , k ,  = sign wJ(w2/cz) - k ;  - k : .  

In the last line, the square root is positive when it is real; otherwise, k ,  is 
positive imaginary. In this manner, U, is a wave that either propagates 
toward the interface or attenuates in the direction of the interface. 

We assume that the reflected wave uR and the transmitted wave uT are 
also plane waves: 

with R and T constant. Furthcrmore, we seek solutions that radiate away 
from x1 = 0. Thus, 

sign ky  = -sign w if ky is real, Im k; < 0 otherwise, 

sign kT = sign w if k: is real, Imk: > 0 otherwise. 
(6.5.7) 

The continuity of u and its normal derivative across x1 = 0 leads to 
eik.x + ~ ~ i k ~ . x  - ~ ~ i k ~ . x  , (6.5.8) 

The phases here must agree. If they did not, then one could deduce that R and 
T were nonconstant. (See Exercise 6.16.) This would contradict the basic 
assumption of the form of solution. Thus, the transverse (with respect to the 
interface) components of the wave vector must agree: 

k ,  = k: = k: ,  (6.5.9) 

with the second equation here relevant only to the three-dimensional case. 
We now determine k ;  and k r  consistent with these results, the constraints 

on [ k R ]  and [ k T ]  in (6.5.6), and the conditions (6.5.7). The results are 

- 
kleik'x + k;Reikn.x - x, = 0. - k ~ T e i k T " ,  

k ,  = kf = k: ,  

kf = - k l ,  k:  = signwJ(w2/c:) - k ;  - k z .  (6.5.10) 
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We remark that the second equation here along with (6.5.7) define k r  both 
for real and imaginary values of the square root. 

Now (6.5.8) is a pair of equations for R and T : 

1 + R = T ,  1 - R = ( k : ' / k , ) T ,  (6.5.1 1) 

with solutions 

R = ( k ,  - kT) / (k ,  + k r ) ,  T = 2 k 1 / ( k ,  + k r ) .  (6.5.12) 

For the special case of normal incidence, k ,  = k ,  = 0, k4 = w 2 / c 2 ,  and 

k r  = w / c , ,  R = ( c l  - c) / (c ,  + c) ,  T = ~ c , / ( c ,  + c). (6.5.13) 

CYLINDRICAL WAVES 

Let us consider the Helmholtz equation in cylindrical coordinates ( p ,  4, z )  : 

2 a2 (6.5.14) 
1 a Z u  a z u  

f $ [ p  g] + + dz2 + k 2 u  = 0, k = - 
c2 . 

We seek solutions of the form 

= R(p)@(d))Z(z) 
and find that 

(6.5.15) 

1 d  1 d 2 @  p 2 d 2 Z  
- P -  p -  + - y + - - + k 2 p = 0 .  (6.5.16) 
R d p [  21 @ d 4  Z d x 2  

The second term is a function of 4 alone, and the remaining terms are 
independent of 4; thus, each of these must be constant and negative of one 
another: 

p z  d 2 Z  
- p -  p -  + - - + k 2 p 2  = n2.  (6.5.17) A ddp[ z] Z d z 2  

- - n 2 ;  
1 d 2 @  
5 z j -  

We now rewrite the second line in this equation as 

and use the same argument to conclude that 

(6.5.18) 

- - -m2;  _ _  = m2, (6.5.19) 
1 d 2 Z  
Z d z 2  

with m constant, too. 
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We rewrite the equations for a, Z, and R as 

dZ@ 
- + n z a  = 0;  
d@ 

d Z Z  
7 dz + m 2 Z  = 0;  

(6.5.20) 

(6.5.21) 

(6.5.22) 

The solutions to (6.5.20) are 

n (6.5.23) = e+inq5 

If the solution were required to be single valued in a closed 271 sector, then n 
would have to be an integer. In wedge-shaped domains of smaller angle, this 
need not be the case. 

The solutions to (6.5.21) are 

z' m = , i , imz.  (6.5.24) 

The separation constant m plays the role of k, in our earlier discussion of 
plane waves. In a domain infinite or semi-infinite in z ,  m might range over a 
continuum of values. For a domain finite in z, m would be restricted to a 
discrete set of values by boundary conditions. 

Equation (6.5.22) is Bessel's differential equation, with solutions 

Rmn = C , ( J m p ) .  

Here C,(x) denotes any of the Bessel functions of order n :  

J,(x) ,  q ) ( x ) ,  f q ' ( x ) ,  Yn(x). 

The solution (6.5.1 5 )  now has the form 

(6.5.25) 

(6.5.26) 

More general solutions can be obtained by Fourier superposition- 
summation or integration as appropriate-over m and n. 

Solutions of the two-dimensional equation in polar coordinates are 
obtained by assuming that u is z independent in (6.5.14). Equivalently, we set 
m = 0 throughout the discussion following that equation. In particular, 
(6.5.26) becomes 

u = C,(kp)e'"@. (6.5.27) 

From the asymptotic expansions (6.3.18) for the Hankel functions and the 
two-dimensional Sommerfeld condition, Exercise 6.1 2 at the end of Section 
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6.4, it is straightforward to verify that HA') represents outgoing waves and 
H r )  represents incoming waves. 

It is useful to note that the plane wave in two dimensions 
= eik.x 

has an expansion in the cylindrical waves (6.5.27). We 
m c a,(p)eif14 = eikpcos(4-@) = 

n = - w  

(6.5.28) 

write 

(6.5.29) 

Here I) is the polar angle of k. The coefficients are then given by 

e ik~cos(4 -$ ) - in4  dd = J (kp)e- i f l (@++'@).  (6.5.30) 
fl  

Thus, 

n = - r n  n = O  

This result allows us to write down a series solution to the problem of 
scattering of a plane wave by a circular cylinder. Let us consider the case of 
the homogeneous Dirichlet problem in the exterior of the circle of radius 
a. We set 

u = u, f us, (6.5.32) 

with u, given by (6.5.31). Now we must choose us as an outgoing solution such 
that u, + us = 0 on r = a. We shall do this term by term in a Fourier series 
solution. Therefore, we assume that us has a series solution terms of the 
functions (6.5.27), with each C, being the Hankel function of the first kind. 
We then need only to pick the coefficients of the series so that u is zero on 
the boundary. The result is 

The Green's function (6.3.24) also has a Fourier series representation of 
this type. The derivation is not straightforward. It can be found in the 
treatise by Watson [1966, Section 11.411. The result is 

1 
;H;'(klx - X'I) = J , ( k p , ) H f ) ( k p , )  

63 

+ 2 J,(kp,)H~"(kp,)cosn(~ - @)I. (6.5.34) 
n =  0 J 
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In this equation, p and 4 are the polar coordinates of x; p’ and 4’ are the 
polar coordinates of x’ and p <  = min(p,p’), p, = max(p,p’). Also, this 
identity remains true when the Hankel functions on both sides of the equation 
are replaced by Bessel functions of the same type. In the literature, the same 
and related identities are often written with the argument in its polar form 

Ix - X’I = Jpz + $ 2  - 2pp’cos(95 - 4’). (6.5.3 5) 

SPHERICAL WAVES 

We consider now the Helmholtz equation in spherical coordinates: 

i a  a [sin 0$] + a 1 + k2u = 0. (6.5.36) 

The angle 8 is the polar angle and the angle 4 the azimuthal angle, as shown 
in Figure 6.3. As for Eq. (6.5.14) in cylindrical coordinates, we shall first seek 
separable solutions of the form 

u = R(r)O(Q)@($).  (6.5.37) 

Proceeding as we did following (6.5.15), we obtain the following three 
equations for R ,  0, and @. 

___ + n2@ = 0, (6.5.38) 
d 2 @  
d952 

R = 0, (6.5.39) 1 m(m + 1) $i[r’$] + [k’ - r2  

n2 1 m(m + 1) - - 0 = 0. (6.5.40) 
sin 8 dQ sin’ 8 

t x3 

Fig. 6.3. Spherical polar conditions. 
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The separation constants here are m and n. The first equation of this set is 
again (6.5.20) with solutions (6.5.23). The second equation (6.5.39) is the 
equation for the spherical Bessel functions denoted by 

R, = c,(kr) (6.5.41) 

and related to the ordinary Bessel functions by 

C,G) = Jm c,, l,Z(Z). (6.5.42) 

Each of these spherical Bessel functions is denoted by the lowercase letters of 
their counterparts, namely, jm, y,, b:), and h',2). For integer values of m, 
these functions are all expressible in terms of ordinary trigonometric 
functions. In particular, 

,jo(z) = (sin z ) / z ;  yo(z) = - (cos z ) / z ;  
(6.5.43) 

h t ' ( z )  = j J z )  + iy,(z) = -ie'z/z. 

In (6.5.40), we introduce the new variable x = cos 0 and rewrite the 
equation as 

" c ( 1  d x  - x'):] + [m(m + 1) - 1 - x2 0 = 0. (6.5.44) 

As the polar angle 8 ranges from 0 to n, the range of values of x is 1x1 I 1. 
We consider first the case n = 0: 

(6.5.45) 

This is Legendre's equation. It is known that for noninteger values of m, the 
solutions are singular at both endpoints. For integer values of m, there is one 
solution that is regular at  both endpoints and, in fact, is a polynomial of 
degree m, the Legendre polynomial, denoted by P,,, : 

(6.5.46) 
1 d" 

2"m! dx" 
0" = P,(x) = PJCOS 0) = ~ ~ (x2 - 1)". 

The first few functions here are given by 

Po(x)  = 1, P 1 ( x )  = x, P2(x) = (3x2 - 1y2, 
(6.5.47) 

P 3 ( x )  = (5x2 - 3 ~ ) / 2 ,  P,(x) = ( 3 5 ~ ~  - 30x2 + 3)/8.  

These functions satisfy the orthogonality relation 

(6.5.48) 
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Here 6 is the Kronecker delta function. These functions are complete on the 
interval ( -  1, 1). That is, we can represent “arbitrary” functions in terms of 
these, much like the Fourier sine and cosine series. See Coddington and 
Levinson [1955] for a discussion of completeness of the eigenfunctions of 
Sturm-Liouville differential equations. 

For n nonzero, the solutions are the associated Legendre functions 
denoted by  P i :  

From this formula, it can be seen that these functions are zero for n > m. 
While these functions would seem to have branch points at x = f l  for n 
odd, this is not the case in 8 near 8 = 0 or 7c, since 1 - xz = sin’ 8. 

What is important to us here is that the functions (Dn and P; can be 
combined to define the spherical harmonics Ymn: 

These functions form a complete orthonormal set in the class of square 
integrable functions on the unit sphere 0 I 8 2 n and 0 I 4 < 2n with 
respect to  integration over solid angle as in the orthonormality condition 
stated as 

We use (6.5.50) and (6.5.42) in (6.5.37) to write the class of solutions 

u = c,(kr)Yrn,(R 4). (6.5.52) 

Other solutions can be generated by Fourier superposition over m and n. 
Let us now consider the expansion of a plane wave in terms of the solutions 

(6.5.52). We define y as the angle between x and k and begin by writing the 
plane wave solution to the Helmholtz equation as 

e i k . x  - - eikrcosy (6.5.53) 

This function of cos y has an expansion in the Legendre polynomials of 
argument cos y. A derivation of the expansion can be found in Section 11.5 
in Watson [1966]. The result is 

OL 

e i k . x  = C im(2m + l)jm(kr)Pm(cos y). (6.5.54) 

This result can also be expressed in terms of the polar angles of x (0 and 4) 
m = O  
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and the polar angles of k (z and $). The expansion uses the addition theorem 
for spherical harmonics. Derivation of this result has been given by Stratton 
[1941, Section 7.51 and Erddyi et al. [1953, Section 11.21. The addition 
theorem states that 

4n 
Pm(cos./) = ___ c C n ( Z >  $)Ymn(& 4); 2m + 1 n =  - m  

(6.5.55) 
k - x  

kr 
cos y = - = sin 4 sin $ cos(8 - z) + cos 4 cos $. 

By using this result and (6.5.54), we obtain the following representation of 
the plane wave in terms of spherical harmonics: 

m = O  n =  - m  

The Green’s function also has a spherical harmonic expansion 

(6.5.56) 

(6.5.57) 

This result has also been derived by Watson [1966, Section 11.411. 
As in the problem of scattering of a plane wave by a cylinder (6.5.33), we 

can use these results to derive a series solution for the scattering of a plane 
wave by a sphere. We shall take the direction of an incident plane wave to be 
the positive z direction so that y = 4, and we assume that the total solution 
(6.5.32) satisfies a homogeneous Dirichlet condition on the sphere ofradius a. 
We leave to the exercises the derivation of the solution 

jm(ka) hE)(kr) Pm(cos y). (6.5.58) 
h:’( ka) 1 m 

u(r, 0,4) = C im(2m + 1) 
m = O  

Exercises 

6.16 (a) Suppose in (6.5.8) that the phases did not agree. Show that then 
we could solve uniquely for R and T in terms of k vectors so long as k! # k r  
and, in this case, that R and T are functions of the transverse x variables. 

If k: = k r ,  show that a solution would still exist if they also both 
equaled k ,  but that at least one of the coefficients R and T would then have 
to be x dependent. 
6.17 Consider the problem of scattering of a plane wave by a circular 
cylinder of radius a. Suppose that the boundary condition on the cylinder is 

(b) 
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given by 

Then show that 

6.18 Verify (6.5.58) by starting from series (6.5.54), adding to it a series of 
outgoing waves with arbitrary coefficients, and determining those coefficients 
from the boundary condition at r = a. 
6.19 Repeat Exercise 6.17 for scattering by a sphere of radius a, now under 
the boundary condition 

Show that 

[ Qh;) 1 m 

u(r, H, 4) = i”(2m + 1) jm(kr) - - h;)(kr) Pm(cos y).  
m = O  

6.20 Let us suppose now that a point source in two dimensions is located 
at the point xo,  with polar coordinates ( p o ,  #+,), p o  > a. Use (6.5.34) to 
represent the incident field on a circular cylinder of radius a on which the 
boundary condition in Exercise 6.17 is to be satisfied. Find the scattered wave. 
6.21 Repeat Exercise 6.20 for the three-dimensional case by using (6.5.57) 
for the incident field and the boundary condition in Exercise 6.19. 
6.22 (a) Suppose that u is a solution of the inhomogeneous Helmholtz 
equation 

V z u  + k2u = f ( r ,  8,qj; k), 

with f nonzero only for r I a. Use (6.5.57) to show that for r > a, 
m 

u(r, 0,4; k)  = - ik ht)(kr)Ymn(8, 4) ja jm(kt-’)r‘dr’fmn(r’; k). 
m = O  r ’ = O  

Here 

fmn(r ‘ ;  k )  = joz‘ d 4 ’  j: Ym,(8’, 4’) sin 8’ dO’f (r ’ ,  O’, 4’; k). 
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(b) Find a function f for which fo, is nonzero but u is zero for r > a. 
(c) State a criterion for nonzero f for which u is zero for r > u. 

Such sources are called nonradiating sources. 
(d) In Section 5.4, we introduced the concept of an inverse source 

problem. What are the implications of this exercise as regards uniqueness of 
solutions to th: inverse source problem? 
6.23 Let u be a solution of the problem 

V2u + ( O ~ / C ’ ) U  = -6(x1 - h)6(x2)6(x3), x1 < 0, h < 0, 

v 2 u  + ( 0 ” C f ) U  = 0, X I  > 0, 

with u outgoing and satisfying continuity of function and normal derivative 
across x1 = 0. Write u as a sum of an incident plus reflected field for x1 < 0 
and as a transmitted field for x1 > 0. Introduce Fourier transform in the 
transverse variables and conclude that 

i “  dk, T 
exp(i[kTx, + k l h  + k,x, + k,~,]). 

In these equations, k, is defined in (6.5.5), k: and kT are defined by (6.5.1 l ) ,  
and R and T are defined by (6.5.13). 
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7 MORE ON ASYMPTOTICS 

The purposc of this chapter is to develop the method of steepest descents, 
which has great utility for the high-frequency analysis of wave problems. 
The method of steepest descents depends crucially on Watson's lemma, which 
will be developed in the first section, and on certain properties of analytic 
functions to be developed in the second section. 

7.1 WATSON'S LEMMA 

We shall be concerned here with the asymptotic expansion of integrals 
of the type 

I (A)  = f(t)ePit d t ,  (7.1.1) 

in the limit 1 -+ m. We remind the reader that in practice we shall implement 
the results of this analysis for A finite but large. 

We shall show that for a class of functions that includes many of the type 
that arise in practice, the asymptotic expansion of I ( A )  as 1 -+ co is deter- 
mined by the asymptotic expansion of f(t) as t + O + .  We shall assume that 

(i) f ( t )  is locally absolutely integrable on any finite subinterval of (0, a); 
(ii) f ( t )  grows no worse that a linear exponential at infinity; that is, 

f ( t )  = O(eU'), t -+ 00 ; (7.1.2) 

r 

for some real number a, 

(iii) 
ic 

f ( t )  - Ckt'*, t o+,  (7.1.3) 
k = O  

204 
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with Re a, > - 1 and the real parts of the set of numbers {ak}  monotonically 
increasing to infinity. We remark that this last condition guarantees that tnk 
is an asymptotic sequence necessary if (7.1.3) is to be an asymptotic expansion 
of the function J'(t). 

Under these assumptions, the asymptotic expansion of Z(A) is obtained 
from term-by-term integration of the asymptotic expansion of f(t); that is, 

This is an asymptotic expansion with respect to the asymptotic sequence 
>. This result is Watson's lemma. The proof can be found in Bleistein 

The exponential integral (2.5.8) can be recast in a form to which Watson's 

(7.1.5) 

and Handelsman [ 19751, Copson [ 19653, and Olver [ 19743. 

lemma may be applied. To do so, set 

t = A(s + 1) 

and then replace s by t again to obtain 

Z(A) = A j: dt. (7.1.6) 

Except for the multiplicative factor of A, this is exactly of the form (7.1.1) with 
1 ou 

(7.1.7) 

In fact, this asymptotic expansion is convergent in the unit disk in the com- 
plex t plane, but that is not relevant to the asymptotic expansion of Z(1) under 
consideration here. 

By applying (7.1.4), we conclude that 

which is the result (2.5.1 1). 
As a second example, we consider 

(7.1.8) 

(7.1.9) 

Substitutian of this function into (7.1.4) yields the asymptotic expansion 

(7.1.1 0) 
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This result is actually convergent for all 1 > 0. An alternative derivation of 
this asymptotic expansion is carried out in Exercise 7.6. 

In either of the examples considered here, the interval of integration 
(0, GO) could as easily have been a ray directed into the right half t plane. We 
leave the verification of this observation to the exercises. However, we note 
that this observation is more generally true. That is, suppose that we are 
given an integral in the complex t plane from the origin to infinity somewhere 
in the right half plane. Suppose further that by application of Cauchy’s 
theorem, we can show that the integral is equal to an integral along the real 
axis plus. perhaps, other contributions. Then Watson’s lemma may, at least, 
be applicable to the integral along the real axis. The replacement of one 
contour by another may often involve other contributions, such as residues 
and branch-cut integrals. However, as long as these singularities reside in 
the right half plane, such contributions will contain a factor exp(1t,), where 
Re to > 0. Hence, such contributions will be exponentially smaller than 
(asymptotically zero when compared to) the asymptotic series provided by 
Watson’s lemma. We remark that the two cases treated above, f ( t )  = 1/(1 + t )  
and f ( t )  = sin 2t1”, were such that the integral along a ray directed into the 
right half plane is equal to the integral along the real line. Thus, all of these 
integrals, being equal, have the same asymptotic expansion. 

Similarly, for an integral on the real line with A complex but approaching 
infinity along a ray in the right half 1 plane, the asymptotic expansion is 
given by Watson’s lemma. As above, the character of the integrand as A -+ 03 

is dominated by the decay of exp( -At}  for large enough values of the pro- 
duct At. 

Bleistein and Handelsman [1975] and Olver [ 19741 provide extensions 
of Watson’s lemma. We mention two of the extensions here. First, we remark 
that if the asymptotic expansion (7.1.3) contains terms with integer powers 
of log t ,  with only a finite set of such powers associated with each power of 
t, then the asymptotic expansion is again obtained by term-by-term inte- 
gration. Tbe actual formula for this case is left to the exercises. 

A second case of interest arises when the interval of integration in (7.1.1) 
is replaced by a “IOOP” contour starting from infinity, enclosing the real axis 
in a counterclockwise manner, and returning to infinity again, as in Fig. 7.1. 
We shall denote this contour by 0 + . In this case, if (7.1.3) holds in a sector 
6 I arg t 5 27c - 6, with 6 < n/2, then the asymptotic expansion of I(1) is 
again obtained by termwise integration of the asymptotic expansion of f ( t ) .  

O+ 

Fig. 7.1. The contour 0 + and domain of validity for the asymptotic expansion of f ( t ) .  
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The resulting asymptotic expansion depends on the fact that 

h i e i z z  
t'e-' dt  = - ___ = 2ie'"T(1 + z )  sin zz. (7.1.1 1) I+ J3 - 4 

(The second form is convenient for real z negative except when z is a negative 
integer.) Consequently, we find that 

As an example of this type, let us consider 
rn e-Ar' 

I(A) = - dt, s -n 1 + 7* 
(7.1.1 3)  

which can be recast in the form (7.1.12) by introducing the change of variable 
of integration t2 = t .  Here we take arg t = 0 on the positive real axis and 
arg 7 = z on the negative real axis and interpret the original interval of 
integration as a path of integration in the complex 7 plane passing above the 
origin. We remark that this interpretation is not unique. However, it is valid 
and allows us to obtain the desired representation in the most straightforward 
manner. Alternative definitions of arg t must, of necessity, lead to the same 
fianl result. 

The image of the path of integration under the prescribed transformation 
is, indeed, the contour O+ in Fig. 7.1. Thus, we find that 

- I t  

d t .  t - ' i 2  (7.1.14) 

We leave it as an exercise for the reader to perform the necessary substitution 
into (7.1.12) and to use the appropriate relationship between T(z) and 
r ( l  - z )  to obtain 

(7.1.1 5 )  

Exercises 

7.1 Calculate the asymptotic expansion of the integral (7.1.1) with f ( t )  
given by : 

(a) f ( t )  = log(1 + t). 
(b) .m = J " ( t ) .  

(b - t iP,  0 I t < h, h > 0, p > - 1, 
anything satisfying conditions (i) and (ii) of 
Watson's lemma, t 2 b. 
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7.2 (a) Find two terms of the asymptotic expansion of (7.1.1) for the 
function 

f(t) = ( t 2  - i t ) P - ' " ,  Rep > -$. 
For this function, we define 

-7c/2 i arg(t - i) < 0, for 0 I t < co. 

(b) From a table of Laplace transforms, it can be verified that for this 
function f, 

Z(A) = $6 r ( p  + i ) ~ p e - ~ " 2 ~ : ) ( ~ / 2 ) ,  L > 0, 

Use this result to verify that the leading term of the asymptotic expansion 
agrees with the first of Eq. (6.3.18). 
7.3 By formal differentiation of the integral representation of the gamma 
function (2.7.10), we find that 

[;Irn T(z) = j: (logz)"tZ-'e-' d t ,  

with the case m = 1 defining Y(z), the digumma ji~nction, or logarithmic 
derivative of the gamma function, 

Suppose that (7.1 3) is replaced by the asymptotic expansion 
m 

J'(t) Iv cmkt"k(log t)"? 

k = O  m = O  

with M ( k )  finite for each k. Then, assuming that formal substitution is valid 
for this case, derive the asymptotic expansion 

Here the asymptotic sequence is 

{l-""log 1)M'O', A-""log A)M(O)-l, . . .~ P o ,  Il-"'(log A ) M ( ' ) ,  . . .}. 

7.4 (a) In (7.1.1), let f(t) = Yo(t), the Bessel function of the second kind. 
Use the result of the preceding exercise to show that 

2 
nl r ( n )  - - iOg(24 + o(1-3 log A). 
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(b) Find the exact Laplace transform of the Bessel function of the second 
kind and obtain the same result by expanding that Laplace transform for 
large positive argument. 
7.5 (a) Verify that {Pk} is an asymptotic sequence in the limit t -+ 0 + 
when {Re uk} is a monotonically increasing sequence with limit + co. 

7.6 (a) Calculate a closed-form expression for the integral (7.1.1) with f 
given by (7.1.9), proceeding as follows. 

(b) Repeat (a) for the sequence in the limit A -+ co. 

(i) Replace the sine function by a sum of exponentials. 
(ii) Set CJ = -k,h in the two integrals, and rewrite the sum as an 

(iii) Complete the square in the exponent and calculate the resulting 
integral on the interval (- m, a). 

integral. Obtain the result 
e - i / a  

I@) = * 

(b) Use the power series representation of the exponential function to 

(c) Verify that this result agrees with (7.1.10). Here the identity 
obtain an asymptotic expansion of I @ ) .  

J2n 1-(2~) = 22=-1/2r ( )l-(z + f) 
will prove useful. 
7.7 In (7.1.12), suppose that 

f ( t )  = tC1’2/(1 + t”2). 

Show that 

7.8 Suppose that the conditions (i), (ii), and (iii) of this section hold in some 
domain that includes the ray in the t plane at angle 8, -n/2 < 0 < n/2, and 
also contains the sector between this ray and the positive real axis. Suppose 
also that f ( t )  is analytic in this same domain. Connect the ray and the real 
axis with two arcs, one of radius E, which will ultimately approach zero, and 
the other of radius R, which will ultimately approach infinity. 

(a) On the smaller arc, estimate the integrand by an upper bound 
dependent on a power of t and estimate the entire integral by multiplying 
this estimate by a bound on the length of path to show that the integral on 
this arc approaches zero as the radius approaches zero. 

On the larger arc, choose 2 large enough to obtain a bound on the 
integrand that decays exponentially to zero with increasing radius. Show 

(b) 
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that the integral on this path also decays to zero, in this case, as the radius 
approaches infinity. 

(c) Finally, conclude that the integral on the ray is equal to the integral 
on the real line. 
7.9 Let 

(a) Use Cauchy’s theorem to justify replacing this integral by one along 
the imaginary axis in a complex f plane. Then, with t = io, show that 

(1 - i) - in/4 . 1 I(/E) = i J: 2 
1 + o4 

(b) Use Watson’s lemma and conclude that 

7.10 Let 

Use Cauchy’s theorem to justify replacjng the integral along the real axis 
by an integral along the ray at angle -x/4 in the complex t plane. Then 
introduce the variable of integration (T by t = oe-’”:“ and obtain the asymp- 
totic expansion 

7.11 
Z(1) by 8, -1~12 < 8 < 4 2 .  Show that 

In the preceding exercise, replace the angle 4 4  in the definition of 

7.12 Let 

I@) = f(t)epd*” d t ,  

with f satisfying conditions (i), (ii), and (iii) of this section. (In (ii), at could 
be replaced by at2.) Introduce the change of variable of integration t2 = Q, 

and conclude that 

1: 
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7.13 
and conclude that 

In the preceding exercise, replace t2  in the definition of I ( 2 )  by t P  

7.14 (a) Verify (7.1.15). 

given by (7.1.9) and 0 < arg t s 2.n. 
(b) Calculate the asymptotic expansion of the integral (7.1.12) for f 

7.2 THE METHOD OF STEEPEST DESCENTS: 
PRELIMINARY RESULTS 

For the remainder of this chapter, we shall consider integrals of the form 

f (A) = g(z)eAwcJ) dz. (7.2.1) Jc 
In this equation, C is a contour in the complex z plane with 

z = x + i y ,  w ( 2 )  = u(x, y) + iufx, y). (7.2.2) 

Either the inverse Fourier transform, with w = i@, or the inverse Laplace 
transform is an integral of this type. The choice of traditional notation of 
complex function theory anticipates our exploitation of that theory in the 
development of a technique for the asymptotic expansion of I ( A )  as ;i -+ co. 

In the preceding section, we have seen that an integral with the real part 
of the exponent linearly (in fact, monotonically is good enough) decreasing 
toward - 03 has a particularly simple asymptotic expansion derived totally 
in terms of the local behavior of the integrand near the endpoint of integra- 
tion. In Section 2.6, in the context of Fourier integrals, we introduced the 
idea of critical points-points that were important to the development of 
the asymptotic expansion of an integral. It is these two features that provide 
a motivation for the development of the method of steepest descents. In 
this method, we exploit Cauchy’s theorem to deform the given contour of 
integration onto a sum of contours on each of which the exponent is mono- 
tonically decreasing toward - cci and then calculate the asymptotic expan- 
sion of each integral by using the results of the preceding section. Implicit 
here is the assumption that the integral on the sum of contours is related to 
I @ )  in a known manner, usually equality up to a sum of residues and/or a 
sum of contour integrals that are known to be asymptotically negligible when 
compared to I (A)  itself. 

We focus our attention on the function w(z). We shall assume that w(z )  is 
analytic and nonconstant in some domain D of the complex z plane. For any 
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point in D, say, zo = xo + iy,, we define a direction of descent from -7, as a 
direction in which the real part of w, u(x, y)?  decreases from its value at that 
point. Analogously, a direction of ascent is one in which u(x, y )  increases 
from its value at (x,, yo).  

A directed curve starting at zo along which the tangent direction is always 
a direction of descent will be called a curve or path of descent. Analogously, 
if the tangent is always a direction of ascent, the curve is called a curue or 
path of ascent. 

There are many (one or more continua) of directions of descent and ascent 
at each point in the z plane. More precisely, there are sectors of descent and 
ascent bounded by directions in which u neither increases nor decreases. Of 
special interest are the directions in which the rate of descent or ascent is 
maximal (say, with respect to arc length). These are called the directions of 
steepest descent and ascent, respectively. At a point at which Vu # 0, there 
is only one direction of steepest descent, namely, the direction of -Vu, and 
one direction of steepest ascent, namely, the direction of Vu. Figure 7.2 

U(X, Y )  = &o 1 YO) 

Fig. 7.2. Descent and ascent directions near a point at which u # 0. 



7.2 The Method of Steepest Descents: Preliminary Results 213 

depicts a surface u(x, y )  in the neighborhood of a point at which Vu # 0. 
A path or curve of steepest descent (ascent) is a curve along which the 

tangent direction at each point is a direction of steepest descent (ascent). 
We remark that given a path of steepest descent, the same curve with op- 
posite orientation is a path of steepest ascent (and vice versa). 

The words descent and ascent are prompted by consideration of the surface 
u(x, y), which is suggestive of a rolling countryside. To carry that analogy 
further, given two points zo and zl, if u ( x l ,  yl) < u(xo,  yo),  then we will say 
that z1 is in a valley of w(z) with respect to the point zo .  Similarly, if 
u ( x l ,  y , )  > u(x,,  yo), we will say that z1 is on a hill of w(z) with respect to zo .  

Thus, paths of steepest descent proceed progressively deeper into a valley 
of w with respect to the initial point on the path, while paths of ascent proceed 
progressively higher onto hills. Of course, this progression is most rapid on 
paths of steepest descent and ascent. 

Curves along which u remains equal to its value at zo are called boundary 
curues between hills and valleys. 

Motivated by the preceding section, let us consider the exponent w(z) 
= - z7 for which u = - x, and choose as reference point the origin zo = 0. 
All rays directed into the right half plane are paths of descent with respect 
to their left endpoint, while all rays directed into the left half plane are paths 
of ascent with respect to their right endpoint. Any horizontal line directed 
toward the right is a path of steepest descent with respect to its left endpoint; 
a horizontal line directed to the left is a path of steepest ascent with respect 
to its right endpoint. The open right half plane, excluding the imaginary axis, 
is in the valley of w(z) with respect to the origin, while the open left half plane 
is on a hill. The imaginary axis is the boundary between the hill and the 
valley. 

For more general exponents. the identification of paths of steepest descent 
(and ascent) is facilitated by the following observation : 

The directions of steepest descent and steepest ascent from any point 
zo  = xo + iy, are the directions tangent to Im w(z) = const, that is, tangent 
to the curves 

dx7 Y )  = 4x0, Yo).  (7.2.3) 

To see why this is so, let us consider Sw, the differential variation in w near zo, 

s w  = w(z) - w(zo) = su  + ibv. (7.2.4) 

In the direction of interest, in the differential limit, 

6v = 0 and 6w = 6u. (7.2.5) 

For any direction away from zo , 

pw12 = pu12 + ) 6 u ( 2 ,  (7.2.6) 
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(7.2.7) 

with equality holding only when 6v = 0. 
Thus, the variation in u is maximal in the directions tangent to the curves 

of constant u. Consequently, the paths of steepest ascent and descent are the 
curves of constant u. 

We remark that by avoiding use of the gradient in the preceding argument, 
we have included directions and paths of steepest descent away from points 
such as the origin for the functions 

w(z)  = 9, y > 0, but not an integer. (7.2.8) 

We leave the determination of the directions of steepest descent for this 
class of functions to the exercises. 

We focus our attention now on the question of directions of steepest 
ascent and descent at a point of analyticity of the function w(z). The answer 
is given in the following theorem. 

Theorem Suppose that at the point zo ,  all of the derivatives up to order 
n - 1 vanish; that is, 

dqw 1 d"w . 
- = O ,  q = 1 , 2  ,..., n -  1, -~ = ue", a > 0, z = zo .  (7.2.9) 
dz4 n! dz" 

If z - zo = pie, then the directions of steepest descent, steepest ascent, and 
constant u at z = zo are as given in Table 7.1. 

Proof We introduce 

6w = w(z)  - w(zo) = aeiapneine[l + O(p)],  p -+ 0, (7.2.10) 

which follows from (7.2.9) and the polar representation introduced after that 
equation. The directions of steepest descent here are those directions in 
which 6w is negative, that is, for those directions that satisfy 

M + n8 = ( 2 p  + l)n, (7.2.1 1) 

where p is an integer. The first row of Table 7.1 is the solution of this equation 
for 8. The range on p in the table provides the distinct choices for 8. 

Table 7.1 

Directions ol' 0 P 

Steepest descent p = 0, 1, . . ., n - 1 
Steepest ascent 2 p 4 n  - a/n p = O . l  , . . . ,  n -  1 
Constant u p = 0. 1 ,  . . . ,  2n - 1 

( 2 p  + 1)n/n - a/n 

( p  + i)z/n ~ E/n 
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The directions of steepest ascent are determined in a similar manner by 

(7.2.12) 
requiring that 6w be positive: 

Again, the table provides the distinct choices for 8. 

a + n# = 2pn. 

Finally, in the directions of constant u, 

3: + nO = (p + +)n, (7.2.1 3)  

and the table again provides the distinct choices for 0. 
This completes the proof. 

Let us consider the angles in the table starting from -a/n and moving 
counterclockwise about the point zo .  The direction defined by 0 = -a/n is 
a direction of steepest ascent with p = 0. The next-distinguished direction 
provided by the table is a direction of constant u at 0 = -a/n + n/2n, 
again with p = 0. This is followed by a direction of steepest descent for 
0 = -a/n + n/n for p = 0. This is followed then, in order, by directions of 
constant u, ascent, constant u, descent, . . ., continuing around the circle 
until all distinguished directions are exhausted. 

Let us consider two boundary curves (curves of constant u)  emanating 
from z = zo, with initial directions 

0 = -(a/n) + (2k + 1 & f)(n/n), k an integer. (7.2.14) 

For 0 in the range between these boundary directions, 

(2k + +)n < a + no = arg 6w < (2k + $)n (7.2.1 5) 

(7.2.16) 

That is, the region between these two boundary curves is a valley of w(z)  
with respect to the point z o .  Note that this valley contains a direction of 
steepest descent (as indeed it should!) with p = k in the first row of Table 7.1. 

In a similar fashion, the boundary curve in (7.2.14) with the larger value 
of 8 and the next boundary curve in the sequence will bound a hill of the 
exponent and contain in their range a direction of steepest ascent. 

Let us now consider the result of the theorem for the case n = 2. The 
table then fills in as 

and 
6u = up" COS(LY + no) < 0. 

a x  a 3n ( j - - + -  --+-,  
2 2 ' 2 2  

(descent), 

a '2 
8 =  -- - -+  71, (ascent), (7.2.17) 

2' 2 

C L n  31 3n a 5n M 771 
2 4 ' 2 4  2 4  2 4  

e = - - + -  --+--, --+--, --+--,  (constant u). 
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Thus, we find that the two steepest descent directions are opposite to one 
another, as are the two steepest ascent directions, while these two pairs are 
perpendicular to one another. The four directions of constant u bisect the 
pairs of directions of ascent and descent. Figure 7.3 depicts the local structure 
of the function u in the neighborhood of zo.  We can see that the surface is 
locally a saddle. Consequently, any point at which at least one derivative of 
w(z) vanishes is called a saddle point. When it is necessary to distinguish a 
saddle point where only the first derivative vanishes and the second does not, 
we identify this case as a simple saddle point. Consistent with this identifica- 
tion, we define the order of the saddle point as the order of the last vanishing 
derivative. In (7.2.9), then, the order of the saddle point is n - 1. 

When n = 3, there will be three hills and three valleys symmetrically 
placed about the point zo . The surface for this case is called a monkey saddle. 

While it is a relatively straightforward matter to determine directions of 
steepest descent at a particular point, it is for all but a few cases rather difficult 
to determine paths of steepest descent in the large by analytical means. 
Fortunately, it is not really necessary to determine these paths in the large. 
The reason for this will be discussed later. However. the development of the 
theory requires that we gain insight into the identification of such paths in 
order to develop the asymptotic theory. To this end, we shall proceed to 
consider some examples. 

U 

x 

U ( X , Y ) = U ( X o . Y O )  

Fig. 7.3. The surface u(x. y )  in the neighborhood of a (simple) saddle point 
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We consider first, the exponent 

w(z) = z2  - 2(l + i)z, (7.2.18) 

with derivatives 

w'(z) = 22 - 2(1 + i), w"(z) = 2. (7.2.19) 

We can readily see that this function has a simple saddle point at zo = 1 + i, 
with 

w(zo) = -2i, w"(zo) = 2. (7.2.20) 

Focusing on this saddle point for the moment, we can see, first, that tl = 0; 
that is, the second derivative is (real and) positive at the saddle point. Thus, 
we can readily fill in the table as listed in (7.2.17) for simple saddle points as 

n 371 % = -  - 
2' 2 ' 

(descent), 

8 = 0, R, (ascent), (7.2.21) 

7n 
4' 4 '  4' 4 '  

(constant u). - - -  n: (j = -  3n 5= 

The choice of tl is nonunique. However, other choices will yield the same 
set of directions in a different order. This is verified in the exercises. 

To study other points in the complex plane, we might proceed to use 
Table 7.1 with n = 1. However, this is somewhat cumbersome. It is easier 
to study u, v, and Vu, as we shall quickly see. From (7.2.19), we find for this 
example that 

u = x2 - y2 - 2(x - y), v u  = 2[x - 1, y - 13, 
(7.2.22) 

u(x, y)  = 2[xy - x - y ]  = 2(x - I ) (y  - 1) - 2. 

From the second line here, we see that the curves of constant u-the 
paths of steepest ascent and descent-are sections of the family of hyperboli 
centered at the point ( x o ,  yo) = (1, l), the saddle point. In the special case 
u(x, y) = u(xo, yo) = - 2, the hyperbola degenerates into the horizontal and 
vertical lines through (1, 1). Speaking in terms of the semi-infinite lines 
directed uwuy from this point, the vertical lines are paths of steepest descent, 
while the horizontal lines are paths of steepest ascent. 

For this particular example, it is possible to determine analytically the 
path of steepest descent from any point in the complex plane. Nonetheless, 
in anticipation of examples in which this is not the case, we demonstrate in 
Fig. 7.4 a computer aid to this analysis implemented on this example. The 
figure shows an array of steepest descent directions for the function of this 
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Our choice of arg z introduces a branch cut on the negative imaginary axis 
and yields a positive square root on the positive axis. Thus, we see that there 
is a saddle point at z = 1, with 

w(lj = i/2, w”(1) = -i/4. (7.2.26) 

It is now straightforward to fill in the values in Table 7.1 or (7.2.17) for 
z = 1. First, n = 2, a = $, and a = -n/2. Then 

0 = 3n14, 744, (descent), 

9 = 4 4 ,  544, (ascent), (7.2.27) 

9 = 0, 7112, n, 3n/2, (constant u). 

Another point of interest for this exponent is the origin. In order to study 
the neighborhood of this point more closely, observe that w ( 0 )  = 0 and that 
6w is then approximated by the first term in (7.2.24). We write this approxima- 
tion in polar representation as 

aw p’ i2e ’ (4+ ’ ) i2  2 = peib. (7.2.28) 

We can see here that 6w will be real and negative when $ = n; this makes 
the total argument of 6w equal to n. 

Although it is possible to determine the paths of steepest descent exactly 
for both the origin and the saddle point, we will first proceed in a qualitative 
manner to analyze these paths. From (7.224) we see that if Iz( -t m, it is 
necessary that y - t  -co or remain finite since the second term dominates 
at infinity. The latter choice is quickly eliminated, because the first term 
cannot approach - co as x --t co with y finite. As y --t - m with x positive 
in order that the imaginary part of w(z)  remain finite (as it must on a path 
of steepest descent), y must approach infinity faster than x so that the y 
dependence in the square root can balance the linear second term. Under 
this assumption, w(z)  on the path of steepest descent can be approximated by 

w ( z )  - i[e-’n/41ylt’Z - 2/21. (7.2.29) 

Thus, for u(x, y )  to remain finite. it is necessary that 

( I Y J ” Z I J Z )  - (XI21 - 0 ;  lyl - x2/2. (7.2.30) 

Thus, all steepest descent paths in this quadrant must be parabolic near 
infinity. We can perform similar analysis in the left half plane and discover 
that the same is true there, the parabolas again turning downward. 

The analysis just described is typical. It is not often that one can analyti- 
cally determine the paths of steepest descent. Indeed, for this example, 
except for some special points. anything more than such qualitative analysis 
is impractical. However, such qualitative information. about the descent 
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paths will almost always suffice. When it does not, we can always resort to 
computer analysis for fields of descent directions, as described earlier, or for 
actual construction of the steepest descent paths. Bleistein and Handelsman 
[ 19751 have described an analytical technique for finding fields of descent 
directions. However, even in that technique, it is necessary at least to find 
the curves on which ux, u,, ox, and u, are equal to zero. 

For the two distinguished points, the saddle point and the origin, the 
equations of the paths of steepest descent are determined by setting Im w 
in (7.2.24) equal to f or 0, respectively. After some algebra, this leads to the 
equations 

(7.2.31) 

respectively. In the former equation, - a, < x < m ; in the latter, - co < x I 0. 
In Fig. 7.5, we display a computer plot of the directions of steepest descent 
for a neighborhood of the origin. The features already discussed can be seen 
to be consistent with this figure. 

In Exercise 2.1 1, we outlined a proof of Jordan's lemma. Because of the 
significance of that result in the method of steepest descent, we repeat that 
discussion here. Thus, let us consider the integral 

2y = 1 - x2, 4y2 = x3(x - 4), 

(7.2.32) 

The contour C is the counterclockwise semicircular path of radius R on 
which 0 I arg z I n. Jordan's lemma states that 

P 

(7.2.3 3) 

The result is independent of R and hence remains true in the limit R + a,. 
Let us consider the integral 

P 

I = J f(z)e" dz, 
C 

(7.2.34) 

with C as for (7.2.33). By using standard estimation techniques, we obtain 
the estimate 

111 I E;% If(z) l  Jc Ie''IIdzI n max I f (z) I .  (7.2.35) 

Now we can see that a sufficient condition for the integral in (7.2.34) to 
decay to zero with increasing radius is that 

max I f(z) l+ O as IzI + co. (7.2.36) 

z on C 

z on C 
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Fig. 7.5. Computer plot of the directions of steepest descent for a neighborhood of the 
origin. w(z)  = i [z l / *  ~ z /q ,  saddle point at z = 1, branch point at z = 0, -2 < x 5 2, 

~~ 1.25 I y I 1.25, x and y increments = 0.2. 

This result has important consequences for replacement of contours on 
boundary curves by contours of descent. For the integrand in (7.2.34)- 
despite the lack of a large parameter A-suppose that we were contem- 
plating replacement of the integral along the positive real axis with an 
integral along a ray in the valley of the exponent, that is, a ray in the upper 
half z plane. Then the integral (7.2.34) would be the path connecting those 
two rays. We see here that this integral on an arc makes no contribution to 
the final replacement so long as (7.2.36) is true. 

In most applications, the exponent will not be iz and the path of integra- 
tion will not be an arc, but some connecting path between a contour integral 
on the boundary of a valley and a descent contour in the adjacent valley. 
However, if we can determine that a transformation to a linear exponent 
yields an integral with the essential features of (7.2.34), then the result ob- 
tained here must hold. That is, as the connecting contour recedes toward a 
region where the exponent approaches infinity in absolute value, the integral 
on the connecting curve must approach zero. 

To complete this discussion, we shall now prove Jordan’s lemma. 

Proof The first part of (7.2.3) is merely the result that the absolute value 
of an integral is less than or equal to the integral of the absolute value. Thus, 
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we consider only the second part. We denote by R and 4 the polar co- 
ordinates of z. Then 

z = Rib, dz = iRe@ d 4 ,  Idzl = R d4 ,  lerzl = e-Rsin4 . (7.2.37) 

We can now use these results in (7.2.33) to find that 

Jc 1e"IIdzl = Ji e-Rs'ngR d(5 = 2 ePRbinbR d4. (7.2.38) 

To obtain the second part here, we use the fact that the integrand is even 
about 4 2 .  

In order to estimate this integral, we shall first simplify the exponent by 
obtaining a linear bound on the function sin (5. By considering the graph of 
sin (5 on the interval (0,71/2), it becomes apparent that the straight line 
connecting the endpoints (0,O) and ( 4 2 ,  1) always lies below sin 4. That is, 

(7.2.39) 

J: 

0 I sing5 I (2/n)4, 0 I 4 I 4 2 .  
Consequently, 

This completes the proof. 

Exercises 

7.15 Suppose that in (7.2.9), a is replaced by c( + 2k71, with k an integer. 
Show that this does not change the set of directions in Table 7.1 but only 
shifts p by - k.  
7.16 Suppose that 

w(z)  - w(zo)  - ueia(z - zo)y, y > 0, 

in some sector of the z plane (or multisheeted Riemann surface) with apex 
at zo. Show that the directions of steepest descent at zo are given by 

H,= -( 4 7 )  + [QP + l)n/y], P an integer, 

and that the associated valleys are bounded by 6, 1 (7-42~). 
7.17 Suppose now that 

w ( z )  - U?(Z - zo)7, y < 0, 
again in some sector of the z plane or multisheeted Riemann surface with 
apex at zo.  Show that now ~ ( z )  + - co as + zo at angle 0, of the preceding 
exercise. Furthermore, in the sector with boundaries 0, & 4 2 ,  Re w(z) + - co 
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as z + zo. We remark that a path of steepest descent might actually terminate 
at such a point in the finite part of the z plane with valleys having boundaries 
that “pinch” together at such a singularity. 
7.18 Let 

w(z) = log z - z ,  -n  < arg z I n. 

Show that w(z)  has a saddle point at z = 1, with paths of steepest descent 
being the semi-infinite x axis, 1 I x < cc and the line segment 0 < x I 1. 
7.19 Let 

w(z) = z - 2313. 

(a) Show that w(z)  has two saddle points at z = & 1, with the directions 

(b) Show that the paths of steepest ascent and descent from either of 
of steepest descent being vertical at - 1 and horizontal at + 1. 

these saddle point are sections of the curves 

y = 0, x2 - (y2/3) - 1 = 0. y[x2 - (y2/3) - 13 = 0, 

(c) Conclude that the paths of steepest descent from the point -1 are 
the two sections of hyperbola that leave that point vertically and have as 
asymptote at infinity the rays from the origin making angles +2n/3 with 
the positive x axis. The paths of steepest descent from +1  are along the 
x axis. One path extends to plus infinity, while the other terminates at the 
saddle point at - 1. 

(d) Show that the valleys with respect to the point z = 1 have as asymp- 
totes the sectors 742 I larg zI I 5n/6. A more detailed depiction of the hills 
and valleys of this exponent with respect to the two saddle points is shown 
in Fig. 7.6. 
7.20 Let 

w(z) = i cos z = i cos x cosh y + sin x sinh y ,  

(a) Show that w(z) has saddle points at z = 0, n, with the steepest descent 
directions at .n being n/4, -3n/4, and the steepest descent directions at 0 
being -n/4, 3x14. 

(b) By considering u(x, y), show that on the path of steepest descent, y 
must approach + 00 on such a path when sin x is positive and that y must 
approach - 00 on such a path when sin x is negative. 
7.21 Let 

-n/2 < x I 3n/2. 

I().) = e‘”* dz, 

with C the counterclockwise quarter circle of radius R in the first quadrant 
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Hills of saddle 
point at - I  

Hills of both 
saddle points 

/ / / / / /  . 

ills of saddle \ \ \ \ \ \  H .  point at + I  

Fig. 7.6. Hills and valleys of z - z3/3. 

of the z plane, 0 I 4 I 4 2 .  Show that 

lim I ( A )  = 0. 
R +  00 

7.22 (a) The purpose of this exercise is to develop Jordan’s lemma and 
its corollary for integrals in the lower half z plane. Let 

I = jc e-” dz, 

with C now a sector of a circle of radius R in the lower half z plane, 
-n < arg z 5 0 on C. Show that, again, as in Jordan’s lemma, 111 I n, 
independent of R .  

(b) Now consider the integral 

I = jc f ’ ( z ) ep i z  dz,  

on the same contour C. Show that if (7.2.36) is true, then 

lim I = 0. 
R A m  
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7.3 FORMULAS FOR THE METHOD OF STEEPEST DESCENTS 

Let us suppose now that we are given an integral of the form (7.2.1) in 
which the contour C is replaced by a path D, which is a path of steepest 
descent away from some point zo .  Furthermore, let us suppose that zo is a 
saddle point of order n - 1 as defined by (7.2.9) and (7.2.10). Then, the path 
of steepest descent must initially have one of the directions of Table 7.1; let 
us denote that direction by 8,, 

8, = (2p + l)n/n - a/n, (7.3.1) 

On the path D, w ( z )  - w(zo)  must be real and decrease monotonically to 

(7.3.2) 

for some fixed integer p. 

- co. Thus, we may introduce the new variable of integration 

t = - [ w ( z )  - w(zo)]  
and rewrite (7.2.1) as an integral of the form (7.1.1) 

I ( n )  = eAw(zo) J: f ( t ) eKA2  dt. (7.3.3) 

In this equation, f ( t )  is defined by 

(7.3.4) 

When f (t) has an asymptotic expansion of the form (7.1.3), I @ )  has an 
expansion of the form (7.1.4) multiplied by an exponential factor as in (7.3.4); 
that is, 

(7.3.5) 

It is, admittedly, extremely tedious to find even two terms of the asymp- 
totic series for f ( t )  in terms of the given functions g(z)  and w(z). However, 
determination of the first term is fairly straightforward, as we shall now 
demonstrate for a few examples. We remark that for this first term, we need 
only know the leading term in the expansion of g ( z )  itself and the leading 
term in the expansion of dzldt. 

Saddle Point at a Regular Point of g(z) First, let us consider 
the case in which g(z)  is analytic at z o ,  with g(zo)  # 0. Then, this constant 
is the leading term in the asymptotic expansion of g(z) .  Now let us consider 
dzldt, which is not as transparent. From (7.2.9) and (7.3.2), we may write the 
approximation for t as 

Example: 
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We shall now choose the factor of - 1 on the right side of this equation so as 
to make arg t = 0. That is, we set 

t = e  [w(z) - w(zo)]  - p(z - Zo)n. (7.3.7) - ( 2 p +  ljni 

Now we solve this equation approximately for z - zo and thence for dz/dt : 
d z  t l j n - l  i8 ,  e 1 /n  

z - zo - [:I eiep; - -N 

dt  nalin . 

Now from (7.3.4) and (7.3.8), it follows that 

(7.3 3) 

(7.3.9) 

We now substitute these results into (7.3.5) to obtain the leading term of 
the asymptotic expansion 

We see in this result that the leading term of the asymptotic expansion is 
expressed in terms of the location of the saddle point zo; the direction of 
steepest descent 9,, which, in turn, depends on the order n of the first non- 
vanishing derivative at the saddle point and the argument a of that derivative; 
and the values of the exponent w(z,), amplitude function g(zo), and, finally, 
the value of the first nonvanishing derivative 1 w(")(zo)~. 

Special Case: Simple Saddle Point A special case of this result that 
arises most often is the case n = 2, namely. the simple saddle point. Now 
(7.3.10) becomes 

(7.3.1 1) 

There are two distinct choices of p and, hence, ep for this example. They 
yield leading terms of opposite sign for the two steepest descent paths from 
a simple saddle point. The two paths leave the saddle point in opposite 
directions. Quite often, the deformation of the contour C of a given integral 
will produce a contour passing through the saddle point from one valley to 
the other. In such a case, the replacement is given in terms of the difference 
of integrals on the two steepest descent paths. That difference is just twice 
the result (7.3.1 1) with one of the choices of p ,  namely, the choice for which 
the descent path D and the original contour C have the same orientation. We 
remark that for analytic functions w and g, the next term [O(A-')] in each 
of the two expansions is of the same sign and identical. Consequently, these 
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terms will subtract when the two integrals are combined. The following 
terms [O(I  3'2)] are of opposite signs again but otherwise identical. Thus, 
these terms will again add to yield twice one of them, the choice again de- 
pending on the orientation of the original contour. This is the same phe- 
nomenon as was discussed in Section 2.7 in the context of the method of 
stationary phase. 

a saddle point of w(z), but also a branch point of g(z); that is, 
Example: Branch Point of g(z)  Let us suppose now that z ,  is not only 

g ( 4  - go(z - zo)8-1, z +zo, (7.3.12) 

in some sector containing the direction of steepest descent. Then, we use the 
first equation in (7.3.8) as a leading order estimate of z - zo and use this 
result in (7.3.12) to obtain 

We can now use these results in (7.3.5) to write the leading term of the asymp 
totic expansion of I ( I )  for this case. The result is 

We remark that when we leave the coefficient a in its original form from 
Eq. (7.2.9), the formula remains valid even when n is not an integer. That is, 
in this case, we set 

w(z) - w(zo) + aeia(z - z,)n (7.3.15) 

and obtain the result 

(7.3.16) 

It is interesting in (7.3.14) to examine the dependence of the algebraic 
order in ,l on the order of vanishing of the function g(z) at zo, /3 - 1, and on 
the order of the saddle point or the order of vanishing of 6w(z), n. We see 
here that increasing &increasing order of vanishing of g(z) at zo- causes 
an increasing order of I in the denominator, that is, a decreasing algebraic 
order in ,l of I ( 2 ) .  On the other hand, increasing n-increasing the order of 
vanishing of 6w(z) at z,-causes a decrease in the order of 1 in the denomi- 
nator, that is, an increasing algebraic order in 2 of I ( i ) .  

Qualitatively, larger n characterizes an exponent that decays less rapidly 
in the neighborhood of the saddle point along the path of integration; hence, 
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a larger integral. On the other hand, larger f i  characterizes more rapid decay 
toward zero of the integrand as z -+ zo . 

The case in which there is a branch point at zo 
but no saddle point is of special interest. Therefore, we write down the result 
(7.3.14) for this case as 

Special Case: n = 1 

From the results presented here, we can see that detailed information 
about the path of steepest descent is unnecessary. We need only know about 
this path at the saddle point itself. Indeed, let us suppose that D, is a directed 
path from zo that is the same as the steepest descent path D for some finite 
length but then differs from D although remaining a path of descent. Then, 
the asymptotic expansion of the integral along D, would, of necessity, differ 
from the integral along D at worst by a quantity that is exponentially smaller 
in 1 than the asymptotic series arising from the critical point z,,. Thus, we 
may say that the paths D and D, are asymptotically equivalent. We remark 
that this observation is the basis for a method known as the saddle point 
method. Also, there are examples in which those exponentially small differ- 
ences between the integrals on these two paths have a physical interpretation. 
Thus, it behooves the user to recognize these differences. 

Suppose now that D, is any descent path from zo  and that all of the a p  
proximations for w(z) and g(z) are valid in some sector with apex zo con- 
taining both D and D, for some finite length. Then, again, the integrals can 
only differ by terms that are exponentially smaller in 1 than the contribution 
from zo itself, these contributions arising from poles or other critical points 
in the region between the two paths, which, of necessity, lie wholly in the 
valley of w(z) with respect to zo.  

In summary, then, we require the following detailed knowledge about the 
path of steepest descent: (i) the direction of the path at the saddle point and 
(ii) the series expansion of w(z)  and g(z) at zo to a sufficient number of terms 
to write down the series for f ( t )  to the desired order. Except for this infor- 
mation, qualitative knowledge of the path of steepest descent or only a path 
of descent will suffice for application of the method of steepest descents. 

Exercises 

7.23 (a) Let 
m e i d z 2  

r (n )  = - dz. s ~ o o  1 + z6 
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Show that the exponent has a simple saddle point at z = 0, with steepest 
descent paths from that point being the rays at angles 7t/4 and -37~14. 

(b) With those two contours denoted by D, and D,, respectively, show 
that 

2.n 
3 

d z  + - exp[ - A ( d  - i)/2 - in/3]. I ( A )  = 

(c) Use the steepest descent formula (7.3.1 1) to conclude that 

(d) In the integral over the path D, ,  introduce the new variable of 
integration c, z = ceni/4, and apply Watson’s lemma to the resulting integral 
to obtain the asymptotic series 

(e) On the path D,, introduce the new variable of integration 0, 

= ce5ni/4 , and conclude that this integral is indeed the negative of the 
integral on the path D, . 
7.24 Let 

Use the method of steepest descents to determine that 

I ( A )  - $m eini4. 

7.25 Let 

Show that 

7.4 THE METHOD OF STEEPEST DESCENTS: 
IMPLEMENTATION 

We shall now develop the method of steepest descents for the asymptotic 
analysis as A + GO of integrals of the type (7.2.1). The method consists of 
five basic steps. 
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(1) Identify the possible critical points of the integrand. These consist of 
(i) the endpoints of integration, (ii) points at which g(z) or W ( Z )  fails to be 
analytic, and (iii) points at which w’(z) = 0, that is, saddie points. 

(2) Determine the paths of (steepest) descent from each of the critical 
points except for poles, and 

( 3 )  justify via Cauchy’s integral theorem, perhaps with the aid of Jordan’s 
lemma, the deformation of the original contour of integration C onto one 
or more of the paths of (steepest) descent, possibly with the addition of 
residues, to account for poles in the region enclosed between contours. 

(4) Determine the asymptotic expansion of the integrals on the descent 
paths that arise as a result of the deformation in ( 3 )  by using the formulas 
of Section 7.3. 

(5) Sum the asymptotic expansions obtained to determine the asymp- 
totic expansion of I@) .  

Twice we have set the word steepest in parentheses to remind the reader 
that complete detail about the path of steepest descent i s  necessary only in 
the neighborhood of the critical point; away from that point. a path of 
descent, that is, qualitative information, will suffice. Step (1) is a straight- 
forward application of complex function theory. Step (2) was discussed in 
Section 7.2 and step (4) in Section 7.3. Step (3) is the heart of the method of 
steepest descents; once done, the method is reduced to calculation. 

As implied by the sentence continuation, steps (2) and ( 3 )  are not carried 
out in strict sequential order. There is no need to analyze paths of steepest 
descent from critical points that in advance can be seen for certainty not to 
contribute to the asymptotic expansion of the original integral. With prac- 
tice, then, steps (2) and ( 3 )  become progressively more integrated into a 
single step. 

Suppose that we have a set of candidate critical points in step (l), say, 
zo, z l ,  . . ., z,. Then, as can be seen from (7.33, the asymptotic expan- 

j = 1, . . ., n. We might argue. then, that only the terms with the largest 
exponential order in /z ought to be retained, with all other contributions 
viewed as being asymptotically zero in comparison. In applications, however, 
it is often true that each critical point is associated with a different physical 
phenomena. Thus, we may keep these subdominant contributions because of 
their physical significance. Also, as a function of other parameters in the 
integrand, such as observation point in space and/or time, the value of the 
exponent may change in such manner as to interchange the roles of domi- 
nant and subdominant critical points. Such an interchange is a manifestation 
of the Stokes phenomenon, which was mentioned in Section 4.7. This relation- 
ship between interchange of dominance of critical points and the Stokes 

sions from these critical points have the asymptotic order O(eAw(zJ)A-ao~ 1, 
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phenomenon has been discussed extensively by Bleistein and Handelsman 
[1975]. 

We shall now demonstrate the method of steepest descent through the 
application to some specific integrals. To begin, let us consider the integral 

e i l [ ( z 2 / 2 ) -  yr] 

dz. jc z2 - 1 
I(1) = (7.4.1) 

The contour C is a path from -m to ocj passing above the poles of the 
integrand at z = f l .  In addition to these poles, the only possible critical 
points are saddle points of the exponent: 

w(z) = i[(z2/2) - yz] ,  w’(z) = i[z - y], w”(z) = i. (7.4.2) 

From the second equation here, we see that w(z) has a saddle point at 
z = zo = y ;  from the third equation, we see that n = 2 and c i  = 4 2  at the 
saddle point. Thus, the directions of steepest descent at the saddle point, as 
determined from Table 7.1 in Section 7.2 or from (7.2.17), are 4 4  and 7744. 
By setting v(x ,  y )  = u(Re y, Im y ) ,  we find that the paths of steepest descent 
and ascent through the saddle point are the straight lines (degenerate 
hyperbolas) 

x - Re y T [ y  - Im y ]  = 0. (7.4.3) 

The determination of descent directions at the saddle point leads us to con- 
clude that the upper sign in this equation yields the paths of steepest descent 
while the lower sign yields the paths of steepest ascent. 

Let us restrict our attention to real values of y. There are then five cases 
of interest: y < - 1, y = - 1, - 1 < y < 1, y = 1, and 1 < y. We shall dis- 
cuss the first, third, and fifth of these cases now. We shall discuss the case 
y = - 1 at the end of the section because this case requires that we extend 
the theory. That extension would apply to the case y = 1 as well. 

Figure 7.7 depicts the paths of steepest descent through the saddle point. 
It also depicts two contours C, and C ,  that together replace a finite section 

Fig. 7.7. Contours for the discussion of the integral (7.4.1) 
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of the original contour C. Two connecting paths C-R and C, are also shown. 
By using the extension of Jordan’s lemma developed in Exercise 7.22, we 
can conclude that in the limit as R --+ co the integral along each of the last 
pair of contours approaches zero while in the same limit, the sum of the 
integrals along C, and C, approaches the integral along C itself. 

We conclude then that 

e i . W z i 2 ) - ~ z l  
dz + 2ni residues. (7.4.4) W) = s,, - s,, zz  - 1 

Whether or not there are residue contributions depends on whether or not 
the closed paths C, + 0; + C-, and C, + C, - 0; enclose either of the 
poles at z = 1 .  Here by 0; we mean D, plus the small piece of D ,  connect- 
ing the saddle point with C. Similarly, 0; excludes this small connector! 
The sector C2 + C, - 0; will not enclose either of these poles for any 
choice of y .  The first contour will enclose 

(i) no poles when y < - 1 ; 
(ii) the pole at - 1 when - 1 < 
(iii) both poles when 1 < y. 

Note that the closed path on the left is traversed in the clockwise manner, 

<: 1; 

and, hence, that residue must be taken with a minus sign: 

residue(z = 1) = ~ r i A [ l i z s r J .  (7.4.5) 

Now we shall calculate the leading term of the asymptotic expansion of 
the integrals along the paths of steepest descent. The result is given by 
(7.3.1 I )  with g(z) = 1/(z2 - l), 8, = x/4, 7744, and w(z) given by (7.4.2). The 
result for the integral on D, is 

with the integral on the contour D, being just the negative of this one. Thus, 
as can be seen from (7.4.4), the integral along C will have as saddle point 
contribution just twice the result in (7.4.6). This phenomenon for simple 
saddle points was noted in Section 7.3. 

This is a minor detail. Were we to replace C by a contour on the axis except for semicircles 
over the poles, these “tails” used to obtain closed contours would be unnecessary. However, 
it would then be necessary to depict each case of saddle point relative to poles in separate figures. 
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By properly summing the residue and saddle point contributions, we 
obtain 

We turn now to another example, 
r m  

(7.4.8) 

We shall use the same range of the argument z as was used in Section 7.2 
and defined by (7.2.4). The integrand has only two critical points, the saddle 
point at z = 1 and the endpoint at the origin, which point is also a branch 
point of the integrand. We have already determined the paths of steepest 
descent for these two critical points in Section 7.2; see (7.2.31). The paths 
are shown in Fig. 7.8. 

The original path of integration, denoted by C in Fig. 7.8, can be replaced 
by the integral on the path D, - D, + D,. The integrals along the path 
connecting C to D, and along the path connecting D, and D, can be shown 
to decay to zero as the radius of each such path increases beyond all bounds. 
This, again, is an application of Jordan's lemma, in this case, with a reversal 

Fig. 7.8. Descent paths for the integral in (7.4.8). 
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of sign in the exponent and some preliminary analysis to obtain exactly a 
linear exponent. The details are carried out in the exercises. 

We denote by I ,  the integral along the path D,. The leading term of the 
asymptotic expansion of this integral is obtained by using (7.3.16), with 

a = 1, CI = 4 2 ,  e p  = X, w(z0) = 0, n = 1 2 ,  g o = L  B='  4 '  

The first two values were determined from (7.3.15) and (7.2.24). The descent 
direction 0, was determined from (7.2.28). The values of n and w(zo) are 
determined from (7.2.24) and go and B from comparison of (7.4.8) with 
(7.3.1 2). 

By using these values in (7.3.16), we obtain the result 

~ ~ ( 2 )  - 2m ein14. (7.4.9) 

The asymptotic expansion of the contribution from the saddle point can be 
determined by using the formula (7.3.1 1) along with (7.2.26) and (7.2.27). The 
result for I(1) then becomes 

I ( A )  N 2 ~ 3  ei=l4 + ,/Gji e'1/2-'*/4. (7.4.10) 

We remark that both of these terms are of the same order in 1, with one term 
having arisen from a saddle point at which both w(z) and g(z) are analytic 
and the other having arisen from an endpoint at which both w(z) and g(z) 
have a branch point. 

As a third example, we consider the Sommerfeld integral representations 
of the Hankel functions H g ) ,  j = 1,2, given by 

n 

(7.4.1 1) 

The contours C, and C2 are shown in Fig. 7.9. We have used kr rather than 
;1 for the large parameter because this is the form of independent variable 
that most often arises in practice, with r the cylindrical radius and k the 
wave number. 

The exponent 

w(z) = cos z = sin x sinh y + i cos x cosh y (7.4.12) 

is 2.n periodic in x = Re z. Furthermore, Re w(z) -+ + co whenever sin x is 
positive and y + + 00 or whenever sin x is negative and y --+ - co. These 
regions are stippled in the figure. The alternate unstippled regions at infinity 
are the regions where Re w(z) + - co; that is, they are the valleys at infinity 
of the exponent. The contours C ,  and C2 each pass from one such valley 
at infinity to another. 

If there are any saddle points in the region of the figure, these saddle 
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Fig. 7.9. Sornrnerfeld contous for the Hankel functions 

points must repeat with period 27c in the entire z plane. Let us therefore 
focus our attention on the analysis of this one region. This is an example of 
combining steps (2) and ( 3 )  in the outline at the beginning of this section. 
By differentiating (7.4.12), we find that 

(7.4.1 3) w’(z) = - i  sin z ,  

There are two saddle points in the region of interest, 

w”(z) = - i  cos z. 

Z+ = 0, Z- = n; w ( z * )  = f i ,  ~ ’ ’ ( 2 ~ )  = f i .  (7.4.14) 

At z + ,  the directions of steepest descent are -n/4 and 3x14, while at Z L ,  

they are 7c/4 and 77~14. The reader should verify these facts by using (7.2.1 7). 
The paths of steepest descent are given by 

cos x cash y = f 1. (7.4.15) 

A pointwise determination of these contours without the aid of a computer 
would be quite tedious. However, a qualitative determination of the con- 
tours is not too difficult. We already know that y +  I c o  on the paths of 
steepest descent with T sin x > 0 on these paths. To the left of z +  , say, 
-7c  < x < 0, sin x < 0 and, therefore, y + + m. In (7.4.15), if the left side is 
to remain finite in this limit, then cos x must approach zero as y approaches 
infinity. Thus, we conclude that x + -n/2 along the path of steepest descent. 

Arguing in similar fashion, one can see that the paths of steepest descent 
in the region 0 < x < 7c must have the line x = 7c/2 as asymptote, and for 
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Fig. 7.10. Descent contours for w(z) = i cos z. 

n: < x < 2n:, the descent contour must have the line x = 3nj2 as asymptote. 
These results, along with the initial directions of descent determined earlier, 
lead us to conclude that the descent contours for this exponent are as shown 
in Fig. 7.10. We leave as an exercise to confirm that the leading terms of the 
asymptotic expansions of the integrals (7.4.1 1) are 

Hbl)(kr) - eikr-in14, Hb2)(kr) - e- ikr+in/4 .  (7.4.16) 

As a last example for this section, we return to consideration of the case 
y = - 1 for the integral (7.4.1), 

e i d [ ( z 2 / 2 )  + z ]  

dz, (7.4.17) 

with C as described following (7.4.1). We cannot replace the contour C by 
contours of steepest descent emanating from the pole at z = - 1. Instead, 
let us consider the contour D of Fig. 7.11, which consists of the path of 
constant 0 connecting the two valleys of the exponent except for the avoid- 
ance of the pole by a small semicircle. As we have in each of the preceding 
examples, we can confirm that the integrals on C and D are equal. Let us 
now introduce the new variable of integration cr: 

sc zz - 1 
I @ )  = 

w(z)  - w(-1) = ( i /2 ) [z  + 13’ = t, (7.4.18) 
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Fig. 7.11. The contour R. 

which has as solution 

z + I = e ' ~ / ~ t ' / ~ ,  o I arg t < 271. (7.4.19) 

We have chosen the square root in this equation such that when arg t = 0, 
arg[z + I ]  = n/4, so that the image of the descent path at angle n/4 is the 
positive real axis in the plane. See Fig. 7.11. Clockwise traversal of the 
semicircular section of the path in this figure corresponds to clockwise 
traversal of a full circle in the t plane, and then the image of the descent path 
at angle 5n/4 is the real axis at angle 271. Thus, the entire path D has as image 
the path denoted by O +  in Fig. 7.1, but with opposite orientation. For this 
example, by using (7.4.19), it is possible to make all substitutions explicitly 
in (7.4.17) and obtain the result 

(7.4.20) 

This integral is now in the form of the first equation in (7.1.12). Therefore, 

e-'* dt 
4 k = O  

dt tp  - 1 I 2e - I t  

4 p = o  

(7.4.21) 

In the second line, we have observed that all even values of k except k = 0 
lead to functions that are analytic inside of O +  and, hence, have integral 
zero. In the third line, we have used the second definition in (7.1.11) to 
evaluate the integrals of the preceding line. 

The essential features of the analysis of the case when the saddle point is 
also a pole can be seen in this example. The transformation (7.4.18) will 
always map z into a t plane with a branch cut. For the simple saddle point, 
the image contour is always one that encircles the branch point at the origin. 
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Then, the leading term of the asymptotic expansion is at least tractable with 
the aid of Watson's lemma for loop integrals. The case of higher-order saddle 
points requires that we first write the given integral as an integral over a 
sum of contours connecting adjacent (in the sense of a clockwise or counter- 
clockwise manner) valleys. Then, we apply this method to each integral over 
adjacent valleys. Each asymptotic series for f ( t )  will be slightly different, 
because a saddle point whose first nonvanishing derivative has order n will 
produce n inversions from z to t ,  one for each mapping of an adjacent set- 
valley, hill, valley--onto a t plane with a branch cut. 

Exercises 

7.26 (a) The purpose of this exercise is to verify the replacement of con- 
tours in the second example of this section. Therefore, let us define 

1, = I:, y 3 / 4  e i l [ z1 /* - z j21  dz. 

The contour CR is a sector of a circle of radius R connecting the paths D, 
and C in Fig. 7.8 in a counterclockwise direction. Set z1I2 - 212 = - t  and 
confirm the estimate in the neighborhood of CR t = (z/2)[1 + o(l)]. From 
this estimate and the observation that t is real and positive for z real and 
positive, conclude that the image of CR is a contour in the lower half t plane 
on which It1 is large and becomes unbounded with increasing R. 

(b) Now conclude that 

z = 2t[l + ~ ( l ) ] ,  d z / d t  = 2[1  + o(l)], 2p3'4 = t - 3 ' 4 ~ 1  + O(i~l 
for It1 large. 

(c) Conclude that 

1, = lCR, f(t)e-'A' dt. 

Here CR, is a contour in the lower half t plane on which 111 2 R' and R' 
approaches infinity with R. Furthermore, f ( t )  is analytic in the neighborhood 
of C,. and approaches zero with increasing R'. 

(d) Thus, use the extension of Jordan's lemma in Exercise 7.25 to con- 
clude that I, must decay to zero with increasing R. 

(e) lntroduce a path connecting D, and D 3  in Fig. 7.8. Show that the 
integral along this path must also decay to zero as the minimum value of y 
on this path approaches negative infinity. 
7.27 Use the formula (7.3.1 1) to verify (7.4.16). 



7.4 The Method of Steepest Descents: Implementation 239 

7.28 (a) Consider now the Sommerfeld integral representations for the 
Hankel functions 

x~g)(kr) = e ( i k r F O S Z + i k U ( z - X / Z ) )  d z, j = 1, 2. I, 
In this equation, the contours are again those of Fig. 7.9. Proceed formally 
with large parameter k and 

w(z ;  a, r )  = ir cos z + ia(z - 7c/2), a < r. 

Show that w has two saddle points z + ,  

0 < Z+ = sin-’(a/r) < n/2, z -  = n: - z + ,  

but that the descent directions are as in the case a = 0 discussed in this 
section. 

(b) Verify that the paths of steepest descent are qualitatively as they 
were in the case a = 0 except for the shift in the location of the saddle points. 

(c) Obtain the asymptotic expansions 

with the asymptotic expansion of HE)(kr) being the complex conjugate of 
this result. 
7.29 (a) Consider again the Hankel functions of the preceding exercise for 
the case a = r. Show that the exponent has a second-order saddle point at 
z = 7c/2 and that the directions of descent at the saddle point make angles 
x/6, 5n/6, and 3 ~ / 2  with positive x axis. 

(b) Show that one path of steepest descent is the semi-infinite vertical 
line extending downward from the saddle point and that the other two 
descent paths are qualitatively the same as the paths D, and D, of Fig. 7.10, 
except for their behavior near the single second-order saddle point. 

(c) Obtain the asymptotic expansions 

with the asymptotic expansion of HL:)(ka) being the complex conjugate of 
this result. 
7.30 (a) Let 

I(1) = elw(’) d:, w(:) = z - z3/3,  

and C is the contour on which -m < y < 00 and x = const I 0. This 
I: 
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exponent was studied in Exercise 7.20. Show that 

~(1) N & e - 2 1 / 3 + i n / 2 .  

(b) Now suppose that 
e w z )  

I(4 = [ c x d z .  

with w and C as in (a). Deform the path of integration onto the paths of 
steepest descent except for a clockwise semicircle around the branch point. 
Then show that the transformation w(z) + J = teLR leads to a mapping of 
this contour onto the contour O +  of Fig. 7.1 but directed oppositely. We 
can write this result in the form (7.1.12) but for a multiplier of exp( -21/3) 
and account for the orientation with an adjustment of the sign of j ( t ) .  

(c) Show that f ( t )  = -(l/z + l)(dz/dt). 
(d) In order that we obtain a two-term asymptotic expansion of I @ ) ,  

we require a two-term asymptotic expansion of f(t)  for t near zero or z near 
- 1. Obtain the two-term expansion f(t) - -(1/2t) - ( i / 4 ~ ” ~ ) .  One way to 
obtain this result is to write the two-term Taylor expansion 

te” = ( z  + - f(z + 1)3 
and solve for z + 1 : 

z + 1 = t’’2e’ff/2[1 - f(z + 1)I1I2. 

Now use the leading order approximation for z + 1 on the right side and the 
binomial expansion of the square root to obtain a two-term expansion 

+ 1 = t1/2e’”/2[1 + bt1/2e’”/2]. 

Now proceed to determine the two-term expansion of f(t) as given above. 
(e) Obtain the two-term asymptotic expansion 
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8 ASYMPTOTIC TECHNIQUES 
FOR DIRECT SCATTERING PROBLEMS 

In this chapter, we shall discuss the use of asymptotic methods to analyze 
direct scattering problems. This is a vast area of application and ongoing 
research, and so our discussion can serve at best as a brief introduction. We 
shall describe three methods used for analysis of wave problems. The first 
of these is the method of steepest descent, discussed in Chapter 7. In the first 
section, we shall describe in detail the implementation of this method on a 
problem for the Helmholtz equation. In the next two sections, we shall 
describe ray methods, again in the context of the Helmholtz equation. In 
the last section of this chapter, we shall discuss the Kirchhoff approximation. 

8.1 SCATTERING BY A HALF-SPACE: 
ANALYSIS BY STEEPEST DESCENTS 

Let us suppose that u(x, z ,  w )  satisfies the differential equation 

a z U  a Z u  w2 - + - + -  
ax2 az2 v2  

The function u is defined by 

u = -6(x)6(z). 

z < H ,  
z > H .  

(8.1.1) 

(8.1.2) 

We require that u and u, be continuous across z = H and that either u be 
analytic in the upper half o plane or that, for o real, u satisfy the Sommerfeld 
radiation condition stated in Exercise 6.1 1. We shall follow the geophysical 
convention here of taking z positive as downward. Furthermore, we shall 

241 
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consider the case c, > co , which is more typical and provides a problem with 
the mathematical structure that serves our purpose as regards exposition. 

This problem models the propagation from an acoustic point source in 
two dimensions-a line source in three dimensions-in a medium with a 
planar boundary across which the velocity is discontinuous but the density 
is not. We might view this problem then as propagation and scattering by the 
interface in a two-layered acoustic earth of infinite extent in both directions. 
The analysis of this problem will introduce features that arise in more 
physically realistic problems. Therefore, it is worth studying as a prototype. 

We shall be concerned with the high-frequency asymptotic solution. That 
is, we shall assume that wL/u is large, with L a “typical length scale” of the 
problem. The only explicit length scale in the problem is H .  Thus, this 
criterion should certainly hold for H .  We shall proceed formally using w as 
the large parameter and discover along the way other length scales that 
must satisfy this criterion. We remark that Exercise 1.11 dealt with the 
propagation of wave fronts for just such a medium. Thus, we can expect 
that the rays and wave fronts of that exercise will arise here. 

To begin, we introduce the transverse (x) Fourier transform 

03 

D(k, z ,  w)  = u(x, z, w)e-ikX dx. (8.1.3) 
J-00 

By applying this Fourier transform to (8.1.1), we obtain the ordinary differ- 
ential equation 

17“ + [(w2/c’) - k’]S = -6(z) ,  (8.1.4) 

with prime meaning d/dz.  The functions u“ and u“‘ must be continuous across 
z = H ,  and 6 must also be analytic in an upper half w plane or satisfy a 
one-dimensional Sommerfeld condition (Exercise 6.1 1); that is, it must be 
“outgoing at infinity” and bounded. 

Let us define 

k ,  = Jm, k, = K w 2 / c f )  - k 2 .  (8.1.5) 

We shall define these square roots for the imaginary part of w positive. We 
shall also restrict real w to be positive for the present and discuss real w 
negative later. Our definition of k ,  is as shown in Fig. 8.1. In the limit, as 
Im w + 0, k ,  becomes purely real or purely imaginary for k real, with the 
indicated inequalities still holding. The same definition relative to the branch 
points at +w/c, is taken for k , .  For this choice, the functions e-ik3z,  eik4’ 
decay to zero, respectively, for k real as z -+ - co for the first function or as 
z --t 00 for the second function. Similarly, for z in its appropriate half-space 
and Im w -+ co, these solutions decay to zero. Furthermore, in the w plane 
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Fig. 8.1. Definition of k,. 

with branch cuts a t  k k excluded from the upper half plane, these same two 
functions are seen to be analytic in the upper half plane and also to satisfy 
the Sommerfeld radiation condition for real w. Thus, either the condition 
of analyticity in some upper half w plane or the imposition of the Sommerfeld 
radiation condition picks the same distinguished solutions to the ordinary 
differential equation. This analysis is completely equivalent to the dis- 
cussion in Section 4.4, in which the free-space Green’s function was calcu- 
lated [Eq. (4.4.25)]. 

We think of the total solution in z < 0 as being comprised of that free- 
space Green’s function-a primary or incident wave-plus a reflected wave 
that must be outgoing; in z > 0, the solution should consist of an outgoing 
transmitted wave. Therefore, we can write the result 

e i k ~  l z l  e- i k s t z -  2HI 

u(k, Z, W )  = -~ - R , Z < H ,  

u(k, Z ,  W )  1 - T 3 z > H .  

2ik, 2ik, 
e(ikdz + i [ k s  - k41H) 

2ik, 

In this equation, we have anticipated evaluation of the functions and their 
derivatives at z = H to satisfy the continuity conditions and have therefore 
added a constant to the phases of the reflected and transmitted waves. Also, 
we have introduced the same scale factor in the amplitude of these terms as 
appears in the free-space Green’s function. These extra multipliers simplify 
the determination of the coefficients R and T and will reduce them to classical 
reflection and transmission coefficients, independent of the coordinate system 
but dependent only on the local properties of the medium in the neighbor- 

The conditions that u and its first derivative be continuous across z = H 

(8.1.6) 

hood of z = H .  

now leads to two algebraic equations for R and T, namely, 

- k ,  + k , R  = -k ,T.  -1  - R = -T ,  (8.1.7) 
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Fig. 8.2. Integration path in k plane for Im w = 0. 

We solve for R and T and find that 

(8.1.8) 

Thus, we obtain the solution 

Each of these functions is expressed as in inverse Fourier transform: 

1 dk 
47ci lcr k ,  

up(x, z, w )  = - - - explikx + ik31zl}, (8.1.1 0) 

exp(ikx - ik3[z - 2H]), (8.1.11) 
k, + k4 k3 

exp(ikx + ik4z + [k, - k4]H). (8.1.12) 

For Im w > 0, the contour C' is just the real k axis. If we are to allow Im w to 
approach zero, then this contour must be deformed away from the branch 
points at fwlc, ,  +w/cl, as shown in Fig. 8.2. For up, there are no branch 
points at fw/c, and the contour C' could be further straightened near that 
point. 

We take the limit Im w = 0 and exploit the fact that w is real and positive 
to rescale the variable of integration and obtain w/co as a multiplier of the 
exponent in each of the representations (8.1.10)-(8.1.12). Therefore, let us set 

k = I p ,  A = w/co (8.1.1 3) 
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and rewrite the three integrals (8.1.10)-(8.1.12) as 

(8.1.1 4) 

exp(U{px - p 3 [ z  - 2 H ] } ) ,  (8.1.15) 
+ P4 P 3  

1 d p  
+ P4 

exp(iil{px + p4z + [ p 3  - p4]H}). (8.1.16) 

In these equations, 

p 3  = Jm, p4 = Jm, n2 = C : / C ~ .  (8.1.17) 

The branch points have now been moved to  f 1 and fn. Otherwise, the 
contour C is just like the contour C’ .  Each of these functions is positive for 
p real and between the appropriate pair of branch points. Outside of the 
branch points, these functions are purely imaginary with argument 4 2 .  

We shall use the method of steepest descent (with large dimensional 
parameter A) to analyze the integral representations (8.1.15)-(8.1.17). 

ANALYSIS OF up 

We consider the exponent 

W ( P )  = i { P X  + P 3 1 Z I L  (8.1.1 8) 

w’(P) = i{x - (P/p3)1z(}, W’’(P) = -i(lzl/P:). (8.1.19) 

We find the saddle points by setting w’ equal to zero. By rewriting that 
equation as x = . . ‘ and squaring both sides, we obtain a quadratic equation 
for p. Only one root has the proper sign to make w‘ equal zero; thus, 

W‘(P0) = 0 =. x = ( p o / p 3 ) l ~ l ,  po = x/p, p = JW. (8.1.20) 

This root lies between the branch points at 

with derivatives 

1. At the saddle point, 

w(p,) = ip, w”(p,)  = -ip. (8.1.21) 

The directions of steepest descent at the saddle point are -744 and 3x14. 
For this problem, we shall only find the descent paths in the large qualita- 
tively. Let us examine the possibility that the path of steepest descent extends 
to large values of IpI in the right half plane. In that region, p 3  - ip and 

W ( P )  - P[iX - 1.11 + o(JP]-’) 

= -[x Im p + IzI Rep] + i[x Rep - IzI Imp] + O(lpI-’) .  (8.1.22) 
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On the path of steepest descent, the imaginary part of w(p) must be constant 
and, hence, remain finite. Therefore, the path of steepest descent would have 
to have as asymptote the line 

Im P = (x/lzl) Re P - P, (8.1.23) 

with the constant - p  determined from (8.1.21). 
The slope of this line has the same sign as x. When x is negative, the path 

of steepest descent is directed downward for large IpI just as it is at the saddle 
point. Thus, it is reasonable to expect that the path of steepest descent simply 
continues on its trajectory downward to the right from the saddle point. 

When x is positive, the path of steepest descent must be directed upward 
in the right half plane. In order for this to happen, the path of steepest 
descent must turn upward to the right of the saddle point and cross the real 
p axis. We leave it to the reader to check that the steepest descent path crosses 
the axis between the branch points only at the saddle point. For p to the 
right of the branch point at + 1, the steepest descent path will cross the axis if 

px = p ;  p = P I X ,  (8.1.24) 

which root is indeed to the right of the branch point when x is positive. For 
x = 0, from (8.1.22), we see that for Re w to approach negative infinity, it is 
necessary that Re p -+ m. Furthermore, for Tm w = p in that limit, it is 
necessary that the path of steepest descent have as asymptote the line 
Im p = -p/ lzI .  The paths of steepest descent for saddle points at k0.6 are 
shown in Fig. 8.3. We leave it to the exercises to show that the paths of 
steepest descent in the left half plane are as shown in the figure. We remark 

Fig. 8.3. Steepest descent paths for saddle points at 0.6 and -0.6; 0.6 = (1 x l ) / p  < n. 
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that the slopes on these paths are just the negative of what they are for the 
corresponding sign of x and for p in the right half plane. This happens be- 
cause in this half plane, p 3  - - ip. Similarly, the asymptote for x = 0 is now 
the line I m p  = p/lzI. 

Replacing the path C by a sum of descent paths now requires only that 
we check that the regions between them are indeed completely in the valley 
of the exponent. We leave this as an exercise. Now we can use the formula 
(7.3.1 1 )  and the discussion following that equation for simple saddle points 
to write the leading term of the asymptotic expansion of up. The result is 

up(x, z ,  01 - +J’* exp(iwp/c, + in/4). (8.1.25) 

In order to relate this result to the discussion of the eikonal equation in 
Chapter 1, we note that the phase of this primary wave is just the conoidal 
solution of the eikonal equation (1.4.1) and that the condition of stationarity 
of the exponent can be viewed as parametrically defining the rays. In fact, 
if we make the identifications by using (8.1.20), 

p o  = sin z, z = 2 0  cos z, x = 20 sin T, p = 20, (8.1.26) 

then further identification of the results here with those of Exercise 1.1 l a  
requires only a change of coordinate system; in particular, we remark that 
the z coordinate of this section corresponds to x in Exercise 1.1 1 up to a 
shift and that x in this discussion corresponds to y in Exercise 1.1 1. 

We leave it to an exercise to verify that the effect of replacing cc) by --o 
is to transform the solutions (8.1.10)-(8.1.12) into their complex conjugates. 

In order that the approximation (8.1.25) be valid, it is necessary that the 
product ,I/ w”(p,)l = wp/c,, which will appear to progressively higher powers 
in the terms of the complete asymptotic expansion of up, should be large. 
Thus, we would expect this asymptotic expansion to be valid at distances 
that are large compared to the wavelengths at the frequencies of interest. 

ANALYSIS OF Us 

Let us now turn to theanalysis ofusas defined by(8.1.15). For this integral, 

w ( p )  = i { p x  + p3[2H - z ] } .  (8.1.27) 

The analysis of the saddle points and steepest descent paths from them is 
exactly the same as for the preceding case if only we replace Izl by 2H - z, 
which is positive in the region of interest. A new feature that arises in this 
case is that the paths of steepest descent may cross the branch cuts from the 
branch points at fn. This will occur when the saddle point of the exponent 
lies between the branch points at n and 1 or between the branch points at 

we introduce the exponent 
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- n and - 1. We shall avoid this case for the moment by assuming that 

IxJ/p, < n, p1 = Jx’ + [ 2 H  - 4’. (8.1.28) 

For this case, a diagram depicting the steepest descent paths would look 
exactly like Fig. 8.3 except for the inclusion of a branch cut from n to  n + icx, 
and from -n to - n - im--lines parallel to the existing branch cuts located 
above the pair of steepest descent paths on the right and below the steepest 
descent paths on the left. 

For w ( p )  defined by (8.1.27), the saddle point is located at 

with 
(8.1.29) 

(8.1.30) 

Again, the condition of stationarity (8.1.29) can be interpreted as a parametric 
representation of a family of rays. However, this time it is the family of 
reflected rays of Exercise 1.1 1, with p1 being the phase of the reflected waves. 
Thus, we shall denote the saddle point contribution of us as the reflected 
wave and denote it by uR; that is, we set 

us(x7 z , o )  = UR(X, z ,  4 7  I X l i P l  < n, (8.1.31) 

with uR having the asymptotic expansion 

We expect that this asymptotic expansion will remain valid as long as 
the product ,I(w’‘(k,,)l = wp,/co is large. The minimum value of p1  is H. 
Therefore, as long as the interface is “many” wavelengths from the source 
for the frequencies of interest, this asymptotic expansion will be valid and 
useful. 

Let us now consider the domain complementary to that defined by 
(8.1.28); that is, let us suppose that 

n < ( X I / P I  < 1. (8.1.33) 

Before we proceed with the asymptotic analysis, it will prove useful to 
interpret this condition geometrically in the (x, z )  domain. We introduce the 
polar angle 8 measured from the vertical at the point (0,2H). Then 

(8.1.34) x/pl = p o  = sin 0, (2H - z)/pl = cos 8. 
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Equality in (8.1.33) then defines a critical angle O,, sin 6, = n, such that for 
angles nearer the vertical H < 19,. us is asymptotically a reflected wave only. 
For angles nearer to the horizontal than 8,, 8 > d c .  there will be an addi- 
tional contribution to us. In Exercise 1.11, this additional wave was called 
the lateral wave or head wave. Thus, we anticipate that whatever additional 
contribution arises owing to the interaction between the saddle point and 
the branch point, it is likely to provide the asymptotic expansion of this 
head wave. 

Let us return to the asymptotic analysis for the case defined by (8.1.33). 
Now we cannot deform the contour C onto paths of steepest descent without 
crossing one or the other of the branch cuts. For x positive, we would cross 
the branch cut from + n ;  for x negative, we would cross the branch cut from 
-n.  Thus, for (x, 2H - z) in the range (8.1.33), we must analyze the branch 
points f n  as critical points, respectively, for A x  > 0. Let us first investigate 
the directions of descent at the branch points. For the range defined by 
(8.1.33), neither of these points is a saddle point. We consider first the case 
x positive and focus our attention on the point p = n. In this case, from 
(8.1.19), 

w’(n) = i { x  - ( n / d n ) [ 2 H  - z]} = i[2H - z][tan 8 - tan d,]. (8.1.35) 

For the range (8.1.33), tan 8 > tan d,, and the direction of steepest descent 
is x / 2 .  In a completely analogous manner, we can show that for x negative 
and in the range (8.1.33), the direction of steepest descent at - n  is - x / 2 .  
That is, the directions of the branch cuts are the directions of steepest de- 
scent, respectively, in either case of interest. We can further show that away 
from the branch points, the branch cuts remain paths of descent, although 
not paths of steepest descent, up to the intersection of the steepest descent 
path from the saddle point with the branch cut. This suffices for our further 
analysis. 

For the interested reader, we point out that the paths of steepest descent 
away from the branch points can be determined in the same detail as were 
the steepest descent paths from the saddle points. However. these paths 
would extend onto a second Riemann sheet of the function p , ( p ) .  

In Fig. 8.4, we depict a replacement of the original contour C for either 
choice of the sign of x; again, we have used saddle points at kO.6 for our 
sample saddle points with fx positive. In each case, the contours D, and 
D, represent steepest descent paths from the saddle points. The contour D, 
consists of a loop or keyhole contour around the branch point and then a 
descent path away from the branch cut. Actually, we have used the steepest 
descent path from the saddle point for this last piece of contour, but that is 
not relevant. 
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Fig. 8.4. Steepest descent paths for saddle points at 0.6 and -0.6; 0.6 = (1 x 1 ) l p  > n. 

We can see that C can be replaced by D, - D, i D,, with the integral 
on the first pair of paths again producing uR as defined by (8.1.32). An im- 
portant difference in this result is that now R is complex. Let us redefine R 
as a function of the polar angle 0 introduced earlier. Then, we find that 

cos O - Jsin2 eC - sin2 o 
R =  lsin 61 < n = sin B c ,  

cos 0 + JGGF-smr 
(8.1.36) 

cos 0 - iJsin2 e - sin' eC 
cos B + i j s i n 2  e - sinZ 0, 

R =  , lsin 81 > n = sin OC. 

We note that 

That is, the reflection coefficient varies from a minimum value at normal 
incidence, given by the normal rejection coefficient, to unity at the critical 
angle. Beyond the critical angle, the reflection coefficient is complex with 
modulus equal to unity. 

We now turn to  consideration of the integral on D,. In particular, we 
shall consider the case in which n < x/p,, so that the upper set of contours 
in Fig. 8.4 is of interest. Let us define then, in this case, 

~ H ( X ,  z ,  a) = & 6, dr) exp(iA{px - p3[z - 2HI)). (8.1.38) 
+ P4 P 3  

We remark that the integrand is just the negative of the integrand in (8.1.15). 
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This is consistent with the replacement of C by D, - D, - D, for this case. 
With this definition, 

Ixl /pI > sin Bc = n. (8.1.39) 

On D,, we can disregard all but the keyhole contour of finite extent with 
only exponentially small error. This is so because the error in such an 
approximation is an integral on a contour completely in the valley of the 
exponent with respect to either the branch point or the saddle point. On 
the small circle around the branch point, the integrand is bounded and the 
length of the path is proportional to the radius of the path. Thus, the integral 
on this circle approaches zero as the radius of the path shrinks to zero. There- 
fore, in all further considerations, we shall proceed under the assumption 
that this radius will be allowed to approach zero. 

Let us define D as the contour along the right side of the branch cut 
extending upward from the branch point as far as the finite segment of 
keyhole contour but oppositely directed when coinpared to the same seg- 
ment of D, . The negative of the integral along D is asymptotically equal to 
the right segment of D,. The integral along D, with p4 replaced by its nega- 
tive, is also asymptotically equal to the portion of D, to the right of the 
branch cut. That is, 

u,(x, z ,  w) = u,(x, z ,  w) + uH(x, z, w), 

This is an example of the standard contour integral (7.2.1) in which there 
is a branch point of the amplitude as in (7.3.12) at a point that is not a saddle 
point; that is, the index n of the order of the saddle point is equal to unity. 
To make the identification between (8.1.40) and (7.3.12) easier, we first write 
p4 = i J K  Jz The asymptotic expansion of the integral in (8.1.40) 
is given by (7.3.14) with 

By using these results in (8.1.40), we obtain the result 

iw(x sin 8, + [2H - Z] cos 0,) 
CO 
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We leave as an exercise the verification that the phase {x sin 8, + 
[2H - z ]  cos 8,}/c, is just the head wave solution of the eikonal equation 
of Exercise 1.1 1. 

THE TRANSMITTED WAVE uT 

defined by (8.1.16). For this integral, the exponent to be studied is 
We consider now the solution in the region z > H, the transmitted wave, 

(8.1.43) W ( P )  = i { P X  + P'tZ + I P 3  - P'tlHI? 
with derivatives 

(8.1.44) 

w"(p) = -i{i + [i - $ ] H i .  

The location of the saddle points for this exponent is more difficult than 
for the previous cases. The condition that w have a saddle point is 

x - ~ P z - [x - 3 H = 0. 
P 3  

(8.1.45) 

Let us first consider the possibility of saddle points on the real axis in the 
region - n < p < n. In this interval, both p 3  and p4 are real, and an explicit 
solution of (8.1.45) is not available (or useful). We shall also assume that x 
is nonnegative, since we have seen that the results are symmetric in x. To 
specialize even further, let us consider this condition for z = H ,  that is, 
right on the interface. Now the equation for the saddle points becomes 

x - (p /p3)H = 0. (8.1.46) 

This is exactly the equation that determines the saddle points for the ex- 
ponent of the integrand for up [Eq. (8.1.19)] for points (x, z) at the interface. 
Thus, for z > H ,  we view (8.1.46) as providing a continuation of the incident 
rays into the lower medium. From (8.1.45), we can see that the direction of 
that ray is given by ( p o ,  p4(po)) in this second medium; this ray continues 
the incident ray with direction ( p o ,  p3(po)) .  

Let us define 8; and 0, as the angles that a given ray makes with the 
normal to the interface. By taking the dot product of the two direction 
vectors with the normal (0, I )  and dividing by 1 and n,  respectively, to 
normalize, we obtain the expressions for the cosines of these two angles as 

cos Oi = p 3 ,  cos 8, = pJn.  (8.1.47) 
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By solving for the sines of these angles and taking the quotient, we obtain 
Snell’s law, 

sin Oilsin 6, = n, (8.1.48) 

which confirms that the rays defined by setting w‘ equal to zero are indeed 
the refracted rays and that the contribution from this saddle point is the re- 
fracted wave. Furthermore, since n < 1 ,  we see that 6, = n/2 when sin Oi = n. 
That is, when the incident angle at the interface is the critical angle, the 
refracted ray propagates along the interface. As the incident angle varies 
between zero, at  normal incidence, and the critical angle, the refracted rays 
cover the right half of the lower region. Of course, the left half region is 
covered by the negative angles corresponding to incident rays to the left 
of the z axis. 

We shall denote the contribution due to this saddle point by u, and content 
ourselves with a parametric representation in terms of the angle z. We leave 
to the exercises the verification of the result 

u,(x, z, 4 

+ ( z  - H > J ~  +  cost) + - 

2no [J?-G& + cos z] d v  (n2 - sin’ z)3’2 C O S ~  z 

J7Zz J- 
z - H = x  - H  

sin z cos z 

The parameter z labels a refracted ray, which is the continuation into the 
lower medium of the incident ray from the source point with same parameter 
t. For each choice of z, the first equation in (8.1.49) gives the asymptotic 
value of the refracted field. The rays for this diffracted field are initiated on 
the interface between the boundary points x = f H tan zc defined by the 
critical angle zc, sin zc = n and its negative. We can check further that on 
this finite segment of the interface, the refracted wave and its normal deriva- 
tive asymptotically balance the sum of the incident field and the reflected field. 

On the interface outside of the critical points, reflected and head rays are 
initiated into the upper region. The head wave in (8.1.42) can be seen to be 
of lower order in o than the incident wave (8.1.25) and the reflected wave 
(8.1.32). Therefore, there must be another wave in the lower medium to 
balance the sum of incident and reflected waves at the interface outside the 
critical points already defined. 

We remark that the condition of stationarity (8.1.46) is satisfied for x 
values in this region by the same values of p that yield the saddle points for 
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the incident wave (8.1.19), with z = H .  Thus, there is another simple saddle 
point contribution, at least at the interface. However, for z > H ,  the full 
condition of stationarity (8.1.45) is a complex valued equation, since p4 is 
complex and now has a nonzero coefficient. Finding this complex root in 
the large is extremely difficult. However, for small values of z - H ,  we might 
think to search for a root with a small imaginary part. Indeed, let us set 
p = p1 + ie, with p1 and E real. We leave it to an exercise to confirm that 
to leading order 

. (8.1.50) 
x H F+T 

E - ( Z - H ) -  
2x Jxq1 - n2) + H 2  

At this saddle point, w has a negative real part, so that, in fact, the corre- 
sponding field contribution decays exponentially with increasing z - H .  
However, at z = H ,  there is no exponential decay, and this field balances 
the incident plus reflected field. This field contribution is called the evanescent 
field.  

In Fig. 8.5, we show the source point and its image below the interface. 
In addition, the critical angles Bc and zc are shown along with a set of rays. 
A typical incident ray at angle less than critical is labeled by P ,  the corre- 
sponding reflected ray by R ,  and the refracted ray by 1. The critically reflected 
ray is labeled by C, the critically refracted ray by t ,  and a typical head or 
lateral ray by L. 

Exercises 

8.1 Consider wlp)  defined by (8.1.18). Set I m p  = p defined by (8.1.20). 
Show that the only solution p on the interval ( -  1, 1) is the saddle point. 
That is, the path of steepest descent can only cross the real axis in this interval 
at the saddle point itself. 
8.2 (a) The purpose of this exercise is to confirm that for the integral 
representation of up in (8.1.14), the path of integration C can be replaced by 

(0.2H) 

Fig. 8.5. Geometry of rays and critical angles. 
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the difference of paths of steepest descent in Fig. 8.3. Thus, let x be positive 
and z be nonzero, and define C ,  as an arc of radius R connecting C and D, 
on the right. Confirm that C, is in the valley of the exponent and that the 
integrand decays exponentially to zero with increasing R everywhere on C,. 
Show that the integral on C, must approach zero with increasing R. 

(b) Now suppose that z = 0. Verify that the integrand satisfied the con- 
ditions of the corollary to Jordan's lemma to conclude that, again, the integral 
on C, decays to zero. All other cases follow in the same manner. 
8.3 (a) Suppose that w < 0. Show that the solutions to (8.1.4) that satisfy 
the Sommerfeld radiation condition in Exercise 6.1 1 are 

, Z' - m; e-ik4* , Z'CU. 
,+kp. 

Note that these solutions have the opposite signs of the choices in the 
discussion of this section. Conclude that we can account for negative co in 
the solutions (8.1.6) by replacing p 3  and p4 by sgn wp3 and sgn cop,, 
respectively. 

(b) In (8.1.10)-(8.1.12), take o to be real, and let the semicircular arcs 
around the branch points shrink to zero radius. Show that replacing o by 
its negative and then making the change of variable of integration from k 
to - k  yields the integral with complex conjugate integrand. Thus, the 
transformation from co to - o is achieved by taking the complex conjugate 
of the results developed in this section. 
8.4 Verify that for x < 0 and Ixl/pl > n, the direction of steepest descent 
in (8.1.27) at p = - n is - z/2. 
8.5 (a) Consider the steepest descent path from p = n for the exponent in 
(8.1.27). We have shown that the direction of this path is 74'2. Set p = n + ia 
and show that for a small, the path of steepest descent curves to the left of 
the vertical. 

(b) Consider this steepest descent path for large IpJ in the left half plane. 
Show that the analysis ofthe asymptote to this path is exactly as in the discus- 
sion in this section except that p must be replaced by nx + J D ( 2 H  - z). 
8.6 In Fig. 8.5, choose (x, z )  on the ray labeled L. Show that the phase of 
uH in (8.1.42) is given by the length of the ray P plus the length of the ray L, 
the sum multiplied by l/c,,, plus the length of the ray t multiplied by l/c, . 
That is, the phase at this point is the product of the frequency w multiplied 
by the travel time on a ray path that propagates to the boundary at the 
critical angle, propagates in the second medium along the boundary, and 
then propagates at the critical angle again in the first medium to the 
point (x, z ) .  
8.7 Consider the exponent w(p)  defined by (8.1.43). Show that the analysis 
of the steepest descent paths for large values of IpI is exactly as it was for the 
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discussion of the exponent in (8.1.18), except that IzI is replaced by z (which 
is positive anyway). 
8.8 Carry out the saddle point evaluation to confirm (8.1.49). 
8.9 Suppose that z = Hand that 1x1 < H n / , , I m  = H tan zc. Show that 

au, au, au, 
a Z  az az 
-+ - - - -  up + UR - ur, 

to leading order in w. 
8.10 Verify (8.1.50). 
8.11 Consider the same problem as in this section except in three space 
dimensions, with x replaced by x = (xl, x,) and the source now replaced by 
S(x,)S(x,)S(z) .  Introduce the two-dimensional Fourier transform 

t i ( k , ,  k , ,  z) = u(x ,  z)e-ik‘x dx, dx,, k = ( k ,  , k , ) .  I:* 
(a) Show that the solution to this problem is given by (8.1.10)-(8.1.12), 

with k and x replaced by k and x, respectively, kx replaced by k - x ,  k re- 
placed by the magnitude of k, and dk replaced by dk,  dk, . 

(b) Consider up with w positive. Scale by w/c,, and write the integral 
in polar coordinates. Formally use the method of stationary phase on the 
angular integral and obtain the result 

In this equation, x = f i  and I = w/c,,. 
Replace the lower term in the sum by an integral over negative 

values of p ,  and conclude that except for the avoidance of the branch point 
at the origin by passing over it, this result is equivalent to an integral on 
- 00 < p < GO exactly like the integral considered in this section. The only 
new feature is a branch cut from the origin extending downward to - im .  
Explain why this branch cut does not affect the leading order asymptotic 
analysis of this section. 

(d) Compare the result of (c) to (8.1.14) to conclude that the asymptotic 
solution for up can be obtained from the discussion of this section if we only 
multiply the result (8.1.25) by 

(c) 

with p evaluated at the stationary point (8.1.20). Thus, obtain the result 

up - exp(iwx/c0)/47txi. 

which is the exact solution in three dimensions. 
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(e) Apply the same scaling to the results for us and uT to obtain the 
asymptotic solutions for these cases. 

8.2 INTRODUCTION TO RAY METHODS 

Ray methods provide a natural synthesis of mathematical and physical 
insights into wave propagation. Mathematically, ray methods are an ex- 
tension to partial differential equations of the WKBJ method for ordinary 
differential equations. Physically, ray methods extend the basic concepts of 
geometrical optics to a large class of optical wave phenomena and then 
extend these results to other wave phenomena as well. 

We shall present in this and the next section an introduction to the 
application of the ray method to the Helmholtz equation. As in the preceding 
section, this discussion is by no means complete or definitive. A complete 
discussion of the ray method for the Helmholtz equation would require a 
volume in itself. Much has been written about the numerical implementation 
of this method in complex geometries and about the extension of the method 
to the systems of equations of elastic and electromagnetic wave propagation. 
Implementation on other equations and systems also abounds. As in Section 
8.1, however, we consider the features introduced here as being fundamental 
and prototypical. 

The ray method is a formal asymptotic method with rigorous justification 
available only under limitations that do not account for applications for 
which the method has been demonstrated to be valid. Furthermore, the 
method remains valid even in cases in which the dimensionless large param- 
eters of interest are not really large at all, even smaller than our rule-of- 
thumb value of three. As in earlier sections, the dimensionless parameter is 
a “natural” length scale of the problem at hand measured in units of wave- 
lengths. Equivalently, it is the ratio of some natural length scale of the 
problem, other than a wavelength, to a typical wavelength. See the discussion 
in Section 4.7 for ordinary differential equations. 

The use of numerical techniques in support of ray methods greatly en- 
hances their utility. There is also a great practical advantage in applying 
numerical techniques to the ray solution over applying numerical techniques 
to the original equation(s). This is a matter of length scales again. A numerical 
scheme applied to the original equation or system would require, of neces- 
sity, discretization on a length scale that is a fraction of a wavelength, 
whereas the discretization of the ray solution uses the other longer-length 
scales of the problem at hand. Thus, there are savings in computer capacity 
that allow us to obtain ray method solutions to more complicated problems 
than might be obtained otherwise. Furthermore, the ray method reduces 
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problems for partial differential equations to the solution of a system of 
first-order ordinary differential equations that are linear in the derivatives 
of the unknown constituents of the ray solution. 

FORMAL SERIES SOLUTION 

We begin our development of the ray method by considering a function 
u(x, w) ,  x = ( x l ,  x2,  x3), which satisfies the homogeneous Helmholtz 
equation 

v 2 u  + (w2/c"x))u = 0. (8.2.1) 

As in the discussion in Section 4.7 for the case of one independent variable, 
we shall assume a solution in the form (4.7.4), now in three independent 
variables, 

(8.2.2) 

We remark that 8, the power of w, cannot be determined from the homo- 
geneous equation (8.2.1). It will be determined in matching the solution u to 
prescribed data. This will be seen in examples in the next section. By sub- 
stituting this series into (8.2.1), we obtain the equation 

m 1 {(io)2-jAj[(Vt)2 - c - ~ ]  + ( i w ) ' - j [ 2  V T - V A ~  + A, V2t]  
] =o  

+ (iw)-] V'A,} = 0. (8.2.3) 

We shall determine the series solution by setting the coefficient of each 
power of w separately equal to zero. The highest power is two, and for any 
nonzero choice of A ,  this coefficient will be zero if we choose z to satisfy 
the equation 

(VT)2 = c - 2 ;  (8.2.4) 

that is, t must be a solution of the eikonal equation, which was discussed in 
Chapter 1, but with n2 replaced by c - ~ .  Had we assumed a series in the 
parameter o / c o ,  with co some reference velocity. then the phase here would 
have been exactly as in the first chapter. Our choice here is motivated by 
seismological applications in which the travel time t is taken as the dis- 
tinguished phase. 

When z is chosen to satisfy (8.2.4), not only the highest-order term in w 
in (8.2.3) is eliminated, but the entire first series is eliminated. Setting the 
coefficient of o equal to zero yields the equation 

2 V t - V A ,  + A,  V*T = 0, (8.2.5) 
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while equating the coefficients of the subsequent powers of o equal to zero 
yields the system of equations 

2 V . I - . V A ~ V ~ ~  = -V2Aj- , ,  j = 1,2,. . .. (8.2.6) 

We introduce new variables defined by 

p = iIc, p j  = a z / a x j ,  ; = i , 2 , 3 .  (8.2.7) 

The variable p ,  inverse velocity, is called slowness. The vector p = ( p i ,  p 2 ,  p 3 )  
has the dimension of inverse velocity as well and is called the slowness vector. 
In terms of these variables, we rewrite the eikonal equation as 

3 
2 c P j P j  = P . 

j =  1 
(8.2.8) 

Thus, the eikonal equation states that the slowness vector has the slowness 
p as its magnitude. 

The characteristic equations for (8.2.8), known as the ray equations, are 

a T  
J = i p j ,  - 
do do axj aa 

d p j  = ;1 aP , ; = 1,2,3;  - = Ap2. (8.2.9) 
dx . 

The first six equations here define the characteristics that are the rays of the 
ray method. The seventh equation governs the propagation of T along the 
rays. We shall discuss choices of c later. We remind the reader that the rays 
are directed along the gradient to z, that is, orthogonal to the phase fronts. 

Let us consider now (8.2.5), the equation for the leading order amplitude, 
known as the (first) transport equation. We shall show that this equation is 
also an ordinary differential equation with respect to o. Before doing so, 
however, we shall present an analytical solution formula that provides some 
physical insight into the nature of the propagation modeled by the function 
u(x ; w ) .  This solution formula results from the observation that multiplica- 
tion by A ,  in (8.2.5) produces an exact divergence, namely, V - [A: Vz]. Thus, 
for any volume D, 

o = JD v - [ I A ~  v.I-1 dV = JaD A; V T * A  cis. (8.2.10) 

In the second line, B denotes the outward unit normal to the boundary d D  
of the domain D. 

We choose the domain D as follows. First, introduce a differential element 
of a surface of constant z. Call this surface d S ,  . Then, let D consist of the 
tube of rays between this surface element and the intersection of this family 
of rays with another surface of constant value of z; call this surface d S , .  See 
Fig. 8.6. The part of D labeled by B in the figure has the ray direction as a 
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dSi 

Fig. 8.6. Domain of integration D. 

tangent at each point. Thus, the dot product of the normal with the gradient 
of z is zero on this part of dD, and the integral over the boundary reduces to 
the integral over the two ends of the ray tube on which z is constant. 

Since the ends were of small cross-sectional area, we approximate the 
integral on each end by the arta of the end multiplied by the integrand 
evaluated at some point of the surface, say, on some central ray on which we 
take the value of cr to be crl or o2 corresponding to the labeling on dS .  We 
remark further that the normal on dS  is directed along V7 at the larger value 
of z and i s  oppositely directed at the smaller value of z. Furthermore, the 
magnitude of the dot product Vz-A must be p .  Thus, we conclude that 

(8.2.1 1) 

This equation has the interpretation that Agp = A i / c  (and hence IAiI/c) is 
preserzjed in ray tubes. If we think of this quantity as defining an energy 
density, then we conclude that the flux of energy through a ray tube is zero 
for this leading order approximation in w. 

The differential surface elements can be expressed in terms of elementary 
quantities on the rays. Let us label the rays on d S ,  by the pair of parameters 
(y,, y 2 ) .  Then, the integration over the end surface can be carried out in y1 
and y 2  if we set 

where x denotes the vector cross product. The vector 

dx dx 
- x - dy, dyz 
4 1  dy, 

(8.2.12) 

has as magnitude the area of a differential parallelogram in the surface of 
constant cr (not necessarily the same as constant z). The dot product then 



8.2 Introduction to Ray Methods 261 

projects this area onto a surface of constant T. The domains dS, and dS, 
extend over exactly the same range of parameters ( y l ,  y 2 ) .  Thus, the differ- 
ence between the surface areas on the two end caps can only arise through 
differences in the Jacobian of mapping via rays: 

Therefore, we rewrite (8.2.1 1) as 

(8.2.13) 

(8.2.14) 

We have replaced the spec$c value o2 by the generic value o in this equation. 

TRANSPORT EQUATIONS AS ORDINARY DIFFERENTIAL EQUATIONS 

We return now to the development of a system of ordinary differential 
equations for the amplitude coefficients in the solution series. We use (8.2.9) 
in (8.2.5) to obtain the equation 

2 dx  
- - -VA,  + A, V2z = 0, A do 

which after multiplication by 2.4, can be rewritten as 

dAf, 
__ = -AEL V’Z. 
do 

(8.2.15) 

(8.2.16) 

When a ray solution for z is known, the product I V2z is a known function 
of o, and this is an ordinary differential equation in o for A ; .  

A comparison of this differential equation with the result of differentiation 
of the solution formula (8.2.14) suggests a relationship between V2z and the 
Jacobian J .  To obtain this relationship, we differentiate (8.2.14) and obtain 
the result 

(8.2.1 7) 
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A comparison of this differential equation with (8.1.16) suggests that 

d 
do 

J. v2z  = - {log[p(o)J(a)]}. (8.2.18) 

We shall verify this result at the end of this section. 

tions (8.2.6) have solutions given by 
We leave it to an exercise to verify that the higher-order transport equa- 

This result is valid for all integers j > 0. If we define A _ ,  = 0, then the 
result is valid for all integers j 2 0. In all functions here we have omitted 
dependence on other variables, namely, the ray parameters y1 and y z .  
Furthermore, the dependence of I z  and p on o is more accurately written as 
;l(x(o, yl, y 2 ) )  and p(x(a, y I  , yJ ) .  We omit these details for the sake of brevity 
in the solution formula. 

We remark, also, that a solution in terms of the Jacobian J as stated is not 
always satisfactory. The reason is that except in cases in which analytic 
solutions of the ray equations are available, it may be difficult to calculate 
the indicated derivatives required for the determination of J .  Either we must 
compute the Laplacian of z determined as a function of (yl, y 2 ,  o), or we 
must differentiate the solution x(y,, y 2 ,  o) with respect to the parameters 

An alternative approach to the determination of J is provided by deriving 
additional ordinary differential equations along the rays for the quantities 
that make up J .  These quantities can then be determined along with T as 
solutions that propagate along the rays. We remark that the normal vector 
appearing in the definition of J in (8.2.13) is just p/p, which is determined as 
part of the solution of (8.2.9). Thus, we need only determine the other ele- 
ments in J .  To do this, we define 

( Y 1 7  Y 2 ) .  

We have introduced 12 new unknowns that are the partial derivatives of 
x and p with respect to the ray parameters y 1  and y 2  . We leave it to an exercise 
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to verify that these 12 unknowns satisfy the following system of ordinary 
differential equations-derivable from the ray equations-with respect to o : 

d y  . 3 a A  
d o  i = 1  axi 

dc i = l  axi o x j  

= A Z j k  + p j  c ~ y i k ,  
j = l , 2 , 3 ,  k = l , 2 .  (8.2.21) dZjk = c 3 n[,,qYik; 

These 12 equations can be appended to the original 7 for determination of 
the rays and z to  yield a system of 19 ( !)Jirst-order ordinary diflerential equa- 
tions governing the propagation of the leading order approximation of the 
solution u. Of course, each correction term in the amplitude series requires 
the addition of only one first-order ordinary differential equation. Complete 
determination of a solution to this system would require initial data de- 
scribed parametrically in terms of the parameters and y 2 .  

SPECIAL CHOICES OF RAY PARAMETER 0 

For reference purposes, we shall write the ray equations for three choices 
of the parameter I ,  which, in turn, provide three choices of CJ with different 
interpretations. 

This would likely be the parameterization of choice in a 
case in which analytical solutions were accessible, such as in homogeneous 
media. The ray equations (8.2.9) and (8.2.21) now take on the form 

d x  
Pj, - - do d o  dx ,  

Case 1 1 = 1 

dpj - P d p ,  dr  2 - = p >  d o  
J -  -- 

j = 1 ,  2, 3, k = 1, 2. (8.2.22) 
3 

Case 2 A = c = l/p For this choice, the derivative of the position 
vector has magnitude equal to unity and the parameter CJ is just arc length 
along the ray. Therefore, we shall distinguish this choice of scale by replacing 
o by s: 

- = P, dPJ - dP dr  dx,  - 3 - - -  

ds p ’ ds dx,’ ds 

(8.2.23) 

j = 1, 2, 3, k = 1 ,  2. 
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Case 3 I = c2  = l/p2 This last case is distinguished by the fact that 
the derivative of z with respect to CT is equal to unity. Thus, the parameter 
along the ray can be taken to be z itself so long as we remember to set its 
initial value-not arbitrarily equal to zero as we did in Chapter 1, but- 
equal to the correct value of z for each ray as defined as a function of the 
other parameters y 1  and y 2 .  The ray equations now become 

d x .  p. dp. 1 d p  
- J = l  1=-- 
dr pz’  d7 p d x j ’  

This last parameterization seems to be the one of choice for numerical 
computation of rays, amplitude, and phase. However, I find a rescaling by 
some reference velocity as an attractive alternative, since the velocity as a 
raw number is often extremely large in dimensional variables. For example, 
in seismology, with units of meters and seconds, the magnitude ofthe velocity 
is O(103). We leave to Exercise 8.16 the development of the system of ray 
equations for a ray parameter scaled by a reference velocity. 

In the next section, we shall discuss the identification of initial data for 
this system of equations. We have already seen how this is done for z in 
Chapter 1. Therefore, it is necessary now to determine the initial values of 
the constituents of A j  to use the formulas (8.2.14) and (8.2.19). 

Two DIMENSIONS 

There are some simplifications that occur with the reduction ofthe number 
of dimensions. We consider, again, Eq. (8.2.1), with the Laplace operator and 
x now two-dimensional. We proceed with the formal solution (8.2.2) and 
obtain (8.2.8) with the upper limit on j being 2 instead of 3. In the ray equa- 
tions (8.2.9), the upper limit on j is again 2. The discussion of the use of the 
divergence theorem to solve for A ,  goes as before except that the domain 
D is now two-dimensional and the boundary aD is now made up of curves 
that are either along the rays or orthogonal to them. 

Thus, the first substantive change occurs in the result (8.2.1 l), where we 
must interpret d S  as a differential arc length rather than as a differential 
surface area. We replace (8.2.12) then by the statement 

(8.2.25) 
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with y1 labeling the rays and B a unit normal to the curve of constant T. We 
now define J by 

(8.2.26) 

The identity (8.2.18) still holds. Verification of this two-dimensional result 
is left as an exercise to be modeled on the three-dimensional result presented 
in the verification of (8.2.18) below. The solution formulas (8.2.19) still hold 
as well. The set of definitions in (8.2.20) and the system of equations (8.2.21) 
is reduced in number because the range o n j  is 1-2, while k only takes on the 
value of 1 and can be eliminated altogether. Thus, in place of those two 
equations, we write 

VERIFICATION OF (8.2.18) 

We close this section with a proof of the result (8.2.18). To do so, we note 
first that the normal to the surface of constant z appearing in the definition 
of J (8.2.13) is proportional to the gradient of T, which is also proportional 
to the ray tangent from (8.2.9). That is, using the ray equation (8.2.9), we 
can write 

(8.2.29) 

Let us introduce the alternative notation y 3  for o. We shall use either of these 
as is convenient. 

The triple scalar product appearing in the last equation can also be 
interpreted as a determinant. Thus, we can write 

ApJ = IKI, K = det(Kij), K i j  = i?xi/aoj, i, j = 1, 2, 3 .  (8.2.30) 

We now use the rule for differentiation of a determinant in order to write 

(8.2.3 1) 

We have used the term cof to denote the cofactor of an element in a de- 
terminant. In the first factor, we shall interchangc the order of differentiation; 
o is, after all, one of the three independent parameters y l ,  y 2 ,  y 3 ,  and we 
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assume enough smoothness to allow the interchange. The second factor is, 
within a scale of K itself, just the element of another matrix Lij. The transpose 
of that matrix is the inverse of the matrix K i j .  That is, 

and 

The sum on j is now recognized as just the chain rule differentiation of 
dxi/da with respect to each x i .  Furthermore, we can use the ray equations 
(8.2.9) themselves to replace axi /& by l p i .  The result of these two oper- 
ations is 

(8.2.34) - = K -[[/lpi] = 1 K  V’T + K p i - .  

In the last expression, we have used the definition p i  = dT/axi to identify one 
term of the derivative of the product in the middle expression; in the last 
term, we again use (8.2.9) to identify that sum as a derivative with respect 
to o. The result is 

dK 3 a  3 an 
da i = l  dx, axi 

1 dK 1 d l  d d 
K do Ada do do 

l V22 = -~ ~~ - -~ - = -~ { l ~ g [ I K ( / l ] }  = ~ {log[pJ]). (8.2.35) 

The last line is just the result (8.2.18) and the verification is complete. 

Exercises 

8.12 (a) Use the results of this section to rewrite (8.2.6) in the form 

d[A,,lFS]/do = -+A,/@ V2Aj- l .  

(b) Integrate the result of (a) to obtain (8.2.19). 
8.13 Verify that the functions y j k  and z j k ,  defined by (8.2.20), satisfy the 
system of differential equations (8.2.21). To do this, differentiate in (8.2.20), 
interchange the order of differentiation of o and y k ,  and use the ray equa- 
tions (8.2.9). 
8.14 When the surfaces of constant o are also the surfaces of constant z, 
the triple scalar product in (8.2.12) reduces to the magnitude of the cross 
product multiplied by the two differentials. Show that 

(8.2.3 2 )  

(8.2.3 3) 

dx dx 
9.. = --- , ’’ dy, dy, = g = /det(gij)J; i, j = 1, 2. 
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8.15 The purpose of this exercise is to provide some practice with carrying 
out analytically for a particular example the computations indicated by the 
results of this section. The field generated will be a reflected wave for a point 
source over a half-space in three dimensions under the assumption of a 
reflection coefficient of unity and a constant velocity c in the region z I H .  
Thus, the geometry of this problem is as in Exercise 8.11. We shall use as 
parameters y and y 2 ,  respectively, the polar angles 8, measured from the 
z axis and 4 measured in the x-y plane from the x axis. Thus, let us suppose 
that on the surface z = H ,  the following data are given. 

x(8 ,4 ,  0) = tan 0 cos 4, y(B,$,  0) = tan 8 sin 4, 
p 2 ( 8 ,  4, 0) = p sin 8 sin 4, 

z(B,$,O) = H ;  

p 3 ( 8 ,  4,O) = p cos 8; p1(8, 4,O) = p sin 8 cos 4, 
T(8,4,0) = ~p sec 8, A@, 4,O) = (COS 8) /4~H;  

yl1(8,4,0) = Hsecz8cos4, yz1(8,4,0) = HsecZ8sin4, y31(8,4,0) = 0; 

ylz(8,4,O) = -HtanOsinb, yz2(8,4,0) = Htandcos4,  ~ ~ ~ ( 8 , 4 , 0 )  = 0; 

z1 l(e, 4,o) = p cos 8 cos 4, zz1(8, 4,O)  = p cosz 8 sin 4, z31(8, 4,O) = p sin 8; 

z12(8, 4,O) = - p  sin 8 sin 4, Z ~ ~ ( O , $ ,  0) = 0. 

Show that the solutions of the ray equations (8.2.22) (A = 1) are as 

~ ~ ~ ( 8 ~ 4 ~ 0 )  = p sin 8 cos 4, 

(a) 
follows : 

z1 = Z,(O, 4, o), z2 = z,(o, ~ o ) ,  yl = yl(e, 4,o) + az,(e, 4,0), 

x = ~ ( e ,  4,o) + O P v ,  4,0), 
Y2 = Y2(8, 4,O) + azz(8, 4, 01, P = P(8,4, 01, 

7 = T(o, 4,o) + OP. 

(b) Verify by differentiation of the preceding results that y1 = dx/dyl, 

(c) Use the definition (8.2.29) to determine J .  Show that J = c sin 8 
. [ H  sec 8 + ap]' and thus that A ,  = (4n[H sec 8 + ap])-'. 

(d) Show that the vector cross product y, x yz is not normal to the 
vector p. Explain why. 

(e) Introduce r as the distance between x and the point (0, 0 , 2 H ) ,  which 
is the image of the origin with respect to the plane z = H .  Show that 
r = H sec 8 + ap  and that, therefore, T = pr, A ,  = (47w-l. 
8.16 The purpose of this exercise is to develop the system of ray equations 
for variables scaled by a reference speed. 

(a) Consider the ray equations (8.2.9), with the scale A = c,, a constant 
reference speed. Also, introduce the new functions 4, q, and n defined by 

Y2 = d X / d Y , .  

T = $/co, q = V 4 ,  n = co/c. 
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Show that the system (8.2.9) now becomes 

dxldo = q, dq/do = n Vn, d$/do = n2 

(b) Now define 

Bj = c i A j ,  j = 0, 1,. . .: 
and show from (8.2.6) and (8.2.18) that 

2 V 4  * V B j  + Bj V 2 4  = - V 2 B j - l ,  j = 0, 1, . . ., V 2 $  = d[log nJ] /do .  

In the first equation, we take B - ,  = 0. [Remark: The scaling on the Bis as 
compared to the Aj’s changes the formal large parameter iw in (8.2.2) ico/c, .] 

Introduce wjk = ;lzjk, j = 1, 2, 3,  k = 1, 2. Show that the system 
(8.2.21) now becomes 

(c) 

. j = l , 2 , 3 ,  k = l , 2 .  a Y j k  - 
wjk 7 

-- 
do 

8.3 DETERMINATION OF RAY DATA 

In the preceding section, we derived the system of ray equations (8.2.9), 
(8.2.16), or (8.2.28) for the determination of the amplitude and phase of an 
asymptotic solution to the homogeneous Helmholtz equation (8.2.1). We 
shall now address the question of determining initial data for this system of 
equations, also known as ray data. We take the point of view that a source 
or an incidence of a wave of the type (8.2.2) on a scattering surface gives rise 
to a wave, again of the type (8.2.2). The subsequent propagation of this wave 
is then governed by the homogeneous Helmholtz equation. Thus, our objec- 
tive here will be to show how these ray data are determined for waves initiated 
by a source or waves initiated in response to a scattering mechanism. We 
shall do this for a number of prototypical examples. 

RAY DATA FOR A POINT SOURCE 

Let us consider first the case of a point source 

f(x, o) = -6(x - xo)eiwro. (8.3.1) 

We should expect that a point source of this type will give rise to a wave 
emanating from the source point. Furthermore, the x-independent phase of 
the source would have to be a phase contribution to the solution as well. 
Therefore, we obtain directly from the nature of the source the ray data 

x = X0’  z = t o ,  o = 0. (8.3.2) 
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If all of the rays are to emanate from this point, then the solution of the 
eikonal equation we seek is the conoidal solution for which p is not deter- 
mined initially, but only its magnitude p is given by the eikonal equation 
(8.2.8) itself. The two ray parameters, then, prescribe the initial direction of 
the vector p. For example, we may use the polar angles of the initial value 
of p; see the discussion in Section 1.4. Thus, we set 

p = p(x,)fi;  fi = (sin y1 cos y 2 ,  sin y1 sin y z ,  cos yl). (8.3.3) 

From the definitions (8.2.20), we can now determine the initial values of 
y jk  and z j k .  These values are 

Zll = P ( X , )  cos 1'1 cos Y z ,  2 2 1  = P(X,) cos Y 1  sin Y z ,  

'31 = -P('O) sin 71 > 

(8.3.4) 
z12 = -p(x,) sin y1 cos y 2 ,  z22 = p(xo) sin y1 sin y 2 ,  z32  = 0 ;  

y j k = O ,  a = 0 ,  j = l , 2 , 3 ,  k = l , 2 .  

From the definition of J in (8.2.29), we see that for these data, J ( 0 )  = 0 
and that the solution formula (8.2.14), with a, = 0, is not valid. Let us 
rewrite (8.2.14) in the form 

Ai(a)p(o)J(o) = &a1)p(a,)J(a,) = C2(Y, 3 Y z ) .  (8.3.5) 

Here C 2  is a constant with respect to a and can depend only on the param- 
eters y1 and y 2 .  

Let us consider J(a) for a near zero. If we approximate p and zjk by their 
initial values, then 

y j k  x zjk(O)a, j = 1, 2, 3 ,  k = 1, 2, (8.3.6) 

and we use this result in (8.2.9) to find that 

J(o) x [aAp(x,)]* sin yl. (8.3.7) 

We see from this equation that J(o) vanishes quadratically in a as u --t 0. 
Thus, if C2(yl, y 2 )  in (8.3.5) is to be finite, we must expect that Ai(a) must be 
singular to the same order as J(o). Indeed, we can check this quite readily 
by arguing that in the limit, as a + 0, the solution to the problem with vari- 
able p(x) should be the same as the solution to the problem with constant 
value p(x) = p(x,). For the latter case, the solution to the Helmholtz equa- 
tion with source (8.3.1) is just the Green's function (6.3.24), multiplied by the 
phase factor exp{ iwr,) , This exact solution is of the form of our asymptotic 
solution (8.2.2), with fl = 0, and we conclude that 

A ,  x (47cr)-', r = Ix - xoI. (8.3.8) 
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Now we need only express r in terms of CT to obtain an approximate solution 
of (8.3.5), from which we can estimate C(y, , y 2 )  by letting CT + 0. 

The solution for x for small CT is readily obtained from the ray data for x 
and p given in (8.3.2) and (8.3.3) and the ray equations (8.2.9). The result is 

x = x, + nP(xo)Ba, (8.3.9) 

from which we conclude that 

r NN Ip(x , )o .  (8.3.1 0 )  

Now we use (8.3.7), (8.3.8), and (8.3.10) in (8.3.5) to conclude that 

Thus, for this point source problem, we do not directly find an initial value 
for A,  because this amplitude is singular at the source point but, instead, 
find a constant C2(y,, y 2 )  that allows us to use (8.3.5) to write the solution 
for A,,  despite its singular behavior, 

Analysis of the solution formula (8.2.19) f o r j  > 0 reveals that each Aj is 
progressively more singular than the preceding coefficient. Determination 
of the ray data for these coefficients is quite involved and will not be dis- 
cussed here. 

RAY DATA FOR A LINE SOURCE 

We consider now the case of a line source of the form 

f(x, o) = 6(x - x0)6(z - zo)ei0‘0(Y). (8.3.1 3) 

We expect this source to give rise to a wave whose rays emanate from the line 
x = x,, z = z o ,  where the delta functions “act.” We parameterize this line 
by a single parameter y 2  by setting 

x = xg, y = y 2 ,  z = z,, z = zO(yz), CT = 0. (8.3.14) 

Differentiation of this data with respect to the parameter yz [as described 

P z  = P20(Yz )  = d~o(Y, ) /dY , .  (8.3.15) 

Since p must satisfy the eikonal equation (8.2.8), there will be no real solutions 
for the other two components of p unless Ipzo(yz)( I p ( x ,  y 2 ,  z), which we 
shall assume. In this case, the initial value of the magnitude, but not the 
direction of the two-vector (pI , p 3 ) ,  is determined by the eikonal equation. 

in (1.3.12) in two independent variables] leads to the result 

Next Page 
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Labeling the directions of these vectors will introduce the second ray param- 
eter. The total vector ( p ,  , p , ,  p3) will make a fixed angle with the y axis, with 
tangential and normal components of fixed magnitude. Thus, these initial 
ray parameters will fill out the surface of a circular cone with the y axis as 
its axis. 

We define 

qo( ' i 2 )  = J P 2 ( X 0 ,  YZ, 20) - P i O ( Y 2 ) .  (8.3.16) 

We then express the initial values of p1 and p3 as 

(8.3.1 7) 

We remark that the cone angle of the initial ray directions has the ratio 

By differentiating the ray data for x and p with respect to y1 and y,, we 

PI = P l O ( Y 1 ~  Y 2 )  = 40(Y2)  sin 7 1 3  a = 0. 
p 3  = P30(?il 1 YZ) = q O ( Y 2 )  'OS Y 1  I 

P2o(Y2)lqo(Y2)  as its cosine. 

obtain the ray data for y,, and z j k .  The results are 

y11 = )?21 = y31 = YlZ = y 3 2  = '9 y 2 2  = '7 

'11 = q O ( Y Z )  cos 7 1 3  '21 = O, z 3 1  = - q O ( ? i Z )  sin Y 1 9  (8'3'18) 

212 = qb(Y2) sin l / l r  2 2 2  = p;Ob2)3 ' 3 2  = qb('12) cos "?I ' 

As in the preceding example, we can see here that J(a), as defined by 
(8.2.9), will be zero initially, since its entire second row y1 ,, y z l ,  y,, is zero 
initially. Thus, again we must use the device of finding a constant C(yl, y,), 
as defined by (8.3.5), in order to determine the solution A , .  We leave as an 
exercise the determination of the following approximate results for small o: 

x = xo + a,Qo(Y,) sin Y 1 > Y = Y z  + okJ20('i,)> 

z zo + olZqo(.)?,) cos Y1, 

4'21 = 0, 

7 = 7&2) + w o ,  (8.3.19) 

y, ,  = olZqo(y2) cos 'il ,  Y31 = -olyo(y,) sin Y 1 2  

y , ,  = olZqb(y2) sin yl, 

and 

y2, = 1 + ~ J P ~ ~ ( Y ~ ) ,  

i p J  = o?.2qi (8.3.20) 

A o ( 4  = C(.il? '122)/40&. (8.3.21) 

As in the preceding example, we can determine C(.i, , y 2 )  by considering 
a canonical problem that is solvable asymptotically by other means. In 

y3, = o%(Y2) cos yl; 

Previous Page 
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particular, let us consider a problem for u with a source of the form of (8.3.1 3) 
but with pzo a constant and p = I/c equal to a constant as well. Therefore, 
we consider the problem 

Vzu + (oz /c2 )u  = -S(x - xo)6(z - zo)eiwJry, (8.3.22) 

for which 

p z o  = cI = const, qo = fl-. (8.3.23) 

The substitution 

u(x, w )  = v(x,  z ,  w)eimay (8.3.24) 

leads to the following problem for u :  

( d 2 ~ / 8 x 2 )  + ( I ~ ~ u / ~ z ~ )  + w2q:v = -6(x - x,)~(z - z,). (8.3.25) 

We see here that u is just the Green’s function for the Helmholtz equation 
in two spatial dimensions, with wave number given by coq,. Thus, the exact 
solution for v is given by (6.3.23) with l /c replaced by qo and r measuring 
distance from the fixed point (xo, zo)  to the point (x, z ) .  We are interested in 
the asymptotic expansion of this solution. This can be obtained by using the 
asymptotic expansion of the Hankel function of order zero given by (6.3.18) 
with the argument z of that formula given by 

z + wqop, p = J(x - Xo)Z + ( z  - z,)Z . (8.3.26) 

We leave it to an exercise to confirm that these substitutions lead to the 
leading order asymptotic solution 

(8.3.27) 

This solution is indeed of the form of the leading term in (8.2.2), this time 
with fi = -$. We can identify this result with the ray solution more easily 
if we rewrite p in terms of cr through the solutions of the ray equations 
(8.3.19)-(8.3.21), using also (8.3.23). The result is 

(8.3.28) 

The multiplier of w in the phase of this result is exactly z, as given in (8.3.19). 
We have already chosen fi = - to give the right power of w. By comparing 
the amplitude in (8.3.28) with the solution (8.3.21) for A,, we conclude that 

exp(iw{ip2a + q 2 y )  + in/4) 
u -  

2 & 0 ~ & ) P ( X , >  jl2 > z o b  . 

(8.3.29) 
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With this constant determined, the solution for Ao(a) is given by 

(8.3.30) 

RAY DATA FOR REFLECTED AND TRANSMITTED WAVES 

Let us now consider the case of a wave incident on a surface across which 
the velocity (and slowness) are discontinuous. We will denote the surface by 
S and the sound speed and slowness on the same side of S as the incident 
wave by c-(x, y ,  z )  = l/p-(x, y,  z ) ;  while on the opposite side of S from the 
incident wave, we will denote the sound speed and slowness by c+(x, y. z )  = 
l/p+(x, y, z ) .  Correspondingly, we will denote the two sides of S by D -  
(including uI) and D ,  . 

We will take as conditions at the interface that both the total solution and 
its normal derivative be continuous across S .  We assume an incident wave 
of the form 

(8.3.31) 

This wave is of the form (8.2.2) with p = B,. It is likely in practice that uI is 
known only in terms of ray parameters. as was the case in Exercise 8.15. 

We assume that the incidence of uI on the boundary gives rise to a re- 
flected wave uR and a transmitted wave uT having the same form 

and 

(8.3.32) 

(8.3.33) 

The total solution u then is of the form 

u = uI + uR,  x in D - ,  u = uT,  x in D + .  (8.3.34) 

It would not be possible to balance these solutions on the surface S if their 
orders in ~o were different. Therefore, we require that 

8 R  = p T  = P I '  (8.3.35) 

With this identification made: we shall drop the multiplicative power of ~o 

in all further discussion. 
The condition that the solution be continuous on S leads to the equation 

f A ! ( x ) e i w T l ( X )  02 A y ( X ) e i w T R ( X )  = f A ; ( X ) e i U T T ( X )  
J x on S.  (8.3.36) 

j = o  (iw)j + j = O  C ( i o ) j  j = o  ( i 0 ) j  ' 
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These solutions could not agree asymptotically everywhere on S unless the 
phases agreed. Thus, we conclude that 

T,(x) = T,(x) = zJx), x on S. (8.3.37) 

From these equations, we can conclude that the parts of the gradients of 
zI, z,, and zT that are in the surface S must be equal. To show this more 
precisely, let us introduce a parameterization of the surface 

x = x(yl, y 2 ) ,  x on S. (8.3.38) 

and yz Now we differentiate the equations in (8.3.37) with respect to 
to obtain 

dX dx dx 
Vz,.- = VT,-- = VzT.-,  i = I ,  2. (8.3.39) 

'i i '7, 'Y i 

These equations state that the projection of the gradient on two linearly 
independent directions in the surface S are equal. Let us define 

(8.3.40) 

Here A denotes a unit normal to the surface S, and Vy is, therefore, the com- 
ponent of the gradient in the surface. 

We conclude from (8.3.39) that 

a 
an 

v, = v - fi(A*V) = v - fi-. 

VyTI = v,T, = v y T T .  (8.3.41) 

This result provides two equations for the three unknown initial values of 
the components of each of the gradients Vz, and Vz, in terms of the known 
values of Vz,. The eikonal equation (8.2.8) provides a third equation for the 
initial values of each of the gradient vectors. In magnitude, f i .  Vz, = &,/an 
must agree with f i * V ~ , ,  since they satisfy the eikonal equation on the same 
side of S .  The latter gradient must have the appropriate sign to ensure that 
the rays are directed toward S. If the former had the same sign as well, then 
V T ~  would agree with Vz, completely, and the reflected rays would be directed 
toward the surface S as well, rather than away from it. Thus, we conclude 
that the two normal components of these gradients must be of opposite sign. 
The magnitude of &,/an is also determined by the eikonal equation, how- 
ever; now p -  must be replaced by p +  . In order that the transmitted rays be 
directed away from the surface S, this normal component must have the 
same sign as az,/dn. Thus, we conclude that 

(8.3.42) 

dn 
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We shall assume for the present that the square roots appearing here are 
real. By using (8.3.39) and (8.3.42), we obtain initial data at  the surface S for 
pR = Vz, and pT = VzT. 

In order to determine ray data at the surface for the amplitude coefficients, 
we now consider the boundary condition that the normal derivatives across 
S be continuous. Thus, we return to the representation (8.3.31)-(8.3.34) and 
set the normal derivatives on the two sides of S equal to  one another. The 
result is 

i w J C - - - - t  E-- + i w R  C + + 1 ~ ~ 

a7 Aj(X) dA;(x) 1 az 00 A R ( X )  aAj”(x) 1 
an j = o  (iwjj j = o  an (iw)J an j = o  (w) j = o  an (iw)j 

In this equation, we have used (8.3.37) to eliminate the phases of the three 
waves. Here and in (8.3.36), we equate the coefficients of each power of w in 
order to obtain a pair of equations for the ray data for AS and A: for each j .  
We leave it to an exercise to verify that those equations are 

A; + Aj” = AT, 

In these equations, we have taken A _ ,  = 0. We shall solve explicitly here 
only the equations for the leading order coefficients. Those equations are 

The solution to this pair of equations is 

A t  = RA’,, A; = TA’,. (8.3.46) 

The reflection and transmission coefficients are given by 

and 
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In obtaining the final result in each of the latter two equations, we have used 
the results (8.3.42). We leave the determination of the higher-order reflection 
and transmission coefficients to the exercises. 

The reader is cautioned that the initiation of only an ordinary reflected 
and an ordinary transmitted wave at an interface requires that the surface 
be smooth and that the square root in these results remain real. We have 
already seen in Section 8.2 the effect of a point (points) on S,  where the square 
root is zero, bounding a region of real square root from a region of imaginary 
square root. That boundary gives rise to another kind of wave in the region 
D- , a head wave, which is a form of diffracted wave. Yet another type of 
wave is initiated in the second region D, , namely, an evanescent wave. 

We have also seen in Chapter 1 that points on the surface at which the 
incident rays are tangent to the boundary also give rise to another type of 
ray family that propagates along the surface itself and provides charac- 
teristic data for the eikonal equation and generates yet another ray family 
that leaves the surface tangentially. The wave field associated with the former 
ray family is called the creeping wave, while the wave family associated with 
the latter set of rays is called the smooth-body dij'jracted field. 

At edges of the surface S ,  the results are also suspect. First, the surface 
S is certainly discontinuous at an edge, so that the derivation of the ordinary 
reflected wave is suspect. (In fact, right along the shadow boundary of the 
reflected wave, the actual amplitude is half of the result predicted here.) 
Furthermore, as discussed in Chapter 1, the edge becomes the initial curve 
for an entirely new ray field and associated wave, namely, the edge-diflracted 
wave. A complete discussion of the extension of ray methods to the geo- 
metrical theory of diflraction is beyond the scope of this book. However, we 
shall briefly describe one example of this theory. 

DIFFRACTION BY AN EDGE 

The introduction of the geometrical theory of diffraction by J. B. Keller 
[I9581 and the subsequent development of this method by him and his 
associates is one of the triumphs of ray methods. We shall qualitatively 
describe this theory here in the context of the problem of diffraction by an 
edge. Thus, let us suppose that there is a boundary surface S with an edge E. 
We suppose that the surface S gives rise to a reflected wave and a diffracted 
wave emanating from the edge. Thus, we require ray data for the family of 
rays emanating from the edge. We suppose that the diffracted wave also has 
a representation of the form (8.2.2), namely, 

(8.3.49 j 
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We shall discuss only the determination of the initial data for the phase 
and the leading order coefficient A:. Let us suppose that the edge is defined by 

x = x ( y 2 ) ,  x on E. (8.3.50) 

We require that the phases of the incident and diffracted waves agree along 
the edge. Thus, 

zD(x(yZ)) = TI(x(y2))' (8.3.51) 

By differentiating this equation with respect to y,, we find that 

This result is the analog of (8.3.15). That is, the projection of Vz, on the 
tangent to the edge is determined by differentiation of the ray data for zD 
itself. Since the total magnitude of VT, is also known, p ( x ( y 2 ) ) ,  this condition 
also determines the initial angle that the diffracted rays must make with the 
tangent to the edge. Thus, let us define 8 as the angle that the incident ray 
makes with the edge, 

cos B(y,)  = (Vz,.i)/p, x on E ;  (8.3.53) 

then the diffracted rays satisfy the same equality. Indeed, as with the line 
source problem, there will be a whole family of such diffracted rays making a 
cone around the tangent. See Fig. 8.7. In that figure, we have also introduced 

(i) the normal A(y,) to the surface S at each point of the edge, 
(ii) the vector x x a, which together with x and B makes a right-handed 

vector triad at x(y2), 
(iii) 4, for which # + is the azimuthal angle of the incident ray in the 

plane of il and k x $, and 
(iv) y1 , which is the azimuthal angle labeling the diffracted rays. 

Using the discussion of the line source as a guide, we introduce the magni- 
tude of the normal component of Vz, as a new variable; thus, we define 

4&2) = ( V T ,  - X(X*VT,)I 

= JP'(x(Y,)) - [Vz,(x(Yz)) * x ( y 2 ) J 2  

= P(X(Y2 1) sin Q(Yz ) (8.3.54) 

and set 

VT,  - x(x * V,) = qo(yz)[h cos y1 + x x B sin y,]. (8.3.55) 

The analysis then proceeds as in the problem for the line source earlier. 
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Fig. 8.7. The cone of diffracted rays. 

In fact, we obtain an answer for A: of the same form as (8.3.21). Now we 
make the assumption that the constant C(y,, y 2 )  is proportional to the 
incident wave. More precisely, let us rewrite the result (8.3.21) in the form 

with D ( y , ,  y z )  a diffraction coefficient to be determined. 
The diffraction coefficient is assumed to depend on the relative angle of 

incidence 8 between the incident rays and the edge and on the direction of 
propagation away from the edge determined by 9 and yl. Thus, D is indeed 
a function of y l  and y 2 .  

As in the previous examples, the way to determine D is to consider the 
problem locally. Then, we might contemplate solving a problem in which 
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the variables of the general problem are replaced by the constants of the 
local problem. Let us consider this approach to the problem of scattering 
in an inhomogeneous medium by a surface S on which the total field satisfies 
either the homogeneous Dirichlet boundary condition (u = 0) or the homo- 
geneous Neumann boundary condition (dujdn = 0). The corresponding 
local problem would then be scattering of a plane wave by a semi-infinite 
plane on which the same boundary condition is satisfied. This is the Sommer- 
feld problem [Sommerfeld, 19641, which admits a closed form solution from 
which we can determine the reflected and diffracted waves asymptotically. 
We leave it to the exercises to determine the ray solution for this problem. 
When the solution is compared to Sommerfeld’s, we can conclude for this 
type of problem that 

D(yl, y z )  = -e in’4[~e~ i(4 - y l )  f csc $(4 + y l ) ]  (8.3.57) 

for the Dirichlet ( +) or Neumann ( - )  boundary condition. Also, 

p D =  -4. (8.3.58) 

We remark that the diffraction coefficient becomes unbounded when 
y1 -P 4 + n or -4.  The former angle defines the shadow boundary of the 
incident wave, while the latter defines the shadow boundary of the reflected 
wave. In these directions, the exact solution is well behaved, but the de- 
composition into the incident, reflected, and diffracted waves of geometrical 
optics is incorrect. The singular behavior of the diffraction coefficient is one 
manifestation of this invalidity. 

In regions such as this, it is necessary to derive more exotic asymptotic 
expansions with respect to one large parameter (say, dimensionless fre- 
quency) that remains valid unijioforrnly in a second parameter (say, y1 - 4 )  
that is near a critical value, such as n. This is a whole other area of current 
and ongoing research, both as regards ray methods and as regards other 
asymptotic expansion techniques. In particular, uniform asymptotic ex- 
pansions for shadow boundaries of edge diffracted waves, as well as for 
many other cases of interest; have been derived. 

Exercises 

8.17 (a) Given the data (8.3.2) under the assumption of constant p, use 
(8.2.9) to find the rays for the conoidal solution to the eikonal equation, use 
(8.2.29) to determine J ,  and verify (8.3.7). 

8.18 Verify (8.3.44). 
8.19 (a) Verify (8.3.46)-(8.3.48). 

(b) Repeat (a) for the data (8.3.14) and confirm (8.3.20). 
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(b) Show that the higher-order reflection and transmission coefficients 
corresponding to (8.3.46)-(8.3.48) are given by 

Here R and T are defined by (8.3.47) and (8.3.48), respectively. 
8.20 The purpose of this problem is to provide some practice with the 
development of a ray solution to a problem with diffraction phenomena. 
The problem to be considered is exactly the canonical problem from which 
the diffraction coefficient (8.3.57) is derived. Thus, let us consider the problem 
of a plane wave 

u,(x; w)  = exp( - im(x sin 8 sin 4 + y cos 8 - z sin 6 cos Cp}/c) 

incident from the region z < 0 on the half plane z = 0, x 2 0, on which u 
satisfies the homogeneous Dirichlet boundary condition u = 0. 

Show that the continuation of the incident rays to the region z > 0 
has a shadow boundary that is the plane through x = 0 making an angle 4 
with the z axis. 

(b) Find the reflected wave and show that it has a shadow boundary 
that makes an angle a - 4 with the z axis. 

(c) Find the diffracted wave by using the diffraction coefficient (8.3.57) 
and by using (8.3.58). Verify that the diffraction coefficient becomes unde- 
fined on the two shadow boundaries determined in (a) and (b). 
8.21 Consider now the problem of diffraction by an edge of the wave 
produced by a point source. Use the coordinate system of Fig. 8.8. 

(a) 

(a) Show that 

T,(o, yl, y 2 )  = ~ J H ~  secZ 4 + y : ,  

The parameter y 2  is as defined in Fig. 8.7. 
(b) 

x = 0, y = y , ,  z = 0. 

Define p z o  by (8.3.15) and qo by (8.3.16). Show that 

J(4 = I1 - (4bPZ0/40) + P b * 4 l ~ q 3  

4 = D(Y, 1 Y 2 ) / 1 6 X % & K  

(c) Show that back at the source point (backscattered signal), 

and that 

uD - (l/&)A~eZimrpiC, 
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5 I 

t 
Fig. 8.8. Coordinate system for Exercise 8.21 

with re the normal distance from the edge to the observation point as shown 
in Fig. 8.8: re = Jm. 

8.4 THE KIRCHHOFF APPROXIMATION 

We consider in this section another high-frequency approximation for 
the solution of the Helmholtz equation for a class of scattering problems. 
We shall start from the Kirchhoff integral equation (6.4.14) for the solution 
to a scattering problem and make certain simplifying approximations in the 
integrand to turn that equation into a representation for the scattered field. 
Those simplifying assumptions are based on insights developed from the 
asymptotic analysis of exact solutions, such as in Section 8.1, and on other 
approximate solution techniques, such as the ray methods of Sections 8.2 
and 8.3. 

Originally, this approximation technique was applied to the field scattered 
by an aperture in a plane screen or its complement, the disk. The names of 
Rayleigh, Sommerfeld, Fresnel, and Huygens, among others, are associated 
with various refinements and alternatives to the approximation attributed 
to Kirchhoff. Strictly speaking, we are neither considering the problem that 
Kirchhoff considered nor making the approximation in the same form as 
he did. However, we refer to the result here as the Kirchhoff approximation 
in recognition of his fundamental role in its development. The distinctions 
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between the various refinements can be found in Goodman 119681, Kuhn 
and Alhilali [1977], and Wolf and Marchand [1964], among others. 

To begin, let us suppose that we have a scattering problem in a homo- 
geneous medium (constant c) in which a wave is incident on a single, convex 
opaque scatterer with boundary surface denoted by B and Dirichlet or 
Neumann boundary condition on B. We shall represent the total field in 
terms of its values on the scattering surface by (6.4.14), with one change in 
the representation. In that formula, the normal derivative was a directional 
derivative directed out of the domain of the solution and therefore into the 
scatterer. Here we shall take the normal direction as the direction out of the 
scatterer and therefore into the domain of the wave field of interest. This 
change in interpretation only causes a change in sign in the surface integral 
in (6.4.14). Hence, we represent the total field by 

with G(x; 5) a Green’s function and 9 the domain exterior to B. We have 
suppressed the w dependence in this representation but shall reintroduce it 
later in the discussion. 

The incident wave is the response to the source in the absence of the scat- 
terer. Let us choose the free-space Green’s function (6.3.24), with r = Ix - 51. 
In this case, the incident wave is given by 

u,(O = - G(x; 5)f(x) d V  (8.4.2) 

We remark that u,( t )  and G(x;Q both have sources that are zero in the 
interior of the scatterer B, and therefore we conclude from (6.1 .lo) that 

I 
(8.4.3) 

Let us now set 

and use (8.4.2) and (8.4.3) in (8.4.1) to conclude that 

Up to this point, everything that we have done has been exact. We have 
obtained an integral equation that relates the scattered field to its values on 
the scattering surface. A Dirichlet or Neumann boundary condition on B 
would not suffice to give both of these boundary values directly, but only 
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allow us to  derive an integral equation for the determination of the remaining 
boundary values (Exercise 6.10, for example) and with both boundary values 
in hand, to recast (8.4.5) as a solution formula for u&). 

Motivated by our experience with plane waves, geometrical optics. and 
ray methods, we propose to proceed now in another manner. We shall 
consider in particular the backscatter problem in which the source is a point 
source located at the same point 6 at which we seek the solution. In par- 
ticular, then, when the time strucutre of the source is neglected, the incident 
wave is just the Green’s function itself, 

UI(X) = G(x; 5). (8.4.6) 

In the high-frequency limit, we think of this incident wave as illuminating 
a portion of B, which we shall denote by L, while leaving dark the remaining 
part of B, which we denote by D. See Fig. 8.9. The boundary between L and 
D on B is the curve along which the rays from the source point are tangent 
to B.  Motivated by our ray theory, we introduce the following boundary 
values for us(x) : 

(8.4.7) 
x on D. 

In this equation, R is given by the reflection coefficient 

R = - 1 

R = l  (Neumann boundary condition). 

(Dirichlet boundary condition), 
(8.4.8) 

We use (8.4.7) and (8.4.6) in (8.4.5) to obtain the integral representation 
of the scattered field 

u&) = J R [G2(x; 41 d S .  
L an 

(8.4.9) 

Fig. 8.9. Light (L) and dark (D) regions on the scatterer B. 
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In this equation and in the remainder of this section, equality should be 
taken in context to mean approximately equal in some not completely 
defined context. When we introduce the explicit form of the Green’s function 
(6.3.24) into (8.4.9), we find that 

r 
r dS, r = x - 6, r = Irl, 3 = -. (8.4.10) 

This approximate field representation is the main consequence of the 
Kirchhoff approximation (8.4.7). In practice, this result is used with a more 
general reflection coefficient deduced from a ray theoretic analysis of the 
particular scattering problem at hand. For example, suppose that the interior 
of B were another medium and that u and its normal derivative were re- 
quired to be continuous across B. Then we might think of using for R the 
reflection coefficient given by the second expression in (8.3.47). Clearly, 
then, the backscattered field would, at best, represent the response due to 
the initial scattering from the front lighted part of B. We remark that the 
result (8.3.47) simplifies significantly for this case. The calculation is left to 
the exercises. 

It has been shown that the boundary values for both u and du/& imposed 
by (8.4.7) are inconsistent. It is known that prescribing either of these quanti- 
ties suffices to determine the solution completely, so that in prescribing both 
we are overdetermining the solution. Therefore, our result is at best approxi- 
mate in some sense. There is much discussion of this in the literature. Some 
references (Baker and Copson [ 19531 and Wolf and Marchand [ 19641) are 
given at the end of the chapter, both for this problem and for related scatter- 
ing problems to  which the Kirchhoff approximation has been applied. 

In the form (8.4.9), we might think to apply this approximation to the 
case of an inhoinogeneous medium. In this case, we use for G(x; 6) the ray 
method solution to  the point source problem discussed in the preceding 
section. The light region L is then defined as the region lighted by the (no 
longer straight) rays of the conoidal problem for the eikonal equation. 

As another generalization, we might consider the case in which the source 
and receiver are separated, say, with one of them at q. Then, in (8.4.9), the 
quadratic G*(X; 6 )  would be replaced by G(x; S)G(q; x), and the lighted 
region L would now be defined as the intersection of the lighted regions 
from the two points 6 and q. This generalization becohes seriously inaccurate 
as the angle of separation between source and receiver increases. 

The Kirchhoff approximation has been successfully applied to surfaces 
with edges. Successful means that the approximate solution not only pro- 
duces the primary response-the reflected wave-accurately, but also de- 
scribes the edge diffracted field adequately. We shall see these separate 
components of the field arise from further asymptotic analysis of the repre- 
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sentation (8.4.10) in the last part of this section, which discusses diffraction 
by a straight edge. 

THE FAR-FIELD APPROXIMATION 

It is possible to further simplify the representation (8.4.10) when the 
distance from L to the observation point 4 is large compared to the dimen- 
sions of the scatterer itself. In particular, we can use the expansions (6.4.9) 
and (6.4.10) in the phase and amplitude of the integrand in (8.4.10). In that 
expansion, we assume that the origin of the coordinate system is nearby or 
inside the scatterer B. 

We shall use two terms of (6.4.9) in the phase and one term of (6.4.10) in 
the amplitude. In this manner, we obtain the result 

(8.4.1 1) 

where 

The factor S ( S ;  o) is called the far-field (high-frequency) phase and range- 
normalized scattering umplitude. We note that in this solution representation, 
the factor is multiplied by the square of the Green’s function with argument 
measuring the range from the source/receiver point to the origin of the 
coordinate system. The fact that it depends only on 5 and o results from the 
fact that, in this limit, R is a t  worst a function of the former of these, and 
hence the entire integrand only depends on these two arguments and x, over 
which the integral is to be calculated. 

It is the factor S(t; w )  that distinguishes the far-field scattering patterns 
of different shapes and reflection coefficients from one another. Had we used 
a plane wave of unit amplitude as the incident wave, the multiplier of S(t; w) 
would have been only one factor of the Green’s function. We leave the 
verification of this to the exercises. 

STATIONARY PHASE ANALYSIS 

Let us now return to the representation (8.4.10) and apply the method of 
stationary phase to this integral. In order to do this, let us introduce a 
parameterization of the surface L in terms of two parameters ol and c2 .  Thus, 

x = x(ol, 02) ,  dS = Jg do, do,, 

dx dx (8.4.13) 
g = det[g,], g .  =-a- , j ,  k = 1, 2. 

Jk doj do, 
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The matrix [g,] is a symmetric matrix of the elements of the first funda- 
mental form of differential geometry. 

In (8.4.10), we use 2w/c as the large parameter. As in previous discussions, 
we consider w to be positive and obtain the results for w negative by observ- 
ing that the integral in (8.4.10) is transformed into its complex conjugate 
when the sign of w is changed. Alternatively, we could use Iwl in defining the 
large parameter and introduce a factor of sign w in the phase to be analyzed. 
We choose the former method. 

The phase of (8.4.10) whose stationary points we seek is 

@ @ I ,  02) = Ix(a,, 0,) - 51. 
The first derivatives of this phase function are 

The condition that this phase be stationary, 

(8.4.14) 

(8.4.15) 

(8.4.16) 

states that the point x must be determined so that the vector x - 5 is ortha- 
gonal to two (noncolinear) tangents to the surface L. Thus, at the stationary 
point, this vector must lie along the normal vector A. For this point, the 
direction of incidence and reflection make the same angle with the normal 
(zero), and, hence, this is the point of ordinary or specular reflection from L. 
For a convex scatterer, such a point, and only one such, always exists. 
Therefore, we shall proceed as though that point has been determined. In 
particular, at that point, 

x - 5 = -1x - CIA = -r,A; (8.4.17) 

that is, the vectors x - 5 and A are oppositely directed. We have also intro- 
duced the notation r, for the (normal) distance from the stationary point to 
the observation point. 

As in (2.8.5), we denote by A,, the elements of the Hessian matrix for the 
phase (D evaluated at the stationary point. In calculating this matrix from 
(8.4.15), we will exploit the condition of stationarity immediately to neglect 
the term in the differentiation that arises from differentiating l/lx - 51. 
Thus, we find that 

I ax ax a 2 X  
A .  =--.-- A*----- , j, k = 1 ,  2. (8.4.18) 

Jk rn auj auk auj aok 
We remark that the dot product in the first term here is again the set of 
elements of the first fundamental form of differential geometry. In fact, we 
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can write the second term here in terms of the elements of the second funda- 
mental form of differential geometry as 

(8.4.19) 

The minus sign in this definition comes from the fact that the normal direc- 
tion is opposite to the one usually taken in the definition of these coefficients. 
The matrix [b jk ]  is a symmetric matrix when the surface is smooth enough, 
which we assume. 

Now, we rewrite (8.4.18) as 

A .  i k  = F i g j k  + b,, j ,  k = 1, 2. (8.4.20) 

In order to interpret this result, we need some further facts from differential 
geometry. Also, to simplify our analysis, we shall specialize the (ol, 6,) co- 
ordinate system in a manner that will not affect our final result but that will 
make the intermediary computation easier. 

Consider all of the curves on L formed by passing planes through the 
surface L, all of which contain the normal vector A. For each of these, con- 
sider the curvature K, defined by 

ld2x(s)/ds21 = Ic, (8.4.21) 

where s is the arc-length parameterization of the curve. The reciprocal of 
the curvature p = 1/u defines the radius of curvature, which is the radius of 
a circle making second-order contact with the curve in question. The vector 
d2x/ds2, with initial point on L, has terminal point at the center of the circle 
with second-order contact. That center is called the center of curvature. 
Except for planes and spheres, the set of curvatures must have a minimum 
and a maximum. These are called the principal curvatures. Their reciprocals 
are called the principal radii of curvature. The directions of the tangents to 
the curves in L along which the curvatures take on these extreme values are 
called the principal directions at the point in question. These directions are 
orthogonal. 

Let us suppose now that we have chosen c1 and o2 so that they are co- 
ordinates along the principal directions at the stationary point and further 
that they are arc-length variables along these curves, a t  least at the stationary 
point. Then we can show that both the elements g l ,  = 0 and b,, = 0 while 
gi l  = 1 andg,, = 1. Finally, in thisvery specialcoordinate system, b,  = l/pj, 
j = 1,2, where the pj’s are the principal radii of curvature. For this simplifi- 
cation, the matrix of elements Ajk is diagonal, 

and its signature is + 2 because both eigenvalues are positive. 
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Had we not specialized the coordinate system, an equivalent result would 
have been obtained in the sense that the signature of the matrix would still 
be + 2  and 

(8.4.23) 

In this equation, g is as defined in (8.4.13). Thus, the quotient a is the 
same for the general coordinate system as it is for the specific coordinate 
system and, as we shall see, leads to an asymptotic expansion that is in- 
dependent of the parameterization of the surface L. 

We now have all of the information we need to  write the leading term of 
the asymptotic expansion as given by (2.8.23). The result is 

(8.4.24) 

We have used the subscript n on R to note that for a more general reflection 
coefficient, such as the result derived in Exercise 8.22, the reflection co- 
efficient at normal incidence is the value to appear in the asymptotic result 
here. 

Let us now provide some interpretation of this result. First, let us con- 
sider the limit as we allow the principal radii of curvature to approach 
infinity. In this case, the surface L becomes flat, and the square root appear- 
ing in (8.4.24) approaches unity. In this limit, the solution formula reduces to 

us(() - (Rn/8nr,)e2iw‘n’c. (8.4.25) 

The functions 1/4nrn and r , /c  are the geometrical optics amplitude and 
phase of the incident wave at the reflector. The function R ,  is the reflection 
coefficient in the backscatter direction. The additional phase r,/c accounts 
for propagation back from the scatterer to the observation point. The ratio 
2rn/rn = 2 is just the square root of the ratio of the Jacobians of the reflected 
wave evaluated at the observation point and on the scattering surface, re- 
spectively, and provides the extra factor of 2 in the denominator. Thus, in 
the absence of curvature of the reflecting surface, (8.4.25) is the reflected 
wave in the backscatter direction. Therefore, we conclude that the quantity 
under the square root appearing in (8.4.24) must be the ratio of Jacobians 
that accounts for the effect of the curvature of the scatterer. 

To confirm that this is indeed the case, we exploit the interpretation of the 
ratio of Jacobians as a ratio of cross-sectional areas. In Fig. 8.10, we depict 
a differential surface element that has the same principal curvatures as L 
has at the stationary point. A plane through the normal to the surface in the 
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Fig. 8.10. Differential surface elements. 

first principal direction cuts the surface in a differential element of a circle 
of radius p l ,  while in the orthogonal direction, the curve is a circle of radius 
pz . If the differential half angles of these surfaces are do, and do,, as shown, 
then the differential surface element at P is just 4p ,pz  d o ,  do,. Performing 
the same calculation at  the point Q in the figure requires only that we replace 
p 1  and pz by p1 + r ,  and pz + r,. Thus, the ratio of these quantities, which 
is the ratio under the square root in (8.4.24), is the ratio of cross-sectional 
areas in the normal direction for a family of rays that leaves this surface 
normally over the differential surface element. It is another matter entirely 
to confirm that the second-order contact of this surface with the surface L 
is sufficient to  ensure that the same result holds true for the local family of 
specular rays on L when the central ray, at  least, is normal to the surface 
and the incident rays introduce no spreading factor. We shall not discuss 
this last step here. 
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TIME DOMAIN RESPONSE 

Let us suppose now that the original point source had in the time domain 
a time dependence F ( t ) ,  with Fourier transform f ( w ) .  Let us suppose further 
that for the bandwidth of frequencies in f(o), the asymptotics presented here 
are valid. This multiplier of the source term would then merely become a 
multiplier of all of the fields of interest and therefore would become a multi- 
plier of solution formula (8.4.24) as well. 

Let us now consider the inverse Fourier transform of our result. For this 
purpose, we reintroduce w in u, (I&) = %(g;w)) and take the inverse 
Fourier transform to find that 

that is, the leading order asymptotic return is the time signal shifted by the 
two-way travel time-to the scatterer and back-scaled by factors that 
account for the geometrical spreading of the point source and the geo- 
metrical spreading due to the curvature of the scatterer at the specular 
reflection point. 

A particular case of interest is that in which the source F is a bund-limited 
Dirac delta function. That is, in some range of frequencies in which the 
asymptotics is valid, f ( w )  is nearly equal to unity. This same band-limited 
delta function is reproduced at a delayed time that is the minimal travel time 
to the scatterer. 

The simplest example of a band-limited delta function is provided by 
setting 

(8.4.27) 1, 
0, otherwise. 

oo = 2.f0 I Jw( I w1 = 271j-1, 

In this case, 

F(t) = [sin 27cj',t - sin 2nfot]/nt 

= 2Isin[.n(f, - f*)fl C O S C ~ ( f 1  + fO)tl)/.t. (8.4.28) 

From the first form, we see that F ( t )  is a difference of functions of the type 
(2.1.3) with n replaced by 2f, or 2f0. If the latter of these were zero and fl 
in the former large enough, we would expect from the discussion of Chapter 
2 that F ( t )  was indeed a useful representation of the delta function. However, 
f o  cannot be zero and the asymptotic analysis still be valid. For values of 
fo large enough for the asymptotics to be valid, (8.4.28) still can define a 
Dirac delta function with sufficient accuracy for many practical problems. 
We see from the second representation that 

(i) F ( t )  has a maximum at t = 0 equal to 2[fl - fO]; 



8.4 The Kirchhoff Approximation 291 

(ii) its zeros nearest the origin are at t = f 1/[2(f, + fO)]; the next 
pair are at k t ,  , where 

t ,  = minCl/(f, - f o h  3/[2(f, + f o l k  
(iii) beyond the latter pair of points, (F(t)I  I (2/7ct1), 

and IF(t)/F(O)I I 7c. The quotient ( f l  - fo) / ( f l  + f b ) ,  when multiplied by 
100, is called the percentage bandwidth. In a typical seismic application, the 
range of frequencies might be 6-24 Hz, in which case the percentage band- 
width is 60% and the quotient of function values is approximately 2. This 
extremely conservative estimate suggests that the center and shape of this 
band-limited Dirac delta function is sufficiently precise to characterize a 
delta function. As confirmation, see Fig. 8.11, which is a depiction of the 
function in (8.4.28) for the case of 60% bandwidth. 

SCATTERERS OF INFINITE EXTENT 

We shall now consider the extension of the result from the preceding 
discussion to the case in which the reflector is of infinite extent and separates 
two regions of constant but different velocities from one another. We shall 
assume that both u and its normal derivative must be continuous across this 
reflecting surface. Let us suppose that again we have a point source situated 
on the side of the reflector where the velocity is given by c o .  On the other 
side of the reflector, we assume that the velocity is cl. We shall again consider 
only the backscatter problem in which the source point and observation 
point are the same. 

* b  24R 

t 
Fig. 8.11. Band-limited Dirac delta function, 60% bandwidth. (Program by Steven J. 

Bleistein.) 
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As regards surface shape, we are considering a generalization of the 
problem of Section 8.1. In this generalization, the planar reflector is replaced 
by an arbitrary smooth surface flat enough so that within some angular 
aperture about the normal to the surface that passes through the observation 
point, the surface has no shadows; that is, the rays from the source propagat- 
ing toward the surface should touch every point of the surface in some 
finite aperture. 

The total field is assumed to satisfy a Sommerfeld radiation condition 
(6.4.3), with c having its appropriate value on each side of the interface. 

We shall again begin a Kirchhoff integral equation (8.4.1), with the 
domain 9 as shown in Fig. 8.12. The surface integral over the surface of the 
spherical portion of the boundary approaches zero with increasing radius 
of the cap by the Sommerfeld radiation condition. (See the discussion in 
Section 6.4.) Thus, in the surface integral, we are left in the limit with the 
integral over the reflector itself to consider. 

We again choose G(x; 6) as the free-space Green's function with the 
propagation speed of the upper domain. We define ul(Q as in (8.4.2). The 
result (8.4.3) must hold, but with different justification. Close a finite part 
of the reflector with a spherical cap in the lower half space. In the interior 
of this domain, neither u,(6) nor G(x ; 5) has any singularity when 6 is in the 
upper half space. Consequently, each of these functions satisfies the homo- 
geneous Helmholtz equation in this lower domain but with propagation 
speed c,,. Therefore, from (6.1.10), the integral over the boundary surface of 
this spherical cap in the lower half space must be zero, since ~'E"u,(x) = 
9 G ( x ;  5)  = 0 inside of this domain. The integral over the spherical part is 
zero in the limit of increasing radius, because both functions also satisfy 
the appropriate Sommerfeld radiation condition. Consequently, the integral 
over the reflector itself must be zero. 

Therefore, with us(6)  defined by (8.4.4), we again obtain the result (8.4.5). 
For this problem, we disregard the possible shadow zones, thus taking L to 
be all of B, and apply the first set of approximations over the entire surface 
B, with R the geometrical optics reflection coefficient. The result (8.4.10) 
again obtains for the case of constant propagation speed, although again the 

5 

Fig. 8.12. Domain of integration for Kirchhoff integral. 
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form (8.4.9) is used in inhomogeneous media with G(x; 5 )  the ray theory 
Green’s function. 

We cannot use the far-field approximation that leads to (8.4.11) and 
(8.4.12), since the transverse length scales of the reflector do not allow the 
approximations (6.4.9) and (6.4.10). 

The asymptotic analysis described for the convex scatterer can proceed 
here in exactly the same way. However, one major difference occurs because 
we have not introduced any analog of convexity here. As a result of this 
difference, the centers of curvature need not be on the opposite side of the 
reflector from the source/receiver point. Let us define the parameters p 1  

(8.4.29) 

The parameters in the surface (a,, a,) are again taken to be arc-length 
variables in the principal directions. Thus, pj  = + I  when the center of 
curvature in the j th  direction is on the opposite side of the reflector from the 
observation point, and p j  = - 1 when the center of curvature and the 
observation point are on the same side of the reflector. In the former case, 
the principal curve is convex downward, or anticlinal; in the latter case, the 
curve is convex upward, or synclinal. 

In our earlier discussion of the matrix of second derivatives, we must now 
replace (8.4.22) by 

Ajk = d j k [ ( l / r , , )  + (~ j /~ j ) l j  j ,  k = 1-2-  (8.4.30) 

and we must replace (8.4.23) by 

(8.4.3 1) 

sgn[’jJ = P = Sign[p, + ~ 1 r J  + sign[p, + ~2rn l .  
We must now use this modification in the stationary phase formula 

(2.8.23) to obtain the asymptotic expansion of the integral (8.4.10). We must 
also take care here to account for the sign of o. As noted earlier, this can be 
done by first stating the result for o positive and then taking the complex 
conjugate of that result for o negative. [In the case of the convex body, this 
was explicitly true for the result (8.4.24), and no special accommodation for 
negative w was necessary.] The result is 
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When pl and p 2  are positive, this formula is the same as (8.4.24). Now 
let us suppose that one of these parameters is negative, say, p1. In this case, 
for I ,  < p l ,  the factor p1  - r ,  decreases toward zero as r, increases toward 
p l .  The decrease of this factor causes the amplitude of the signal u&) to 
increase. 

This increase in amplitude can be related to the nature of the back- 
scattered rays for this case. At the stationary point, the reflecting surface 
must be saddlelike, as shown in Fig. 8.13. The rays that reflect from points 
along the principal direction associated with p1 must converge as they 
propagate back toward 5, while rays that reflect from the principal direction 
associated with p z  diverge as they propagate upward. At the center of 
curvature, P I  in the figure, the cross-sectional area of the ray tube is equal 
to zero (as it is all along the caustic that touches PI). The asymptotic ex- 
pansion we have derived actually breaks down at this point. However, 
"sufficiently far away" from this point, where the method is valid, the cross- 
sectional area of the ray tube is nonetheless progressively decreasing with 
increasing r,  . Thus, from our  ray method discussion, especially (8.2.1 I ) ,  we 
conclude that the amplitude must increase as r, approaches pl  from below. 

The phase for this case is also worthy of attention. For p1 - r, > 0 (that 
is, for the observation point nearer the reflector than the center of curvature), 
p = 2 and the phase function is unchanged from what it was for the case 
of a convex scatterer. In particular, then, in this case, the discussion of the 
signal in the time domain is as earlier. 

Let us suppose that p1 - r,  < 0. Now the amplitude increases again with 
increasing r,  ; the rays are diverging with increasing Y, . Let us consider the 
phase. We note that the eigenvalues now have opposite sign. Therefore, 
p = 0 and the total phase is given by 2iorJc  - i(sign w)n/2, and this is the 

Fig. 8.13. A saddlelike reflection point. 
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only w dependence of the result (8.4.32). Thus, after passing through the 
caustic, the phase must be adjusted by a factor -(sign w)7c/2. This phase 
shift phenomenon is well known and has been observed experimentally. 

Of all time dependences of the source, it is easiest to see the effect of this 
phase shift on the band-limited Dirac delta function source. Therefore, let 
us consider the source (8.4.26). Now the time signal will not be the inverse 
Fourier transform of unity but the inverse Fourier transform of the function 

This transform was discussed for full bandwidth in Section 2.3. In particular, 
the results are given by (2.3.9) if we identify x with w and t with k. We must 
also multiply by - i .  Thus, the band-limited delta function source will be 
imaged as a band-limited doublet - 2/t .  

The band-limited doublet that corresponds to the band-limited delta 
function (8.4.28) is given by 

F,( t )  = [cos 2nf1t  - cos 2nfot]/nt.  (8.4.33) 

In Fig. 8.14, we depict this doublet with the same 60% bandwidth as we used 
for our band-limited delta function in Fig. 8.1 1. When r, is above the center 
of curvature, we say that the reflector has a buried focus. In seismological 
applications, the focus is indeed buried ! For more realistic sources, analysis 
of the effect of a buried focus on the time trace is by no means as simple as 
it is for the delta function. This can cause great confusion in interpretation 
of returns as regards the nature of the reflecting mechanism that produced 
them. 

We have yet another case to consider, namely, that for which the surface 
is completely synclinal, or convex upward, so that both centers of curvature 
are above the reflector. In this case, pl = p2 = - 1.  Now if r ,  is below both 

Fig. 8.14. Band-limited doublet, 60% bandwidth. (Program by Steven J. Bleistein.) 
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centers of curvature again, in (8.4.31), p = 1 and our discussion is much like 
that for the convex case as regards the source signature except that as in the 
saddle case, the amplitude increases with increasing r, ,  now with both 
factors in the square root in (8.4.32) decreasing with increasing rn .  

For r, between the two centers of curvature, one of the terms pl or p2 
changes sign and the phase shift -(sign w)n/2 is introduced into the asymp- 
totic solution as earlier. Thus, for this configuration again, a delta function 
source will produce a doublet time signature in the reflected wave. 

Finally, we consider the new case in whi:;h r,  is above both centers of 
curvature. Now both p1 and p 2  are equal to - 1 and in (8.4.31), p = - 2 .  The 
total phase in (8.4.32) is now 2wrJc - 7c sign a. The latter term only intro- 
duces a multiplication by - 1 for either choice of sgn w. Thus, the formula 
for the backscattered field above both centers of curvature is analytically 
just the negative of the result obtained for the observation point below both 
centers of curvature. 

This result again can be a source of great confusion. If we were to use the 
sign of the reflection strength alone to draw a conclusion about the reflection 
properties of the interface, we would likely draw the wrong conclusion. 
It is necessary to be aware of the two-dimensional geometry of the reflector 
in order to draw a correct conclusion as regards the increase or decrease in 
velocity across the interface. 

DIFFRACTION BY A STRAIGHT EDGE 

We shall close this section with a discussion of a simple problem with a 
straight edge. In fact, we shall consider the simplest of such problems. We 
shall assume that the reflecting surface is the half plane 

~ 2 0 ,  - C O < Y < C O ,  z = H ,  (8.4.34) 

and that observations are to be made on the surface t3 = 0. Furthermore, 
we shall consider only the Dirichlet or Neumann problem, so that R = k 1, 
as defined by (8.4.8). We shall assume that the result (8.4.10) is valid and 
proceed with asymptotic analysis as previously. We use for parameters on 
the surface 

C T ~  = X ,  C T ~  = y ,  g 1, dS = d x d y .  (8.4.35) 

The conditions of stationarity (8.4.16) now require that 

x = tl, y = t 2 .  (8.4.36) 

It is necessary that 5 ,  2 0 for there to be a stationary point, since x 2 0 
on the domain of integration. That is, for a flat half plane, the normal direc- 
tion is vertical, and a reflected signal is observed only over the half plane 
itself. 
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We shall proceed with 5 ,  > 0, so that the stationary point is an interior 
point of the domain of integration. In this case, we evaluate the constituents 
of the integrand at the stationary point as 

@ = rn = H, Ajk = d,,/r,, j ,  k = 1, 2, sgn[Aj,] = 2.  (8.4.37) 

Now we can apply the stationary phase formula (2.8.23) to the integral 
(8.4.10) to obtain the result 

us@ - Re'""lc /8xH. (8.4.38) 

This result can be seen to agree with (8.4.24) in the special case of a flat 
horizontal reflector. 

< 0. We remark that the condition of sta- 
tionarity in the variable y = g 2  will still be satisfied. Therefore, let us view 
(8.4.10) as an interated integral and proceed to apply the method of sta- 
tionary phase in the second variable. We begin by writing the phase ex- 
plicitly in terms of x and y as 

@ = r = J(x - ( , ) 2  + (y - ( J 2  + H 2 ,  

Now let us suppose that 

(8.4.39) 

with derivatives 

d@ y - t 2  d2@ 1 ( y  - T,)' 
dy r ' d 2 y  r r3 

- - -~ -~ 

The stationary point is at y = t2 ,  in which case, 

(8.4.40) 

@ = ro = J(x - (,)' + H 2 ,  d2@/dZy = l/ro, (8.4.41) 

and we can apply the stationary phase formula (2.7.18) to the integral (8.4.10). 
The result is 

In this result, we have explicitly evaluated the dot product A - P, used the 
fact that R is a constant to take it outside of the integral sign, and accounted 
for negative to as well as positive w. 

We know that the phase has no stationary point in x. Therefore, we 
calculate the leading term of the asymptotic expansion by integration by 
parts through using the first term of (2.6.1 1). The result is 

exp(2iorJc - i(sign w)3n/4) 
' (8.4.43) 
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This result should be compared to the result in Exercise 8.21. It does not 
contain the exact diffraction coefficient. The results will agree if we expand 
the result in (8.3.57) for small values of the ratio t , / H ,  which is the offset of 
the observation point from the normal direction. That is, the amplitude of 
this result based on the Kirchhoff approximation will degrade with increas- 
ing offset from the normal direction. We remark that for this backscatter 
example, 

6 = y,, (<JH)  = tan y, - sin yl, D - t'(H/51)e-i("g"")3"'4 . (8.4.44) 

With this factor in place, the two results agree. 
We remark that the result (8.4.43) also provides a second-order effect in 

the region 5 ,  > 0. The result fails in the limit = 0, which is the shadow 
boundary for the reflected wave in this backscatter analysis. Qualitatively, 
we see that the diffracted wave decays algebraically faster than the reflected 
wave (8.4.38) by a factor of I/Jm, in addition to the reciprocal range 
decay of the incident and reflected waves. Consequently, the diffracted wave 
falls off relatively rapidly with increasing offset angle y, . Thus, the preceding 
result deviates from the diffraction result of Section 8.3 in a region in which 
both results are small compared to the reflected wave anyway. 
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Fig. 8.15. Time record for backscatter from half plane. (Prcgram by Sandra Bleistein.) 
[From Bleistein and Cohen, 1982.1 
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In Fig. 8.15, we depict a time record for backscattering by an edge. The 
horizontal coordinate is t,, and the vertical coordinate is increasing time. 
In the region > 0, the backscattered signal is dominated by the reflected 
wave, which occurs at the same time on each time trace. In the region t1 < 0, 
the diffracted wave dominates the signal. This wave is approximately the 
Fourier time transform of the result (8.4.43). The arrival times of the dif- 
fracted wave are seen to fall on the hyperbola given by t = re .  

Exercises 

8.22 (a) 
reflection coefficient (8.3.47) is given by 

R =  

For the incident wave (6.3.24) used in (8.4.10), show that the 

P-la-PI - JP: - p?[i - ( A + ) ~ ]  
p-la-f l  + Jpz, -p2_[1 - 

(b) Verify that S(f; o) defined by (8.4.12) is indeed a function of f and 
o. That is, show that in the far-field limit, the reflection coefficient becomes 

8.23 Use both the Kirchhoff approximation (8.4.7) and the far-field ap- 
proximations (6.4.9) and (6.4.10) in the integral (8.4.5) with the incident wave 
being the plane wave propagating in the direction -0, and obtain the result 

us(k) = eiop’cS(c; 4 / 4 n  P1 

with S ( f ;  w) again defined by (8.4.12). 
8.24 Apply the method of stationary phase in two dimensions to the 
integral S(t; o) in (8.4.12). Show that at the stationary point, the normal 
points in the direction 0 and that 

Here p1 and p z  are the principal radii of curvature at the stationary point, 
and x, is the value of x at the stationary point. 

References 

Baker, B. B., and Copson, E. T. [1953]. “The Mathematical Theory of Huygens Principle,” 

Bleistein, M., and Cohen, J. K. [1982]. The velocity inversion problem-present status, new 
2nd ed. Clarendon Press, Oxford. 

directions, Geophysics 47, 1499- 151 1. 



300 8 Asymptotic Techniques for Direct Scattering Problems 

Brekhovskikh, L. M. [1980]. “Waves in Layered Media,” 2nd ed. Academic Press, New York. 
Cervenp, V., Molotkow, I. A,, and PSenEik, 1. [1977]. “Ray Methods in Seismology.” Univerzita 

Cohen, J. K., and Bleistein, N. [1983]. The influence of out-of-plane surface properties on un- 

Ewing, W. M., Jardetzky, W. S., and Press, F. [1957]. “Elastic Waves in Layered Media.” 

Felsen, L. B., and Marcuvitz, N. [1973]. “Radiation and Scattering of Waves.” Prentice-Hall, 

Goodman, J. W. [1968]. “Introduction to Fourier Optics.” McGraw-Hill, New York. 
Grant, F. S., and West. G. F. [1965]. “Interpretation Theory in Applied Geophysics.” McGraw- 

Hubral, P., and Krey, T. [1980]. “Interval Velocities from Seismic Reflection Time Measure- 

Keller, J. B. [1958]. A geometrical theory of diffraction, in “Calculus of Variations and Its 

Keller. J. B. [1978]. Rays, waves, and asymptotics, BUN. Am. Math. Soc. 84, 727-750. 
Kuhn, M. J., and Alhilali, K. A. [1977]. Weighting factors in the construction and reconstruc- 

tion of acoustical wave fields, Geophysics 42, 1183-1 198. 
Lewis, R. M., and Keller, J .  B. [1964]. Asymptotic Methods for Partial Differential Equations: 

The Reduced Wave Equation and Maxwell’s Equations. Res. Rep. EM-194, Div. Electromag. 
Res., Courant Inst. Math. Sci. New York Univ., New York. 

Pekeris, C. L. 119631. Theory of propagation of explosive sound in shallow water, in “Propaga- 
tion of Sound in the Ocean,” Memoir 27. Geol. SOC. Am., New York. 

Sommerfeld, A. [1964]. “Optics, Lectures on Theoretical Physics,” Vol. 4. Academic Press, 
New York. 

Wait, J. R. [1962]. “Electromagnetic Waves in Stratified Media.” Pergamon. New York. 
Wolf, E., and Marchand, E. W. [1964]. Comparison of the Kirchhoff and Rayleigh-Sommerfeld 

Karlova, Prague, Czechoslovakia. 

migrated time sections. Geophysics 48, 125-132. 

McGraw-Hill, New York. 

Englewood Cliffs, New Jersey. 

Hill, New York. 

ments.” SOC. Explor. Geophysicists, Tulsa, Oklahoma. 

Applications,” pp. 27-52. McGraw-Hill, New York. 

theories of diffraction at an aperture, J .  Opt. SOC. Am.  54, 587-594. 



9 INVERSE METHODS 
FOR REFLECTOR IMAGING 

Inverse problems in the physical and biological sciences are a current 
source of ongoing research in applied mathematics and its related disciplines. 
Mathematically, the objective of inverse methods can be viewed as the 
determination of one or more parameters in the governing equation or 
system of equations of some process. A closely related problem is the deter- 
mination of the size or shape of a scattering domain, which can be viewed as a 
domain with parameters that are different from those in the host medium. In 
this chapter, we shall discuss this subclass of inverse problems in which the 
objective is to describe the shape of a scatterer from a set of experiments 
that measure the backscattered field from a known source. 

We shall show how the shape of a scatterer can be characterized mathe- 
matically. We shall then formulate mathematical problems for the deter- 
mination of the shape junctions and discuss the approximate solutions of 
these equations. 

Delineation of a shape requires distinction between those points that are 
on a surface and those that are not. In one dimension, this would require 
simply the identification of the boundary points of an interval. A point is well 
defined by a Dirac delta function whose support (singularity) is at  that point. 
Thus, in simplest form, shape discrimination requires identification of the 
support of a delta function. 

In physical experiments, the ability to locate a point is limited by the 
bandwidth of the experiment at  hand. In Section 8.4, we described the 
simplest form of a band-limited delta function in (8.4.28) and Fig. 8.1 1. In 
that example, the width of the main lobe of the band-limited delta function 
was T = l/[fl + f O ] .  On the other hand, the peak value of the band- 
limited delta function was max /F(t)I  = 2[ j ’ ,  - f,]. The ratio of these two 
values, or twice the percentage bandwidth, 2 [ f ,  - j o ] / [ f ,  + f,] defines, 

301 
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in some sense, the resolution of the band-limited delta function. The objective 
in experiments, then, is to achieve a percentage bandwidth sufficiently large 
to provide a main lobe of an approximate delta function adequate for the 
discrimination desired. 

In Exercise 2.2, we introduced the singularfunction o f a  surface. It is this 
function that will be the basis of the methods presented here for surface 
imaging. We shall discuss the singular function and a related function, the 
characteristic function, later in this introduction and in the following sections. 
We shall be concerned with the Fourier transforms of these functions, 
especially properties of these transforms for large values of the magnitude of 
the transform vector. We shall develop methods for the determination 
of these functions from backscattered data. It will be seen that these data 
are related to incomplete data about the Fourier transforms of the singular 
or characteristic functions. 

It is important to emphasize that the inverse methods described in this 
chapter represent only one class of methods of current use and interest. They 
are applicable in situations in which a backscattered or near-backscattered 
signal is available. In some important applications, such as imaging human 
tissue, methods that deal with transmitted signals and employ holographic 
imaging techniques would seem to be more important. The difficulty with 
employing backscatter methods is that the x rays used for holograms produce 
weak backscattered signals from human tissue, while at the other end of 
the spectrum, ultrasonic signals do not penetrate human tissue to sufficient 
depth to image the human body. 

On the other hand, acoustic or elastic waves are the signals of choice in 
seismic exploration and many types of nondestructive testing applications. 
The combination of penetration depths and resolution is adequate to the 
task at hand, although it seems to be a general rule that greater penetration 
and higher resolution always hold promise of enhanced useful information. 

9.1 THE SINGULAR FUNCTION AND THE 
CHARACTERISTIC FUNCTION 

THE SINGULAR FUNCTION 

We shall begin by defining again the singular function y(x), x = (x, > x2 > xg ), 
of a smooth surface S .  For each point on S, we introduce the distribution 
~ ( c T ) ,  where CT measures normal distance from S.  We decompose a surface 
with corners, say, a "piecewise smooth" surface, into its smooth constit- 
uents and define y(x )  separately for each of those. We shall assume that the 
surface of interest is finite but not necessarily closed. 
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A more rigorous definition of the singular function is provided by 
defining its effect under integration with test functions. Therefore, let us 
introduce the class of injinitely diferentiable functions that vanish outside a 
finite domain. For f(x) being any such functjon, we require that 

f m  f(x)y(x) d v  = f(x) dS. (9.1 . I )  

That is, the effect of the singular function on a volume integral is to reduce it 
to a surface integral over the support surface of the singular function. 

From the point of view of inverse problems, we can see that the mathematical 
imaging of the surface S amounts to the determination of its singular function. 

-30 1. 

THE CHARACTERISTIC FUNCTION 

domain D. This function T(x) is defined by 
The second function of interest is called the characteristic function of a 

1, x in D, 
0, x not in D. 

q x )  = (9.1.2) 

FOURIER TRANSFORMS 

As suggested in the introduction, we shall be interested in reconstructing 
singular or characteristic functions from information about their Fourier 
transforms. Therefore, let us introduce the two Fourier transforms 

y(k) = y(x)e-ik."dT/ = dS, k = ( k l ,  k , ,  k 3 ) ,  (9.1.3) s, 
and 

ASYMPTOTIC ANALYSIS OF THE SINGULAR FUNCTION 

As stated in the introduction, the singular function is to be identified from 
band-limited data in the Fourier domain, that is, from data in which the 
magnitude of the Fourier transform vector variable is bounded above and 
below. In addition, in practice, the angular range will be limited as well. The 
combination of these effects constitutes a limited aperture in the Fourier 
domain. 

In practice, the magnitude k of the transform vector variable k will be 
proportional to the frequency of some time signal k = 2 I o I / c .  Our interest 
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will be in reconstruction of the singular function from high-frequency data. 
Thus, we shall proceed to study first the high-frequency behavior of the 
singular and characteristic functions and then the Fourier inversion of these 
aperture-limited functions. 

We consider first the singular function and introduce a parameterization 
of the surface S ,  as in (8.4.13). We then rewrite the integral (9.1.3) as 

?(k) = e-ik'(x-')& do, do,, (9.1.5) h 
(9.1.6) 

with g defined by (8.4.13). 
We shall analyze this integral by the method of stationary phase for large 

values of k.  This analysis was carried out in Exercise 8.24 in the context of the 
phase and range normalized scattering amplitude. We repeat that analysis 
here for completeness. The derivatives of the function @(x; &) are 

As in the discussion in Section 8.4, the condition that the first derivatives be 
zero will be satisfied at those points on S where k is colinear or anticolinear 
with the normal vector to S.  Let us assume that there is at least one such 
point. At that stationary point, 

ii = A sign A*& (9.1.8) 

We also introduce the principal curvature vectors at the stationary point 
K *  and K, and define 

pj = sign k .  K ~ ,  K~ = d'xjds?, j = 1,2. (9.1.9) 

In this equation, s j  denotes an arc-length parameter in the j th  principal 
direction. From the analysis carried out in Section 8.4, we know that 

(9.1.10) 

Here A is again the Hessian matrix, defined by (2.8.5), but for the function 

The asymptotic expansion of the integral in (9.1.5) is now determined by 

A 

Idet A1 = &jp,pz,  sgnA = - p  = - [ p l  + p 2 ] .  

@(x;k),pj = 1 ~ ~ 1 -  1 , j = 1,2. 

using the formula (2.8.23), 

(9.1.11) 
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The summation must be carried out over all of the stationary points, that is, 
over all of the points x, where (9.1.8) is true. For a closed convex scatterer, 
there will be two such points for each choice of k. At one of these, and A 
will be colinear; at the other point, they will be anticolinear. When S is not a 
smooth closed surface, this need not be the case. In fact, there need not be any 
stationary points at all. From the result (2.8.2) and (2.8.3), we can see that in 
this case the integral is of lower order asymptotically. The leading order term 
of the asymptotic expansion will then arise from applying the method of 
stationary phase in one dimension to the first term of the right side of (2.8.3). 
However, there is some disadvantage to applying the method of Section 2.8 
directly to the integral (9.1.3). The reason is that the variables of integration 
are o1 and c r 2 .  Therefore, the boundary integral in (2.8.3) is an integral over 
the boundary in this cr domain rather than over the boundary of the actual 
surface S in the coordinates x. Therefore, in Exercise 9.4, we specialize (2.8.1) 
to a surface integral, and we extend the integration by parts technique of 
(2.8.2) and (2.8.3) via the Stokes theorem to recast the surface integral in x 
directly to a line integral in x. This amounts to accounting for the fact that 
the surface in x need not be planar while the surface in c1 and cr2 is always 
planar. 

Let us now consider the volume integral (9.1.4) defining T(k). Again, we 
seek an asymptotic expansion for large values of k, with the phase again 
defined by (9.1.6) except that x is not a function of surface variables in this 
case. The conditions of stationarity in x are that k = 0. Clearly, then, there 
are no stationary points for the volume integral for large values of k. 

Let us now denote by S the boundary surface of the domain D. Then, we 
can apply (2.8.2) and (2.8.3) to obtain a surface integral for the leading order 
approximation of r(k). The result is 

r(k) rv Is fi . ke- l k@(x;L )  & da, do,. (9.1.1 2) 

In this equation, A is an outward normal to the surface S.  
Comparison of (9.1.12) and (9.1.5) reveals that the two integrands differ 

only in the factor iA -Elk. Therefore, we evaluate the asymptotic expansion 
by adjusting (9.1.1 1) for this new amplitude factor. The result is 

(9.1.13) 

Again, we sum over the solutions of (9.1.8). Let us denote the separate terms 
in thesums(9.1.1l)and (9.1.13) by ?,and T,,respectively. Then, wecansee that 

y, - -ik[signA-k]r,. (9.1.1 4) 
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That is, the leading order asymptotic expansion of the elements of the Fourier 
transform of y(k) is obtained from the same terms in T(k) by multiplication 
by +ik, + I  = signfi-G. 

In some sense, this result is an extension, asymptotically, of the corre- 
spondence (2.2.1 8) between differentiation in the spatial domain and multi- 
plication in the Fourier domain. For a directional derivative in a fixed 
direction in the spatial domain defined, say, by the unit vector 6, we would 
have the results 

hy(x) = -vr(x), & - A ~ ( x )  = -&.vr(x)++ -ik&-Ef(k). (9.1.15) 

For& = b, this result would be incorrect, since at the very least, A is a function 
of x and the rightmost term in the second line makes no sense at all. However, 
at the stationary point, and A coline and (9.1.14) imply that (9.1.15) is true 
for normal derivatives of T(x) as well, at least asymptotically. 

The significance of this result will become apparent in the inversion 
techniques in the following sections. In many problems, it is T(x) that arises 
more naturally, but y(x) that we seek. The result (9.1.14) provides a means of 
obtaining the Fourier transform of the latter from the Fourier transform of 
the former, at least asymptotically. 

SURFACES WITH DISTINGUISHED DIRECTIONS 

Let us consider a surface S that is defined by 

x3 = h ( x , , x , ) ,  (x,,x,) in x, (9.1.1 6) 

with X some (not necessarily finite) two-dimensional domain. We then 
define the singular and characteristic functions 

Y(X) = & W ( x , , x , )  - x3), 

The function g is defined by 

g = [ah/dX,]2 + [8A/8x,12 + 1.  (9.1.1 8) 

We leave it as an exercise to verify that the function g as defined by (8.4.13) is 
given by this result in the special case of a surface defined as in (9.1.16), with 
surface parameters being two of the Cartesian variables. We have also used 
here the result (2.1.8) with the derivative there interpreted as a normal 
derivative, consistent with the first definition of the singular function at 
the beginning of this section. 

We shall calculate the Fourier transform (9.1.4) as an interated integral by 
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carrying out the x, integration first and using the result (2.3.1 1) and (2.3.12). 
The result is 

The phase in this equation is 

Y(x1, x2&) = -R1xl - R2x2 - R3h(x1,  x2). (9.1.20) 

Similarly, either by using the definition of y(x) in (9.1.17) in the first line of 
(9.1.3) or by directly using the second line of (9.1.3) with the special variables 
x1 and x2, we find that 

y(k) = J:m & e-lkv(x,Jz.t) dx 1 x2- (9.1.21) 

Let us suppose not only that k is large but also that k, is nonzero. Then, 
the delta function appearing in (9.1.19) is zero. Therefore, in our further 
asymptotic analysis here, we shall neglect this term. The conditions that the 
phase be stationary in either integral (9.1.19) or (9.1.21) are 

R,/i3 = -(dh/C?x,), j = 1,2, (9.1.22) 

from which it follows that 

J;5 l/I&I = k/lk,(. (9.1.23) 

We can now evaluate both integrals by the method of stationary phase 
(2.8.23). The results are again of the form (9.1.11) and (9.1.13). The value of 
x, is determined by (9.1.22). The contribution to each integral from any 
stationary point is now given by 

7, - (2n/k)& exp( - i k Y ( x n ;  f) - ipu71/4); 

F, - (2n/ikk3)&px exp( - ikY(xn;  k) - ipn/4) 

(9.1.24) 

- (271/ik2)( -sign k3)&exp( - i k Y ( x , ; k )  - ipn/4). (9.1.25) 

We conclude for this case that 

7, - ik(signk3)rn. (9.1.26) 

To compare this result with (9.1.14), let us define 

(9.1.27) 
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This definition is consistent with the definition of A as an outward normal, 
used above, since outward for a bounded domain is directed from the region 
where T(x) = 1 to the region where T(x) = 0. The identification with the 
result (9.1.14) is complete when we use (9.1.22) and (9.1.27) to verify that 

sgnA-k = -signk,. (9.1.28) 

We remark that for surfaces in which one coordinate is distinguished, as 
was xg here, the task of determining a multiplier on r(k) to produce the 
asymptotic value of y(k) has become much easier; it has been simply reduced 
to multiplication of the former Fourier transform by a variable sign k ,  that is 
known a priori no matter what the direction of the normal to S is at the 
stationary point. 

THE APERTURE-LIMITED SINGULAR FUNCTION 

We shall now consider the effects of limited aperture on the Fourier 
inversion of y(k). In order to  this, we introduce the function yB(y), defined by 

(9.1.29) 
1 

y,( y) = 7 s dk, dk, dk, eik'Y 
(2n) K 

In this equation, K connotes the limited aperture in the Fourier domain over 
which the data y(k) are known. This domain has the form 

K : k _  5 k < k , ,  k in R ;  (9.1.30) 

that is, the magnitude of k is restricted to some finite domain while the 
direction of k is restricted to some solid angle on the unit sphere. 

We rewrite this result as 

In this equation, 

W Y , X , k )  = k - [ y  - x(01,02)], 
(9.1.32) E = (sin 0 cos 4, sin B sin 4, cos 0). 

Also, we have used Sand 0 to denote the domains ofintegration in the specific 
parameterization for the surface S and for the angular aperture R. 

We shall apply the method of stationary phase to @(y, x, %) in the four 
variables c, ,  02, 0 = o, , and 4 = 04, under the assumption that this expan- 
sion will be valid for all values of k in the interval (k-  , k ,  ). We shall use o3 
and o4 or 8 and 4 as is convenient in context. The four first derivatives of 
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@(y, x, f) are given by 

ax a@ 
aoj aaj 

a m  A 

~ = e . [y  - XI, 
aa3 

- = -k-- ,  j = 1,2, 

(9.1.33) 
-- - 6- [y - x] sin 8. 

Here, 6 and 6 are the two other unit vectors on the sphere that together 
with & form a right-handed triple of vectors 

6 = (cos 0 cos 4, cos 8 sin 4, -sin 0), 6 = (-sin 4, cos #J, 0). (9.1.34) 

The condition that the first pair of derivatives of m(y, x, f) in (9.1.33) be 
zero leads us to conclude that at a stationary point, k must be orthogonal to 
the surface S at the stationary point. The condition that the second pair of 
derivatives be zero leads to the conclusion that f must also be orthogonal to 
y - x at the stationary point. Thus, given a point y, we find a point on S,  x = 

x,, for which y - x, is orthogonal to S .  This determines o1 and o2 at the 
stationary point. We then find so that this vector is colinear or anticolinear 
with the normal at that point as well. At a stationary point, then, 

Y - x, = r n w r 9  I, = J Y  - x ( ~ l , ~ z ) ~ ,  pr = signfi-ry - X,I, 
(9.1.35) 

We leave it to the exercises to verify the following results about the 

f = apk, pk = signfi-f. 

Hessian matrix for @( y, x, f) : 

- = - r, pr(cos 4, sin # J , O )  - a sin 8 
d2m 
aa: 

and 

det [?-I = det A = sin2 d(l  - 8.K,rnpr)(l - A.KZrnpL,), 

r, < min(p,, p 2 ) .  

aoj aa, 
(9.1.37) sgn A = 0, 
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We now use the results (9.1.35) and (9.1.37) to obtain the leading order 
asymptotic expansion of (9.1.3 1) by using the multidimensional stationary 
phase formula (2.8.23). We state the result only for r,, satisfying the inequality 
of (9.1.37), 

(9.1.38) 

The sum here must be carried out over all of the stationary points as defined 
by (9.1.35). We remark that the value of the integral in the first line here when 
rn = 0 is correctly given by the limit in the next two lines. (The difference of 
cosines is quadratic in r,.) 

For y near the surface S, the sum in (9.1.38) will be dominated by the 
contribution from the point on S that defines the minimal distance from y to 
S. Furthermore, it is typical that the angular aperture contains a range of k 
that is a subdomain of a hemisphere plus the symmetric range on the other 
side of the sphere. Thus, there will be two choices of & for each choice of y, and 
the stationary points occur in pairs for such an angular aperture. The values 
of pk  at these two stationary points will be of opposite sign, f 1, while all 
other constituents of the stationary phase formula remain unchanged. 
Therefore, in the neighborhood of the surface S, 

We see here that asymptotically the aperture-limited singular function in 
three dimensions behaves in the same manner as the one-dimensional, 
band-limited Dirac delta function. The surface S can then be depicted by its 
band-limited singular function when the percentage bandwidth is sufficiently 
large to distinguish the peaks of the Dirac delta function. In particular, we 
remark that the peak value is given by 

maxIYB(y)l - (k+ - k - ) / n .  (9.1.40) 

As in one dimension, 60% bandwidth seem to be more than sufficient for 
peak discrimination. 

If the aperture in k does not contain points satisfying (9.1.35), then the 
asymptotic expansion will be of lower order in k,  and the final k integration 
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will not produce a function that peaks with the amplitude in (9.1.40). In fact, 
Mager and Bleistein [ 19781 have shown that the peak value of the asymptotic 
expansion in this case decays to zero with increasing minimum angle between 
the aperture in k and the range of the normal directions of S .  

Exercises 

9.1 (a) Let S be a spherical cap of radius u centered at the origin, with 
polar angle range 0 5 0 I do. Define the normal A for S to be the unit radial 
vector at each point (cos 4 sin 0, sin 4 sin 8, cos 8). Show that 

y(k) - (27~nipu /k )e - ‘~~ ,  p = sign f f , ,  

when either +k is in the aperture of the cap. 
(b) Find the leading term of the asymptotic expansion of j(k) when is 

not in the aperture of the cap. Confirm that it is of lower order in k. 
(c) Let 0, = n so that S is closed. Let T(x) be the characteristic function 

of the interior of the sphere. Find the asymptotic expansion of f;(k) and 
confirm (9.1.4). 
9.2 Consider the surface S defined by (9.1.16). For this special parameteriza- 
tion x1 = 0, and x2 = 02,  show that (8.4.13) agrees with 
9.3 (a) Verify (9.1.36). 

(b) Introduce the notation 

ax ax 
30, 8 0 2  

coscr = 0.-, sina = € l a - - ,  

(9.111 8). 

and show that 

(c) Calculate det[A - 111, where I is the identity matrix. Show that for 
a = 0, this quartic in Iz  factors into a pair of quadratics, each of which has 
two roots of opposite sign for r,  small enough. Thus, conclude that sgn A = 0 
in this case. 

(d) Now verify the first line in (9.1.37) for any a. 
(e) Explain why sgn A = 0 for any a and r,, small enough. 

9.4 (a) Let I(1) be a surface integral of the form 

I ( i . )  = f’(x)eiA@(x’ d S ,  x = (xl, x2, x,). 

We have seen in this section that for 4(x) to have a stationary point, Vq!~(x) 
b 
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must be normal to S at that point. Suppose that 4(x) has no stationary points 
on S. Denote the boundary curve to S by C and apply Stokes's theorem 

l s ( V  x B).adS = I B - d x  

to the vector function 

to conclude that to leading order 

In this equation, ds is differential arc length around the boundary of the 
surface S, and = dx(s)/ds is the unit tangent vector to the boundary curve. 
Note that the denominators of the integrands here are nonzero under the 
assumption that 4(x) has no stationary points on S .  

(b) Let the boundary curve C be parameterized by an arc-length param- 
eter s:x = x(s) on C. Show that the stationary points are determined by 
V#(x)*t^ = 0 and that 

In this equation, K again represents the curvature vector at the stationary 
point and p = sign V ~ ( X ) . K .  

(c) Apply this result to the second integral in (9.1.3) under the assumption 
of no interior stationary points. Show that the assumption of no stationary 
points assures that 1 and that if all of the boundary stationary 
points are simple, 

A # 

9.2 PHYSICAL OPTICS FAR-FIELD INVERSE SCATTERING 
(POFFIS) 

The physical optics far-field inverse scattering (POFFIS) method was 
originally developed by Bojarski [ 19671. The approach presented here has 
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evolved from that original method while still retaining some of the funda- 
mental features of the original derivation. Bojarski’s original derivation is 
outlined in Exercise 9.9. 

The objective of the method is to image the surface of a scatterer that is 
remote enough to be considered to be in the far field. The method has found 
application in nondestructive testing, where the objective is to image flaws 
of size a few hundred micrometers m) at a range on the order of a few 
centimeters (10 ~ m). The propagation speed of acoustic waves in solids is 
on the order of thousands of meters per second (lo3 mjs). Consequently, 
high frequency requires frequencies in the range of megahertz (lo6 Hz). 
Typical numbers in an experiment might be a length scale H equal to 
4 x m, a sound speed c equal to 6 x lo3 m/s, and a minimum frequency 
fo  equal to 3 x lo6 Hz for which we obtain a dimensionless large parameter 

1 = 4nf0H/c 7, 

which is certainly large enough for asymptotics. (The extra factor of 2 here 
is due to the two-way travel time in backscatter experiments. See, for example, 
(8.4.12) or (9.2.9) below.) 

In nondestructive testing applications, the propagating signal is really an 
elastic wave. However, in the backscatter direction, the signal is dominated 
by the compressional or acoustic wave. Thus, our model based on the 
acoustic wave equation is reasonable as an elemental model of this direct and 
inverse scattering problem, among others. 

Similarly, in electromagnetic applications, polarization effects are of 
relatively minor importance in an implementation based on the backscattered 
specular signal, for which the polarization of the incident wave is well 
preserved. 

We shall begin our discussion by assuming that we are observing the 
backscattered signal from a closed scatterer. We assume that by time gating 
the response, that is, by setting the time record equal to zero at times beyond 
the return of the specularly reflected wave, we can assume that we have only 
these primary specular returns as our observations. 

The POFFIS method is based on an analysis of the Kirchhoff and far-field 
approximate backscattered field discussed in Section 8.4. In particular, the 
result (8.4.1 1) shows that when both of these approximations are valid, the 
backscattered field from a point source depends on a phase and amplitude 
scaling that is common to all scatterers and a factor S ( t ;  w), the phase and 
range normalized far-field scattering amplitude, which depends on the 
properties of the specific scatterer. The result of Exercise 8.23 is that for the 
model in which it is assumed that the incident signal is a plane wave, the same 
factor S(E;  w) arises but with a different phase and range normalization. 
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ASYMPTOTIC ANALYSIS OF s($; W )  

The asymptotic analysis of the integral representation (8.4.12) for S(c; w)  
follows along the same lines as the asymptotic analysis of y(k) in the preceding 
section. Indeed, we need only make the following identifications between 
variables in (8.4.12) and variables in the second equation of (9.1.3) in order to 
obtain the asymptotic expansion for S(k; w) from the results of Section 9.1 : 

k = (2lwl)/c, f = t sign w. (9.2.1) 

Thus, under the assumption of simple stationary points, we can deduce the 
leading order asymptotic expansion of S(& o) from the result (9.1.1 1). To do 
so, we must evaluate the amplitude in (8.4.12) at the stationary point and use 
the special form of k and f. The result is 

(9.2.2) 

In this equation, p l ,  p 2 ,  and ,u are as defined in the discussion in Section 9.1 : 
see, in particular, (9.1.9) and (9.1.10). The summation is to be carried out over 
the stationary points of the integral. Those points are defined by (9.1.Q but 
for the special choice of k and k in (9.2.1), that condition becomes 

A = t .  (9.2.3) 

There is no choice of sign here, because on the lighted side of the scatterer, the 
normal at the stationary point must point back toward the observation point. 
The reflection coefficient, given in Exercise 8.22b, must also be evaluated at 
the stationary point. This yields the normal reflection strength R , ,  as in 
Exercise 8.24, 

R ,  = ( c+  - c - ) / ( c +  + C - ) ,  (9.2.4) 

where c+ are the propagation speeds on the two sides of the scatterer. We 
remark also that reversing the sign of w in the result (9.2.2) simply transforms 
S(e ;w)  into its complex conjugate, which is equally true for the integral 
(8.4.12) from which this asymptotic expansion arose. 

THE REFLECTIVITY FUNCTION 

Let us define a new function, the reflectivity function, of a surface S to be 
the normal reflection strength multiplied by the singular function and 
to be denoted byR,y(x). The reflectivity function locates the boundary of the 
scattering object and characterizes the change in medium properties through 
the normal reflection coefficient. For this function, the asymptotic expansion 
is readily obtained from the result (9.1.1 1) as 

(9.2.5) 
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For a fixed value of k, the sum is over all points where 
or anticolinear. 

and A are colinear 

THE POFFIS IDENTITY FOR THE REFLECTIVITY FUNCTION 

Rather than consider the entire sum here, let us consider a single term, 
namely, the contribution from a particular stationary point, say, x,,. If this 
point contributes to the sum at a particular choice of k, then it also contributes 
to the sum at - k, with the contribution in the latter case being the complex 
conjugate of the result in the former case, Now let us suppose that xo is in 
the aperture of the observations for which (9.2.2) is valid. Then the contri- 
bution to the sum in (9.2.2) is proportional to the corresponding contribution 
to the sum in (9.2.5) when signw = +1, while the result at sign w = - I  
produces the complex conjugate result. In these results, the constant of 
proportionality is i[sign w]/k = -c/Ziw. What is true for each term of the 
sum must be true for the entire sum; that is, 

R,y(k) - (i/k)[sign w]S(t;w) = -[2iw/c]-'S(t;o), k = (2w/c)g, (9.2.6) 

with this result holding for 0 in the aperture of observations and negative o 
given the results in the complement of that aperture in k-space. This is the 
POFFIS identity for the reflectivity function. 

FOURIER INVERSION OF THE POFFIS IDENTITY 

We have already discussed the aperture-limited Fourier inversion of the 
singular function in the preceding section. For the reflectivity function, we 
need only multiply those results, in particular, (9.1.38)-(9.1.40), by the normal 
reflection coefficient. Also, this is a case in which we sum over pairs of values 
of k of opposite sign in (9.2.2). Therefore, in the neighborhood of the scattering 
surface, the Fourier inversion is dominated by a term of the type (9.1.39). 
That is, 

In this result, we have replaced the limits of integration in k by limits in 
frequency f ,  because in practice, the band limits are given in hertz. In 
particular, at the peak, this result becomes 

peak RnyB(y)  - R n ( 4 [ f l  - f O 1 / c ) .  (9.2.8) 

Thus, the location of the peaks of yB( y) delineates the scattering surface, 
while the magnitude of yB(y) at the peak provides a means of determining 
the reflection strength. 

Let us now express the result (9.2.6) and (9.2.7) explicitly in terms of the 
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integrations to be performed. First, from (9.2.6), we obtain the following 
result for the reflectivity function: 

The notation dR connotes the differential element of the solid angle in e ,  
while the domain of integration R is determined by the range of observation 
directions E. The domain of integration f in hertz is both the positive and 
negative frequency ranges in the bandwidth of the signal to provide the full 
aperture of information in k-space that is available from (9.2.6) from positive 
and negative frequencies. We have expressed this final result in f rather than 
in w because in implementation on real data, the fast Fourier transform 
(FFT) routine would be used to process the data; this routine uses frequencies 
f in hertz. The result of Exercise 9.5 exploits the fact that negative frequencies 
merely transform the integrand into its complex conjugate to rewrite (9.2.9) 
as an integral over positive frequencies alone. This is also more practical 
for numerical implementation. 

As a check on self-consistency, let us consider the problem of back- 
scattering by a sphere of radius a and reflection coefficient 1. In particular, we 
apply (8.4.12) to determine S(t; w). For the domain L, we use the hemisphere 
with line of symmetry alone 6. The leading order asymptotic expansion of 
~ ( t :  w) is 

s(S; w)  - 2nae - 2imU'c, (9.2.10) 

independent o f t .  Let us assume that the data have been imaged over the 
entire 4n aperture in t .  We substitute this result into (9.2.9) and carry out 
the straightforward integrations to obtain the result 

To compare this result with (9.2.7), we focus our attention on the first term in 
the brackets and note first that r, = y - a. Then, we note also that both 
principal radii of curvature for a sphere are equal to the radius of the sphere 
at every point on the sphere. Thus, 

U/Y = 1/J(1 - f i . K I r n p r ) ( l  - f i * K Z r n p r ) -  

Finally, we note that the peak value of this first term at y = a agrees with the 
prediction (9.2.7). 

For this same example, a series representation of the exact backscattered 
wave can be obtained by specializing (6.5.58) to the backscatter case cos y = 1. 
Since that is the solution for plane wave incidence, we can obtain S(E;w) 
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Fig. 9.1. Inversion of sphere data in units a/r. 31.5 I 4nfa/c I 63. [From Bleistein, 
1976.1 

by using the phase and range normalization implicit in the result in Exercise 
8.23; that is, we multiply by 4nr exp( - 2ior/c}.  The angular integrations can 
then be carried out analytically. leaving only the integral in .f to be computed 
numerically. Figure 9.1 depicts the output for such a numerical integration. 
The indicated parameter range is given in a dimensionless variable 471 fa/c. 
For this range, I = 471foa/c % 31.5 is well within the range defined as large 
for the purposes of asymptotics. On the other hand, the percentage bandwidth 
for this example is only 33%. significantly less that the recommended 60%. 
Nonetheless, the peak is seen to be well delineated. 

In Fig. 9.2, we depict the output for a case in which the lower limit is zero. 
Our theory should not apply in this case. Yet, the band-limited Dirac delta 
function is clearly discernible. We remark that the dimensionless large 
parameter A defined earlier fails to be large over only a very small portion of 
the range for this example. Thus, it is reasonable to expect relatively little 
damage to the final output as a result of inclusion of the range of values of f  
that are too small. The output confirms this expectation. 

In both of these figures, the circles represent sample values of the asymp- 
totic formulas (9.2.7) and (9.2.8). The agreement between leading order 
asymptotics and numerical integration is apparent. In particular, the error at 
the peak was about 0.3% in the first example and 1.6% in the second example.? 
In fact, this size error is significantly less than the errors due to noise in any 
real data experiment. Thus, experimental error becomes a more signif- 
icant limitation on estimation of reflection strength than does all of the 
approximations made to obtain the POFFIS identity. 

The larger error in the second example is likely due to the inclusion of the low frequencies 
in the numerical integration. 
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-5  

Fig. 9.2. Inversion of sphere data in units of a/r. 0 I 4nfalc I 31.5. [From Bleistein. 
1976.1 

We remark that variations in the amplitude of S( t ;  w) in (9.2.2) will affect 
the estimate of the reflection strength in processing (9.2.9), while variations in 
the phase in (9.2.2) affect the structure of the scattering surface. This is an 
important consideration when we are seeking only an image of the surface, 
with less interest in reflection strength. Within limits of variation that allow 
us to view the amplitude of S ( t ; w )  as “slowly varying” and, hence, not 
affecting the phase, we can allow errors in the amplitude without seriously 
affecting the image of the surface S .  

To obtain this result, we have assumed that the source has unit strength 
over the entire bandwidth. True sources do not behave at all like this. There- 
fore, as a practical matter, we must strip away the structure of the source in 
order to use the result as stated. That is not always an easy task and leads to 
the whole class of problems that come under the heading of deconvolution. 
This is the subject of a volume in itself and will not be addressed here. We only 
remark that small errors in deconvolution produce small errors in surface 
location. In particular, we leave to Exercise 9.6 the verification of the fol- 
lowing result. Suppose that the source in the experiments that produced us@ 
had the form F(271f)6(5 - x). That is, the entire experiment was scaled by 
F(271f). Assume further that F(271f) had its support only in the bandwidth 
(+Yo, +fl ) or, equivalently, that F(271f) represents the consequences of 
truncation and deconvolution of the Fourier transform of the source on this 
interval and that this transform is slowly varying over this interval. We can 
show that in this case, (9.2.7) and (9.2.8) are replaced by 

, r,, # 0, (9.2.12) F(-2r , lc )  
R“ig(Y) R n  

J(1 - h W r P k ) ( l  - k-KZr,,PrPk) 
and 

- l o  

peak R,y,(y) - R,F(O) = R, 1” + 1 F(271f) df. (9.2.13) 
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The case F(2n.f) = I on the bandwidth is the extreme case of slow variation. 
Other slowly varying functions will produce alternative band-limited repre- 
sentations of the delta function and, consequently, alternative band-limited 
representations of the band-limited reflectivity function. See Exercise 9.7, 
for example. 

While errors in amplitude of the backscattered signal will not seriously 
affect imaging, errors in the phase of the backscattered signal will produce 
significant errors in surface imaging. In particular, if we use (8.4.11) in 
(9.2.9), the following result can be derived: 

Here Us(&, t )  is the observed data in the time domain. We see from this result 
that the phase in frequency domain arose from the arrival time of the signal 
in the time domain. Let us think of carrying out a set of experiments over a 
discrete set of values o f t .  It is assumed that the distance to the center of the 
coordinate system p is known for each experiment, that is, for each choice 
of t .  Thus, errors in recording the arrival time of the response relative to the 
initial time, the time of onset of the source, will produce errors in the con- 
tribution E - y  for that contribution to the integral. Thus, an accurate record 
of time of occurrence of the return signal relative to time of initiation of the 
incident wave is essential. 

While the POFFIS identity was originally derived for convex scatterers, 
it has also been applied to nonconvex scatterers. The key to the success of the 
method is that concavity should not be so severe as to shadow the specular 
points in any experiment. This is a limit on concavity but does not preclude it. 

BOJARSKI’S RESULT 

Bojarski’s original result provides a POFFIS identity for the character- 
istic function rather than for the singular function. However, it is more 
difficult to depict the scatterer through band-limited Fourier inversion of a 
one-zero function than for a Dirac delta function. Thus, in implementation, 
Bojarski’s result requires multiplication by k ,  , k ,  , or k ,  before inversion to 
produce a band-limited derivative of a characteristic function. This type of 
directional derivative has the disadvantage of image fading when the direction 
of the directional derivative is tangent to the surface, that is, in the direction of 
y ,  , y, , or y, . Indeed, it was this disadvantage of the Bojarski implementation 
that motivated a search for a “pseudonormal derivative” and led ultimately 
to the POFFIS identity for singular functions. 
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Exercises 

9.5 Show that the result (9.2.9) can be rewritten as 

9.6 Verify (9.2.12) and (9.2.13). [Hin t :  Use the stationary phase result in 
the first line of (9.1.38) to calculate the angular integral in (9.2.9) and then 
interpret the integral in frequency domain as an Fourier transform back to 
the “time” domain with time properly interpreted.] 
9.7 (a) Define F,(t) = i 2 t  exp( -At ) .  Use Watson’s lemma to show that 

lim F,(t) = h( t ) .  
1. -+ VJ 

That is. for any fixed but large value of 1, F,(t) is an approximate Dirac 
delta function. 

(b) Show that the Fourier transform of F,(t) is 

(c) Suppose that f o  = 0.25 i/2n and f l  = 4 2 ~ .  Show that the modulus 
of F(2nf) varies from 0.5 to 0.96 over the bandwidth. 
9.8 Verify (9.2.1 4). 
9.9 The purpose of this exercise is to derive Bojarski’s original POFFIS 
identity for the characteristic function. Suppose that the scattering obstacle 
to be imaged is convex and that the reflection coefficient is equal to &I .  
Suppose that for each experiment from the direction t ,  with scattering ampli- 
tude defined in (8.4.1 2), the corresponding experiment from the direction 
-6 is also carried out. 

(a) Explain why this latter experiment produces the output 

That is, the experiment from the opposite direction produces an integral over 
the part of the scatterer that was dark for the original experiment. 

(b) Use the divergence theorem to show that 
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This is Rojarski’s POFFIS identity for the characteristic function of a 
scattering obstacle. 

9.3 THE SEISMIC INVERSE PROBLEM 

In this section, we shall describe inverse methods for the problem of 
imaging the layers in the earth from backscattered acoustic signals. In this 
seismic experiment, a source is set off at a point on the surface of the earth, 
and the upward propagating wave is then measured at an array of receivers 
nearby the source. The process is repeated with the sourcelreceiver array 
displaced along a line or in a plane. Thus, the actual data-gathering process 
does not produce a backscattered signal. Furthermore, the source is often an 
explosion, so that the source shape is not entirely repeatable, nor is the time 
shape of the source signal recorded as a rule. Much preprocessing of the 
data must be done in order to create from this array of experiments a set of 
pseudobackscattered impulse responses, that is, the backscatter response to a 
three-dimensional spatial delta function multiplied by a delta function in 
time. Nonetheless, the preprocessing produces usable data for the backscatter 
model, and imaging techniques based on an acoustic backscatter model 
produce usable subsurface images. Here usable means that the images of the 
interior of the earth based on these techniques are a useful tool for geological 
interpretation, either for theoretical purposes or for the purpose of inter- 
pretation by a geologist for the identification of likely subsurface regions for 
resource extraction, such as oil or natural gas. 

In order to describe our model, we begin by introducing a right-handed 
coordinate system x = (xl, xz, xj), with x j  being positive in the downward 
direction into the earth. We assume that we know the backscatter response 
from acoustic point sources set off at every point x1 = C l ,  x2 = t2, x3 = 0 
on the surface of the earth. We assume that the total field u ( x ;  o) is a solution 
of the Helmholtz equation, with point source at 5 = (tl, Cz, 0): 

In this equation, v = v(x) is the variable reference speed that we seek. 
We have modeled the problem as though the medium extends to negative 

infinity in x3.  Alternatively, we could have considered the problem on 
0 I x j  < co and modeled the source through the boundary condition that 
the normal derivative be equal to -6(xl - 51)S(x, - 5,). The effect of this 
would be to rescale the incident wave to be defined later by a factor of 2 and 
to rescale the final answer by a factor of 4. Thus, there is no essential difference 
between these two models. 
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We introduce a reference velocity co and a perturbation a(x) defined by 

(9.3.2) 

(9.3.3) 

in which u,(x; 5 ;  w) is the response to the source in the unperturbed medium 

V2u,(x;5;w) + (w2/c3u*(x;5;w) = -6(x, - 5 1 ) &  - t2)6 (xg ) ,  (9.3.4) 

Vz%(x; 5 ;  w )  + (w2/c;)us(x; 5 ;  w)  = -a(x)(w2/c;)[u,(x; 5 ;  0) 

the equation 
u - 2  = c,2[1 + a(x)]. 

4 x ; 4  = u,(x;5;0) + us(x;5;w) 

We now decompose the total field into an incident and scattered field 

and u,(x; 5 ;  w )  must then satisfy 

+ us(x;5;@)]. (9.3.5) 

We shall write down an integral equation relating the backscattered values 
of u,(x; 5 ;  w)-u,(g; 5 ;  w)-to the values in the interior. To do this, we use 
the Green’s function representation (6.4.14) with no finite scatterers D, since 
we have replaced the scattering domain in this problem by a source term on 
the right side of the equation. The Green’s function we shall use for (9.3.5) is 
just the free-space Green’s function. Furthermore, for the backscattered 
signal, the Green’s function is just the solution to (9.3.4); that is, the Green’s 
function and u,(x; 6; w) itself are the same function. Therefore, the equation 
for %(5; 5 ;  o) is 

* u,(x; 5 ;  w)[u,(x; 5 ;  w )  + %(x; 5 ;  w)]  d V .  (9.3.6) 

This is an exact integral equation. Unfortunately, this equation has two 
unknown functions, a(x) and %(x; 5 ;  w),  and therefore does not directly lend 
itself to exact solution techniques. The equation is also nonlinear in the 
unknowns through the product a(x)u,(x; 5; w). 

Lo 4 us(5; 5 ;  0) = w2 

LINEARIZATION : AN INTEGRAL EQUATION FOR a(x) 

We now introduce our first approximation. Let us assume that the 
variation a(x )  is small. Then, the source term in (9.3.5) is also small. It would 
be reasonable to expect that the solution to that problem is small as well, on 
the same order, O(a(x)), as the source term itself. Consequently, it is reason- 
able to expect that the product a(x)u,(x; 4; w) on the right side is quadratic in 
the small-scale measuring a(x)-O(a2(x))-while the product a(x)ul(x; 5 ;  w) 
is Iineur in LY(X). As a first-order approximation then, we neglect the higher- 
order term in ~ ( x )  in the source; that is, we replace the sum u, (x ;~ ;o )  + 
u,(x; 6; o) by the first term u,(x; 4 ;  0) alone. Mathematically, we are assuming 
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that the solution u(x; w) can be derived as a regular perturbation series 
in a(x). This technique is equivalent to the Born approximation for potential 
scattering in theoretical physics, and that name has been attached to this 
application of the regular perturbation method as well. 

The effect of modifying the source in this manner is to recast the integral 
equation (9.3.6) as 

(9.3.7) 

This is a linear integral equation relating the (assumed known) surface values 
of the backscattered field t&; 5 ;  w) and a(x), which is now the only unknown 
in the equation. The latter is a function of the three variables x, while the 
former is a function of the three variables 5 and w ;  or back in the time domain, 
the upward scattered field would be a function of the two transverse coordi- 
nates of the source/receiver point and the time. In either case, the count of 
degrees of freedom agrees. 

Equation (9.3.7) is a Fredholm integral equation of theJirst kind for a(x). 
When the kernel of such an integral equation-in this case, u:(x; 5 ;  o)-is 
such that its modulus has a bounded square integral in all of its variables 
x, 4, o, then it is known that the solution to this type of integral equation is 
ill  conditioned, with eigenvalues that have a limit point at zero. However, this 
kernel is not square integrable in all of its variables, and that theory does not 
apply. Indeed, a prototypical one-dimensional analog of (9.3.7) has as its 
kernel the square of the Fourier kernel expf2iwz/c) (Exercise 9.10), which is 
known to have all of its (complex) eigenvalues on a circle of nonzero radius. 
If we think of the kernel as always being the ray method generalization of 
this one-dimensional kernel, then it is reasonable to expect that the kernel 
never has a bounded square integral in all of its variables. 

REFLECTOR IMAGING 

For an arbitrary reference speed, we cannot solve (9.3.7) in closed form 
analytically. Therefore, we further specialize this result to the case in which co 
is a constant. In this case, u,(x; 5 ;  o) is just the free-space Green’s function 
(6.4.8), and the integral equation (9.3.7) takes the form 

(9.3.8) 

We shall solve (9.3.8) for a(x) by Fourier methods. We observe, first, that 
in the variables x, and x2, this equation is in convolution form (2.2.19) and 
(2.2.20). However, we do not have a closed analytical form for the Fourier 
transform of the square of the Green’s function. To overcome this, let us 
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introduce the function 

(9.3.9) 

We remark that the operator - i ( a / d o )  applied to us(5; 6; o) simply requires 
multiplication by t before transforming the time domain data. Hence, 
differentiation of the observed data is not required by the operations in 
this equation. 

The integral equation for O(6; o) deduced from (8.3.7) is 

(9.3.10) 

[This integral equation, which, as we shall see, is amendable to solution by 
transform technique, is the consequence of the linearization process-the 
application of regular perturbation or Born approximation. The equation is 
written in the form of a convolution of the Green’s function with another 
function. In order to solve this equation, we shall introduce the transverse 
Fourier transform in the variables el and c2 .  In this equation and later, we 
shall not introduce a new symbol for the Fourier transform of a function but 
only indicate the transform by the arguments of the function. (The reader will 
see later that too many “levels” of transform arise in this problem to create a 
new symbol for each of them.) Thus, we define the transform by 

O(k, ,  k ,  ; o) = O(5; w) exp( - 2i { k , ( ,  + k ,c ,  >) dc, At2. (9.3.1 1) s_ 
The extra factor of 2 in the phase here will prove to be a convenience. 

We now apply this Fourier transform to (9.3.10) to obtain an integral 
equation for a(k , ,  k ,  , x 3 ) .  We remark that the transverse Fourier transform 
of the Green’s function is a solution of the one-dimensional Green’s function 
problem (8.1.4), with the appropriate wave number. We leave it to the 
exercises to verify that the Fourier transform of (9.3.10) is the equation 

-87t i~;k ,O(k , ,  k ,  ; W) = ~ ( k ,  , k , ,  x3)eZik3lx31 dx3 ; (9.3.12) 

signw,/(02/ci) - k:  - k : ,  

i J k t  + kf - (w2 /c i ) ,  

(wz/ci) 2 k: + k ; ,  

(02 /c6 )  < k: + k ; .  
(9.3.13) k ,  = {  

The function U ( X )  and, therefore, also ~ ( k , ,  k , , x , )  are assumed to be 
nonzero only for x3 positive. Therefore, there is no need for the absolute 
value sign in (9.3.12). Then, if w is restricted to the upper range in (9.3.131, the 
integral in (9.3.1 2) is the three-dimensional spatial Fourier transform of 
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a(x); that is, 

a(k) = -8~cicsk ,O(k , ,  k , ;  o), k = ( k , .  k , ,  k 3 ) ,  (9.3.14) 

with k,  defined by the dispersion relation, which is the upper choice in (9.3.13). 
Fourier inversion of this result yields a(x). However, for field data, the 

solution is not quite so straightforward. A typical frequency range for field 
data might be 8-40 Hz; a typical sound speed 1500-6000 m/s; a typical 
length scale to the first significant variations in a(x), 500 m. For these values, 
we obtain a dimensionless parameter 

A = 4n f0H/c  2 9 

at minimum frequency and maximum sound speed, large enough for asymp- 
totics. Thus, we contemplate not attempting to find a(x)  but only its discon- 
tinuities; that is, we seek the reflectors in the subsurface. We remark that the 
principal radii of curvature of the interfaces are typically on the order of 
hundreds of meters as well. Therefore, asymptotics are valid as regards 
this parameter, also. 

A weakness in the method arises when we consider the effect of many 
(more than one) layers. The incident wave refracts at the first interface, so 
that the representation for u,(x;  6; co) is no longer valid. In addition, there are 
multiple reflections for which our model does not account at all. Indeed, 
implicit in the linearization process in which we neglected the product 
a(x)us(x; 6; co) is the assumption that each point in the subsurface acts as an 
independent point scatterer producing only a singly reflected upward 
scattered signal. Nonetheless, we argue that consistent with the linearization 
process itself, we can assume that the reflections are of small enough ampli- 
tude that multiply reflected waves are small--at least, O(az(x))-and that, 
similarly, refraction effects are negligible. Of course, these assumptions will 
not always be justified. However, they are justified often enough for us to 
continue. 

Let us assume, therefore, that u(x) is a piecewise constant function, so that 
the same is true for a(x).  In this case, ~ ( x )  is a sum of characteristic functions, 
each nonzero on some domain of constant u(x )  and each weighted by the 
constant value of a(x) on that domain. From our discussion of Section 9.1, 
we know, then, how to delineate the boundaries of the regions of constant 
a ( x )  from the band-limited Fourier data: we deduce from (9.1.26) that we 
must multiply the Fourier transform a(k) by 2ik sign k ,  in order to produce a 
scaled singular function from the scaled characteristic function. The extra 
multiple of 2 here arises from the extra factor of 2 in the definition of the 
spatial Fourier transform (9.3.1 I). After Fourier inversion, this will produce 
an array of band-limited Dirac delta functions with support on the interfaces 
between the layers of constant velocity. 
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In summary, we define 

P(k) = 2ik(sign k3)a (k )  = (2 io /c , )a(k) .  (9.3.15) 

The inverse transform of B(k) is then an array of singular functions, each with 
support on an interface of the piecewise constant function a(x). The weighting 
of the singular function on each interface is the linearized jump in X(X) across 
the interface in the direction of increasing x3. 

Let us define v + ( v - )  to be the value of v(x)  below (above) an interface and 
define a+ correspondingly. Then the linearized jump in a(x) is determined by 
linearizing the difference in the values of a ( x )  through the definition (9.3.2). 
That is, 

To the same linear order, the reflection coefficient at the interface agrees with 
this result except that the factor of 2 must be replaced by i. That is, the change 
in a ( x )  across the interface is just 4 times the reflection coefficient, and 
therefore the inverse Fourier transform of B(k) is just 4 times the reflectivity 
function. 

Let us define P(y) to be the band-limited Fourier inversion of B(k) and 
R,y,(y) to be the entire array of reflectivity functions of the interfaces in the 
subsurface. Then we can summarize our discussion as 

.exP(2iPwl + k,Y, - k3y33)  (9.3.17) 

In this Fourier inversion, we have accounted for the multiple of 2 in the 
transform variables by dividing by 7c3 rather than (27~)~;  we have also 
properly accounted for the reversal in sign in the Fourier inversion in k ,  as 
compared to k, and k,  .The domain ofintegration is all real values of k ,  , k 2  , k ,  
available in the bandwidth of frequencies available in the data. For a(k), 
we have used (9.3.14). 

Since we have specialized our result to high frequency and we intend to 
interpret our results in terms of the leading order asymptotic expansion of 
the singular function, we should, as well, only use the leading order high- 
frequency approximation of O(k, , k ,  ; o). To do this, we must retain only 
the leading order term in o in (9.3.9); that is, 

tUs(g, t)eio' dw. (9.3.18) 
i d  

@(!; w)  - -- - 
w2 aw 

In the last part of the equations we have used the notation U&, t) to denote 
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the time domain backscatter response. We use this result and (9.3.11) in 
(9.3.17) to obtain 

-exP(2i[ki(Y, - 5 1 )  -I- k2(Y2 - 5 2 )  - k Y 3 ]  jot). 

(9.3.19) 

This formula provides a basis for processing band-limited, aperture-limited 
backscatter observations for imaging of reflectors in the earth. 

As a simple check on this result, let us consider the case in which the 
subsurface has only one planar discontinuity at depth H across which the 
velocity changes from co to c,. From our ray theory, we expect that the 
leading order response to an impulsive point source for this problem to be 
just an impulse that has propagated down to the interface and back up again 
a distance 2H but has been modified by the normal reflection coefficient at 
the interface. That is, 

Us(g,t) = R[G(t - 2 H / c ) / 8 n H ] ,  R = (c ,  - c ~ ) / ( c ,  + cO) ,  (9.3.20) 

which is independent of 6. We leave it to the exercises to confirm that the 
calculation of P(y) proceeds as follows. The t integration is carried out by 
exploiting the delta function. The integrations in 5 ,  and t2 yield delta 
functions in k ,  and k , .  which, in turn, allow the integrations in those two 
variables to be carried out explicitly. The result after these computations is 

4R,.lg(y) - 4 R -  dk3 e 2 i k 3 { H - y s ) .  (9.3.21) 

The multiplier of 4R on the right is recognized as a band-limited Dirac delta 
function. Since the delta functions in k ,  and k ,  evaluated those variables at 
zero, the dispersion relation (9.3.13) implies that k ,  = o / c ,  and therefore 
this is exactly the band-limited delta function predicted by the theory. 

In the exercises, another example is presented in which it is possible to 
carry out the integrations analytically. 

n: 's 

TWO AND ONE-HALF DIMENSIONS 

In seismic exploration, it is often the case that data are not gathered over 
an entire planar array on the upper surface but only along a line. To com- 
pensate for the lack of data in the direction orthogonal to that line, it is 
assumed that the velocity variations in the subsurface are independent of 
that orthogonal variable. The experimental configuration for this situation 
is often referred to as two-and-one-half-dimensional, since the variations in 
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the velocity are assumed to be two-dimensional while the propagation 
model is three-dimensional. 

A formula for the two-and-one-half-dimensional case is easily deduced 
from the result (9.3.14). Let us suppose that the velocity variations do not 
depend on 5,. In this case, if experiments were carried in the direction t2, 
the backscattered signal. or time traces, Us would be independent of 5 , .  
Consequently, the only t, dependence in the integrand in (9.3.14) is in the 
phase. Thus, the 5, integration yields the result nd(k,): in which case the 
integration in k, can be carried out. The result for two and one-half 
dimensions, therefore, is 

o = c,, sign k, d m .  (9.3.22) 

Computer algorithms to implement (9.3.19) and (9.3.22) have been 
developed. Both have been used on synthetic data (data generated numer- 
ically) and have proved quite accurate, both for reflector imaging and 
reflection strength estimation. The two-and-one-half-dimensional algorithm 
has also been used on field data and imaged reflectors from that data. 

For the field-data examples, the data were not “true amplitude” data 
whose source spectrum was consistent and well defined. However, as in the 
preceding section, we remark that amplitude inaccuracies largely affect only 
the estimation of reflection strength but do not have a significant effect on the 
location of reflectors. 

For the field data, it quickly becomes apparent that a model with a constant 
reference speed throughout the earth is not adequate. However, we can 
exploit the linearity of our model to consider the subsurface to be a super- 
position of domains for each of which the reference speed is constant al- 
though not necessarily the same constant in all of them. In practice, this is 
what is done. 

The question then arises of how one chooses this “local” reference speed. 
Quite often, there is a priori information about the velocity. The time record 
itself also supplies a means of doing this. Consider, for example, the time 
record shown in Fig. 8.15 as a prototype ofa time record froma discontinuous 
interface. In particular, the locus of peaks on the diflraction tail of that figure 
lies on a hyperbola in the space-time plot. This is verified for a point scatterer 
in the exercises. The edge of the half plane is indeed a point scatterer. The 
slope of the asymptote to that diffraction tail is a function of the sound speed. 
Thus, a best guess at a reference speed is provided by the sound speed that 
best fits the diffraction tails locally in the time plot. under the assumption that 
the depth at which such a sound speed c is to be used is approximately ct/2. 
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MIGRATION 

The dominant method for reflector imaging from seismic data in geo- 
physics today is known as migration. This tern1 comes from the idea that the 
space-time record, such as in Fig. 8.14, is itself a subsurface plot with the 
reflectors imaged at their temporal location below a source/receiver point 
rather than at their spatial location. Thus, the objective of any subsurface 
imaging method might be viewed as moving or migrating the reflectors 
from their temporal location to their spatial location. 

Migration based on the wave equation was introduced by Claerbout 
[1971, 19761 and his associates. The method is based on the observation that 
the scattering due to a reflector behaves much like a source distribution on 
the reflecting surface in the frequency domain or like Cauchy data restricted 
to the reflecting surface in the time domain. The former of these is suggested 
by the integral equation (8.4.5), while the latter is somewhat more obscure, 
from exact results. A feature common to both interpretations is that the 
propagation speed of this source distribution or initial data is u/2, half of the 
propagation speed of the medium. The method further assumes that the 
ensemble of backscatter responses is itself a wave whose propagation is 
governed by the wave equation in the time domain or the Helmholtz equation 
in the frequency domain. The reflectors in the subsurface are, therefore, 
imaged by tracing the data back to their origin; the support of the source in 
the frequency domain or the support of the initial data in the time domain is 
the reflecting surfacds). As with the discussion of inversion earlier, we start 
with a linearized theory with a constant reference speed and then “bootstrap” 
to variable reference speed through various devices. 

The first premise of wave equation migration is strongly supported by the 
representations arrived at via the Kirchhoff approximation (8.4.10) or the 
Born approximation (9.3.10). The second premise will be confirmed later as a 
leading order high-j’requency asymptotic result. 

More recently, migration techniques based on Fourier analysis [Stolt, 
19781 and the Kirchhoff representation [Schneider, 19781 have been 
introduced. 

All three migration methods successfully image the subsurface. However, 
in these methods, while it is assumed that the support of the source distri- 
bution is the reflector, the relationship between the source strength and the 
reflection strength is not established. Nonetheless, these methods are all 
demonstrablv reflector imaging methods. 

MIGRATION DEDUCED FROM THE KIRCHHOFF APPROXIMATION 

We shall show now that the basic premises of wave equation migration can 
be deduced from the Kirchhoff representation of the backscattered field in a 
constant background medium. To do this. we begin from that Kirchhoff 
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representation (8.4.10). We assume that L is the reflecting surface we wish to 
image. We introduce 

w(5;w) = -iw- u,(x; 6; 0). (9.3.23) 
aw 

We remark that the kernel of the Kirchhoff approximate integral representa- 
tion for this function, deduced from (8.4.10). very nearly has the free-space 
Green's function with sound speed 4 2  as integrand: 

(9.3.24) 

We take the point of view now that 5 is a backscatter point in three- 
space--g = (t1, t2,  t,)-and that w(5; w) is known on the surface t3 = 0. 
We shall apply the Helmholtz operator with sound speed 4 2  to this repre- 
sentation. Before doing so, however, let us consider the asymptotic order in w 
of the function w(5; 0). If we think of applying the method of stationary phase 
to the integral in (9.3.24), then we find that w(5; w)  = O(1) in w. Consequently, 
thinking of w(5; co) as represented by a wave series as in (8.2.2), we know that 
the leading order terms after applying the Helmholtz operator to w(g; co) will 
be O(w2)  and O(o), as in (8.2.3). By retaining these two orders, we shall have 
enough information to estimate the phase and leading order amplitude of 
w ( 5 ;  w)  or, equivalently, a wave equation that will produce this phase and 
leading order amplitude. Therefore, in the remainder of this discussion, we 
neglect terms that do not contribute to the two orders indicated and find that 

2 ior jc  ] dS .  (9.3.25) 
= s l L [ - 8 ( x  - 6)RA.E. - --E.*VV,[RA.i]--- 2iw 

c r 

The subscript < on the differential operators is to remind the reader that the 
differentiations are to be carried out with respect to 6. 

The expression i*V,[RB.P] is equal to zero. To see why, note first, from 
Exercise 8.22a, that R is a function of 8.P. The vector A is independent of 5 ;  
it is a function of x. The vector i is a unit vector whose gradient is orthogonal 
to i. Thus, i * V,P = 0 and so does P*V, [a * P I .  Since R depends on 6 totally 
through B -  i, the bracketed expression in the second line has zero derivative. 

Thus, let us focus our attention on the first line in (9.3.25). We need only 
concern ourselves with points near the surface S, where we may introduce a 
local coordinate system to simplify our analysis. Let 5 be close enough to S 
so that we can uniquely identify a point P on S for which the normal through 
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P also passes through 5. Introduce a local coordinate system in which one 
coordinate is distance along that normal and the other two coordinates are 
parameters on S along lines of principal curvature from P.  The three- 
dimensional Dirac delta function is equally a three-dimensional delta 
function in these new coordinates or a product of three one-dimensional 
delta functions in these coordinates. 

The pair of delta functions in the surface variables simply evaluates the 
surface integrand at the point P. [Had we not made the coordinates arc- 
length variables at P, we would have had dS = &do, do,, but the surface 
product of delta functions would have had a compensating factor of 1/& 
arising from the rule (2.1.16) for transformation of coordinates for delta 
functions.] 

At P,  P = -d and R = R, ,  the normal reflection coefficient given by 
[cI - c]/[cl + c] if we define c1 as the velocity below the interface. Thus, 
we conclude that 

The product Rn6(r,,) is just the reflectivity function. Thus, we have verified 
that the function w(6; w), related to u,(x; 6; w) through (9.3.23), does, indeed, 
satisfy the Helmholtz equation with a source distribution with support on 
the reflecting surface. Furthermore, we have quantified the relationship 
between the source strength and the reflection strength. 

Let us define W(6, t )  as the inverse Fourier transform of w(6; w). Then we 
can think of the problem for w ( 5 ; w )  as having been deduced from the 
problem for W(6, t ) ,  similar to the result (4.3.2). By comparing the right side 
of (4.3.2) with the right side of (9.3.26), we conclude that a time domain 
problem for W(6, t )  equivalent to the problem for w(6; w) is 

v: - - - W(6, t )  = 0, W(6,O) = 0, W,(5, 0) = 7 RJ(? (9.3.27) [ c: :l:] 

In the frequency domain, we find the reflectivity function by solving an 
inverse source problem with data prescribed on the surface t3  = 0. In the 
time domain, we find the reflectivity function by solving an inverse initial 
value problem, again with data prescribed on the surface 5,  = 0. 

In Exercise 6.22, we demonstrated that, in general, inverse source problems 
for the Helmholtz equation have nonunique solutions. However, that 
demonstration depended on the fact that the w dependence-k = w/c in 
that exercise-in the source was completely general and unknown. In the 
present case, the w dependence is known and multiplicative. By using that 
fact and the fact that the source is located below the observation surface, we 



332 9 Inverse Methods for Reflector Imaging 

outline in the exercises a solution technique. The solution formula is exactly 
the result (9.3.19). 

The inverse initial value problem is a Cauchy problem for the wave 
equation, with only one function W(<,, t2, 0, t )  given on the upper surface. 
In Sections 3.2 and 5.1, we have shown that Cauchy problems, with data 
given on such timelike surfaces, have ill-conditioned solutions that grow 
exponentially. The solution formula (9.3.19) does not exhibit such behavior. 
There are two reasons for this. First, by restricting the dispersion relation 
(9.3.13) to the upper choice, we have regularized the solution and eliminated 
the exponentially growing components of the solution. Of course, in that 
formulation, where we were not tracing a wave, we justified such regulariza- 
tion by the fact that y ( x )  depends on its Fourier superposition over real 
values of k only. In addition, we replaced I x3 1 in (9.3.12) by x3 below that 
equation. We argued that a ( x )  was zero for xj negative. That is equivalent in 
the present analysis to assuming that the wave W(6, t )  is upward propagating 
only. In this case, with a(x)  zero near x3 = 0, we could argue that in the 
Fourier domain, 

w(k, , k , ,  x3 ; w)  = A(k, , k, ; w)e-ik3"3 (9.3.28) 

for x j  near zero and, therefore, that 

(9.3.29) 

Once this derivative is known in the Fourier domain, the inverse transform 
provides the value in the space-time domain. Thus, our assumptions about 
the nature of the solution a ( x )  are equivalent to completing the Cauchy data 
and regularizing the solution of the migration formulation. 

CONSEQUENCES OF A SOLUTION BASED ON THE 
KIRCHHOFF APPROXIMATION 

We now have a solution technique based on the Kirchhoff approximation 
rather than on the Born approximation. That result has important con- 
sequences. In particular, we are no longer so strongly tied to a small reflection 
coefficient at the reflector, since that constraint does not apply to the Kirch- 
hoff approximation. We are, however, still constrained by the requirement 
that the reference velocity be a good guess to account adequately for the 
effects of layers above the reflector in question. This is a matter of ongoing 
research. However, given that caveat, for a reflection coefficient of any size, 
we can now say that the processing (9.3.19) or (9.3.22) yields an estimate of 
the true reflection strength 
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with L! being the relevant velocities on either side of each reflector where the 
theory is applied. 

We derived the result (9.3.19) by starting with a linearized integral repre- 
sentation (9.3.8) of the backscattered field based on the Born approximation. 
The question arises then of whether one can deduce such a formula starting 
from the Kirchhoff approximation. The answer is that this cannot be done 
quite so simply, although our derivation via the mechanism of first intro- 
ducing a differential equation (9.3.26) certainly is equivalent to this process. 

An examination of the Kirchhoff representation of the backscattered wave 
(8.4.10) reveals the source of the difficulty: the dependence of the product 
RB-P on the variable 6 precludes a straightforward Fourier inversion of that 
equation, as was carried out for (8.3.9). However, we note that at the specular 
points. which dominate the backscatter response, A .P = - 1 and Rile? = 

- R,. Indeed, the Green’s function representation of the solution of (9.3.26) 
reflects this approximation. In neglecting lower-order terms when deriving 
(9.3.25) and, hence, (9.3.26), we have effectively made the asymptotic 
approximation of replacing RA - P by - R, . 

We can, nonetheless. deduce a result such as (9.3.19) directly from the 
Kirchhoff integral representation (8.4.10). The derivation is carried out in 
the exercises. 

Exercises 

9.10 Consider the one-dimensional inverse problem 

w2 

v’(4 u ” ( z ;  0) + - u ( z ;  w)  = -S(z),  
d 

where prime means - dz’ 

z I 0. 

1 1 
~ = T [ l  + a(z) ] ,  z > 0. 
v”z) cg 

(a) Set 

u(z;  0) = u,(z; 0) + u,(z; 0), 

with 

u;’(z; 0) + (02/c;)u,(z;  0) = -S(z). 

Show that 

u i ( z ;  co) + (W’/c;)u&; 0) = -(w’/c;)Ix(z)[uI(z; 0) + %(z; co)] 
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and that the linearized equation for u,(O; w)  has the solution 

u,(O; W )  = w2 .(z) u:(z; w)  dz. J: co 

(b) For co = const, show that 

with solution 

with U,(O, t )  the inverse transform to the time domain of u,(O; w). 

this section, 
(c) Show that for a one-dimensional reflectivity function, defined as in 

9.11 
dent variable z defined by 

For the same problem as in Exercise 9.10, introduce the new indepen- 

and set 

u(z(z) ;  0) = w(z; w), u(z(.)) = c(z). 

(a) Show that the problem for w(z; w) is 

W(Z; W )  + w2w(7; W )  - r(7)qz; W )  = - t~(o)d(~) ,  

i.(4 d r (z)  = -, where the overdot means - 44 d z *  
(b) Set 

w(z; 0) = w,(t; 0) + w&; w), q r ;  0) + wZw,(r; 0) = -V(O)d(?). 

Show that the linearized equation for w,(z; w) has the solution 

iu(0) w,(O; w) = - 4w Jo r(z)e2iar d7, 

with inversion 



9.3 The Seismic Inverse Problem 335 

The implicit solution for u(z) is then given by 

z = Ji c (z ' )  dz', 

The solution T(z) has been shown to produce a more accurate reconstruction 
of the velocity than the solution a(z). 
9.12 In Section 8.4, it was shown that the width of the main lobe of a band- 
limited delta function is t = l /[f ,  + fO]. Suppose two nearby reflectors 
are such that the zeros of their main lobes just touch. Show that this corre- 
sponds to a layer width between the the reflectors of c/[fl + fO] and that 
for the values fo = 10 Hz, f l  = 40 Hz, and c = 3000 m/s, this yields a layer 
width of 60 m. This is an example of the constraints on resolution of nearby 
reflectors. 
9.13 Follow the discussion after (9.3.20) to carry out the calculations that 

c(z) = o(o)er(,), u(z(z)) = c(z). 

yield (9.3.2 1). 
9.14 Suppose that 
are given by 

the backscattered data from an array of experiments 

(a) Use the ray method to show that this is the leading order back- 
scatter response from a spherical domain of radius a, centered at depth H ,  
with reflection coefficient R. 

(b) Let Ra remain finite while a -+ 0. Show that in this limit, the arrivals 
or events at the upper surface occur at the times t = 2p /c  at the distance p 
from the origin on the upper surface. Plot the surface of arrivals in a space- 
time plot in which the vertical axis is c t /2  and the horizontal axes are the 
coordinates and t2 .  Confirm that the surface is one sheet of a two-sheeted 
hyperboloid of revolution, which has as asymptote the right circular cone 
with opening angle whose tangent is Zplct. 

(c) Return to nonzero a Substitute the data for U&, t )  into the right side 
of (9.3.19) and obtain the left side asymptotically. Proceed to carry out the 
calculation as follows. Use the Dirac delta function to compute the time 
integral. Scale the variables k by k = Iwl/c,. and introduce the polar 
coordinates H and 4:  

k ,  = k cos 4 sin 0, k ,  = k sin 4 sin 8, k ,  = k cos 8. 

Now carry out the integrations in 8, I$, and 4 by the method of stationary 
phase. The remaining integral in k will be recognized as the band-limited 
reflectivity function multiplied by 4. 
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9.15 
integral with respect to o. 

integrate by parts. Rewrite the result as an integral in k,  to obtain 

In (9.3.19). use the dispersion relation to rewrite that integral as an 

(a) Interpret the multiplication by t as a derivative with respect to o and 

B ( y )  = us((, t)B(y - 6, t) d 5 i  d 5 2  dt- s 
with 

B(Y, t )  = ~ 32y3 j d k ,  dk ,  dk ,  exp(2i{k, y ,  + k 2 y 2  - k ,  y , }  + io t ) .  

In this form, the reflectivity is seen to be an operator on Us itself rather 
than on tUs.  

(b) Consider the representation (2.4.6) of V ( x , t ) ,  which was shown in 
(2.4.13) to be the three-dimensional Green's function G(x, t ) .  Rewrite the 
denominator of the integrand as (ck sign k , ) 2  - 02, and calculate the 
integral as a residue sum at the zeros of this expression to obtain 

n2 

G(x, t) = G, (x, t )  + G-(x, t), 

l i k l  d k 2  dk3  ei{k'xTckzsignk3), , 0. G,(x,t) = k- 1 6n3 ic s k sign k ,  

[Remark:  The k ,  dependence in the phase is [ I  k ,  I x, T ckt ]  sign k,. That 
is, the Green's function is decomposed by this device into a down-going 
wave G, and an up-going wave G-  .] 

(c) In G, , differentiate with respect to t and make the change of variable 
of integration from k ,  to - k ,  to obtain the result 

9.16 (a) Write the Green's function representation of the solution to 
(9.3.26) under the assumption that the medium is homogeneous, with constant 
sound speed c. Set 5 ,  = 0 in that solution, and take the Fourier transform in 
the transverse variables, as in (9.3.1 1). Obtain the result 

N k , ,  k 2 ,  0; w)  = ( o / 2 n c 2 k ,  ) R , W ,  

with k ,  defined by (9.3.13). In this result, it should also have been necessary 
to identify I y ,  I = y ,  as in this section. 

9.17 
(b) Show that this solution for R,y,(y)  agrees with (9.3.17). 

Rewrite the result of the preceding exercise as 



References 337 

with 

Use for %(x; 6; w )  the Kirchhoff approximate backscatter field (8.4.10), 
thereby obtaining a sevenfold integral in 6, k, and cr for p(y). Introduce the 
polar transformation of Exercise 9.14. Calculate the integrals in 8 and 4 by 
stationary phase. Now calculate the integrals in 4, and t2  by the method of 
stationary phase. Finally, calculate the integrals in o1 and o2 by the method 
of stationary phase. In this last stationary phase, the previous conditions of 
stationarity make the chain rule differentiations of the phase with respect 
to 6 at the stationary point easier to calculate. The stationarity conditions 
require that k, y - x, and 6 - x all coalign along the normal from the 
scattering surface through the output point y. The actual output is P(y) 
scaled by the ratio of distances along the normal from x to 6 and from x to y. 
Note that this ratio is equal to unity on the scattering surface. 

References 

Berkhout. A.  J. [1980]. “Seismic Migration: Imaging of Acoustic Energy by Wave Field Extrap- 

Bleistein, N. (19761. Physical optics farfield inverse scattering in the time domain, J .  Acousl. 

Bojarski. N. N.  [1967]. Three Dimensional Electromagnetic Short Pulse Inverse Scattering. 

Bojarski, N. N. (19681. Electromagnetic Inverse Scattering Theory. Spec. Proj. Lab. Rep. 

Bqjarski, N.  N. [1982]. A survey of the physical optics inverse scattering identity, IEEE Trans. 

Claerbout, J .  F .  (19711. Toward a unified theory of reflector mapping, Geophysics 36,467-481. 
Claerbout, J. F. [ 19761. “Fundamentals of Geophysical Data Processing.” McGraw-Hill, New 

Cohen, J .  K., and Bleistein. N. [1979]. The singular function of a surface and physical optics 

Cohen, J .  K., and Bleistein, N. [1979]. Velocity inversion procedure for acoustic waves, Geo- 

Lewis, R. M. [1970]. Physical optics inverse diffraction, IEEE Trans. Anrennas Prupag. AP-17, 

Mager, R .  D., and Bleistein, N. [1978]. An examination 01. the limited aperture problem of 

Schneider. W. A. [1978]. Integral formulation for migration in two and three dimensions, 

Stolt, R. H. [1978]. Migration by Fourier transform, Geophysics 43,?3 48. 

olation.” Dcvelopmcnts in Solid Earth Gcophysics, Vol. 12. Elsevier, New York. 

Soc. Am. 60, 1249-1255. 

Spec. Proj. Lab. Rep. Syracuse Univ. Res. Corp., Syracuse, New York. 

Syracuse Univ. Res. Corp., Syracuse, New York. 

Antennas Prupag. AP-30.980-989. 

York. 

inverse scattering, Waoe Motion 1, 153-161. 

physics 44, 1077-1087. 

308-314. [Correction, AP-18, 194.1 

physical optics inversc scattering, IEEE Trans. Antennas Propag. AP-26, 695-699. 

Geophysics 43,49-76. 



This page has been reformatted by Knovel to provide easier 
navigation. 

INDEX 

Index Terms Links 

A 

Adjoint operator 121 

Anticlinal  293 

Ascent, direction, path 212 

Asymptotic sequence 70 

Asymptotically equal 69 

Auxiliary sequence 71 

B 

Bessel functions 196 198 

Bicharacteristics 101 

Bojarski’s POFFIS identity 319 

Boundary curves, between hill and valley 213 

Buried focus  295 

C 

Cauchy data  91 

Cauchy–Kowaleski theorem 91 

Cauchy principal value 59 

Cauchy problem 91 

Causality  104 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Caustic   25 

Center of curvature 287 

Characteristic 

 base curves 2 

 curves  2 

 function  303 

 initial data 5 

 point  5 

 speed  101 

 strip   13 

Characteristics 101 

 method of 3 16 

Complete set of functions 112 

Conoidal solution 20 269 

Creeping wave 30 276 

Critical angle 249 

Critical points 74 83 

Critically reflected, refracted, transmitted ray 29 

Curvature  287 

Cylindrical wave 31 194 

D 

d’Alembert solution 103 

Delta function 

 band-limited 290 

 cylindrical coordinates 49 

 spherical coordinates 50 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Descent, direction, path 212 

Diffusion equation 93 

Digamma function 208 

Dirac delta function 46 

Direct scattering problems 160 

Dirichlet boundary condition 165 

Dispersion relation 134 

Domain of dependence 5 104 

Doublet, band-limited 295 

E 

Edge-diffracted wave 276 

Edge diffraction 34 

 coeficient 279 

Edge of regression 25 

Eigcnthnction expansions 112 

Eigenfunctions 112 

Eigenvalues  112 

Eikonal equation 18 27 146 258 

Elliptic partial, differential equation 93 

Envelope solution 7 

Evanescent wave 254 276 

F 

Far-field scattering amplitude 184 

Fermat’s principle 34 

 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Fourier transform 53 

 half   54 

 multidimensional 61 

G 

General solution 19 

Geometrical optics 33 

Geometrical theory of diffraction 33 276 

Goursat problem 107 

 characteristic 108 

Green’s first identity 166 

Green’s function 130 

 Helmholtz equation 178 

 Klein–Gordon equation 157 

 Laplace’s equation 172 

Green’s second identity 166 

Green’s theorem 166 

Group speed  136 

H 

Hadamard well-posedness 91 

Hankel function 236 239 

Head wave  30 249 

Heat equation 93 

Heaviside function 48 

 

 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Helmholtz equation 92 

 cylindrical coordinates 194 

 spherical coordinates 197 

Hill    213 

Hyperbolic partial differential equation 93 

I 

Impedance boundary condition 168 

Incident wave 21 158 

Index of refraction 18 

Initial boundary value problem 94 

Inverse scattering problem 160 

Inverse source problem 160 

J 

Jordan’s lemma 64 220 

K 

Kirchhoff approximation 283 

Klein–Gordon equation 125 

L 

Laplace operator 02 

Laplace’s equation 92 

Large O   67 

Lateral wave  30 249 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Legendre functions, associated 199 

Legendre polynomials 198 

Limited aperture 303 

M 

Migration  329 

Mixed boundary condition 165 

Monkey saddle 216 

N 

Neumann boundary condition 165 

Neutralizer, van der Corput 75 

Nonradiating sources 202 

O 

Order estimates 68 

Orthonormal set or functions 112 

P 

Parabolic partial differential equation 93 

Phase speed  134 

Physical optics far-field inverse scattering 312 

Plane wave(s) 31 192 

POFFIS identity 315 

Potential equation 92 

Principal curvatures 287 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Principal directions 287 

Principal radii of curvature 287 

R 

Radius of curvature 287 

Range of influence 5 104 

Ray data   268 

 line source 272 

 point source 270 

 reflected wave 275 

 transmitted wave 275 

Ray equations 259 

Rays   19 

Reduced wave equation 92 

Reflected wave 21 248 273 

Reflection coefficient 275 280 299 

Reflectivity function 314 

Reflector imaging, seismic inverse problem 323 

Refracted wave 253 

Resolution  302 

Riemann function 121 124 128 

S 

Saddle point  216 

 method  228 

Scattered wave 158 

 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Scattering  31 

 by a circular cylinder 196 

 by a half space 241 

 by a sphere 200 

Scattering amplitude 285 

Self-adjoint  124 

Sifting property 46 

Sign(x)   59 

Singular function 51 302 

 aperture-limited 308 

Slowness  259 

Small O   68 

Smooth-body diffracted wdve 276 

Smooth-body diffraction 30 

Snell’s law  253 

Sommerfeld radiation condition 182 

Spacelike initial surface 148 

Spectral density 54 

Spherical harmonics 199 

Spherical waves 197 

Stationary phase formula 79 80 81 

 multidimensional 88 

Stationary point 77 83 

 simple  84 

Steepest descent, ascent 

 directions 212 

 formulas  226 227 228 

 paths  213 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Steepest descents, method of 230 

Stokes lines  139 

Stokes phenomenon 139 230 

Synclinal  293 

T 

Timelike initial surface 148 

Totally reflected wave 29 

Transmission coefficient 275 280 

Transmitted ray 29 

 wave  28 252 273 

Transport equation 259 261 

Two and one-half dimensions 327 

U 

Ultrahyperbolic partial differential equation 93 

Uniqueness 

 Helmholtz equation 169 

 wave equation 152 

V 

Valley   213 

W 

Watson’s lemma 205 

Wave equation 92 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier 
navigation. 

Well-posedness 91 

WKBJ connection formulas 142 


	Preface�
	Contents
	1 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS�
	1.1 First-Order Quasi-Linear Differential Equations�
	1.2 An Illustrative Example�
	1.3 First-Order Nonlinear Differential Equations�
	1.4 Examples-The Eikonal Equation-and More Theory�
	1.5 Propagation of Wave Fronts�
	1.6 Variable Index of Refraction�
	1.7 Higher DimensionsFirst-Order Quasi-Linear Differential Equations References�
	References�

	2 THE DIRAC DELTA FUNCTION,FOURIER TRANSFORMS, AND ASYMPTOTICS�
	2.1 The Dirac Delta Function and Related Distributions�
	2.2 Fourier Transforms�
	2.3 Fourier Transforms of Distributions�
	2.4 Multidimensional Fourier Transforms�
	2.5 Asymptotic Expansions�
	2.6 Asymptotic Expansions of Fourier Integrals with Monotonic Phase�
	2.7 The Method of Stationary Phase�
	2.8 Multidimensional Fourier Integrals�
	References�

	3 SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS�
	3.1 Prototype Second-Order Equations�
	3.2 Some Simple Examples�
	References�

	4 THE WAVE EQUATION IN ONE SPACE DIMENSION�
	4.1 Characteristics for the Wave Equation in One Space Dimension�
	4.2 The Initial Boundary Value Problem�
	4.3 The Initial Boundary Value Problem Continued�
	4.4 The Adjoint Equation and the Riemann Function�
	4.5 The Green?ˉs Function�
	4.6 Asymptotic Solution of the Klein-Gordon Equation�
	4.7 More on Asymptotic Solutions�
	References�

	5 THE WAVE EQUATION IN TWO AND THREE DIMENSIONS�
	5.1 Characteristics and 111-Posed Cauchy Problems�
	5.2 The Energy Integral, Domain of Dependence, and Uniqueness�
	5.3 The Green?ˉs Function�
	5.4 Scattering Problems�
	References�

	6 THE HELMHOLTZ EQUATION AND OTHER ELLIPTIC EQUATIONS�
	6.1 Green?ˉs Identities and Uniqueness Results�
	6.2 Some Special Features of Laplace?ˉs Equation�
	6.3 Green?ˉs Functions�
	6.4 Problems in Unbounded Domains and the Sommerfeld Radiation Condition�
	6.5 Some Exact Solutions�
	References�

	7 MORE ON ASYMPTOTICS�
	7.1 Watson?ˉs Lemma�
	7.2 The Method of Steepest Descents: Preliminary Results�
	7.3 Formulas for the Method of Steepest Descents�
	7.4 The Method of Steepest Descents: Implementation�
	References�

	8 ASYMPTOTIC TECHNIQUES FOR DIRECT SCATTERING PROBLEMS�
	8.1 Scattering by a Half-Space: Analysis by Steepest Descents�
	8.2 Introduction to Ray Methods�
	8.3 Determination of Ray Data�
	8.4 The Kirchhoff Approximation�
	References�

	9 INVERSE METHODS FOR REFLECTOR IMAGING�
	9.1 The Singular Function and the Characteristic Function�
	9.2 Physical Optics Far-Field Inverse Scattering (POFFIS)�
	9.3 The Seismic Inverse Problem�
	References�

	Index�



