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Preface 

The disciplines of applied science and engineering have become increasingly 
mathematical in content during the past twenty-five years. The various 
branches of geophysics are no exception to this trend. 

Since 1921, when J. Clarence Karcher [Karcher, 1993] first used the reflec­
tion seismic method for petroleum exploration, geophysicists have sought 
better ways of employing seismic data to gain information about the Earth's 
subsurface. While the reflection seismic method is still used primarily by 
the oil and gas industry for the detection of hydrocarbons (petroleum and 
natural gas) the technique has been applied successfully to image struc­
tures located in environments ranging from the Earth's near surface (for 
engineering geophysics applications), to the deeper crust and upper mantle 
(for solid-Earth geophysics applications). Essentially the same technique, 
though based on different physics, has been applied in the diverse fields 
of ground penetrating radar, and acoustic and ultrasonic imaging, as prac­
ticed in the fields of materials science and medicine. Generically, all of these 
techniques are special cases of "inverse-scattering" imaging. While our text 
deals only with the seismic applications of inverse scattering, the mathe­
matical results we present here have applicability in these other fields as 
well. 

In its raw form, the data collected in seismic surveys offers only a crude 
and distorted view of the subsurface. Techniques, generically called mi­
gration methods, were developed to correct the raw data, to produce 
actual images of geologic structures. From a humble beginning as a graph­
ical method for analog data interpretation, migration has evolved into a 
sophisticated exercise in applied mathematical physics. 



viii Preface 

The push to an increasingly mathematical description of seismic migra­
tion began with the pioneering work of Claerbout, Stolt, Schneider, and 
others in the early 1970s. The results obtained by these investigators were 
based largely on the classical principles of geometrical optics, as well as 
results from signal processing theory. Though intuitively satisfying to the 
geophysicist, many of the early mathematical constructions of migration 
formulas lacked mathematical rigor. The result of these investigations was a 
hodgepodge of formulas that were obviously related but, as a group, lacked 
a firm mathematical foundation. Furthermore, the heuristic nature of these 
formulas made them difficult to generalize, hampering their extension to 
new problems. 

In this text, we present a collection of research results created at the 
Center for Wave Phenomena (CWP), which is currently located the Col­
orado School of Mines, but was founded at the University of Denver. These 
materials represent investigations conducted by the faculty and students of 
CWP from 1977 through 1999. Our goal is to provide a unified approach 
to seismic imaging, formulated as an inverse scattering problem in a small­
perturbation, high-frequency asymptotic regime. Our approach will permit 
the reader to understand the classical results of seismic migration in a way 
that reveals the inherent assumptions that were not explicitly stated by 
the creators of these early results. 

This understanding will carry the reader through the hierarchy of increas­
ingly complicated recording geometries and geologic models. Along the way, 
many of the classical results of seismic migration will appear as special cases 
of the general theory we present. In addition, the reader will see that other 
topics, such as dip-moveout (DMO) processing, wave-equation datuming, 
and offset continuation, also fit naturally in the theoretical framework we 
present. Our intent is that the reader will develop an appreciation for the 
open-endedness of this subject, so that he or she may use the general theory 
we present here as a springboard to many new results. 

This text began as a set of notes created by one of the authors (John 
Stockwell) during the fall semester of 1987, the spring semester of 1988, and 
the fall semester of 1989 for the courses "Mathematical Methods for Wave 
Phenomena," and "Multi-dimensional Seismic Inversion," taught by Norm 
Bleistein of the Center for Wave Phenomena, Department of Mathematical 
and Computer Sciences, Colorado School of Mines. Portions of the text have 
been based on Bleistein's book, Mathematical Methods for Wave Phenom­
ena and the CWP Report #CWP-043, entitled Multi-dimensional Seismic 
Inversion by Jack Cohen and Norm Bleistein. The latter set of notes was 
prepared as part of a short course presented by Cohen and Bleistein at the 
Norwegian Institute of Technology in Trondheim, Norway in 1986. Our text 
is also based on material from the theses of graduate students of CWP, and 
the many technical papers by the professors and students of the group. 

Our primary goal in writing this book is to create a "hard copy" of a 
course successfully taught to hundreds of students over a span of eighteen 
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years, in both full-semester and short-course form. The diverse collection 
of backgrounds of our students has shaped our approach in teaching this 
material. Because the intended audience of this text is composed of peo­
ple with varied mathematical and geotechnical backgrounds, we present a 
mixture of basic and advanced materials, more basic material than would 
be in a purely mathematical treatment of the subject, but more advanced 
material than geophysicists typically see. Thus, we intend that our text 
bridge the gap between the theoretically minded applied-math community 
and the applications-minded geotechnical community. 

This is a mathematical-geophysics textbook, however. It is not a partial 
differential equations book, nor is it a book on the mathematical theory of 
inverse methods. We use the word Mathematical in the title as a geophysi­
cist, engineer, or implementation-oriented applied mathematician might 
use it. Consequently, some mathematical precision is sacrificed to avoid 
losing the thread of the story we are telling. On the other hand, we provide 
comments and citations to the literature to direct the interested reader 
to more rigorous sources. Also, appendices are supplied to familiarize the 
reader with the topics of distribution theory, causal Fourier transforms, 
ray theory, and dimensionless versus dimensional variables-topics that 
are used in the main part of the text, but not discussed at length. 

Chapter 1 begins with a heuristic and semihistorical overview, empha­
sizing the hierarchical structure of the subject of seismic migration, as seen 
from the mathematical perspective of inverse problems. This hierarchy is 
extended to delineate a plan for the investigation of more complex aspects 
of the problem. We also describe the fundamental seismic experiments that 
provide the data available for inversion, as well as an outline of the fun­
damental geometrical construction that leads to an image of the Earth's 
interior from a simple seismic experiment conducted in a correspondingly 
simple Earth model. 

In Chapter 2 we outline our basic approach to the creation of seismic 
imaging formulas as Fourier-like integral equations, derived in the simplified 
setting of lD wave propagation. To do this, we employ the classical methods 
of perturbation theory (the Born approximation) and Green's theorem to 
generate lD modeling and inversion formulas. We rely on the simplicity of 
lD to introduce many of the concepts that we employ in later chapters. We 
do not, however, present any results that depend on characteristics that are 
exclusive to the problem of one-dimensional wave propagation. 

Chapter 3 deals with the derivation of Fourier-like inversion formulas 
in higher dimensions for the migration of zero-offset, constant-background 
seismic data. This is really just the 3D application of the ideas introduced 
in Chapter 2. Both 3D and 2.5D inversion formulas for homogeneous me­
dia are derived, with several of the classic migration formulas (such as 
those of Stolt and Schneider) appearing as special cases of the more gen­
eral theory. (The terminology 2. 5D will be explained in context in that 
chapter.) We test the general theory analytically by applying the inversion 
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formulas to Kirchhoff-approximate data, with the resulting integrals being 
approximated asymptotically, under a high-frequency or large-wavenumber 
assumption. Our primary tool for such analyses is the method of stationary 
phase. Because these results are approximate, being based on asymptotic 
methods, we introduce techniques to evaluate the robustness of numerical 
implementations of our formulas. 

In Chapters 2 and 3, we find that our zero-offset migration/inversion 
formulas are Fourier-like integrals, which yield output consisting of a reflec­
tivity function that peaks on the surfaces of reflectors (the singular function 
of the surface), yielding information about the reflection coefficient, but 
which give no information about the smoother wavespeed variability of the 
medium. This is in accordance with practical experience. 

Chapter 4 shows that such results are based on fundamental properties 
of Fourier-like integrals, when evaluated in the large-wavenumber regime. 
In particular, the cascading of forward and inverse Fourier transforms on 
data is found to yield, as the leading-order term, the most singular part 
of the input data, under the large-wavenumber assumption. The most 
singular part of reflection seismic data is the reflectivity function of the 
reflectors-exactly the reflection coefficient times singular function results 
of the previous chapters. Chapter 4 also shows that the effectiveness of the 
inversion formulas we have created is due primarily to their Fourier-like 
nature combined with the assumption of high frequencies. This frees us 
from having to worry about many of the particulars-such as a specific 
wavespeed profile or a specific type of seismic experiment. 

We exploit this freedom to create inversion formulas for heterogeneous 
media with general source-receiver geometries. Chapters 5 and 6 deal, re­
spectively, with 3D and 2.5D formulations of the problem. In Chapter 5, we 
also eliminate, to the extent possible, the small-perturbation assumption 
that was made as a point of departure in Chapters 2 and 3. 

Chapter 7 brings us to the present (2000) by extending the concepts 
and techniques developed in the previous chapters to the more general 
problem of remapping seismic data from one source-receiver geometry to 
another. This general subject contains the specific subtopic of dip-moveout 
(DMO), under the heading of transformation to zero-offset (TZO), but 
contains sufficient generality to be a potential springboard to other data 
mapping techniques, including datuming, offset continuation, and data 
regularization. 

A text such as ours is characterized as much by materials omitted, as 
it is by materials included. We view our text as being introductory, or 
perhaps "classical" in nature, and therefore we do not include material 
about elastic wave propagation, anisotropy, multiple elimination, deconvo­
lutional techniques, and many other topics that are important to seismic 
data processing and are topics of current research. 

Furthermore, there are new mathematical approaches to the subject 
of seismic migration/inversion, which show that the "general" results we 
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present are imbedded in an even more general theory based on pseudod­
ifferential operators and generalized Radon transforms. This direction of 
research began with the pioneering work of Doug Miller, Mike Oristaglio, 
and Gregory Beylkin at Schlumberger c. 1983 and has currently been ex­
tended by Maarten de Hoop, of CWP. Similarly, where the development 
here relies on classical ray theory, on geometrical optics, and (slightly) on 
geometrical theory of diffraction, the newer methodology exploits Maslov's 
method to work around some of the difficulties of ray families in the physi­
cal domain when the Earth structure is complex enough to produce caustics 
in the ray fields from point sources. All of these (and more) are topics of 
ongoing research at the time of this writing. 

One of the coauthors, Jack Cohen, passed away while this book project 
was in progress. Nevertheless, his point of view about exposition, style, 
and content, as conveyed to the other two authors through many years of 
friendship and collaboration, is very much a part of the material that was 
revised and expanded after his death. 

If the book has three parents, it also has many "aunts and uncles." These 
include students who suffered through the underlying course of the same 
title-before there were lecture notes, and while the lecture notes were in 
evolving form. The first students took this course in 1983 with Jack Cohen, 
while the material was in its embryonic form; lectures presented one day 
might be revised a few days later with new insights and new research re­
sults. Students in the last two classes before submission of this manuscript, 
one at the Colorado School of Mines, the other at the University of Camp­
inas in Brazil, provided many constructive suggestions that were directly 
integrated into the more fully developed set of lecture notes. Further, we 
received constructive suggestions from the publisher-reviews. These, too, 
we incorporated. The foremost of our reviewers, most worthy of special 
mention, is Ken Larner, famous for his red pen, sharp eye, and incisive 
remarks. While the red marks do not show in the final text, Ken's hand 
(and red pen) has touched every chapter. We believe that they are all bet­
ter than they might otherwise have been, thanks to Ken's persistence and 
fortitude in working through the book. 

We have also been fortunate to have adequate funding for the students 
and faculty, so that the ideas presented here could be developed. The major 
source of our funding has been the Consortium Project on Seismic Inverse 
Methods at the Colorado School of Mines. We have enjoyed this support 
from the oil industry and its service companies since 1984. We also acknowl­
edge support from the Office of Naval Research, through the Mathematics 
and Ocean Acoustics Programs, and from the Department of Energy. Dur­
ing the fall semester (spring semester in Brazil), 1999, Bleistein taught a 
course using the current draft of this text, then under intense near-final re­
visions, at the University of Campinas in Brazil, under support of FAPESP, 
the research and educational funding agency of Sao Paolo State, Brazil. 
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We have also had support from the Gas Research Institute and the 
SEG Foundation, specifically for the development of the CWP /SU Seis­
mic Unix package. Seismic Unix is a free seismic processing and research 
software environment, created at CWP by Jack Cohen, and currently 
managed by John Stockwell [Stockwell, 1997,1999]. The package may 
be downloaded at no charge, as full source code, from our web site at 
http:/ fwww .cwp.mines.edu/ cwpcodes. 

With all of the help that we received, to the extent that we have not 
fulfilled our expositional goals, the responsibility can only reside with us, 
the authors. If the reader has questions or comments, please send email 
to the authors at mmsimi@dix.mines.edu. For additional information, 
please see our web site at: http:/ fwww.cwp.mines.edu/mmsimi. 

Golden 
Colorado 
February, 2000 

Norman Bleistein 
Jack K. Cohen 

John W. Stockwell, Jr. 



Memorial: Jack K. Cohen 1 

On 24 October 1996, the Colorado School of Mines community lost a great 
friend with the death of Jack K. Cohen. He was 56 years old. Jack received 
his Ph.D. from Courant Institute of Mathematical Sciences, then spent 
16 years at the University of Denver before joining the faculty at Mines 
in 1983. A founding member of the Center for Wave Phenomena at CSM, 
Jack left his immensely human and caring mark on students and colleagues 
within CWP, as well as on mathematicians and geophysicists around the 
world. 

In the late 1970s, Jack co-authored two seminal papers characterizing 
the seismic inverse problem. These works established a mathematical basis 
for some of the algorithms used in seismic imaging. Thereafter, many more 
applied mathematicians and theoretical physicists became involved in re­
search on this problem. Within five years of that work, the SEG Annual 
International Meeting hosted multiple sessions and workshops on the topics 
generated by these papers. 

Jack's skill as an innovator was not limited to the theoretical aspects 
of his work. Jack saw a need for a line of seismic processing software that 
would be freely available to everyone. Starting with a handful of codes writ­
ten by members of the Stanford Exploration Project, with the help of Shuki 
Ronen, Jack created the Seismic Un*x, or SU package. This was long be­
fore the words e-mail, Internet, or free software entered the public lexicon. 
Today, the CWP /SU Seismic Un*x package is freely distributed on the In­
ternet. The package now includes more than 380 individual modules which 
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permit the user to perform many of the common seismic data manipulation 
tasks, as well as provide an environment for the development of new seismic 
software applications. Currently, there are more than 900 known installa­
tions of SU.2 The package is used by petroleum exploration companies, 
government research facilities, and education institutions in more than 37 
countries. Many users are well beyond the seismic exploration community. 

Jack developed an expertise in symbolic mathematical languages, partic­
ularly Mathematica3 With a colleague, Frank Hagin, Jack co-authored five 
versions of a textbook integrating symbolic math software into an under­
graduate calculus program. This interest led Jack to become editor of the 
Classroom Notes column in The Mathematica Journal. 

Jack mastered the subject of wavelet transforms and provided the world 
community with free wavelet software packages written in the Mathematica 
language. 

Jack also became interested in seismic anisotropy and contributed several 
important papers on this complicated subject. His work has provided a 
solid mathematical basis for some existing inversion methods for anisotropic 
media and stimulated new research in anisotropic moveout modeling and 
parameter estimation. 

Jack's broad spectrum of interests spanned the subjects of classical litera­
ture, impressionist art, folk music, jazz, and Brazilian music. He was always 
ready to try new things, both scientific and nonscientific. He learned to ride 
a bicycle at age 37. He was an avid hiker and cross-country skier in his early 
years in Denver. Somewhat later, he started body-building, an activity that 
he maintained up to the time of his death. 

Jack was a compassionate humanist, with a great love of mankind. He was 
popular in the classroom and known for having an off-beat sense of humor. 
At one of the first workshops on inversion at SEG's 1982 convention, a 
colleague asked him for a simple explanation of inversion compared to the 
more accepted "migration" of the geophysics community. Jack promptly 
proceeded to rattle off a list of the then-proponents of inversion and said, 
"Don't you see? Inversion is Jewish migration!" 

He is survived by his wife Diane and daughter Mara. In his memory, Col­
orado School of Mines has established the Jack K. Cohen Memorial Fund 
for undergraduate scholarships. Donations may be sent to the Colorado 
School of Mines Foundation, 93116th Street, Golden, CO, 80401. 

Norman Bleistein 
John W. Stockwell, Jr. 

2 As of August 2000, there are more than 2000 verified installs, in 54 countries. 
3 Mathematica™ is a trademark of Wolfram Research. 
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1 
Multidimensional Seismic Inversion 

Our goal is to present a theory for determining the characteristics of the 
interior of a body based only on observations made on some boundary sur­
face. In particular, we are interested in finding ways of imaging structures 
inside a body. In addition to imaging, we have the more ambitious goal 
of actually determining values of certain material parameters character­
istic to these structures. This problem is encountered in many branches 
of applied science. These include such diverse disciplines as Earth science, 
medicine, materials science, archaeology, and the ocean sciences-just to 
name a few. These disciplines all face the same problem of mapping struc­
tures in environments where it is either impossible or impractical to make 
direct observations. 

A complete treatment of this broad subject would require a discussion of 
a wide variety of techniques and physical settings. We can limit the scope 
of the discussion, however, by identifying one common physical character­
istic that may limit the effectiveness of the many possible techniques-the 
length scale of the targets being studied. Different applications have differ­
ent characteristic length scales. For example, three important geophysical 
applications that have widely differing characteristic length scales are solid­
Earth geophysics, exploration geophysics (in particular, seismic prospecting 
surveys), and engineering geophysics applications. Solid-Earth geophysi­
cists are interested in mapping the entire volume of the Earth, whose scale 
is several thousand kilometers, with the goal of imaging structures on the 
order of a few tens of kilometers to a few hundreds of kilometers in size. 
Exploration geophysicists are interested in mapping structures that are 
localized to a few kilometers in extent, with the desire of locating hydro-



2 1. Multidimensional Seismic Inversion 

carbon deposits measuring a few hundreds of meters to a few tens of meters. 
The scale of engineering geophysics surveys covers only a few hundreds to a 
few tens of meters, with the size of the common targets being on the order 
of a few meters. 

The characteristic length scales encountered in medicine and in the 
nondestructive testing applications of materials science are considerably 
smaller, with targets of interest ranging from a few centimeters to micro­
scopic size. The distinguishing feature of the methods of this text that 
makes them applicable to all of these problems is that the wavelengths of 
the signals in our data are small, in an appropriate sense, compared to the 
length scale of the physical model. 

1.1 Inverse Problems and Imaging 

The approaches to solving the imaging problem are as diverse as the phys­
ical settings mentioned above. Both active and passive measurements of 
either static or time-varying quantities may be used for solving this prob­
lem. This text, however, is confined to active methods that involve the 
introduction of signals that propagate as waves inside the body. These 
waves, in turn, scatter from irregularities present inside the body and are 
subsequently recorded on its surface. 

The waves may be acoustic, elastic, or electromagnetic as long as the 
governing equation is some form of a wave equation. Mathematically, this 
specific type of imaging problem has been successfully treated as an inverse 
problem. 

Imagine that we have an equation or a system of equations, written in 
terms of unknown material parameters, describing the origin and propaga­
tion of scattered waves in a medium. We can pose two types of problems 
with such an equation or system of equations, depending on the type 
of auxiliary data that we have available. In the classical direct problem, 
the material parameters, boundary conditions, and source mechanism are 
known, and the wavefield is the unknown quantity to be solved for. This 
problem is at the heart of any text or course dealing with ordinary or partial 
differential equations. In mathematical physics, the term modeling is usu­
ally applied to this subject, with common applications being the subjects 
of acoustics, fluid dynamics, electrodynamics, or elastodynamics. 

In contrast, this text will deal with the inverse problem. The available 
data are the observations of the scattered wavefield, that is, the wavefield 
after it has interacted with the medium.1 In addition, we may have some 
sketchy information about the wavespeeds in the interior of the body being 

1The issues of scattering theory are broad. See Melrose [1995] and Colton and 
Kress [1983] for different perspectives. 
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imaged, but this information will always be incomplete. The unknowns to 
be solved for are the material parameters and their discontinuity surfaces, 
known as "reflectors." 

Fortunately, many of the tools used in solving the direct problem are 
equally useful in solving the inverse problem. The common techniques asso­
ciated with solving differential equations and integral equations, including 
Fourier theory and asymptotic expansions, will play a significant role in 
our exposition. Thus, we expect the reader to have some familiarity with 
these topics. 

There are many side issues in the inverse-scattering imaging problem 
that may be lumped under the name "signal processing." These issues 
arise because the practical problems of data acquisition often involve noise 
suppression. These techniques, which involve a variety of filtering and de­
convolutional processes, are not closely related to the issues that we discuss 
in this book. Therefore, to concentrate on the fundamentals of the seis­
mic inverse problem, we assume that any corrections in the shapes of the 
waveforms made through signal processing do not adversely influence the 
inversion of the data. As a result, our discussions will carry the implied 
assumption that the waveforms have the shape of bandlimited impulses. 

More problematic are the issues of missing data and incomplete angular 
coverage of the target being imaged. Both of these are important problems 
in inverse-scattering imaging. If data are not sufficiently finely sampled, 
then spatial aliasing will be introduced. Though a number of techniques for 
data interpolation have been invented to deal with this problem, no general 
solution exists. 2 The problem of incomplete coverage is the issue of aperture 
limiting that is discussed in Chapter 4. In each case, we will assume­
as a first approximation-that the data are sufficiently well sampled to 
prevent spatial aliasing, and that targets have sufficient coverage that the 
large-wavenumber (high-frequency) assumption is not violated. 

Fortunately, the techniques described in this book are sufficiently robust 
that the results "degrade gracefully" when the ideal conditions stated above 
are not exactly met-as they never can be in the real world. For example, 
if a surface would be imaged exactly for perfect data, then we seek inverse 
methods that give only a slightly deformed image for slightly noisy data, 
with the error in the image being in proportion to the error in the data. 

This concept is well known in applied mathematics. Mathematicians 
characterize problems as "well-posed" or "ill-posed" according to three im­
portant criteria. If a problem (1) has a solution, (2) that is unique, and (3) 

2Though addressing such issues as those involving the approximation of miss­
ing data is beyond the scope of this text, the related topics of offset continuation 
and data regularization are discussed in Chapter 7 as examples of our general 
approach to data mapping. 



4 1. Multidimensional Seismic Inversion 

depends "continuously" on the data,3 then it is said to be "well-posed." If 
the problem does not meet all three of these criteria, then it is said to be 
"ill-posed." (The term "ill-conditioned" is synonymous with "ill-posed.") 
The criterion of continuous dependence on data is usually the crucial one 
and is closely related to the notion of "graceful degradation" mentioned 
above. While rigorous study of the issue of ill- versus well-posedness is be­
yond the scope of this text, we must admit immediately that some inverse 
problems are ill-posed. This includes the seismic inverse problem. See Ap­
pendix D for further discussion of this important issue. A general guiding 
rule for solving such a problem is "Ask only for what you deserve from 
the data!" Ill-posedness may be built into the mathematics of the problem. 
If this is the case, the course of action is to make reasonable simplifying 
assumptions (if possible) to suppress, or remove entirely, the ill-posedness. 
If the ill-conditioning is related to the characteristics of the recorded data, 
through the presence of noise, for example, then we know that it is not rea­
sonable to expect to recover all information under these conditions. With 
knowledge of the characteristics of seismic data, and knowledge of the ap­
propriate mathematics, the goal of creating a seismic inverse theory that 
"degrades gracefully" can be achieved. 

It is important to distinguish between inverse-scattering methods and 
"generalized linear inversion" methods. Some of these methods are rep­
resented by the broadly used term "tomography." As mentioned above, 
the inverse-scattering method is based on the governing equation (here the 
wave equation) that produces the recorded data, and is therefore a full­
waveform inversion method. The simpler tomographic methods rely only 
on a single attribute of the recorded data such as traveltime or amplitude. 
By assuming that this attribute can be related to the physical parameter 
of interest, it is possible to deduce, via a statistical process such as least­
squares optimization, the "best" model that would produce the observed 
data attributes. Unfortunately, there is the potential for confusion because 
there is a method given the name "diffraction tomography" that is really 
an inverse scattering method [Devaney and Oristaglio, 1984]. 

1.2 The Nonlinearity of the Seismic Inverse 
Problem 

If the direct scattering problem is formulated so that the unknown material 
parameter is represented as a perturbation from a known "background" pa-

3In the language of mathematicians, the term "data" does not refer exclusively 
to physical measurements, but may refer to any known quantity that pertains to 
a given problem. This is often a source of confusion, because many geophysicists 
use the term exclusively to refer to data collected in the field. 
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rameter profile, then a wavefield representation is obtained that is the sum 
of a term that depends linearly on the perturbation in the medium param­
eters plus a term that depends nonlinearly on those parameters. The linear 
part of the field may be loosely interpreted as that part of the scattered 
field largely composed of once-reflected waves, while the nonlinear part may 
be thought of as being largely composed of the combined effects of multiple 
reflection. This second term is the product of the unknown perturbation 
and the unknown scattered field at depth-in this case, this product is the 
mathematical representation of the nonlinearity in the physical problem. If 
this second term can be assumed to be small, then it may be ignored in favor 
of the linear term. The linearized inversion formula that is obtained from 
the linearized solution to the direct scattering problem may be thought 
of as a back-propagator, in that it approximates a reversal of the process 
that propagated the signal from the scatterers to the receivers. Here, we 
are assuming that the signal consists only of single-scattered arrivals. The 
effect of the inversion formula is to take a collection of time-varying data 
recorded at positions on the surface of the Earth and convert it into a map 
of estimated parameter values in the Earth's interior. 

This process provides an approximate image of the interior structures of 
the subsurface. Because the back-propagation process is performed using a 
formula based on the wave equation, the amplitudes of the waveforms on 
this image can be related to the variation of the Earth parameters from 
their assumed background values. An important result of this theory is 
that a relationship can be established between these amplitudes and the 
reflection coefficients of reflector surfaces in the Earth. 

Finally, we should note that there are full waveform inversion methods 
that address the nonlinearity of the inverse problem through optimization. 
See, for example Mora [1987], Symes [1990], Tarantola [1987], and Sabatier 
[1987] . 

1.3 High Frequency 

The mental picture of the solution of the inverse-scattering problem, repre­
sented as an imaging problem, is based on a "geometrical optics" approach 
to wave theory. For example, the data recorded in a seismic survey can be 
interpreted as being largely composed of primary reflections from sharply 
defined discontinuity surfaces (reflectors) buried in the Earth. It is these 
reflectors that are to be imaged. 

Much has been accomplished by assuming that the rules governing the 
scattering of waves from boundaries in the real Earth are, as a first ap­
proximation, the same as the rules governing the scattering of plane waves 
from plane boundaries between constant-velocity acoustic media. These 
simple ideas of the reflection and refraction of plane waves may be applied 
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to heterogeneous media with curved reflectors only when the waves are of 
sufficiently "high frequency." 

The term "high frequency" does not refer to absolute values of the fre­
quency content of the waves. What must be considered is the relationship 
between the wavelengths (or correspondingly the wavenumbers) associated 
with the frequencies available in the data, and the natural length scales 
of the medium. This relationship is naturally stated in terms of reciprocal 
wavenumber, a quantity proportional to the wavelength of some relevant 
reference wave. In order for the data to be called "high-frequency data," 
the length scales of interest in a medium must be "many" (in practice, at 
least three or 1r) times as large as the predominant reciprocal wavenumber 
propagating in the medium (length-scale ~ 1r /wavenumber ~ length­
scale times wavenumber ~ 1r). When considering the resolution of closely 
spaced reflectors (delineating the top and bottom of a rock unit), for ex­
ample, the high-frequency condition translates roughly into the familiar 
Rayleigh criterion for resolution (bed thickness ~ wavelength/4). 

As stated earlier, the theory does not fail catastrophically if the high­
frequency condition is not exactly met. Failure of the theory takes the form 
of incorrectly predicted amplitudes and a growing error in the location of 
reflectors. The minimum sizes that can be imaged is often expressed as a 
fraction of the characteristic wavelength that is available for imaging. A 
typical criterion for the resolution of narrowly separated beds is L = >.j 4, 
where L is a physical length parameter and >. is the wavelength of the 
characteristic signal; however, because of the graceful failure of the theory, 
it may be possible to detect (without actually being able to resolve) narrow 
separations of perhaps as little as L ~ >./12.4 

Under the high-frequency approximation, the propagation of wave en­
ergy may be modeled approximately as the propagation of "wave packets" 
along definite paths called "rays." The wave packets, in turn, define definite 
surfaces called "wavefronts." Simple scattering mechanisms such as reflec­
tion, refraction, and transmission as governed by Snell's law may be used to 
describe the interaction of waves with smooth portions of the reflector. In 
addition, the geometrical theory of diffraction can be used to successfully 
model wave interaction with the edges of reflector surfaces, or a variety of 
other situations in which the simple approximations derived from modeling 
wave propagation as the interaction of plane waves with planar interfaces 
is too simplistic. 

Mathematically, the high-frequency approximation implies use of asymp­
totic methods to create high-frequency formulations of the forward and 
inverse problems. At our disposal are a collection of well-established re-

4The value of .A/12 was obtained empirically by one of the authors using 
the Ames Package to model pinchouts and likely represents an extreme that is 
unattainable in the real world. 



1.4 Migration Versus Inversion 7 

sults that we use frequently. These include a small-perturbation assumption 
called the Born approximation, a high-frequency asymptotic result called 
the WKBJ-approximate Green's function, and an assumption relating high­
frequency incident and scattered fields called the Kirchhoff approximation. 
An important method for finding approximate analytic solutions of Fourier­
like integrals, called the method of stationary phase, will prove to be an 
invaluable tool for testing inversion formulas, as well as for extending those 
formulas to specific applications. 

1.4 Migration Versus Inversion 

Our primary interest is the formulation of inversion theory with applica­
tion to the problem of seismic exploration. 5 The petroleum industry relies 
heavily on seismic imaging techniques for the location of hydrocarbons. It 
has been the fashion in the industry to distinguish between two classes of 
techniques called, respectively, migration and inversion. 

Migration began as a graphical method [Hagedoorn, 1954] for interpret­
ing analog seismic data, 6 based on applying the simple rules of geometrical 
optics, which is equivalent to making a high-frequency assumption. The 
problem was further simplified by considering the Earth to be a multilay­
ered fluid, rather than a fully elastic medium. We may illustrate the basic 
idea by considering a simple example of seismic data recorded over a sin­
gle interface between two media having different constant wavespeeds. The 
multilayer fluid assumption means that the wave propagation is governed by 
scalar wave theory. Thus, the waves are compressional, or P-waves, as these 
waves are called in seismology. A further simplifying assumption is that the 
P-wave source and the seismic receiver are located at the same place on the 
Earth's surface. Common names for this recording geometry in geophysics 
are zero-offset or backscatter, with the terms "monostatic" or "pulse-echo" 
being commonly used in other disciplines. This simple recording geometry 
is not the only possible one, by any means. 

We can deduce the approximate appearance of the recorded data by ap­
plying the rules of geometrical optics, which describe waves through the 
geometrical constructions of raypaths and wavefront surfaces-all high­
frequency concepts. Under these rules, the reflections from smooth portions 
of reflector surface differ markedly from those from "corners" or disconti­
nuities of the slope of the reflector surface. The requirement that incident 
and reflected ray angles must be equal means that only rays normally (per-

5See Dobrin [1976] or Telford et. al [1976] for an introduction to the exploration 
seismic method. 

6See Hagedoorn [1954] and Musgrave [1961], or Slotnick [1959] for further 
information regarding classic analog interpretation methods. 
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pendicularly) incident on the smooth portions of the reflector will return 
a signal to the receivers. If the scatterer is an isolated point, an edge, or a 
corner, however, energy will be backscattered along any ray that impinges 
on it. The more a reflector deviates from being a planar surface, the more 
complicated the pattern of the scattered waves. Repeating such an experi­
ment many times along a straight line on the surface of the model produces 
a line profile of data that can be used to create an image of the "vertical 
slice" through the Earth that the model represents. The result of making 
such a line profile may be seen in Figure 1.1. The transverse coordinate is 
the location of each coincident source-receiver pair; the vertical axis is time. 
The response to an impulsive source (represented by a "wiggle trace") is 
drawn vertically at the source-receiver coordinate. Deviations to the right of 
vertical represent the positive amplitudes of the returned signal; deviations 
to the left are the negative responses. 7 

There is coherence visible in the ensemble of responses from all source­
receiver pairs. In fact, the data display represents a crude image of the 
subsurface. However, this data-image of the subsurface is markedly different 
in appearance from the model in many respects. Because we want the image 
to look as much like the model as possible, the need for processing the data 
is apparent. The complexity of the data occurs because few of the reflected 
arrivals come from points on the reflector surface directly below the points 
where the data were recorded. While it is true for a constant-wavespeed 
medium that equal traveltime implies equal distance of travel, the direction 
from which each ray has come is not specified. Thus, traveltime on the 
seismic section cannot be directly translated into depth in the model. The 
question is this: What process can put the arrivals in their proper x, z 
positions of origin on the reflector surface as to correctly map the reflector? 

The vertical axis on the seismic section, such as Figure l.la, represents 
two-way traveltime. This is the time that it takes for the signal to travel 
from the source at the top of the model down to a reflecting position in the 
Earth model and return to the receiver, which, for this example, is located 
at the same place as the source. We have to translate these times into 
distances by assuming a wavespeed for the upper medium. If we scale the 
time on the time section by half the wavespeed, then the vertical "length" 
on that section will be exactly the same as the depth of the original model. 
Note, for example, that the location of the nonzero part of the leftmost data 
trace of the time section in Figure l.la is almost exactly the same as the 
depth to the nearly horizontal left end of the reflector in Figure l.lb. This is 
a consequence of the particular scaling that we have used in these two plots 
and allows us to view scaled time and vertical distance interchangeably for 

7The exploration seismic community also uses the variable area display, in 
which the area between each wiggle trace and its respective zero line is shaded 
black for one polarity of response. 
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FIGURE 1.1. a) A synthetic zero-offset seismic section and b) the Earth model. 
The synthetic was made with the program CSHOT. 

graphical purposes. (Of course, this assumes that we know that wavespeed!) 
Indeed, if all of the reflections propagated vertically up to the surface, then 
the scaled time plot would be a graphic display of the (horizontal) reflector 
that produced the time section. However, the propagation is not vertical, 
so we have to do better. 

Each pulselike signal on a seismic trace is called an "arrival" or an 
"event." Unfortunately, there is no information about the direction from 
which the signals traveled to get to the receiver, so we cannot specify the 
reflection point based solely on data from a single seismic trace. Only if 
the reflector is horizontal will the seismic arrival on this scaled time plot 
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correspond to the reflector location. In our constant wavespeed example, 
if we don't know the actual location of the reflector, the best we can say 
is the following: (i) the reflection point lies on a semicircle centered on 
the source-receiver position; (ii) the radius of that semicircle is equal to 
the distance computed by multiplying the traveltime of the event by half 
the wavespeed of the medium; (iii) the reflector must be tangent to that 
semicircle at the reflection point so that the ray trajectory is normal to the 
reflector, as noted earlier. 

In Figure 1.5, we show such an ensemble of circles for the time section 
in Figure 1.1a. A complication to note is that the arrivals are not single 
spikes-they are wave packets consisting of wiggles that oscillate for a few 
cycles. If we do not know the exact time history of the source, then there 
is an uncertainty as to which peak or trough of the wiggle will give us 
the correct radius for the semicircle of possible reflector locations. In this 
particular example, we will assume that the largest peak of a given wave 
packet represents the correct arrival time. 

As in the specific example of Figure 1.5, a pattern emerges from the 
graphic display of the ensemble of semicircles. It is a small leap to real­
ize that the actual reflector is the envelope of the ensemble of semicircles. 
That curve shares a normal direction and "correct" two-way traveltime 
with each of the semicircles and, hence, matches the observed data at ev­
ery observation point. (See Exercise 1.1, Figure 1.5 and Bleistein [1999].) 
Thus, the reflector will be "reconstructed" by exploiting the simple ideas 
of the geometry of normal reflections. Admittedly, this example contains 
many oversimplifications, but it represents the fundamental ideas behind 
migration. 

By constructing a wavefront chart fitting a particular subsurface veloc­
ity model, arrivals can be moved graphically or migrated to their correct 
position on the seismic section. Though the days of analog data and graph­
ical solutions are over, the same ideas have been implemented through 
both time-domain and frequency-domain methods for processing digital 
seismic data. Modern migration addresses the traveltime issue by a direct 
consideration of the wave equation. 8 

Thus traditional migration solves the first part of the inverse problem by 
considering traveltime to be the only important parameter. The reflector is 
imaged, in the sense that its position and shape are more correctly repre­
sented, but there is no attempt to recover information about the material 
parameters of the subsurface. This difference in approach represents the 
major distinction between "migration" and "inversion." 

8 Historically important migration papers may be found in Gardner [1985]. 
Another perspective on seismic migration can be found in Claerbout [1985]. See 
also Stolt [1978] and Schneider [1978]. 
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To the early migrator, discussions of true amplitudes were moot because 
of the difficulties of controlling the source and in calibrating the seismome­
ters. Therefore, in the mind of the early migrator, the output of a migration 
procedure was a processed seismic section, as opposed to a subsurface pa­
rameter image. Consequently, early digital migration schemes were not 
consciously designed to deal with the issue of true amplitude recovery. All 
that changed in the early 1970s when the technique of identifying gas­
bearing strata by apparent high-amplitude bright spots on seismic sections 
was established. Current interest in amplitude-versus-offset (AVO) mea­
surements for the determination of specific reservoir characteristics has 
provided further incentive for true amplitude recovery. 

The distinction between migration and inversion has blurred in recent 
years as the more modern approaches to migration do attempt to address 
the amplitude issue. This change was not as difficult as might be thought, 
thanks to the serendipitous discovery that relative amplitudes are handled 
correctly, in an inversion sense, by some migration algorithms. This hap­
pened because using the wave equation to directly handle the traveltimes 
has the by-product of handling the amplitudes more correctly as well. 

It should be noted with caution that the effects of linearization and the 
high-frequency assumption are present in migration, just as they are in the 
inversion techniques we develop in this text. For example, if we were to 
apply Hagedoorn's graphical migration method to the data in Figure l.la, 
we would draw semicircles that are based on some assumed (constant) 
background wavespeed profile. Even when this background is taken to 
be heterogeneous and the semicircles are replaced by more general arcs, 
the data will be "back-projected" over reasonably accurate curves only if 
the assumed background wavespeed is approximately the same as the true 
wavespeed. Thus, a "small perturbation" assumption is hidden within the 
migration process. Furthermore, migration is based on the ideas of wave­
fronts, reflectors, and raypaths-all concepts of high-frequency wave theory. 
These same assumptions appear in the derivations of the inversion formulas 
in this text. Therefore, it will be a further goal of our text to show how 
the geophysical "common sense" that is the basis of migration translates 
into the mathematical assumptions that must be made to derive modern 
inversion formulas. 

As currently implemented, both migration and inversion only partially 
"invert" the data, because producing images is still stressed over param­
eter estimation. Accurate background or first-guess wavespeed models are 
needed if accurate images of the subsurface are to be generated. In response 
to this need, the seismic exploration community has devised a collection of 
statistical techniques to do velocity analysis. As we will show in this text, 
velocity information can be extracted from the amplitudes of the inverted 
data under ideal conditions. Owing to the inherent limitations in seismic 
recording geometries, deficiencies in theory, and the general incompleteness 
and noisiness of seismic data sets, this information has not been widely ex-
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ploited as yet. The quality of the data is simply not yet good enough (but 
is steadily improving!) to make the amplitude of the output reliable for pa­
rameter estimation in most applications in seismic exploration. At best, we 
can hope to handle relative amplitudes more correctly for such applications 
as AVO. Inverse-scattering imaging as applied in other disciplines-for ex­
ample, in nondestructive testing or medical imaging-does not suffer to 
the same degree from the data limitations we have mentioned. The data in 
those applications of inverse methods are of higher quality because of the 
greater control that the experimenter has over the data acquisition process, 
meaning that greater information about the body being imaged should be 
recoverable-to the extent that data quality limits the inversion process. 

The migration/inversion techniques developed in this text lead, in a nat­
ural way, to the process of migration velocity analysis. While we do not 
discuss migration velocity analysis in depth, we will see that a partial in­
version can be achieved by studying a limited subset of the data from a 
seismic survey. Because there can be considerable redundancy between dif­
ferent subsets of such data, it is possible to build multiple images of the 
same target reflectors. By analyzing the degree to which the different images 
agree and disagree, we can judge the accuracy of the assumed background 
velocity that was used for to do the migrations. 

The extent of disagreement between such redundant images provides a 
basis for a technique for correcting the back-propagation velocity which, 
in turn, will improve the image. Thus, we can generate a background 
wavespeed that best focuses the images of reflectors. We expect that this 
"imaging velocity" will be a better representation of the actual wavespeed 
in the Earth. 

1.5 Source-Receiver Configurations 

The simple model of a seismic survey discussed in Section 1.4 described an 
ensemble of data acquired using a zero-offset recording scheme, in which 
the source and receiver are located at the same point on the Earth's sur­
face. Unfortunately, in real seismic experiments it is not possible to use this 
simple shooting geometry because of persistent high amplitude reverbera­
tions associated with the typical explosion, airgun, or vibrator sources used 
in seismic exploration. Previously, we spoke of the hierarchy of complexity 
of propagation speeds. Now we consider another hierarchy of complexity, 
that of recording and data sorting geometries. Seismic surveys are limited 
to ensembles of experiments with a nonzero offset between sources and 
their respective receivers. Each of the experiments composing the ensemble 
usually consists of an arrangement involving one source and many receivers, 
all in a line, or in a surface array, called a shot profile. While all data are 
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FIGURE 1.2. Schematic for a common-source (-shot) seismic profile. 

recorded in some form of this geometry, different ways of sorting the data 
imply different geometries for analysis. 

Therefore, a discussion of the different sorting geometries is warranted. 
The various sorting techniques are usually referred to as gathers. We list 
some common ones below. 

Common-source gathers, also called Common-shot gathers, consist of 
seismograms recorded at many recording positions with increasing range 
(offset) from a single source. 

Common-offset gathers consist of collections of seismograms whose 
respective source-receiver separation is a constant value. 

Common-midpoint gathers, abbreviated as CMP gathers, refer to col­
lections of data, recorded with different source-receiver spacings, but 
with the same position on the Earth's surface being the midpoint of the 
source-receiver pair. These are often referred to as common depth point 
(CDP) gathers in the literature, although, but for rare exception, the 
reflection depth point in such data is the same only if the reflectors are 
horizontal and the propagation speed is laterally invariant. 

Common-receiver gathers are data sets representing a geometry simi­
lar to the common-source gathers, but with many sources and a single 
receiver. 

Each of these implied geometries or gathers has its unique advantages and 
disadvantages. For example, common-source data have the advantage that a 

receivers 

reflector 
FIGURE 1.3. Schematic for a common-offset seismic profile. 
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single wave equation represents the experiment. Indeed, this is how seismic 
data are usually collected in a survey, as a collection of common-source 
gathers, obtained by moving the source and array of receivers along a line, 
or over an area on the surface of the Earth. The positions of the source and 
receivers are changed in a systematic way so that overlapping coverage of 
the subsurface is obtained by the ensemble of the gathers. 

For the alternative gathers listed above, each source-receiver pair comes 
from a different experiment. This is because traces from different common­
source gathers in a survey are sorted to produce these other data sets. Thus 
migration or inversion of these other gathers consists of processing data 
generated by a collection of different "problems for the wave equation," 
where the sources and receivers are different. Though pains are taken to 
make the source and receiver responses consistent from shot to shot, there 
is nothing that says that everything is exactly reproduced from one seismic 
experiment to another. Thus, there may be effectively a different wave 
equation operating for each source-receiver gather. Therefore, there is an 
implied assumption that the solutions to these different wave equations are 
mutually consistent in a way that will allow data from different experiments 
to be combined to synthesize a solution of a single problem for a single wave 
equation. 

It should be recognized that vertical seismic profiling (VSP), as well as 
cross-hole (crosswell) seismic experiments, may also be viewed as consist­
ing of ensembles of common-source experiments. The latter geometries are 
used primarily for tomographic imaging, rather than for the inverse scat­
tering that will be discussed in this text. The exception again is diffraction 
tomography, which is a special case of inverse-scattering imaging. 

The CMP geometry is important because it provides a collection of data 
sets that can be used to construct an approximate zero-offset profile. This 
is possible because all traces of a CMP gather sample approximately the 
same zone of reflectors in the subsurface. The primary differences among 
traces within a CMP gather are in reflection traveltimes because the seis­
mic waves have traveled over different distances for different source-receiver 
offsets in the gather. The systematic traveltime increase caused by a sys­
tematic increase in source-receiver offset is called moveout, with that seen 
in the special case of constant wavespeed being called normal moveout 
(NMO). To make an approximate correction for NMO, an estimate of the 
true wavespeed profile is needed. 

By using well log data or by performing velocity analysis, which is to 
say using successive NMO processings or migrations of a CMP gather (or 
migrations of a range of CMP gathers) with different assumed wavespeed 
profiles, it is possible to create such a wavespeed estimate. After the NMO 
correction is performed, the data are summed or "stacked" for each CMP 
gather. The resulting stacked section has the appearance of a zero-offset 
seismic section with each equivalent source-receiver position located at the 
midpoint coordinate of the corresponding CMP gather. 
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The great benefit of stacking is that noise is suppressed and signal is 
enhanced. However, some information is lost due to stacking because the 
NMO correction only partially transforms the CMP traces into zero-offset 
traces. In particular, the higher frequencies of the data may be suppressed 
by stacking. This is because the arrivals may not be exactly aligned before 
stacking, causing the stacking process to sum higher frequency components 
out of phase. 

As might be guessed, this misalignment comes, in part, from the tradi­
tional NMO correction procedure, which is built on the assumption that 
the moveout paths are hyperbolic in shape. This is only true for a single 
horizontal reflector overlain by a constant-wavespeed medium. As we know, 
the real Earth is better modeled as an anisotropic elastic medium contain­
ing dipping layers, curved reflectors, and lateral velocity variations. These 
are not handled correctly by traditional NMO processing. Modern attempts 
to deal with this problem include moveout corrections for nonhyperbolic 
moveouts. 

Simply stacking NMO corrected data has the effect of enhancing informa­
tion about events with near-horizontal dips at the expense of information 
pertaining to steep dips. This is caused because the offset of source and 
receiver imposes a wavenumber filter on the data. To preserve information 
at steep dips, dip moveout (DMO) correction algorithms were created. 
However, the DMO correction is also not perfect, as it does not preserve 
the amplitudes in the data and will also typically suffer where the medium 
is laterally varying. 

In reality, when we correct a CMP gather for moveout, what we really 
are trying to do is to find an algorithm that will perform a transforma­
tion to zero-offset or TZO correction. Such an operation is an area of 
current research and is discussed as a special case of the data mapping 
theory presented in Chapter 7 of this text. In any case, an important 
by-product of the NMO-DMO correction process is an improved velocity 
analysis technique that is useful in choosing background-wavespeed profiles 
for the migration/inversion process. 

If CMP data are satisfactorily preprocessed via NMO followed by DMO 
corrections, then the data may be stacked with a minimum of information 
loss, though there may be amplitude distortion where amplitude varies 
with offset. The resulting seismic section, composed of stacked CMP gath­
ers, may be migrated as though it were true zero-offset data. Despite any 
disadvantages discussed above, the migration of DMO corrected data pro­
vides substantial noise reduction and often provides a sufficiently accurate 
image of subsurface structure. Furthermore, because the volume of data is 
substantially reduced by the process of stacking, the migration of DMO­
corrected data provides an economical alternative to processing unstacked 
data. 
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The above outline of seismic processing steps describes a process called 
poststack migration or poststack inversion. A summary of the basic steps 
involved in poststack migration/inversion may be stated as follows: 

1. Seismic data are sorted into CMP gathers. 
2. A deconvolutional process is applied to remove the bandlimiting and 

phase distortion in the waveforms. 
3. The data are corrected for the different reflection times associated with 

differing source/receiver offsets by applying an NMO correction. The 
data may be corrected for the reflection-time distortions associated with 
both offset and reflector dip by applying a DMO correction. 

4. The results are summed to produce an approximate zero-offset stacked 
section. 

5. The zero-offset migration/inversion algorithm is applied to the stacked 
section. 

Unless these processes are carried out in an amplitude-preserving man­
ner, the amplitudes of zero-offset inversion of these data no longer will be 
accurate, possibly improving the quality of the image at the expense of 
the parameter information. Such inversions may still provide useful quali­
tative information about reflection intensity and parameter changes across 
reflectors, however. 

The issue of moveout correction may be avoided if a prestack migration 
or inversion pro.cess is used instead of the poststack process. The prestack 
process preserves more of the high-frequency information of the seismic 
data, but is more expensive because each data gather must be migrated or 
inverted separately. Neither prestack nor poststack migration/inversion will 
produce a "true" reflector map of the Earth's interior unless the background 
velocity used is the correct velocity of the Earth. Of course, if the true 
subsurface wavespeed profile were known, then the inverse problem would 
essentially be solved, and we would have no further work to do! 

receivers 

reflector 
FIGURE 1.4. Schematic for a common-midpoint seismic geometry. 
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Because we can never know the true velocities, the best we can hope for 
is to create procedures that provide improved estimates of the wavespeed 
profile. Seldom does a first effort of an inversion or migration produce a 
total success. Nevertheless, the output of a particular inversion often yields 
clues on how the assumed background model can be changed to improve the 
results. Thus, migration/inversion is often a recursive or iterative process, 
beginning with an approximate background velocity profile and working 
towards the "true" wavespeeds along with estimation of other parameters, 
through recursive applications of the algorithm on the data. 

The first three chapters of this text address the zero-offset source-receiver 
configuration. Using these inversion methods, it is possible to invert approx­
imate zero-offset data in homogeneous media to obtain an image of the 
subsurface with the reflectors being mapped as impedance discontinuities. 
If constant density is assumed, these impedance jumps may be interpreted 
as jumps in propagation speed. 

The following chapters will ascend the hierarchy of increasingly com­
plex recording geometries and background wavespeed structures. Here is 
included the development of methods for inverting common-offset and 
common-shot data. This is one branch of the hierarchy of complexity. Intro­
ducing heterogeneous media takes us onto another branch of the hierarchy 
of complexity. If the data are sorted into sets of different common-offset 
profiles, then the inversion of these different data sets can provide enough 
data to evaluate changes in both soundspeed and density or even more 
parameters in an elastic medium. Assembling several common-offset data 
sets is possible because the conventional shooting geometry contains this 
redundancy of offsets. 

More recent work has also included the development of methods for in­
verting common-offset and common-shot data. This is another branch of the 
hierarchy of complexity. If the data are sorted into sets of different common­
offset profiles, then the inversion of these different data sets can provide 
enough data to evaluate changes in both sound speed and density or even 
more parameters in an elastic medium. Assembling several common-offset 
data sets is possible because the conventional shooting geometry contains 
a redundancy of offsets. 

From the mathematician's perspective, inversion of common-shot gathers 
is attractive because data coming from a single experiment are governed 
by a single wave equation. This is not true for data sets that are created by 
sorting data from a number of experiments. The extent of reflection events 
observed in a common-shot gather is limited by the range of coverage of the 
receivers in that experiment. Typically, that range is less than the coverage 
achieved by the ensemble of experimnets in a complete seismic survey. 
While a common-offset gather receives information from reflection events 
over the full range of the ensemble of experiments, it again is an ensemble 
of single trace responses from a suite of experiments or, mathematically 
speaking, an ensemble of solutions of the wave equation. The general issue of 
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combining data from multiple experiments is unresolved, that is, there is no 
known exact wave equation describing the generation of such an ensemble. 

Nonetheless, there are conventional techniques often labeled under the 
vague name "wave-equation migration," that are applied to such ensembles. 
One particular method is reverse-time, finite-difference migration made un­
der the assumption that the data recorded on the surface originated from 
"exploding reflectors." In Chapter 3, we will show that such wave-equation 
migrations applied to constant-background zero-offset data satisfy the wave 
equation, but only to two orders in frequency in the high-frequency limit; 
they are not exact solutions to the wave equation. In short, these turn out 
to be asymptotic, rather than exact techniques, contrary to the widely held 
but erroneous opinion of many of members of the geophysical community! 

1.6 Band and Aperture Limiting of Data 

As the reader may have gathered from the preceding sections, certain as­
sumptions regarding the frequency content of data must be made so that 
high-frequency inversion formulas based on inverse scattering theory can 
be created. Because of the limitations imposed by the high-frequency as­
sumption, our ability to resolve structures of a particular length scale is 
limited by the frequency band that is available. 

Many factors contribute to the bandlimited nature of the inverse­
scattering problem; some of the more important ones are listed below: 

1. The frequency content of the seismic source is related to the finite 
nonzero process time, 9 and physical geometry of the source mechanism. 
Equally important is the degree of coupling between the source and the 
propagating medium. 

2. The so-called "Earth filter" is, in part, the effect of anelastic attenuation, 
behaving as an exponential decay with propagation distance as mea­
sured in wavelengths. Because high-frequency implies short wavelength 
(and hence a greater propagation range as measured in wavelengths), the 
Earth filter, combined with the omnipresence of noise, has the effect of 
limiting the upper range of the available frequency band. The other lim­
iting factor is the presence of small heterogeneities randomly distributed 
throughout the interior of the Earth. The heterogeneities scatter the 
high-frequency energy in an incoherent fashion, preventing an image of 
gross structure from being constructed with waves of too high a fre-

9 From the theory of seismic sources, which deals with explosions, airguns, 
or earthquakes, the frequency content of the source is directly connected to the 
natural time constant of the source process; this is the "process time." See Aki 
and Richards [1980] for further discussion. 
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quency. Thus, higher-frequency signals do not always guarantee better 
resolution. 

3. The frequency range of the receiver response is limited by the coupling 
of the detector to the medium. In land-based surveys, the receivers are 
geophones mechanically attached to the surface of the Earth, usually by 
means of a spike pushed into the soil. Because the geophone is not rigidly 
attached to the Earth, bandlimiting associated with natural resonances 
of the soil-geophone system exists. Detector coupling is less of an issue 
in ocean seismic surveys using standard hydrophone streamer10 arrays. 

4. The design of the frequency response of seismic detectors is influenced 
by the desire to limit ambient noise levels present in imaging surveys of 
any type. 

5. To prevent temporal aliasing of the data, analog frequency filtering is 
used as part of the recording process before the data are digitized. 

6. Seismic preprocessing involving deconvolution or other "wavelet shap­
ing" operations used to remove noise (such as water reverberations) may 
further limit the bandwidth of the data. 

7. The stacking of redundant data (such as traces in an NMO-corrected 
CMP gather, or traces after migration) bandlimits data whenever the 
background wavespeed assumed for NMO or for migration is incorrect. 

While the causes of bandlimiting are complicated, it is satisfactory to 
treat these processes as the action of a single filter, F(w), which will 
be assumed to have the necessary properties-symmetric real part, anti­
symmetric imaginary part-to produce a real-valued output. We will see 
that the area under the curve that describes the real part of this filter is 
an important piece of information to have, in order to extract parameter 
information (such as the reflection coefficient) from seismic data. 

Bandlimiting in the frequency domain, however, is not the only limita­
tion that must be considered. The recording geometry introduces a filter 
of its own in the wavenumber domain, which also degrades the resolution 
of the image created by inversion. We discuss this for a collection of survey 
geometries in the first part of Chapter 4. This wavenumber filtering, called 
aperture limiting, worsens as the opening angle, the angle between the in­
cident ray and the reflected ray, increases. The reflector image becomes 
fuzzier with an increase of opening angle. 

A correction for aperture limiting will arise naturally in the derivation 
of the seismic inversion formulas that we will discuss. Remarkably, we will 

10The detector arrays used both on land and at sea have been designed to 
suppress internal resonances, or to shift the fr~uency of internal resonances 
away from desired seismic frequencies. These efforts have worked so well that 
investigators experimenting with new instrumentation in different environments, 
such as mines or boreholes, may be unaware of the potential for problems due to 
such internal resonances. 



20 1. Multidimensional Seismic Inversion 

see that this correction does not destroy important amplitude-versus-offset 
information, such as the angularly dependent reflection coefficients of re­
flectors. We will see that it is possible to extract the value of the opening 
angle, and thus have an estimate of the angularly dependent reflection co­
efficient, by computing at least two inversions, while simultaneously seeing 
an economical way of computing these inversions. This capability depends 
on an underlying assumption that the events we are observing in the out­
put are the result of isolated reflectors in the Earth. In a subtle way, this 
is part of the high-frequency assumption. 

1. 7 Dimensions: 2D Versus 2.5D Versus 3D 

Traditionally, seismic data have been collected along lines that are straight, 
whenever possible. In such situations, the data sets are effectively two­
dimensional. An inversion formulation using a 2D assumption will not 
recover amplitudes correctly because the assumed amplitude decay will 
be cylindrical, approximately varying with the square root of propaga­
tion distance. In fact, real seismic data are governed by the rules of 
3D wave propagation, meaning that the amplitudes will decay with the 
first power of propagation distance-which is spherical spreading in a 
constant-wavespeed medium. A 3D inversion of a single seismic line is also 
inappropriate as there is insufficient data in the direction transverse to the 
line for such an inversion to work properly. The appropriate formulation 
should contain the assumptions of spherical spreading, but with only 2D 
variability of the medium (no variability transverse to the seismic line). 

By applying the methods of high-frequency asymptotics to the formulas 
that we create for three-dimensional inversion, we will be able to reduce 
these 3D formulas to formulas that are appropriate for 2D data sets, but 
handle the 3D amplitude variation of the wavefield correctly. Such "2.5D" 
formulations will be thoroughly discussed in Chapters 3 through 7. 

1.8 Acoustic Versus Elastic Inversion 

The final, and perhaps most challenging, step in the seismic inversion hi­
erarchy is that from modeling the Earth as a fluid medium with variable 
parameters, to viewing the Earth in the more physically correct light, as 
being a variable-parameter elastic medium. We have assumed in all of the 
discussions above that the propagation of P-waves in an elastic Earth may 
be approximated by an acoustic wave model. The real Earth, however, 
supports the propagation of both compressional and shear waves. This 
inversion issue has only been recently addressed by seismic explorationists. 
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An inversion formulation that makes use of both the P-wave and the 
S-wave data provides valuable information about subsurface structure and 
material parameters that is not available from a fluid model. Better esti­
mates of the elastic moduli representing the compressibility and the rigidity 
of the medium, as well as other information regarding the microstructure of 
the rock at depth should be obtainable. Even if we work only with P-wave 
data, anisotropy can introduce errors in the apparent location of seismic 
reflectors in the subsurface. 

If we work with shear waves, then there are additional phenomena en­
countered. Considerable evidence suggests that the apparent splitting of 
shear waves (birefringence) observed on seismic sections is an effect of 
elastic anisotropy, that is to say, the directional dependence of the elas­
tic material parameters of a medium. It is believed that such observations 
may be used to determine the orientations of systems of fractures in the 
subsurface, the knowledge of which would greatly aid petroleum engineers 
in the evaluation of reservoir permeability. The price for this increase in 
information will be high, as there are difficult mathematical obstacles that 
must be surmounted in the pursuit of useful elastic formulations. Inversion 
techniques, formulated from the theory of elastic wave propagation, though 
currently in their infancy, promise to provide a more complete view of the 
subsurface. 

While the advanced issues of elastic wave propagation are beyond 
the scope of this textbook, we expect that material we present-though 
grounded in scalar wave theory-will provide the reader with an important 
foundation in the mathematical methods necessary to understand seismic 
inversion, as it is currently practiced, while providing important tools that 
will carry over into the anisotropic elastic inversion problem. 

Exercises 

1.1 Using the graphical migration method discussed in Section 1.4, mi­
grate the seismic section, Figure l.la. You will need a compass and 

FIGURE 1.5. An example of graphical migration, see Exercise 1.1. 
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you may wish to enlarge this figure via photocopier. Your result 
should look something like Figure 1.5. 

1.2 Graphically construct a synthetic seismogram using the Earth model 
in Figure 1.1 b. This synthetic should agree with Figure 1.1a. 

1.3 Discuss possible strategies for creating a computer program that 
would perform an operation equivalent to the graphical migration 
technique discussed in Exercise 1.1. 

1.9 A Mathematical Perspective on the Geometry 
of Migration 

At the risk of destroying the nonmathematical festivity of this chapter, let 
us examine the process of Exercise 1.1 with an eye toward the underlying 
mathematics, so we may see how that mathematics will recur later in the 
text. Denote by (e, 0) the coordinates along the horizontal upper surface in 
Figures 1.1a and 1.5, and denote by (x, z) the coordinates in the subsurface 
in Figure 1.5. 

The peak values on the traces in Figure 1.1a denote a two-way traveltime 
for the normal-incidence reflection from the model reflector in Figure 1.1b. 
We can denote this input traveltime by t1(e). In terms of the reflection 
point, that two-way traveltime is given by 

r(x, z, e)= y'(x- e)2 + z2 jc, (1.9.1) 

with (x, z) being a point on the reflector and c being the propagation speed. 
Unfortunately, we do not know that point on the reflector, so we draw a 
family of semicircles in Figure 1.5 as a representation of all candidates for 
possible reflection points. That is, for each e, we plotted the function, 

(1.9.2) 

We then proposed that points on the envelope of this family of curves with 
respect toe form a surface for which each point is a normal-incidence point 
with exactly the correct traveltime to satisfy (1.9.2). Mathematically, given 
a family of curves <I>(x, z, e) = 0, the way we find the envelope is to set the 
first derivative of <I> with respect to e equal to zero, solve for e as a function 
of x and z, and then substitute it back into the equation of the family of 
curves given by 

<I>(x, z, e(x, z)) = 0. (1.9.3) 

The graph of this function is the envelope. 
In Chapters 3 and 5, we will develop a general inversion technique for a 

variety of source-receiver configurations and for variable back-propagation 
speed. We will then test the inversion formula by applying it to asymptotic 
data for a single reflector. Both the inversion operator and the model data 
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will have as part of their structure a complex exponential of the form 
exp{ iw¢(-, ~)}. Integration will have to be carried out over both ~ and w in 
order to produce an inversion or migration output. 

The inversion operator will have a phase function that will be a gener­
alization of the function, T. That is, for each ~' it will propagate the data 
back to a curve (or surface in 3D), T =constant, that is the generalization 
of the semicircles of Figure 1.5. The modeling phase function will be a gen­
eralization of the function, t1, indicating an arrival time of the reflection 
response for that particular ~- Thus, the combined phase will be just the 
function cJ> in (1.9.2). 

Setting the first derivative of cJ> equal to zero is the first step in the 
method of stationary phase, applied to the integral in ~. Thus, we will 
approximate that integral by finding the envelopes with respect to ~ of 
the functions, cJ> = constant. The question arises as to how the particular 
choice, cJ> = 0, might be distinguished in that mathematical process. That 
has to do with the structure of the remaining integral in w. Stripped of 
details, that integral is of the form, 

"f(x,z) = j_: F(w)eiwif!dw, (1.9.4) 

with the real part of F being an even function of w and the imaginary part 
ofF being an odd function of w. This makes "f(x, z) real. Furthermore, the 
level curves of 'Y(x, z) are the curves, cJ> =constant. In particular, the level 
curve, cJ> = 0, is where the peak value of 'Y(x, z) resides. 

Thus we could now plot wiggle traces of the output of our operator 
applied to data, similar to the wiggle traces representing the input in Fig­
ure l.la. Whereas the peak values of the latter represent arrival times of 
data at the upper surface, the peak values of the former locate the reflec­
tor. Consequently, the plot of the function 'Y(x, z) constitutes mathematical 
imaging of the reflector, an alternative to the geometrical construction here. 
In Figure 6.5, we have used an intensity plot rather than a wiggle plot for 
the inversion of model data from a physical model that is similar to that 
of Figure l.la. 

This alternative will work in far broader contexts, provided we appropri­
ately define the necessary traveltimes for those applications. Indeed, this 
reduction to geometry, which is the core of the geophysicists' "common 
sense" approach to migration, is the primary reason that seismic migration 
methods based on scalar wave theory have worked so well, in spite of the 
fact that anisotropic elastic effects have traditionally been ignored. 
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The One-Dimensional Inverse Problem 

While presenting solutions to the migration/inversion/imaging problem we 
also intend to familiarize the reader with the philosophy of research that 
has proven to be effective in leading to these solutions. We hope that the 
student will benefit from this text both by gaining insights into the specific 
mathematical issues associated with the seismic inversion problem and by 
acquiring a "feeling" for how to decide what issues take precedence in the 
stages of a research project. 

In Chapter 1, the hierarchy of geometrical complexity of the seismic in­
version problem was outlined. Identifying the natural levels of technical 
difficulty of a problem is the first important step to finding a systematic 
approach to its solution. Clearly, the simplest problems that can be for­
mulated must be solvable for there to be hope of solving the more difficult 
problems. This chapter will begin with the problem of inverting plane-wave 
data in an Earth model with one dimension of parameter variability to pro­
duce an image of a single plane reflector. After reading the discussion in 
Chapter 1, the reader may be surprised that we have chosen such a simple 
starting point----even the graphical migration technique discussed there is 
a two-dimensional imaging method. 

Indeed, while our starting model will have little direct geophysical ap­
plicability, it will permit us to introduce some important ideas in a simple 
context. Those ideas will, in turn, provide motivation for our discussions 
of the higher-dimensional problems that represent seismic imaging and in­
version in the real world. Furthermore, the asymptotic techniques that are 
presented near the end of this chapter will lead us to similar methods for 
imaging in heterogeneous 2D and 3D media. 



2.1 Problem Formulation in One Spatial Dimension 25 

Owing to the simplicity of lD models, more powerful mathematical meth­
ods are available to us here than will be available in the multidimensional 
inverse problem. We will have the power to create an analytical solution 
to our lD test model. Rarely, beyond the lD problem, will we have that 
luxury! In contrast, the complexities introduced by higher dimensions will 
force us to rely on asymptotic methods to create approximate solutions to 
the problems that we treat in later chapters. In any case, the mathematical 
concepts that we introduce here will be refined in later chapters to permit 
us to solve the inversion problem in higher dimensions. 

2.1 Problem Formulation In One Spatial 
Dimension 

One-dimensional modeling and inversion theories are of practical interest 
in situations where data or material parameters have only one dimension of 
variability. These data may be measurements of a time-independent quan­
tity made in one spatial dimension, or may consist of measurements of a 
temporally variable quantity that is spatially independent. 

Historically, lD models have played an important role in mathemati­
cal physics by providing a starting point for solving higher-dimensional 
problems; this is how we will employ them here. 

2.1.1 The 1D Model in a Geophysical Context 

Geophysics has two ready examples of such lD data sets. A well log is 
an example of a lD spatially variable, but time-independent data set. An 
example of a spatially independent but time-dependent data set is a single 
seismic trace. 1 

In the absence of other information, a model with one dimension of pa­
rameter variability can be implied by each of these data sets. The problem 
in the first case is to construct a "synthetic seismogram" from the well log, 
which is a forward modeling problem. In the second case, the problem is 
to construct the "synthetic well log" that represents the wavespeed profile, 
using the seismic trace as the input data. This is the corresponding inverse 
problem. 

Indeed, comparison of such synthetic traces and synthetic well logs with 
their real-data counterparts has been an important interpretative tool in 
seismic prospecting for years. To create a synthetic seismogram from a well 
log, the geophysicist assumes that a seismic trace on a migrated section 
can be represented as the convolution of a wavelet with a series of spikes, 

1 We will assume that all 3D geometric spreading effects that exist in real 
seismic data have been eliminated for this example. 
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each representing an arrival, scaled with the appropriate amplitude com­
posed of the normal-incidence reflection coefficient, and any transmission 
loss that would be present. The spikes may be primary reflections only, or 
may include a sufficient number of multiple reflections as are necessary for 
the specific application. This is called the convolutional model of seismic 
wave propagation and the resulting collection of spikes is called the "re­
flectivity series." All other attributes of the synthetic trace are delegated 
to the waveform that is convolved with the reflectivity series to make the 
synthetic seismogram. The term "reflectivity series," used in the traditional 
geophysical context must not be confused with the term reflectivity func­
tion that we use in this text. When we use the term "reflectivity function," 
we will be talking about, ideally, a spike train with spikes of height equal 
to the reflection coefficients of the reflectors in the seismic model, placed at 
positions corresponding to the positions of the reflectors. For the example 
we are discussing here, these spike heights would be the normally incident 
reflection coefficients, which is what we would like to see as the output from 
a "perfect" migration or inversion of the seismic data. See Figure 2.1. 

If the seismic data have been migrated correctly, then the synthetic trace 
created from the well log should agree with the corresponding trace on the 
migrated section. While a similar comparison can be made with synthetic 
well logs, creating such synthetic logs is more difficult. This is because 
the synthetic reflectivity series must be extracted from the seismic data 
via a deconvolutional process, multiples must be extinguished, and the 
heights of the remaining spikes of the reflectivity series must be corrected 
for transmission loss. The result is the "reflectivity function" discussed 
above. To complete the process of constructing the synthetic well log, the 
spike train must be integrated to produce the expected steplike profile. In 
either case, "stretch" problems may exist owing to incorrect velocity models 
or logging-tool calibration errors. 

welllog reflectivit seismogram 

FIGURE 2.1. Cartoon showing a well log, and corresponding reflectivity function 
represented alternatively as a spike train, and as a seismogr~am. The reflectivity 
function differs from the geophysicists' reflectivity series in that there are no 
multiple reflections represented, and the locations of the spikes are the same as 
the locations of the reflectors. The seismogram form on the right is what we 
would like a perfect migration to give us. 
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2.1. 2 The 1 D Model as a Mathematical Testground 

Our interest in lD models is in using them as a testground for developing a 
mathematically consistent approach to solving the seismic inverse problem. 
As we saw in Chapter 1, the early treatment of the seismic imaging problem 
was based on what might be called "geophysical common sense." It is not 
our intent to attack the geophysicists' common sense approach, but to 
support it by providing a solid mathematical structure on which we can 
build more advanced theories. 

Much of geophysical common sense is based on two important assump­
tions. The first of these is that the process governing wave propagation may 
be represented in the first approximation as a "linear system." It is this 
linear-systems approach that is behind the idea of representing a seismic 
trace as the convolution of a wavelet with a reflectivity series. In contrast, 
real seismic experiments are subject to complicated behaviors, the most 
noticeable being anelastic attenuation, which degrades the amplitudes of 
seismic waves exponentially as they propagate. 2 

Another drawback of reflectivity series approach is that while it may be 
used to represent specific multiply reflected arrivals (if we included more 
than just primaries, and took into account transmission effects), it cannot 
be used to represent the general effect caused by the many multiple reflec­
tions between layers that are present in real data sets. Again, the reader 
must keep in mind that the theories we present in this text will assume 
that data are largely composed of once-scattered waves, called primary re­
flections, and that multiply scattered arrivals compose a less significant 
portion of a seismic record. 

The second assumption is that wave propagation may be represented by 
the principles of "geometrical optics" -a consequence of the high-frequency 
assumption discussed in the previous chapter. It is through geometrical­
optics ray tracing that the reflection coefficients and the arrival times of 
the spikes in the reflectivity series are computed. 

In the lD problem, the ray tracing is trivial. In higher dimensions, how­
ever, difficulties are introduced by the complexity of the wavespeed profile. 
An example of such a difficulty is the presence of multiple propagation 

2There are linearized models of attenuation, the simplest being the assump­
tion that material parameters, such as the wavespeed, have complex values, thus 
yielding an exponential decay that has the appearance of the decay seen in seismic 
wave propagation. Such models, called "near-elastic models" are justified from 
laboratory stress-strain measurements, which exhibit a phase delay between stress 
and strain, when stress is varied in time on rock samples. Near-elastic models 
cannot be the whole story, because attenuation observed in seismic wave propa­
gation is frequency dependent. In response to this, numerous relaxation models 
have been proposed, which are also linear models. See Ben-Menahem and Singh 
[1981], for a discussion of a number of these. For strain values of the order of 
magnitude of 10-5 , stress-strain curves show nonlinear effects; see White [1983] . 
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paths between source and receiver (multi-pathing) or, conversely, the ab­
sence of ray coverage in shadow-zones. Such difficulties can be overcome 
(at the expense of accuracy) by making simplifying assumptions regarding 
the smoothness of the model. 

2.2 Mathematical Tools for Forward Modeling 

The ultimate goal of this investigation is to derive a formula that repre­
sents the solution to the inverse scattering problem. However, our analysis 
will begin with a mathematical statement of the forward scattering prob­
lem. Our specific goal in this section is to create an integral equation that 
describes the wavefield seen at a specific receiver location due to a source 
located at a different specified position. It is this integral equation that we 
will seek to invert. 

Formulation of the forward scattering problem requires knowledge of 
the physics of wave propagation, expressed mathematically as a governing 
equation. The solutions of the governing equation will be constrained by a 
specific set of boundary (or, for unbounded media, radiation) conditions. 
The final result will be obtained via application of Green's theorem. 

For background information in the subject of ordinary differential 
equations (ODEs), we refer the reader to Coddington and Levinson [1984]. 

2.2.1 The Governing Equation and Radiation Condition 

The formulation of the forward scattering problem will be conducted in 
the frequency domain for some observable parameter, u(x, x8 , w ), called the 
"field." Here, x represents the general field or observation position, while x 8 

represents the location of the source, and w represents frequency. The field 
may represent plane acoustic pressure waves (propagating parallel to the 
x-axis) in a two- or three-dimensional medium, the transverse displacement 
of a string in one dimension, or some other equally appropriate parameter 
that may be represented as a one-dimensional wave. The specific physical 
meaning of the variable u(x, X 8 , w) is not important for this exposition. The 
only important condition is that the propagation of u(x, X 8 , w) be governed 
by the scalar Helmholtz equation 

(2.2.1) 

where we have used the symbol J: on the left as shorthand for the expression 
in brackets in the middle. The wavespeed of the medium is given by v(x). 
The forcing function on the right-hand side represents an impulse located 
at the position x = X 8 • 
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The Helmholtz equation is just the temporal Fourier transform of the 
familiar scalar wave equation, 

[ d2 1 d2] 
dx2 - vZ(x) dt2 U(x, X 8 , t) = -8(t)8(x- X 8 ). 

In place of frequency dependence, we have time dependence, and for the 
forcing function, we have a temporal impulse located acting at the position 
X= X 8 • 

We will assume that u is bounded for all x, and satisfies the conditions 

du iw 
dx =t= v(x) u---+ 0, as x---+ ±oo. (2.2.2) 

This expression is called a radiation condition. Physically, the radiation 
condition insures that the primary energy from the source is outward prop­
agating. Mathematically, this condition insures that the solutions to the 
Helmholtz equation are unique. 

2.2.2 Fourier Transform Conventions 

An important tool in wave theory for both forward and inverse problems 
is the Fourier transform. In fact, our inversion formulas will be Fourier 
transform -like integrals. A discussion of the Fourier transform conventions 
that we will be using is therefore important. 

For example, the choice of signs in the statement of the radiation condi­
tion in equation (2.2.2) must be consistent with the signs of the exponents 
of the exponentials in the respective forward and inverse Fourier transform 
definitions. 

We will use the following forward and inverse temporal Fourier transform 
conventions, 

f(w) = 100 F(t)eiwtdt, forward, 

F(t) = ~ { f(w)e-iwtdw, inverse. 
2n lr (2.2.3) 

The reader should note that the limits of integration of the forward trans­
form imply that no data exist for t < 0. This is a statement of the physical 
condition of causality; that is, the source is initiated at some finite time that 
we can take to be t = 0. Therefore, we will refer to the forward Fourier 
transform definition above as the causal Fourier transform. 

In problems that can be solved exactly, it is common that complex 
variables methods will be used to analytically evaluate inverse Fourier 
transforms. 3 The choice of the integration path in such an evaluation is 

3 We refer the reader to such classic texts as Levinson and Redheffer [1970], 
or Spiegel [1953] for an introduction to complex variables methods. 
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FIGURE 2.2. Sketch of the integration contour r, for the case of simple poles at 
w = ±ck. 

influenced by the requirement that the result be causal in the t-domain. 
Therefore, the integral expression for the inverse Fourier transform is rep­
resented here as a contour integral, with r being the path of integration in 
the complex-w plane. 

The condition of causality translates into a condition of analyticity in the 
complex-w plane, restricting the possible choices for this integration con­
tour. The general rule that we will follow when dealing with causal inverse 
Fourier transforms may be simply stated. In causal problems, given the ex­
ponent sign convention above, Re w ranges from -oo to oo on the contour 
of integration, r. The contour of integration passes above all singularities 
of the integrand. (This rule is explained in Appendix B.) 

Causal Fourier and Fourier-like integrals appear in many places in this 
text. Often, we will simply write the integrals as having integration limits 
of ±oo, however, the reader should be aware that the rules stated above 
apply to each of these integrals. See Figure 2.2. 

For the transforms of spatially varying functions that are defined on 
-oo < x < oo, we will use the opposite exponent sign conventions, 
represented in the definitions of the forward and inverse spatial transforms 

f(k) = l: F(x)e-ikxdx, 

F(x) = 2~ l f(k)eikxdk, 

forward, 

inverse. 

Again, it will be common for us to use complex variables methods to 
evaluate inverse Fourier transform integrals in problems that have analyt­
ical solutions. The result of such an evaluation will be a function that will 
be defined over the full range of -oo < x < oo. The integrands commonly 
seen in wave theoretic problems will generally have more than one simple 
pole on the real axis. Commonly poles will be the pair of values ±ko, where 
k0 = w / c, with c being the wavespeed. While the preferred method of solu­
tion of such problems is a simple residue evaluation, the fact that there are 
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FIGURE 2.3. Sketch of the integration contour r, for the case of simple poles at 
k = ±wjc. 

multiple poles (or other singularities, for that matter) is a potential source 
of confusion as it increases the number of possible choices for the path of 
integration. 

Actually, the confusion occurs because the implications of causality are 
discarded too soon. It is necessary to consider all integrals in k and w 
under the condition that Im w is positive. In this case, the poles that 
would otherwise appear on the Re k axis will no longer be there, but 
will reside above and below that axis. In this case, it is easy to see which 
poles are avoided by passing below them-those with Im k positive-and 
and which are avoided by passing above them-those with Im k negative. 
Now, when Im w approaches zero, the path in k passes above and below 
the various poles properly and the solution for Im w = 0 is obtained as an 
analytic continuation of the solution for Im w > 0. See Figure 2.3. 

The integration contour r is then chosen to pass along the real k-axis, 
on the interval -oo < Re k < oo, passing above or below singularities 
as dictated by the analysis just described. When the only singularities are 
poles, for example, the integral is evaluated by the residue method for the 
two cases of the closure of r in the upper and lower half planes, respectively. 
The choice is determined by exponential decay of the integrand, which in 
turn is usually different for x sufficiently positive or sufficiently negative. 
The two choices will cover the entire range of x values and will combine to 
form f(x) on the full range, -oo < x < oo. 

Such a result will typically contain a factor of exp{ iko lx - xo I} from the 
residue evaluation of the exponential in the integrand, with the choices of 
x- x0 positive or negative tying directly to choice of closure of the contour 
of integration in the upper or lower half k-plane. We have said that k0 has 
a small imaginary part, ry, such that ko = 11 + iry. This means that the 
exponential factor will be of the form exp{ i11lxl} exp{ -rylxl}, ensuring that 
the solution is either purely oscillatory, or is oscillatory with exponential 
decay (rather than growth), as lxl --+ oo. This will occur only if 'rf :::: 0, 
which is equivalent to the pole-shifting convention chosen above. 
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The reader may have some question as to the justification of assuming 
a complex-valued k0 . In wave problems, k0 = wjc, where w is frequency 
and c is wavespeed. Some authors (for example Aki and Richards [1980]) 
make the argument that the possibility of attenuation, expressed through 
a complex wavespeed, c, is a potential source of this complex-valuedness. 
It is our preference, however, to consider w to be complex-valued. Such 
an assumption is entirely consistent with the discussion of causal Fourier 
transforms given in Appendix B and does not introduce any new physics 
into the problem. 

2.2.3 Green's Functions 

If the problem consisted of the Helmholtz equation, with the wave­
speed v = const., then the forward modeling problem could be solved 
with the information given in the previous three subsections. Given the 
Helmholtz equation, a set of boundary conditions or a set of radiation con­
ditions (boundary conditions at infinity) for unbounded problems, and the 
principle of causality, we could find a unique solution for the field u. 

When the forcing function (source function) of the Helmholtz equation 
is an impulse, as in equation (2.2.1), then the solution is a special result 
called the Green's function. In linear systems usage, the terms transfer 
function in the frequency domain or impulse response in the time domain 
are alternate names for the Green's function. For problems with constant 
coefficients, as in the case of a constant-wavespeed problem, the Green's 
function can be found analytically for unbounded-media problems by using 
Fourier transform methods. (A few cases of bounded-media problems can 
be solved this way, but this is beyond the scope of our discussion.) 

Because the wavespeed is not a constant in most geophysical problems, 
we usually do not have analytical expressions for the Green's function. At 
best, we can imagine starting with an approximate representation of the 
wavespeed profile that is arrived at by some other method, for example 
from velocity measurements made from well logs or from seismic velocity 
analysis. Our best hope is to use this approximate representation as a first 
guess, and then solve for a better estimate of the wavespeed profile using 
our (yet to be derived) inversion formula. 

We will, therefore, use approximate Green's functions created by a mod­
eling scheme that uses the first-guess wavespeed profile. If the guessed 
wavespeed profile is constant, then the exact Green's function for that pro­
file may be used as an approximate Green's function. If the guess wavespeed 
profile is something other than constant wavespeed, then other methods 
may be needed to construct the approximate Green's function. For exam­
ple, the wave equation can be solved by the finite-difference method or, as 
emphasized in this text, an asymptotic method such as ray theory may be 
used to construct the approximate Green's function. 
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2.2.4 Green's Theorem 

Though we are interested in solving the lD problem for the specific example 
in this chapter, it will be beneficial for subsequent chapters to discuss the 
more general problem for an arbitrary number of dimensions. 

From the discussions so far, we have a governing equation that describes 
a particular wave propagation problem, with a given source function. 
The field in this equation is unknown. As auxiliary information, we 
have boundary (or radiation) conditions and the Green's function for the 
medium. 

The forward modeling problem may be stated mathematically as two 
equations 

.Cu(x) =-f(x) 

.Cg(x, xo) = -8(x- xo). (2.2.4) 

Here, the boldface of x and x 0 indicates that these are vector quantities. 
The first equation describes the unknown field u(x) in terms of a known 
source -f(x). The second equation describes the Green's function g(x, xo) 
for the problem, which is assumed to be a known quantity. The .C for our 
problem is the Helmholtz4 operator. 

Our plan is to create an integral-equation representation for the field 
u(xo), using the information from the source-f(x) and the Green's func­
tion g(x, x0 ), while taking into account any boundary conditions that may 
be present. Here, the location x 0 is a distinguished location in the medium, 
which for our purposes will be identified with the position of a recording 
instrument. 

If the .C is the Laplacian, \72 , we can combine the left-hand sides of 
equations (2.2.4), and integrate the result to form Green's theorem, 

L [g(x, xo)\72u(x)- u(x)\72g(x, xo)]dV 

= L \7 · [g\7u- u\7g]dV 

= f [g(n. \7)u- u(n · \7)g]dS. lav 

(2.2.5) 

Here, Dis the domain or volume of the problem and aD is the bounding 
surface. The surface integral has been created using the divergence5 theo-

4The Green's theorem method that we outline here is generally applicable to 
many problems in mathematical physics. Examples of other equations that might 
appear in such a formalism include the Laplace, Poisson, Schroedinger, and heat 
equations. See Morse and Feshbach [1953], Butkov [1968], or other mathematical 
physics texts for additional information about the Green's-function method. 

5 The reader should note that in 1D the divergence theorem reduces to simple 
integration by parts, with the "boundary" term being the part that is evaluated 
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rem. The expression (n · V') is the derivative normal to the boundary 8D 
and will often be written as a I on. Here, n points in the outward direction 
from 8D. 

By applying equation (2.2.4), we solve for u(xo): 

u(xo) = l g(x, xo)f(x)dV (2.2.6) 

+laD [g(x,xo) :n u(x)- u(x) :ng(x,xo)] dS. 

Boundary conditions on 8D consist of specified values for u (a Dirichlet 
condition) or 8uj8n (a Neumann condition). If 8D is at infinity, we call 
the problem "unbounded" and define a radiation condition, as in equation 
(2.2.2). 

Many operators can be substituted for \72 in equation (2.2.6) leaving the 
form of equation (2.2.6) unchanged (see Exercise 2.2); however, this is not 
always the case. In general, we have to write the problem as 

.Cu(x) =-f(x) 

.C*g*(x,xo) = -t5(x- xo), (2.2.7) 

where the* indicates that a different operator and respective Green's func­
tion compose the second equation. The operator .C*, called the adjoint of 
.C, is simply the appropriate operator that will make the integrand in the 
volume integral portion of Green's theorem an exact divergence. 

If £* = .C then the operator is called self adjoint. We will see that 
problems governed by the Helmholtz equation are self adjoint, but that 
problems governed by the variable-density acoustic wave equation are not. 
In any case, the volume integral in Green's theorem takes the form 

r [g*(x, Xo).Cu(x)- u(x).C*g*(x, xo)]dV = r n. QdS. lv lav (2.2.8) 

That is to say, we choose or construct .C* in such a way as to make the 
integrand of the integral over D an exact divergence, implying that 

g* .Cu- u.C*g* = V' · Q. 

The n · Q term will be a function of g* and u, and will contain derivatives 
of one order lower than the original£ and .C*. For example, in (2.2.6), Q = 
g'Vu- u'Vg. However, it is not always possible to write a neat expression 
like equation (2.2.6), because there may be parts of .C and/or .C* that carry 
over into the Q. While boundary and radiation conditions in such problems 
will still be written as conditions on u and 8uj on, the surface integral 
expression may be complicated with derivatives on additional parameters 

on the endpoints of integration. Conversely, we say that the divergence theorem 
is integration by parts in higher dimensions. 
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(such as the wavespeed or density). See Exercise 2.5 for a non-self adjoint 
problem that is of interest to us-the variable-density acoustic problem. 

Exercises 

2.1 Prove Green's Theorem, equation (2.2.6). 
2.2 Show that Green's Theorem (2.2.6). is also true when £ is the 

Helmholtz operator, 

2.3 Verify equation (2.2.6). 
2.4 Specialize the problem to lD. Assume constant coefficients and 

an unbounded medium. Show that equation (2.2.6) reduces to the 
convolution theorem 

u(xo) = i: f(x)g(x- xo)dx, 

implying that equation (2.2.6) may be thought of as a generalization 
of the familiar principle of superposition. 

2.5 Let £u = pdjdx[l/ pdujdx] + [w2 jc2]u. This is the lD form of the 
variable-density wave equation. Show that Green's theorem for this 
equation is 

l b[ *" "* *]d - [ *du ud(pg*)]lb gL.-U-UL.-g X- g ----- , 
a dx pdx a 

where £*g* = d/dx[l/ pd(pg*)/dx] + [w2 /c2]g*. (Hint: Integrate 

1b g*£u dx 

by parts, twice, to construct the other three terms that appear in 
Green's theorem.) 

2.6 Construct a set of radiation conditions for the variable-density acous­
tic problem for an unbounded medium. (Hint: Consider what happens 
to the integrated terms, as x ---" ±oo.) 

2.3 The Forward Scattering Problem 

The mathematical tools of the previous section provide the general recipe 
for finding analytical solutions to forward modeling or boundary value 
problems. We seldom know the exact Green's function for a problem. 
However, we often have approximations of the Green's function obtained 
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through techniques such as ray tracing, through finite-difference model­
ing, or through other approximate techniques. Whether or not we have the 
exact Green's function, we are probably using an approximate wavespeed 
profile as input for the modeling, anyway. 

This means that we cannot write a set of exact representations such as 
those in (2.2.4). What we can write is an equation in terms of the approxi­
mate Green's function, with the operator £ depending on the approximate 
wavespeed profile. To relate this approximate wavespeed profile and Green's 
function to their true counterparts, we will employ a method known as 
perturbation theory. In our application, perturbation theory amounts to 
representing an unknown quantity as the sum of a known reference quan­
tity, called the background, plus a small deviation from the background 
called the perturbation. 

If the approximate wavespeed profile is almost the same as the true 
wavespeed profile, then we may represent the true wavespeed as being the 
sum of a background wavespeed profile plus a perturbation, also called the 
scatterer. Following this logic, we may consider the true wavefield u seen 
in the first equation of (2.2.4) as being the sum of a background wavefield 
plus a perturbation, also called the scattered field. 

Because we know the respective background wavespeed and wavefield, 
our approximate modeling formula will represent the scattered wavefield 
as a function of the value of the perturbation in wavespeed. 

2.3.1 The Forward Scattering Problem in JD 

Keeping all of these ideas in mind, we will formulate the lD forward scat­
tering problem by considering the propagation of waves in a model with 
variability in only one spatial dimension. To keep things simple, we will 
consider a constant-density problem for which the soundspeed is unknown 
only in part of the wavespeed profile. An impulsive point source will act 
at timet= 0 at the position x = x 8 and will be represented by the distri­
butional quantity -8(x- x 8 )8(t). (See Appendix A for an overview of the 
theory of distributions.) A recording instrument is located at the position 
x9 , the receiver position, which for geophysical applications, is assumed to 
be a geophone or a hydrophone. 

The wavespeed profile will be assumed to be known in the range of 
distances from -oo < x :::; xt and unknown in the range xt < x < oo 
(see Figure 2.4). The position xt is located to the right of x9 . We further 
assume that the soundspeed is bounded as x ----+ oo, becoming a constant for 
large range. If the "source" and "geophone" are located at the same place, 
x 8 = x 9 = ~' then this is the simplest example of a zero-offset experiment. 

The governing equation for the problem is the Helmholtz equation 
(2.2.1), with the radiation condition specified by equation (2.2.2). Our 
method of formulating this problem is to use two Helmholtz equations, 
as in (2.2.4), and apply Green's theorem to create an integral-equation 
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X 

FIGURE 2.4. Cartoon showing a background wavespeed profile c(x) and the 
actual wavespeed profile v(x). 

representation of the scattered field, as in Exercise 2.2. We now show how 
perturbation theory can be used to create the two Helmholtz equations. 

Suppose that the wavespeed profile, v(x), can be represented as a per­
turbation from a background profile c( x). While there are many ways to 
represent such a small deviation, our choice will be constrained by a de­
sire to preserve the form of the Helmholtz equation. To do this, we use an 
expression of the form 

1 1 
v2(x) = c2(x) [1 + a(x)]. (2.3.1) 

For the present discussion, a(x) will be assumed to always be "small" 
when compared to other relevant quantities in the problem. We assume 
that the Green's function (the impulse response in linear-systems language) 
of the Helmholtz equation posed in terms of c(x) is known or can be ap­
proximated. Rewriting (2.2.1) using the perturbation representation (2.3.1) 
yields an equivalent Helmholtz equation 

(2.3.2) 

Here, the term involving a(x) has moved to the right side of the equation. 
Equation (2.3.2) is posed in terms of the "total field" u(x,x8 ,w) gen­

erated by the impulsive source -c5(x - x8 ) plus the more complicated 
"scattering source" represented by the term on the far right in (2.3.2). 
The scattered waves generated by this new "source" have interacted with 
regions at greater depth than X 8 and x9 and thus contain information about 
the wavespeed profile at these greater depths. 

It is this part of the wavefield that is of greatest interest. It is reason­
able to assume that there is a distinction between the direct-wave energy 
propagating away from the source position and the scattered energy that 
propagates back to the receiver. Because the wavespeed structure of the 
medium has been represented as a reference profile plus a perturbation, a 
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similar representation of the wavefield u(x, x 8 , w) is also appropriate. It is 
proper, therefore, to think of u(x,x 8 ,w) as being made up of a reference 
field, UJ(x,x8 ,w) (u-lncident), which would be present in the absence of 
the perturbation, plus us(x,x 8 ,w) (u-Scattered), which represents the de­
parture from UJ(x,x8 ,w) due to the presence of the perturbation, o:(x). 
The expression for this decomposition of the total field, 

(2.3.3) 

is analogous to the wavespeed perturbation expression (2.3.1). 
An advantage of using this formal decomposition of the field is apparent, 

because we see that the Helmholtz equation (2.3.2) may be written as the 
sum of two Helmholtz equations. We require that incident field u I ( x, x s, w) 
be a solution of the problem, 

d2u1 w2 
Coui = dx2 + c2 (x) UJ = -8(x- x 8 ), (2.3.4) 

with UJ bounded for all x and satisfying the radiation conditions,6 

du1 . w 
dx :r= z c(x) UJ-+ 0, as x-+ ±oo. (2.3.5) 

We then substitute the formal field decomposition (2.3.3) and the equation 
describing the incident field (2.3.4) into (2.3.2), to obtain the Helmholtz 
equation 

(2.3.6) 

written in terms of the background wavespeed c( x), and having the "scat­
tering source" as its forcing function. The Helmholtz equation describing 
the total field (2.3.2) is equal to the sum of the equation describing the 
incident field (2.3.4) plus the equation describing the scattered field (2.3.6). 

The scattered field representation (2.3.6) has important consequences. 
Notice that, while there is no explicit representation of the delta function 
source in (2.3.6), the primary source is contained implicitly in UJ, although 
we also have a term involving the unknown wavefield. The price for creating 
such a representation is that a more complicated "equivalent source" is 
needed to generate the correct us. This new source is no longer a simple 
distribution acting at one point (x 8 ). It is now a source that depends on 
the general coordinate x, through o:(x), and depends also on the values of 
the field us-itself a function of both the general coordinates x and the 
perturbation o:(x). 

6We must require "reasonable" behavior from c(x) as x -+ ±oo. This means 
that c(x) must "eventually" become constant, or that c -+ canst. while being 
"sufficiently" differentiable for large lxl. 
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As noted above, our intent is to create an integral equation that will 
represent the field at x9 due to a source at X 8 • To achieve this, we introduce 
a Green's function with excitation point x = x9 that satisfies our second 
Helmholtz equation 

[ d2 w2 ] 
.Cog(x,x9 ,w) = dx2 + c2 (x) g(x,x9 ,w) = -8(x- x9 ). (2.3.7) 

We impose the same boundedness and radiation conditions on g(x,x9 ,w) 
as were imposed on u1(x, x8 , w) in (2.3.4). Note that, from equation (2.3.4), 
we know u1(x,x8 ,w) = g(x,x8 ,w), and, since we also know x9 , it follows 
that, g(x,x9 ,w) is also a known quantity. 

The reader should note that while the equations for the total, incident, 
and scattered fields ((2.3.2), (2.3.4), and (2.3.6), respectively) depend on 
each other, this new equation (2.3. 7) is independent of all of these. Equa­
tions (2.3.6) and (2.3. 7) may therefore be solved using Green's theorem to 
create the desired integral equation for us(x9 , x 8 , w). It is left as an exercise 
for the reader to show that the integral equation relating the observations 
of the scattered field at x9 , us(x9 ,x8 ,w), to the interior values of that 
unknown field and the unknown perturbation, a(x), is 

Exercises 

2. 7 Prove Green's Theorem in one dimension; that is, show that 

/_: {¢(x).Co1fl(x) -1/;(x).Co<P(x)} dx = (¢(x)1fl'(x) -1/J(x)<P'(x))["', 

where £ 0 is the Helmholtz operator 

d2 w2 
Co= dx2 + c2(x)' 

2.8 Use Green's Theorem and equations (2.3.6) and (2.3.7) to show that 

2 r= a(x) 
us(x9 ,x8 ,w) = w Jo c2 (x) u(x,x8 ,w)g(x,x9 ,w)dx 

+ g(x,x9 ,w)u~(x,X8,w)[00 
- g'(x, x9 , w)us(x, X8 ,w)[

00
• 
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a. Apply the radiation condition (equation (2.3.5)) to the terms eval­
uated at ±oo, and use the fact that a(x) = 0 for x < 0 to obtain 
the integral equation for the scattered field (2.3.8). 

b. Explain why the condition of c(x) ~ const. as x ~ oo is necessary 
for the formulation of this problem. 

2.9 Solve the general unbounded-media problem 

Cg(x, X 8 ) = -8(x- Xs) 

C*g*(x,x9 ) = -8(x- x 9 ), 

with£, C*, being defined as in equation (2.2.8), to prove the theorem 
of reciprocity 

2.3.2 The Born Approximation and Its Consequences 

We say that the integral equation (2.3.8) is nonlinear because it has a term 
that contains the product of the unknown field us and the perturbation 
a(x). This introduces a difficulty because, in the inverse problem, a(x) is 
the unknown that we seek. An important approach to solving such nonlin­
ear problems is to find a "nearby" linear problem that we can solve. This 
solution is then viewed as a first approximation-subject to correction-of 
a solution to the nonlinear problem. The common method for finding such 
a nearby linear solution is to linearize the problem. 

Here "linearization" means removing the product us(x, x 8 , w)a(x) from 
the right side of equation (2.3.8). If a justification for ignoring this prod­
uct can be found, then the linearization can be accomplished. In the worst 
possible scenario, us(x,x8 ,w) is of comparable size to ur(x,x8 ,w), mean­
ing that there is no justification for making the approximation mentioned 
above. 

First observe that the Green's function g(x, x9 ,w) is of comparable size 
to UJ ( x, x 8 , w), because our "incident field" is also the response to an im­
pulsive source, located at a different point x = X 8 • From the scattered-field 
Helmholtz equation (2.3.6), it is easy to conclude that us(x,x8 ,w) vanishes 
when a(x) = 0. It is reasonable to assume that if a(x) were "small" then 
us(x,x8 ,w) would also be "small." Hence the product, a(x)us(x,x8 ,w) 
appearing under the integral in (2.3.8) should be significantly smaller than 
the product a(x)ur(x,x8 ,w). The former is (in some sense) quadratic in 
a(x), while the latter is only linear in a(x). It is natural to conclude that 
for small a(x), the former term may be neglected in favor of the latter. 
Thus, it should be possible to obtain an approximation to us(x,x8 ,w) that 
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is accurate to linear order in a(x), yielding 

2 roo a(x) 
us(x9 , X 8 , w) = w Jo c2 (x) ur(x, X 8 , w)g(x, x 9 ,w)dx. (2.3.9) 

The linearization performed here is often called the Born approximation 
by physicists. 7 The resulting integral equation is therefore often called the 
Born modeling formula. 

2.3.3 The Inverse Scattering Integral Equation 

In the problem, the wavefield u(x9 ,x8 ,w) is observed and the wavefield 
ur(x9 , X 8 , w) is assumed to be known, implying that we can deduce the 
values of the scattered field at x 9 , represented by us(x9 , x 8 , w). Thus, the 
objective of our inverse problem will now be to determine a(x) from the 
"observed data," us(x9 ,x8 ,w). 

As noted above, ur(x,x8 ,w) = g(x,x8 ,w), permitting (2.3.9) to be 
rewritten as 

2 roo a(x) 
us(x9 ,x8 ,w) = w Jo c2 (x)g(x,x9 ,w)g(x,x8 ,w)dx. (2.3.10) 

We have formally reduced the inverse problem to the problem of solving 
this integral equation for a(x) using the observed data us(x9 ,x8 ,w). 

In the formal theory of integral equations, equation (2.3.10) is called a 
Fredholm integral equation of the first kind. That part of the integrand 
excluding a(x) is called the kernel of this integral equation (or integral 
operator). An important issue that arises when trying to solve such an 
equation is whether or not small changes in the data us lead to small 
changes in the solution a. When this is not the case, then the integral 
equation is said to be "ill-conditioned," or to have an "unstable inverse." 

In general, there is no guarantee that a "Fredholm I" integral equation 
will have a stable inverse. There is, however, a class of such integral equa­
tions that does haw~ stable inverses. These are the Fourier transforms and 
their extensions, the pseudodifferential operators, and Fourier integral op­
erators, with the inverses being respectively, the inverse Fourier transform 
and the inverse pseudodifferential operator, and the pseudo-inverse Fourier 
integral operator. In addition to being stable analytically, these inverse 
operators are also stable numerically. 

As we will see in the body of this text, the choices of approximate Green's 
functions will contain factors of complex exponentials, meaning that our 
Born modeling formula may be treated as a Fourier transform or a Fourier 
transform~like integral. Though Fourier transforms have stable inverses, 

7 Actually, this approximation was first applied to the Schri.idinger equation 
by Kirchhoff, but the origin has been blurred, as to both the originator and the 
implementation. 
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finite bandwidth and finite spatial range may degrade the solution if the 
inverse transform is not handled correctly. We will see below how we regu­
larize the solution to avoid problems associated with finite bandwidth and 
finite spatial range. 

The reader should keep in mind that this is the linearized problem and 
that infinite-bandwidth information in w has been assumed. No rational 
claim can be made about the "exact" solution to the finite-bandwidth, 
fully nonlinear problem, from the information provided here. 

2.4 Constant-Background, Zero-Offset Inversion 

The Born approximate integral equation for the scattered field (2.3.9) may 
be understood more clearly if applied to a simple problem. Consider, there­
fore, the case where the source and receiver are located at the same place 
(for simplicity we choose Xs = x9 = 0 and c(x) =eo). This is the simplest 
"zero-offset problem." The Green's function may then be written explicitly 
as 

Coeiwlxl/co 
g(x,O,w)= 

2iw 
(see Exercise 2.10), making (2.3.10) take the form8 

us(O,w) = -1= a~x) e2iwx/codx. 

(2.4.1) 

(2.4.2) 

Note that x values are assumed to be positive, so lxl has been replaced 
with x. 

Consistent with the assumptions made in formulating the inverse prob­
lem, a(x) = 0 for x < X 8 (x < 0, here) meaning that a(x) behaves as a 
causal function of the time variable, 2x /co (the two-way traveltime of a 
reflected arrival is the minimum time at which a once-scattered signal can 
exist). It is permissible, therefore, to treat this equation as a causal Fourier 
transform, (see Appendix B and equation (2.2.3)), and proceed to invert 
using the definition of the inverse Fourier transform, with the caveat that 
if there are any singularities on or above the real w axis the integral must 
be interpreted as a contour integral that passes above those singularities. 
Except for this caution, this is an equation for the Fourier transform of 
a(x) evaluated at the "wave number" k = 2wfco representing the data 
us(O, c0k/2). Thus, a(x) is represented in the inverse Fourier transform 
form as 

a(x) = -- us(O,w)e-2•wxfcodw. 4 100 
. 

1l"Co -oo 
(2.4.3) 

8Here and below, whenever the source and receiver are coincident, and located 
at the origin, we will write the argument, 0, only once. 
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The constant multiplier is a simplified form of 

1 dk 
-·4·-
27f dJJJ' 

with the first factor coming from the definition of the inverse Fourier 
transform, the second coming from the divisor of 4 in (2.4.2), and the 
third coming from the relationship between w and the "true" Fourier 
variable k = 2wfco, noted above. The reader should note that through 
this transformation, temporal/frequency information has been equated to 
spatial/wavenumber information. A form of this transformation will be 
common to all of the inversion formulas that will be derived in this text. 
That is to say, we will always "trade" the time dimension for one spatial 
dimension. 

Exercises 

2.10 Given the heterogeneous scalar wave equation 

use the definitions of the causal Fourier transform in Section 2.1 and 
Appendix B to show that 

2.4.1 Constant-Background, Single-Layer 

The zero-offset, constant-background inversion formula (2.4.3) derived 
above is the first example of the kind of formula that is the goal of our 
investigations. We rely on the fact that the properties of the integral repre­
sented here (an inverse Fourier transform) are well established in the world 
of applied mathematics, from both theoretical and computational stand­
points, at least for arguments that are, in some sense, "well behaved." It 
is easy to test this preliminary result to see if further investigations in this 
direction may be profitable. 

An advantage in the 1D problem is that exact scattered-field data can 
be generated analytically for a variety of wavespeed profiles. The simplest 
of these profiles is a perturbation of size c:. This steplike wavespeed change, 
located at the position x = h, defines the boundary between two constant­
wavespeed media and is represented mathematically as: 
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a(x) = cH(x- h), (2.4.4) 

{ 
co, 

v(x) = 
c1 = co/v'l+E, 

X< h, 

X> h. 

Here, H(x- h) is the Heaviside step function, equal to 0 for x < h and 
equal to 1 for x >h. The second line follows from the definition of a(x) in 
(2.3.1). 

The exact solution to the problem (2.2.1) for this wavespeed profile is 

{ 
UJ(x,w) + uR(x,w), x < h, 

u(x,w) = (2.4.5) 

ur(x, w), x > h, 

with 
Coeiwx/c0 

UJ(x,w)=- 2 . , 
zw 

coRe-iw(x-2h)/ca 
uR(x,w) =- 2 . , 

zw 
(2.4.6) 

coTeiw[(x-h)fc, +h/cal 
ur(x,w) =- 2 . , 

zw 
where the "reflection coefficient" R and the "transmission coefficient" T 
have the usual definitions 

R = c1 - co = 1 - v'I+E 
c1 + co 1 + y'I+E 

and T=~= 2y'I+E 
c1 +co 1 + y'I+E" 

(2.4. 7) 

Remark 2.1. We have used the notation u1 to represent a part of the 
solution in the region, x < h. Previously, we defined u1 as the wavefield in 
the absence of the perturbation, a. In fact, with c0 taken to be the reference 
speed c in our formalism, the function UJ introduced here is exactly the 
incident wave of our derivation. 

The scattered wave us (0, w) needed for (2.4.3) is then just the expression 
for the reflected wave uR(x,w) in (2.4.6), evaluated at x = 0. Thus, the 
integral representation of the wavespeed perturbation is 

4R Joo e2iw(h-x)/ca 
a(x) =- . dw. 

1r _ 00 2zw 
(2.4.8) 

For this analytic representation of the data, the caveat about passing above 
singularities on the real w-axis becomes important. It is left as an exercise 
for the reader to verify that 

a(x) = -4RH(x- h), (2.4.9) 

under the assumption that equation (2.4.8) represents a causal Fourier 
transform. 
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If we compare the result in equation (2.4.9) with equation (2.4.4), we see 
that the discontinuity is in the right location but that the magnitude of 
the jump is not exact. However, for small r::, 9 

(2.4.10) 

This result follows by using the binomial theorem to expand the square 
roots in the numerator and denominator of the expression for R in (2.4. 7) 
and by expanding the resulting factor of 1/(1+r::/4) into its geometric-series 
representation. The theory was presumed to be valid only to leading-order 
in a, meaning that this result is a verification of the method when applied 
to this simple problem. 

Two important questions can be raised: 

1. How would numerical integration deal with the singular integral in 
(2.4.8)? 

2. How would the bandlimiting present in any real-world experiment 
change the result? 

The answer to the first question is fairly straightforward, but has some 
implications regarding the implementation of the theory. First, no real­
world experiment will provide observations at w = 0. If the value for w = 0 
is simply taken to be zero, the result would be akin to the principal value 
integral, which is the odd function 

a(x) = -4R [H(x- h)- 1/2] = -2Rsgn (x- h). 

Therefore, the error caused by the lack of zero-frequency information is an 
additive constant, converting the step into something more like a signum 
function. 

The result may be signum-like, but it need not be placed symmetrically 
about the x-axis, as is seen by the following simple argument. The zero­
frequency portion of a( x) is just the integral of this function over its domain 
in x, meaning that the absence of zero-frequency data implies that the 
integral of a(x) over its entire domain of support is zero. If the x = h 
position (where a(x) begins to act) is located in the exact center of the 
range of integration, or if the range of integration is infinite, then the result 
will be an exactly symmetric signum function (see Figure 2.5). If, however, 
the point x = h is located off-center, with the range of integration in x being 
finite (as will be the case in numerical representations), then the signum­
like function will be asymmetric. (The result will be two rectangles of equal 
area, one above and one below the x-axis.) The practical meaning of this 

9 The expression f(c:) = O(c:) means that f(c:)jc: is bounded as c:--> 0. Similarly, 
in this equation, -(R+c:/4)/c:2 is bounded as c:--> 0. This convention is a means of 
measuring the "order of vanishing" of a small quantity with respect to some scale, 
in this case, c:. At times, we will measure the order of vanishing as a parameter 
approaches infinity, using a corresponding definition in that case. 
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FIGURE 2.5. a) A full-bandwidth representation of a step function. b) A step 
function lacking only zero-frequency information. 

error is that in the absence of zero frequency data, we can reconstruct a(x) 
only up to an additive constant. If the background wavespeed is known to 
be the exact wavespeed for x = 0, then a(O) = 0, which defines the constant 
needed to make the result of the inversion formula agree with reality. In 
practice, it should be possible for the experimentalist to know the value of 
v(O) by direct measurement. 

In summary, for a step in wavespeed like the one in Figure 2.5a, numerical 
inversion in the absence of zero-frequency information produces the output 
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FIGURE 2.6. A Q-50 Hz bandwidth (sampling interval, 4 ms) representation of 
a step function. 

in Figure 2.5b. The positive and negative lobes have equal area above and 
below the horizontal axis, exactly canceling each other. 

Let us now consider the second important question raised above, that of 
limited bandwidth. Bandlimiting of observed data has a variety of causes, 
some of the more important of which have been listed in Section 1.6. 

Although the causes of bandlimiting are clearly complicated, the com­
bined action of these processes on the inversion problem may be treated 
satisfactorily by assuming that a real-valued filter F(w) has been applied 
to data. The question that must be answered is: How much of the infor­
mation regarding the jump in parameters is retained in bandlimited data? 
Assume that the observed field is similar to the expression in (2.4.6), but 
with a multiplicative factor F(w). Because data must be real-valued in the 
space/time domain, the filter, F(w), must be symmetric and nonnegative 
in thew-domain. The scattered field in (2.4.6) is then replaced by 

c Re-iw(x-2h)/co 
us(x,w) = -F(w) 0 

2. 
zw 

(2.4.11) 

When this function is substituted into (2.4.3), the output will be some 
bandlimited version of a(x), represented here as as(x), given by 

4R loa e2iw(h-x)/co 
as(x) =- F(w) 2. dw. 

7r _ 00 ZW 
(2.4.12) 

Where (2.4.8) yielded the step function of (2.4.9) as a solution, this integral 
yields a bandlimited version of the same step function. 
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Remark 2.2. Note that we have not tried to solve the bandlimited in­
verse problem directly. Instead, we have introduced bandlimited data into 
our solution of the full-bandwidth inversion problem. We will proceed to 
analyze the influence of bandlimiting on this "solution." This approach 
to the problem of bandlimited data will be a theme that will be repeated 
throughout the text. In contrast, some approaches attempt to directly solve 
the ill-posed problem of finding a full-bandwidth solution from bandlimited 
data. Such an approach is equivalent to numerical analytic continuation of 
a (complex-valued) function of a complex variable (w) away from its origi­
nal domain of definition. That problem is known to be ill-conditioned and 
admits exponentially growing solutions. 

Numerical comparisons 

What, then, is the result of bandlimiting on the step function example of 
Figure 2.5a? If we think of the 4 ms (.004 s) sampling interval commonly 
used in geophysical exploration, this is a "full-bandwidth," 0-to-125 Hz 
(zero to Nyquist) step. Figure 2.6 shows the result of limiting the bandwidth 
to 0-50 Hz. The result is not seriously degraded. From the discussion of the 
causes of bandlimiting in Chapter 1, we see that it is necessary to study 
the result of the truncation of the spectrum at the lower limit if we are to 
obtain an accurate picture of the bandlimiting experienced by real data. 

We already know what to expect if the sample at 0 Hz is the only low­
frequency information that is missing-the step is shifted to make the mean 
value of a equal to zero. In Figures 2.7a and 2.7b, we show this, with 4-
50 Hz and 1G-50 Hz outputs, respectively. From the former we conclude 
that even a moderate loss of low frequency energy already makes the step 
unrecognizable and indistinguishable from an a(x) that is slowly varying­
except in the neighborhood of x = h, where it exhibits a rapid, doublet-like 
behavior. From Figure 2. 7b, an even further degradation of the output is 
apparent, although the region of the discontinuity of the propagation speed 
is certainly still recognizable. It should be noted that the frequency range, 
4-50 Hz, corresponds here almost exactly to data points 4-50 in the ( di­
mensionless) frequency domain. In accordance with the Rayleigh criterion 
for resolution (discussed in Chapter 3), any dimensionless frequency larger 
than 3 (or 1r) is a high frequency. Thus, the qualitative features that we are 
observing here are features of high-frequency bandlimited Fourier inversion. 

From this example, the reader should conclude that slow variations in 
propagation speed cannot be recovered from high-frequency data by this 
method. However, it is apparent that the discontinuity ofthe original func­
tion still produces a recognizable artifact in this bandlimited inversion. This 
suggests that for inversion of high-frequency data, we should first concern 
ourselves with finding the discontinuities of the propagation speed (and/or 
other appropriate Earth parameters). That is, we should seek the reflectors 
in the unknown medium. Of course, this is the geophysicists' traditional 
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goal, motivated by geometrical optics "common sense." 10 

If the discontinuities are our primary interest, there is a better way to 
process the data than to simply take the inverse transform. Bandlimited 
delta functions are easier to identify than are bandlimited step functions. 
It is not difficult to obtain Fourier data for a bandlimited delta function 
from Fourier data for a bandlimited step function. All that is required 
is to introduce a multiplicative factor of ±iw or ±ik, depending on the 
type of forward and inverse transform under consideration. Such a factor 
corresponding to the derivative operation in the respective frequency or 
wavenumber domain. For the numerical example of the previous figures, 
the correct multiplier is -iw because the inverse Fourier transform (from 
frequmcy to time) is defined to have a kernel exp { -iwt} The result of 
applying this multiplier to the 10-50 Hz step function Fourier data is shown 
in Figure 2.8. The location and polarity of the discontinuity are clearly 
revealed by the peak of the spike that represents the bandlimited delta 
function. Furthermore, we will show below that the height of the spike 
equals the magnitude of the step scaled by the area under the filter applied 
to the data. This is, of course, only within the numerical accuracy of the 
discretization process used in carrying out the Fourier inversion, and the 
picking process for obtaining the peak amplitude. 

As a check that this result is not peculiar to a single step, we show in 
Figure 2.9b the bandlimited delta function output for the series of steps in 
Figure 2.9a. Each delta function is properly centered on the discontinuity 
and has peak amplitude proportional to the jump in the input function 
multiplied by the area under the filter. Because the amplitudes in the figure 
have been divided by the area under the filter, the heights of the spikes in 
Figure 2.9b are the same as the heights of the steps in Figure 2.9a.11 

10We have chosen here to extend the bandwidth of the inversion by interpreting 
the telltale signature of Figure 2. 7 as the infinite bandwidth Fourier transform 
of a step function. It is tempting to believe that we are extending, or perhaps 
analytically continuing, the data back to zero frequency, and thus overcoming 
the ill-posedness imposed by bandlimiting, effectively recovering data that we 
did not have in the first place. This is not the case. We have simply chosen 
a particular method of "regularizing" the solution, which means that we have 
made assumptions that lead to a result that is stable, but which is not necessarily 
correct, in general. 

11 It is important note that these diagrams represent only the properties of 
Fourier transforms as applied to step functions that have been converted to 
bandlimited delta functions. These are not actual reconstructions of jumps in 
wavespeed made from seismic data. Real data may have amplitude and travel­
time distortions arising from the transmission of seismic waves through overlying 
layers, as well as possibly large multiply reflected arrivals. We have not yet ad­
dressed these issues. However, if we can successfully correct for these sources of 
error, then the discussion here shows that the bandlimited Fourier transform will 
give us the desired result. 
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FIGURE 2.7. a) A 4-50 Hz bandwidth (4-ms sampling interval) representa­
tion of a step function. b) A lQ--50 Hz bandwidth (4-ms sampling interval) 
representation of a step function. 

We return now to consideration of the bandlimited solution in (2.4.12). 
Following the line of the discussion above, we will take the x-derivative of 
as by multiplying the integrand in (2.4.12) by the factor, -2iw/eo. The 
result is a new function f3s(x) defined by the expression 

f3s(x) = -4R lao F(w)e2iw(h-x)fco dw. (2.4.13) 
7rCo -co 

If F(w) were replaced by unity here, the integral would be proportional to 
the Dirac delta function: 
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FIGURE 2.8. A 10-50 Hz ( 4 ms sampling interval) representation of a step func­
tion with the -iw (derivative) operator applied, and the resulting amplitude 
scaled by the area under the filter. 

_1 loo e2iw(h-x)/co dw = ]:_8 ((h- x)fco) = 8(x- h). 
7l"Co _ 00 co 

(2.4.14) 

To obtain the last equality we have used the evenness of the delta function 
and the scaling property, a8 (ax) = 8 ( x). 

This result may seem to be a bit puzzling at first, because the value of 
a delta function 8(0) is not defined. In real life, however, we never have 
infinite bandwidth, so the expression that we really have is a bandlimited 
representation of a delta function, rather than being an actual distribution. 
If we define the bandlimited delta function, 8B(x- h), as 

8B(x- h)= _1_1oo F(w)e2iw(h-x)/co dw, 
7rCo -oo (2.4.15) 

then our expression for the bandlimited reflectivity function, {3 B ( x) will 
become 

4R 
f3B(x) = --8B ((h- x)fco) = -4R8B(X- h). 

Co 
(2.4.16) 

This a promising result! By multiplying by -2iw/eo before taking the in­
verse transform of the data, we have produced a bandlimited delta function 
that peaks at the location of the reflector. Furthermore, the peak ampli­
tude of the output is -4R8B(O). Thus, division of the peak amplitude by 
the known factor, -48B(O), yields an estimate of the reflection coefficient 
as well! 
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FIGURE 2.9. a) A full-bandwidth representation of a series of steps. b) A 10-50 
Hz (4-ms sampling interval) representation of the above series of step functions, 
with the -iw (derivative) operator applied. 

Redefining Our Goals for Inversion 

This result suggests that our goal needs to be redefined. To correct for 
bandlimiting, we will purposely design our inversion formulas to correctly 
identify the location of reflectors as bandlimited delta functions. This re­
quires the introduction of the appropriate derivative operator (here, a factor 
of -2iwjc0 ). Also, the appropriate scaling factors (here, -1/4) will be in­
corporated into our inversion formulas so that the peak amplitudes of these 
bandlimited delta functions will yield the reflection coefficient scaled only 
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by the area under the filter F(w). This means that we will introduce an 
overall multiplier of iw/2eo into the inversion formula, (2.4.3), to obtain an 
inversion that produces a "properly scaled" delta function; the result will 
be referred to as the reflectivity function, 

f3B(x) = --2 iwus(O,w)e-2twx/co dw. 2 ! 00 
. 

1l'Co -oo (2.4.17) 

This operator, when applied to the specific example under consideration 
here would yield the result 

f3B(x) = R8B(x- h), (2.4.18) 

with a peak value at x = h given by 

R Joo f3B(h) = R8B(O) =- F(w) dw. 
7rCo -oo (2.4.19) 

(The reader should remember that F(w) has support over a finite range, so 
that the infinite limits of integration written here are really just formal.) 

It remains to be seen what the output of the inversion formula (2.4.17) 
will yield for more general problems. We will check its validity and utility 
with both analytical and numerical examples below. It must be mentioned 
that, in computer implementations, (3 may be defined so that the peak 
amplitude is just the reflection coefficient, R. This would be done here by 
multiplying by 7rCo and dividing by the area under the filter. However, the 
scaling of -iwj2co used to obtain equation (2.4.17) yields a result that is 
more aesthetically pleasing for analytic investigations. 

Exercises 

2.11 Let u(x, w) be a solution of the problem 

d2u w2 

dx2 + v2(x) u = -8(x) 

with radiation condition 

Here, 

du . w 
dx =f z v(x) u-+ O, as x-+ ±oo. 

{ 

Co, X< h1, 

v(x) = c1, h1 < x < h2, 
C2, h2 <X. 

The objective here is solve this problem by writing down fairly general 
solutions in each of the three regions, with constants to be determined 
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by interface and radiation conditions. However, we can take advan­
tage of some advanced knowledge to simplify the most general of 
representations. For example, we know that for x < 0 there should 
only be a left-propagating scattered wave, the left-propagating inci­
dent wave that was initiated by the source and the left-propagating 
scattered wave that has already passed by the receiver. Similarly, for 
x > h2, there is only a right-propagating wave. We also know the 
form of the Green's function in the absence of any variation in the 
propagation speed-the free-space Green's function. 
Part of this exercise is to demonstrate that the choice of a 
smart general solution form can simplify the computations for the 
coefficients. 

a. Such a smart choice for this problem is 

u = -~ [eiwlxifco +A eiw(2h1-x)/co] 
2iw 1 ' 

U = -~ [A2eiw(hi/co+(x-hi)/ci) 
2zw 

+ A3eiw(hdco+(hl-x)/cl)], 

u = _~A eiw[hdco+(h2-h1)/c1 +(x-h2)/c2J 
2iw 4 ' 

for h2 < x. 

Explain the choices of the phases in the exponentials. Also, ver­
ify that this solution is continuous at x = 0 and that its first 
derivative is discontinuous there, with "jump" -1. 

b. Require that u and its first derivative be continuous at x = h1 

and x = h2. Show that this leads to the system of equations, 

A1- A2- A3 = -1 

A1 A2 A3 1 ----+-=--
Co C1 C1 Co 

A2 eiWT /2 - A3 e-iwr /2 - A4 eiwr /2 = 0. 
C1 C1 C2 

Here 

T = 2[h2- h1l/c1. 

c. Solve for A1 and thereby show that 

u(O,w) = -~ [1 + Rl + R2ei~r e2iwhdco]. 
2zw 1 + R 1R 2etwr 
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R - C1- Co 
1 = ---. 

C1 +Co, 
and 

d. Show that 

u(O w) = -~ [1 + R e2iwhl/co 
' 2iw 1 

+ Rz[1 _ Ri]eiwr+2iwhl/c0 +... ] , 

where ... denotes higher order terms in R1 and R2 . Explain each 
term in the above sum in terms of primary radiation, reflection, 
and transmission and explain the relationship between the phases 
and traveltime. 

2.12 The purpose ofthis exercise is to provide the reader with some insight 
into the nature of bandlimited delta functions. We define 

I(t) = 2_ { e-iwtdt. 
27r Jn (2.4.20) 

Here, n is the symmetric domain, w_ ::::; lwl ::::; W+· This is equivalent 
to introducing a filter, 

{ 
1, w_ ::::; lwl ::::; w+ 

F(w) = 0 otherwise, 

and setting 

I(t) = - F(w)e-iwtdt. 1 ! 00 

27r -oo 

Note that for F(w) replaced by 1, I(t) = 8(t). 

a. Show that 
1 

I(t) =- [sinw+t- sinw_t] (2.4.21) 
1ft 

= :t sin [ ( w+; w_) t] cos [ ( w+; w_) t] . 

b. Define the sine function sine ( TJ) by 

einc (ry) ~ { 

sin 1fT) 
T) =/= 0, 

1fT) 
(2.4.22) 

1, T) = 0. 

Show that 

J(t) = 2f+ sine (2f+t)- 2f_ sine (2f_t), W± = 27rf±. (2.4.23) 
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depth 
(km) 
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2.0 

lD Model 

co - 1.0 km/s -

ci = 3.0 km/s 

c2 = 4.0 km/s 

FIGURE 2.10. The 1D wavespeed profile for the numerical example shown in 
Figure 2.11. 

c. The percentage bandwidth of the I(t) is defined by 

percentage bandwidth= 100. w+- w_. 
w++w-

Generate plots of I(t) for 40%, 50%, and 60% bandwidths. Note 
that Figure 2. 7 is the plot of a sine function of 66.66% bandwidth. 

2.4.2 More Layers, Accumulated Error 

The next logical question is: What is the result of applying the inversion 
formula to data gathered in a multilayer model? To address this question, 
we will apply our constant-background inversion formula (2.4.17) to data 
gathered in the two-layer model of Exercise 2.11. The wavespeed profile, 
v(x), is assumed to consist of three constant values, 

{ 
Co, X< h1, 

v(x) = c1. h1 < x < h2, 

c2, h2 < x 

(2.4.24) 

as in Figure 2.10. We will assume that the total bandlimiting may be 
represented satisfactorily by simply introducing the filter F(w). 

It follows from Exercise 2.11 that the analytic expression for the scattered 
field is 

(2.4.25) 

where 

and 
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Expanding the denominator in (2.4.25) in a geometric series yields 

us(O,w) = -F(w)2~: [Rle2iwhl/co 

+ Rz [1 _ Rn ~ [-R1R2t-1 einwr+2ih1wfc0 ]. 

(2.4.27) 

First consider the case F(w) = 1. The Fourier inversion of each term in 
this series is exactly like the inversion carried out above for the case of a 
single layer. The only difference will be that the step at x = h in (2.4.9) 
will have to be replaced by a step at the appropriate position determined 
by the phase of the particular term in the series. We find that 

a(x) = -4 [ R1H(x- h1) + Rz[1- R~]H ((hz- hl)eojc1 + h1- x) 

+ Rz[1- R~] ~ [-R1Rzt-1 H (n(hz- hl)co/c1 + h1- x)]. 
(2.4.28) 

The first term in this expression is just what was obtained for the single 
layer, -4R 1 , where R 1 is the reflection coefficient of the first boundary. For 
small perturbations a= O(c), this term reproduces the step at x = h1 to 
all orders in c. The second term produces a step at x = h1 + (h2 - hl)eo/c1, 
instead of a step at x = h2. This timing error is caused by the failure of the 
assumed background wavespeed model to agree with the true wavespeed 
in the region h1 < x < h2 • For small perturbations, the error here in the 
location of the second step is 0 ( c:) times the length of the interval between 
the steps. Furthermore, the amplitude, R2(1- R~) is correct to order c. 

The remaining terms in the series produce steps at multiples of the er­
roneous interval between steps, x = h1 + n(h2- h1)co/c1, with amplitudes 
decreasing as c2(n-1). These subsequent terms arise from the multiple re­
flections that are disregarded in the Born approximate integral equation 
(2.3.9), from which the inversion formula was derived. These terms pro­
duce spurious reflector images, but with amplitudes that rapidly decrease. 
Unfortunately, it is possible that one or more of these false images will 
appear in the output with amplitude greater than the noise threshold of 
the data. A theory that does not account for multiple reflections cannot 
accommodate these terms! 

Let us now return to the bandlimited data, which is to say F(w) is no 
longer identically equal to 1. Here, as above, we compute the reflectivity 
function f3(x), defined by (2.4.17), to the solution representation (2.4.27). 
The computations are exactly as they were for the example of a single layer. 
Analogous to the result in (2.4.18), we obtain 
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00 

+ R2[1- R~) l:)-RtR2)n-l8B (n(h2- ht)co/cl + ht- x) 
n=2 

(2.4.29) 

as the output from the inversion formula. 
The result is a series of delta functions. The first spike is at the cor­

rect location with amplitude equal to the reflection coefficient of the first 
reflector. The second delta function peaks at a point that is slightly mis­
placed from the true location, of the second reflector and has amplitude 
that is 1 - R~ times the desired value of R2. Again, the errors are caused 
because the background wavespeed profile deviates from the true profile 
in the h2 < x < h1 region. We might anticipate that an inversion that 
accounted for the change in propagation speed from Co to c1 at h1 would 
place this second reflector properly. It would also be desirable if that theory 
could produce the reflection coefficient R2 at that location, as well. This is 
the topic of Section 2.5. 

2.4.3 A Numerical Example 

In Figure 2.1la we show a synthetic seismic trace generated over the wave­
speed profile shown in Figure 2.10. In Figure 2.1lb we show the inversion 
of these data, assuming a constant wavespeed of 1.0 km/s, which is the 
wavespeed in the top layer. As expected, the location of the first reflector 
is correct, whereas the location of the second is at approximately 1.67 km, 
instead of the correct value of 2.0 km. This is in accordance with our ex­
pectations, as the theory above predicts the location of the second reflector 
image to be at h1 + (h2- h1)eo/c1 = 1.5 + (2.0- 1.5)(1.0/3.0) = 1.667 
km. As expected there are additional multiples present, but only two have 
sufficient size to be seen. 

Similarly, the estimates of the reflection coefficients also follow our predic­
tions. The exact reflection coefficient for the first reflector is Rtexact = 0.5. 
The value extracted from the peak amplitude of the inversion is Rlest. = 

0.50055, which represents an overestimate of 0.11% caused by numerical 
and picking errors. The exact reflection coefficient of the second reflec­
tor is R2exact = 1/7 ~ 0.14286. The value extracted from the height 
of the second peak is R2est. = 0.1072795. This is a 25.1% underesti­
mate of the correct value. Our theory above predicts that the estimate 
of R2est. = (1- R~)R2exact, which for our case is 0.75R2exact-a 25.0% 
underestimate of R2exact· Thus, our numerical results differ by only about 
0.1% from the theoretical predictions. 
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FIGURE 2.11. a) A single synthetic seismic trace recorded over the model in 
Figure 2.10. The bandwidth of the data is a trapezoid with corner frequencies 
of 10, 20, 50, and 60 Hz, respectively. Though five multiple reflections were gen­
erated, only three arrivals are easily seen. b) Inversion of the synthetic data set 
performed according to the theory presented in Section 2.4.2. The exact reflection 
coefficients for the first and second reflectors are Rtexact = 1/2 and R2exact = 1/7, 
respectively. The estimates from the inversion differ from those predicted by the 
theory by only about 0.1% due to numerical and picking errors. 

2.4.4 Summary 

Before proceeding, let us review what has been learned from these simple 
examples. 

1. The theory was applied to data that would be obtained from piecewise­
constant wavespeed models consisting of a single reflector, as well as 
that for a model with two reflectors. A constant-background wavespeed 
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equal to the first wavespeed that waves would encounter was assumed 
for the inversion. The inversion formula reproduced o:(x) to leading or­
der, assuming that o:(x) represents a small change from the background 
wavespeed. 

2. When the data are bandlimited to a range of frequencies that might be 
typical of a seismic experiment, the inversion output suggests that re­
covery of information about discontinuities of o:(x) from the data should 
be expected. (This is not peculiar to this application; it is a property of 
high-frequency bandlimited Fourier data.) 

3. By multiplying the data by a scale factor proportional to iw before in­
verting, a series of Dirac delta functions peaking at the discontinuities 
of the previous output is obtained. Because these discontinuities are 
just the reflectors in the medium (plus possibly some small spurious 
artifacts), the output obtained in this way is called the reflectivity func­
tion or reflectivity map of the medium. The scaling is chosen so that 
the output is approximately the reflection coefficient at each reflector 
multiplied by the peak value of the bandlimited delta function, with 
the argument of the delta function being the (signed) distance from the 
reflector. This is the reflectivity function first discussed in Section 2.1.1. 

4. It is important to note that the appropriate scaling factor for producing 
the reflectivity function form of the inversion formula depends on the 
formulation of the problem. In particular, the factors scaling the argu­
ment of the delta function, as in (2.4.16), will contribute to the final 
form of the scaling factor. 

2.5 Inversion in a Variable-Background Medium 

Based on the insights gained in the previous section, we will seek only 
a "high-frequency" solution to the inverse scattering integral equation 
(2.3.10). This means that we are free to use a high-frequency approximation 
of the Green's function. To this end, we replace the Green's function by a 
high-frequency approximation. Furthermore, because the Born approxima­
tion implies that multiply scattered energy is ignored, only the downward 
propagating component of the Green's function will be used. Therefore, 
we define the approximate Green's function to be the so-called "WKBJ12 

Green's function" 

g(x 0 w) = g (x 0 w) =-A(x) eiwr(x,O) 
' ' - WKBJ ' ' 2iW ' (2.5.1) 

12The letters stand for names Wentzel, Kramers, Brillouin, and Jeffreys, 
several of the many physicists who independently employed this and similar 
representations. 
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where 
t dx' 

T(x, 0) = Jo c(x') for x > 0. 

The phase factor T(x, y) here represents the total traveltime for the earliest 
possible transmitted wave that departs from a position x and arrives at the 
position yin a variable-wavespeed medium. (See Exercise 2.13.) The WKBJ 
amplitude, A( x), is somewhat harder to define. In the simplest case, when 
c( x) is a continuous function, 

A(x) = Jc(O)c(x). (2.5.2) 

The WKBJ Green's function may be thought of as the leading-order term 
in a series of inverse powers of w, the sum of which represents the total field 
in the variable-wavespeed medium. A formal derivation of this important 
result has been included as an exercise. (The result is "formal" because we 
do not prove that the derived expression has any particular relationship to 
the exact solution of the differential equation. In fact, it does; it is possible 
to show that it is the leading term of the asymptotic expansion in powers 
of ( iw) -l of an exact solution to the differential equation. See Bleistein 
[1984].) 

The same formula, (2.5.1), can be used when c(x) is discontinuous, ex­
cept, in that case, the amplitude must include scaling factors to account 
for transmission losses at each interface across which the propagation speed 
jumps, which is to say, at each reflector. An example of the type of factor 
needed is demonstrated in the last part of Exercise 2.14. In that example, 
the factor Jc0 (0)c0 (h)jc1 (h) exactly matches the amplitude of the trans­
mitted wave to the amplitude of the incident wave at the discontinuity and 
the factor T is the same transmission coefficient that arises in piecewise 
homogeneous medium (which is to say that the wavespeed is described by 
a piecewise-constant function c( x)). 

Because this discussion deals with high-frequency solutions, u1 = 
F(w )g(O, x, w) will be taken to be the representation of the incident field. 
Using the WKBJ Green's function (2.5.1) for g(O,x,w) in the inverse 
scattering integral equation (2.3.10), with the bandlimited incident field 
UJ(O,x,w), the integral equation for the scattered field becomes 

u (0 w) =- {'XJ F(w)a(x)A2(x) e2iwr(x,O)dx 
s ' J o 4c2 ( x) . 

(2.5.3) 

This Fourier-type integral (so called because of the oscillatory exponential 
multiplier) bears strong resemblance to the constant coefficient integral 
equation, (2.4.2). That equation was solved by Fourier inversion. The es­
sential feature of the inverse operator was the multiplication by another 
complex exponential whose phase was just the negative of the phase in the 
integral equation, (2.4.2). Though the phase of the exponential in (2.5.3) 
is more complicated than in the previous case, the same logic will be used 
here; however, the form of the amplitude factor in this more general Fourier 
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inversion remains to be deduced, and will be left as an unknown for the 
time being. The general form of the inversion operator will be written as 

a(y) = i: b(y,w)us(O,w)e-2iwT(y,O) dw, (2.5.4) 

with the amplitude factor b(y, w) remaining to be determined. 
Now, we will see why making a careful distinction between the input 

variable x, and the output variable y was a good idea. This is because our 
next step is to substitute (2.5.3) for us (0, w) into this equation: 

1oo a(x)A2(x) 1oo a(y) =- dx 2 dwF(w)b(y,w)e2iwT(x,y)_ 
0 4c (x) _00 

(2.5.5) 

The result is an equation of the form, 

a(y) = 100 a(x)f(x, y)dx, (2.5.6) 

with 

A2(x) 1oo 
f(x,y) =- 4c2(x) -oo F(w)b(y,w)e2iwT(x,y) dw. (2.5. 7) 

For x and y greater than zero, the equation (2.5.6) will be satisfied 
asymptotically if we set 

f(x, y) = 8B(x- y). (2.5.8) 

(This choice is motivated by the fact that f(x, y) exhibits a delta function­
like sifting property, but is bandlimited by the F(w) present in the original 
definition of the problem.) In (2.5. 7), it is possible to construct that result 
with a b that is independent of w; that is, b(y, w) ::::::: b(y). Then, 

f( ) _ _ A2(x) 100 F( ) 2iwT(x,y) d __ nA2(x)b(y), ( ( )) 
x, y - 4c2(x)b(y) -oo w e w- 4c2(x) VB T x, y ' 

(2.5.9) 
where we have applied the definition of the bandlimited delta function from 
equations (2.4.14) and (2.4.15), and have recognized that the (h- x)jc0 

that appears in (2.4.14) is replaced with r(x, y) in (2.5.9). Applying the 
property lf'(x0 )18(f(x)) = 8(x- xo) to the bandlimited delta function, 
recognizing that r' ( x) = 1/ c( x), and noting that the action of the delta 
function is at x = y yields, 

f( ) = _ nA2(x)b(y), ( _ ) = _ nA2(y)b(y), ( _ ) ( ) 
X, Y 4c(x) VB X Y 4c(y) VB X y . 2.5.10 

The reader should remember that these are "asymptotic" equalities that 
depend on the high-frequency assumption. At best, the construction above 
is an heuristic sketch which avoids dealing with deeper mathematical issues. 

If the bandlimited delta function is visualized as being a sine-like wave­
form, then sufficient content of high frequencies will sharpen the main lobe 
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of the function, while sufficiently broad bandwidth will make the side lobes 
small compared with the main lobe. If both of these conditions exist, then 
the equalities stated above will be true, asymptotically. 

The choice of b(y) needed to make (2.5.8) true is apparent from (2.5.10), 
because 

4c(y) 
b(y) =- nA2(y)' 

and the inversion operator, (2.5.4) becomes 

4c(y) 1oo . a(y) =- A2 ( ) us(O,w)e-2~wr(y,O) dw. 
7r Y -oo 

(2.5.11) 

(2.5.12) 

As a simple check on this result, note that when c(y) = co = constant, 
this result reduces to the constant-background inversion formula (2.4.3) 
derived earlier in this chapter. It must be remembered that high-frequency 
approximations were freely used to arrive at this inversion formula. There­
fore, good results should not be expected a priori if full-bandwidth data 
are processed for a(y) using this formula. 

In the constant-background example it was possible to extract mean­
ingful information about the discontinuities in a, that is, the location of 
reflectors in the unknown medium, and an estimate of their reflection coef­
ficients. This required that the processing formula be altered to produce the 
formula for the reflectivity function f3(y), equation (2.4.16). That change 
was achieved by differentiating the expression for a(y) with respect to y 
and multiplying by -1/4. 

The same idea will be used here. We are now committed to using the 
leading-order asymptotic results of a high-frequency assumption, and do 
not need to include terms of lower order in w. Therefore, when performing 
the differentiation of a(y) it is permissible to keep only the leading-order 
term. This is the term resulting from the differentiation of the exponent in 
(2.5.12), which introduces a factor of iw in the integrand. Differentiation of 
the amplitude multiplier outside the integral sign produces no such factor 
and therefore the result must be lower order in w. 

In summary, paralleling the procedure that was used to obtain equation 
(2.4.16), the reflectivity function for the variable-background wavespeed 
case is obtained by multiplying the solution, (2.5.12), by ( -2iwjc(y)) · 
( -1/4) = iwj2c(y) yielding, 

2 100 
. f3(y) =- nA2 (y) -oo iwus(O,w)e-2~wr(y,O) dw. (2.5.13) 

Again, note that, for constant background, this result reduces to the 
constant-background inversion formula (2.4.17). 

But is there justification for these assumptions? Considered as the result 
of truncating an asymptotic expansion, equation (2.5.10) is equivalent to 
the statement that x = y is the dominant "critical point" (see Bleistein and 
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Handelsman [1986]) of the double integral (2.5.5) and that (2.5.12) is really 
a leading-order asymptotic approximation of a(y) for high-frequency data. 
(This can be proven rigorously-see Bleistein [1989]-and will be discussed 
at greater length in Chapter 4.) With this in mind, it is possible to simplify 
the integrand of equation (2.5.5). If the phase T(x, y) is replaced by the first 
term of its Taylor series expansion in x about the point, y, 

2wT(x, y) = k(x- y), with 
2w 

k = c(y)' 

and then (2.5.5), with b independent of w, takes the form 

(2.5.14) 

a(y) =- b(y)c(y) roo dx a(x)~2(x) ~oo dk F(c(y)kl2)eik(x-y). 
2 }0 4c (x) _00 

(2.5.15) 
Here, w has been replaced by k in the last integral and an extra factor, 

c(y)l2 = dwldk has been introduced outside the integral. 
For F(c(y)k) = 1, this double integral is just the cascade of a forward and 

an inverse spatial Fourier transform. For the bandlimited integration here, 
we denote the result by aB(y). Then, to the same order of approximation 
made above, 

nA2(y)b(y) roo 
aB(Y) =- 4c(y) Jo a(x)8B(x- y)dx. (2.5.16) 

This result leads to the same choice of b(y) as does (2.5.10). That is, the 
double integral (2.5.5) behaves asymptotically like the cascade of a forward 
and an inverse Fourier transform with respect to x and k = 2w I c(y). This 
insight will prove useful in the higher-dimensional problems seen later in the 
text. Furthermore, it lends further credence to approximating the deriva­
tive of a(y) by multiplying by -ik = -2iwlc(y) to obtain the reflectivity 
function. 

2.5.1 Modem Mathematical Issues 

In fact, there is even stronger mathematical justification for these ideas 
in the theory of pseudodifferential and Fourier integral operators, as first 
discussed in the context of inverse-scattering imaging by Beylkin [1985]. In 
particular, the loss of low frequencies in our solution means that we can 
recover a(x) only up to an "entire function," one that has a power series 
with infinite radius of convergence. That is, we are giving up knowledge 
of the smoother part of the solution and determining, at best, only the 
"singular part" of the solution. Indeed, we have interpreted our output as 
arising from a step and have used further Fourier filtering-multiplication 
by - 2iw I c(y )-to enhance our identification of steps, converting them into 
their derivatives, which are bandlimited delta functions. We are further 
regularizing away problems arising from bandlimiting when we choose to 
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interpret all "spikelike" images in our output as being bandlimited delta 
functions, seeking nothing more exotic in our output. 

The representation of a(y) in equation (2.5.4) has the general form of 
an operator, represented in the frequency domain by its "symbol," which 
for the general class of problems we are considering is of the form of some 
function a(w, y). Think of this as a kind of "dynamic filter." If a(w, y) 
is the symbol of a special class of operators, called a "pseudodifferential" 
operator, then it has the property that it will not add singularities (which 
is to say, spurious artifacts that look like reflectors) to the output. In our 
problems, the symbol will be of the form of a(w, y) = wi3b(y), where f3 is an 
integer. For the specific case of the 1D problem, f3 = 0, making a= b(y). 

If a(w, y) has the property of being invertible, and preserves the singu­
larities of the data, then the operator corresponding to this symbol (the 
result of applying the "filter" in the frequency domain) is called an "elliptic" 
pseudodifferential operator. In mathematical language, elliptic pseudodif­
ferential operators are said to preserve the singular support (discontinuity 
information) of the data. If, however, the operator has the property of de­
stroying reflector information contained in the data us, then this would be 
called a "smoothing operator." 

Fortunately, for us, the symbols of the pseudodifferential operators that 
we encounter in the construction of our inversion formulas all meet the 
criterion of ellipticity stated above. All of these symbols are invertible 
(or, at worst, approximately invertible) by algebraic manipulations, such 
as those that precede equation (2.5.13), implying that the correspond­
ing pseudodifferential operators are invertible or at worst, approximately 
invertible. 

By the same argument, we can see that any process that we may apply 
to the data as a filtering process is required to also have the property of 
ellipticity, if the singular support of the data is to be preserved. Indeed, 
the factor -2iw/c that we introduced into equation (2.4.12) to obtain the 
inversion formula for the reflectivity, f3B, given by equation (2.4.13), may 
be viewed as being the "symbol" of an elliptic pseudodifferential operator, 
and thus will preserve the singular support of the original data. Thus, by 
the arguments above, this filter will not destroy the reflector information, 
or add spurious reflector-like artifacts. 

We must recognize that our good fortune in obtaining invertible pseu­
dodifferential operators is a result of the asymptotic formulation we chose. 
While the approximate problem is elliptic, and thus possesses the desirable 
properties mentioned above, we cannot say the same about the exact in­
verse problem. The reader should note that we set the stage for generating 
this type of formulation by choosing a Fourier-like integral representation, 
through linearization by the Born approximation, for the process by which 
the data were generated. Indeed, allowing an increasing amount of "real­
ity" into the inverse problem requires mathematical objects that are more 
general than pseudodifferential operators. 
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Even if we still use the Born approximation, the choice of more real­
istic approximations for the Green's function will cause our formulas to 
be more general than pseudodifferential operators. The simplest of these 
will consist of Fourier-like integrals having more complicated phase func­
tions than those obtained by simply cascading forward and inverse Fourier 
transforms. In turn, the simplest of these operators are the Fourier integral 
operators. The discussion of these more general operators is beyond the 
scope of this text. There is, however, an issue that we discuss at length in 
Chapter 4. This issue is the influence of restricted recording geometry, as 
well as bandlimiting on Fourier-like integrals of the type we derive in this 
text. 

It is the desire of the mathematician to be able to tell a priori the type 
of operator that he or she possesses. For the kinds of operators encoun­
tered in imaging theory, these issues are still a topic of current research, 
especially as investigators try to extract more information from their data. 
In contrast, seismic data processor approaches this problem experimentally 
by performing inversions on test suites of known data. This is, of course, 
not acceptable as a mathematical proof, but works well in practice. Though 
their methods differ, the seismic processor and the operator theorist have 
the same goal-preserving the reflector information (the singular support) 
of the data. 

See Saint Raymond [1994], Taylor [1984], and the first volume of Treves 
[1980] for an introduction to the theory of pseudodifferential operators. The 
second volume of Treves [1980] contains an introduction to the theory of 
Fourier integral operators. 

2.5.2 Summary 
We have derived a formal asymptotic solution to the 1D inverse problem in 
a variable-background medium. In that solution, we interpret our output as 
a series of bandlimited delta functions located at the position of the steps 
in a as approximated by the background propagation speed c(x) through 
the relationship between space and time defined by the second equation in 
(2.5.1). This formal solution suffers from the same problem with multiples 
as does the earlier constant-background solution. The introduction of a 
variable-background propagation speed here, however, opens the possibility 
of properly locating reflectors beyond the first one, which we could not do 
correctly with the constant-background wavespeed solution. 

Exercises 

2.13 The objective of this exercise is to derive the leading-order term of the 
WKBJ solutions to the homogeneous form of equation (2.3.4) with 
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radiation condition (2.3.5). This will be an asymptotic solution for 
"large" values of wand, hence, will be determined as series in inverse 
powers of iw. 

a. Assume a solution of the form 

u(x,w) = (iw)f3eiwr(x) f: A(~()x]. 
n=O ZW 

(The equality here is an "asymptotic equality" only; in general, 
such series do not converge.) Substitute this form into (2.3.4) and 
collect terms in like powers of iw to obtain the following equation. 

00 

.Cou(x,w) = (iw)f3 exp {iwr(x)} L { (iw) 2-n An [(r')2 -1/c2] 

n=O 

+(iw)l-n [2A~ T 1 + Anr"J + (iw)-n A~}. 

Here, (') means djdx. 
b. To determine T and the values of An for n = 0, 1, 2, ... , set the 

coefficient of each power of iw equal to zero, starting with ( iw )f3+2 

and proceeding to lower powers. Show that setting the coefficient 
of this highest power equal zero leads to the equation 

(r') 2 = 1/c2 , 

(the 1D eikonal equation) with two solutions, 

Jx dx' 
r' = ±1/c and r(x) = ± c(x')" 

Here, we use x' as a dummy variable of integration to distinguish 
it from the endpoint x. That is, the lower limit is arbitrary in the 
integral--r is determined up to a constant-and there are two 
possible solutions, which we denote by U±, below. 
Note that the entire first series in .Cou(x, w) is now zero. 

c. Show that we can eliminate the next order in iw by requiring that 

2r' A~ + T 11 Ao = 0, 

(the 1D transport equation) with solution 

A5 = c(x) --> Ao = K~. 

Of course, each of the two solutions U± will have its own constant. 
d. Conclude that the two leading-order solutions are of the form 

U±(x,w) = (iw)f3K±~ exp { ±iw Jx c~~)}, 
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with the constants, K±, the lower limits of integration, and the 
choice of f3 undetermined without further information about the 
solutions we seek. 

e. Define the Wronskian, W, by 

W = det l u+(x,w) u_(x,w) ]· 

u~(x,w) u~(x,w) 

Show that, to leading order, 

W = -2K+K-(iw)2!3+1 . 

That is, the Wronskian is equal to zero only if we take one of the 
constants K± equal to zero. This insures that the two solutions 
are linearly independent and that we can build solutions to het­
erogeneous equations in terms of them. We remark also that the 
theory underlying this method assures us that the two formal se­
ries solutions we generate are asymptotic to two exact solutions to 
the given homogeneous equation. (For further information about 
Wronskian theory, see any standard text on ordinary differential 
equations, such as Coddington and Levinson [1984].) 

f. Show that we can now determine all of the amplitudes An 
recursively by solving the system of equations 

(the 1D form of the higher-order transport equations). 

Remark 2.3. Each solution, U±, should have only one free constant. 
By leaving the lower limit of integration in the phase free, as well as 
having two constants, K±, we effectively have two free constants in 
each solution. In practice, however, as in the next example, we pick 
the lower limit of integration of the phase conveniently and put all of 
the burden of satisfying radiation and continuity conditions on the 
K's. 

2.14 The purpose of this exercise is to derive the leading-order WKBJ ap­
proximation of the Green's function, g(x, ~' w), that is a solution of the 
heterogeneous Helmholtz equation (2.3.4) with radiation condition 
(2.3.5) (see Bleistein [1984], pp.136-140.) 

a. We begin by assuming that for x >~and for x < ~' g(x,~,w) is a 
(different for each range) linear combination of the two solutions, 
U±, derived in the previous exercise. For convenience, we take 
all the lower limits of integration in the integrals that appear in 
the phase to be ~· (Note the remark at the end of the previous 
exercise.) 
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b. Use the radiation condition (2.3.5), saving only terms of leading 
order in iw, to eliminate one term on each side, x >~and x < ~' 
and conclude that13 

C+(iw),a ~ exp {iw r dx' jc(x')}, 
2zw }f. X>~' 

g(x,~,w) = 

X<~-

c. Now, to determine C± and (J, we must apply the correct conditions 
at x = ~. First, we must require that g itself be continuous at ~. (If 
not, the first derivative would be a delta function and the second 
derivative would be an even more singular distribution.) Show 
that COntinuity at X=~ leads to the requirement that C+ = C_. 

d. The first derivative will be discontinuous at x = ~- We want to 
pick that jump so that the second derivative exactly matches the 
delta function on the right hand side of (2.3.4). Choosing that 
jump to be equal to -1 will do the trick! Show that this condition 
determines the power (J as well as the common constant C±, and 
that the WKBJ approximate Green's function is 

- Jc(~)c(x) exp{iw r dx'/c(x')}, 
2zw }f. X>~' 

g(x,~,w) = 

- Jc(~)c(x) exp{iw1f. dx'/c(x')}, 
2zw x 

X<~-

2.15 A neutralizer is an infinitely smooth function that is equal to 1 on an 
interval I and vanishes outside a larger interval J, where I is a subset 
of J. Neutralizers are convenient mathematical tools for restricting 
the support of a function without introducing new singularities into 
the function or its derivatives. Consider the x-integral in (2.5.5), ex­
cept that b = b(y), independent of w. Introduce a neutralizer, v(x), 
such that, on the support interval of this function, each of the func­
tions of x are infinitely differentiable. Multiply the integrand by this 
factor. Call the resulting integral a" (y): 

13 Note that one negative power of iw has been introduced here, as compared to 
the general discussion of the previous exercise. The reason for doing this is that 
we "know" this is right from the constant-coefficients Green's function, which has 
already been calculated. However, it has the effect of shifting f3 by 1, compared 
to the discussion of the previous exercise. 
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1oo o:(x)A2(x) 1oo o:.,(y) = -b(y) dx v(x) 2 dw F(w)e2iwr(x,y). 
0 4c (x) _00 

Assume also that c(x) is bounded away from zero. Now carry out the 
x-integration symbolically via repetitive integration by parts, inte­
grating the exponential and differentiating the amplitude. Introduce 
multipliers (and divisors) of the derivative of r(x,y) as necessary. 
Conclude that 

{
00 d [ d ]n-1 

[ o:(x)A2(x)] 
o:.,(y) = lo dx dx -c(x) dx v(x) 4c(x) 

· /_: dw (2iw)-n F(w)b(y)e2iwr(x,y), n = 1, 2, 3, · · .. 

Conversely, suppose that on the support of v(x) the perturbation 
o:(x) has a discontinuity at x 0 , an interior point of the interval where 
v(x) = 1, but that the integrand is otherwise as described above. 
Now show that 

o:.,(y) = [o:(xo+)- o:(xo- )] A2(xo)b(y) 1oo dw(2iw)-1 F(w)e2iwr(xo,y) 
4c(xo) _00 

{1xo- 1.00
} d [ o:(x)A2(x)] + + dx-d v(x) 4 ( ) 

0 xo+ X C X 

· /_: dw (2iw)- 1F(w)b(y)e2iwr(x,y). 

That is, x-intervals where the integrand is infinitely differentiable 
lead to Fourier integrals in which the integrand decays faster than 
any algebraic power of w. On the other hand, x-intervals where o:(x) 
(or A(x) or c(x)) are discontinuous lead to Fourier integrals with 
an integrand that is of order 1/iw. Thus, the latter double integrals 
are "asymptotically dominant" over the former integrals over smooth 
functions for the condition of high frequency. Similarly, a discontinu­
ity in some derivative of the integrand leads to contributions of one 
higher negative order in w. Because the x-integral can be decomposed 
into such "neutralized" integrals, we can conclude that contributions 
of algebraic order in w arise from these discontinuities of the inte­
grand, while intervals where the integrand is infinitely differentiable 
contribute more negligibly to the Fourier integral. 

2.5.3 Implementation of the Variable- Wavespeed Theory 

Consider again the scattered field us(O,w), from the two-reflector model of 
Exercise 2.14 and equation (2.4.27), given as 

c R + R e2iw[h2-h1] 
us(O,w) = -F(w)-2.0 1 R ~ 2. [h h le2iwhdco. zw 1 + 1 2e tw 2- 1 

(2.5.17) 
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We will now perform a more sophisticated inversion of this us than was 
done in Section 2.4.2. Our plan will be to use the variable-wavespeed 
inversion formula for the reflectivity f3(y), derived in the previous section. 

In the first medium, for 0 :-:; y < h1, the wavespeed is co and the WKBJ 
Green's function has exactly the same form as the exact Green's function 
that we have seen before. This means that for this case, the WKBJ Green's 
function in (2.5.1) is the same as the exact right-traveling wave (where 
positive y lies in the direction to the right of the source), represented by 
equation (2.4.1). Consequently, the first pass at inverting these data for the 
reflectivity function is just the result (2.4.29). As before, the first reflector 
is found to be located at y = h1, with reflection coefficient R1. (Remember, 
the output is now measured in terms of the output coordinate y instead 
of the input coordinate x.) From this output it is possible to solve for the 
propagation speed, c1 for y > h1. 

Updating the Incident Field with Approximate Green's Functions 

We now go beyond the constant-background theory of Section 2.4. For 
y > h1, we use the WKBJ Green's function that takes account of the jump 
in propagation speed at y = h1. In fact, the WKBJ Green's function in 
this range is just the function, ur(y,w) defined in (2.4.6), with h replaced 
by h1 . Therefore, in the range y > h1 , the amplitude, phase, and Green's 
function are now 

2cocl 
A= -coTl = ----, 

Co+ C1 

( 0) y- hl hl 
ry, =--+-, 

C1 Co 

g (y w) _ _:!_eiwr(y,O) 
WKBJ l - 2iW • 

(2.5.18) 

Note, this is not the exact right-traveling field in the range h1 :-:; y < h2 • 

It is only the representation of the first right-traveling arrival and, as such, 
does not contain any of the contributions of the multiple scattering in the 
h1 :-:; y < h2 layer. 

Changing both the factor of A and the phase in the inversion formula 
effectively "updates" the incident field u1(0,w) to account for transmission 
through the first interface. If u1(0, w) is modified in this manner, the single 
reflection from the interface back towards x = 0 becomes part of the inci­
dent field. That is, if the second line of (2.4.5) represents u1 for x > h1, the 
first line of (2.4.5) represents UJ for x < h1. In this case, equation (2.4.25) 
no longer represents us for this new UJ. Just as one term was subtracted 
from the total field of Exercise 2.11 to obtain the scattered field in (2.4.25), 
a second term should now be subtracted. 

In higher-dimensional problems, however, such an updating would be 
computationally expensive and numerically impractical. Owing to the lack 



72 2. The One-Dimensional Inverse Problem 

of accuracy in the identification of layers and the determination of prop­
agation speeds in the real world, it is not reasonable to expect to see the 
perfect cancellations in field data like those seen in this analytical example. 
For the present we will continue the processing without modifying us, and 
reserve that correction for the next subsection. 

Under this assumption, the formula for f3(y) is given by 

(3(y) = ~ iw us(O,w)e-2•w[(y-hl)/cl+hdco]dw. -2 100 . 
1rcoT1 -oo 

(2.5.19) 

Substituting the us from equation (2.4.27) into this formula for 
(3(y) (with the denominator of us expanded into its geometrical series 
representation), yields 

(3(y) = ;T2 1 00 F(w)co [R1e2iwh1/co + R2[1- Ri]e2iw[h2-hl]/c1+2iwhl/co 
7rCo 1 -oo 

+ R2[1- RiJ ~[-R1R2t-1e2inw[h2-hl]/c1+2iwhl/co] (2.5_20) 

. e-2iw[(y-hl)/cl+hl/co] dw, y > h1. 

Here, the first term of the sum in (2.4.27) has been placed on the first line 
and the lower limit of the sum has been taken to start from n = 2. 

The integration is to be carried out term-by-term. The result is a series 
of bandlimited delta functions, as in (2.4.29). The locations of the support 
of some of the delta functions have changed, however. The first integrand 
had phase -2iw[y-h1]/c1. Therefore, this output (the first integrated term 
in (2.5.20) is proportional to 8(y- h1). This representation is valid only for 
y > h~, however. We reject this term, therefore, because we are concerned 
only with y :=:; h~, at this point in our discussion. (Note that if this term 
were retained, the reflection coefficient would be RI/T[, representing an 
error from the correct value.) 

The second integral in (2.5.20) has phase -2iw[h2 - y]/c1, producing a 
delta function with support at h2 • Note that the modified phase of this 
inversion integral, as compared with the phase of the constant-background 
inversion integral, places the second reflector at its proper location. Denote 
this contribution to f3(y) by f32(y). The complete value is 

f32(Y) = ;T2 . coR2 [1- Ri) 1oo F(w)e-2iw[y-h2]/cl dw 
7rCo 1 -oo 

= R21oo F(w)e-2iw[y-h2]/cl dw 
'lrC1 -oo 

= R28B(Y- h2)· 

(2.5.21) 

The first line here is just a direct substitution, as stated above the equation; 
the second line is obtained by using the definitions of R1 in (2.4.26) and 
T1 in (2.5.12); the third line uses the result (2.4.14). 
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This result properly locates the second reflector and identifies its correct 
reflection coefficient. From the reflection coefficient and the known value of 
c1 it is possible, in this analytic example, to determine the speed c2 . This 
is an improvement over the constant-background inversion. 

The remaining integrals in (2.5.20) yield spurious "reflectors" beyond 
h2, now at multiples of h2 - h1 rather than multiples of [h2 - h1]co/c1, 
the positions of the constant-background inversion in (2.4.29). Given the 
now-known change in propagation speed at y = h2, however, we know 
those outputs are inaccurately placed. Of course, we also know that these 
multiples are spurious artifacts. 

To proceed further, it is necessary to determine the WKBJ Green's func­
tion for y > h2 . As in the previous case, it is not the exact Green's function, 
but only the first arrival of the right-traveling wave. As in the inversion in 
the region h1 :::; y :::; h2, the WKBJ Green's function does not take into 
account the portion of the right-traveling field that results from the multi­
ple bounces in the layer. Using this Green's function is consistent with the 
fact that our inversion theory is based, in part, on the Born approximation, 
which ignores multiply scattered events. 

The solution needed for the theory developed above is deduced by treat­
ing the Green's function defined in (2.5.18) as an incident wave. We 
then determine the transmitted wave through the interface at h2, while 
disregarding the presence of multiple reflections. This function is given by 

g(y,w) = 2~ eiwr(y,o), 
zw 

( 0) y - h2 h2 - h1 h1 
T y, = --- + + -, 

C2 C1 CQ 

A= -coT1T2, T2 = ~. 
c1 + c2 

(2.5.22) 

The corresponding formula for the reflectivity in the region y > h2 is given 
by 

{3(y) = - iw u (0 w)e2iw[(y-h2)/c2+(h2-hl)/cl+hl/co]dw 2 ! 00 

2T2r.2 s ' · 
Co 1 2 -oo 

(2.5.23) 
When the data are substituted into equation (2.5.23) we have 

f3(y) = 2~2T.2 Joo F(w)co [(R1 + R 2[1 _ Ri]e2iw[h2-h1]/c1) e2iwhl/co 
1l'Co 1 2 -oo 

+ R2[1 _ Ri] ~[-R1R2]n-1e2inwll1+2iwhl/c0 ] 

. e-2iw[(y-h2)/c2+hl/co] dw, for y > h2. (2.5.24) 
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The first two integrated terms in (2.5.24) will now produce delta 
functions with support outside the domain of validity of this inversion 
formula. The remaining terms produce delta functions with support at 
y = h2 + (n -1)(h2- hl)c2/c1. Therefore, the spurious reflectors that arise 
from multiple reflections in the interval (h~, h2) survive this inversion using 
a "primaries-only" Green's function. On the other hand, a third reflector 
beyond h2 may be hypothesized. It should be clear that the phase of this 
primaries-only Green's function is ideally suited for the identification of 
this next hypothetical reflector. 

Updating the Field with the Exact Green's Function 

We now consider using the exact Green's function for y > h2 • This function 
is derived in Exercise 2.16. The new Green's function is the same as the 
result (2.5.22), except for the value of A: 

A=_ coT1T2 
1 + R1R2e2iw(h2-hl)/c1 (2.5.25) 

This amplitude is a function of w. Our inversion theory was developed for 
an amplitude that is independent of w. If we are to use this amplitude in 
the inversion formula (2.5.13), at the very least the amplitude must appear 
under the integral sign instead of outside of it. Though an inversion theory 
has not been created to justify this extension, we substitute this amplitude 
in (2.5.13), the phase T(y, 0) defined in (2.5.22), and the representation 
(2.4.25) for us(O,w). 

The resulting integral is 

. F(w )e-2iw[(y-h2)/c2+(h2-h1)/c1] dw. (2.5.26) 

Note that one result of using this amplitude has been to remove the 
denominator of the response. This was the factor that led to the geometric 
series and the set of spurious reflectors from the multiple reflections. The 
integral is now a finite sum; it is a linear combination of four delta functions. 
The supports of these delta functions are at the points, h2-(h2-hl)c2/c1 < 
h2, h2, (two of them), and h2 + (h2 - h1)c2/c1. All but the last of these 
points are in y > h2, which is outside the region of validity of this inversion. 
For bandlimited data, the support of the middle delta function does extend 
into the domain of validity. Because the location and reflection strength of 
the reflector at y = h2 will have been determined before this computation, 
this output would not be used to identify the reflector at y = h2. The 
last delta function has support in the domain of interest, but an amplitude 
that is O(R3 ), generally significantly smaller than the output from primary 
reflections and no worse than the first term of the infinite series obtained 
with the cruder inversion. This operator, though of questionable theoretical 
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validity, has successfully annihilated all but one of the spurious reflectors 
arising from multiple reflection responses in the input data. 

It is obvious that the two spurious delta functions here result from the 
extra factor of (1 + R1R2e2iw[h2 -h1l) in the numerator which comes from 
the square of the Green's function present in the inversion formula. It may 
occur to the reader that simply introducing a single factor of this variety in 
any of the WKBJ Green's function-based inversion formulas would remove 
the spurious multiples. We might justify this by considering that we should 
use the WKBJ Green's function for the right-traveling Green's function, 
but use the exact Green's function for the left-traveling Green's function. 
Our use of the Born approximation makes it difficult to justify this choice, 
because our theory explicitly rejected the importance of multiple scattering. 

Multiple-Suppression by Deconvolution 

An alternate way of looking at this is to consider applying a factor of 
(1 + R1R2e2iw[h2 -h1l) to us as a frequency-domain preprocessing step be­
fore performing the inversion. In other words, we might consider applying a 
step to "deconvolve" the signal to suppress the multiples. Indeed, a classical 
technique for suppressing water-bottom multiples is to convolve a seismic 
trace with all or some part of itself [Backus, 1959]. Because of our ex­
act knowledge of the wavespeed and water-layer thickness in the example 
above, we are able to construct an exact, amplitude-preserving deconvo­
lution operator from wave-theoretic considerations. (For classic papers in 
the use of deconvolution, see Webster [1978], and for more recent papers 
on related topics, see Robinson and Osman [1996].) 

Unfortunately, the computation of the Green's function amplitude in a 
way that accounts for multiple reflections is far more difficult in higher­
dimensional problems owing to curved reflecting surfaces, and an imprecise 
knowledge of the wavespeeds and layer thicknesses in the media. In earlier 
times, the techniques that were used involved identifying attributes of the 
spectra of the data that are characteristic of such multiples, and suppressing 
them via techniques such as Wiener filtering. More recently, operator-based 
theories have been developed. While they seem promising at this time, 
they are also highly computer intensive. The discussion of such techniques 
is beyond the scope of this text, although we include some references to 
the approaches that are more closely related to our inversion procedures. 
Here, we will assume only that, if such techniques have been applied as a 
preprocessing step, they do not degrade the amplitudes of the data. 

The demonstration of an exact wave-theoretic, amplitude-preserving de­
convolution operator presented here is encouraging, but it will certainly be 
difficult to realize in higher-dimensional problems. Even in one dimension, 
it is not likely that estimates of the reflector locations and their respective 
reflection coefficients can be determined with sufficient accuracy to yield 
the perfect annihilation of spurious reflectors seen in this analytical exam-
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ple. Such approaches should lead to an amplitude at the spurious reflectors 
that is smaller than predicted by the multiple powers of reflection coeffi­
cients appearing in the previous inversion result. Finally, note that even for 
small reflection strengths, ultimately the error has to accumulate, and both 
the location of reflectors and estimates of reflection strength must degrade. 
Thus, to be practical, such methods most likely must exploit the primary 
reflections in the data itself, as a way of constructing the necessary esti­
mates of the secondary, tertiary, and so forth, reflections that constitute the 
multiples. The estimate of the multiples could then be used to annihilate 
the multiples in the data. 

Approximate methods of multiple suppression, related to the method 
we describe above, have been studied. One such method is the inverse­
scattering series method of multiple suppression of Weglein, et al. [1997], 
Weglein and Matson, [1998] and Weglein, [1999], which is a higher­
dimensional version of the simple example we present, but which exploits 
the primary reflections in the data in the manner we have discussed at the 
end of the previous paragraph. 14 

2. 5.4 Summary 

We have seen from our 1D example some features of the implementation 
of the WKBJ inversion operator. 

1. First, an inversion using a "free-space" Green's function is carried out, 
with the output variable allowed to range far enough to identify the 
bandlimited delta function corresponding to the first reflector. 

2. The peak amplitude of that output is used to estimate the change in 
propagation speed. 

3. The Green's function is revised beyond the first reflector to account 
for the change in propagation speed. Although this effectively revises 
what is meant by the incident field and scattered field observations, 
in practice the scattered field is not adjusted. If the revised amplitude 
and phase of the Green's function were "perfect," the next reflector 
and reflection strength would be accurately determined and the WKBJ 
Green's function could be accurately updated. 

4. Beyond the position of the primary reflector, the inversion with the 
WKBJ Green's function produces false reflectors from the multiple re­
flection response of the reflectors already determined. An oddity of the 
one-dimensional problem is that inversion using the exact transmitted 
Green's function annihilates all but one of these false reflectors arising 
from multiple reflections. In practice, owing to the practical limitations 

14See Berkhout and Verschuur [1997] and Berkhout [1999] for a discussion of 
iterative methods of multiple removal. See also Filpo and Tygel, [1999] and Sen 
et a!. [1998]. 
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stated earlier in the section, there will be no attempt to make such a 
detailed updating of the Green's function 

In the computer implementation of this theory, the primaries-only 
Green's function for a particular layer is used to process data far enough 
into the next layer to completely form at least the main lobe of the ban­
dlimited delta function associated with the reflector between the layers. 
The updated Green's function is then used starting at a distance from the 
reflector. Clearly, for this process to be successful, the layers must be sep­
arated enough for the bandlimited delta functions to be distinct. This is 
consistent with an asymptotic theory. The length scales of the problem, 
such as the separation between successive reflectors, have to be "many" 
units of reciprocal wave number in length; in practice, "many" translates 
into "at least three." (See the discussion of reciprocal wavenumber in Chap­
ter 1, page 6.) Again, in practice, rr is more convenient to use as a scale than 
three because of the factor of rr in the relationship between wavenumber 
and wavelength. 

Exercises 

2.16 In Exercise 2.11, show that for x > h2 , 

co [1 + R1][1 + R2] 
u(x,w) =- 2iw 1 + R1R2e2iw[h2-hl]/cl 

· exp{iw[(x- h2)/c2 + (h2- hl)/c1 +hi/eo]}. 

2.6 Reevaluation of the Small-Perturbation 
Assumption 

In the previous sections, we created 1D inversion operators that have 
the form of Fourier transform-like integrals. Our method of derivation 
contained an explicit small-perturbation assumption that was expressed 
through our use of the Born approximation. The results of the analytic 
investigation of the 1D inversion operators, however, showed that, even 
in multilayer problems with arbitrarily large wavespeed jumps (conditions 
that clearly violate the small perturbation assumption), it was still possible 
to extract useful estimates of reflection strength and of reflector locations. 
The primary error caused by a large wavespeed jump in multilayer media 
was the introduction of a series of reverberations into the data. Though 
the size of these reverberations does depend on the size of the respective 
wavespeed jumps, we saw that the arrivals of interest, representing the true 
reflectors, were not greatly distorted. 
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While our inversion formulas could not eliminate the reverberations, the 
formulas did accurately represent the size and location of the reflectors, 
exhibiting only a systematic error that depends continuously on the size 
of the perturbation. Where we were able to eliminate reverberations from 
the data via a preprocessing step, our inversion formulas yielded acceptable 
results, even for large jumps in wavespeed. This degree of success suggests 
that the small-perturbation assumption, while necessary for the derivation, 
was really too stringent a requirement of the inversion formulas themselves. 

In other words, the formulas work better than we expected, given the 
small-perturbation assumption, because we were able to separate the in­
version problem into a preprocessing step to extinguish multiples before 
actually applying the inversion formula. Again, our experiences parallel 
those of the geophysical community, reflecting the mathematical support 
for geophysical common sense. In the real world, multiple suppression has 
traditionally been treated as a separate subject from migration. 

2. 7 Computer Implementation 

We can see other parallels between our theoretical approach and the expe­
riences of geophysicists when we try to implement equations (2.5.12) and 
(2.5.13) in a computational setting. These two equations represent a simple 
data transformation operation. In particular, note that (2.5.12) is just the 
inverse Fourier transform of the data, us(O,w), evaluated at the "time" 
2r(O, y), making 

(2.7.1) 

Here, Us denotes the signal in the time domain. This result shows that it 
is not necessary to transform the data to the frequency domain to obtain 
a(y). In practice, however, there are good reasons to do so. The data may 
contain high-frequency noise, beyond the range where coherent information 
can propagate. Thus, a filter could be applied in the frequency domain to 
truncate the bandwidth of the data and taper it smoothly to zero. Again, 
this is an example of separating the inversion or imaging problem into a 
preprocessing step followed by a migration. 

To continue the discussion, let Us denote the time-domain data, which 
may or may not have been filtered. Seismic data are usually acquired with 
a constant time sampling interval. Any processing (Fourier transform, fol­
lowed by filtering, followed by an inverse transform) produces output with 
the same constant time interval. For uniform values of the output spatial 
variable y, however, the associated traveltime values, r(O, y), which are re­
quired for the migration process, are not guaranteed produce values that 
fall exactly on the time sample values of the original data. Thus, given a 
value of y, with a corresponding value of r(O, y), it usually is necessary to 
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interpolate between adjacent values oft to convert the computed T(O, y) 
values into they values necessary for the computation of a(y) or (3(y). The 
best interpolation scheme is to resample the data by fitting a sine -function 
to the datapoints. This is computationally expensive, so linear interpola­
tion is often used. It has been the experience of the authors that linear 
interpolation gives somewhat ragged results, even for numerically gener­
ated synthetic data. A compromise is to use quadratic interpolation, which 
gives satisfactory results in most cases. 

Computation of (3(y) using (2.5.13) requires one additional step. The 
data either have to be differentiated in the time domain or have to be mul­
tiplied by iw in the frequency domain, along with whatever other filtering 
is done. In practice the latter approach is used because finite-difference 
differentiation on noisy data may not yield satisfactory results. It is useful, 
therefore, to define the preprocessed data as 

1 100 
. D(t) = -2 iw us(O,w)e-•wt dw, 

7r -oo 
(2.7.2) 

and write the inversion formula as 

4 
(3(y) =- A2(y) D(2T(0, y)). (2.7.3) 

Again, we must interpolate the data from the uniform grid in t to the 
uniform grid in y. 

Note that, in the course of creating these computational algorithms, we 
have reduced the 1D inversion problem to, at most, a frequency-domain 
filtering operation followed by a shift of the data-both linear processes. 
The higher-dimensional results that we derive in Chapters 3 and 5 are also 
reducible to a "data transformation" operation, which involves summing 
over equal traveltimes in the data. 

This simplification is no surprise to the geophysicist, because this result 
fits the traditional linear systems model of data processing. The advantage 
of our more mathematically rigorous approach is that it allows us to see 
why our results work and, more importantly, to analyze potential prob­
lems that may arise. Our approach will allow us to extend our formulas to 
more general inversion problems. Our mathematical insights will also prove 
invaluable in dealing with additional computer implementation issues. 

2. 7.1 Sampling 

We return to the issue of spatial and temporal sampling of data. The sam­
pling interval in y should be determined by the bandwidth of the data. 
Recall that the theory predicts that (3(y) has the form of a series of ban­
dlimited delta functions. Suppose, for example, that the useful bandwidth 
of the data ranges from 2rr !min = Wmin to 2rr !max = Wmax and the filter 
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is a simple box function in the frequency domain. Then, using c(h) 15 as an 
approximation of c(y) near y = h, the bandlimited delta function observed 
on output has the form 

DB(Y- h)= _1_1 e-2iw(y-h)fc(h) dw 
1rc(h) Wmin::;lwl::;wmax 

1r(y ~h) [sin2Wmax(Y- h)jc(h)- sin2Wmin(Y- h)jc(h)] 

1r(y ~h) sin [(wmax- Wmin)(y- h)jc(h)] 

·COS [(wmax + Wmin)(y- h)jc(h)] (2.7.4) 

1r(y ~h) sin [27r(fmax- fmin)(y- h)jc(h)] 

·COS [27r(fmax + fmin)(y- h)jc(h)]. 

The first zeros of this function away from y = h occur when the argument 
of the cosine is equal to 7r/2; that is, when IY- hi= c(h)/4[fmax +!min]· 
Thus the width, w, of the main lobe of DB(Y- h) is just twice this value, 

c(h) 
w = [ ]' (2.7.5) 

2 fmax + fmin 
The sampling interval in y should be sufficient to delineate this main 
lobe. A suitable sampling interval is one that will provide four points per 
wavelength: 

!::ly = c(h) . 
8[/max + fmin] 

(2. 7.6) 

It is normal practice to select a constant sampling interval for the entire 
output. In this case, instead of c(h), we choose the minimum background 
propagation speed for the entire section. 

This interval should be compared with the alternative based on the sam­
ple interval in time, !::lt; the sampling interval c!::lt/2 is often used. The 
extra factor of 2 occurs here as in the definition of the wave number k, 
because of the effective speed c/2 in the two-way traveltime between the 
source/receiver position and the scatterer. Using values reasonable for a 
seismic experiment, suppose that 

!max= 40Hz, fmin =10Hz, c = 1500 m/s, !::lt = .004 s. (2.7.7) 

In this case, 

c 
[ J = 3.75m, 

8 fmax + fmin 
c!::lt- 3m 

2 - . (2.7.8) 

15For the discontinuous example of the previous section, we would use the limit 
from the right, c(h- ). 
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The latter choice samples 25% more densely than the former. Such over­
sampling, while not a computational burden in one-dimensional inverse 
problems, may prove too expensive in higher-dimensional problems. 

This discussion is a bit of a red herring, because, in field-recording prac­
tice, D..t is purposely chosen to oversample the data. Instead of using cD..t/2, 
one could certainly choose cD..jk, where k is a tunable parameter, if cD..t/2 
was seen to be too much of an oversampling. 

2.8 Variable Density 

The one-dimensional problem for both variable density and variable wave­
speed will be considered here. The main result will be that inversion will 
now yield an estimate of the impedance of the medium, involving the 
product pv, with p and v being the density and the propagation speed, 
respectively. We will see that, from the type of experiment discussed so far, 
it is not possible to obtain changes in medium parameters; something more 
has to be done. It is not our intent to present the best solution to the one­
dimensional inverse problem here. (Recall that this chapter is really just 
a "warm-up" for the more difficult higher-dimensional inversion problems 
of later chapters.) For inversion in higher dimensions, the same methods 
we employ here will provide a means of separating out parameters. The 
problem considered in this chapter will correspond to the simplest configu­
ration of coincident source and receiver (zero-offset, backscatter, pulse-echo, 
monostatic) in higher dimensions. Thus, this final section is presented be­
cause of its more general problem formulation and because it presents a 
more realistic inversion output than does the simpler problem of variable 
soundspeed alone, treated above. 

We begin by considering the acoustic equation for pressure in a variable­
soundspeed, variable-density medium with source at a point x 8 : 

_ ( d [ 1 du(x,x 8 ,w)] w2 ( ) 
.Cu(x,x8 ,w)=px)dx p(x) dx +v2 (x)ux,X 8 ,W 

= -8(x- X 8 ). (2.8.1) 

The radiation condition 

du . w 0 ± 
dx =f 2 v(x) ---+ , as x---+ oo 

is the same as in previous problems. 
The density and wavespeed functions, p(x) and v(x), are assumed to be 

known in the vicinity of the source and to be bounded at some large value 
of x > 0, finally becoming constant at large range. The impulse response 
will be observed at a point x 9 , located in the range of x where the density 
and velocity functions are known. 
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As before, perturbation theory will be used to describe the problem. It 
is desirable here to introduce a notation that allows variations in density 
and soundspeed to have parallel form. Therefore, set 

p(x) = Po(x) + 8p(x), ---- 1---1 1 [ 8p(x)] 
p(x) - Po(x) Po(x) ' 

(2.8.2) 

v(x) = vo(x) + 8v(x), 1 1 [ 28v(x)] 
v2(x) = vfi(x) 1 - vo(x) · 

These representations are substituted into (2.8.1), and only linear terms in 
8p and 8v are retained. After some algebra, the resulting equation is 

Lou= Po!:_ [_!_ du] + w2 u 
dx Po dx v5 

w2 28v d [8p] du =-8(x-xs)+2-u+- - -. 
v0 vo dx p0 dx 

(2.8.3) 

As in the previous derivation, we introduce UJ(x,x 8 ,w) as the response 
to the delta function in the unperturbed medium and us(x, x8 , w) as 
everything else: 

(2.8.4) 

with 

(2.8.5) 

We now use equations (2.8.4) and (2.8.5) in (2.8.3). As in the earlier deriva­
tion, we neglect terms in products of the perturbations and us on the left 
side of the equation and obtain 

w2 28v(x) d [8p(x)] du1(x,xs,w) 
C0 us(x,x8 ,w) = ~( )-(-) UJ(x,xs,w) + -d -(-) d · V0 X Vo X X Po X X 

(2.8.6) 
We now propose to write down a Green's function representation of the 

solution to this equation, observed at the point x9 (geophone location). It 
should be noted here that the differential operator £ 0 is not self-adjoint. 
Therefore, we use the Green's function g*(x,x9 ,w) which is the impulse 
response for the "adjoint equation," 

C~g*(x,x9 ,w) = d~ [Po~x) d~[po(x)g*(x,x9 ,w)J] + v~:)g*(x,x9 ,w) 
= -8(x- x9 ). (2.8.7) 

We use the symmetry of the Green's function, or theorem of reciprocity, 
(see 2.3.1, and Exercise 2.9) to set 

g*(x,x9 ,w) = g(x9 ,x,w). (2.8.8) 
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Here, g(x9 , x, w) is the Green's function for the operator, .C0 . Note that this 
Green's function differs from UJ, defined by (2.8.5). First, the source point is 
different: x9 instead of x 8 • Second, the arguments have been interchanged, 
with the source point as first argument and the running variable x as second 
variable. 

The solution of (2.8.6), written in terms of this Green's function, is 

100 
[ w2 28v(x) 

us(x9 ,x8 ,w) =- ~( )-(-) UJ(X,X 8 ,w)g(x9 ,x,w) 
o Vo X Vo X 

d [8p(x)] dui(x,x8 ,w) ( )ld + -d -(-) d g x9 ,x,w x x Pox x 

(2.8.9) 

100 
[ w2 28v(x) 

=- ~( )-(-) UJ(x,x 8 ,w)g(x9 ,x,w) 
O V0 X Vo X 

_ 8p(x) .!!:.._ [ ( )dui(X,Xs,w)J]d 
( ) d g x9 , X, W d X. 

Pox x x 

In the second form of the result, we have integrated by parts to eliminate 
the differentiation of 8p. The reason is that we ultimately expect to apply 
this result when 8p is discontinuous, thus this derivative is a distribution. 
In this form, the differentiation is carried out on the continuous functions 
instead. 

We are concerned only with high-frequency inversion of this equation. 
To that end, we will use WKBJ approximations for u1 and g, 

UJ(X X w) = --1-F(w)A(x x )eiwr(x,xs) 
' 8 ' 2iw ' 8 ' 

g(x X w) = __ l_A(x x)eiwr(xg,x) 
9 ' ' 2iw 9 ' ' 

T(X, ~) = r> dx1 /vo(x') 
Jx< 

x< = min(x, ~), x> = max(x, ~). 

It is important to note that, for the case of continuous v0 and p0 , 

(2.8.10) 

A(x,x8 ) = Jc(x)c(x 8 )p(x)jp(x8 ), A(x9 ,x) = Jc(x)c(x9 )p(x9 )/p(x). 
(2.8.11) 

We then substitute these WKBJ approximations into (2.8.10) and retain 
only the leading-order terms in w [ O(w2)], to yield the result, 

( ) -100 F( )~ [8v(x) 8p(x)] A(x,x8 )A(x9 ,x) 
UsX9 ,Xs,W- w 2 ()+ () 2() 

0 vo x Po x v0 x 
. eiw{ r(x,xs)+r(xg,x)} dx. (2.8.12) 
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This equation should be compared with (2.5.3). Here, the source and re­
ceiver points are separated along the line; there, they were coincident. As 
a consequence, the observed field is us(x9 ,x8 ,w) as opposed to us(O,w), 
and we have two different amplitudes arising from UJ and g, whereas in 
(2.5.3) the square of a single amplitude appeared. Here, phase involves a 
sum of traveltimes from the source and receiver points to the scattering 
point at depth; there, the phases were the same and a two-way traveltime 
appeared in the exponent. The unknown -a/4 of the previous expression 
is replaced by [8pj Po + 8v /v0]/2. We leave it as an exercise to show that 
these unknowns are "identical" when 8p = 0. 

The derivation of the inversion formula carried out below (2.5.3) can be 
repeated here step-by-step with these modifications in place. With some 
thought, it becomes apparent that the result of inversion for this equation 
can be deduced from (2.5.12) by making the same changes in the inversion 
formula as were observed in the comparison of (2.5.3) and (2.8.12). That 
1s, we 

1. rewrite (2.5.12) as an equation for -a(y)/4; 
2. replace c(y)/A2 (y) by v0(x)/A(x, x8 )A(x9 , x); 
3. replace 2T(y, 0) by T(y, Xs) + T(y, x9 ). 

The result of these replacements is 

~ [8v(y) + 8p(y)] 
2 vo(Y) Po(y) 

= vo(y) joo u (x X w)e-iw{T(y,xs)+T(Xg,y)} dw 
1rA(y, X8 )A(x9 , y) _00 

5 9 ' 8 ' • 

(2.8.13) 

Similarly, for the reflectivity, (3(y), we obtain the result, 

(3(y) = iW Us(Xg,Xs,W)e-"w{T(y,xs)+T(Xg,y)}dW. -2 joo . 
1rA(y,x8 )A(x9 ,y) -oo 

(2.8.14) 
Previously, (3(y) produced bandlimited delta functions, scaled by the jump 

in -a(y) /4, which turned out to be just the linearized reflection coefficient. 
With the above replacement, this quantity is replaced by 

~ [8v(y) + 8p(y)] = 8(pv) = ~D[ln(pv)]. 
2 vo(Y) Po(Y) 2pv 2 

(2.8.15) 

That is, the bandlimited delta functions in the output (3(y) will now be 
scaled by the linearized approximation of the impedance of the medium. 
At a discontinuity, 

8(pv) P+V+- p_v_ ::::o P+V+- p_v_ = z. 
2pv ::::o 2p_v_ P+V+ + p_v_ 

(2.8.16) 
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The right side here is the exact impedance (reflection) coefficient in a 
variable-density medium. 

In Section 2.4 it was shown that an inversion theory based on a Born 
approximation for the forward scattering problem yields the "exact" reflec­
tion coefficient as the scaling factor of the bandlimited delta functions in 
the output {J(y). The same result follows here. That is, ifus(x9,x"w) for 
a discontinuous medium were replaced by its WKBJ approximation, then 
the exact impedance coefficient would scale the bandlimited delta functions 
of {J(y); that is, 

{J(y) cv L 8B(Y- hj)Zj. 
j 

(2.8.17) 

Verification of this result will be carried out in the exercises. Unfortu­
nately, we cannot separate the jumps in soundspeed from the jumps in 
density in this result. Some other kind of experiment is needed to do this. 
In higher dimensions, we can use source-receiver offset to provide additional 
information. Here, this method can go no further. 

Exercises 

2.17 Repeat the derivation of the 1D inversion formula in Sections 2.3.3-
2.4.1 under the assumption that the data are observed at x9 -!=- 0, 
still in the negative x-direction of the support of a(x). The source for 
the experiment is still at X 8 = 0. Specialize the problem to constant­
background wavespeed c0 , as in Section 2.4.1. Use the data for a single 
step in a(x) to obtain the same inversion formula (2.4.8). 

2.18 Consider the propagation of a lD acoustic wave that begins at po­
sition x = 0 and propagates in the positive x-direction through a 
medium composed of many layers. The boundaries of these layers 
are taken to be at the positions x1, with j = 1, k. The thickness of 
each layer is 6.x1 = x1 - x1_ 1 , with x_ 1 = 0. The wavespeed in the 
negative x-direction from x 0 is c0 , with the speed in each subsequent 
interval in the positive x-direction being c1. 

a. If the incident field in the layer 6.x0 is the free-space Green's func­
tion for a medium with wavespeed c0 , verify that the transmitted 
field seen at position Xk is 

k { k } ~ 2c 6.x· 
ur(xk, w) = --.- IJ [ J ] exp iw L -' . 

2zw . cJ· + cJ·-1 . Ci 
J=1 z=O 

b. Show that, in the limit as the wavespeed profile becomes continu­
ously and smoothly varying, the transmitted field is described by 
the WKBJ Green's function 
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y'c(O)c(x) {. 1x dO" } 9WKBJ(x,O,w) =- . exp zw -( ) . 2zw 0 c CJ 

Hint: Rewrite the factor in square brackets [] in part (a) as 

exp{ -ln(1-D.j/2cj)} = exp{D.j/2cj+O(D.J)}, for Doj = Cj-Cj-l· 

Now carry out the product over j by summing in the exponent to 
obtain the result 

k 1 L = 2ln[c(Xmax)/c(Xmin)] + 0(.6.), 
j=l 

In fact, using this method, an exact series solution (called the Brem­
mer Series [Bremmer, 1950]) can be constructed for the 1D problem 
for selected wavespeed profiles. The WKBJ Green's function is the 
first term of this exact series. 

2.19 Derive the WKBJ Green's function for the variable-density problem 
using the same method. 

2.20 In Section 2.8, a variable-density /variable-wavespeed inversion oper­
ator was derived. Verify the derivation in the text. Assume that the 
perturbation is now represented as small variations in density p and 
bulk modulus "'' such that 

p(x) = po(x) + 8p(x), "'(x) = "'o(x) + 8"'(x). 

Show that the relationship v(x) = V"'(x)jp(x) and the above 
definitions imply 

1 _ 1 [1 8p(x)] 
p(x) - pa(x) - po(x) 

_1 ___ 1_ [1 + 8p(x) _ 8"'(x)] 
v2(x) - v5(x) pa(x) "'o(x) 

for small perturbations in density and bulk modulus and define o:(x) 
in terms of the density and bulk modulus. 

2.21 Following the method of Section 2.8, derive the inversion formula 
assuming variable density and variable bulk modulus. 

2.22 Let u(x, w) be a solution of (2.8.1) subject to the radiation conditions 
stated below that equation. Furthermore, assume that 

and 

v(x) = vo =constant 

{ 
po, x < h1, 

p(x) = Pb h1 < x < h2, 

P2, h2 < x, 

with po, p1, and p2, constants. Furthermore, assume that at each of 
the interfaces, 
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u(x,w) continuous, 
1du(x,w) . 
- contmuous. 
p dx 

a. Show that these continuity conditions lead to exactly the same 
system of equations as in Exercise 2.11b, except that in the phase, 
all propagation speeds are replaced by v0 and the coefficients c0 , 

c1 , and c2 , in the resulting continuity equations are replaced by 
Po, Pl, and P2· Thus, conclude that 

u(O, w) = -~ [1 + Rl + Rzeiwr e2iwhl/vo] ' 
2iw 1 + R1R2e"wr 

except that now 

R _ Pl- Po 
1 = ' Pl +Po 

R _ Pz- P1 
2 = ' Pz + P1 

b. Conclude that the inversion (2.4.17) now yields the result 

f3B(x) = R1bB(x- hi)+ Rz[1- Ri]oB(x- h2) + ... , 
where ( ... ) represents bandlimited delta functions with support 
beyond h2 • That is, the locations of the first two reflectors are now 
correct because the background propagation speed is the exact 
speed throughout the medium and only the density changes. 
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Inversion in Higher Dimensions 

In Chapter 2, formulas were created to determine the wavespeed profile 
of a medium with one dimension of parameter variability only, via high­
frequency inversion of plane-wave data. The original plan of Chapter 2 
was to invert the data for the actual wavespeed profile or, rather, the 
perturbation a(y) from a known background wavespeed profile. However, 
results influenced by the bandlimited nature of the data, represented by 
a symmetric filter F(w), motivated a change to the new goal of imaging 
the discontinuities of the wavespeed profile-the reflectors. This yields a 
new output, the "reflectivity function" (3(y), which was found to consist of 
bandlimited delta functions having peak amplitudes occurring at reflector 
locations, with size scaled by the normal-incidence, plane-wave reflection 
coefficient. The reflectivity function is analogous to a similar reflection co­
efficient series that may be obtained in the process of creating a synthetic 
well log from seismic data. Equivalent results in higher dimensions will be 
the goal of all subsequent inversion formulations found in this text. 

In this chapter, we will extend the one-dimensional high-frequency inver­
sion method to the three-dimensional problem. Paralleling the derivation 
in Chapter 2, the starting point is a statement of a forward modeling for­
mula, which will be an integral equation created by applying perturbation 
theory to the Helmholtz equation to create two Helmholtz equations. We 
will then create the desired integral equation by solving for the scattered 
field via Green's theorem. As before, the resulting integral equation will be 
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linearized using the Born approximation. It is this linearized formula that 
we will invert. 1 

Owing to the greater number of degrees of freedom afforded by the 
greater number of dimensions, the 3D problem has added richness. A 
greater number of possible recording geometries and phenomena exist (first 
discussed in Chapter 1), owing to the higher-dimensional variation of the 
background propagation speed. 

A recapitulation of the method that was used to derive the high­
frequency inversion formulas in Chapter 2 is outlined here as an aid to 
the reader. This outline is also a statement of the general program that we 
follow in this chapter. 

Deriving a High-Frequency Inversion Formula 

1. Derive a linearized forward modeling formula, written in terms of the 
unknown material parameters, describing the processes that generate 
the seismic data. 

2. Find a way to invert the modeling formula to solve for the unknown 
material parameters. 

3. Test the inversion formula, analytically if possible, on a set of known 
model data to see if the form of the output is satisfactory for the desired 
application. (If the test data are created numerically, it should be done 
using a different modeling formula than the one in step (1) to avoid a 
circular result.) 

4. If the form of the output is not what is desired, adjust the formula 
accordingly. ("Adjustment" can include searching for errors in the 
derivation, redefining the desired goals to take into account aspects of 
the physics of the model and characteristics of real data, or choosing a 
new mathematical approach to the problem.) 

As in the one-dimensional inversion problem, much insight will be gained 
by first deriving an inversion formula assuming a constant-background 
wavespeed. To simplify the problem, we introduce the added restriction that 
the source and receiver be located at the same place. (This source-receiver 
geometry is given various names, including zero-offset, normal-incidence, 
pulse-echo, monostatic, or backscatter experiments. See discussion on page 
81.) 

Solutions to this special case will be the topic of this chapter. In later 
chapters, we will remove this restriction, permitting the derivation of 
inversion formulas for a variety of source-receiver geometries. 

In addition to the issue of limited bandwidth addressed in Chapter 2, the 
problem of limited spatial aperture-the angular coverage of the target be-

1 Papers relevant to this discussion are Bleistein and Cohen [1979a, 1979b] and 
Bleistein, Cohen, and Hagin [1985]. 
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ing imaged-must be addressed before the reader will be prepared to handle 
the more general problem of variable-background inversion with nonzero 
offset between source and receiver. This topic is addressed in Chapter 4. 

3.1 The Scattering Problem in Unbounded Media 

As stated above, the first step in the derivation of a high-frequency inversion 
formula is the creation of a forward model describing the "scattered waves." 
We begin the derivation by introducing the familiar right-handed Cartesian 
coordinate system such that (x, y, z) = (x1, x2, x3), with z = X3 positive in 
the downward direction. The propagation speed is assumed to be known 
for z < 0 and unknown in some portion of the region z > 0. For now we 
will assume that the medium has constant density. 

The waves originate from a bandlimited impulsive point source acting at 
the position X 8 and at the timet= 0. The response generated by this source 
is observed at one or more receivers located at the receiver position(s) x 9 . 

The objective is to obtain information about the propagation speed v(x) 
from observations of the wavefield. We assume that the signal propagation 
is governed by the three-dimensional Helmholtz equation, 

.Cu(x,x8 ,w) = [\72 + v~:)] u(x,x 8 ,w) = -F(w)6(x- X 8 ). (3.1.1) 

The function u(x, X 8 , w) and all wavefields introduced below are assumed 
to satisfy the Sommerfeld mdiation conditions, 

[au iw J ru bounded, r ar - --:;;u ~ 0 as r ~ oo, r= lxl. (3.1.2) 

(Compare these radiation conditions with the much simpler radiation con­
dition in the 1D problem, stated in equation (2.2.1).) These conditions 
ensure the uniqueness of solutions to the Helmholtz equation in unbounded 
media. These conditions prevent waves from propagating inward to the 
source from infinity (part of the physical constraint of causality), while 
guaranteeing that their amplitudes decay with range at least as quickly 
as do those of the Green's function. By "Green's function," here we mean 
the impulse response obtained under the condition of causality. The added 
condition insures that the decay in amplitude due to geometrical spreading 
is represented correctly. 

As in the one-dimensional problem, the wavespeed is represented as 
a perturbation with respect to a known reference speed, c( x), expressed 
mathematically as 

1 1 
v2(x) = c2(x) (1 + a(x)). (3.1.3) 
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Substitution of the perturbation representation (3.1.3) into the original 
equation (3.1.1) produces the equivalent Helmholtz equation, 

w2 
.Cou(x, X8 , w) = - F(w)8(x- X8 ) - c2 (x) a(x)u(x, X8 , w). (3.1.4) 

Here 

.Co = [ \72 + c~:)] 
is the Helmholtz operator with the known background wavespeed c( x). 

Again following the one-dimensional derivation, we decompose the wave­
field into a reference or incident field, UJ(x,x 8 ,w), which is the impulse 
response in the absence of the perturbation a(x), plus a scattered field, 
us(x, X8 , w), which is the modification of u1(x, x 8 , w) in response to a(x). 
Thus, the formal decomposition of the field is represented by 

u(x, X8 , w) = UJ(X, X8 , w) + us(x, X8 , w), (3.1.5) 

with the requirement that UJ(x,x 8 ,w) be a solution of the unperturbed 
equation, 

.Coui(X,X8 ,w) = -F(w)8(x- X8 ), (3.1.6) 

subject to the Sommerfeld radiation conditions, (3.1.2). The factor of F(w) 
contains the combined losses owing to bandlimiting discussed in Chapter 2 
and will appear throughout the derivation. 

An additional constraint is required for the Sommerfeld radiation con­
ditions to hold. The size of perturbation a(x), must be restricted to some 
small subset of the total volume of the problem. Without such a restriction, 
the spatial extent of the scattering region could conceivably be the entire 
volume of the body being imaged~the total volume of the Earth, in the 
seismic problem. 

In practice, seismic recording for a given source is done over an area 
of the Earth's surface limited to few kilometers, at most. In addition, the 
recording time of seismic data sets is restricted to no more than several 
seconds. If the data (possibly after a stage of preprocessing) are assumed 
to be high-frequency bandlimited impulses, then these spatial and temporal 
restrictions translate into a restriction on the volume of the Earth that is 
being sampled. Consequently, a( x) can be treated as if it is of finite extent, 
permitting us to assume that v(x) ~ c(x) for great distances from the 
source. We can equate "great distance" with the distance r that appears 
in the statement of the Sommerfeld radiation conditions (3.1.2), greatly 
simplifying the derivation of the forward and inverse integral equations. 2 

2 0wing to the petroleum industry's long experience with seismic prospecting, 
geophysicists select sources and recording equipment that generate data compat­
ible with these assumptions. In other problems, for example seismology involving 
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We may continue the derivation, as in Chapter 2, by subtracting (3.1.6) 
from (3.1.4) to obtain the Helmholtz equation describing the scattered field, 

w2 
.Cous(x,xs,w) =- c2 (x)a(x) [ui(X,X 8 ,w) +us(x,x8 ,w)]. (3.1.7) 

An integral equation for us(x9 ,x8 ,w) can be written in terms of the 
Green's function, g*(x,x9 ,w), that is a solution of 

.C0g*(x, x 9 ,w) = -8(x- x 9 ). (3.1.8) 

The superscript "*" is used to distinguish the adjoint operator and the 
adjoint Green's function, from the direct operator and the direct Green's 
function, respectively. While the constant-density problem is self-adjoint, 
we will still retain the * notation for generality. 

The general form of the integral equation for the scattered field us is 
created by solving equations (3.1.7) and (3.1.8) using Green's theorem, 
expressed here for a general operator as, 

{ {g* .C0u- u.C0g*} dV = { n · Q dS, lv lav (3.1.9) 

where n is the outward-directed normal to the boundary surface 8D and 
{g* .Cau- u£0g*} = \7 · Q. The reader should note that .CO and g* are 
simply the respective operator and Green's function needed to make the 
integrand of the integral on the left an exact divergence. The fact that the 
integrand of the left-hand side of equation (3.1.9) is an exact divergence 
permits us to apply the divergence theorem to create the right-hand side. 

For the constant-density problem, we can explicitly write Green's 
theorem as 

l {g* .Cau- u.C0g*} dV = lav { g* ~~ - u ;: } dS, (3.1.10) 

where 8j8n is the outward normal derivative to 8D, often written as n· \7. 
For an unbounded problem (boundary 8D at infinity), the surface integral 
term is zero, by the application of the Sommerfeld radiation conditions 
(3.1.2).3 

Under these conditions, we may further simplify the notation by applying 
the reciprocity theorem, 

g*(x, x 9 ,w) = g(x9 , x,w). (3.1.11) 

See Exercise 3.lc. 

the whole Earth, or acoustic imaging of flaws in manufactured items, consider­
able effort may be required to create data sets for which all of these assumptions 
hold. 

3 For further details, see Courant and Hilbert [1962], Sommerfeld [1964], 
Garabedian [1964], or Bleistein [1984]. 
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For the special case of the constant-density Helmholtz equation, the 
adjoint operator is the same as the direct operator; the constant-density 
Helmholtz equation is self-adjoint, meaning that the identity g(x9 , x, w) = 
g(x, x 9 , w) holds. In anticipation of extending the method to the more gen­
eral problem, the arguments of the Green's function have been written in 
the proper order here. 

The solution for the scattered field is the integral equation 

21 a(x) 3 us(x9 , Xs,w) = w D c2 (x) [u1(x, X8 , w) + us(x, X8 ,w)] g(x9 , x, w)d x. 

(3.1.12) 
Here, the domain D of integration must contain the support of a(x)­

assumed to be some finite subdomain of z > 0. We are free, therefore, to 
take D to be the semi-infinite domain z > 0. 

Exercises 

3.1 Consider the general problem 

Cu(x) =- f(x) 

C*g*(x, x 9 ) = -8(x- x 9 ). 

a. Show that the integral equation of the field is 

u(x9 ) = L f(x)g*(x, x 9 ) dV 

In { *( )au(x)_ ( )8g*(x,x9 )} dS + g X, Xg ~ U X ~ . 
aD un un 

b. Derive the Sommerfeld radiation conditions (3.1.2) (see Bleistein 
[1984], pp.l80-191) in the 3D problem. That is, show that the 
surface integral term in the integral equation for the field above 
vanishes as the radius of the surface becomes infinitely large, thus 
showing that an unbounded medium is equivalent to a medium 
with "boundary at infinity." 

c. For a general operator £: and its adjoint £:*, but for an unbounded 
medium, set f = -8(x- x 8 ) in the problem above to prove the 
reciprocity theorem: 

3.2 Let the operator £: be the Helmholtz form of the variable-density, 
acoustic-wave operator defined by the expression 

Cu = p'l· [~'Vu] + w2 u. 
p c2 
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Begin with the expression 

I= L g*Cu dV. 

a. Through successive applications of the divergence theorem, show 
that Green's theorem for the variable-density acoustic wave 
equation problem is 

L [g* Cu- u£* g*] dV = laD [g*! - ~ :n (pg*)] dS. 

b. As part of this derivation, show that the adjoint operator £* is 

[,*g* = "V. D"V(pg*)] + ~: g*. 

c. Show that the Sommerfeld conditions work as long as "V pf p 
remains bounded at infinity. 

3.2 The Born Approximation 

The same difficulty seen in the 1D problem is encountered here. Equation 
(3.1.12) is an integral equation for the scattered field containing the prod­
uct a(:z:)us(a:,a:8 ,w), meaning that it is a nonlinear equation in these two 
unknowns. For small a(:z:), linearization of the equation is possible if it 
could be argued that us(a:,a:8 ,w) is also small (that is, O(a)) for a small. 
As in the one-dimensional problem, this quadratic term in a could then be 
ignored when compared to the product a(:z:)ui(a:,a:8 ,w) that appears as 
the first term under the integral sign. Unfortunately, this is not always true 
in three dimensions. In particular, think of the reflected field beyond the 
critical angle of reflection. The reflection coefficient has unit magnitude, 
meaning that the amplitude of the scattered field is of comparable magni­
tude to that of the incident field, at least in that subdomain of D. Thus, 
caution must be exercised in the three-dimensional problem, because it is 
not always possible to neglect a(:z:)us(:z:, a: 8 , w) in favor of a(:z:)ui(:z:, a: 8 , w). 

For near-zero-offset or backscattered observations, however, it is true 
that small a implies small us because the major contributions to the 
scattered field will be the near-normally incident, specularly reflected ar­
rivals. For near-zero-offset source-receiver geometries it is safe to make the 
Born approximation. The result is an integral equation relating a( :z:) to 
the observations us(a:,a:8 ,w) at the source/geophone positions :Z:g. The 
Born-approximate integral equation for the scattered field is written as 

(3.2.1) 
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This is the modeling equation that we will use as a starting point for 
generating the inversion formulas of this chapter. Sufficient generality has 
been retained to make the equation remain valid even for the variable­
density problem (non-self-adjoint operator) provided that UJ(X,X 8 ,w) and 
g(x9 , x, w) are properly interpreted, with a(x) being replaced by the appro­
priate linear combination of perturbations of density and propagation speed 
(or density and bulk modulus as in Exercise 2.20). Furthermore, equation 
(3.2.1) also extends to scalar decomposition of vector wavefields with mode 
conversion, again, as long as UJ(X,X 8 ,w) and g(x9 ,x,w) are properly in­
terpreted and a(x) is replaced by the perturbed quantities appropriate to 
the problem. See the exercises for examples. 

So far nothing has been said about the range of values of X 8 and x 9 • 

A count of the degrees of freedom in the Born-approximate integral equa­
tion will help us make a decision about what is required. Implicit in the 
notation a(x) is the assumption that this quantity is a function of three 
variables, meaning that the perturbation has three degrees of freedom in 
its variation. Of necessity, then, observed data must have at least three 
degrees of freedom. The first of these degrees of freedom comes from the 
range of w (or of time, t). The other two can come only from the range 
of x 8 and x 9 . Therefore, when a(x) depends on all three variables, the 
source-receiver configuration must range over a surface to provide the nec­
essary information to reconstruct the behavior of a( x) in the full three 
dimensions. Given less than surface coverage, it is unreasonable to expect 
to determine three-dimensional dependence of a on x. 

With this in mind, let us consider some of the standard configurations 
of inversion experiments. 

Zero-Offset Surface Experiment 

For this experiment, the source and receiver occupy the same position on 
the boundary surface of the domain containing the unknown perturbation 
a. The data will consist of an ensemble of such experiments. 

There are good reasons to study the zero-offset problem. First, it is the 
easiest multidimensional inverse problem to formulate, meaning that an ap­
proach to inversion that fails on zero-offset data is not likely to succeed on 
more difficult problems. Second, experiments exist for which it is possible 
to obtain true zero-offset data. Third, though virtually all seismic data are 
collected using geometries involving a nonzero source-receiver offset, the 
advantages of processing zero-offset data have encouraged the geophysical 
community to create a number of preprocessing techniques to transform 
data to an approximate zero-offset geometry. Because the methods of seis­
mic preprocessing are not be completely successful, amplitude information 
in such pseudo-zero-offset data often suffers considerable degradation. See 
Chapter 7 for a discussion of the proper handling of amplitudes in such 
data mapping processes. 
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Zero-offset geometry is practical for imaging flaws in solids and in medical 
ultrasound imaging, however, because the same transducer that is used as 
the source can also be used as the receiver. Also, with sufficient time delay 
between the initiation of the acoustic source pulse and the first recorded 
arrival, reverberations originating in the vicinity of the source-receiver array 
have time to dissipate. 

Zero-Offset Linear Experiment 

Data gathered along a single straight line with source and receiver coin­
cident are true zero-offset data sets. Seismic data sets collected in CMP 
gathers, with traces moveout-corrected (by both NMO and DMO) and 
stacked, yield seismic sections that approximate the zero-offset geometry. 
In either case, there is only one spatial degree of freedom in addition to 
that from frequency (or time). It is not a reasonable expectation to re­
construct a three-dimensional a(x) from such a dimensionally constrained 
data set. Instead, we must be content seeking a two-dimensional inversion, 
with the first spatial variable on the output consisting of the horizontal 
spatial coordinate running parallel to the seismic line, and the second be­
ing depth into the subsurface. When the unknown medium has minimal (or 
no) variation in the out-of-plane direction, this is a reasonable experiment. 
Achieving this geometry in practice is often a matter of picking a direction 
along which to gather data, but the Earth and conditions on its surface 
may not be so accommodating. Historically, in oil exploration, gathering a 
single line of data was the method of choice for purely economic reasons. 
Processing a single line of data might also be the method of choice (as it 
was in earlier times) because of limited computer capacity. 

Single Zero-Offset Experiment 

Here, the only independent variable in (3.2.1) is w and the reasonable ex­
pectation is to obtain a as a function of only one variable, usually depth. If 
it were known a priori that a is a function of one variable making some an­
gle with the vertical, however, inversion would still be possible by a simple 
coordinate rotation. Such a geometry might be practical in a geologic set­
ting consisting only of planar layers, such as in the shallow sediments of the 
abyssal plane in deep ocean environments; but, for petroleum exploration, 
this is too constrained a geological model for practical consideration. 

Common-Shot Experiment 

In the common- or single-shot experiment, an array of receivers is deployed, 
and the response to one source is recorded. When the receivers are set out in 
a surface array, there are again two degrees of freedom in the spatial coor­
dinates, but all in the locations of x 9 , with no variation in X 8 • Nonetheless, 
at least the "count" is right, and it is reasonable to expect to invert data 
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from such an experiment for a(x), at least within some limited volume. If 
the receivers are set out along a line, again the degrees of freedom are re­
duced by one in the data, implying the same of the solution. There are two 
ways to use this kind of experiment. We are either solving for one unknown 
that is a function of two spatial variables (propagation speed variations, for 
example) or solving for two unknowns (propagation speed variations and 
density variations, for example) that are each functions of one independent 
variable. 

In both of these problems, the forward model should still describe 
propagation in a three-dimensional medium; only the spatial dependence 
of the medium is lower dimensional. For the case of one unknown, say 
v(x, z), the spatial dependence is two-dimensional while the propagation is 
three-dimensional. We call such a problem-3D propagation, 2D medium­
two-and-one-half dimensional. The model problem should be designed in 
such a manner that the dependence of the medium parameters on only two 
spatial variables can be exploited. This cannot always be done in practice. 

Synthetic Aperture 

In either the three-dimensional or two-and-one-half-dimensional case, one 
experiment does not provide enough information to obtain an inversion of 
an adequate region of the unknown medium. Instead, many common-shot 
experiments are used to broaden the aperture of observations and thereby 
to increase the region of the subsurface from which upward-scattered waves 
are observed. These many experiments also offer some redundancy in these 
data. This redundancy can be used to diminish the noise-induced errors, 
while also permitting more sophisticated options in the choice of inversion 
results, such as solving for more than one material parameter. Because of 
the increase in aperture achieved by employing many experiments, inver­
sion of this type has been called the synthetic-aperture focusing technique 
(SAFT) in nondestructive testing of solids. 

Vertical Seismic Profiling (VSP) and Crosswell Surveys 

Two special cases of common-shot experiments are worthy of special note. 
They are single-offset vertical seismic profiling and well-to-well experi­
ments. In the former, a source is placed on the surface of the Earth and 
receivers are placed in a borehole (or vice versa). Data that reach receivers 
after reflection or diffraction from the scattering region are well suited to 
this theory. Transmitted data are not. A suite of such experiments in which 
the source is moved progressively further away from the borehole provides 
a synthetic aperture that increases the region over which an inversion can 
be achieved. Depending on the range of source positions, this can be a 
three-dimensional or two-and-one-half dimensional inverse problem. 

In well-to-well experiments, sources are placed in one well or borehole, re­
ceivers in another. This is strictly a two-and-one-half-dimensional problem. 
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Reflection experiments of this type are referred to as diffraction tomography 
(here we mean this term in its original usage of Devaney and Oristaglio, 
[1984]) to distinguish them from true tomographic experiments, which 
invert transmitted data. Thus, diffraction tomography is neither a tomo­
graphic experiment nor a diffraction experiment, but merely another form 
of common-source reflection experiment. 

Common-Offset Gathers 

In seismic exploration, constructing a common-offset gather is more a 
matter of rearranging or sorting the data from a suite of common-shot 
experiments, than it is a method of gathering data in the field. In other ap­
plications, such as radar or acoustic nondestructive testing, it may be more 
practical to actually gather the data using this source-receiver geometry. In 
either case, a suite of different experiments is represented by each seismic 
trace, as each is the response from a single (different) source. The offset 
between each source and each respective receiver is fixed, with the lines be­
tween sources and receivers chosen to all be parallel. If the source-receiver 
pairs all lie on a single straight line, only one spatial degree of freedom ex­
ists in the observed data; thus only two-and-one-half-dimensional inversion 
is possible. If, however, the source-receiver pairs are not confined to a sin­
gle line, but range over a surface, then, on the basis of degrees of freedom 
alone, we can conclude that three-dimensional inversion is possible. 

Common-Receiver Gathers 

This geometry consists of data set representing many sources and a single 
common receiver. Again, such a data set would be obtained by rearranging 
or sorting data from a collection of common-source gathers. The principle 
of reciprocity allows for the derivation of an inversion formula for common­
receiver data given an inversion formula for common-shot data. The count 
of degrees of freedom, then, is the same as in the cases of common-shot 
inversion, above. 

Other Choices 

So far we have no other method to evaluate or eliminate from consider­
ation any particular source-receiver configuration other than by counting 
the degrees of freedom. For the examples cited above, migration and in­
version techniques have been demonstrated and techniques for parameter 
estimation have been established. Some configurations can be eliminated in 
a fairly straightforward manner. Others are less clear. For example, suppose 
that sources are all configured on one line and receivers on an orthogonal 
line. Such arrays always yield some partial success, but the results do not 
yield complete information about the subsurface. Eventually, we will de­
velop a criterion that at least warns us when to be cautious, if it does not 
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provide a definitive answer to the question of what we can expect different 
source-receiver arrays to deliver. 

Compatibility with High Frequency 

Earlier, we observed that wide offset and the Born approximation might be 
inconsistent, owing to the large reflectivity of wide-angle reflections. In the 
current discussion, we have not concerned ourselves with the issue of failure 
of the Born approximation, but have concentrated only on the count of de­
grees of freedom. Consequently, we address this issue below. Ultimately, we 
show that the output of the inversion derived on the basis of the Born ap­
proximation has an interpretation in terms of high-frequency "Kirchhoff 
data," which is to say, model data created using the Kirchhoff model­
ing formula. (See Exercise 3.12.) Because there is no small-perturbation 
assumption in the Kirchhoff modeling formula regarding reflection coeffi­
cients (or, consequently, in any inversion formula derived from it), we will 
be able to allow for wide offset between source and receiver. Thus, we 
ask the reader's forbearance while we continue to develop inversion opera­
tors based on the Born approximation. We assure the reader that we will 
ultimately arrive at a result that frees us from the restriction of consid­
ering only small changes in parameters across a reflector, so long as the 
background parameters above that reflector are near to their true values. 

Summary 

In summary, for techniques in current use, the count of degrees of freedom 
is consistent with the kind of inversion results that are obtained. While the 
target is always a three-dimensional Earth model, the implied geometry of 
the experiment is controlled by the number of degrees of freedom available. 
It is one of these theories, high-frequency inversion for reflector mapping 
and parameter estimation, that will be developed here. 

In practice, data are gathered from "many" experiments, with the shot 
and receiver locations varied. This produces redundant data from the point 
of view of the counts we were making in the above discussion. Such data 
redundancy is important as it may be used to reduce noise and to permit 
the extraction of more parameters than a simple a(x). In addition, data 
redundancy permits background wavespeed profiles to be generated by a 
variety of velocity analysis techniques that are independent of the actual 
inversion process. Because our goal is to formulate inversion techniques, we 
will not discuss these other side issues. 

3.2.1 The Born Approximation and High Frequency 

The ultimate objective of our derivations is to develop formulas for high­
frequency inversion. Because the source term in (3.1.7) involves the product 
w 2a(x), it might appear that assuming high frequency is incompatible with 
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the Born approximation, because "large w" and "small a:(x)" are competing 
to determine the ultimate size of this source term. We will show here that 
this is exactly the "right" combination of powers to create a balance that 
allows for both high frequency and small perturbations, independently. 

Suppose that the true velocity, v(x), is known, but that we still want to 
consider the decomposition of (3.1.3). We will examine the interplay of high 
frequency and small a: on the WKBJ formalism for high-frequency wave 
propagation. To this end, we represent solutions to the Helmholtz equation 
in the form of a series in inverse powers of iw: 

u(x w) "'eiwr(oo) f An(x) 
' n=O (iw)n' 

where r(x) is traveltime. (This is the WKBJ series trial solution.) It is 
assumed that the total solution is made up of one or more series of this type 
with linearity permitting us to examine each constituent series individually, 
except at places where they might interact, such as at reflectors. Away from 
the source point X 8 , equation (3.1.4) takes the form 

a:(x)w2 
.Co(u) =- 2 u(x,x8 ,w). 

c 
(3.2.2) 

We then substitute the WKBJ series trial solution into equation (3.2.2) to 
obtain the series representation that provides a basis for ray theory in a 
perturbed medium (see Appendix E), 

.C u = eiwr ~ _1_ [w2 {]:_- (Vr)2} A 
0 ~ (" )n 2 n n=O ZW C 

+ iw { 2\lr · '\7 An+ An 'V2r} + '\72 An] 

= -w2!!._eiwr ~ ~. 
c2 ~ (iw)n 

(3.2.3) 

In the formal process of solving this equation, we equate the coefficients 
of like powers of w appearing on each side of (3.2.3). Note that the leading­
order terms on each side are of order w2 , with each successive order term 
being in smaller powers of w. After canceling a common factor of Ao, the 
leading-order equality is 

[ 
2 1 ] a:(x) 

('Vr(x)) - c2(x) = c2(x). 

Because 
1 1 

v2(x) = c2(x) [1 + a:(x)]' (3.2.4) 

this equation for T becomes 
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2 1 
(\h(x)) - v2 (x) = 0, (3.2.5) 

which is the eikonal equation in a medium with velocity v. That is, the prod­
uct w2a, provided the precise balance needed to guarantee that the eikonal 
equation in the perturbed medium became the correct eikonal equation for 
the full waves peed v ( x). 

The eikonal equation describes the traveltime behavior of the waves un­
der the condition of high frequency. To examine the amplitude behavior 
under this condition, it is necessary to consider terms of lower order in w. 
If we equate the coefficients of the terms of the next order in w of equation 
(3.2.3), we obtain 

A1 [~- ~] + [2\h · \7 Ao + Ao V'2T] = -A1 _::, 
c2 v2 c2 

where the first term on the left side is obtained by using the eikonal equa­
tion (3.2.5). Again, using the relation (3.2.4), this becomes the transport 
equation for a medium with wavespeed v: 

2\i'T · \7 A0 + A0 \72T = 0. 

We see here, again, that there is no conflict between the small perturbation 
formalism in a that leads to the Born approximation and the standard high­
frequency formalism of ray theory. That is, the factor w2a on the right side 
of equation (3.1.7) is exactly the correct combination of powers to avoid a 
conflict between these two limits. Clearly, this balance will occur in all of 
the higher-order transport equations for A2 , A3 , ... , leading to the standard 
equations for each of those coefficients. (We refer the reader to the text of 
Kravtsov and Orlov [1990] for a comprehensive overview of ray theory. See 
also Bleistein [1984] and Appendix E of this text.) 

Because the solutions of the eikonal and transport equation(s) form 
the basis of asymptotic ray theory, we will take the position that the 
assumptions of high frequency and small perturbations are compatible. 

There are regions where this analysis does not prevail, which is to say 
locations where the amplitude of the scattered field us(x,x 8 ,w) is large. 
These regions include the vicinity of the source, areas near caustics, and 
regions of supercritical reflections. Yet, these are also the places where we 
generally expect high-frequency theories, including ray theory, to break 
down. 

Another example of a region where this analysis does not apply is the 
forward-scattering or downward-propagating direction. In that direction, 
the wave denoted by ur(x, X 8 , w) and defined by (3.1.6) accumulates a 
phase error relative to the "true" downward propagating wave. That er­
ror is approximately iw J a(x)jc(x)ds, where s denotes arclength along 
the geometrical-optics rays or paths of propagation. This is a region in 
which the product wa comes into play. With increasing propagation range 
through the region of nonzero a(x), this integral will increase in magni-
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tude, eventually attaining a value of 1r. At such places, UJ(X,X 8 ,w) and 
the true downward field are of opposite sign. The field we call us ( x, x 8 , w) 
will have to undo this error, which is of order unity in o:(x). Consequently, 
the downward propagating part of us(x, X 8 , w) cannot be only O(o:). This 
suggests that inversion as developed here is not the method of choice for 
tomographic imaging, which depends largely on transmitted, rather than 
scattered, energy. We will not use our methods on such problems. Indeed, 
we will see this breakdown in the forward scattering direction more explic­
itly later, when we see that the "true" large parameter depends also on the 
cosine of the half-angle between the geometrical-optics rays from source 
and receiver at the scattering point: for transmitted rays, that half angle 
is 1r /2, and the parameter that we would like to be large is actually equal 
to zero! 

Under the high-frequency assumption, the upward propagating part of 
us(x, x 8 , w) arises from reflections at jumps in o:(x). At normal incidence, 
such waves are scaled by a reflection coefficient proportional to the jump 
in o:(x), hence they are of order O(o:). For small-offset angles between 
incidence and reflection, this remains the case. As the offset angle in­
creases towards critical, however, the magnitude of the reflection coefficient 
approaches unity. For small o:, that critical angle will be large; as o: in­
creases, that critical angle decreases, restricting the viable range of angles 
of incidence. 

Now we have some idea where we can expect the upward-scattered field to 
be small when o:(x) is small. This will be when the offset angle between the 
direction of incidence and reflection is small compared to the critical angle. 
For the present, this is the type of experiment to be considered; specifically, 
we treat the special case of zero-offset in this chapter. Eventually we will 
show that this inversion has a range of validity that is broader than its basis 
in the Born approximation would suggest. We will show this by analytically 
studying the output of this inversion formalism when applied to Kirchhoff­
approximate data for a single reflector. 

The Kirchhoff approximation is not constrained to small increments in 
medium parameters across reflectors, nor to angles that are small com­
pared to the critical angle. Furthermore, we will show that the output 
of the inversion operator can be interpreted in terms of the fully nonlin­
ear geometrical-optics reflection coefficient. This means that estimates of 
parameter changes can be made without linearization. (We still have a lin­
earized problem, but it is linearized in terms of the reflectivity, instead of 
in terms of perturbations of material parameters.) Again, this echoes the 
results already derived for the one-dimensional problem. 

Thus, to a degree, the small-perturbation constraint of the Born approxi­
mation can be removed (or ignored). To properly locate the "test reflector," 
it will still be necessary to have a background or reference speed above the 
reflector that is "close" in some sense to the true propagation speed. It 
will also be necessary that multiples from reflectors above the test reflector 
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be small enough that they can be disregarded. This means that the vio­
lation of the constraint of small a(x) can still be a source of error, if the 
background-wavespeed profile differs significantly from the true profile. 

This suggests that a recursive application of the inversion operator 
could be used to gain information that progressively improves the esti­
mate of the background wavespeed. If such a procedure were applied in a 
"layer-stripping" fashion, then each successive reflector could be more pre­
cisely located, with its reflection strength yielding information about the 
wavespeed jump into the next deeper region being imaged. 

Therefore, the Born approximation is merely a vehicle for getting the 
derivation started, rather than being an end in itself. The real power of our 
methods comes from the robustness of high-frequency asymptotic wave 
theory. Extensions of the validity of our inversion schemes, through a con­
sideration of the properties of Fourier-like integrals, will provide the means 
of overcoming many of the constraints of the original derivation. 

3.2.2 The Constant-Background Zero-Offset Equation 

Some specializations of (3.2.1) will provide insights into solution of the 
general problem. The simplest problem to deal with is one in which the 
source and receiver are coincident, X 8 = x 9 on a flat horizontal surface, 
z = X3 = 0, and the background speed c(x) = c0 = constant. In this case, 
it is convenient to introduce 

(3.2.6) 

and the exact solutions, 

eiwr/co 
g(e,x,w) = - 4--, 1fT 

eiwr/co 
UJ(x,e,w) = F(w)--, r = lx- el, (3.2.7) 

47rr 

and rewrite (3.2.1) as 

[ 
W ] 21 e2iwr/co 

us(e,w) = F(w) -4 - a(x) 2 d3x. 
7rCo z>O r 

(3.2.8) 

Here, r = J(xl- 6)2 + (x2- 6)2 + x~. 

3.2.3 One Experiment, One Degree of Freedom in a 

Suppose that data are collected for a single zero-offset experiment and 
that the medium has variability from the background wavespeed in the 
vertical direction only. For our inversion formula, this means that we let 
the wavespeed vary from constant velocity as a function of the depth z, 
only. This is a useful case to study from a geologic perspective, because 
as a crude estimate, wavespeed can be assumed to generally increase with 
depth in the Earth. At the very least, if we have only limited well log data, 
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the variation of wavespeed with depth will be known with greater precision 
than will the lateral variations. 

Whatever the justification for considering such a problem, we will seek 
an inversion only for a(x) = a(z). Furthermore, the coordinates of the 
source in that single experiment might as well be taken to be (0,0,0), so 
that (3.2.8) becomes 

[ 
W ] 21 e2iwrfco 

us(O,O,O,w)=F(w) -4 - a(x3) 2 d3x, 
7rCo x3>0 r 

where (3.2.9) 

In this case, the integrand depends on x and y only through r, permitting 
us to perform the integration in (x, y) by exploiting the high-frequency 
assumption. When we introduce polar coordinates (p, 8)4 in place of (x, y), 
equation (3.2.9) may be rewritten as 

[ w ]2! 121r 1oo e2iwr/c0 

u8 (0,0,0,w)=F(w) -4 - dx3 a(x3) de dpp 2 , 
7rCo z>O o o r 

where (3.2.10) 

Integrating with respect to e yields a multiplier of 21r, and reduces the 
integral to 

w2 1 100 e2iwr I Co 

us(O,O,O,w)=F(w)-8 2 dx3a(x3) dpp 2 
7rCo x3>0 o r 

(3.2.11) 

While it is not possible to evaluate the integral over p exactly, it is possible 
to find an approximation to this integral that is consistent with the high­
frequency assumption. To do this, we require that Im w > 0 (consistent 
with r / c0 > 0) and integrate by parts in p, retaining only the leading term 
at high frequency to approximate the p-integral. The term being integrated 
is exp{2iwr /co}· pjr, noting that pjr is just the p-derivative of r. The result 
of this integration, to leading order in w, is 

u (0 0 0 w) "'F(w)~ 1 a(x3) e2iwx3/codx 
s ' ' ' 16 3, 1rco x 3 >o x3 

(3.2.12) 

where rv indicates that this is a high-frequency asymptotic approximation, 
rather than an exact equality. 

For F(w) = 1, equation (3.2.12) defines the observed data as a mul­
tiple of the Fourier transform of a(x3 )jx3 . The solution is obtained by 
Fourier inversion. We seek the bandlimited approximation as(z) of the 
true perturbation. (Note that z is the output variable that corresponds to 
the x3 input variable.) As in one dimension, the actual transform variable 

4 The polar coordinate p = J xi + x~ and the density p will not be introduced 
in the same context. 
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is k = 2w I co and the Fourier inversion formula must be with respect to k, 
with dk = (2lco)dw. Consequently, solving for o:(z), we have 

( ) 16 l oo us(O, O,w) -2iwz/co d 
O:B z = z . e w. 

_ 00 ZW 
(3.2.13) 

It is important to recognize that us(O, 0, w) contains the bandlimiting 
represented by the filter F(w) in equation (3.2.12). 

This result should be compared to the one-dimensional inversion formula, 
(2.4.3). While these results show certain similarities, they also exhibit im­
portant differences. Although o:(z) here has only one-dimensional variation, 
the observed field is still three-dimensional. It is reasonable to expect a 
difference in the processing formula to account for the differences in prop­
agation in one versus three dimensions. In particular we should expect the 
3D formula to account for geometrical spreading, which is not present in 
1D wave propagation. 

As in the 1D problem, we will test the formula on known data. Suppose 
we have a horizontal plane reflector in the subsurface at a depth h, but no 
other perturbations from the background wavespeed c0 . Such a medium is 
consistent with the assumption that o: is a function of z alone. For this 
problem, the leading-order asymptotic representation of the field scattered 
from such a reflector is 

e2iwh/co 

us(O,O,w)=RF(w) B1l"h (3.2.14) 

Here, R is the normal-incidence reflection coefficient, exactly the same as 
in 1D; 2hlco is the two-way traveltime from the source to the reflector and 
back to the receiver; 81l"h = 41!" · 2h is the geometrical-spreading factor for 
propagation down to the reflector and back to the source-receiver point. 
When this result is substituted into inversion formula (3.2.13), the result 
is 

2zR Joo e2iw[h-zJ/co 
O:B(z) = -h F(w) . dw 

1l" _ 00 ZW 

z 
= -4RhHB(z- h). (3.2.15) 

Comparing this result with the 1D results of Chapter 1, we see that the 
factor of -4R can be recognized to be equal to o:(z) to leading order. The 
bandlimited step is located at the right place, z = h; however, it is scaled 
by another factor, z I h, which is equal to 1 on the reflector surface. This last 
factor represents a further degradation of the bandlimited result in three 
dimensions, as compared with that in the one-dimensional formalism. 

Alternately, suppose we were to define a reflectivity function, f3(z) for 
this problem, exactly as we did in the 1D problem, by multiplying the data 
in (3.2.13) by iwl2co before inverting, just as we did to obtain the formula 
(2.4.17). Then, the formula for a reflectivity function for this point-source 
problem, replacing (3.2.13), is 
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f3B(z) = 8z lao us(O,O,O,w)e-2iwz/codw. 
Co -oo 

(3.2.16) 

The result (3.2.15) would then be replaced by 

just as in the one-dimensional problem. We might feel more comfortable 
replacing z/h by 1 because this is also a high-frequency approximation. 
The reader must remember to visualize 8 B ( z - h) as a sine-like waveform 
with peak located at z =h. So, while the peak amplitude of f3B(z) has the 
desired value of R, bandlimiting introduces an error that grows for z > h. 
If our reflector location is off, then the error introduced by the factor of 
z / h will be correspondingly larger. 

Also, it is not clear at this point that multiplication by iw /2eo is correct 
in the general 3D problem. Here, "correct" means a proper general formula 
for (3(x), whatever that means. This is a subject for further discussion. 
At the very least, the inversion has the correct appearance for this simple 
problem. 

3.3 Zero-Offset Constant-Background Inversion in 
3D 

In the previous section we found that making a simplifying assumption on 
the background-wavespeed profile simplified the problem, permitting us to 
write an asymptotic approximation of the forward modeling formula. We 
recognized that the forward modeling formula was a forward Fourier trans­
form, permitting the corresponding inverse Fourier transform-like inversion 
formula to be written by inspection. 

This simplifying assumption of full 3D wave propagation with only 1D 
variability of the wavespeed profile is often called a "1.5D" or one-and-one­
half-dimensional model. The next logical step would be to assume that the 
perturbation a(x) is a 2D-varying quantity. It is as difficult to perform 
the computation for a 2D result, even as a high-frequency asymptotic ap­
proximation, as it is for the full 3D problem, however. So it is really easier 
to do the full 3D problem first. The so-called "2.5D" (2D media with 3D 
geometrical spreading) will be postponed to a later section, after we have 
gained experience and insight from the 3D computation. 

We return now to (3.2.8) and assume that the vector e ranges over the 
entire upper surface of the domain of the problem, providing coverage over 
the full spatial aperture of the medium. When F(w) = 1, this equation ad­
mits an exact solution. That solution will be derived here. Ultimately, we 
will show that limiting the range of these variables limits the domain of val-
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ues of the Fourier transform variable, k, over which the three-dimensional 
transform of o:( x) is defined. 

To begin, consider the integral equation (3.2.8) with F(w) replaced by 
unity: 

[ 
W ] 21 e2iwr/co 

us(e,w) = -4 - o:(x) 2 d3x, 
7rCQ z>O r 

(3.3.1) 

where e = Xs = Xg, (3.2.6), and r = lx- el, (3.2.7). Here we have also 
modified the notation used for the observed field. There is no point in 
noting both the source and receiver position when they are coincident and 
equal to e. Thus, we have set us(xg, Xs,w) = us(e,w). 

The key to solving this integral equation is to realize that it is in con­
voluti'm form in the transverse spatial variables, the function o:(x) being 
convolved with the function r-2 exp{2iwr/eo}. Thus, a Fourier transform 
in these two variables will replace the integration in x1 and x2 by mul­
tiplication of the two transformed functions. Unfortunately, the Fourier 
transform of this function of r is unknown to us. If there were only one 
power of r in the denominator, that is, if the kernel of the integral equa­
tion were r-1 exp{2iwr/eo} instead, then the kernel would take the form 
of the free-space Green's function, a function which has a known Fourier 
transform. We can achieve this change in the integrand by differentiating 
the integral in (3.3.1) with respect to w, but only after the multipliers in 
w are moved to the left side. Multiplying each side of (3.3.1) by c~jw2 and 
taking the w derivative of the resulting equation yields 

or 

(3.3.2) 

where 

(3.3.3) 

The function g1 is the free-space Green's function for a medium with a 
constant wavespeed of eo/2 (a "half-speed" free-space Green's function). 
The two-dimensional "transverse" Fourier transform of this function will 
be derived below. 

It will prove useful to define the spatial Fourier transform for this problem 
with a factor of two in the exponent. This corresponds to the appar­
ent "wavenumber" 2w /Co appearing in the integral equation. The forward 
spatial transform 

(3.3.4) 
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and the inverse transform 

f(p) = : 2 /_: /_: d2~ e2iK·p j(K) (3.3.5) 

are defined with the conventions p = (x1, x2) and, similarly, the wavevector 
K, is defined in terms of the two wavenumbers, k1 and k2, by K = (k1. k 2). 

The fact that the components of the wavevector K are really half of the 
normal definition of the wavevector accounts for the absence of the fac­
tor of 1/4 normally found in the 2D inverse Fourier transform definition. 
Application of the spatial Fourier transform equation (3.3.4) to (3.3.2), as 
noted above, converts the convolution to a multiplication in the K-domain, 

rood -( ) - ( ) 2 . 3 8 (us(K,w)) lo X3 a K,x3 91 K,x3,w =- 1r2c08w w2 , (3.3.6) 

with the transverse Fourier transform of 91 ( x, w) being given by 

_ _1oo 1oo 2 exp ( -2iK · p + (2iw/eo) [p2 + x~] 112) 

91(K,X3,W)= dp 1/2 · 
-oo -oo 47r [p2 + x~] 

There are several ways of obtaining 91 ( K, X3, w) by explicitly performing 
the above integration. The simplest and most physically enlightening way of 
finding the expression is by recognizing that (3.3.3) is the Green's function 
for the Helmholtz equation with wavespeed eo/2: 

[vr2 + ~2 ] 91(x1.x2,x3,w) = -8(x1)8(x2)8(x3). 

The transverse Fourier transform defined in (3.3.4) may be applied to this 
equation to yield 

[ 8
82

2 - 4~2 + 4~2 ] 91(K,X3,w) = -8(x3). 
x3 Co 

(Note that the factor of 4 multiplying ~2 is a result of having a factor of 
2 in the exponent of the transform kernel.) We may rewrite this equation 
using the following definition for the vertical wavenumber k3 (again, this 
is really a half-wavenumber in the traditional sense) if we recall that k2 = 

w2/c6 = k? + k~ + k~. Thus, 

2 w 2 
( 

2 ) 
k3 = c6 - ~ , (3.3.7) 

permitting us to write 

[::~ + (2k3) 2] §1(K,X3,W) = -0(x3). 

It is now apparent that 91 (K, x3, w) is just the Green's function for a one­
dimensional wave equation. As this problem has already been solved in 
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Chapter 2 (with wavenumber w / c0 rather than 2k3 ), we may write the 
result, 

g-1 (,.., x 3 w) = __ 1_e2ik31x31 
' ' 4ik3 ' 

directly, taking care that an additional factor of 2 appears in both the 
exponent and the denominator of the expression. 

Upon substitution of the expression for fh ( ,..,, x 3 , w), we obtain 

1oo dx a(K, X )e2ik31x31 = -87fk C3!!_ (us(K,,W)) 
3 ' 3 3 oa 2 ' 

0 w w 
(3.3.8) 

which is an integral that is nearly a Fourier transform in x 3 . To complete 
this identification, first note that lx3 1 = x 3 on the domain of integration, 
so we can extend the lower limit of integration to -oo. Recall that a(x) 
was defined to be zero for X3 s 0, meaning that 0:(,..,, x3) = 0 for this range 
of x 3 , as well. Note that we assume that the range of k3 is restricted to real 
values only. We will present a discussion of the rationale for this choice at 
the end of this section. 

We may thus rewrite (3.3.8) as 

100 dX a(K, X )e2ik3X3 = -87fk C3!!_ (US(K,,W)) 
3 ' 3 3 oa 2 

0 w w 
(3.3.9) 

W=Wo 

where w0 represents the specific range of w where k3 is real-valued. While 
we clearly have the relation that 

w5(,..,, k3) = c6 [ki + k~ + k~], 
we will define wo(,..,, k3) more carefully in equation (3.3.14) in the next 
section. The left side of this equation has the form of a causal Fourier 
transform, but to a variable, k3 , which is itself only partially defined by 
(3.3.7) as a function of"" and w. Below, we will complete that definition. 
For the present, assume that this has been accomplished and that we can 
invert this Fourier transform to write 

w=wo 

Hence, inverting the Fourier transform in ,..,, we find that 

(3.3.10) 
W=Wo 

The result is still not in the most desirable form, because the e dependence 
that existed in the original problem is not present here. Recall that the 
first step in the derivation was to transform out this dependence with the 
transverse Fourier transform defined in equation (3.3.4). Therefore, the 
relationship 
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us(K,w) = /_: /_: d2~ e-2i~·eus(~,w) 

can be substituted back into equation (3.3.10) to yield 

a(x) = -8~~ 1oo d3k k31oo d2~ .i_ (us(~;w)) 
7r -oo -oo aw w 

w=wo 
(3.3.11) 

Similarly, the data are recorded in the time domain, meaning that the 
inversion formula should be written as a function of time, not frequency. 
Writing us ( ~, w) in its causal temporal Fourier representation further 
modifies the inversion formula to be 

a(x) = -:~~ /_: d3k k3 /_: d2~ e2i[~·(p-E)-kaxa] 

·100 dt Us(~, t)! (~2 eiwt) 
w=wo 

Now, note that the differentiation of the term in parentheses produces 

.i_ (2._eiwt) = ~ [1 _ 2_] eiwt 
aw w2 w2 iwt ' 

permitting the inversion formula for a( x) to be written as 

a(x) = ~c~ 1oo d2~1oo d3k k;e2i[~·(p-E)-kaxa] 
27r -oo -oo Wo 

• [
00 dt tUs(~, t)eiwot [1 + ~] , 

./o wot 

with wo defined below as a function of K and k3 by (3.3.14). 

(3.3.12) 

This is an exact solution to the integral equation, (3.3.1). More precisely, 
(3.3.1) is an equation in the space-frequency domain, meaning that (3.3.11) 
is a solution of (3.3.1) and this equation is the result of reexpressing the 
observed data in space-time. 

As noted earlier, (3.3.1) was an idealization of the "true" integral equa­
tion, in which both the spatial and frequency domains are of finite extent. 
There are two ways to approach the solution of the "aperture-limited" 
inverse problem. First, one could attempt to solve this limited-aperture 
problem directly. Second, the above solution formula could be applied to the 
aperture-limited data, in particular high-frequency data of limited spatial 
extent, to ascertain the effects of the high-frequency assumptions present 
in this formula. For such a solution, the limits of integration should re­
flect this limited aperture. We will take this latter approach. We will see 
that it is useful to introduce a reflectivity function as we did in the one­
dimensional problem. It is possible, therefore, to relate the output of the 
inversion formula to the normal-incidence reflection coefficient. These ideas 
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k<o 
3 

FIGURE 3.1. The restriction of the complex k3-plane implied by equation 
(3.3.13). 

will be applied in the next section. Later, in the extension to finite-offset 
data, the inversion output will be related to the fully angularly dependent, 
geometrical-optics reflection coefficient. 

3.3.1 Restrictions on the Choice of k3 

Equation (3.3.12) contains a restriction on the frequencies, which arises 
from the restriction that k3 be real-valued. A justification and discussion 
of this restriction is given in this subsection. 

The value of the vertical component of the wavenumber, k3, is defined 
by the expression 

WA 
k =: (K,k3) = -k. 

Co 

The fact that k is a unit vector follows from (3.3. 7). We will carefully define 
k3 by 

k3 = { sgn(w) [~;- ~2r12 
for lwl2 Co~ ,i [~2 - ~;r/2 

for lwl < eo~ , 
. (3.3.13) 

with the square roots here always real-valued and positive. This permits 
us to easily see that k3 will be real-valued only for lwl 2 co~ and that the 
upper equality in (3.3.13) describes k3 in this case. The factor of sgn (w) 
makes sense when we recall that g1 is an "outgoing" Green's function. 
That is to say, it must satisfy a radiation condition guaranteeing that each 
Fourier component, when multiplied by exp { -iwt}, represents a wave that 
is directed towards +oo in X3 as time increases. This choice of sign guar­
antees that behavior. In particular, note that forK= (0,0), k3 = wjc and 
their signs agree. 

Purely imaginary values of k3 represent the contributions of the 
evanescent regime of the data, being arrivals associated with leaky 
modes, boundary waves, and the transmitted fields of supercritically re­
flected arrivals. If present in the data, evanescent contributions decay as 
exp{ -I k3l L}, with L the upward propagation distance of these modes, and 
may be assumed to be vanishingly small owing to the relatively large size 
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of the product jk3 jL for the separation of the support of a(x) from the up­
per surface. It is, therefore, safe to assume that the condition of jwj 2: co"' 
exists for our data, that is to say, k3 is real. If evanescent data do survive, 
amplitude-consistent inversion of such arrivals will require exponential en­
hancement, and we would have to change the sign of Im ( k3 ) to process the 
data in this range. This would lead to the undesirable result that any noise 
present in the data will be enhanced exponentially along with the data, 
reducing the overall signal-to-noise ratio in the output. (See Appendix D 
for a discussion of the ill-conditioning arising from the attempt to invert 
waves in the evanescent regime.) Fortunately, a(x) can be constructed from 
purely real values of k, hence from purely real k3 data. Thus, discarding 
evanescent contributions to the data regularizes the solution for a(x). 

An important consequence of the above definition of k3 is that w will be 
represented by 

w = wo(K, k3) =co sgn (k3)V "'2 + k~ =co sgn (k3)Vk~ + k~ + k~ 
(3.3.14) 

in the range jwj 2: Co"'· As w varies from -oo to -co"' and from Co"' to oo, 
k3 varies from -oo to oo, meaning that k3 has the appropriate behavior to 
be the conjugate Fourier variable to x3 . 

As long as we can believe the above justifications, the forward Fourier 
transform 

(3.3.15) 

and the inverse Fourier transform 

(3.3.16) 

are both defined for our problem; provided w is evaluated at w0 , the value 
of w implied by the assumption that k3 is always real-valued. 

Exercises 

3.3 This exercise is a repeat in three dimensions of the derivation of the 
inverse-scattering integral equation for acoustic waves in a variable­
propagation-speed, variable-density medium from Section 2.8. Follow 
that derivation. Note that the divergence theorem is the generaliza­
tion of integration by parts to three dimensions. Let u(x,x8 ,w) be a 
solution of the equation 

.Cu(x,x8 ,w) = p\1· [~vu] + v~:) u = -8(x- x 8 ). 

a. Introduce 
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p =Po+ 8p, v = vo + 8v 

and derive the following equation linear in 8p and 8v: 

.Cou(x, Xs, w) = -o(x- X8 ) + w: 28v u + V' [8P] . V'u. 
v0 vo Po 

b. Introduce, u = UJ +us and linearize in the above equation to 
obtain 

.Co us = + w: 28v UJ + V' [8p] . V'ui. 
v0 vo Po 

3.4 Derive the integral equation, 

1 [w2 28v (8p) ] * 3 us(X,X8 ,w) =- 2 -ui + V' - · V'u1 g d x. 
z>O Vo Vo Po 

In this equation, g* = g*(x,x9 ,w) is the Green's function for the 
adjoint equation, 

.C~g* = V'. [_!._ V' (p0g*)] + w: g* = -o(x- x 9 ). 
Po vo 

Be sure to show where the Sommerfeld radiation condition is needed 
in this derivation. 

a. Now use the divergence theorem on the first integrand in the 
integral equation above to rewrite that equation as 

us(x9 , Xs, w) = -1 [w: 28v u1g*- op'V · (V'u1g*)] d3x. 
z>O Vo Vo Po 

b. Finally, assume the following forms: 

g* _A eiwr9 
- g ' 

and obtain 

3.4 High Frequency, Again 

When considering the one-dimensional problem in the previous chapter, we 
introduced the idea that in most experimental problems the recorded data 
are high-frequency data. One consequence of this bandlimiting was that it 
was no longer feasible to attempt to reconstruct a(x) itself, but instead we 
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found that it was more desirable to reconstruct a scaled derivative of a(x)­
the reflectivity function, {3(x). The same will prove to be true in higher 
dimensions. Developing these ideas in higher dimensions and exploiting 
them constitute the major purpose of the remainder of this text. Our goal 
will be to create formulas for imaging discontinuities-reflectors-using 
aperture-limited, large-wavenumber, or high-frequency data. In addition 
to imaging the reflectors, we are also interested in estimating parame­
ter changes across reflectors using these data. High-frequency inversion is 
then reduced to the problem of relating the observed wavefield data to the 
Fourier data describing the interior medium. 

As discussed in Chapter 2, deciding what constitutes high and low fre­
quency in imaging problems depends on the relative size of the scattering 
object compared to the dominant wavelengths or reciprocal wavenumbers 
that interact with it. Thus, frequencies that are considered "low" when 
imaging small objects may be easily considered "high" when imaging larger 
scatterers. 

The Rayleigh Criterion 

But how small is smam We will answer this question by considering the 
minimum permissible length scale L as a fraction of the dominant wave­
length A to be the deciding value. One such measure used in optics is the 
Rayleigh criterion5 for resolution for a single-frequency wave, which we 
interpret to mean that length L is considered "large" if 

A 
L~ 4" 

This quasi-empirical criterion has been used in optics to characterize 
smoothness of optical reflector surfaces and in geophysics to character­
ize the resolution of closely spaced beds. Here both L and A have units of 
length. As we show in Appendix C, it is mathematically desirable to express 
the large parameters appearing in asymptotic analyses in a dimensionless 
form. Assuming that the waves travel at the background wavespeed eo, we 
may write several equivalent forms 

1 < 4£ = 4Lf = 2wL = kLj1r 
- A eo 1rCo ' 

(3.4.1) 

where the two equalities on the right follow by recalling that w = 21r f 
and noting that the wavenumber of interest for our problem is the two-way 
wavenumber, k = 2w/co. If we introduce a dimensionless parameter, >., 
defined by 

5The Rayleigh criterion states that two components of equal intensity are 
"just resolved" when the maximum (the peak) of one component coincides with 
the principal intensity minimum (first zero crossing) of the other of the other. 
See Born and Wolf [1980] for details. The original reference is Rayleigh [1879]. 
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, = 47rfL, /\ (3.4.2) 
co 

then the condition 

(3.4.3) 

is equivalent to the Rayleigh criterion (3.4.1). We will, therefore, use this 
as the criterion for deciding if data are high-frequency. 

A few examples are in order. A plausible range of frequencies that might 
be used in seismic investigations (including high-resolution surveys) is from 
about 5 Hz to about 500 Hz. (This frequency range, while not realistic 
for any individual seismic data set, is useful for illustrating the overall 
limitations of the seismic method.) If co= 2000 mjs, and f =5Hz, then L 
must be 100m (328ft) or greater for 5Hz to be considered high-frequency; 
that is, for A 2: 1r. On the other extreme, if the same wavespeed is used, 
f = 500 Hz may be considered high-frequency for any L 2: 1 m because, 
again, this lower limit on L guarantees that A 2: 1r for this frequency and 
wavespeed. 

The L may represent the depth to a reflector, the distance between re­
flectors, or a measure of the lateral variability of reflectivity. In seismic 
experiments, while there is little danger of the reflector depth being a length 
that might violate our high-frequency criterion, the spacing between reflec­
tors may easily be a problem. Indeed, the detection and resolution of thin 
bedding is an ongoing issue in reflection seismic investigations. 

There is one additional modification of this criterion that becomes im­
portant when the sources and receivers are separated. In this case, equation 
(3.4.2) should be replaced by 

A = 47r f L cos(). 
Co 

(3.4.4) 

Here, () is half the opening angle between converging rays from a source and 
receiver. In inversion, the effect of separating the source and receiver is to 
scale the "aperture" in the wave-vector domain by this factor of cosO, and 
this, in turn, leads to a loss of resolution in the spatial domain wherein the 
main lobe of bandlimited delta functions delineating reflectors is broadened 
by sec(). The reason for this modified large parameter will become apparent 
in Chapter 5. 

Current research into amplitude-versus-offset (AVO) behavior has been 
motivated by the desire to characterize the spatial variability of reflectivity 
as an aid in evaluating the properties of prospective hydrocarbon reservoirs. 
While the horizontal extent of a producing reservoir may be measured in 
hundreds to thousands of meters, variations in rock properties on the scale 
of tens of meters can be important in the analysis of a reservoir. Thus, the 
validity of the high-frequency assumption may be an issue here, too. 
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Failure of the High-Frequency Assumption 

What does the failure of the high-frequency assumption mean to our theory 
of reflector imaging? Simply this. The ability of an imaging/inversion pro­
cess to represent the geometry of a scatterer deteriorates as the wavelengths 
of the problem fall below the limit required by (3.4.3), using either (3.4.2) 
or (3.4.4) for>.. So, instead of the sharp reflector surfaces envisioned above, 
lower-frequency data produce an image with thick fuzzy zones delineating 
the reflectors. Where the lateral variability is expressed as a substantial 
curvature of the reflecting surface, local focusing may further violate the 
high-frequency assumption. It is easy to imagine that, for a sufficiently long 
wavelength, all of the reflector images will run together, causing the output 
of the inversion to fail to produce a meaningful image of the subsurface. 
Mathematically, as w---> 0, 

[ \72 + ~;] --t [\72] ; 

that is, the Helmholtz operator becomes the Laplace operator, and the 
wave problem becomes a quasi-static potential problem in the extreme 
case. Thus the validity of the high-frequency assumption appears to be a 
necessary condition for successful imaging. 

High-Frequency, Ap~rture-Limited Inversion 

Owing to the high-frequency assumption, any result that can be expressed 
as a series of quantities multiplied by inverse powers of w may be accurately 
approximated by the leading-order term(s) of the series. Equation (3.3.12) 
is a result with just this form, and the 2i/w0 t term is dropped in practice. 
That is, we neglect a term of magnitude 2/wot compared to unity. Note 
that neglecting this term is justified by considering the consequences of 
the Rayleigh criterion, (3.4.1), in the temporal-frequency domain instead 
of the spatial-wavenumber domain. That is, for L the distance to the first 
scatterer of interest, T = 2L/eo is the minimum traveltime for a nonzero 
response to be recorded as part of Us. Now, with 27rf = w, (3.4.2) is seen 
to take the form 

>. = wT. (3.4.5) 

Thus, if a condition like the Rayleigh criterion is taken as the basis for 
neglecting terms of lower order, neglecting this term in (3.3.12) is justi­
fied. This assumes that the data Us are bandlimited and that the temporal 
Fourier transform in (3.3.12) yields a function that does not cover the full 
frequency domain with nonzero data. Further, it is necessary to acknowl­
edge that the spatial integral in (3.3.12) will be carried out over only a 
finite domain. This is an added feature of the multidimensional solution 
over the one-dimensional solution of the previous chapter. In analogy with 
the early discussion, the result of processing this bandlimited and spatially 
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aperture-limited data will be called as(x), defined by 

as(x) = ~c~ r d2~ r d3k k~e2i [t<·(p-~) - k3x3 ] ro dt tUs(~, t)eiwot, 
z1r JE Jn w0 Jo 

(3.4.6) 
where, again, p = ( x1 , x2 ). Here I: represents the total domain of recording 
positions ~ on the surface of the Earth; n represents the k-domain corre­
sponding to the bandlimited range of w and the requirement that k3 be 
real. 

At this point, all we have is a formal integral whose relationship to the 
true unknown a(x) is unclear. It is an aperture-limited and bandlimited 
version of the operator that produces an exact solution to the integral equa­
tion (3.3.1) , applicable when the data are not band- or aperture limited. 
Our task in later sections will be to clarify the meaning of this equation. 

3.4.1 Reflection from a Single Tilted Plane 

Following the development of the previous chapter, we will test equation 
(3.4.6) using the high-frequency representation of the waves that would be 
scattered from a single plane reflector. Because the reflector need not be 
horizontal, we will consider the general case of the response of an inclined 
reflector (see Figure 3.2). The angle of inclination will be() (the dip) with 
respect to a horizontal axis, which itself makes an azimuthal angle ¢ (the 
direction of maximum dip) with the 6 axis. The plane is assumed to be at 
depth hat~ = 0. The source-receiver point is located at surface coordinates 
( 6, 6), and the normal distance from this point to the reflector is l. For 
such a reflector, the high-frequency temporal data will be 

U (c ) = R8s(t- 2l/co) 
s .,, t 8Irl , (3.4. 7) 

where l = h cos e - ( 6 cos ¢ + 6 sin ¢) sine. 

Here, R is the normal-incidence reflection coefficient, which is the same as 
the one-dimensional, or plane-wave reflection coefficient, 

~ 3 
FIGURE 3.2. A single tilted plane. 
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R = cl- co. 
c1 +co 

By 8 B we mean a bandlimited delta function whose temporal Fourier trans­
form is F(w) instead of unity. Clearly, this plane will intersect the upper 
surface for some finite choice of e whenever () =/= 0. The domain E in (3.4.6) 
is assumed to not include such an intersection. Because our immediate 
interest is in the leading-order contribution only, the effects of finite inte­
gration limits will be ignored here. Later, we will address this important 
issue in the context of a more general problem. 

We begin the computation in (3.4.6) by carrying out the integral with 
respect tot for the data in (3.4.7). The result is 

("' t Us(e, t)eiwotdt = 4R F(w)e2iwol/co' (3.4.8) h n~ 

with wo(k) =co sgn (k3)Jk~ + k~ + k5, as defined by (3.3.14). The integra­
tions in 6 and 6 will now be carried out. Note that these variables appear 
only linearly in the phase. If the domain of integration were of infinite ex­
tent, the integrals would each be just delta functions with arguments equal 
to the respective multipliers of 6 and 6. This result is correct to leading 
order for high-frequency data. To this order of accuracy, we continue to 
use an equal sign for the result of this computation, though we really mean 
"asymptotic equality." The result is 

aB(X) = 8~~R 100 d3k k;F(w)8[fi(k)]8[f2(k)]e2i{K·p-ksxs+wohcosll/co}, 
zn _00 w0 

(3.4.9) 
where 

h(k) = 2 [ w:~k) cos¢sinB + k1], h(k) = 2 [ wo~k) sin¢sinB + k2]. 
The Dirac delta functions can now be exploited to carry out two more 

integrations. (See Appendix A for information about properties of delta 
functions.) We choose to compute the integrals in k1 and k2. There are 
two ways to proceed. First, one could compute the integrals iteratively, 
say, solving for k1 as a function of (k2, k3) by setting h = 0, and then 
computing the integral in k2, taking account of this new function of k2. 
The second method is to simultaneously compute the double integral in 
the two variables and use the result that 

Here k10 , k20 is the simultaneous solution of the pair of equations ft = 0 
and h = 0. We leave it to the reader to verify that 

k10 = -k3cos¢tanB, k2o = -k3sin¢tanB, 

wo = cok3 sec(), J = 4cos2 B. (3.4.10) 
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When these results are used in (3.4.9), that representation reduces to 

aB(x) = 2R 100 ~k3 F(cok3 secB)e-2ika{(xlcos¢+x2sin¢)tanl:l+(x3 -h)}. 
7r -oo zk3 

(3.4.11) 
It will simplify our discussion below if we recast this result as an integral 

in w = eok3 sec B. The result is 

aB(x) = 2R 100 ~ F(w)e-2iw{(xlcos¢+x2sin¢)sin9+(xa-h)cos9}/co. 
7r _ 00 ZW 

(3.4.12) 
This result should be compared with (2.4.12), which was shown to repre­
sent a bandlimited step function with height -4R located at the position 
representing the zero of the phase function. The same result obtained here 
places the step at the right location, because the zero of the phase is the 
location of the reflector of the model data, (3.4. 7). Furthermore, -4R is 
the "right" height of the step at that location, confirming the validity of 
our inversion formula for this simple example. 

3.4.2 The Reflectivity Function 

The structure of the result (3.4.11) suggests that we can proceed, at least 
for this simple example, to introduce a reflectivity function, exactly as in 
one dimension, by multiplying the data by iwf2c0 . (Again, remember that 
w is restricted to wo, which are the frequencies for which k3 is real-valued.) 
That is, starting from (3.4.6), introduce this factor to define {J(x) by 

{J(x) = 4c~ { d2~ 1 d3k k3 e2i[K.·(p-~)-kaxal1oo dt tUs(e, t)eiwot. 
7r JE n wo o 

(3.4.13) 

This equation is similar to Stolt's [1978] Fourier-based migration formula, 
although our method of derivation is quite different from that used by 
Stolt.6 Our approach relates the output to reflection coefficients, whereas 
the stated goal of the migration approach is to propagate the ensemble 
of zero-offset observations back to their locations at some initiation time, 
under the assumption that the ensemble is, itself, a solution of the wave 
equation with propagation speed co/2. A detailed comparison of the Stolt 
migration formula with equation (3.4.13) is left as an exercise. 

For the specific example of a single reflector, the result of applying this 
operator to the model data (3.4.7) is obtained by introducing the same 
multiplier, iw/2c0 , in (3.4.12). That is, for the single reflector, 

6 See also Gardner [1985]. 
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{J(x) = !!:__ 100 dwF(w )e-2iw{(x1 cos c,i>+x2 sin c,i>) sin ll+(x3 -h) cos 11}/co. 

7fCO -oo 

(3.4.14) 
From the analysis of Chapter 2, it follows that 

fJ(x) = R8B {(x1 cos¢+ x2 sin¢) sinO+ (x3- h) cosO}. (3.4.15) 

The argument of the delta function measures distance normal to the planar 
reflector. It should be noted that this is true independent of the inclination 
of the reflector. (This bandlimited delta function of normal distance to a 
surface will arise in a more general context later. It is sufficiently important 
to have its own name. It is called the singular function of the surface. In 
the next chapter, it will be more rigorously defined. See also Appendix A 
for a discussion of the properties of singular functions.) 

Usually, one would expect to obtain a normal derivative by multiplying 
the Fourier data by ik · n where n is a vector normal to the reflector. Here, 
we obtained a normal derivative by multiplying by iw I co for any choice of 
normal direction. The question arises: Why should this work? The answer 
lies in the results (3.4.10). First, note that in our definition of the Fourier 
transform, k = (k1, k2 , -k3), because the sign of the last Fourier variable 
was opposite to the signs of the first two. From (3.4.10), note that the 
action of the delta functions was to evaluate k at 

k = -k3(cos¢tanO,sin¢tanO, 1) 

= ±k3 sec0n 

=±kn, 
(3.4.16) 

with the choice of± being opposite to the sign of k3 . That is, k · n = ±k, 
so that multiplication by w I c0 = - sgn ( w )k is asymptotically equivalent 
to multiplication by ±k · n. The specific choice and the extra scaling in­
troduced in our definition of fJ(x) has resolved the ambiguity in sign here 
to produce the desired result, that is, a bandlimited Dirac delta function 
multiplied by the reflection coefficient, R. We will verify this result for a 
more general reflector below. In the next chapter we will show this result 
as a property of Fourier transforms. We will then be prepared to apply its 
generalization in later chapters to inversion in heterogeneous media, where 
the relationship between k and w is more complicated than it is for the 
homogeneous background case considered here. 

Exercises 

3.5 In this exercise we will explore the properties of the singular function 
of a dipping plane reflector in a somewhat simplified setting, by con­
sidering the 2D singular function of a line through the origin at an 
arbitrary angle. Define the singular function of the line as 
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f ( x, y) = 8 ( x cos ¢ + y sin ¢). 

a. Draw the support of this delta function in two dimensions and find 
its Fourier transform, ](k). Verify that the support of the Fourier 
transform is line whose direction is the normal to the support of 
f(x, y). 

b. Suppose that we limit the bandwidth of the Fourier data by setting 
the data values to zero in a strip, lk1 sin¢- k2 cos ¢1 < l, for any 
finite l. Find the bandlimited inversion. 

c. Define the dipping step function 

g(x,y) = H(xcos¢+ysin¢). 

Find its Fourier transform, g(k). 
d. Show that 

-i(k. n)g(k) = ](k). 

In this equation, n = (cos¢, sin¢) is the normal to the support of 
f(x, y). 

e. Exploit the constraints imposed by the delta functions in g to 
show that 

-ik sgn (k2) g(k) = ](k), 

as long as ¢ > 0. The point of this last result is that we need 
not know the normal direction in advance to process data for 
g to produce the singular function of its line of discontinuity. 
(The multiplier -ik sgn (k2) is independent of n or, equivalently, 
independent of ¢). 

3.4.3 Alternative Representations of the Reflectivity Function 

There are two alternative representations of the solution (3.4.13), arising 
from requiring w = w0 (k), as defined by (3.3.14), as one of the variables of 
integration instead of k3. Note, from that equation that 

k3 2 k3 
dw = cosgn(k3) dk3 = c0 -dk3, (3.4.17) 

y'ki + k~ + k~ w 

implying that 

(3.4.18) 

Using equation (3.4.17) in (3.4.13) yields 

f3(x) = :2 h d2~ k d2"' j dw e2i[K·(p-E}-k3x3]1oo dt tUs(e, t)eiwt, 

(3.4.19) 
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FIGURE 3.3. The black line depicts a source-receiver array located on the axis 
of a buried half-cylinder. The shaded strips are only two of the many possible 
zones on the half-cylinder that could be represented by the data collected by the 
array. 

where p = (x1, x2), "' = (k1, k2), and d2K, = dk1 dk2. Now, k3 is defined 
by (3.3.13); n is still the domain of real values of k within the bandwidth 
of the data. This result allows an integration by parts in w to eliminate 
the power of t appearing in the Fourier transform. That is, we integrate 
the term exp { iwt} and differentiate the term exp {-2ik3x3 }. There are no 
contributions from the endpoints of integration because the data have finite 
bandwidth and are assumed to vanish smoothly. The result is 

{3(x) = 8:32 { d2e { d2r;,Jdw ~e2i[~<.·(p-e)-k3X3) r)() dt Us(e, t)eiwt . 
1r c0 JE ln k3 lo 

(3.4.20) 
Applying equation (3.4.18) to this equation yields an inversion formula, 

f3(x) = 8:23h d2e k d2"' j dk3e2i[ ... ·(p-e)-k3x3J 1oo dt Us(e,t)eiwt, 

(3.4.21) 
that is free of explicit dependence on w. 

On one hand, the explicit factor oft seen in equation (3.4.19) is familiar 
to the geophysicist, being a common gaining factor that is applied as a 
preprocessing step, prior to migration, to correct for geometrical spreading. 
On the other hand, there is an advantage of using equations of the form 
of (3.4.20) or (3.4.21), which do not have the explicit factor oft. While 
we expect seismic signals to have amplitude decay proportional to C 1 , 

consistent with the multiplicative factor oft seen in (3.4.19), the noise seen 
in real data need not decay at that rate. Consequently, inversion formulas 
with the explicit factor oft could possibly enhance noise at large observation 
times. Equations (3.4.20) and (3.4.21) will not suffer from that problem. 
Such considerations follow because the inversion of data consisting of signal 
plus noise need not be a linear process. 
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3.5 Two-and-One-Half Dimensions 

Though computer technology has advanced to permit the processing of 
areal surveys as single data sets, line-by-line processing of seismic data is 
still widely used because of the cost benefits. Equation (3.4.13) cannot be 
used to process a single line of data. In fact, a single line of data cannot 
be used to reconstruct a 3D medium. Here is a simple example of why this 
is the case. Consider a single line of sources and receivers lying at the axis 
of a buried half-cylinder. If the "reflector" consisted of a single strip lying 
on the surface of the cylinder, parallel to the data line, then the observed 
data would be the same, no matter where the strip is located. It takes 
observations from other data lines to distinguish one strip of the cylinder 
from another. See Figure 3.3. 

There are situations, however, where the gathering and/ or processing 
of a single line of data will suffice to produce an adequate inversion for 
the interior medium. Suppose, for example, that in a given region, the 
parameter variations were (nearly) two-dimensional such that the primary 
variations in the subsurface parameters were in one lateral direction. 

Let us designate that direction as the direction of maximum dip, and the 
orthogonal direction as the direction of strike, echoing the geologists' terms 
characterizing the orientation of a rock layer. It is reasonable to expect that 
data gathered along the maximum dip direction of such a model will provide 
enough information to invert for the profile. 

Mathematically, we idealize the problem as follows. Assume that the 
medium parameters vary only in one lateral direction, say x, and in depth 
z. Let the survey be conducted along a line in the x-direction, at a particular 
y value, say at y = 0. Our first objective, therefore, is to invert this one 
line of data to produce an image of the subsurface. See Figure 3.4. 

The reader should realize that this is not a two-dimensional inversion 
problem. The medium is still three-dimensional; our sources are point 
sources in three dimensions with all their three-dimensional propagation 
characteristics. The 3D Helmholtz equation is still the governing equa­
tion for the problem. Only the nature of the medium parameters and our 
fortuitous choice of the direction of the experimental line suggest a two­
dimensional problem. A fully two-dimensional problem would be equivalent 
to using line sources in this three-dimensional world, with quite different 
propagation characteristics. (In 2D, the incident wave has nonzero energy 
propagating throughout the y = 0 plane for all time greater than zero, 
and all spatial positions. This is in contrast to the 3D incident wave, which 
passes through a given range from the source at a given time and is gone 
after a time governed only by the duration of the source.) 

We will refer to problems involving three-dimensional wave propa­
gation in media having only two-dimensional parameter variability as 
two-and-one-half-dimensional problems. The key to solving the two-and­
one-half-dimensional inverse problem is to realize that there really is enough 
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~1 

~3 
FIGURE 3.4. The black line depicts a source-receiver array located over a 2.5D 
model. All raypaths are confined to the 6 = 0 plane. 

information from a single line of data to solve the three-dimensional in­
verse problem, as long as the medium parameters really depend on only 
two variables. 

Given such a line of data, say at 6 = 0, we propose the following 

Thought experiment: Consider the data for which the entire source­
receiver array for each experiment in the ensemble of experiments is 
moved to any line 6, different from zero, and 

Claim: The data for the ensemble of experiments on the new line are 
exactly the same as the data for the ensemble of experiments on the 
line at 6 = 0. 

Note that the presentation here is not tied to the particular ensemble 
of zero-offset experiments of interest in this chapter, but to any suite of 
experiments carried out on a single line, as long as the assumptions about 
the medium parameters and the direction of the experimental line are as 
described above. 

Application of our thought experiment implies that, from a single line 
of data, we really have an areal survey of data for the two-and-one-half­
dimensional inverse problem. Furthermore, those data are independent of 
6, the surface coordinate in the strike direction. Now, in (3.4.13), for ex­
ample, the only dependence on 6 in the inversion formula is in the known 
kernel of the inversion operator. This is prototypical. Whenever a three­
dimensional inversion formula is derived, specialization to two-and-one-half 
dimensions leads to an integral in which the 6 dependence is in the in­
version operator, and not in the data. Therefore, the 6 integral in the 
inversion formula can be computed analytically, at least to leading order, 
by asymptotic means. 

Exercises 

3.6 In this exercise, we will explore the concept of the 2.5D geometry. 
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a. Suppose that a seismic survey is to be carried out in a region 
in which the subsurface is essentially cylindrical, that is, it varies 
only with one lateral variable and with depth. Define a coordinate 
system and design a suite of zero-offset experiments over the entire 
surface, so that the observed data are represented by a function 
of only one surface variable, and time. 

b. Repeat for a suite of common-offset experiments. Call the half­
offset h; introduce surface coordinates, 6 and 6, and write down 
the coordinates of x 8 and x 9 in terms of 6, 6, and h. The exper­
imental design should be such that the data are a function of 6, 
independent of 6. 

c. Repeat (b) for a suite of common-shot experiments in which the 
receivers are restricted to lie along a line. 

3.5.1 Zero-Offset, Two-and-One-Half Dimensional Inversion 

Let us apply the idea of the previous section to (3.4.13). We will assume 
that the zero-offset survey was gathered along a dip line at 6 = 0 and we 
fill out the data needed in (3.4.13) by using the same data for every 6-
We can do this because the data are independent of 6- Now consider the 
6 integral in (3.4.13). The result is a Dirac delta function with support at 
k2 = 0. More explicitly, 

(3.5.1) 

With this result, we can now proceed to carry out the k2 integration by 
simply evaluating the integrand in (3.4.13) at k2 = 0. In addition to the ex­
plicit k2 dependence, we must take care to evaluate wo, defined in (3.3.14), 
at k2 = 0. Note that a subsidiary result of this evaluation is that the re­
sulting inversion formula is independent of x2. Therefore, we might as well 
disregard the second coordinate entirely in all further discussion, setting 

k = (k1, k3), x =(xi. x3), 
(3.5.2) 

Wo = Co sgn ( k3) J kf + k~. 
Using (3.5.1) in (3.4.13) yields the two-and-one-half-dimensional inversion 
formula 

(3(x) = 4c6 { d~ { d2kk3e2i[k1(x1-~)-k3x3] {
00 dttUs(~,t)eiwot. (3.5.3) 

n J~ Jn Wo lo 
In this equation, we have set 6 = ~ and denoted the data as a function of 
this scalar spatial variable. 

We could try verifying this formula on data reflected from an inclined 
plane; however, that calculation has already been carried out in the previous 



126 3. Inversion in Higher Dimensions 

section. In particular, consider the data in (3.4.7) with¢= 0. For such data, 
6 = 0 defines the plane of maximal dip. Furthermore, the fourfold integral 
in e and k, carried out in that discussion, includes exactly the integral in 
6 and k2 carried out here. Thus, it follows that the result of applying the 
inversion formula above to the data (3.4.7) with¢= 0 is the result (3.4.15) 
with ¢ = 0, which is the desired output. 

The same computations as those that led to the results (3.4.19) and 
(3.4.20) can be carried out for this two-and-one-half dimensional inversion 
result. We state, with no further discussion, the alternative representations, 

and 

{J(x) = 8x~ r d~ r dkt J dw~e2i[kl(Xl-~)-kaxa] rXJ dt Us(~, t)eiwt. 
1rc0 JE ln k3 lo 

(3.5.5) 
Finally, applying equation (3.4.18) we can arrive at a result that does not 
explicitly depend on w, 

{J(x) = 8;3 ~ d~ In dkt J dk3e2i[kl(xl-~)-kaxa]fooo dt Us(~,t)eiwt. 
(3.5.6) 

Exercises 

3. 7 The purpose of this exercise is to compare Stolt's [1978] 3D migration 
formula and the 3D inversion formula for {J(x), (3.4.19). The relevant 
equations in Stolt's paper are as follows. The data are written as 
'lj;(X, Y, 0, t), with Fourier transform 

A(P, Q, w, 0) = [21r~312 J dX J dY 

· J dt'lj;(X,Y,O,t)exp{-i[PX +QY -wt]}. 

The output of Stolt's method is defined by 

'lj;(X, Y, z, o) = [21r~312 j dP j dQ 

· j dW B(P,Q,w) exp {i[PX + QY- 2wZjc]}. 

In this equation, 
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Earlier, Stolt defines 

A(P, Q,w, Z) = A(P, Q,w,O) exp [ -iZyl4w2jc2- p2- Q2]. 
Stolt does not distinguish between input and output variables. Here, 
tildes have been introduced over the output variables. (In particular, 
note that there is now an w, as well as an w. Make a table identifying 
Stolt's variables with the variables of the inversion formula (3.4.19) 
for (3(x). 

3.6 Kirchhoff Inversion 

The inversion formulas of the previous section, obtained by Fourier trans­
form methods, were seen to be almost identical (within a scale factor) to 
Stolt's zero-offset migration formulas (see Stolt [1978]). In this section, 
we apply the method of stationary phase to the K integrals to obtain 
formulas in which the processing of the data will consist of a temporal 
transform, (followed possibly by the application of filter), followed by an 
inverse (frequency to time) transform, and followed finally by an integration 
over source-receiver points. 

This result will be seen to agree with Schneider's Kirchhoff zero-offset 
migration formula to within a scale factor (see [Schneider 1978]).7 The 
names-Kirchhoff migration, Kirchhoff inversion-are a consequence of 
the resemblance of these processes to the Kirchhoff integral representa­
tion of solutions to the forward problem. Indeed, Schneider started from 
that representation to obtain his result. The derivation here establishes 
the analytical equivalence of the Fourier and Kirchhoff methods of migra­
tion/inversion to leading order, asymptotically, for high-frequency data. Of 
course, in practice, each has its own numerical artifacts. These are discussed 
extensively in the literature. 

3. 6.1 Stationary Phase Computations 

The high-frequency criterion-(3.4.2) and (3.4.3)-allows us to make 
asymptotic approximations in the integral inversion formulas (3.4.13), 
(3.4.19), (3.4.20) and (3.5.3), (3.5.4), (3.5.5) to recast them in other useful 
forms. This is by no means apparent, because the criterion is expressed in 

7See also Gardner (1985]. 
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terms of a dimensionless parameter, and the integrals in the above set of 
equations are written in dimensional variables, with that parameter not in 
evidence. 

In Appendix C, we show how to convert formulas of the type listed above 
into formulas with dimensionless variables. In this way we can see that 
the method of stationary phase can be applied to any of these integrals. 
The formal calculations of the method of stationary phase can actually 
be carried out either in the dimensional or the dimensionless variables, 
however, when doing the former, one must remember that the justification 
is based on the fact that an appropriate representation in dimensionless 
variables can be achieved. 

The Multi-dimensional Stationary Phase Formula 

The method of stationary phase provides a means of approximating 
integrals of the form 

(3.6.1) 

It is assumed here that the parameter >. is "large." In fact, although the 
mathematical formalism is a statement of the leading-order approximation 
of the integral as 1>.1 --t oo; in practice, we apply the method for finite 
values of>. that large enough, in a sense to be described more fully below, 
for the leading term provided by the method of stationary phase to give 
adequate numerical accuracy. 

!defined The method predicts that the value of the integral is dominated 
by the value of the integrand in the neighborhood of certain critical points 
called stationary points, provided such points exist. At a stationary point, 
say TJo, all of the first derivatives of the phase function <I> must be zero 
(hence the name, stationary phase): 

at TJ = T/O· (3.6.2) 

If there is one such point in the domain of integration, then the method 
predicts that the integral (3.6.1) is well approximated as follows: 

J . [27r]n/2 J(n )ei,\<I>(7Jo)+i7t"/4sgn(>.)sig(cl>;3) 
I(>.)= f(TJ)et>.<I>(TI)dn'T]"' _ •tO , 

1>-1 vi det <I>ij I 

where <I>ij = [a; <I>~ TJo)] . (3.6.3) 
'T/i 'T/j 

The matrix <J>ij, is the matrix of second derivatives or Hessian matrix of the 
phase <I>. The term, sig (<I>ij) denotes the signature of the matrix <I>ij, which 
is the number of positive eigenvalues minus the number of negative eigen­
values of the matrix. The symbol "' should be read as "is asymptotically 
equal to." The reader should understand that there is a precise mathemat­
ical definition to this type of approximation. It states that the difference 
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between !(.A) and the given approximation vanishes "faster than" 1/I.Ain/2 
as I.AI --> oo; that is, 

[
27r]n/2 f('fl )ei>.<I>(1Jo)+i"rr/4sgn(>.)sig(<I>;j) 

I.Ain/2 J(.A) 0 -t 0, 
I .AI vi det <I>ij I 

as I.AI-> oo. 

See Bleistein [1984) or Bleistein and Handelsman [1986] for further dis­
cussion. If there are more stationary points, then the leading-order 
approximation is a sum of such contributions over all of the stationary 
points. If there are no stationary points, then the integral approximation 
involves a higher negative power of .A and the value of the integral is smaller, 
at least for .A large enough (more precisely, in the limit as I .A I --> oo). The 
result also assumes that the matrix <I>ij is nonsingular, that is, that all of 
its eigenvalues are nonzero. When the matrix <I>ij is singular, one or more of 
the eigenvalues is zero and the above formula is no longer valid, the power 
of 1/ .A is smaller and the value of the integral is larger. Both the case of 
integrals with no interior stationary points and the case of vanishing eigen­
values can be dealt with by the theory that produces the result stated here; 
see Bleistein [1984) or Bleistein and Handelsman [1986) for further details. 

The One-Dimensional Stationary Phase Formula 

The case of one-dimensional integrals arises often enough that it is 
worthwhile to list its formula separately. That result is 

(3.6.4) 

211" J(ry )ei>.<I>(1Jo)+i"rr/4sgn(>.)sgn(<I>"(?Jo))_ 

I.AII<I>"(ryo)l o 

In these formulas, the integrands can depend on other parameters that 
are allowed to vary over some range for which the matrix <I>ij or the second 
derivative <I>" ( 'f/o) is bounded away from zero. Such a situation arises most 
naturally in a multifold integral in which the method of stationary phase is 
applied only to some of the integrals and not to others. Also, it is natural 
for the integral J(.A) to be a function of position, a function of time, or a 
function of position and time. The former case will arise in our inversion 
integrals as well as in forward modeling problems, while the latter case 
arises in forward modeling problems. 

While the theoretical convergence as I.AI --> oo, mentioned above, is 
reassuring, we are concerned about the practical application of these ap­
proximations for some finite value of .A. Then, the question of how large is 
"large enough" becomes an issue. 
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Accuracy of lD Stationary Phase 

Let us begin this discussion by considering the one-dimensional integral 
(3.6.4). There are two relevant issues here. First, further analysis of this 
approximation reveals that subsequent terms contain increasing integer 
powers of I .XII <I>" ( 1Jo) I in the denominator, so that this is the "true" large 
parameter in this asymptotic expansion. Second, these subsequent terms 
involve higher derivatives of both <I>(17) (beyond the second) and !(17) (from 
the first derivative onward). Thus, for any fixed finite choice of >., we 
would want that the correction terms-at the very least, the first correc­
tion term-really be smaller than the term that is retained. 8 For this to be 
true, we would want that the derivatives of f and <I> not grow significantly 
with increasing order and that I>-II<I>"(17o)l be "large" enough. Assuming the 
former, what we have earlier proposed on empirical grounds for the latter 
is 

(3.6.5) 

In our applications, >. is proportional to frequency, w or J, for which 
there is a whole range of values involved-the bandwidth of the signal 
that arrives at the receivers. If this asymptotic criterion fails only for some 
frequencies, then, to a degree, the failure of the asymptotic expansion is 
"mild." As progressively more frequencies fall below the threshold indicated 
here, the amplitude will tend to degrade before the phase does. In our 
applications, phase is related to position, while amplitude is related to 
parameter estimation. Thus, with such partial failure of our asymptotic 
criterion, a reasonably accurate image will be produced, but parameter 
estimation should be viewed as suspect. 

If the criterion in (3.6.5) fails, we can think of I<I>"(17o)l as being "small" at 
the stationary point. In this case, <I>"(17o) might be equal to zero for some 
nearby value of 17 and the integrand is likely to have another stationary 
point too near 17o for asymptotic expansions based on isolated stationary 
points to be valid. There are other ways that the asymptotic expansion 
(3.6.4) might fail that are not indicated by the size of the second derivative, 
however. The method depends on all types of critical points being isolated. 
In particular, these include endpoints of integration or points where f or 
<I> or one of its derivatives is discontinuous, or singular in some manner. 
As an example, let us consider the case of an isolated endpoint, say, 171> 
where the integrand is "well behaved" and f is nonzero. Then, the leading 
order asymptotic expansion of the contribution from this point, treated in 
isolation, begins with the power 1/ i>. <I>' ( 111). If 17o is "near" 171> then the 
denominator here will fail to satisfy a criterion similar to (3.6.5), say 

8 See the last part of Appendix C for further discussion of this issue. The issue 
is how we scale the dimensional variables to obtain this dimensionless form of the 
phase and its derivatives. 
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I A <I>' ( 1]1) I ~ 7r. 

The situation is actually a little more severe than that, however. If the 
asymptotic expansion of the entire integral is to be given by this one sta­
tionary phase contribution, (3.6.4), then we would want this endpoint term 
to be small compared to the stationary point contribution. Thus, for in­
teraction between a stationary point and a "regular" endpoint, we need to 
impose the requirement 

vt\II<I>'(7Jdl > 7r. 

JI<I>" ( 11o) I -
(3.6.6) 

We will not bother to test this ratio in applications. The reader should be 
aware that the leading-order asymptotic expansion obtained by the method 
of stationary phase will break down when the stationary point is too near 
the endpoint of integration, however. In our analysis, we will apply the 
method of stationary phase to the source-receiver coordinates, in particular, 
for given values of the output point, y. For some range of output points, 
the stationary point may well be near an endpoint of integration. While the 
traveltime at stationarity will be correct, the amplitude will not. That is, 
our processing will recover an image, perhaps obscured somewhat by the 
endpoint contribution, but the amplitude will be unreliable for parameter 
estimation. 

Accuracy of Multidimensional Stationary Phase 

For the multidimensional case, the criterion for numerical accuracy of an 
asymptotic expansion derived by the method of stationary phase becomes 
a little more complicated. A result similar to this last one arises for each of 
the iterated integrals in this case, but only after the independent variables 
are transformed to the principal directions defined by the eigenvectors of 
the matrix <I>ij. Then, the eigenvalues play the same role as the second 
derivative of the one-dimensional case. That is, if we define Aj, j = 1, ... , n, 
to be the eigenvalues of <I>ij, then we find that there are really n correction 
terms at the next level of accuracy and each of those has to be appropriately 
small. Equivalent to (3.6.5), in this case, we must require that 

(3.6.7) 

When we deal with problems in dimensional variables, the parameter A 
will not appear explicitly. In these cases, we apply the above formulas with 
A= l-or some other constant multiplier that naturally arises in the phase 
of an integral-and the symbolic variables, 71, being one or more of the 
dimensional variables of the problem. Always, one will find in the result 
that the neglected terms will involve a dimensionless large parameter, such 
as the product wot/2 in equation (3.3.12), that justified neglecting this term 
compared to unity in deriving equation (3.4.6). 
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Applying Multidimensional Stationary Phase to Equations (3.4.19) and 
(3.4.20) 

Indeed, this is exactly the case for the integrals appearing in the inversion 
formulas (3.4.13), (3.4.19), (3.4.20) and (3.5.3), (3.5.4), (3.5.5). With this 
point of view, we consider the phase function in (3.4.19) and (3.4.20), and 
introduce the phase function 

(3.6.8) 

where p = (xl>x2), K, = (kl>k2), e = (6,6), and k~ = w2jc~- r;,2. 
We evaluate the integrals in y;, by the method the stationary phase . For 
future reference, note that with this definition, the formal large parameter 
in (3.4.19) and (3.4.20) is just 2. In this application all variables other than 
k1 and k2, are treated as parameters. Thus we will apply formula (3.6.3) 
with n = 2, and "11 and "12 replaced by k1 and k2. 

To apply the method of stationary phase, we need the first and second 
derivatives of the phase function (3.6.8): 

a<P ki 
8ki =Xi- ~i + k3 X3, 

82<P [8i1 kik1] 
8ki8kj = k3 + k~ X3' 

where Dij = 

i = 1,2, 

i,j = 1,2. 

{ 
1, 

0, 

i = j, 
i =I= j. 

The stationary points are the solutions of the equations 

a<P ki 
aki = Xi - ~i + k3 X3 = 0. 

Recognizing that 

k3 = lkl:i:3 = ~ X3, 
c0 r 

where 

we may solve for ki in equation (3.6.10): 

W Xi- ~i 
ki=---­

Co r 
implying that <P=-wr. 

Co 

(3.6.9) 

(3.6.10) 

(3.6.11) 

The last equation is the result of evaluating <P as defined in (3.6.8), using 
the derived solution for y;, at the stationary point. 

The method of stationary phase also requires the value of the determinant 
and signature of the matrix of second derivatives at the stationary point. 
The determinant is fairly straightforward to compute from (3.6.9). The 
result is 

(3.6.12) 
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with the last result obtained by using the stationary value of k3 determined 
by (3.6.11). This determinant is positive. Therefore, the eigenvalues of the 
matrix are of the same sign. This is true for any choice of k. Therefore, to 
check the sign of the eigenvalues (to determine the signature of the matrix), 
we might as well check when "" = 0. In this case, 

For this diagonal matrix, the eigenvalues are each 1/k3 and hence have the 
same sign as w. Therefore, we may write 

sig [ 0~::kJ = 2 sgn (w). (3.6.13) 

It is possible in this simple two-by-two case, to determine the explicit eigen­
values and simply read off their signs. The indirect method presented here 
has wider application and will prove useful later in determining signatures 
of larger matrices, however. 

We now have the necessary components to compute the leading-order 
asymptotic expansion in (3.4.19) and (3.4.20) by the method of stationary 
phase. By applying the formula (3.6.3) to the present example, with n = 

2, >. = 2, and using (3.6.9) in (3.6.3) to evaluate (3.4.19), we obtain the 
result 

,G(x) = 4x3 r d22~ r iw dw e-2iwr/co rXJ dt tUs(l:., t)eiwt. 
1rco }r, r Jr2 Jo 

(3.6.14) 

In a similar fashion, we obtain the following result for (3.4.20): 

,G(x) = 8x; { d2~ { iw dw e-2iwr/ca {oo dt Us(!;., t)eiwt. 
1rc0 }r, r Jr2 .fo (3.6.15) 

In this last result, the temporal integral is just the Fourier transform of the 
data. Therefore, we can also write 

8x31 d2~ 1 2 · ; ,G(x) = -2 - iw dw us(l;.,w)e- zwr co. 
1rco E r rl 

(3.6.16) 

In each of the results here, the output is obtained as an integral (a sum) 
over all source-receiver locations. The integrand (summand) is frequency­
filtered data evaluated at the two-way traveltime 2r/c0 , and then spatially 
filtered or weighted, as well. It is left as an exercise to show that the last 
result is the same as Schneider's [1978] Kirchhoff migration formula, to 
within a constant scaling factor. 

Applying Multidimensional Stationary Phase to Equation (3.4.13) 

To complete the discussion of modifying the three-dimensional inversion 
formulas, we should compute the asymptotic expansion in (3.4.13). In that 
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formula, k plays the role of w in the above analysis, and the asymptotic 
expansion should be carried out with respect to the polar angles of k. 
When this is done, the results obtained are exactly (3.6.9) and (3.6.14). 
Some extra care is necessary in this calculation because w0 , as defined by 
(3.3.14), is a function of the polar angle in the k-domain, in the fairly trivial 
way that the sign changes in the upper and lower half k-spaces. 

Accuracy 

Let us now consider the implications of the criterion (3.6.7) in terms of 
these dimensional variables. To do so, we introduce dimensionless variables 
11 through the equation 

w 
K=-'r/ 

c 

and rewrite the phase in (3.4.19) as 

cp(K)=-2- 'r/" -'T]3- · 
Wr [ (p - e) X3] 
c r r 

Here, we cannot neglect the factor of -2 in the original phase; hence, we 
use a new variable name, ¢, for the phase function. In addition, 

r = J (p - e) · (p - e) + X~ and 'T/3 = J 1 - 'TJ~ - 'TJ~. 
The dimensional phase has now been rewritten in dimensionless variables 
as 

(3.6.17) 

with 
2wr c >. = -- and L = -. 

c w 
and <r> now used as the "generic" phase in (3.6.1). 

Now, differentiate in (3.6.17) to obtain 

). 82<f>( 'r/o) = _..!._ 82cp(Ko). 
a"'ia'T/j L 2 akiakj 

From this last equation, we conclude that if Aj is an eigenvalue of the matrix 
<r>ij (in dimensionless variables) and Vj is an eigenvalue of the matrix rPii 
(in dimensional variables), then 

>.>.j = L-2vj, j = 1,2. 

Therefore, we can rewrite (3.6.7) as 

min(L-2 1vil);::: 1r. 
J 

(3.6.18) 

We leave it as an exercise to show that, for rPii, the eigenvalues are given 
by 



2rc 
Ill=--, 

w 
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with the first one having the smaller absolute value. Thus, after multi­
plying by L - 2 , we conclude that the asymptotic expansion will provide a 
sufficiently accurate result when 

2jwjr 47rJfJr --=-->?r. c c -

We see here that the criterion for validity is exactly the condition, (3.4.3), 
with the length scale of that equation just being the distance between a 
source-receiver point on the upper surface and the output point of the 
inversion formalism at depth. Of course, we would want this criterion to 
hold as the source-receiver point ranges over the entire upper surface, hence 
for minimum of r. Thus, we revise the criterion to be 

2Jwjx3 47rjfJx3 --= >?r. c c -

The implication of this result is that this transformation from a Stolt-like 
inversion to a Kirchhoff-like inversion is only valid when the data acqui­
sition surface is as far away from the output points as defined by our 
high frequency asymptotics criterion or, equivalently, by the Rayleigh cri­
terion. In deleting a term of order 1jw0t, earlier, we have already restricted 
our results to such a domain. This adds no new constraint to our analy­
sis; the Kirchhoff inversions here are valid under the same high-frequency 
constraint as the earlier Stolt inversion. 

Exercises 

3.8 The purpose of this exercise is to compare equation (3.6.16) with 
Schneider's [1978] Kirchhoff migration formula, 

U( 0) = _2_~/Jd-d- U(x,fj,O,R/C) 
x, y, z, 21r az x Y R · 

This is the 3D migration formula presented in Schneider [1978], p. 53, 
Figure 4. Here, the notation has been changed to distinguish the input 
variables (x, fj, z) from the output variables (x, y, z). Also 

R= J(x-x)2+(y-fi)2+z2. 

a. Show that multiplying by the factor -2iwx3jrco on the right 
side of equation (3.6.16) is asymptotically equivalent to taking 
the derivative with respect to x 3 . Rewrite equation (3.6.16) in 
Schneider's form by using this fact. 

b. Recognize that this new form of equation (3.6.16) contains an im­
plicit correction for geometric spreading that may be represented 
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by a multiplication by 2r / c0 . Remove this correction factor to per­
mit a direct comparison with Schneider's formula. The formulas 
should differ by a factor of 8. 

c. Verify (3.6.1). 

3.6.2 Two-and-One-Half-Dimensional Kirchhoff Inversion 

The objective here is to obtain analogous asymptotic expansions for the 
two-and-one-half-dimensional inversion formulas (3.5.4) and (3.5.5). There 
are two ways to proceed. First, we could carry out the one-dimensional 
stationary phase computation for the k1 integrals in those equations. Sec­
ond, we could apply the method of stationary phase to the 6 integrals in 
(3.6.14), (3.6.15), (3.6.16), above, under the assumption that the data are 
independent of 6. The latter method presents another example of the ap­
plication of stationary phase; the former method is exactly like the results 
carried out above and we leave it to the exercises. 

For any of the integrals (3.6.14), (3.6.15), (3.6.16), the phase to be 
considered is 

<!? = r, (3.6.19) 

with formal large parameter -2w/c0 . The first derivative of this phase 
function with respect to 6 is 

(3.6.20) 

which is stationary when 6 = x2. That is, in the two-and-one-half­
dimensional survey, the dominant contribution occurs in the vertical plane 
passing through the survey line. The stationary phase calculation, then, 
will effectively carry out the delta function computation that led to the 
exact result when we passed from three dimensions to two-and-one-half 
dimensions in Section 3.5. 

At the one and only stationary point, 

82 <1? 1 
8~~ - -:;., 6 = x2. (3.6.21) 

We apply (3.6.3) to (3.4.19), now with n = 1, using the results calculated 
above, to obtain 

f3(x) = 4x3 { d~ { dw~e-2iwr/co+i1l"/4sgn (w) {oo dt tUs(~, t)eiwt, 
y0fCo }E r312 Jn lo 

(3.6.22) 

where 

In this equation and the results immediately below, x = (x1, x 3 ) = (x, z). 
Also, we have combined factors of sgn (w) as follows: 
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isgn(w) = ei7r/2sgn(w), isgn(w)e-i7r/4sgn(w) = ei7r/4sgn(w) 

Note here that multiplication by JiWT exp{ -i1r I 4 sgn (w)} is equivalent 
to taking the half-derivative in the time domain, while multiplication by 
i sgn ( w) is equivalent to taking the Hilbert transform in the time domain. 
(See Appendix A for a discussion of the Hilbert transform.) Thus, the filter 
that we are applying in (3.6.22) and below is equivalent to applying the 
Hilbert transform to the half-derivative in the time domain. 

The same analysis applied to (3.6.15) yields the result 

{3(x) = 8x3 { d~ { dwJjWfe-2iwr/co+i7r/4sgn(w) 
coJ1fCQ Jr. r 112 Jn 

·100 
dt Us(~, t)eiwt. (3.6.23) 

As in the previous subsection, this last result can be rewritten in terms of 
us(~,w) as follows. 

{3(x) = 8x3 { ~ { dw~us(~,w)e-2iwr/co+i1r/4sgn(w). (3.6.24) 
coJ1fCQ Jr. r 112 Jn 

In each of these formulas, the reflectivity is computed as an integral 
(sum) over source-receiver points of spatially weighted and frequency­
filtered data. In each case, the frequency-domain processing is computed 
only once, for any choice of background propagation speed. For each term 
in the integral (sum) the processed data are retrieved at a traveltime, 2r I co, 
so that only the spatial integral(s) need be recomputed when Co is modified. 

Exercises 

3.9 Apply one-dimensional stationary phase in k1 to the integrals (3.5.4) 
and (3.5.5), to obtain the two-and-one-half-dimensional inverse 
scattering formulas (3.6.22) and (3.6.23). 

3.10 Introduce polar coordinates in (3.5.3), for both the two-dimensional 
wavevector and the position vector. Apply the method of station­
ary phase to the integral in the polar angle of k. Confirm that the 
asymptotic expansion agrees with the results (3.6.22) or (3.6.23). 

3.11 Introduce polar coordinates for the wavevector and the spatial vector 
in (3.4.13) and carry out stationary phase in the polar angles of k to 
obtain a result equivalent to (3.4.19) or (3.4.20). 

3.12 In (3.3.1), apply the transverse Fourier transform, defined in (3.3.4), 
directly to this equation. Determine the transverse transform of the 
function exp { 2iwr I co} l[47rr2] by multidimensional stationary phase, 
and obtain the result 

167riCo ( ) _ J a(K., X3) 2ik3X3d --us K., w - e X3, 
W X3 
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with k3 defined by (3.3.13). Introduce k3 in place of was a transform 
variable, invert the transform, integrate by parts in k3, and replace 
8j8k3 by 8wj8k3. a;aw to obtain result (3.4.6). 

3.13 The purpose of this exercise is to provide insight into the determina­
tion of the large dimensionless parameter in integrals where we carry 
out the method of stationary phase in dimensional variables. Let us 
suppose that we are given a phase function in dimensional variables 
¢(x), and that we introduce the dimensionless variable TJ in a linear 
manner,9 

X= Lry. 

Let us suppose further that this results in a phase as in (3.6.4); that 
is, 

>.<I>(ry) = ¢(x). 

a. Use the chain rule to show that 

>, dz<I>(ry) = Lzd2¢(x). 
dry2 dx2 (3.6.25) 

b. Use this result to identify the dimensionless large parameter of 
the stationary phase formula when the integral is calculated in a 
dimensional spatial variable. 

c. Repeat for integrals in time. 
d. Make a conjecture about the multidimensional case with a possible 

temporal integral as well as spatial integrals. Exploit the comment 
about correction terms below the stationary phase formulas. 

3. 6. 3 2D Mode ling and Inversion 

The purpose of the series of exercises that concludes this short subsection 
is the derivation of zero-offset inversion formulas for data collected in a 2D 
Earth model, with wave propagation governed by the 2D wave equation. In 
the 3D world that we discuss in this chapter, this would be equivalent to 
considering the energy to be propagating from a line source, rather than a 
point source. This line source would be oriented in the direction x 2 or y, in 
which the material parameters of the medium do not vary. This means that 
the variability of the medium would be in the (x1, x3), or (x, z), directions. 
Parallel lines of receivers in the x1 direction would record identical 2D data. 
In that case, the wavefield would be a solution of the 2D wave equation. 

The reader may question the need for such a result, considering that we 
have argued that a single line of seismic data with a point source corre­
sponds to what we have called 2.5D models. Nevertheless, we have a need 

9 See Appendix C for discussion of the choice of L. 
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for such modeling and inversion formulas for testing purposes. Because of 
the difficulty of modeling 2.5D or 3D data with finite-difference techniques, 
for example, 2D models are often used to generate test data sets. We will 
see in the following exercises that 2D data have special characteristics that 
are reflected in the structure of the corresponding 2D inversion formulas. 

Exercises 

3.14 This first set of exercises outlines the formulation of the 2D inverse 
problem, following the general perturbation method that we have 
used so far in the text. 

a. Explain why the perturbation process of this chapter used for for­
ward modeling, but specialized to zero offset and two dimensions, 
leads to the following form of equation (3.2.1): 

2 r a(x) 2 
us(~,w) = w Jn c2 (x) ur(x,~,w)g(x,~,w)d x. (3.6.26) 

Here, x = (x1, x3 ) and there is only one spatial coordinate de­
scribing the common source-receiver point at (~, 0), on the line at 
z = 0. The function ur is the response to an impulsive source at 
(~, 0) and g is the Green's function, evaluated at this same point, 
as it is also the observation point. 

b. Neglect the issue of source signature for the moment and explain 
why, when c = co = constant, we should use the function 

isgn(w) (O) 
ur(x,~,w) = g(x,~,w) = 4 H1 (wpjeo), 

(3.6.27) 

for both ur and g. Here, H~o), is the Hankel function of the first 
kind and zero order, or, equivalently, the Bessel function of the 
third kind and zero order. For w < 0, the correct solution is the 
complex conjugate of the solution for w > 0; hence the multiplier 
of i sgn ( w), rather than i, usually given in references. 

c. With experience from the discussion of this chapter, explain why 
we need not use these exact solutions, but can use instead their 
asymptotic expansions. Find the asymptotic expansion of the 
Hankel function in an appropriate reference (such as Abramowitz 
and Stegun [1972]) and show that 

eiwpfco+i1r/4sgn (w) 
ur(x,~,w) = g(x,~,w)"" . 

2y'2nlwlp/co 
(3.6.28) 
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d. Show that, when these asymptotic expansions are substituted into 
(3.6.26), the following asymptotic integral equation is obtained: 

iw j e2iwp/co 
us(~,w) =- a(x) d2x. 

81rco z>O P 
(3.6.29) 

Hint: 

In deriving this result, use the fact that 

w2 = w2 ----,----,----[
ei1t"/4sgn(w)l 2 ei1l"/2sgn(w) 

VJwl lwl 

isgn(w)lwl 2 

lwl =isgn(w)lwl =iw. 

3.15 Equation (3.6.29) is the basic 2D integral equation to be inverted by 
Fourier transform techniques. This is what we proceed to do in the 
next exercise. 

a. Introduce the Fourier transform in~: 

ils(kl, w) =I: us(~, w)e-2ik 1 ~d~. (3.6.30) 

This spatial Fourier transform is to be applied to (3.6.29). Observe 
that this equation has the form of a convolution in the transverse 
variable of integration; hence, its transform is the product of the 
transforms of the two functions being convolved. For one of those, 
derive the result 

! 00 e2iwr/co-2iklx i sgn (w) (0) 

-oo 41rr dx = 4 H 1 (2k31zl) 

(3.6.31) 

4y'7rlk3zl 

In this equation, 

and 

(3.6.32) 
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Hint: 

To derive the result in the first line in (3.6.31), note that 
this is just the Fourier transform of the 3D Green's func­
tion, but with a second spatial argument, z2 , rather than 
y2 + z2 . No matterr; the result is still the 2D Green's 
function, but of this modified argument. Take some care 
in recognizing that the transform variable is 2k1, rather 
than simply, k1. This accounts for the extra factor of 2 in 
the argument of the Hankel function. The second line is 
just the asymptotic expansion (3.6.28), modified to take 
account of the new variables here. 

b. Show that the transform of (3.6.29) now becomes 

, (k ) _ iwe1rj4 sgn(w) Joo &(k1,z) 2ik3izld 
us 1, w - J::TL:":I II:T e z. 

8co y 1rlk3l -oo y lzl 
(3.6.33) 

c. Compare this equation with (3.3.8). Show that the solution is 

&(k1,z) _ 8CQ JOO dk Us(kl,W)~ -2ik3Z-i7r/4sgn(k3) 
---'--:::::=,..:.... - 3 e . JlZ1 ft -oo iw(k) 

(3.6.34) 
In this equation, 

w(k) = sgn (k3)coJk~ + k§. (3.6.35) 

d. Invert back to a function of x to obtain 

a(x) = 8co fi"_Joo dk3Joo dkl us(k~,w)~e2[iklx-ik3z]-i7r/4sgn(k3) 
1l" V; -oo -oo ~w(k) 

= 8co [i"_ Joo dk3 Joo dk1 
1l" V:;;: -oo -oo 

(3.6.36) 

. Joo d~ us(~, w)~ e2 [ikl(x-~)-ik3z]-i7r/4sgn (k3) 
_ 00 iw(k) · 

Remark 3.1. At this point, we have a 2D solution, a(x). This 
result should be compared with our earlier solution in 3D, (3.3.11). 

e. Use (3.6.32) to replace the integration in k3 with an integral with 
respect tow. In doing so, use 

dk3 w 
dk3 = -d dw = ~k dw. 

w co 3 

Show that 
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8 ~~oo Joo a(x) =- - dw dk1 
1rCo 1r -oo -oo 

(3.6.37) 

. Joo d~ us(~,~) .jfk;l e2 [ikl (x-€)-ik3z]-i7r /4 sgn (w). 
_ 00 2k3 

3.16 Now, transform this solution to process data for the reflectivity func­
tion, (3, in 2D as we did in 3D and 2.5D in this chapter rather than 
for the perturbation, a. 

a. Follow the earlier discussion in Chapter 3, to transform any of 
these inversion formulas for a to an inversion for (3, by intro­
ducing the factor iw/2co into the operators for a. In particular, 
apply this modification to the formulas in (3.6.36), to obtain "true 
amplitude" 2D versions of Stolt's Fourier-type migration. Show 
that 

(J(x) = ~ ~~oo dk3 
1f Y:;;: -oo 

(3.6.38) 

b. Now, use this result to derive a Kirchhoff-type inversion formula 
by applying the method of stationary phase in k1 to either of these 
last results. Define the phase 

(3.6.39) 

and calculate the derivatives with respect to k1, using the upper 
equation in (3.6.32). 

c. Verify that 

82<I> [ 1 ki] 2w2z 
oki = 2 k3 + k~ z = c~k~' 

(3.6.40) 
and show that setting the first derivative equal to zero leads to 
the solution 

X-~ W 
kl=---·-, 

P Co 

z w 
k3 =-. -, 

P Co 

d. Now show that at the stationary point, 

p=J(x-~)2+z2. 

(3.6.41) 
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<I>= -2wp/co, [a2<I>] 
sgn ak? = sgn (w). 

e. With these values, show that the result of applying stationary 
phase in k1 in (3.6.38) is /3. Note that we must premultiply the 
integrand by iw /2c0 : 

f3(x) = -2 - [w[dwus(~,w)e-2•wpfco. 4z Joo d~ Joo . 
1fCo -oo P -oo 

(3.6.42) 

This result should be compared to the 2.5D result, (3.6.16), where 
the frequency-domain filter is iw. That is, the frequency-domain 
filter for inversion of 2D data differs from the filter for 2.5D data. 
Recall that the input data to 2.5D inversion are really 3D data, 
whereas the data here are 2D. There really are true 2D inversion 
problems for which this is the correct filter and inversion formula. 
Furthermore, it is much easier to generate 2D data than 3D data 
numerically. If these data are generated in the time domain; then 
their Fourier transform to the frequency domain will naturally 
include the frequency-domain factors shown in (3.6.28), whereas 
3D data have no such frequency-domain multipliers. 

Remark 3.2. Now that we have a "new" type of frequency domain 
filter for 2D data, we test it on a simple problem to see how it interacts 
with the frequency dependence of the input data. 

3.17 As a final check, consider the simplest example of model data, 
reflection from a horizontal line at depth L: 

e2iwLfco+itr/4sgn (w) 
us ( c w) - R--:---;==;==;=:=;==--

"' - 4J7r[w[L/co 
(3.6.43) 

Substitute this result into the lower equation in (3.6.38). Note that, 
for these data, the ~-dependence of the integrand is totally in the 
phase, and 

Thus, carry out the two integrals in ~ and k1 to obtain 

f3(x) = !!_ ~~00 dk3e2ik3 [L-z] = R ~8(z- L) = R8(z- L). 
1r V L -oo V L 

(3.6.44) 
Recall, this is the most singular part of the inversion output or the 
leading-order output at high frequency. The output is the normal­
incidence reflection coefficient multiplied by the singular function of 
the reflection surface. This is the result predicted by the theory, and 
further confirms this result. 
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3.18 Now, proceed to verify that the same output arises when the data 
(3.6.43) are substituted into the Kirchhoff inversion formula, (3.6.42). 
First, show that the substitution leads to the equation 

{J(x) = -; R ·100 d~ 100 ~dwe2iw(L-p)/co+i7r/4sgn (w). 
1rCo JnL/co -oo P -oo 

3.19 Apply the stationarity contition in~ to the phase, 

W=-p, 

to obtain, 

(3.6.45) 

(3.6.46) 

f3(x) = !!:__ {i1oo dwe2iw[L-z]/co = R {i8(z- L) = R8(z- L). 
nco V L -oo V L 

(3.6.47) 
That is, obtain the same result as in (3.6.44). 

3. 7 Testing the Inversion Formula with Kirchhoff 
Data 

In the previous section, a suite of inversion formulas was derived by apply­
ing high-frequency asymptotics to a corresponding suite of Fourier inversion 
formulas. Those formulas were, in turn based on a Born-approximate model 
for the forward scattering problem. Here, the results of the previous sec­
tion will be checked by applying them to Kirchhoff-approximate data for a 
single reflector. We will assume the correct wavespeed for the background 
above the reflector in question. We make no restrictions on the reflection 
strength of the reflector to be imaged, however. The result will be shown to 
be linear in the normal-incidence reflection coefficient, which in turn, is a 
nonlinear function of the change in propagation speed across the unknown 
reflector. 

In this way, the inversion formula will be shown to perform beyond the 
constraints imposed by the Born approximation on which it is based. That 
is, while we still require that the error or perturbation in the velocity be 
small above the reflector in question (taken to be zero in the test problem), 
we obtain a result that is meaningful for any size jump in reflection strength 
at the reflector of interest. 

3. 7.1 The Kirchhoff Approximation 

We introduce the Kirchhoff approximation, developed in Appendix E, to 
represent the upward scattered data from a single reflector, S. Here, we 
will use the constant-density, zero-offset version of equation (E.8.17). In 
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this case, x 9 = X 8 and we use only the latter in this discussion. Then the 
Kirchhoff-approximate, upward-scattered wavefield is given by 

us(xs,w) = 2iw r dS RuJ(Xo,Xs,W)Tsn9(Xs,Xo,w), (3.7.1) ls 
where UJ and g are given by their WKBJ approximations, 

g(x8 , Xo,w) = A(xo, X8 )eiwTs(:z:s,:z:o), 

UJ(Xo,X 8 ,w) = F(w)g(x 8 ,Xo,w), (3. 7.2) 

with T8 being the traveltime function in the heterogeneous medium, and 
A being the corresponding WKBJ amplitude. The T 8 is a solution of the 
eikonal equation and A is a solution of the transport equation of geometrical 
optics as developed in Appendix E. Moreover, 

(3.7.3) 

with n being the upward unit normal vector to the surface, S. We also 
introduce the normal derivative of the transmitted phase on S, defined by 

[ 
1 1 ] 1/2 

Ttn := sgn (Tsn) T;n + 2- 2 
cl co 

(3. 7.4) 

Here co and c1 denote the wavespeeds above and below S, respectively. 
With this notation, we can conveniently define the geometrical-optics 
reflection coefficient, R, in (3. 7.1) by the expression 

R = Tsn- Ttn. 
Tsn + Ttn 

(3. 7.5) 

The surfaceS is described in terms of two parameters, (a1 , a 2 ) = u, with 
xo = xo(u). (We reserve the variable, x, as the output variable in this 
discussion.) 

For the inverse problem in this chapter, only the case of zero-offset 
(backscatter) modeling in a homogeneous medium is of interest. In this 
case, 

Xs = ~ = (6,6,0), 

To= lxo- ~~ = V(xlO- 6)2 + (x2o- 6)2 + x§0 , 

and (3.7.1) simplifies to 

(c ) = 1 iwF(w) Rn. ro 2iwro/codS 
us "'' w 2 2 e ' s 81r co r0 

with, 

(3.7.6) 

(3.7.7) 

I A A 1/ . I -2 -2 -2( A A )2 n · To co - y c1 - c0 + c0 n · To 
R = (3.7.8) 

In· rol/co + )c12 - c02 + c02(n. ro)2 ro 
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3. 7.2 Asymptotic Inversion of Kirchhoff Data 

The asymptotic inversion formula, (3.6.16), is to be applied to the Kirch­
hoff data, (3.7.7). In the latter equation, the temporal integral is just the 
Fourier transform of the observed data, given by (3.7.7). Thus, applying 
the inversion formula to the data leads to the multifold integral 

(3(x) =- ~3 3 { w2 F(w)dw { d2~ { .j9 d2a n ·:o Re2iw(ro-r)/co. 
71' co Jn JE r J s ro 

(3.7.9) 
In this equation, we have introduced the determinant of the first 
fundamental metric tensor of differential geometry, 

g =I~:~ X ~:~ r = ldet [ ~:; . ~::]I' j, k = 1, 2, (3.7.10) 

to express the surface integral over S in terms of the parametric vari­
ables, u, describing S. (See Kreyszig [1991], for information on differential 
geometry.) 

The integral (3. 7.9) has been written in a form suggestive of the analysis 
to be carried out. This analysis will be an asymptotic expansion by mul­
tidimensional stationary phase in the four variables, e and u. The phase 
function is 

<P(e,u) = ro- r, (3.7.11) 

with first derivatives 

{)cp ~i- XiO 
= ----

O~i ro r 
i = 1,2. (3.7.12) 

Stationary points in e and u are determined by setting these first deriva­
tives equal to zero. Setting 8<Pj8ai equal to zero leads to the condition 
that the unit vector, (x0 -e)/r0 , is orthogonal to two linearly independent 
tangent vectors in the surfaces, meaning that (xo- e)/ro is normal to s. 
Because n is an upward normal to Sand (x0 - e)/ro points downward at 
S, we conclude that at the stationary point, 

ro = (xo- e)/ro = -n. (3.7.13) 

It follows from this result and the definition of R in (3. 7.8) that 

R = R, = Cl - Co • 
c1 +eo 

(3.7.14) 

Now consider the ~-derivatives in (3.7.12). The result of setting these 
derivatives equal to zero implies that two components of two unit vectors 
must be equal. Magnitudes of the third components are fixed because these 
are unit vectors. Therefore, these third components could, at most, differ 
in sign. However, the third components, x3jr0 and x3jr, have the same 
sign. Hence, these two unit vectors must be equal: 
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FIGURE 3.5. a) General geometry of the imaging problem. b) Geometry for 
values of x near the stationary point. 

(3.7.15) 

(see Figure 3.5). 
With this information, we can now prescribe a geometrical solution to 

the condition that the phase be stationary. Given an output point a:, drop 
perpendiculars from x to the surface S. Each such perpendicular defines 
a possible value of u at a stationary point. Extend each normal up to the 
data surface, e. For each e in the aperture E, the pair e, u is a stationary 
point of the fourfold integral (3.7.9). For x "close enough" to S, there will 
be only one perpendicular from x to S. We continue under the assumption 
that x is at least this close to the surface. Furthermore, we assume that 
points at which there are more than one normal to S are at a distance 
L satisfying our high-frequency assumption (3.4.2). This is equivalent to 
imposing the requirement that the principal radii of curvature of S satisfy 
(3.4.2). Another way of saying this is that we require that there will be no 
focusing of rays near the recording surface. We further assume that there 
is a e in E along the continuation of the surface normal through a:; that is, 
we continue under the assumption that there is only one stationary point 
for the integral (3.7.9). 

Because the vectors Xo - e and X - e are collinear' the difference of dis­
tances defining <I> in (3.7.11) reduces to distance along the normal through 
x. That is, 

<I> = ro - r = s, (3.7.16) 

with s > 0 when xis above Sands < 0 when xis below S, measuring 
signed distance from S along the normal. 

To complete the stationary phase calculation it is necessary to compute 
the determinant and signature of the matrix of second derivatives, 

82<1> l 8~i80"j . 

82<1> 
---
8ai80"j 

(3.7.17) 
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FIGURE 3.6. Cartoon showing the singular function 7(x) of a reflector surface 
(viewed edge-on) represented as the bandlimited delta function 8B(s), where sis 
the coordinate normal to the surface. 

We defer discussion of this matrix for the present. It will by shown below 
that for x sufficiently near to S, sig ( <I>ij) = 0; the determinant will be 
denoted by D: 

(3.7.18) 

The results, (3.7.13), (3.7.14), (3.7.16), and (3.7.18), are used in the sta­
tionary phase formul (3.6.3) to evaluate the integral, (3.7.9). The result 
IS 

f3(x) =Rn v~ dwF(w)e ~ws co =Rn v~ c5B(s). XJ lg 1 1 2. I X3 lg 
rr~VD 1l'Co n rr~VD 

(3.7.19) 

All variables here are to be evaluated at the stationary point. In the last 
equality, we have replaced the integral, with proper scale, by the now famil­
iar bandlimited delta function, now of argument equal to the signed normal 
distance to the reflector. A graph of this function for all x will partially 
image the reflector because the bandlimited delta function peaks on the 
reflector surface (s = 0). The image is only partial because we obtain this 
result only when the conditions of stationarity are satisfied. These, in turn, 
require that there be a normally incident or specular ray from some point 
on :E to a point on S. Thus, we can only "see" a point on the reflector 
surface if we can trace a specularly reflected ray from the source-receiver 
point to that point on the reflector. 

As mentioned earlier, this delta function with support on the surface is 
called the singular function of the surface. We see in the above result that 
the output f3(x) is the bandlimited singular function scaled by another 
function of x. One factor in this multiplier is the normal-incidence reflec­
tion coefficient. The remaining factor is of little interest to us-as long as 
it is "slowly varying" with respect to two length scales of the problem. The 
first of these scales is the characteristic wavelength; here we want equation 
(3.4.3) to be violated in the sense that >. < < 7!'. The second scale is the 
width of the main lobe of the singular function; we do not want the mul­
tiplier to vary significantly over the main lobe, which would diminish or 
destroy our ability to identify the peak of the delta function. Thus, instead 



:3.7 Testing the Inversion Formula with Kirchhoff Data 149 

of computing D everywhere, we be satisfied by computing its value only 
at s = 0, which occurs when x is on S and, consequently, x = xo at the 
stationary point. 

To computeD, defined by (3.7.17) and (3.7.18), we begin with the result 

82 <1> _ 8ij _ (~i- xiO)(~j- Xjo) _ 8ij + (~i- xi)(~j- xj) 
O~iO~j - ro r8 r r 3 ' 

(3.7.20) 

with i,j = 1, 2. 

Here the 8ij is the Kronecker delta symbol, equal to unity when i = j and 
equal to zero when i "I j. When x = x 0 , the sum of the four elements 
here is equal to zero. Consequently, when computing the determinant in 
(3.7.17), the upper left two-by-two corner is a zero submatrix and 

(3. 7.21) 

The second derivatives here are calculated from the first derivatives in 
(3.7.12): 

82 <1> - OXo . ej 
aaiO~j aai ro 

(3.7.22) 

i,j = 1,2, e1 = (1, o, o), e2 = (o, 1, o). 

Since D is a perfect square, we know that the four eigenvalues must occur in 
pairs of the same sign. Thus, sig ( <I>ij) = ±4 or 0. The first two choices lead 
to a multiplier of -1 on the result, (3.7.19); the last choice leaves the sign 
unchanged. Furthermore, the determinant of these four elements is now seen 
to be the third component of the cross product of the vectors 8xof8a1 and 
8x0 jaa2 , multiplied by 1/r6. That third component can easily be computed 
by calculating the complete cross product and taking its projection on 
the vertical. The magnitude of this vector is just y'g defined in (3.7.10). 
The direction of this vector is n, with the sign being unimportant as we 
need only the absolute value of the determinant. Thus, projection onto the 
vertical is achieved by multiplying the magnitude by the third component 
of the normal, xJ/r. Therefore, for x on S, 

det [ (J2q> ] = x3y'g 
aaia~j r6r ' 

(3.7.23) 

We are now prepared to evaluate {3 at its peak value, that is, for x on S, 
(see Figure 3.6). We use (3.7.23) and the fact that r = r0 at the peak to 
obtain 

f3PEAK = Rn8s(O). (3.7.24) 
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That is, for this single reflector model, the reflectivity function has now 
been confirmed to be asymptotically equal to the singular function of the 
reflecting surface multiplied by a slowly varying function of a:. That slowly 
varying function reduces to the normal-incidence reflection coefficient when 
a: is on S. Thus, the output provides an image of the reflector, while the 
peak amplitude provides an estimate of the normal-incidence reflection 
coefficient. In a perfect world, this reflection coefficient could be used to esti­
mate the propagation speed below the reflector in terms of the propagation 
speed above the reflector. 

It remains only to show that the signature of the matrix of second deriva­
tives is equal to zero. Here, again, we limit ourselves initially to the case 
when a: is on S. Note, first, that the determinant, Dis nonzero no matter 
what the values in the lower left-hand corner of the matrix in (3. 7.17) are. 
Therefore, the eigenvalues cannot pass through zero as a function of the 
values of this submatrix. To determine the signature, then, we might as 
well consider a case in which this submatrix is particularly simple. This 
would be the case for a flat reflector. For such a reflector, a reasonable 
parameterization would be xw = a1, x2o = a 2, and X3 = const., in which 
case the upper right-hand and lower left-hand two-by-two submatrices in 
(3.7.17) reduce to diagonal matrices with elements -1/ro, while the lower 
right two-by-two is a diagonal matrix with elements 1/ro. It is then easy 
to show that the matrix <Pij has two positive eigenvalues equal to 1/ro and 
two negative eigenvalues equal to -1/ro. In this case, sig (<Pij) = 0, as 
claimed. Because we have explained above why the same result must hold 
for arbitrary surfaces, we conclude that the signature is zero for a: on S 
for any reflector. We argue, by continuity, that the same must be true in 
some neighborhood of S. The extent of that neighborhood depends on the 
curvature of Sand on the value of the determinant for a: not on S. 

This is as far is we will be able to go in subsequent chapters where 
we consider the corresponding Hessian matrix in variable background for 
more general source-receiver configurations. In preparation for that, the 
argument here has been presented as it will be in those later discussions. 
However, for this relatively simple case, it is possible to carry out the 
calculation of the determinant D in (3. 7.18) and obtain a meaningful result 
in closed form. The key to doing this calculation with minimal effort is to 
expand the determinant in two-by-two subdeterminants of the first two 
rows and their corresponding (two-by-two) minors. Significant reduction in 
the calculation occurs when one realizes that the determinants of the first 
two rows are all elements of the cross products of the two surface tangents 
and the normal with one another. This can be confirmed by expressing the 
results (3.7.20) and (3.7.21) in terms of these two tangents and normal. 
Because only first and second components of these vectors appear in the 
determinant, the subdeterminants are all expressible in terms of the third 
component of one of the tangents or of the normal vector. After some 
computation, we find that 
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x2 
D = g 4 

32 [1- 8~~;1][1- 8~~;2 ]. (3.7.25) 
r r0 

In this equation, 8 is the signed normal distance to the reflector defined 
by (3.7.16); ~~; 1 and ~~; 2 are the signed principal radii of curvature at the 
stationary point. The sign is positive when the reflector is concave-up 
for the principal curvature in question and negative when the reflector 
is concave-down for the principal curvature in question. Note that D = 0 
when 81\;j = 1, j = 1, 2. That is, D = 0 at the center of curvature associ­
ated with one or the other principal curvatures of the reflector. Thus, in 
order for the asymptotic solution, (3.7.19), to be valid near the reflector, 
it is necessary that the radii of curvature each satisfy the length scales for 
which our asymptotic criterion, (3.4.2), is valid for the bandwidth of the 
observed data. 

When (3.7.25) is used in (3.7.19), we obtain the result 

{3(x) = Rn8B(8) 
J[1 - 811;1] [1 - 811;2]. 

(3.7.26) 

The final result, in the form (3.7.26) or in the form (3.7.19), (3.7.24), con­
firms the validity of the asymptotic inversion for a single reflector as a 
leading-order asymptotic result, subject to the existence of the stationary 
point in the four variables, e, u. The denominator in this final expression 
is zero at either of the two centers of principal curvature of the reflector 
with respect to the stationary point. The ensemble of centers of curvature 
from every point on S forms two surfaces called the surfaces of centers of 
s. 

The asymptotic expansion, whose leading order term is the right-hand 
side of equation (3.7.26), breaks down on this surface of centers. By as­
suming that both of the radii of curvature satisfy the asymptotic criterion 
(3.4.2), which is the large parameter of the asymptotic expansion, we guar­
antee that this failure occurs sufficiently far from the recording surface so 
that (3. 7.26) is always valid. It is important to note that near the surfaces of 
centers, an alternative asymptotic representation exists, called a uniform 
asymptotic expansion; in this case, "uniform" means that the expansion 
remains valid through a transition region where one of the eigenvalues of 
the matrix of second derivatives passes through zero. While a discussion 
of uniform asymptotics is beyond the scope of this text (see Bleistein and 
Handelsman [1986] for further information), we mention this so that the 
reader can be aware that stationary phase is not the whole story of the 
asymptotic expansions of integrals. 

In this alternate asymptotic representation, the resulting expansion is 
not infinite, as suggested by the failure of (3.7.26), but it is larger, typ­
ically by a one-sixth power of the large parameter, >., defined by (3.4.2). 
This increase in size is due to an increase in the order of stationarity of 
the phase functions, defined by the number of vanishing derivatives at the 
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stationary point. Typically, this order increases by 1 on the surfaces of cen­
ters. Note that even for A = 64 » n, the sixth root is only equal to 2. 
Thus, the asymptotic expansion grows approximately by a factor of 2 from 
the increasing order of stationarity. 

On the other hand, the last integral in w decays with s, and its decay, 
by the assumption that the radii of curvature satisfy (3.4.2), is sufficient 
to compensate for this doubling. That is, the total result remains small on 
the surfaces of curvature and does not interfere with the imaging predicted 
by (3.7.26). See Armstrong [1978]. 

When there is no stationary point in all four variables, the asymptotic 
contributions are of lower order in w. Although it is possible to calculate 
those lower-order results, it is easier to simply demonstrate them with 
numerical examples. 

There will fail to be a stationary point when there is no normal incidence 
ray from the source-receiver configuration to the scattering surface S; that 
is, when there is no specular reflection point on the surface for any source­
receiver point in the region E. Thus, this asymptotic inversion images the 
portion of the reflector for which there are specular returns at the receivers 
and yields a lower-order contribution when there are none. 

Setting 8ipf8ai = 0, defines a traveltime t(~) = ro/co, which is the spec­
ular traveltime to the reflector. Then, ip /co is the difference between the 
specular traveltime and the two-way traveltime from the source-receiver 
point to the output point for each~- Setting the 8ipf8~i's equal to zero 
then determines the envelope of these traveltimes over all values of~- In 
particular, ip / c0 = 0 determines the reflector as this envelope. In this man­
ner, we see this analysis echoing the discussion of Hagedoorn's graphical 
migration method discussed in Chapter 1. 

The inversion operator is a linear operator on the data. The forward 
modeling problem is linear in the response to the scattering surfaces, par­
tially as a consequence of neglecting refraction and multiple reflection and 
transmission through multiple interfaces. Thus, within the range of validity 
of the linear theory, the method will produce a reflector map of an ensemble 
of reflectors from observations of the upward-scattered data from those re­
flectors. In practice, data from multiple reflections will produce (hopefully, 
weaker) spurious images, while the errors due to refractions will accumu­
late with depth. Nonetheless, migration/inversion of zero-offset data with 
a constant background is a first important method of choice for analysis of 
data, on the way towards more sophisticated migration/inversion methods. 

3. 7. 3 Summary 
We have now provided the desired verification of the validity of the inversion 
procedure. The model data used were Kirchhoff-approximate data for a 
single reflector, and the background propagation speed used in the test was 
the correct propagation speed above the reflector. For this test, the imaged 
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reflector is properly placed and depicted through its bandlimited singular 
function, and the scaling of the singular function is the normal-incidence 
geometrical-optics reflection coefficient multiplied by another geometrical 
factor, which is equal to unity on the reflector. Thus, the peak amplitude 
of the output provides a means of estimating the propagation speed below 
the reflector, given the propagation speed above the reflector. 

From the analysis, it is apparent that an incorrect background speed 
in the inversion process will lead to a misplaced (for a planar reflector) 
and misshapen (for a curved reflector) image, as well as an incorrect value 
to substitute into the reflection-coefficient output for determination of the 
propagation speed below the reflector. On the other hand, with correct 
background, the estimate of the propagation speed below the reflector is not 
constrained to small perturbations of the speed above, despite the reliance 
on perturbation theory for the motivating forward model. In that sense, the 
method has broader validity than its basis in perturbation theory would 
imply. Indeed, the output is linear in the reflection coefficient, which, in 
turn, is a nonlinear function of the change in propagation speed (and of 
other medium parameters, when we generalize the forward model). 

Exercises 

3.20 The purpose of this exercise is to give the reader some practice 
doing multidimensional stationary phase. The zero-offset Kirchhoff­
approximate scattered field due to a point source is given by 

(c ) = 1 iwF(w) Rn. To 2iwro/co dS 
us .. ,w 8 2 2 e ' s 7r co ro 

with 

In· roll co- Jc12 - c02 + c02(n. ro)2 

R = ----~======= 
In· rolf co+ Jc12 - c02 + c02(n. r 0 ) 2 

The other variables used in this equation are defined in the text. 

a. Carry out the two-dimensional stationary phase in the surface 
parameters, u = (a1, a2) introduced in the text. Show that the 
stationary point(s) are defined as those points on the surface where 
r0 = -n and that 

o2 <I> 1 ox ox , o2x -=----=--- = --·- -n· , i,j = 1,2. 
oaioai ro oai oai oajOaj 

b. To simplify the analysis of the matrix of second derivatives, sup­
pose that a 1 and a 2 are locally arclength variables along the 
directions of principal curvature at the stationary point. In this 
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case, show that 

and that 

In these equations, 8ij is the Kronecker delta, equal to unity when 
the indices are the same, equal to zero when they are not. Fur­
thermore, the K-i 's are the principal curvatures of the reflector at 
the stationary point. We remark that for these variables, vg = 1. 
Also, the final result should be independent of the coordinate sys­
tem, so the use of an optimal coordinate system certainly makes 
sense. 

We leave it as further reading to show that for more general variables, 
the determinant of the matrix of second derivatives is just the determinant 
found in this special coordinate system multiplied by g. This latter deter­
minant is exactly what is needed to cancel a corresponding factor in dS 
when expressed in arbitrary surface coordinates, u. 

Exercises 

3.21 Show, now, that the leading-order contribution from each stationary 
point is 

iwF(w )Rn e2iwro/co+i1l"/4sgn (w)(~t1 +~t2 ) 
us(e,w)"'- . 

87rrolwl v'l1- ron. K-1111- ron. K-21 

In this equation, Rn is the normal reflection coefficient (3.7.14) and 

j = 1,2. 

3.22 For the reflector convex upward, show that J.L1 = J.L2 = +1, so 

e2iwro/co 

3.23 Now suppose that the reflector is flat and obtain the result (3.2.14), 
with h = ro. Introduce Pi = 1/IK-j I, j = 1, 2, setting 

1 _ P1P2 
(1 + roiK-11)(1 + roiK-21) - (ro + pl)(ro +pi)· 

Then, discuss this factor as a curvature-related amplitude variation 
due to the local structure at the stationary point. 
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3.24 Define the dimensionless coordinates, ry, via the expression 

u = Lry, 

with u still being arclength on the principal curves through the 
stationary point. Furthermore, consider the full phase function, 

¢(u) = 2wro(u) = 2wL r0 (Lry) = .\lf>(ry). 
co co L 

Show that, if Aj is an eigenvalue of the matrix lf>ij (in dimensionless 
variables) and Vj is an eigenvalue of the matrix of the matrix ¢ij (in 
dimensional variables), then 

AAj = L2vi, j = 1, 2. 

Here, we use the notation of (3.6.3) for the definitions of lf>ij and ¢ij· 
3.25 Show that 

Vj = 2w [_!_ - ft · t;,j] , j = 1, 2, 
co ro 

and hence that the criterion (3.6.7) for validity of the above 
asymptotic expansion is 

min { 2lwiL21 _!_ -ft. t;,j I} ~ 7r. 
J co ro 

3.26 There are three relevant length scales in this problem: 

a. r0 , the distance from the stationary point in u-equivalently, the 
reflection point in x; 

b. the two radii of curvature Pi = 1/lt;,j I, j = 1, 2. 

Thus, show that the asymptotic validity criterion now becomes 

12::o [1- ron. K,ill 
~ 7r j = 1, 2. 

'

2Wpj [Pj [A ] I -c- ro - sgn n . t;,i 

Note that all of these restrict the region of validity to avoid the centers 
of curvature of the reflector. Furthermore, the first of these requires 
that ro, the distance between the observation point and the reflection 
point, be large enough. Finally, the latter pair of criteria warn that 
the radii of curvature cannot be too small, either; the reflector cannot 
look like a point diffractor for this asymptotic expansion to be valid. 

This last exercise demonstrates how to impose accuracy criteria (3.6. 7) 
on an integral in (dimensional) spatial variables when it is approximated 
by the method of stationary phase. We review the result of the exercise 
and expand on it here to close this section. 
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Let us suppose that we have an integral such as (3.6.1), but in di­
mensional variables u, rather than the dimensionless variables "1 of 
that equation. In particular, let us assume that the phase, though still 
dimensionless, has the form 

(3.7.27) 

We have seen enough examples, including the discussion in Appendix C, 
to know that this is a reasonable assumption. Then, simple application of 
the chain rule tells us that, if Aj, j = 1, 2, ... , n, are the eigenvalues of 
<Pij, as defined in (3.6.3), and Vj, j = 1, 2, ... , n, are the eigenvalues of ¢i1, 
defined in a completely analogous manner by (3.6.3), then 

>.>.1 = L 2wv1, j = 1, 2, ... , n. 

In this case, the asymptotic criterion (3.6. 7) becomes 

m~n(L2 jwvjl) 2:: 1r. 
J 

(3.7.28) 

(3.7.29) 

The question arises as to what are the choices of L. In fact, L should be 
any of the length scales that appear naturally in the phase or the amplitude. 
The reason for this is that correction terms to the asymptotic expansion 
will involve derivatives of the amplitude and phase. The dimensional scale 
of those derivatives will be in inverse powers of those length scales. Hence, 
not only will the powers of w increase with each correction term, but so 
will the powers of the various length scales of the amplitude and phase. 
More specifically, correction terms will contain progressively higher powers 
of L2wvj, for each L of the amplitude and phase and each Vj, representing 
directional derivatives in each of the principal directions defined by ¢ij. For 
at least the first correction term in each length scale to be smaller than the 
leading order contribution obtained by the method of stationary phase, all 
of these correction terms would have to satisfy our asymptotic criterion. 

The phases we analyze in spatial integrations are more likely to take the 
form 

>.<P(rJ) = wcp(x(u)), 

with u some arbitrary convenient variable of integration. This general form 
is more difficult to analyze and we will simply deal with specific examples 
as they arise. 

3.8 Reverse-Time Wave-Equation Migration 
Deduced from the Kirchhoff Approximation 

To complete our discussion of how classical migration formulas follow 
as special cases of the formalism of this chapter, we will show how 
wave-equation migration (Claerbout, [1970, 1976]; Claerbout and Johnson, 
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[1971]; Claerbout and Doherty, [1972]) can be derived from the Kirch­
hoff approximation of the upward-scattered, zero-offset wavefield, (3. 7. 7) .10 

Here, we are using the term "wave-equation migration" to refer exclusively 
to the technique of applying the wave equation in reverse time, usually via 
finite-differencing, to migrate zero-offset data. We will see that, contrary to 
what is widely believed, such wave-equation migration of zero-offset data 
is not an exact technique, but, like other migration/inversion techniques, 
depends on the validity of high-frequency asymptotic assumptions. 

We begin by generalizing the position vector~' allowing it to have a third 
variable component 6 and then expressing r0 in (3.7.6) as 

(3.8.1) 

We propose to apply the Helmholtz operator in ~ to the representation 
(3.7.7). As in the inversion formalism in Section 3.3, however, we see here 
that the dependence on r0 is not quite a Green's function; the denominator 
has a factor of r6, while we would prefer a factor of r0 . So, we will apply 
the same "preprocessing" here, as we did there. That is, we set 

vs(~,w) = %w [us~:w)] 
(3.8.2) 

iF(w) 1 , , , , e2iwro/co 
=-2- R(n·ro)·(n·ro)· dS. 

nc0 s 4nr0 

Now we see that the rightmost factor of the integrand is a Green's 
function for the Helmholtz equation-the wave equation in frequency 
domain-with propagation speed c0 /2; that is, 

[ 2 (2w) 2] [e2iwro/co] 
'V~+ q;- 4nro =-8(e-xo). (3.8.3) 

Thus, when we apply this operator to vs, we find 

[ 
2 (2w) 2

] iF(w) f{ , , 'V~ + q;- vs(~,w) = nc6 Js -8(~- xo)R(n · r 0 ) 

(3.8.4) 

e2iwro/co } 
+ [Y'~R(n·fo)] 4 dS. 

nro 

Let us consider the integration in the first line of this equation. The 
integrand contains a three-dimensional delta function, but we have a two-

10See also Gardner [1985]. 
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dimensional integration to carry out. In order to do this, let us consider a 
change of coordinates to a system constructed as follows. First, introduce 
two surface coordinates on S, then introduce, as third coordinate, s, the 
distance along the normal to the surface. These coordinates become sin­
gular on the evolute11 of S. However, as part of the justification of using 
asymptotics, we must assume that the principal radii of curvature are at 
least a few units of reciprocal wavenumber away from S or are choices of 
L for which (3.4.2) must be satisfied. Observe also that the delta function, 
as a function of e, has its support on S. Hence, we only need a coordinate 
system that is valid near S. 

In terms of these new variables, the three-dimensional delta function can 
now be seen to be a two-dimensional delta function with support on S at 
the foot of the normal from e, multiplied by a scalar delta function of s-the 
singular function of the scattering surface, S! We use the two-dimensional 
delta function to evaluate the remainder of the integrand of the first line 
at the foot of the normaP2 At that point, n · r 0 = -1 and R(n · r 0 ) = R,, 
the normal-incidence reflection coefficient. Hence, the first line on the right 
side of (3.8.4) has integral 

iF(~) t5(s)Rn· 
7l'Co 

Now, let us consider the second line. First, it is reasonable to ask if we 
even have to concern ourselves with this term in a leading order asymptotic 
solution. Except for the common factor, F(w), the evaluation above of the 
first line is order one (0(1)) in w and distributional in space. So, we have 
to check the order of the second line. Note, first, that the differentiation 
will introduce a factor of w. Furthermore, it is at least likely that the 
phase will have a simple second-order stationary point in its two variables. 
That would introduce a factor of 1/w, leaving this term of order one in 
w as well. In fact, for a higher-order stationary point-singular matrix of 
second derivatives-this term might be even larger. So we must examine 
this second line more carefully. 

First, note that we can write the elements of the dot product as follows: 

V' [e2iwro/co] = _!.___ [e2iwro/co] ro 
t; 41l'ro 8ro 41l'ro 

and 

'1"7 [R(A. A )A. A]- a[R(n·ro)n·ro]'l"'l' [A. A l 
v t; n ro n ro - a( A A ) v 1; n ro . n·ro 

Thus, the dot product that we really have to calculate is 

11The evolute is a surface made up of the centers of curvature of S. 
12Note that we need to know no details of the coordinates on S because 8(·, ·)dS 

has integral equal to unity for this two-dimensional delta function. 



3.8 Reverse-Time Wave-Equation Migration . . . 159 

A n [A A l A a A A 
ro · v ~ n · To = roi a~i njroj · 

Here, we sum over repeat indices i, j from 1 to 3. In this notation, 

~nj'f'oj = nj~ raj = _ _!_nj [8ij- raj roi] . 
a~i a~i ro ro ro ro 

We can reinterpret this equation as 

V'~ [n · ro] = _!_ [n- (n · ro)ro], 
ro 

so that 

ro . V' dn . ro] = 0. 

With this factor being zero, the second line in (3.8.4) has integrand zero 
and, hence, integral equal to zero as well. (We remark that for the variable­
background case, this line is no longer identically zero, but it is "smoother" 
than the distributional result of integrating the first line; hence, lower order 
in the sense of singular behavior.) 

We consider now the last term in (3.8.4). First, note that the Laplacian 
acting on r0 cannot be as singular as the same operator acting on 1/r0 , 

which is the part of the operator in the first line that actually produces the 
delta function. Thus, we would be immediately justified in neglecting this 
term. However, for this constant-background case, we can go further. With 
some computational effort (Mathematica™ is a boon here!) we obtain 

n2 [ A A l - 2n ° ro 
v ~ n · ro - --2-

ro 
and conclude that it is this Laplacian that creates the most singular part 
of the differentiation in the third line. However, the surface-area element 
is O(r5), which can be confirmed by writing the differential surface area 
element in terms of polar angles measured from ~. Consequently, as w ---+ oo, 
this last integral must approach zero. This may be seen by performing a 
single integration by parts, holding r 0 is constant with respect to the surface 
coordinates. Therefore, only the first term in the integral on the right-hand 
side of equation (3.8.4) contributes. 

Where the phase r 0 has a simple stationary point on S, this last integral 
is 0(1/w). We conclude, therefore, after all of these calculations, that the 
leading-order source on the right side of (3.8.4) is given by the integration 
of the first line and 

[ 
2 (2w) 2

] iF(w) V'~ + - vs(~,w) = --2-8(s)Rn. 
co rrco 

(3.8.5) 

We see here that, to leading order, the ensemble of zero offset traces 
(each coming from a different experiment!) is, itself, a solution of the wave 
equation, with speed, ea/2, in response to a monopole source distribution, 
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(delta function with support on S) and intensity in known proportion to 
the normal-incidence reflection coefficient! 

That the ensemble satisfies this wave equation is the basic premise of 
wave-equation migration. Furthermore, that the solution is the response to 
a source distribution on the reflector is the basic premise of the "exploding 
reflector model." In this mathematical derivation, however, the relationship 
between the "strength" of the source distribution and the normal-incidence 
reflection coefficient is explicitly stated. 

There is a technical mathematical detail here that requires further dis­
cussion. We have included in this derivation a source signature or filter, 
F(w). Thus, we should have derived a bandlimited result, yet the source 
distribution on the right side in (3.8.5) is a full-spectrum delta function. It 
is reasonable to ask how this is possible. 

Recall that we have been extremely careful to characterize our sources as 
being bandlimited in frequency, because that limit imposed a constraint on 
a derived wavenumber in the domain dual to our unknowns, a and {3. On 
the other hand, in our theory, we have idealized the spatial dependence of 
the source as being a full-bandwidth delta function, given by 8(x), in one 
dimension, or by 8(x) in higher dimensions. Thus, our solutions used the 
Green's function consistent with these idealized sources in space. If, instead, 
we had included a spatial distribution of source density, a bandlimited 
delta function in spatial variables, then we would not have derived a result 
with a full bandwidth singular function in space in this analysis. Thus, the 
full-spectrum delta function in the spatial domain is consistent with our 
modeling and its limitations. 

Exercises 

3.27 Derive an expression for the surface-area element on S in a polar 
coordinate system with origin at e' and confirm that the differential 
surface-area element is O(r~). 

3.28 Write out an expression for the derivative appearing in the third line 
in (3.8.4) in terms of R' and R", the derivatives of the reflection 
coefficient with respect to its argument, n. ro. 



4 
Large-Wavenumber Fourier Imaging 

In Chapter 1 we discussed the historical aspects of migration. In that con­
text, migration was viewed as the back propagation of the recorded data 
to its "correct" position on the image. This view was modified in Chap­
ters 2 and 3, where we encouraged the reader to view this process as 
being the solution of an inverse problem. In this chapter, we will exam­
ine the imaging problem from yet another perspective, that of band- or 
aperture-limited Fourier transforms. In doing so, we show that there are 
solid mathematical reasons for choosing to invert for reflectivity. We will 
also see why extracting smooth information using migration-like techniques 
will not be easy. (Readers who wish to immediately see the methods of 
Chapter 3 extended to the problem of inverting seismic data collected with 
nonzero source-receiver offset in a variable-wavespeed medium, may skip 
directly to Chapters 5 and 6, and return to this chapter later.) 

Originally we formulated the inverse problem by writing a forward mod­
eling formula that was an integral equation for the "scattered" field. By 
linearizing this integral equation via the Born approximation, and by 
substituting the constant-wavespeed Green's function, we saw that there­
sulting integral had the form of a Fourier transform. This meant that we 
could write the inversion formula as an inverse Fourier transform. Our 
initial formalism yielded a solution for o:(x)-the wavespeed perturbation 
from some assumed background value. 

The targets that we chose to image first with this technique were steplike 
changes in the wavespeed profile. Because seismic data are bandlimited, we 
found that steplike functions are not well reconstructed using this formu­
lation. We found that we could modify the inversion formula to yield the 
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solution for (J(x), which we call the reflectivity function. The reflectivity 
function of a single reflector is a bandlimited singular function representing 
the reflector surface, with amplitude proportional to the specular reflection 
coefficient. For the zero-offset problems of Chapters 2 and 3, the necessary 
modification was a simple filter that consisted of multiplying the integrand 
in the inversion formula by the factor iwj2co. This factor first appeared in 
Section 2.4 and was seen to be the product 1/4 times the magnitude of the 
k-vector, which is k = 2iwjc assuming two-way wave propagation. This 
Fourier-domain filter transforms to a simple directional derivative opera­
tor in the spatial domain. Remarkably, the direction of this derivative was 
always normal to the discontinuity surface of a(x). 

Chapters 5 and 6 will deal with the problem of extending the seis­
mic inversion process to more general inversion settings, including those 
with separated source and receiver, as well as those involving variable­
background wavespeed profiles. We will use the same approach to 
formulating the high-frequency forward and inverse problems as was de­
veloped in Chapters 2 and 3. We will create a forward modeling formula 
written in terms of the perturbation of the wavespeed from an assumed 
background-wavespeed profile, which will then lead to an inversion formula 
that solves for this perturbation. To do this, we will employ an approxi­
mate Green's function that will more correctly represent wave propagation 
in variable-wavespeed media than does the constant-wavespeed Green's 
function used in Chapter 3. Fortunately, we will also be able to find a 
directional derivative filter that will permit us to solve for the reflectiv­
ity in these more general problems, as well. Moreover, we will see how 
such an inversion formula may be extended to address any other inverse­
scattering problem, such as variable-density acoustic, as well as elastic or 
electromagnetic media, though these topics are beyond the scope of our 
text. 

This is possible because the choice of filter is not peculiar to the partic­
ular application, but follows from the properties of the Fourier transform. 
The filter that permits Fourier transform-like inversion formulas to im­
age the reflectors as bandlimited delta functions arises from properties of 
aperture-limited, large-wavenumber Fourier transforms and their inverses. 
The objective of this chapter is to present these fundamental ideas about 
Fourier inversion. 

Ultimately, the applications require that we consider something more 
general than multifold Fourier transforms. While the phase of the integrand 
will be the phase of a Fourier transform, say, k·(x-x'), the amplitude of the 
integrand will be allowed to depend on both k and x', making the integral 
resemble an inverse Fourier transform and yet be something different. Thus, 
a second goal of this chapter will be to investigate the properties of Fourier 
transform-like integrals (as opposed to simple Fourier transforms). 
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4.1 The Concept of Aperture 

Webster's dictionary defines the term "aperture," in its usage in optics, as 
"the diameter of the stop in an optical system that determines the diame­
ter of the bundle of rays traversing the instrument." Telescopes, cameras, 
microscopes, and the human eye are all examples optical processing sys­
tems that consist, in part, of a spatially limited aperture. In optics, the 
resolving power, which is the ability of an instrument to separate two nar­
rowly spaced light sources, is directly related to the size of the aperture of 
the instrument. In general, the greater the diameter of the aperture of the 
objective lens or mirror (at a fixed focal length), the better the resolving 
power, and hence the better the image quality. 1 

Intuitively, we can see why this is so by considering rays emanating 
from two narrowly separated light sources. A small lens viewing such a 
pair of sources does not capture a sufficient number of rays from each 
source to permit the sources to be distinguished from one another. The 
large lens, on the other hand, captures rays over a broader range angles, 
permitting bundles of rays from each source to be uniquely identified with 
the respective source. Thus, we equate the aperture in optics with a specific 
range of available ray vectors. The larger the lens, the greater the range of 
the angular coverage of the source. 

So, too, the seismic applications that we discuss have an analogous 
property that we call "aperture." Correspondingly, there is an issue of 
"aperture-limiting" that will influence image quality. In the seismic case, 
the aperture will also be related to the angular coverage of the target being 
imaged. In the inversion formulas we have been studying, this angular cov­
erage is expressed as the angular range of the wavenumber domain. This 
follows because, in the world of high-frequency asymptotics, ray vectors are 
exactly identifiable with wavenumber vectors. Thus, the range of ray angles 
illuminating a target exactly identifies with the available angular coverage 
in the wavenumber domain. In addition, the magnitude of all wavenumbers 
is given by lkl = 2lwl/c for two-way propagation in constant-wavespeed 
media, for the zero-offset source-receiver geometry. This is just the vector 
sum of the ray vectors pointing from the source and receiver to the point 
being imaged. 

Hence, the property of bandlimiting discussed in Chapter 2 reappears as 
a restriction in the available magnitudes of the k vectors in the wavenum­
ber domain. For nonzero-offset, the effective k vector is still the vector 
sum of the ray vectors from the source and receiver points to the point 
being imaged. For constant wavespeed and nonzero offset the magnitude 

1This is not just a superficial analogy. Lenses have Fourier transforming and 
phase shifting properties, which make the lens-based optical imaging process 
similar to the imaging processes we study in this text. See Chapter 5 of Goodman 
[1996] for more information on the broad subject of Fourier optics. 
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of the effective wavenumber in inversion formulas will obey the inequality 
lkl < 2lwl/c, with lkl --+ 0 as the angle between incident and reflected 
rays approaches 1r. This restriction means that even though we have 
"high-frequency" waves, we may not have a sufficient range of "large 
wavenumbers," owing to oblique scattering, to satisfy the validity con­
ditions of our asymptotic inversion formulas. In the extreme case, our 
formulas can be expected to fail in the case of purely transmitted arrivals 
for this reason alone. 

Thus, the combined limitations of both the angles and magnitudes of the 
range of ray angles that define the k-domain constitute "aperture limiting" 
in the general problem of Fourier imaging, which includes seismic imaging. 
To study this phenomenon in greater detail we will consider the aperture­
limited Fourier inversion of specific functions in Section 4.3 and generalize 
these results in Section 4.4. 

In Section 4.2 we will discuss the general geometrical problem of aper­
ture. A term that the reader may have encountered, possibly associated 
with radar imaging, is "synthetic aperture." In the seismic experiment, 
as in many other imaging technologies, the k-domain aperture is built 
up by combining information collected from many sources illuminating 
the target zone, with the response recorded on a suite of receivers that 
usually changes location as the source position is moved. This overlay of 
responses to an ensemble of sources (and receivers) enhances the aper­
ture beyond that of single source-receiver pairs. The simplest synthetic 
aperture in seismic application is the common-offset recording geometry, 
with zero-offset recording being the optimal offset, from the perspective 
of large-wavenumber asymptotics. Of course, common-offset gathers are 
obtained by sorting data from overlapping common-source experiments, 
so an ensemble of such common-source experiments also has an enhanced 
aperture. 

The methods termed "synthetic aperture radar" and "synthetic-aperture 
focusing technique" (SAFT) derive from this idea, and thus both share 
mathematical kinship with the seismic inverse problem. 

4.2 The Relationship Between Aperture and 
Survey Parameters 

In this section we will provide further motivation and insight into the 
relevance of Fourier analysis to the inverse-scattering imaging problem, 
especially as it relates to the generation of reflector images from aperture­
limited Fourier data. Here, we rely heavily on the analysis of the application 
of our Kirchhoff inversion formula to Kirchhoff-approximate data in Sec­
tion 3. 7.2. We will also draw on analogous results for non-zero-offset 
recording geometries derived in Chapters 5 and 6. 
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4.2.1 Rays, Fourier Transforms, and Apertures 

In Section 3.7.2, we showed an example of the inversion of Kirchhoff­
approximate, zero-offset data via the method of stationary phase. From 
this example, we know that our zero-offset inversion formulas can pro­
duce an image of a reflector only when a stationary point exists for the 
prescribed range of source-receiver positions. Such a stationary point pre­
scribes the condition that points on the reflector surface can be imaged only 
if a geometrical-optics ray can be traced from the source-receiver position 
in such a way that the ray is normally incident at the point being imaged. 
This requirement is embodied in the stationary phase condition (3.7.15), 
r0 = r. We will see in Chapters 5 and 6 that for the case of a nonzero offset 
between source and receiver, we still can produce an image at points only 
if it is possible to trace a ray from the source to the receiver that reflects 
specularly off of the point being imaged. 

In Chapters 2 and 3 we saw through asymptotic analysis that output 
points x near the reflector produced the highest amplitudes through the 
bandlimited delta function in (3.7.19), 

8B(s) = - 1 r dw F(w)e2iwsfco, (4.2.1) 
nco ln 

which peaks on the reflector under the assumption that the filter, F(w), is 
a symmetric about the origin. 

We can interpret these characteristics in terms of Fourier transforms by 
considering the phase of (3.7.9), and its Taylor series for x "near" the 
reflector, as well as for points on the reflector in the vicinity of the normal 
from x to the reflector. We can rewrite the phase as 

with 

2w 
<P = - [ro - r] ~ k · [xo - x] , 

co 
(4.2.2) 

(4.2.3) 

This result suggests that in the neighborhood of points where the inver­
sion output has its largest values, <P has the local behavior of the phase of 
the cascade of a forward and an inverse Fourier transform. The transform 
variables are x with wavevector, k, which is determined by the survey pa­
rameters, e and w. Because e is limited by the geometry of the survey, the 
local output near a given reflector is generated by Fourier synthesis over a 
limited aperture in the k-domain. The angular extent of kin that domain 
is determined by the directions of ±r, with the ±1 coming from the sign of 
frequency, represented by sgn (w). The range of magnitudes of k is given 
by k = lkl = 2Jwl/co. 

If we were to be satisfied with the linear approximation of phase defined 
by (4.2.2), we could use equation (4.2.3) to define a change of integration 
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variables from the survey variables e and w to the variables k, thus obtain­
ing an approximate identification of the imaging process with the process of 
Fourier synthesis. Yet it is possible to do better than a mere linear approx­
imation. We can change the integration variable to a new variable, r;,, that 
makes the Taylor expansion in ( 4.2.2) exact when k is replaced by K. Thus, 
we have a true equality between <I> and the dot product of a "wavenumber," 
r;, with the difference of spatial coordinates, [a:0 - a:], 

where 

2w 
<I>= -[ro- r] = K · [a:o- a:], 

co 

r;, = k [1 + O(la:- a:ol)]. 

The multifold integral (3.7.9) is recast in the form 

(3(a:) = [Is :F(a:, a:o(17), r;,)ei"'·[mo('1)-m]d3k d8(11)· (4.2.4) 

Here, the details of the function :F are unimportant, except that we require 
that :F be slowly varying. 

To complete our identification of imaging with Fourier synthesis, we must 
rewrite (4.2.4) as a volume integral in a:o rather than as a surface integral in 
11· To do so, we need only invoke the definition of the singular function of the 
surface, introduced earlier, but defined more rigorously below, by equation 
(4.3.9). Simply put, we introduce a new variable s into the coordinate 
system 11 on the reflector, S. This variable measures distance normal to S. 
Then, ds dB is a differential volume element, at least near 8, and integration 
of 8(s) leaves the integral in the previous equation unchanged. It allows us, 
however, to rewrite (4.2.4) as a volume integral in the a:o coordinates, 

(3(a:) = [ J :F(a:, a:0 , r;,)8(s)ei"'·[mo-mld3k d3xo, (4.2.5) 

where a:o = a:o(17)· With this last result, the motivation for studying 
Fourier-type integrals should be clearer for the reader, independent of 
whether we are inverting for the steplike perturbation output a( a:) or for 
the bandlimited delta function-like output (3(a:). 

Our analysis will yield more than merely a justification for our choice of 
inverting for the reflectivity (3(a:), rather than for perturbation a(a:). We 
will see in later sections why jumps in the wavespeed profile are prefer­
entially imaged over smooth variations. In the rest of this section we will 
see the connection between aperture and our ability to image reflectors of 
specific dips. 

4.2.2 Aperture and Migration Dip 

The stationarity condition that governs our ability to image points on a 
reflector surface may be expressed in two different, but equivalent, ways. 



4.2 The Relationship Between Aperture and Survey Parameters 167 

From the viewpoint of geometrical-optics ray tracing, we may think of 
the ability to image a point on a reflector as being equivalent to having a 
raypath from the source to the receiver that represents a specular reflection 
at the point being imaged. 

This translates into a restriction on the local reflector orientation, or 
reflector dip. This dip can be characterized by the orientation of the unit 
vector normal to the reflector n, at each point. For the zero-offset survey 
geometry we have a specular reflection when the unit normal vector coaligns 
with the ray vector that points from the common source-receiver point to 
the image point. For the case of nonzero offset, we will see in Chapter 5 that 
the stationarity condition requires that the vector sum of the ray vectors 
from the source and receiver to the image point must coalign with the 
normal to the surface at the reflection point, if we are to expect to image 
the reflector at that point. 

The second way of viewing the condition of imaging is in terms of avail­
able dips. As was seen in the analysis in Section 3.7.2, the processing 
produces an image only when the orientation or dip of r for some source­
receiver pair coaligns with the reflector dip (as defined by the normal) at a 
point on the reflector. The dip of r has come to be known in the geophysical 
community as the migration dip. 

Thus, to complete the story, an image of the reflector is produced at a 
point of the reflector surface only when the range of migration dips in the 
survey includes the reflector dip. 

Migration Dip Versus Reflector Dip 

The reader may be confused at this point. Geologically speaking, we have 
the natural desire to consider the "dip" of a rock layer as being the vector 
pointing parallel to the layer (in the downhill direction) oriented in the 
azimuth of maximum slope. The magnitude of the dip angle will be the 
same, whether we measure it from the horizontal, in the direction of the 
sloping layer, or the vertical, in the direction of the normal to the layer. 
If we do the latter, then we are identifying the reflector dip by a vector 
oriented 90 degrees respective to the geologists' "dip vector." 

The reason this definition is useful relates to the fact that our inversion 
formulas are Fourier transform-like integrals. We know, a priori, that the 
Fourier transform of a dipping plane is a plane oriented 90 degrees with 
respect to the original plane. Thus, we know a priori that the angular range 
of the k-domain, necessary for imaging the plane, must contain the plane's 
normal direction, for the plane to be imaged. 

Thus, in terms of our Fourier synthesis analogy, the angular aperture in 
the k-domain must include the normal direction to a given point on the 
reflector surface for that point to be imaged by our inversion formulas. This 
is just another way of saying that the range of migration dips must contain 
the reflector dip to permit us to image the reflector. 
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4.2.3 Migration Dip and Apertures 

In Chapters 5 and 6, common-offset and common-shot inversion formulas 
will be developed for 3D and 2.5D media, respectively. For the constant­
wavespeed case we will see that the relevant normal vector direction in 
these non-constant-offset problems is given by the resultant vector' r 8 + r g' 

with r 8 and r g being unit vectors pointing from the source and receiver' 
respectively, to the output point. 

Our analyses in Chapter 5 and 6, particularly as related to equations 
(5.2.22) and (5.2.23) in Chapter 5 and (6.3.25) and (6.3.26) in Chapter 6, 
will suggest, analogous to (4.2.3), that we can write the wavenumber in 
terms of ray directions, which are, in turn, the same as the migration dips 
that we discussed above. Thus, our wavenumber representation is 

k = V' x<I> = w [r8 + rg], (4.2.6) 
co 

for the more general situation of nonzero offset between source and receiver. 
Equation (4.2.6) reduces to (4.2.3) when the offset between source and 
receiver is zero. In the zero-offset case, r8 and r9 are collinear. 

We may use the facts that 

[r 8 + r9] 2 = 2 (1 + cos20) and 2cos2 0 = 1 + cos20 

to write, in general, that 

lkl = 2~ cosO, 
c 

(4.2.7) 

where 20 is the angle between r 8 and r 9 . Figure 4.1a shows how a single 
range of wavenumbers composing the aperture is related to a single normal 
direction. Figure 4.1b illustrates the process of aperture synthesis through 
the combination of contributions from a range of normal directions and, 
hence, a range of migration dips. In each of these figures, we have drawn 
only the contribution due to the positive frequencies. The reader should be 
aware that all k-domain apertures are symmetric about k = 0. 

Common-Offset Apertures 

For the case of common-offset surveys (with zero-offset being a special 
case of common-offset), we might imagine building an aperture out of 
contributions like those in Figure 4.1a. 

In Figure 4.2, the solid horizontal line at the surface represents the range 
of a zero-offset, two-dimensional survey acquisition line. The points x1 and 
x 2 are two sample output points for the inversion integral. With each point 
as center of a local k-domain coordinate system, the shaded areas depict 
sample apertures in the k-domain. The circular boundaries of the aperture 
represent the upper and lower limits on the magnitude of the wavenumber 
k, while the radial sides of the domains depict the angular limits in the k­
domain. These angular limits are also the limits of migration dip, and hence 
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FIGURE 4.1. a) The resultant k-vectors representing the aperture for a single 
source at Xs and a single receiver at x 9 . The aperture is the line segment between 
the positions Wmin [fs + f 9 ] jc and Wmax [fs + f 9 ] /c. b) The aperture for the fixed 
source position at Xs, but for receiver positions ranging from Xs to x 9 , is the area 
between the two semicircular arcs. 

FIGURE 4.2. The k-domain apertures at two output points below a data acqui­
sition line for a common-offset survey. The wavenumber domain is restricted to a 
sector of an annulus in each case. The inside and outside radii of the annulus are 
given by 2lwminlcos8/c and 2lwmaxlcos8/c, respectively, where 28 is the angle 
between f s and f 9 . The apertures for zero-offset are a special case of this when 
8 = 0. The apertures were computed with the program KAPERTURE. 

indicate the range of reflector dips (again, with dip defined by the reflector 
normal) that can be imaged by our zero-offset , constant-background, high­
frequency inversion procedure, either in the Fourier (Stolt) form or in the 
Kirchhoff (Schneider) form of processing. (Recall that the latter was derived 
from the former, but a derivation going in the opposite direction is also 
possible.) 

The maximum aperture occurs at points below the center of the recording 
array, with the size of the aperture diminishing for horizontal positions to 
the right or left of the array. At extreme distances to the left or right of the 
source-receiver array, the aperture becomes a vanishingly thin "pie slice" 
in the k-domain. Such narrow domains can only image reflectors over a 
correspondingly narrow range of corresponding dips. 
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acquisition line 
xs xg----.. 

FIGURE 4.3. The k-domain apertures at two output points below a data 
acquisition line for a common-shot survey (computed with KAPERTURE). 

acquisition line 
first last last 
xs xs xg 

FIGURE 4.4. The k-domain apertures at three output points below a data ac­
quisition line for overlapping common-shot surveys. Sources exist from the point 
labeled first x. to the point labeled last X 8 • Receiver positions exist from first 
Xs to last x 9 . The maximum aperture exists in the region where the overlap 
of the source and receiver coverage is a maximum. (Apertures computed with 
KAPERTURE.) 

Common-Shot Apertures 

In Figure 4.3, we show the k-domain apertures at the same two output 
points, but now for a common-shot experiment in which the source, X 8 , is 
fixed at the left end of the survey, but the receiver, x 9 , ranges to increasing 
distances to the right, as in the previous example. The vector sum, r 8 +r9 , 

is shown for the extreme positions of x 9 • The scales of the previous example 
have been retained here. Now, however, the resultant directions of dip and 
k are quite different, as depicted by the two skewed annular regions. Note, 
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also, that this result implies that the range of magnitudes of k is different 
for different dips. This fact follows directly from (4.2.7). 

This change in range of values of k also implies a change in resolution of 
the image. A smaller range of k implies lower resolution, because smaller 
values of wavenumber translate into longer effective wavelengths. Thus, for 
example, for the output point at x 2 , a horizontal reflector would have lower 
resolution-appear as a thicker bandlimited delta function-than would a 
reflector inclined downward to the left, but with normal still within the 
range of migration dips. Of course, a reflector inclined downward to the 
right would not be imaged by this common-shot survey at all! See, for 
example, Beylkin et al., [1985]. 

From the diagrams, it is also apparent that, at each output point, the 
range of migration dips is smaller for the common-shot survey than for 
the zero-offset survey. Thus, a single common-shot inversion will provide 
an image of reflectors for only this smaller range of reflector dips. To be 
fair, however, the size of the aperture for a survey consisting of overlapping 
common-shot profiles approaches that of a common-offset profile. Such im­
provement is an example of the benefit of exploiting aperture synthesis. 
Figure 4.4 shows the aperture at three points, located at the same depth, 
and positions x1, x2, and X3. Sources exist from the point labeled first Xs 

to the point labeled last X 8 • Receiver positions exist from first X 8 to last 
x 9 . The maximum aperture exists in the center region where the overlap of 
the source and receiver coverage is a maximum. An example is the aperture 
at position x2. The aperture diminishes rapidly with distance outside of 
the region below the survey as is seen in the aperture at the point X3. 

Small Versus Large Offset 

In Figure 4.5, we show comparisons of single k vectors for the extreme 
source and receiver pairs of a common-offset survey. Here, we have used the 
two subsurface points, x 1 and x 2 , to demonstrate two different features of 
the analysis of dip for this survey. At x 1 and x 2 we show the resultant vec­
tors [r~ +r:J and [r; +r;J. As can be seen in the figure, the further away 
we are from a source-receiver pair of a given offset, the smaller the opening 
angle between the two constituent vectors. This yields a larger resultant 
vector, implying a higher range of values of the effective wavenumber of the 
survey. Thus, for points far away from a common-offset source-receiver pair, 
this geometry begins to approximate a zero-offset survey, when considered 
from the perspective of effective wavenumbers. 

If the common-offset survey begins at the location of the x; -x-g array, 
and the array is moved in an overlapping fashion until it is coincident with 
the xt -xt array, then the synthetic aperture will consist of the range 
of dips bounded by the resultants [r~ + r;] and [r; + r;], shown as the 
dashed resultant vectors in Figure 4.5. 
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FIGURE 4.5. The k-domain apertures at two output points below common­
offset surveys. The black arrows are the vectors rs and fr, unit vectors for the 
respective source and receiver raypaths to xt, x;, xt, and x;, respectively. 
The dashed arrows are the resultant vectors, [rt + rtJ and [r; + r;], that 
point in the direction of the associated wavenumber vector, which we associate 
with a migration dip. The dotted arrows are the resultant vectors representing a 
large offset between source at x; and receiver xt given by [r; + xtJ. Because 
magnitudes of the k vectors of the aperture are scaled by the magnitudes of these 
resultants, we see that a wide separation between source and receiver reduces the 
effective wavenumber of the aperture. 

If, on the other hand, we consider the far-offset source-receiver combi­
nation of x; paired with xt, so that widest possible source-receiver offset 
is obtained, then the resultant vectors in this case are given by the sum 
[r_;- +rtJ. These vectors are depicted as the dotted resultant vectors in Fig­
ure 4.5. Certainly, this is not a practical situation (unless this is part of a 
larger survey), but it allows us to make a point about relative offsets. First, 
note that the difference in lengths of the resultant vectors-the difference 
in resolution-is much more apparent here. These far-offset resultant vec­
tors are shorter, indicating a lower effective wavenumber, and hence poorer 
implied resolution. 

Common-Midpoint Aperture 

We might conceive of forming a collection of source-receiver pairs like 
this last example, but of varying offsets, each having the same common 
midpoint-a common-midpoint (CMP) gather. For this example, with the 
image point directly below the midpoint, all of the resultant vectors-the 
migration dips-point in the same direction, though they are of different 
lengths, corresponding to the differing offsets between source and receiver. 
From the previous discussions of this chapter, we can see that in this case, 
the Fourier aperture consists of a single line segment. From either the a:­
domain point of view or the k-domain point of view, there is no aperture 
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at all! Thus, even if we could make sense of the integration that produces 
our seismic images, there is only one reflector dip that could possibly admit 
imaging-that of the horizontal reflector! 

This extreme case should make it apparent to the reader that the range 
of dips of reflectors for which imaging is possible in a survey tends to 
diminish with increasing offset, whether we are talking about common­
offset or common-shot surveys. Furthermore, if data at different offsets are 
mapped to zero-offset (via NM 0 /D M 0), or the generalization called TZO 
in Chapter 7), then not all of the stacked data contains information about 
all possible reflector dips. The narrow-offset data contain more information 
than the wide-offset data, from the perspective of relative aperture. Thus, 
the stacking process will tend to diminish the relative amplitude of reflec­
tions from steeper-dipping reflectors compared with the more horizontal 
reflectors, with the images of these steeper-dipping reflectors potentially 
being lost in the subsequent processing. While this last issue is off the 
topic of this chapter, it provides a reason for prestack processing beyond 
preservation of amplitudes. 

VSP and Crosswell Apertures 

The issue of aperture becomes critical when Fourier-like formulas are used 
to process data collected via vertical seismic profiling (VSP) or by crosswell 
surveys. The angular coverage of points in the subsurface for a typical VSP 
survey preferentially excludes a large number of dips for most points in the 
subsurface. 

In Figure 4.6, the k-domain apertures of a single shot into an array of 
receivers in a VSP survey are shown. Only those reflectors whose normal 
vectors fall within the relatively narrow range of dips represented by these 
apertures will be imaged. Thus, only reflectors dipping from right to left 
within a narrow range of angles will be imaged. Reflectors of other dips 
will not be imaged. Because of the large offset between source and receiver, 
the maximum lkl values (shown by the circles surrounding each aperture in 
Figure 4.6) are never attained. Indeed, we may be in danger of violating the 
large-wavenumber assumptions that are inherent in our inversion formulas, 
in the case of such experiments. 

Combining many sources and receivers does little to remedy the problem 
of angular coverage as can be seen in Figure 4.7. Though the maximum 
possible wavenumber is attained, the angular coverage still preferentially 
favors the imaging of reflectors dipping from right to left, and preferentially 
ignores reflectors of the opposite dip. 

This situation is more extreme in the case of crosswell surveys, as may 
be seen in Figure 4.8. Positions in the subsurface illuminated by wide­
angle reflections, as well as transmitted arrivals are poorest candidates for 
imaging with Fourier transform-like inversion formulas, because of the wide 
opening angle between source and receiver. Points below the depth of the 
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FIGURE 4.6. The k-domain apertures at nine output positions in a single-shot 
VSP profile. Reflectors sloping from right to left and confined to a relatively 
narrow range of dip angles, will be imaged. Reflectors dipping left-to-right will 
not be imaged, owing to the preferential orientation of the apertures. In addition, 
point scatterers will be smeared into left-right dipping line segments. The circles 
show the maximum possible magnitudes of k. (Apertures were computed with 
KAPERTURE.) 

well 
1- source array -1 

1 

FIGURE 4. 7. The k-domain apertures at nine output positions in an idealized 
VSP "walkaway" profile, with many sources at increasing distance from the well, 
and many receivers at depth in the well. While the maximum lkl value is attained, 
the angular aperture is not greatly improved over the result from a single source. 
(Apertures were computed with KAPERTURE.) 
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FIGURE 4.8. The k-domain apertures at nine output positions in an ideal­
ized single common-shot crosswell experiment. (Apertures were computed with 
KAPERTURE). 
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FIGURE 4.9. The k-domain apertures at several output points for an idealized 
common-shot crosswell survey, with many sources and receivers located in two 
wells. (Apertures were computed with KAPERTURE.) 

source and receiver arrays have broader k-domain apertures, but still only 
admit extremely restricted ranges of migration dips. As in the case of VSP, 
this problem of restricted aperture is not greatly improved by combining 
many common-source, crosswell experiments, as is shown in Figure 4.9. 



176 4. Large-Wavenumber Fourier Imaging 

4.2.4 Summary 
We have introduced the following ideas about reflector imaging via our 
inversion procedures, which also apply to any traditional migration process, 
as well. 

1. The range of reflector dips and the resolution of the image of the reflector 
depends on 

a. the location of the output point, 
b. the source-receiver configuration and attendant range of migration 

dips at the output point, and 
c. the bandwidth. 

2. The k-domain aperture is determined by the sum of gradients of the 
traveltimes from source and receiver to the output point, the temporal 
bandwidth (frequency range), and source signature. 

3. The k-domain is symmetric with respect to the origin in k, but its range 
in k may vary with migration dip. Hence, even at a single point, reflector 
resolution is function of reflector dip. 

4. In multi-offset surveys, not all common-offset data sets have the same 
range of migration dips at a given output point. 

5. In VSP and crosswell geometries, Fourier transform-based inversion for­
mulas are expected to do a poor job of imaging in most areas of the 
subsurface, because the geometry of these surveys results in restricted 
apertures for most points in the subsurface. 

4.3 Examples of Aperture-Limited Fourier 
Inversion 

As we have seen, because seismic surveys are limited to small regions on 
the surface of the Earth, aperture limiting is an important issue in the seis­
mic inverse problem. By studying specific examples of the aperture-limited 
Fourier inversion of known functions, we hope to learn what is reason­
able to expect from seismic inversion formulas. This mode of analysis will 
reveal other important characteristics of the integrals encountered in high­
frequency inversion theory, as well. As noted in the introduction, because 
we are dealing with these issues totally in the context of Fourier transforms, 
the results presented here have general application to imaging by Fourier 
methods and are not limited to the seismic applications that are the main 
topic of this text. 

The general form of the integral to be studied here is the cascade of 
forward and inverse Fourier transforms acting on a function f(x'), written 
as 

(4.3.1) 
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where, x, x', and k are three-component vectors. The reader will recognize 
this form as being analogous to the seismic inversion formulas derived in 
Chapters 2 and 3. The object of the subsections that follow will be to see 
how well specific functions f ( x'), are represented by I ( x) when the domains 
Dk and Dx' are constrained. 

In addition to constraints that we might impose on the problem, there 
are natural constraints imposed on the domain Dk by aspects of the data 
acquisition. As discussed in the previous section, we recognize that lkl, the 
magnitude of the wavenumber vector, is proportional to lwl, meaning that 
the wavenumber domain Dk will derive some of its properties from the 
bandwidth, that is, from the w-domain. These properties can be simply 
represented by a filter, F(w) seen in Section 2.5. This filter is symmetric 
about the origin in the w-domain, meaning that its k-domain analog will 
also be symmetric about the origin; that is, if a particular vector, k 0 , is 
in the domain, then so is -k0 , insuring that the data are real-valued in 
the space-time domain. Thus, Dk must also be symmetric about the origin. 
Furthermore, information at w = 0 is generally not available in seismic data, 
so we will assume that information at k = 0 is always excluded from the 
domain Dk, even though the analysis of the previous section showed that a 
wide opening angle between the source and receiver can create arbitrarily 
small effective wavenumber magnitude. 

In Section 4.4, a generalized form of equation ( 4.3.1) will be recast in 
dimensionless variables, just as was done in our analysis of the method of 
stationary phase in Exercises 3.13 and 3.20. Following the same procedure 
as was followed in Chapter 3, we will use this scaling to provide a more 
precise statement of the condition of large wavenumbers in Dk. In the 
generalization, the function f will also depend on the unit vector, k = 
k/lkl. It will also be convenient to represent the domain Dk by the "large­
wavenumber bandpass filter factor" :F(k ). This function will always be 
taken to be even and nonnegative on Dk, to correspond to the F(w) filter 
discussed above. As stated in (4.3.1), when Dk includes all k-vectors, I(x) 
is merely the truncation of f(x) to the domain, Dx'· This means that 
the interesting features of the analysis of I ( x) will arise from the shape 
and extent of Dk, the limiting action of the filter :F( k), and the possible 
dependence of f on k. 

From these investigations we will see what "information" about f ( x) 
is, and is not, recoverable from aperture-limited knowledge of its Fourier 
transform. 

4.3.1 Aperture-Limited Inversion of a Dirac Delta Function 
(A Point Scatterer) 

The simplest possible target that we can image is a point scatterer. In seis­
mic imaging, the term "point scatterer" refers to a region in the subsurface 
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FIGURE 4.10. The domain Dk in equation (4.3.3) . 

with sufficiently large volume that it is "seen" by the seismic waves, but 
with sufficiently small volume that it generates only a simple diffraction 
hyperbola as a seismic response. The result of imaging such a scatterer is 
a single wave packet on the migrated section. 

While the discussion of such point scatterers as a practical matter may 
become complicated, the simplest realization arises if we suppose that 

f(x') = A<5(x'- xo), (4.3.2) 

and that Dx' includes the point xo. Furthermore, we might consider a 
simple bandpass filter in the k-domain, Dk, which consists of the eight 
rectangular prisms, 

(4.3.3) 

To calculate I(x) in (4.3.1), we first exploit the delta functions in each 
coordinate direction to carry out all of the integrals in x'. The result is 

J(x) = _ 1_ { d3keik·(x-x0 ) , 

(211")3}Dk 

which can be recast as a product of three integrals of the type (2.4.20), 
allowing us to express I(x) as a product of three sine functions , (2.4.22), 
as follows. 

( 4.3.4) 

That is, the aperture-limited Fourier inversion reproduces a product of 
the differences of scaled sine functions in each of the coordinate directions. 
(See Figure 4.11 for a two-dimensional version of this filtering example.) We 
recognize again that these functions are one-dimensional bandlimited Dirac 
delta functions , each peaking at the origin of the respective Xj coordinate 
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axes. The resolution of each bandlimited delta function depends on the 
bandwidth in the corresponding kj-variable. The aperture-limited inversion 
will adequately approximate the function f(x') in (4.3.2), ifthe bandwidth 
is large enough. For sufficient bandwidth, the peak value of I(x) is given 
by the expression 

3 

I ( ) -A II kj+- kj-
PEAK X - · 

. 1f 
J=l 

(4.3.5) 

Thus, if we had the a priori knowledge that f ( x) was proportional to a Dirac 
delta function and we also knew that the support of this delta function was 
inside Dx, then xo, the support of the delta function 8(x - xo), could 
be determined. (Geophysicists have identified point diffraction events, and 
their migrated counterparts, on seismograms for decades, so this agrees 
with experience.) 

In addition, we can also determine the amplitude A by taking into ac­
count the amplitude scaling due to the bandlimiting of the filter. If a filter 
factor, F(k), is introduced in the integrand in (4.3.1), the result will re­
main qualitatively the same as it is here, with the peak value of I(x) being 
modified by the product in (4.3.5) being replaced by the volume integral 
of the filter in the k-domain, divided by (2rr )3 . Thus, by dividing the peak 
amplitude by ( 2rr) - 3 times the volume of the filter, we can extract A. Sim­
ilar "volume of the filter" scaling factors will appear in all of the examples 
we present in this chapter. 

Exercises 

4.1 Verify equation ( 4.3.4). 
4.2 Verify equation (4.3.5). 

4.3.2 Aperture-Limited Inversion of a Singular Function (a 
Reflecting Plane) 

The simple aperture-limited Dirac delta function example of the previous 
section is not a good model for reflector imaging. In Chapters 2 and 3, 
we found that the output of our modified inversion operators for the re­
flectivity, (3(x), yielded the bandlimited singular function of the reflector 
surface, scaled by the specular reflection coefficient, R. Recall that the sin­
gular function of a surface is a delta function with support on the surface. 
The image of the reflector is described, therefore, as a bandlimited singular 
function with peak amplitude delineating the reflector surface. Thus, the 
aperture-limited Fourier inversion of singular functions is of great interest 
in the seismic inverse problem. 
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FIGURE 4.11. a) A point scatter in two dimensions. b) A boxlike domain in the 
(k1, k2)-plane, which excludes the origin and the k1 and k2 axes. c) An image plot 
of the spike data with this filter applied . d) Seismic wiggletrace representation of 
the same output. 

The simplest example of a reflector is a horizontal planar surface located 
at a specific depth, say, x 30 . Mathematically, we would represent such a 
reflector as 

f(x) = A8(x3- x3o). ( 4.3.6) 

Unlike the point scatter example of the previous section, this delta function 
has as its support the entire plane, defined by X3 = X30· 

We assume that Dx' includes this plane and that Dk includes k1 = 
k2 = 0 (that is, that some part of the k3-axis). Finally, to characterize the 
bandlimited nature of the problem, we let the intersection of Dk with the 
k3-axis include the intervals defined by 

(4.3.7) 
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The value k3 = 0 is excluded, consistent with the assumption that zero­
frequency information is not present in seismic data and, hence, neither is 
the point k = 0. Now, in (4.3.1), we use the fact that 

~ 1 dk100 dx'eik(x-x') = 1 dk 8(k) = 1, 
271' Dk -oo Dk 

to carry out the integrations in x~ and x~. Here, the last equality uses 
the fact that k1 = k2 = 0 is in Dk for some range of values of k3 . Now, 
the delta function in the third spatial variable allows us to carry out that 
integral to obtain 

k3=k3+ 
I(x) = ~ 1 e"k3(x3-x3o)dk3 =A sin [k3(X3- X3o)] 

271' k3 _ ::;1k3 l9 3+ 7r(X3- X3o) k3=k3-
( 4 .3.8) 

As in the previous example, if we knew in advance that f(x') was propor­
tional to the singular function of a surface, then both the support and 
the peak amplitude of the singular function could be determined from 
the aperture-limited data by dividing out the scaling factor containing the 
volume of the filter in the k-domain. 

If, however, the aperture Dk does not contain a segment of the k3-axis 
(assuming Dx' covers all space) then I(x) = 0! Clearly nothing could be 
ascertained about the support or amplitude of the singular function from 
the aperture-limited output in this case. (The case of Dx' having finite 
coverage will be examined in the exercises below.) It should be noted that 
the direction ( 0,0, 1) of this distinguished line segment is also the direction of 
the vector normal to the support surface of the singular function, meaning 
that our inversion formula must contain this normal direction if it is to 

a) 
unit of 1.0 
amplitude --...,_ 

X3 

\ unjt of 
amplitude 

filter volum 

FIGURE 4.12. a) Synthetic data representing the singular function of the line 
x = 0. b) The k-domain containing the direction normal to x = 0. c) The inversion 
of the data using this k-domain aperture. 
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FIGURE 4.13. a) A line scatter in two dimensions. b) A rectangular domain in 
the (k1 , k2)-plane, which includes the direction normal to the line scatter. c) An 
image plot of the line scatter data with this filter applied. d) Seismic wiggletrace 
representation of the same output. 

image the plane. This is consistent with the prediction made in Section 4.2 
above. 

It is important to recognize that the choice of vertical as the "distin­
guished direction" for this example is totally arbitrary. If f(x') were chosen 
to be the singular function of a plane with some other orientation, then 
the distinguished direction in Dk would lie along the normal direction 
to that plane, instead. Because Dk is symmetric, it must have an angu­
lar range (think of this as a bundle of rays) containing the direction of 
the two normals (±n) of the given plane. Otherwise, the aperture-limited 
Fourier inversion will yield a zero result. This dependence of the inversion 
on nonzero data in the normal direction was demonstrated analytically in 
two dimensions in Exercise 3.5. In examples below, we will continue to 
choose vertical as the distinguished direction of the normal, and it will 
remain the vertical direction that will have to be included in the domain 

Dk-
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The phenomenon described in the paragraph above is demonstrated 
graphically in two dimensions in Figures 4.12a- c and 4.14a- c. Figure 4.12a 
shows the singular function of the line x = 0, whereas Figure 4.12b 
shows the k-domain Dk to be used for inversion. Note that this do­
main includes the normal direction to the line, x = 0-"the reflector 
dip"-of Figure 4.12a. Figure 4.12c shows the aperture-limited inver­
sion. (See Figure 4.13 for a seismic-style plot of similarly filtered data.) 
The aperture-limited singular function adequately identifies the original 
function. 

Figure 4.14a depicts another k-domain, Dk, for inversion of the same 
data. Note that this domain does not include the reflector dip-normal 
direction to the line, x = 0- although, on a percentage basis, it is much 
larger than the previous domain. Figure 4.15b is a plot of the aperture­
limited inversion for this domain, Dk, on the same scale as Figures 4.12a 
and 4.12c. Figure 4.14c shows the same output, scaled up by six orders of 
magnitude. This example demonstrates the necessity of including the dip 
direction of a surface in the k-domain, if the singular function of the surface 
is recoverable from aperture-limited data. 

Exercises 

4.3 Repeat the calculation in the previous exercise, assuming that Dx' is 
finite and the wavenumber domain aperture is given by 

1.0 

FIGURE 4.14. a) The k-domain excluding the direction normal to x = 0. b) The 
inversion of the data in Figure 4.1a using this k-domain aperture. c) The same 
output as in b) , scaled up 6 orders of magnitude. 
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Dk: Jkj_J::;Jkji:SikJ+I, j=1,2,3, 

that is, that the origin of the k-domain is excluded. Show that the 
result is 

I(x) 
k3=k3+ 

A k3 sine [k3(x3- x3o)/n] 
7f3 

k3=k3-

fv., n [D kJ 'inc[k,(x;- xj)l~l ::~:J 
a. Use the 2D version of this expression to explain the small signal 

seen in Figure 4.14c. Hint: consider the integral of a sine function 
to be a bandlimited signum function, with height from zero equal 
to 1.56223. You may find a symbolic math package helpful for this 
problem. 

4.3.3 Generalization to Singular Functions of Other Types of 
Surfaces-Asymptotic Evaluation 

In the previous sections we saw there is a strong relationship between the 
normal direction to a plane surface in the x-domain and the corresponding 
direction in the k-domain. In particular, we saw that it was necessary to 
include in Dk the k-vector oriented in the direction normal to the plane 
surface for the image of the plane to be represented by the aperture-limited 
inversion formula. In the discussion in Section 4.4 we will show that this 
property persists in the "large-wavenumber limit," when the problem is 
generalized to that of imaging an arbitrary surface 

The first thing we need to do is to define, in a more mathematically formal 
manner, what we mean by a singular function of a surface. Informally, this 
is a Dirac delta function of an argument, say s, that measures signed­
distance from the surface, so that the support of the delta function is the 
surface, itself. A more formal definition of a distribution, such as what we 
desire here, requires that we define the distribution in terms of its action 
on an appropriate class of test functions (see Appendix A). Therefore, let 
us define r(x) to be the singular function of a surface by taking it to be a 
distribution having the property that 1: r(x)G(x)d3x =Is G(x)dS, 

"/ 

(4.3.9) 

for any function G ( x) that is a member of some appropriate class of test 
functions. On the right side, S1 is the support surface of the distribution, 
r(x). The idea is to apply the same aperture-limited Fourier inversion 
process used in the example of the flat horizontal reflector to the more 
general singular function. In this way we hope to be able to determine 
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what parts of the k-domain must be present for the singular function of 
this general surface to be correctly reconstructed. 

It is not as easy to compute the results in the general case as it was in 
the case of a horizontal plane reflector, however. We will be forced to use 
asymptotic methods to compute an approximate solution to the problem. 
Because the asymptotic method we will employ is the method of stationary 
phase, we must recognize a "large parameter" in the formulation. As with 
the integrals that were evaluated in Chapter 3, the large parameter must 
compare the wavelength, 27r/lkl, of the waves with the natural length scale 
of the target being imaged.2 The minimum wavenumber, K = min jkj, 
describes the maximum wavelength available to image the surface. The 
principal radii of curvature of S'Y represent the natural length scale of the 
target being imaged. If L represents the minimum radius of curvature of S"~, 
then the product KL is the desired parameter. If we choose f(x) = 'Y(x) 
in (4.3.1), then KL » 1 will specify the "large-wavenumber" condition.3 

As we saw in Exercise 3.20 and the discussion following that exercise, 
the formal large parameter is not the entire story, but only a starting 
point [Bleistein and Handelsman, 1986]. The eigenvalues of the Hessian­
the matrix of second derivatives of the phase-evaluated at the stationary 
point will also become multipliers of the parameter that ultimately must 
be large in order that the asymptotic expansions we generate be valid. 
Nonetheless, we will concentrate on K L and describe relative orders of 
magnitude in terms of this dimensionless parameter. 

Order Estimates of Asymptotic Singular Functions 

Here is an outline of the results we show below, expressed in dimensionless 
variables. An asymptotic expansion of I(x) will approximate 'Y(x) in the 
following sense. Over most of the x-domain, 'Y(x) is at most 0(1) in KL. 
However, for some points x on S'Y, I(x) is O(KL). At any of these special 
points, the normal to s'Y defines a direction that is contained in the aperture 
Dk. In fact, near S'Y, along each line normal to S'Y, I(x) is asymptotically 
a bandlimited delta function, as depicted in Figure 3.6. More precisely, it 
is the inverse single-variable Fourier transform of the filter in the k-domain 
along those special directions. 

At points on S'Y for which the normal direction defines angles that are 
not in the angular aperture of k-domain, I(x) is O((K£)112 ) or smaller 
in K L. Thus, S"~ is imaged only at those points for which its normal is in 
a direction that is included in the family of directions of k-vectors in the 
domain Dk. See the discussion of Section 4.2. 

2This wavelength relates back to the underlying physical problem that we 
have studied through the relationship lkl = 2lwl/c. 

3 Note that this is just our original Rayleigh criterion, 21rjLjc » 1, expressed 
in terms of wavenumber instead of frequency. 
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FIGURE 4.15. a) Synthetic data representing the singular function of a circle. 
b) A k-domain of unrestricted angular aperture, but of restricted magnitude. c) 
Inversion of the data in a), with the integration range of b). 

In the language of asymptotic expansions of integrals, the critical points 
of the multidimensional Fourier integral are points for which x-x' is normal 
to S"Y and ±k lies along the normal. Near S"Y, I(x) is a bandlimited delta 
function whose argument is normal distance to s"Y, provided such critical 
points are in the domain of integration, Dx x Dk· In this sense, the aperture­
limited Fourier inversion provides a partial and approximate reproduction 
of the distribution 1(x), with peak amplitude in known proportion to the 
area under the filter in the k-domain along a particular ray. 

We remark, further, that our inversion problems will, in general, have 
more than one reflector. Hence, I(x) will represent a sum of singu­
lar functions. In order to distinguish these, one from another, another 
length scale-the distance between reflectors-will have to be "large," as 
well-say, again, kL » 1, for L the minimum separation between reflectors. 

In summary, L will have to be taken to be the minimum among all such 
length scales in the problem. 

The more general case is demonstrated in Figures 4.15a- c (again, in two 
dimensions). Figure 4.15a depicts the singular function of a circle. Fig­
ure 4.15b depicts a k-domain, Dk, in which the angle of k is not restricted, 
but its magnitude is. Figure 4.15c is the inversion, showing an aperture­
limited Dirac delta function along every radial line (every normal to the 
original curve). Figure 4.16a shows an alternative k-domain, Dk, for which 
the direction of k is restricted as well. Figure 4.16b shows the inversion. 
Here, the singular function is adequately defined only for the normal to the 
circle in the angular aperture of Dk and the output falls off strongly to 
zero outside of that angular aperture. There is a transition zone that crosses 
the angular boundary of the k-domain boundary. In that transition zone, 
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FIGURE 4.16. a) Alternate k-domain restricted both in angle and magnitude. 
b) The inversion of the data in Figure 4.15a using the restricted aperture in 
Figure 4.16a. 

there is strong interaction of the contribution from the stationary point 
that produces the delta function and the next order contribution to the 
asymptotic expansion, arising from the endpoint of integration in the an­
gular direction in k. That first derivative appears in the denominator of 
that contribution and it becomes small as the nearby stationary point ap­
proaches the endpoint. When the stationary point is "near enough," the 
asymptotic expansion in terms of a separate stationary point contribution 
and an endpoint contribution is invalid. Right at the endpoint, the leading 
order asymptotic expansion is given by half of the interior stationary point 
formula. To describe the transition zone adequately, a uniform asymptotic 
expansion for a stationary point near an endpoint is required. 

Exercises 

4.4 Let 1 ( x) be the singular function of a spherical shell of radius ro. Show 
that r(x) may be represented by 8(r- ro) in spherical coordinates. 
To do this , you will need to show that the following equality holds: 

/_: r (x)G(x)d3x =is G(x)dS, 
'"' 

where S"~ is a spherical shell and G(x) is an appropriately chosen test 
function. 

4.5 Let f(x) = k y(x), in equation (4.3.1). Show that for the case where 
Dx' includes the support of 1 (x) and when Dk is of infinite extent, 

I(x) = A1(x). 

That is , show that the full aperture inversion reconstructs the singular 
function exactly. 

4.6 Let the magnitude of k-domain be the annulus k_ :S k :S k+ , where 
k = lkl. Show that the Fourier inversion of a spherical shell of radius 
r0 using this annular aperture is 
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I(x) = ~ ro [ksinc [k(r- r 0 )/7r]- ksinc [k(r + ro)/7!']] 
27!' r 

Here r = lxl. 

k=k+ 

k=k-

4. 7 (We intend that this question be used as a point of departure to allow 
the instructor to bring material in from sources other than our text. 
It is not necessarily an assignment for students, as is.) The purpose 
of this exercise is to answer the following comprehensive exam-type 
question: 

You are standing at the latitude of the Tropic of Cancer at 
local noon on the 21st of June. Sketch the representation 
in k-domain of the light that you see coming from the Sun, 
assuming that the intervening medium has a constant wave­
speed and that wave propagation is adequately described by 
high-frequency asymptotics. 

Warning: this is a thought experiment. Never look at the Sun! 

Hints: The Sun is directly overhead on this date and appears as 
a disk in the sky, which subtends an angle of approximately ! 
degree. The wavefield emanated from a surface is, in the high­
frequency approximation, the Fourier transform of the singular 
function of that surface, so the wavefield emanated from the 
Sun is a bandlimited representation of the Fourier transform 
of the singular function representing the Sun's surface. 

We can see why this is so by recalling that ray vectors are iden­
tified with wavevectors in the high-frequency approximation. 
The angular range of the wavenumber domain of the light we 
see from the Sun is thus given by the angular range of the so­
lar disk. The frequency spectrum of the Sun, and the response 
of the human eye have certain minimum and maximum fre­
quency values. These, together with the fact that under the 
high-frequency approximation the magnitude of the wavenum­
bers is given by lkl ,....., lwl/c, give us the range of magnitudes 
of the wavenumbers. 

Given the ranges of angles and magnitudes of the wavenum­
bers that we see emanating from the Sun, combined with the 
fact that the wavenumber domain representation must be sym­
metric for real values in the spatial domain we can complete 
the description of the desired wavenumber domain. 

For high-frequency waves, the lens of the eye performs a 2D 
spatial Fourier transform, which is why we see the Sun as a 
disk! 
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4.3.4 Relevance to Inverse Scattering 

The last example of the previous section has relevance to inverse problems. 
The surface S1 could be a reflector, meaning that determination of !'(x) 
from aperture-limited Fourier data constitutes mathematical imaging of 
the reflector. In practice, the singular function of the surface might also 
be multiplied by a reflection coefficient that is a function of k. As noted 
above, k is collinear with the normal to S1 and is therefore also fixed. In 
Section 4.4, a straightforward method for computing this critical value of 
k is presented. Because of subtleties of the dependence of the reflection 
coefficient on k in applications, the reflection coefficient that is determined 
need not be the normal-incidence reflection coefficient. 

4.3.5 Aperture-Limited Fourier Inversion of Smoother 
Functions 

Following are examples of the aperture-limited Fourier inversion of func­
tions that are smoother than those in the previous examples, which involved 
distributions. By "smoother" we mean a condition on differentiability. A 
step function is one derivative smoother than a delta function because dif­
ferentiating a step yields a delta function. A ramp function is two orders 
smoother than a delta function, and so forth. An infinitely differentiable 
function may therefore be thought of as being infinitely smooth. 

In situations where the function f(x') is related to a wavespeed pro­
file, or the perturbation in a wavespeed, it is typical to think in terms of 
piecewise-smooth functions whose discontinuity surfaces represent reflec­
tors. Here, it is reasonable to consider a smooth function with support on 
some domain Dx'· Note that the f(x') does not necessarily vanish on the 
boundary of Dx'. A piecewise-smooth function can then be reconstructed 
as a "patchwork quilt" of functions of this type. 

It will be shown in Section 4.4 that, for smooth functions that are 
nonzero only in a finite domain, the asymptotic expansion of I ( x) for large 
wavenumber is dominated by the boundary values of f(x') at certain crit­
ical points, that is, by the value of f(x') on its discontinuity surface(s). In 
fact, the critical points are exactly those described in the context of the 
surface 51 in the previous example, where S1 is the boundary surface of 
Dx' in this context. 

4.3.6 Aperture-Limited Fourier Inversion of Steplike 
Functions 

As a first example of a piecewise-smooth function, consider the box function 

f(x) = {
A, 

0, 

L ~ X3 ~ 2L, 

otherwise. (4.3.10) 
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Assume that Dx' contains the support of f(x') and that Dk contains some 
segment of the k3-axis, that is, some segment of the line, k1 = k2 = 0. 
Call that intersection D3. This function is to be substituted into ( 4.3.1). 
Observe that 

2~ J J dx' dk eik(x-x') = J dk 8(k) = 1 

and use this result to carry out the four integrations in x~, k1 , x~, k2 . Then, 
for the remaining integrals, 

I(x) = ~ 1 dk3 1 eik3(x-x')dx; 
2K D3 L~x;~2L 

(4.3.11) 

= ~ 1 ~k3 [eik3(x3-L) _ eik3 (x3 -2L)] . 
2K D 3 ~k3 

The integral here can be recognized as a difference of bandlimited step 
functions that define the support of the function f ( x). Furthermore, the 

dominant value of k here is (0,0,1), which is normal to the boundary of the 
support domain. (For curved surfaces, the normal would not be a constant 

vector, nor would the distinguished value of k be a constant.) 
As discussed in Chapter 2, step functions are not easily reconstructed 

from bandlimited data that do not contain zero-frequency (or, in this case, 
zero-wavenumber) information. We could not extract the height of the 
step in those bandlimited cases. Thus, for example, it would be difficult 
to estimate the value of A at interior points of Dx, or to locate the bound­
ary of this domain from J(x), under the assumption of aperture-limited 
large-wavenumber data. 

Recall that, in applications, it is the aperture-limited Fourier transform 
off ( x) that is known. The specific Fourier inversion kernel to be employed 
is not a priori specified. Determination of the amplitude A and the discon­
tinuity surfaces of f(x) can be facilitated by introducing a new form of the 
Fourier-like integral equation 

l(x) = 2_1 iksgn(it·k)d3k1 d3x'f(x')eik·(m-m'), 
2K Dk Dx' 

( 4.3.12) 

which differs from our original operator only in that a factor of ik sgn (it· k) 
has been introduced in the integrand.4 

In equation ( 4.3.12), it is a constant vector. In practice, there is usually 
at least one plane through the origin on which there is little or no data. The 

4 This modification is based on an idea proposed by Bojarski [1967,1968,1982] 
and has evolved through a series of papers: Mager and Bleistein [1978], Cohen 
and Bleistein [1979], and Bleistein, [1984]. See also Armstrong [1978] for a related 
discussion. 
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vector u would be chosen as the normal to this plane. For example, if there 
were no information about planes perpendicular to the x3-axis (vertical 
planes), then, correspondingly, the Fourier transforms of such functions 
would be of no interest in directions with k3 = 0. In this case, we could 
set u = (0,0,±1), so that sgn(u · k) = ±sgnk3. The ambiguity of this 
function, then, would occur only in a region that is of no interest. The effect 
of the factor sgn ( u · k) is to make the complete multiplier ik sgn ( u · k) of 
opposite sign in the two halfspaces defined by the plane through the origin 
with normal u. In Section 4.4, we show the somewhat surprising result 
that, asymptotically, this multiplier produces a normal derivative of f(x') 
on the boundary surface (the discontinuity surface of f(x')), multiplied by 
sgn ( u ·it )-it, a surface normal-even though the normal direction at each 
point on the boundary is not known a priori. 

As noted in Section 4.2, in our application of inverting zero-offset seismic 
data assuming a constant-background wavespeed, k = 2wro/co, in which 
case, 2w / c0 = ±k, depending on the sign of w. Thus, this multiplier that we 
used in Chapter 3 has exactly the desired property of being positive over 
half of the k-domain (w > 0) and negative over the other half of the k­
domain (w > 0). Note that in the asymptotic analysis of the application of 
our inversion to Kirchhoff-approximate data, we found that r0 was collinear 
with it, so that no sign ambiguity arises in the implementation; we care 
only about k values around the normal direction to the reflector! We will 
see in the following chapters that this will generalize to data collected with 
nonzero source-receiver offset, and to variable-wavespeed media as well, in a 
natural manner. As an indication of what is in store, we point out here that 
for the nonzero offset, constant-background case, our "normal derivative" 
filter will merely generalize to wlrs +r9 1/c0 and will have exactly this same 
property of being positive on half of the k-domain and negative over the 
other half. 

Thus, we view the effect of multiplication by ik sgn ( u · k) as replac­
ing the Fourier inversion of f(x') by the Fourier inversion of the singular 
function(s) of its boundary surface(s), appropriately scaled. For the spe­
cific example under discussion here, at the same level of computation as 
is implied by (4.3.12), the new operator has an additional factor in the 
numerator of ilk31 sgn (u · k) = ik3 sgn (u3), (Note that, for this example, 
k1 = k2 = 0 and k = lk31·) Here, 

It is apparent that I(x) is a difference of bandlimited delta functions that 
peak on the boundary surfaces of Dx. The two delta functions will be 
distinguishable, which is to say, well separated in the output, as long as k3 L 
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is "large enough" for "most" of the bandwidth. More simply, if K =min lkl, 
we require that K L » 1 for the two delta functions to be well separated 
and distinguishable. 

The peak values of J ( x) are given by the expressions 

and 

l(L) ~ A'g~(u,) [lk,+l-lk,_l- '1"~aL] :=] 
= A sgn ( u3 ) [lk3+1 - lk3-1] [ 1 + 0( (lk3-IL )-1 )] 

7r 

l(2L) ~-A'~"' [lk,+l-lk,_l- 'in~,LI :~~] 

= Asgn(u3 ) [lk3+1-lk3-1] [1 + O((lk3-IL)-1)]. 
7r 

For k3_ L » 1, we can neglect the second term here. This follows the line 
of discussion in Section 4.3.3. We then obtain the approximate results, 

l(L) ~ Asgn(u3) [lk3+1-lk3-1], I(2L) ~- Asgn(u3 ) [lk3+1-lk3-1]. 
7r 7r 

(4.3.14) 
Henceforth in this chapter, we will no longer distinguish results of this latter 
type as being "approximate;" all of our estimates are asymptotic with this 
type of error in them. Thus, the modified operator ( 4.3.12) produces a result 
from which the boundary surfaces and the amplitude of the discontinuity 
of f(x') across them are more readily determined than from the ordinary 
Fourier inversion in (4.3.1). 

It should be noted that for this example, as for the previous one, if the 
aperture Dk did not contain some segment of the line k1 = k2 = 0, then 
I(x) = 0, asymptotically to this order. Again, this line in the k-domain is 
in the direction of the normal to the boundary of Dk· 

Exercises 

4.8 Verify equation (4.3.13). 

4.3. 7 Aperture-Limited Fourier Inversion of a Ramplike 
Function 

We expect ramplike functions to be an order smoother than steplike func­
tions, in terms of differentiability. Correspondingly, the next example will 
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show two additional features of aperture-limited, large-wavenumber Fourier 
inversion. Consider the function 

f(x) = { A(1- x3 /L), 0 :S X3 .:S L 
0, otherw1se. 

(4.3.15) 

with Dx' the support of f(x') being unbounded in all variables. 
The integrations in xi, k1, x~, k2 , are carried out in the same manner as 

in the previous example. In this case, that leads to the result, 

l(x) = ~ { ~k3 [eikaxa + -. 1_ [eika(xa-L) _ eikaxa]]. 
27r } Da zk3 zk3L 

(4.3.16) 

If D3 were the entire line, then the Fourier transform of the first exponential 
would be a step with support X3 > 0. The next two terms, which correct 
this step to produce the appropriate finite ramp, are lower order, 0(1/k3L), 
for large-wavenumber aperture-limited data. Note that a phase depending 
on the difference x3 - L arises only in this lower-order term. The reason 
for this is that the function defined by ( 4.3.15) is continuous at x 3 = 0. 

From aperture-limited large-wavenumber data we cannot reasonably ex­
pect to detect the lower order, 0(1/k3L), contribution to the Fourier 
transform of f(x'). We can only expect to see the leading-order term. To 
leading order, then, I(x) is a bandlimited step function with discontinuity 
on the discontinuity surface of f(x') and amplitude equal to the amplitude 
of the discontinuity of f(x'). As above, we could use the operator l(x), 
defined by ( 4.3.12), to more easily detect the location of this discontinuity 
surface and the value A. 

Of course, it is possible to use another operator, with multiplier, 
[iksgn (it· k)]2 = -k2 , to detect the jump in the first derivative of f(x'). 
This is equivalent to applying the Laplacian operator to the data. Applying 
a Laplacian as an "edge-sharpening" operator has a long history in image 
processing, but is less useful in seismic data processing. 

While this will work for synthetic seismic examples, applying a Laplacian 
would be considerably less reliable with field data and "many" discontinu­
ity surfaces of f(x') and its derivatives. If we had a discontinuity with a 
known order of smoothness, then it would be profitable to pursue such 
constructions however, in the absence of a priori information about the 
smoothness of discontinuities, applying such a formula would be an ad hoc 
construction, at best. In Earth science, we have little information regarding 
the order of smoothness of wavespeed discontinuities. 

Exercises 

4.9 Verify equation (4.3.16). 
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4.3.8 Aperture-Limited Inversion of an Infinitely 
Differentiable Function 

Above, we discussed the cases of discontinuities of finite orders of smooth­
ness, which we relate to finite orders of differentiability. The limiting case 
of smoothness is infinite smoothness, which implies infinite differentiability. 
In Exercise 2.15, it was seen that for functions that were infinitely differ­
entiable, their asymptotic expansion was smaller than any inverse power 
of the large parameter. Here, in the current context, we provide a specific 
example for which the decay is actually of exponential order in the large 
parameter. That function is defined by 

{ 
0, X3 :::; 0, 

f(x) = ~ exp [-Ljx3], X3 > 0. 
(4.3.17) 

We have chosen this somewhat exotic function for this example because 
we can carry out the details of the calculations in a fairly straightforward 
manner, to make our point. 

Assume that Dx' is all space and that Dk is composed of two symmetric 
domains, as usual, containing segments of the line, k1 = k2 = 0. As in the 
previous examples, after integrating in all of the variables except k3 and 
x~ , I(x), as defined by (4.3.1), is given by 

I(x) = 2_ r dk3 {')() dx; rr;eik3(X3-x;)-L/x;, 
2n JD 3 lo Y ~ 

with D3 the restriction of Dk to the k3-axis, that is, for the dual range, 
k3_ :::; Jk3J :::; k3+. The integration in x~ can be obtained by using re­
sults about the modified Bessel function to be found in Watson [1980] or 
Abramowitz and Stegun [1965]. Because the details of this derivation are 
not important to the present discussion, we simply state the result after 
calculating that integral: 

(4.3.18) 

In this equation, 

(4.3.19) 

It is easy to see, now, that the integrand for each k3, negative, is just the 
complex conjugate of its value for k3, positive. Therefore, we can rewrite 
this integral as 

I(x) = 2/¥- 1~:+ ~e-Vk3L/2 cos [ yfk3L/2 + k3x3 - 1r /4] . 
First, note that this integral is not zero for x3 :::; 0. Thus, it is not likely to 
represent the function well on the negative half-axis. On the other hand, 
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the exponential decay in this integral depends only on the product k3 L, 
whereas the exponential decay of the original function, f ( x) in ( 4.3.17), for 
X3 positive, depends on x 3 / L. Therefore, we should at least be suspicious 
about the ability of this bandlimited inverse Fourier transform to represent 
the original function there as well. Let us reinforce this last observation 
more strongly by going further with the analysis. 

An upper bound on the absolute value of this last integral can be obtained 
by replacing the cosine by unity; that is, 

II(x)l S 2 (2L1kH dk3 e-Vk3L/2. v --:; k3- ..jk;, 
Note that this integrand is an exact differential, allowing us to carry out 
the integration in closed form, thus obtaining 

k3+ 

IJ(x)l S- ~e-Jk3L/2 
k3-

Here, the last inequality is obtained by neglecting the subtraction of a 
positive, but smaller quantity~the upper limit evaluation~from a larger 
one~the lower limit evaluation. 

If our aperture-limited Fourier transform were to be a good approx­
imation of f(x), then, the larger the value of k3_L, the better this 
approximation should be. However, we are free to choose k3_L as large 
as we like, independent of x, or more precisely, independent of x3 . There­
fore, in order to show that this aperture-limited inversion does not yield 
a good approximation of f(x), we only need to choose an x3 for which 
f ( x) is of moderate size, and then choose k3- L large enough to make this 
last estimate of jJ(x)l small. Therefore, let us choose x3 =Land choose 
k3_Lj2 = 16, so that it is easy to take the square root. We find that 

f(x) = 0.37, x3 = L; II(x)l S 0.083, k3_L = 32. 

Of course, the bound on jJ(x)l will continue to decrease with increasing 
k3_L, making the disagreement between f(x) and jJ(x)l even worse. 

As we will see in the next section, where we generalize the result of 
Exercise 2.15 to three dimensions, this is typical for infinitely-differentiable 
functions. The point here is that, if we are limited to "high frequency" 
reflection data, we should not expect to recover the smooth part of the 
variations of wavespeed from our data. Indeed, inversion of transmission 
data~tomography~is usually employed for this purpose. In the context of 
our approach, this is the extreme case of separated source and receiver in 
which the opening angle between the incident and "scattered" rays is equal 
to 1r. Even if we were to try to apply our theory, equation ( 4.2. 7) would 
tell us that lkl = 0 and we have no bandwidth for imaging.5 

5 () is half the opening angle. 
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Exercises 

4.10 Verify equation (4.3.18). 

4.3.9 Summary 

Through this hierarchy of examples, our intention has been to make 
the following points about large-wavenumber, aperture-limited Fourier 
inversion. 

1. Distributions with support at one point or on a surface are well ap­
proximated. However, these are less relevant to seismic imaging, as 
even small-volume, or point, scatterers are not accurately represented 
as distributions. 

2. The output from functions with jump discontinuities (expected in prac­
tice) is dominated by function values on the support of the discontinuity 
surface(s). Even when the function is nonconstant away from the dis­
continuity surface, the leading-order output is an aperture-limited step 
function of an arclength variable normal to the discontinuity surface. 
Detection of the location of the discontinuity surface and the magni­
tude of the jump is facilitated by multiplying by a factor, ik sgn ( u · k), 
before inverting the transform. The output is then an aperture-limited 
singular function of the discontinuity surface, with peak in known pro­
portion to the magnitude of the jump. This latter result holds at each 
point on the discontinuity surface at which the normal to the surface is 
in the aperture of directions from the origin that are in Dk, the support 
domain of the transform variable. 

3. For infinitely smooth functions, the aperture-limited Fourier inversion 
vanishes faster than any algebraic power of 1/k (for the particular exam-

ple, the decay rate was actually O(exp { -v'ki} ), making such inversion 

virtually useless. 

In Section 4.4, the method of multidimensional stationary phase will be 
used to derive these results more generally. 

4.4 Aperture-Limited Fourier Identity Operators 

In Section 4.3 important ideas regarding aperture-limited Fourier inversion 
were introduced through several specific examples. In this section, integrals 
that generalize these ideas will be discussed. To that end, consider the 
integral 

(4.4.1) 
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Here, x, x', and k are three-component vectors and k is a unit vec­
tor. (When we show the division of a vector by a scalar, remember that 
each component of the vector is divided by the scalar, hence x' I L = 
(x~l L, x~l L, x;l L ), denoting that each coordinate direction has the same 
length scale.) If the domain Dk were infinite in extent, and the function f 
were independent of k, then the integral, I, would just be equal to f(xiL) 
on Dx and zero, outside, for a broad class of functions f. This is just a 
simple cascade of forward and inverse Fourier transforms. The structure 
of the analysis, then, comes from the nature of the domain, Dk, and the 
additional dependence off on k. In all of our examples, f was independent 
of k. In this generalization, we take f to be an even function of k; that is, 

f(x' I L, -k) = f(x' I L, k). 
The function f is assumed to have as many derivatives as are necessary 

to carry out all the differentiations in the stationary phase analysis below. 
For functions that are only sufficiently smooth in a piecewise manner, it 
is possible to decompose the domain of integration into separate domains 
whose boundaries include all of the discontinuities off or the discontinuities 
of one of the derivatives of f with respect to x'. Then, the integral over 
each subdomain is of the type defined here. It will be seen below that the 
integral depends asymptotically on the boundary values of the integrand at 
certain critical points. The way that the critical points are determined will 
make it clear that, for a sum of such integrals, the output will depend on 
the jump in the integrand across these discontinuity surfaces. Therefore, a 
critical point on a boundary surface for one integral will simultaneously be 
a critical point for the other integral sharing the same piece of boundary. 
The boundary values on the commonly shared portion of boundary will 
combine to yield the jump in the function or will yield the appropriate 
discontinuous derivative. 

The length scale, L, is assumed to characterize the size of the derivatives 
of f. Hence, derivatives with respect to y' = x' I L should be comparable 
in size to f itself. For convenience, the same parameter L is used to char­
acterize the length scales of the bounding surface of Dx'. For example, L 
might be a "typical" principal radius of curvature or a lower bound of the 
principal radii of curvature for the boundary of Dx'. We know from our dis­
cussion of large parameters in Chapter 3 that, in fact, precision about what 
exactly is the large parameter will come through analysis of the eigenvalues 
of the Hessian of the phase at the stationary points. 

In application to inverse scattering, the domain Dk is symmetric with 
respect to the origin. That is, whenever k is in Dk, so is -k. The reason for 
this is that because k is proportional to a frequency, w, -k is included in 
Dk whenever +k is also included. Thus, symmetry of Dk will be assumed 
below, although it is not essential to the analysis. As previously, we assume 
that Dk does not contain the origin. Let K denote the minimum distance 
from the origin to the domain Dk. We now introduce the dimensionless 
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variables 
k 1 X 1 X 

p=K' y=L' y=L' and >..=.KL. (4.4.2) 

(Recall that division of a vector by a scalar implies that each component of 
the vector is divided by the scalar.) Rewriting equation (4.4.1) in spherical 
coordinates yields 

I(>..,y) = [~] 3 f p2dp sinO dOd¢ { d3 y'f(y',p)ei>.pp·(y-y'). 
2w Jn ~' p y 

(4.4.3) 
Here, (p, 0, ¢) are the components of the p vector in spherical coordinates, 
with the unit vector, p, written in terms of 0 and¢ as 

p = (sin0cos¢,sin0sin¢,cos0). ( 4.4.4) 

The domains Dy' and Dp are the images of Dx' and Dk, respectively, under 
the scaling (4.4.2). It is important to note that the minimum distance from 
the origin in p to Dp is now equal to unity. (For the original domain Dk it 
was equal to K.) Evenness of the function f in k translates into evenness 
of this function in p. 

Spherical coordinates have a pathology at 0 = 0 and 0 = w, which has 
nothing to do with the multifold integration, but only to do with the choice 
of parameterization. This issue will have to be addressed below, by sensible 
orientation of the coordinate system. 

The objective now is to analyze I(>., y) asymptotically for large >.. as y 
varies over some domain that includes Dy. This is aperture-limited Fourier­
like inversion when the aperture is such that the length scales of f and its 
support in the x-domain are "many" units of reciprocal wavenumber for 
all of the available information in the k-domain. Formally, I(>., y) is the 
asymptotic expansion of J(>..,y) as>.. --too. 

The product >..p ~ >.. appears as a "natural" large parameter in the 
integral. In Section 4.4.1, we will carry out the asymptotic analysis via 
multidimensional stationary phase in five variables, (y~, y~, y~, 0, ¢). The 
product >..p will be chosen to be the formal large parameter and the result 
will be an integral with respect to p that has the form of a causal Fourier 
transform. 

4-4.1 The Significance of the Boundary Values in Dy' 

Let us now look for stationary points of the integral in equation (4.4.3) in 
all five variables. 

If we define the phase of the integrand in (4.4.3) as 

~ = p 0 (y- y'), (4.4.5) 

then the condition of stationarity will be satisfied when the gradient with 
respect to all five variables (y~, y~, y~, 0, ¢) vanishes; that is, when 



4.4 Aperture-Limited Fourier Identity Operators 199 

\l(y',!J,</>)il>(y~,y~,y~,f),¢) = 0. 

However, we may write this gradient as 

\l (y' ,!J,</>) il>(y'' (), ¢) = (\l y' [P. (y - y')], \l (!J,</>) [P. (y - y')]) . ( 4.4.6) 

Here, \ly' is the gradient with respect to the three variables, (yi,y~,y~), 
and \l ( e ,</>) is the gradient with respect to the two variables, (f), ¢). Note 
also that, by the definition in equation (4.4.4), p is a function of (fJ, ¢) 
only. The first three components of this five component vector can never 
be zero because \l y' [P · (y- y')] = -p =f- 0. Therefore, because all of 
the components of the gradient must be zero for a stationary point to 
exist in all five variables, the gradient of ii> with respect to the full five 
variables cannot be zero, either. Thus, there can be no stationary points of 
the fivefold integral! 

We can remedy this situation by recalling that the method of station­
ary phase is a generalization of the process creating an asymptotic series 
in inverse powers of .X by repetitive integration by parts. The stationary 
phase formula is just the first nonzero term of this series when a stationary 
point exists in each level of the integration by parts process. For multi­
dimensional stationary phase, this translates into a process of repetitive 
applications of the divergence theorem and testing the resulting phases for 
stationary points. Again, the first nonvanishing term in the asymptotic se­
ries is the stationary phase formula. If there are no stationary points in 
the interior of the domain of integration, then the only hope for finding an 
asymptotic solution is that there be stationary points on some boundary of 
the domain of integration. By performing the appropriate integration by 
parts (application of the divergence theorem), we can replace the integral 
over the volume by an integral over this boundary with the hope of having 
stationary points in the new integral. 

But what boundary? The integration that we are performing here is a 
fivefold integral over the combined spatial and wavenumber domain repre­
sented by the hypervolume Dy' x D(!J,¢)· However, only those components 
of the gradient that are in Dy' fail to have zeros. Therefore, we will apply 
the divergence to the integral over Dy' to create a new integral over the 
new domain Sy' x D(!J,</>)' where Sy' is the boundary of Dy'·6 

To do this, first rewrite the integrand as 

f(y',p)ei>.piP = ~1 [\ly'. [fJJ(y',p)ei>.p<P] + h(y',p)ei>.p<P], 
ZAp 

where h(y',p) = -\ly' · [PJ(y,p)]. (4.4.7) 

When this is substituted into ( 4.4.3) and the divergence theorem is applied 
to the first term, the result is 

6 Even when the domain integral does not have stationary points, the boundary 
integral will. 
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1 
I(>., y) = Io(>., y) + i>. h (>., y), ( 4.4.8) 

with 

I0 (>., y) = [i>-.2]3 { p dpsinB dBd¢ { dSy'(n · p)f(y',p)ei>.pif>, 
2n JD ls, p y 

(4.4.9) 

h(>.,y) = [ 2~] 3 
{ pdpsinB dBd¢ { d3 y'fl(y',p)ei>.pif>. 

}Dp }Dy' 
In this equation, n denotes the normal to the boundary, Sy', of the domain 
Dy'. It should be noted that the integral h (A, y) is similar to the original 
integral, I(>., y), in that it is an integral over the full domain Dy' x Dw We 
can see by comparing it with ( 4.4.8) that it differs from the original integral 
by a multiplier of 1/i>.. Now consider the effect of repeating this process 
with h(>., y). We would again obtain an integral similar to I 0 (A, y), but 
multiplied by another power of 1/i>.. Continuing this process recursively N 
times, we would obtain an asymptotic series of integrals over Sy' with an 
integral over Dy' scaled by a 1/(i>.)N multiplier. 

Thus, it is reasonable to conclude that the leading-order asymptotic ex­
pansion of I must come from the analysis of I 0 (A, y), unless, of course, 
f(y',p) were identically zero on Sy'· This last observation leads to the 
following result. 

Lemma 4.1. Suppose that f (y', p) is infinitely differentiable in Dp and 
vanishes "infinitely smoothly" (that is, f and all of its derivatives vanish 
smoothly) on the boundary, Sy'· Then I(>.,y) is asymptotically zero1 to all 
algebraic orders of 1/i>.. 

PROOF. In (4.4.8), I0 (>., y) is zero because of the assumptions on f. 
However, the assumptions on f are true for fl, as well. Thus, repeat the 
integration by parts process and obtain another integral similar to I(A, y) 
but multiplied now by 1/(i>-.)2 , with an integrand h, which also satis­
fies the conditions placed on f. Repeat the process recursively and obtain 
any desired algebraic power of 1/i>. as a multiplier. This completes the 
~~ 0 

The point of the lemma is that the integrand has only boundary criti­
cal points and then, only if the function f(y',p) does not vanish infinitely 
smoothly. This means that the discontinuities of f dominate the integra­
tion. (A boundary point where f does not vanish infinitely smoothly is a 

7The example of aperture-limited inversion presented in Section 4.3.8 was a 
model of this kind of behavior (although, there, the conditional convergence of 
the Fourier transform at infinity requires a little extra effort). In that example, 

the decay was actually exponential in a parameter equivalent to V>.. In general, 
one can only predict "faster than algebraic" decay. 
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FIGURE 4.17. The polar coordinate unit vectors. 

discontinuity of the function because its interior limit is not equal to its 
exterior limit.) Thus, the large-wavenumber, aperture-limited Fourier inte­
gral operator is not an identity operator. For functions that are infinitely 
differentiable inside the domain, Dp, this operator is one whose output de­
pends only on the discontinuities of f or its derivatives (on the boundary 
Sy' of Dy') in a way that we will determine below. 

4.4.2 Stationary Phase Analysis for 10 

Through the application of the divergence theorem, and by Lemma 4.1, we 
have determined that the leading-order asymptotic contribution will arise 
from the integral ! 0 (>., y), in equation (4.4.9). Again, the phase is given by 
( 4.4.5), except that now y1 is a function of two surface parameters that we 
will call 'f/1 and 'f/2. 

Our asymptotic analysis of !0 will, therefore, be fourfold stationary phase 
in the variables, ry1 , ry2 , (), and¢. The first derivatives of <l> are given by 

8<1> A 8y1 8<1> A I 8<1> A I 
---p·- i=1,2, ao =O·(y-y), 8,~.. =c/J·(y-y)sinO, 
aTJi - aTJi ' '+' 

( 4.4.10) 

iJ =(cosO cos¢, cosO sin¢,- sinO), 4> = (-sin¢, cos¢, 0). 

Note that the vectors iJ and 4> are orthogonal to p. See Figure 4.17. Set­
ting these four first derivatives equal to zero has the following geometrical 
interpretation. At the stationary point, p must be orthogonal to two lin­
early independent tangent vectors in Sy' in order that the two derivatives 
with respect to ry1 and ry2 be zero. Thus, p and n must be collinear or 
anticollinear. Note that n is a vector in the spatial domain of the input 
variable y', while p is a vector in the wave dual Fourier domain. This sta­
tionary phase condition ties together these two vectors in dual domains. 
Furthermore, y - y' must be orthogonal to two linearly independent tan­
gent vectors on the unit sphere in p at the stationary point in order that 
the derivatives with respect to () and ¢ be zero. Therefore, p and y - y' 
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A 
p 

FIGURE 4.18. Geometry of stationarity. a) A pointy' is chosen such that y- y' 
and n are collinear. b) The vectors p and-pare collinear withy- y' and n for 
all stationary points. The distinguished stationary point is at y = y'. 

are collinear or anticollinear. This condition ties the output variables y to 
the input spatial variables y' and the Fourier variables p. In summary, p, 
n, and y - y' must all line up. 

Geometrically, the stationary points are determined as functions of y as 
follows. Given y, drop a perpendicular to Sy'· This determines a point, y', 
on Sy' and a corresponding pair, ry1 and "l2· For this point, nand y- y' 
line up, as in Figure 4.18a. Now choose p to line up with these two vectors, 
as in Figure 4.18b. This determines a choice of () and ¢. In total, "ll, TJ2, (), 
and ¢> are all determined as functions of y. Analytically, the relationships 
among the stationary values of the coordinates are as follows: 

s = n. (y- y') = sgn (n. (y- y')) IY- y'l, p = (n. p) n, (4.4.11) 

from which it follows that 

<I>= fJ. (y- y') = (n. fJ) n. (y- y') = J.Lvs, J.Lv = (n. fJ). (4.4.12) 

Clearly, given the stationary four-tuple (TJI, ry2, (), ¢), a second set, 
( "lb 'TJ2, 1r - (), ¢ ± 1r), also satisfies the stationarity conditions, merely re­
placing the vector p in the stationary set of vectors by -p. (Recall that 
-p is in Dp whenever p is.) Thus, there may be none, one, or more than 
one such pair of stationary points for a given choice of y. Those values of 
y for which there are no stationary points are points where Io(.>-., y) (and, 
therefore, I(>., y), as well) is asymptotically of lower order than for those 
points where there are stationary pairs of four-tuples. Stationary points 
exist when the aperture in p contains the normal from y to one or more 
points on By' . 

Having determined the possible stationary points, the stationary phase 
formula (3.6.3) requires the computation of the determinant and signature 
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of the Hessian of the phase function. For simplicity of notation, introduce 

() = T/3 and ¢ = T/4· (4.4.13) 

Then, as in (3.6.3), the Hessian at the stationary point rto is expressed as 

[<l>ij] = [82<1>( rto)] ' 
OTJiOTJj 

where i, j = 1, 2, 3, 4. (4.4.14) 

At the end of this section, the analysis of this matrix is outlined in exercises. 
Here, we just state the results that we need in order to continue with the 
discussion of the asymptotic expansion. 

The calculation of this determinant is then much like the calculation of 
the four-by-four determinant in Section 3. 7 and is left to the exercises. The 
result is 

det [<I>ij] = y'9(1- Sh:I)(1- Sh:2) sin2 (), 

where h:l = n. ~1, f\;2 = n. ~2, and sig [<l>ij] = J.l· (4.4.15) 

In these equations, ~i, for i = 1, 2, are the principal curvature vectors on 
Sy' at the stationary point and h:i are their signed magnitudes, depend­
ing on whether the direction of the curvature vectors are collinear ( +) or 
anticollinear (-) with n. That is, 

A 82y 
h:i = n · ~' where i = 1,2, 

usi 

with si, i = 1, 2 being arclength variables in the principle directions at the 
stationary point. Thus, the product Sh:i is positive when the observation 
point y and the center of curvature are on the same side of the surface and 
negative when they are on opposite sides. 

We are interested in the asymptotic expansion for y near the surface Sy', 
or s near zero. One result of the analysis in the exercises is that 

J.L = 0, (1 - Sh:i) > 0, where i = 1, 2. 

That is, the signature is always zero for a stationary point sufficiently close 
to the surface, Sy'. 

We can also see, in ( 4.4.15), the effects of the singular behavior of the co­
ordinate system, through the presence of the factor of sin2 () as a multiplier. 
If we were unfortunate enough that the stationary value of () were 0 or 1r, 

then this determinant would be zero. Recall that the square root of this de­
terminant appears in the denominator of the stationary phase contribution. 
However, it is also true that the integrand has a corresponding multiplier of 
sin() in the numerator, so that we really arrive at an indeterminate result. 
In fact, analysis of subsequent terms in the asymptotic expansion would 
reveal that like powers of sin () always appear in the numerator and the de­
nominator. The problem is with the coordinate system. With hindsight, we 
propose the following "cure" for this problem. In the plane where () = 1r /2, 
rotate the coordinate system around the line orthogonal to the stationary 



204 4. Large-Wavenumber Fourier Imaging 

value of ¢ so that the stationary points are always at e = 7r /2; then set 
sine = 1! The resulting asymptotic expansion is unchanged, but we avoid 
dealing with a peculiarity of the coordinate system by this device. 

Now, the asymptotic expansion of I 0 (A, y) in (4.4.9) consists of a sum of 
contributions over stationary points as follows. 

Io(>., y) =_!_I: i { dp (n. p)f(y',p)ei>.pn·i>s+iM7r/4. 
21r v'l1- S/\:1111- SK:z)l Jdp p 

In this equation, dp is the dual domain-two line segments-associated with 
two stationary points pointing in opposite directions and the summation is 
to be taken over all such pairs of stationary points. On these two domains, 
n · p = ±1, respectively. Thus, we can rewrite this result as 

Io(>., y) =_!_I: if(y',p) 
21r v'l1- S/\:1111- SK:z)l 

. { dp [ei>.ps+iw/4 _ e-i>.ps-iM7r/4]. 

Jdp+ p 

Here, dp+ is the line segment of dp on which n · p = + 1. Further, we have 
used the fact (to be verified in the exercises) that the eigenvalues are of 
opposite sign for these two contributions. Finally, we have used the evenness 
of f (y', p) in p to take this factor out from under the integral sign. 

Now, the result can be recast in terms of a bandlimited step function; 
we need only replace p by -p in the second integral. Then, the integration 
range for this integral is just the reflection of dp+ through p = 0 and the 
previous result is replaced by 

I(>., y) "'I: G(y, y',p)J(>., y). (4.4.16) 

In this equation, 

( 4.4.17) 

and 

G( I ')-- f(y,p) y,y ,p - . I 
V 11- S/\:1111- SK:zl 

(4.4.18) 

The function F(p) is the filter that restricts the domain of integration to 
the two intervals defined by dp+ and its reflection through the origin. 

For s near zero, f-l = 0 and the function J (A, y) can be recognized as the 
bandlimited step function that first arose in Chapter 2, equation (2.4.12). 
Note also that right on the surface Sy' there is one pair of stationary points 
for which y' = y and G(y,y',p) = f(y,p), as long as the normal direc­
tion to the surface, Sy', is contained in the aperture, Dp. That is, there is 
one pair of stationary points for which the contribution to the asymptotic 
expansion of I ( ( >.., y) is just the value of f at the boundary, multiplied by 
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FIGURE 4.19. The angle f. 

a bandlimited step function. This is the extent to which the asymptotic 
identity operator approximates the function f, restricted to the domain 
Dy'· 

Exercises 

4.11 The purpose of this exercise is to carry out the analysis leading to 
(4.!1.15) for the case in which 771 and 772 are arclength variables. ln 
this case, 

z~ . z~ = 8ij = { ~: 
'1]='1Jo 

i=j 

i i= j ' 
i,j = 1,2. 

Furthermore, in (4.4.9), for '1] = '1]0 , 

dSy' = fgd1]1d7]2, g = det [ z~ . z~] = I Z! X z~ 12 
= 1. 

Also, the exercise derives the evaluation of p, for s near zero. 

a. Use the first derivatives in (4.4.10) and assume that the coor­
dinates, 771 and 772 are arclength coordinates in the principal 
directions at the stationary point to verify the following evalu­
ations of second derivatives. All indices i, j range over the values 
1 and 2 in this exercise, unless otherwise indicated. 

b. Show that 

82 <P A 82 y' s: (A A A) (A A) s: s: 
~ = -p · -;:;---2 Vij =- n · p n · n ·"-in Vij = -f.Lv"'iVij· 
U1)i U1Jj U 1Ji 

Here, /.Lp is defined in (4.4.12). 
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-sin"(, 

-cos"(, 

- cos 'Y sin e' 
sin 'Y sine, 

i = 1, 

i = 2; 

i = 1, 

i = 2. 

Here, the angle 'Y is defined in Figure 4.19. Also, we have used 
the fact that all four of the indicated vectors are orthogonal to 
two collinear vectors, n and p, and therefore can be viewed as 
coplanar, even though they reside in different domains. 

d. Show that 

82 <I> A ( ') 

8(;)2 = -p. y- y = -f-lpS, 

82 <I> A ( I) . ll • 2 ll 
8(p = -p · y- y smu = -f-lpSsm u, 

with f-lp defined in equation ( 4.4.12) and 

p = (cos¢,sin¢,0). 

See Figure 4.17. 

4.12 In this exercise, we show that the fundamental result is only slightly 
modified if the ry's are not arclength variables on the surface. Let us 
assume this to be the case and introduce the variables, si, i = 1, 2 
and s = (s1 , s2 ). These are assumed to be arclength variables in the 
principal directions at the stationary point. 

a. Show that 

8<I> 8<I> 8sp 

8ryi 8sp 8ryi' 

Here, sum over the repeated indices, p and q, from 1 to 2. 
b. Show that a stationary point in 1J implies a stationary point in s 

and, hence, that 

82 <I> ~ 8sp 8sq 

8ryi8'T/j 8sp8Sq 8ryi 8ryj 

at the stationary point. 
c. Introduce the 4 X 4 matrix, r' made up of 2 X 2 submatrices as 

follows: 



4.4 Aperture-Limited Fourier Identity Operators 207 

with I being the 2 x 2 identity matrix. Further, denote by <J?ij the 
matrix ci>ij, but with TJ replaced by s. Show that 

- T ci>i1 = rci>i1r , 

with rT being the transpose of the matrix r. Thus, conclude that 

det [ci>i1] = det [<l?iJ J [det[r]] 2 • 

d. Show that 

2 I ds ds 1
2 

I dx dx 1
2 

[det[r]] = dTJ1 x dTJ2 = dTJ1 x dTJ2 =g. 

Here, the first cross product is in the two-dimensional space of s, 
while the second cross product is in the three-dimensional space 
of y. Also, g is, as usual, the determinant of the first fundamental 
tensor of differential geometry, as defined by the previous term in 
the string of equalities. (See Kreyszig [1991] for information on 
differential geometry.) 

e. Verify (4.4.15). 

4.13 a. In (4.4.15), set sinO = 1 and do the same in all of the second 
derivatives, above. Then, rewrite ( 4.4.15) as 

[cl>ij] = (1- 8~1)(1- 8~2) = (1- j..Lp8j..Lp~I)(1- j..Lp8j..Lp~2) 

and conclude that the eigenvalues, >..1, j = 1, 2, 3, 4, must satisfy 
the equation 

Hint: It is not necessary to recompute the determinant. 
b. Show that the four eigenvalues come in pairs, corresponding to ~~ 

and ~2 as follows: 

)...j± = ~ [-J.Lp(~J +8) ± J(~J- 8)2 +4], j = 1,2. 

c. Check that for 8 = 0, each pair, )...j±, have opposite signs and thus 
conclude that 

sig [ci>ij] = J.L = 0. 

d. Show that the solution for the eigenvalues can also be written in 
these alternative ways: 

)...J± = _J.L{ [(~j + 8) ± J(~1 - 8)2 + 4] 
= _J.Lpsgn~~J + 8) [l~J + 8/ ± J(~J- 8)2 + 4]. 
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e. Explain why the eigenvalue of minimum absolute value must be 
chosen from I >.1 -I in this final form, and that 

IAj-1= 211-S~j~ 
l~j + sl + J(~j- s)2 + 4 

4.14 Verify equations (4.4.17) and (4.4.18). 

4.4.3 The Near-Surface Condition 

Consider the integral ( 4.4.17) when y approaches the surface By'. For the 
nearest stationary point, the phase approaches zero in this limit. (There 
may be other stationary points further away on By' for which the limit 
is not zero.) For this distinguished stationary point, J(>., y) is 0(1) in >. 
in this limit, whereas it is 0(11 >.) for all other stationary points. Thus, 
J(>., y) changes its order in>. when y is actually on By' and it is reasonable 
to expect the sum to be dominated by this nearest stationary point. 

From its definition in (4.4.16), J can be recognized as a bandlimited step 
function, for y on By', J.t = 0. The magnitude of the step can be determined 
by evaluating G(y, y', p) in the limit when y is on 8By'· The result is 

aPEAK= f(y,p), yon By'· (4.4.19) 

That is, the magnitude of the step is just the value of f(y,p), which 
is the magnitude of the discontinuity of f across the surface By' at the 
stationary value of p. For two integrals over domains sharing the same 
segment of boundary surface, the stationary point is shared as well. The 
only differences in evaluation of the integral arise from the different values 
of the amplitude function, G(y,y',p) in the two integrands and the fact 
that n has opposite direction in the two integrals. Thus, the sum of the 
integrals will yield a difference of function values that reduces to just the 
jump in the function f when y is actually on the surface By' and for the 
same value of p. This is the main result regarding the asymptotic identity 
operator (4.4.3). 

4-4-4 Extracting Information About f on By' 

In applications of this analysis to inverse problems, the aperture-limited 
information about f(xl L, k) in the Fourier domain constitutes the known 
data and the objective is to extract information about the function 
f(xl L, k) in the spatial domain. The analysis presented here suggests that, 
from large-wavenumber aperture-limited data, at best, information about 
the boundary values of f (xI L, k) can be extracted at some as yet unknown 
value of k. More generally, one might hope to determine the value of the 
jump in f (xI L, k) across its discontinuity surfaces in the x'-domain at a 
yet-to-be-determined value of k. 
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Two issues need to be addressed. The first is the question of how to easily 
extract information about the height of the step. As we saw in Chapter 2, 
bandlimited step functions are not as easy to recognize in numerical rep­
resentations as they are in analytic expressions. We want to be able to 
extract both the location and the magnitude of the step. In the asymptotic 
representation ( 4.4.17) we see that the amplitude of the bandlimited step 
function is actually equal to zero at its discontinuity, significantly mitigat­
ing the effect of growth of the integral I from 0 ( 1 j >.) to 0 ( 1) in this region. 
This serves to strengthen our conviction that searching for the midpoint of 
a bandlimited step is not the best approach to the problem of inverting for 
surfaces of discontinuity. 

In addition to the issue of extracting information about f, there is the is­
sue of how to determine the distinguished value of p that must be addressed. 
These issues will be addressed in the next subsection. Note, however, that 
neither of the solutions to these problems is new. We have already seen 
hints at the solution to these questions in the previous chapter, in the 
context of the zero-offset inverse problem. 

4-4.5 Processing for a Scaled Singular Function of the 
Boundary Surface Sy' 

With a minor change of the kernel, the integral operator in ( 4.4.1) can be 
transformed into an integral operator yielding a bandlimited delta function, 
rather than a bandlimited step, as its output. This delta function will have 
its support on the surface, Sy'. This function is the singular function of the 
surface Sy', as defined by ( 4.3.9). Thus, we can expect an output whose 
peak value defines the surface S11, and whose amplitude is proportional to 
f(x/L,k) on Sy'· 

To transform the integral I(>.,y)) in (4.4.16) into a bandlimited delta 
function, we need to introduce a multiplier that cancels the factor (n·p)jip 
present in the integrand. Thus, we need a multiplier of ip on half of the 
p-domain and -ip on the image of that domain through the origin. As 
suggested in the previous section, the multiplier ik sgn (it · k), with it a 
constant unit vector, will do the trick. When this factor is inserted into the 
integrand in (4.4.1), it will have exactly the desired effect. After rescaling, 

ik sgn (it · k) = i>.p sgn (it · P). ( 4.4.20) 

For a closed convex body and full aperture information, this multiplier 
is not defined in the plane through the origin with it as normal. In most 
applications, however, there is at least one plane of directions in which 
there is no information, so the domain Dk will exclude some plane through 
the origin. Choose it as the unit normal to that plane. 

In the applications to inversion, the choice of sign is straightforward. 
Typically, k = lkl is proportional to lwl, with sgnw = sgn (it· k) for some 
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undetermined u. Therefore, instead of multiplying by lwl to compute k, we 
multiply by w to compute k sgn ( u · k), even though the corresponding u is 
never determined. 

Proceeding with this idea, in place of the integral (4.4.1) consider 

l= ( i)3 f ksgn(u·k)d3k f d3x'f(x'/L,k)eik·(z-z'). (4.4.21) 
21r lnk ln.,, 

The integral (4.4.3), obtained after scaling, is replaced by 

I(>.., y) = i>..\ { p2 sgn (u · p) dp sinO dOd¢ f d3y' f(y',p)ei>.piJ·(y-y') 
(21r) ln ln, 

p y 

and the integral I0 (>.., y) in (4.4.8) and (4.4.9) is now replaced by 

lo(>.., y) = [2~ r Lp p2 sgn (u. p) dp sinO dOd¢ 

(4.4.22) 

· f dSy'(n · p)f(y',p)ei>.pil!. (4.4.23) 
lsy, 

The asymptotic analysis of this integral proceeds as for I0 (>.., y), yielding 
in place of (4.4.15) and (4.4.16) the results 

J(>..,y) rv LG(y,y',p)J(>..,y) (4.4.24) 

and 

](>.., y) = ~3 j dp e[i>.ps+i~t'lr/41, where J.L3 = (n·p) sgn (u·p) = sgn (n·u). 

(4.4.25) 
In other words, J.L3 does not depend on the direction of p. Except for the 
new parameter J.L3 (which takes on the values of (±1), only) the constituent 
functions and parameters here are still defined by (4.4.17) and (4.4.14). 

For y on Sy' there is one stationary point in y', with y' = y as long as 
n is a direction in Dk. For this stationary point, J = 0(>..), whereas for 
all other stationary points, or for y not on Sy', J = 0(1) in>... Thus, as 
y approaches Sy'' one stationary point dominates the value of I(>.., y), and 
the function value is larger by 0(>..) than the value for y bounded away 
from Sy' . As noted earlier, for this distinguished stationary point, J.L = 0. 
Recalling that we must sum over the two stationary points ±p, the integral 
J becomes 

J(>..,y)= /-L3 + dpei>.piy-y'l. A 1-P- 1P+ 
21f -P+ P-

(4.4.26) 

The limits of integration, P- and P+ are the intersections of the ray from the 
origin in the stationary direction p with the domain Dp. In the k-domain, 
that is, undoing the scaling defined by (4.4.2), 
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(4.4.27) 

d = ix- x'i sgn (k · (x- x')). 

Here, k± have definitions completely analogous to P±. In either form, J can 
be recognized as a symmetric bandlimited delta function with support at 
iY- y'i = 0, (ix- x'i = 0), which occurs when y is on Sy' (or xis on an 
equivalent surface in the x-domain, Sx' ). In this limit, the dominant term 
in (4.4.23) is readily evaluated with the aid of (4.4.18): 

I-(, ) '( ) f(y,p) _ (k k ) f(xj L, k) 
A, y "' A P+ - P- /.L3 --- - + - - /.L3 ' 

7r 7r 
yon Sy'· 

(4.4.28) 
Thus, the value of I on Sy' is proportional to the interval width in the 
k-domain along an appropriate ray, multiplied by JL3f(xj L, k)j1r. If the 
integrand contained a filter factor, F(k) = F(Kp), then the factor P+ -p_ 
is replaced by the area under the filter function in the stationary direction 
ofp. 

Qualitatively, for x near Sx', the dominant term in the sum in ( 4.4.23) has 
the form of an aperture-limited singular function scaled by a slowly varying 
function. The scale factor becomes the jump in the function f multiplied 
by /.L3 when xis on Sx, and the aperture-limited singular function becomes 
the area under the bandpass filter in a distinguished direction, divided by 
27r. 

4.4.6 The Normal Direction 
It remains to show how to determine the direction of the normal at the 
stationary point. Equivalently, we need only determine the distinguished 
value of pat the stationary point. To simplify further, we must determine 
sinO or cosO and sin¢ or cos¢ at the stationary point. Note from (4.4.4) 
that 

k3 P3 cosO=-=-
k p' 

k1 Pl 
cos 4> = = -r~=:;;r 

y'k~ + k~ VP~ + p~ 
(4.4.29) 

Suppose that we define two new integral operators with these factors in­
troduced into the kernels of the operator I. That is, starting from ( 4.4.20), 
define 

(4.4.31) 
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Let us now consider the asymptotic analysis of le and lq,. Clearly, it 
will proceed exactly as in Section 4.4.4, with only the amplitudes of the 
results being influenced by the changes introduced here. Thus, the peak 
values of these new integral operators can also be predicted. They will 
differ from the result for l itself, by the factors cos(}, cos¢, each evaluated 
at the distinguished stationary point. That is, 

(} _ JBPEAK cos -----, 
/PEAK 

yon Sy'· (4.4.32) 

Clearly, sin¢ can be determined this way as well, while sin(} can be 
defined in terms of cos(}, taking the positive square root ( 0 :::; (} :::; 1r). 
Given these values at the distinguished stationary point, p is determined 
there. 

Thus, we have found a way to extract information about the orientation 
of a reflector as a parameter that we invert for, rather than relying merely 
on the appearance in an image. In Chapters 5 and 6 we will apply these 
ideas to solve the problem of determining reflectivity as a function of angle, 
with the angle of incidence determined via an inversion process of this type. 

4.4. 7 Integrands with Other Types of Singularities 

It should be noted that the multiplier ik sgn ( u · k) is a "best choice" only 
because f(x'IL,p) was assumed to be smooth but not to vanish smoothly 
on the boundary of its domain of definition. In contrast, the original op­
erator, I, will optimally depict a function that is a (sum of) Dirac delta 
function( s) as was shown in the first example of the previous section ( equa­
tion (4.3.2) and the discussion below it). Furthermore, the second example, 
equation (4.3.6), suggests that I(x) will also be a better operator than l 
for singular functions. That can readily be verified now, as follows. Let us 
consider the application of I as defined by ( 4.4.1) to the function 

f(x' I L, k) = 'Y(x' I L), (4.4.33) 

with 'Y(Y'), the singular function of a surface, Sy', as defined in equation 
(4.3.9) of the previous section and the related discussion. Substitution of 
this function into (4.4.1) and use of the change of variables defined by 
( 4.4.2) and ( 4.4.4) leads to the result 

I(A.,y) = [ 2~ r lp p2dpsin0d(}dcp Is dSei>.p<I>, (4.4.34) 

with <I> defined by (4.4.5). 
Thus, without introducing an additional multiplier to modify the op­

erator I to l, this integral is exactly like the integral 10 (A., y) defined by 
(4.4.22), with the amplitude of that integral, sgn (u·p) = n·p = f(y',p) = 
J.LJf(y', p) replaced by unity. Consequently, the asymptotic analysis for this 
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integral has already been done. The output will be an aperture-limited ver­
sion of 'Y(Y'). That is, it will be a bandlimited delta function along each 
normal that is a direction from the origin to Dk. The structure of the delta 
function will depend on the extent of that ray in the k-domain and also 
on any smoothing that might be applied through the introduction of a 
large-wavenumber bandpass filter along that ray. 

Asymptotically, then, the large-wavenumber, aperture-limited Fourier in­
version of data for a singular function behaves just as the exact result did 
for a planar surface. 

Minor Extension 

In the applications of interest, the function f depends on a:, in addition 
to the other dependencies indicated in (4.4.1). This does not change the 
results stated here, since a: merely acts as a parameter with respect to the 
integrations in ( 4.4.1). 

A Form that Arises in the Analysis of Kirchhoff Data for the 
Inverse-Scattering Formalism 

A last extension to be considered here is the case in which the integrand has 
both a singular function and a smoother amplitude function. Modify equa­
tion (4.3.1) by replacing f(a:'/L,k) with f(a:'/L,a:/L,k)'Y(a:'/L). Then, 
after exploiting the sifting property of the singular function, the integral 
(4.3.1) becomes 

1=~ { d3k { dS'f(a:'/L,a:/L,k)eik·(re-re'), (4.4.35) 
(27r) }Dk Jsx, 

or, in dimensionless variables, 

1= [~]3 { d3p { dSy'J(y',y,p)ei>..p<I>. 
21r }D ls, 

p y 

(4.4.36) 

Here, <I> is defined by ( 4.4.5). Except for the fact that we have not used polar 
coordinates, the integral is of the same form as ( 4.4.22) with the amplitude 
(n · p) sgn (it· p)f(y',p) = J.L3f(y',p) replaced by f(y', y,p). The analysis 
proceeds as before, with the extra dependence on y in f merely playing 
the role of a parameter as regards the asymptotic analysis of the integral. 

Consequently, the asymptotic expansion of the integral in ( 4.4.36) is 
given by (4.4.23), with the following insertions. The function G(y,y',p) is 
defined by (4.4.17), except that f(y,p) is replaced by f(y',y,p) and J is 
given by (4.4.24), (4.4.25), or (4.4.26) with f.L3 replaced by unity. In par­
ticular, for y near S, the asymptotic expansion is dominated by a scaled 
bandlimited singular function. When y is on S, the scale factor is just the 
amplitude, f(y' / L, y/ L, k), evaluated at the stationary point and deter­
minable as described in the discussion above for determination of p. That 
is, 
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- 1 J I(A,y) = J(y,y,p) · 271' dp, yon S, (4.4.37) 

where the domain of integration is the range of values of p in the direction 
of p. Thus, the amplitude is the value of f(y, y,p), which in a real-life 
application would be a reflection coefficient, multiplied by the area under 
the filter in the p-domain in the direction of the stationary value of p. 

Lower-Order Contributions 

The results obtained so far assume the existence of at least one pair of 
stationary points. It is important to note here that such stationary point(s) 
can exist only if the normal direction to Sy' is a direction in the k-domain 
aperture, Dk. When this is not the case, the integral is asymptotically of 
lower order and the results obtained here do not apply. 

4.4.8 Summary 
We have shown here that the large-wavenumber, aperture-limited Fourier 
inversion of the Fourier transform of a piecewise-smooth function is dom­
inated by the function values on the discontinuity surface. The inversion 
is approximately a bandlimited step function of normal distance from each 
point on the discontinuity surface. The amplitude of the step function is 
proportional to the jump in the function across the surface at the point 
in question. By modifying the inversion operator, the output can be trans­
formed into the singular function(s) of the discontinuity surface(s) of the 
original function, again scaled by the jump in the original function at each 
point of the discontinuity surface. This change facilitates the numerical 
identification of the discontinuity surface( s) and the amplitude of the jump 
at each point on the surface(s). Aperture-limited inversion of data for a 
singular function of a surface was shown to produce an aperture-limited 
approximation of the singular function. 

In the language of asymptotic expansions of integrals, given an output 
point, x, the large-wavenumber, aperture-limited Fourier inversion of a 
piecewise-smooth function or of the singular function of a surface is domi­
nated by certain critical points that can be determined as functions of x. A 
critical point consists of a location x' in the spatial domain and a direction 
k in the dual Fourier domain. When x is on a discontinuity surface of the 
smooth function or on the support surface of the singular function, and the 
normal to the surface in question is a direction k in the aperture Dk, the 
output is at. least 0(>.) larger than it is otherwise. This increase in order 
can be exploited to detect the discontinuity surface(s) or support surface(s) 
and estimate an amplitude function on the surface(s). When the normal 
direction at x on Sx' is not a direction in Dk, there is no stationary point 
and the results described above do not apply. In this case, no information 
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about the discontinuity surface can be determined. This was seen in the 
computer outputs of the previous section. 

4.4.9 Modern Mathematical Issues 

In Section 2.5.1, we mentioned that both our Born-approximate modeling 
formula and our proposed inversion formula, which are both Fourier-like 
integrals, are members of a special class of operators~the elliptic pseudod­
ifferential operators. These operators have the properties of being invertible 
and of preserving the singular support of the data, which for us is the re­
flector location and reflectivity. If our Born-approximate modeling formulas 
are reasonable approximations of the wavefield, then our choice of inver­
sion formulas will accurately represent the reflector information. In this 
chapter, we have discussed aperture limiting, and we must conclude from 
the discussion here that, at best, we are talking about aperture-limited 
pseudodifferential operators. 

To deal with the issue of aperture limiting in a modern mathematical 
setting requires an extension of our concept of singular support, one that 
incorporates the new concepts of reflector and migration dips. In the theory 
of pseudodifferential operators, the singular support of a distribution, com­
bined with the family of normal directions to the region of singular support, 
is called the wavefront set of the distribution. For a singular function, this 
concept is a generalization of the concept of singular support~one which 
does, indeed, take into account the idea migration dip. Thus, to reconstruct 
a reflector, in mathematical terms, we must reconstruct its wavefront set.8 

Thus, the results of this section can be stated as follows. For the class 
of piecewise-smooth functions, large-wavenumber aperture-limited Fourier 
data can be used to determine the wavefront sets of the given function on 
a subset for which the directions of the normals lie in the Fourier domain 
aperture. For the geophysicist, this is important because we now have a 
coherent mathematical justification supporting the idea that we can extract 
reflectivity information from aperture-limited data, albeit for only those 
portions of the reflector that are illuminated. 

8 In advanced mathematical literature, the terms tangent bundle and cotangent 
bundle appear. For us, the set of reflector dips constitutes the tangent bun­
dle of the reflectors, whereas the set of migration dips constitute the reflectors' 
cotangent bundle. In the literature of microlocal analysis, which is the topic of 
mathematical analysis in conical neighborhoods of points, imaging problems are 
said to be "formulated on the cotangent bundle." We would say, equivalently, 
that migration formulas are "formulated in terms of migration dips." 



5 
Inversion in Heterogeneous Media 

In Chapter 3, we created our first inversion formulas for the three­
dimensional inverse-scattering imaging problem. We formulated the prob­
lem for the special case of data collected with a zero-offset recording 
geometry, and assumed a constant-background wavespeed. The formulas 
we derived yielded a bandlimited representation of the singular function of 
a reflector surface scaled by the normal-incidence reflection coefficient of 
the reflector-the reflectivity function-(3(x). These formulas were further 
shown to correspond to the classic Fourier transform-based migration for­
mula created by Stolt [1978] and the Kirchhoff-based formula created by 
Schneider [1978], with the latter deduced from the former. 

Our inversion/migration formalisms are aperture-limited Fourier-like 
integrals. This fact motivated the discussion of the general theory of large­
wavenumber Fourier imaging presented in Chapter 4. There we found that 
many of the attributes of the constant-wavespeed inversion formulas are 
really general properties of Fourier-like integrals, rather than being charac­
teristics specific to the particular case that we studied in Chapter 3. Because 
the results of Chapter 4 rest on solid mathematical foundations, and be­
cause the attributes appear to be robust, these results serve to strengthen 
our confidence in the high-frequency theory we have developed thus far. 

Our satisfaction with these results is short-lived, however. The inversion 
formulas we have created to this point are not general enough to per­
mit us to deal with real-world imaging problems. We still need to develop 
a more general formalism that will yield inversion formulas that are ap­
plicable to the more complicated recording geometries and more realistic 
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variable-wavespeed profiles encountered in seismic exploration. Therefore, 
the motivation for this chapter will be to derive such an inversion formalism. 

This new formalism will permit inversion of data resulting from wave 
propagation in variable-wavespeed media and will naturally accommodate 
many of the practical source-receiver configurations that were discussed 
in Chapter 1. We will also be able to extend this formalism to deal with 
models having a variable-background density, as well. Further extensions 
to isotropic and anisotropic media have also been carried out. These exten­
sions are possible through the application of the methods of high-frequency 
asymptotics. 

The inversion formulas will be aperture-limited, Fourier-like integrals 
of the type studied in Chapter 4. The integrand of these integrals will 
contain a determinant that will characterize the viability of inverting a 
particular data set. This determinant is part of a Jacobian that depends 
both on the background propagation parameters and on the source-receiver 
configuration. As a result, the problem of extending the inversion formula 
to new recording geometries is reduced to a problem of computing the value 
of the determinant associated with a specific geometry [Cohen, Hagin and 
Bleistein, 1986; Bleistein, 1986a]. 

In Chapter 6, the asymptotic formalism developed here will be extended 
to the two-and-one-half-dimensional inverse-scattering inversion problem. 

5.1 Asymptotic Inversion of the Born-Approximate 
Integral Equation-General Results 

The discussion of asymptotic inversion will begin with the Born-approximate 
integral equation representing the scattered field, originally presented as 
equation (3.2.1): 

2 r a(x) ) ( ) 3 us(x9,X8 ,w) =w Jv c2(x)ui(X,X8 ,W g x 9,x,w d x. (5.1.1) 

In Chapter 3, the sources and receivers were assumed to be coincident, with 
the recording surface being a horizontal plane. Our interest in this chapter 
is the more general problem of inverting seismic data collected with non­
zero offset between sources and receivers. Furthermore, the sources and 
receivers may be located on a surface that is not necessarily horizontal or 
even planar. Therefore, we must represent source and/or receiver locations 
in a more general way than was done in Chapter 3. 

5.1.1 Recording Geometries 

To this end, we will assume that either the source or the receiver locations 
range over some surface (the surface of the Earth, in seismic reflection 
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applications). That surface will be parameterized by the vector e = ( 6, 6). 
In the most general case, each ( x1, x2, X3) is a function of 6 and 6. For 
example, a common- (single-) source experiment will be described by X 8 = 

constant, x 9 = x 9 (e). For the common-receiver experiment, the roles of X 8 

and x 9 would be reversed. 
The common- (constant-) offset experiment will be described by in­

troducing a function !(e) parameterizing the surface. Offset in the e 
coordinates is then represented by introducing a vector h = (hb h2), 
representing the common offset. The coordinates, (xb x2, x3), are, in gen­
eral, functions of h1 and h2 . Finally we set xs(e) = J(e - h), and 
x 9 (e) = J(e+h). If the surface described by f is not planar, then choosing 
a constant vector h (a constant offset in e) does not constitute a constant­
offset experiment between x 8 and x 9 . (The zero-offset experiment is a 
special case of the common-offset experiment with h = 0.) For a gener­
ally nonplanar surface, such a common-offset geometry may be difficult to 
achieve. In principle, we may choose the respective source and receiver co­
ordinates Xs(e) = J(e- h+(e)) and Xg(e) = J(e- h_(e)), with h+(~) 
and h_(e) being such that the source and receiver positions fall equally 
spaced on a planar (but not necessarily horizontal) datum surface. While 
such a geometry may be attainable by judicious data selection, this is not 
what happens in real surveys. On land, data are commonly collected with 
a constant spacing between receiver positions, measured on the surface of 
the Earth, within seismic lines, but lines need not (and generally are not) 
be separated by the same offset . At sea, fluctuations in currents cause 
cable feathering, the horizontal variation of the location of the hydrophone 
streamer. 

Thus, topographic variations (on land) and feathering (at sea) cause 
nonuniformity in the absolute separation of receivers and between sources 
and receivers. The functions h+(~) and h_(e) would have to track that 
variation. However, it may not be possible in practice to find appropriate 
h+ and h_ such that this may be done, and some compromises in accuracy 
might have to be made.1 

1 Such topographic variations can introduce large time shifts on individual 
seismic traces. On land, the near surface of the Earth usually consists of a low­
velocity weathering layer. The time shifts are introduced because of variations 
in the thickness of the weathering layer caused by variations in the topography, 
as well as by the fact that the bottom of the weathering layer is not planar. 
In seismic exploration the term "statics" is applied to the problem of removing 
these time shifts. We will assume that the data have been corrected for these static 
shifts in the analysis that follows. A process called wave-equation datuming may 
be applied to eliminate larger distortions due to topography [Berryhill, 1979, 
1984 and Bevc, 1995, 1999]. Data may also be migrated taking topography into 
account, see, for example, Gray and Marfurt [1995]. 
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FIGURE 5.1. Generalized source and receiver positions. The surface is param­
eterized by e' with a) representing the generalized common-source experiment 
and b) the generalized common-offset geometry. 

Binning and Stacking 

A common way of creating an approximate zero-offset 3D data set is to 
perform the 3D equivalent of common-midpoint stacking. One possible gen­
eralization of the common-midpoint gather in 3D is achieved by a process 
called binning. Binning involves defining a rectangular grid on the surface 
of the Earth. Data having source-receiver pairs whose midpoint coordinates 
fall into a specific grid are assigned to the central point of that grid. The 
data are then NMO corrected and stacked, creating the approximate 3D 
zero-offset data set. Bin-stacking is, therefore, an extension of the common­
midpoint (CMP) method with similar advantages and disadvantages. The 
advantages of bin-stacking are that it reduces the size of the data set and 
uses the redundancy of the data to enhance the signal and suppress noise 
in the data. The disadvantages of bin-stacking are similar to the disadvan­
tages of CMP stacking, which is that amplitude information, particularly 
at the higher frequencies, is lost owing to the averaging that occurs when 
the traces are stacked. Both methods have intrinsic value, in that veloc­
ity analysis is performed as part of the process, to find the appropriate 
stacking velocities required to flatten the arrivals in the gathers prior to 
stacking. 

Other Geometries 

Some important source-receiver configurations do not fit the criterion of 
having a surface spread of sources and receivers. Included among these are 
surface surveys carried out on a single line, single vertical seismic profile 
(VSP) experiments, and crosswell experiments involving only two wells. 
Furthermore, a suite of VSP experiments with the sources arrayed along a 
radial line away from the well, or a suite ofwell-to-well experiments with all 
the sources in one well and all the receivers in another, are special cases of 
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arrays confined to a single vertical plane. Such dimensionally constrained 
data sets do not provide sufficient coverage for a full three-dimensional 
inversion. Discussion of these cases must be postponed until the problem 
of two-and-one-half-dimensional inversion is considered in Chapter 6. 

5.1.2 Formulation of the 3D, Variable-Background, 
Inverse-Scattering Problem 

If the incident field UJ is represented by 

UJ(X,X 8 ,w) = F(w)g(a:,a:8 ,w), (5.1.2) 

then equation (5.1.1) is recast as an integral with two Green's functions, 

2 r a(a:) 3 
us(a:9 ,a:8 ,w) = w F(w) }D c2(a:)g(a:,a: 8 ,w)g(a:9 ,a:,w)d x. (5.1.3) 

The key to high-frequency inversion here is to invoke high-frequency 
asymptotics at the very beginning of the analysis. To do this, we re­
place the Green's functions in this equation by the WKBJ (ray theoretic) 
Green's function. (See Appendix E for a discussion of ray theory).2 These 
approximations take the form 

g(a:, a:o, w) "'A( a:, a:o)eiwr(:z:,:z:o). 

Here, T is the traveltime from a:0 to a: and A( a:, a:o) is the corresponding 
ray-theoretic amplitude, derived by solving the eikonal equation 

1 
'\lr. '\lr = c2(a:), 

and the (first) transport equation 

T(a:o, a:o) = 0, 

2'\lT. '\1 A+ A'\l2r = 0, 

subject to the condition 

47rAia:- a:ol--t 1 as Ia: - a:o I --t 0. 

(5.1.4) 

(5.1.5) 

(5.1.6) 

See Appendix E for the details of these computations. Substitution of the 
WKBJ Green's functions into (5.1.3) yields 

us(a: a: w) "'w2 F(w) J d3 x a( a:) a(a: i:)eiw</J(w,E) 
9' s, ,...., c2(a:) ,._ , (5.1.7) 

where 

2See also Gray [1986, 1988, 1992, 1997, 1998], Gray and May [1994], Ratcliff, 
Jacewitz, and Gray, [1994], and Cerveny, and de Castro [1993] for discussions of 
the applications of ray-theoretic Green's functions in migration algorithms. 



5.1 Asymptotic Inversion ... General Results 221 

¢(x,e) = T(x,xs(e)) +T(x9 (e),x), 

a(x, e) = A(x, Xs(e))A(xg(e), x). (5.1.8) 

The care we have taken in specifying the order of arguments in g(x9 ,x,w) 
is unnecessary for this particular problem because the constant-density 
scalar wave operator is self-adjoint. Other wave operators (for example, 
the variable-density acoustic wave operator) are not self-adjoint, however. 
In those cases, (5.1. 7) has the proper structure; only the amplitude factor of 
the WKBJ Green's function is asymmetric in its arguments in the non-self­
adjoint problem. The traveltime does not depend on the direction in which a 
ray is traced, meaning that the order of the arguments ofT is unimportant, 
even in the non-self-adjoint problem. Equation (5.1.8) is consistent with 
these characteristics. 

We remark that this formulation can also accommodate modeling of 
mode-converted scalar components of elastic waves by requiring that the 
traveltime and amplitude to the geophone satisfy the appropriate eikonal 
and transport equations, different from the eikonal and transport equation 
for the traveltime and amplitude from the source. Because this is a scalar 
representation, however, it cannot account for all of the vector aspects of 
elastic wave propagation and scattering [Sumner, 1988]. 

The structure of previously derived inversion formulas will serve as a 
guide in the construction of the more general inversion formalism that we 
present here. Previously derived inversion formulas were Fourier-like inte­
grals over frequency and over the source-receiver array with an integration 
kernel that was derived either exactly or asymptotically. The kernels of 
those inversion formulas all contained a phase function that was of the 
opposite sign of the phase function in the kernel of the respective forward­
modeling formula. An important difference between forward-modeling 
formulas and their respective inversion formulas results from the distinc­
tion that was made between the Earth model variables, x, and the output 
variables, y. The phase of the forward-modeling integrand was a function 
of the input variables, (x 8 ,x9 ,w), or, now, (e,w), and the earth model­
ing variables, x, whereas the phase of the inversion kernel in the simpler 
problems was a function of both the input and output variables. Following 
this example, our inversion operators should include a phase functions of 
the form -iw¢(y, e). This is an example of what is often called matched 
filtering. 

The amplitude of the inversion kernel could also be a function of the 
input variables, ( e, w), and the output variables, y. In the three-dimensional 
example of Chapter 3, we found that there was no w-dependence in the 
inversion kernel for the wavespeed perturbation a. The w-dependence of 
the inversion kernel for the corresponding reflectivity function f3 consisted 
only of a multiplication by a factor of iw. Consequently, we will assume 
that the new inversion formulas for a and f3 that we are creating here will 
have the same dependence, and verify that this assumption is correct later. 
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Combining these ideas, we conclude that the inversion operator should 
have the form 

(5.1.9) 

where the kernel B(y, e) is to be determined. 
There are three approaches to the solution of this problem; see Beylkin 

[1985], Cohen and Hagin [1985], and Sullivan and Cohen [1987]. All three 
methods lead to the same inversion formula for a(y). The method devel­
oped here is a synthesis of these three approaches. Only the leading-order 
inversion operator is of interest because we have already restricted the 
problem to leading-order asymptotics in our approximations of the Green's 
functions. We substitute the data given in (5.1.7) into (5.1.9), to obtain 
the cascade of the forward-modeling formula and the associated inversion 
formula 

a(y) = j w2F(w)dw j d2~ B(y,e) 

. j d3x eiw{cf>(m,E)-cf>(y,E)}C(x,e)a(x), (5.1.10) 

where 

- a(x,e) 
C(x,e) = c2(x) . (5.1.11) 

Let us think of this sixfold integral as a threefold integral in x of a ( x) times 
some kernel function, yielding a(y). If this is to be true, then the kernel 
function must, in some asymptotic sense, have the same sifting property as 
the Dirac delta function, 8(y - x) in the integral 

a(y) "'J d3 x 8(x- y)a(x). 

We conclude, then, that the integration over e and w in (5.1.10), with all 
of the factors except a(x), must produce a Dirac delta function, at least 
asymptotically. That is, 

8(x- y) "'J w2 F(w)dw J d2~ B(y, e)eiw{cf>(m,E)-cf>(y,E)}C(x, e). (5.1.12) 

To understand why this might be so, we must remember that the integral 
in (5.1.10) or in (5.1.12) is to be evaluated in a high-frequency asymptotic 
limit, where one might suspect that x = y is a dominant critical point of the 
integrand. We note that the complex exponential part of the integrand in 
those equations is an oscillatory function, whose phase is identically zero for 
x = y, lending plausibility to the dominant critical-point idea. Intuitively, 
we might expect that the e integration would yield a larger result when 
the oscillations of the phase function are absent-that is, when x = y-as 
compared to the value of the e integration when X i= y. It will be verified 
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later that the dominance of this critical point is, indeed, correct. Therefore, 
we are interested in approximating this integral for x in a neighborhood of 
y. 

Formally, in (5.1.12), we may expand the amplitude function C(x, ~) and 
the phase function iw { ¢(x, ~) - ¢(y, ~)} into the Taylor series about the 
point x = y. Approximating the amplitude function by the first term of its 
Taylor series, we have 

while the difference in the phase has the approximation 

¢(x,~)- ¢(y,~) ~ Y'x¢(x,~) · (x- y) + ... , 
m=y 

yielding the following: 

iw { ¢(x, ~)- ¢(y, ~)} ~ ik · (x- y). (5.1.13) 

Here, w V' ¢ is interpreted as a wave vector k, through the identity:3 

k = wV' yc/J(y, ~) = wV' x¢(x, ~) (5.1.14) 

We have approximated the total phase function by the first nonvanishing 
term of its Taylor series. This equation defines a change of variables of 
integration from (w, ~) to k. In terms of the new variables of integration, 
(5.1.12) becomes 

8(x-y) ""j d3kB(y,~)w2 (k)F(w(k))ac~~~v \ 8~7~~)\eik·(m-yJ. 
(5.1.15) 

The function w(k) is defined via the expression (5.1.14) formally as 

(k) = k. V'y¢(y,~) 
w IV' y¢(y, ~W . (5.1.16) 

The reciprocal of the Jacobian appearing in equation (5.1.15) is easier to 
calculate than the function o(k)/o(w, ~). To do so, it is sufficient to com­
pute the necessary derivatives directly from the definition of kin (5.1.14). 
That result is 

o(k) 2 
o(w, ~) = w h(y, ~), 

3 For y "near enough" to x, there exists an exact change of variables from w, ~ 
to k for which equation (5.1.13) is exact, (5.1.14) is the leading term of the Taylor 
series fork, and (5.1.17) is the Jacobian of the change of variables at x = y. See 
Lemma 5.2 in Section 5.5. 
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\7 y¢(y, ~) 
8 

h(y, ~) = det 86 \7 yc/J(y, e) 

8 
86 v yc/J(y, e) 

so that w28(w,e)/8(k) is seen to be a function of y and e only. 

(5.1.17) 

The right side of (5.1.15) is seen to have the form of a forward and inverse 
Fourier transform with two exceptions. First, note from (5.1.15) that e is 
a function of the two independent variables in k = kjk, because 

relates these variables independent of the choice of lwl. Thus, the function 

a(y, e), written in the new variables, depends on both k = k/k and y. 
Second, the amplitude of the integrand depends on y, as well as on k. 4 

Indeed, if (5.1.15) were an exact result, then the entire amplitude would 
have to be equal to 1/8Jr3 . At the very least, if F(w) were not identically 
equal to unity, this could not be an exact inverse transform. Thus, we should 
expect that, at best, this integral will be the cascade of an asymptotic 
forward and inverse transform. So, let us pose the problem more mildly; 
we ask only that the entire integrand should reduce to 1/87r3 for F(w) = 1. 
That is, 

B(y,e)a(y,e) 1 

lh(y, e)lc2(y) 81f3 ' 

implying that 

B(y,e) = _1 lh(y,e)lc2(y). 
81f3 a(y, e) 

(5.1.18) 

With this value in place, (5.1.9) provides the high-frequency inversion of 
the observed data for the wavespeed perturbation as 

a(y) = _1_ jd2c lh(y,e)lc2(y) jdw e-iw</>(y,t;)u (x x w) (5119) 
81f3 <, a(y, e) 8 91 Sl • • • 

Implicit in this inversion is an identification of a Fourier wave vector, k 
in (5.1.14) as a function of both frequency, and of a gradient vector that 
depends on the particular source-receiver configuration and the location of 

4This is exactly the kind of integral considered in the Chapter 4. It should be 
expected that a justification of the approximations made here will be based on the 
theory developed in that chapter. While such a justification will not be presented 
in detail in this text, it has been carried out [Bleistein, 1988] and will be briefly 

discussed later. Note, however, that for this definition of k, positive and negative 
values of w pick out vectors in both of the directions, ±'V'y¢(y,~)/I'V'y¢(y,~)l, 
as anticipated by the theory of the last chapter. 
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the output point. This is what we claimed in the discussion in Section 4.2. 
As in that discussion, we tie this identification back to something more 
familiar. Recall that for the constant-background, zero-offset inversion of 
Chapter 3, the sum of traveltimes, ¢(y, e) as defined by (5.1.8) is just the 
two-way traveltime 2r/co = 2ly- xsl/co, for which k = 2wrfco. This is 
just the stationary phase result, (3.6.11), except for the detail of the special 
treatment of k3 in the analysis of that section. Likewise, the w(k) that is 
defined in equation (5.1.16) reduces to the formula for w of the zero-offset, 
constant-background case treated in Chapter 3. 

The direction, k, of the vector, k, is the migration dip, (discussed in 
Chapter 4). We can think of a particular survey as sweeping out an area 
of migration dips on the unit sphere-a suite of directions-as the sources 
and receivers range over the acquisition surface. This sweep varies with the 
location of the output point y, as well as with the range of sources and 
receivers of the given experiment. 

The determinant, h(y, e) in (5.1.17), must be finite and nonzero for the 
identification of the cascaded model and inversion integral (5.1.10) as an 
approximate Fourier integral (5.1.15). Thus, we could use the value of this 
matrix to characterize whether or not given source-receiver configurations 
provide invertible data by this formalism at an output point y. In particu­
lar, we require that this determinant be finite and nonzero for some range 
of e values at any y where the high-frequency inversion is to be computed. 

The expression of the spatial weighting in terms of this one determinant 
for any source-receiver configuration and background propagation speed 
is a major contribution of Beylkin's [1985] approach to high-frequency 
inversion. 5 For this reason, we will henceforth refer to this object as the 
Beylkin determinant. 

5.1. 3 Inversion for a Reflectivity Function 

Equation (5.1.15) is a Fourier-like integral of the type discussed in 
Chapter 4. The perturbation function a(y) will be assumed to be piecewise­
smooth, but also to have discontinuity surfaces that behave as reflectors. 
Because data must be assumed to be band- and aperture-limited, we know 

5 The lasting contribution of Beylkin [1985] was the identification of Fourier­
like inverse-scattering inversion formulas of the type we discuss throughout this 
text with the mathematical objects known as elliptic pseudodifferential operators. 
The importance of this contribution stems from the fact that mathematicians 
have created a set of well defined rules describing an algebra for this class of 
operators. That is, the multiplication, division, and composition (which is to 
say, cascading) of elliptic pseudodifferential operators is well defined. We are, 
therefore, justified in constructing inverses of such operators as in Chapters 2 
through 6, and in the cascading (composing) of such operators, as we do in 
Chapter 7. See the discussions in Sections 2.5.1 and 4.4.9. 
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from the results of Chapter 4 that inverting for a(x) will produce band­
and aperture-limited step functions acting at the positions of the reflector 
surfaces. However, such band- or aperture-limited step functions are not 
ideal reflector images for parameter estimation because they are doublet­
like waveforms with zero-crossings at the reflector positions. Therefore, as 
in Chapters 2 and 3 we will modify equation (5.1.15) to invert for the re­
flectivity function (3(y) so that the reflector surfaces will be delineated by 
band- and aperture-limited impulses, instead. 

In Chapter 4, such a modification was obtained by applying a symmetric 
filter in the k-domain. We will apply the same filter to (5.1.15) to create 
an inversion formula to invert for the reflectivity. This filter is a simple 
multiplication by ik in one half of the k-domain, and a multiplication by 
-ik in the other half of the k-domain. 

The magnitude of the wave vector k, as defined by (5.1.14), is simply 
k = lwiiY'y¢(y,e)l. It follows that the symmetric filter ink-domain can 
be taken to be iwi'V'y¢(y,e)l where sgn(w) expresses the desired change 
of sign in the two halves of the k-domain. Thus, we obtain the reflectivity 
function~' 

~(y) = J d2~ B(y,e)IY'y¢(y,e)l 

· J iw dw e-iw<f>(y,E)us(x x w) 
9> 8> ' (5.1.20) 

which is the first inversion formula that we have deduced by applying the 
theory of Chapter 4 to equation (5.1.9). Other reflectivity functions will 
follow in this chapter. 

Up to this point, we only expect a result in the form of a bandlimited sin­
gular function 7(x) of the reflector(s)-discontinuity surface(s)-scaled by 
the jump across the reflector. However we should anticipate, as in our earlier 
inversion formulas, that the asymptotic output is proportional to some re­
flection coefficient. This reflection coefficient will be a function of the jump 
in material parameters ( wavespeed, wavespeed and density, or impedance) 
that is localized to the values of x where 1'( x) acts. Recall that in the 
one-dimensional inversion results, as well as in the higher-dimensional zero­
offset (constant-background wavespeed) problems, division by 4 yielded an 
output that was the reflection coefficient times a singular function. In the 
next section we show that the correct divisor in this case is the dimen­
sionless expression, c2 (y)IV'y¢(y,e)l 2 , which reduces to a divisor of 4 in 
the case of zero offset. This more exotic divisor will be seen to account for 
obliquity-an additional amplitude factor due to the angular separation 
of rays traced from the output point to the source and receiver-in the 
non-zero-offset inversion process. Thus, using equation (5.1.18), equation 
(5.1.20), and this new divisor, the inversion for a new reflectivity function 
is proposed. This new inversion formula is 
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1 J 2 lh(y,e)l 
f3(y) = 871'3 d ~ a(y, e) IV' y</>(y, e) I 

o j iw dw e-iwcf>(y,E)us(::c ::c w) g, Sl o (5.1.21) 

5.1.4 Summary of Asymptotic Verification 

As in Chapter 3, this formula will be analytically tested by applying it to 
Kirchhoff-approximate data representing the scattered field from a single 
reflector, S, in a medium with a known background wavespeed. This anal­
ysis is the subject of Section 5.4. For the reader who prefers to skip the 
details of that analysis, we state the main results in Sections 5.1.6 through 
5.1.7. 

5.1. 5 Inversion in Two Dimensions 

While this chapter is devoted to the formulation of inversion in models 
with 3D wavespeed variability, models with 2D variability are equally im­
portant. In Chapter 6, we will present results for inversion in models with 
2D variability, but still with waves experiencing 3D (spherical) geometrical 
spreading-which is to say 2. 5D models. 

Though less physically relevant, inversions of fully 2D data (with waves 
experiencing cylindrical, instead of spherical, spreading) are still important 
for comparison. Because of the computer-intensive nature of fully 3D seis­
mic modeling, particularly for generating synthetics using finite-difference 
solutions to the wave equation, the geophysical community has relied on 
purely 2D methods for many seismic modeling applications. We will not 
present a comprehensive study of 2D inversion, but we will make use of the 
3D results derived in this section to point the way, via a set of exercises, 
to the 2D inversion formulas corresponding to those results. 

Therefore, the purpose of this next series of exercises is to derive a 2D 
inversion formula following the discussion in this section. Essentially, the 
steps of the previous 3D derivation are repeated, except that the deriva­
tion begins with a 2D modeling formula, involving 2D Green's functions. 
The point of these exercises is to get the powers of w right. Thus, we con­
sider a two-dimensional model in which data acquired along a line or curve 
on one side of a halfspace (the interior of the "2D Earth," for example). 
Equivalently, we can think of line sources in 3D along lines parallel to the 
generators of a "cylindrical Earth." 

The discussion of asymptotic inversion will begin with the Born­
approximate integral equation for the scattered field that was originally 
presented as equation (3.2.1). 
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Exercises 

5.1 Explain why the shift from 3D to 2D leads to the integral equation 

(5.1.22) 

which is the same as the previous 3D Born modeling formula result, 
with the exception of the integration being two-dimensional, and D 
being a two-dimensional domain. 
Here, in keeping with our preference of maintaining z or x 3 as the 
depth variable, we take x = (x, z) or x = (x1, x3), with similar 
definitions for x 8 , x 9 , and any other spatial and wave vectors that 
will arise. 
The sources and receivers may be located on a curve; they need not 
be restricted to a horizontal line. Therefore, as in the development 
above, we represent the sources more generally, with the position 
vectors, X 8 , X 8 , now functions of a scalar parameter, ~- The ideas 
here follow the ideas there and will not be repeated in this brief 
discussion. 

5.2 If the incident field UJ is represented by 

UJ(X,X 8 ,w) = F(w)g(x,x 8 ,w), (5.1.23) 

then verify that equation (5.1.22) is recast as an integral with two 
Green's functions, 

us(x9 ,x8 ,w) = w2 F(w) L ;~~)g(x,x8 ,w)g(x9 ,x,w)d2x. (5.1.24) 

5.3 Again, we invoke high frequency asymptotics at the very beginning of 
the analysis. To do this, we replace the Green's functions in this equa­
tion by their WKBJ (ray-theoretic) approximations. Explain why, for 
two-dimensional problems, these Green's functions take the form 

ei1l"/4sgn (w) 
g(x X w) "' A(x x )eiwr(a:,a:o). 

' o, .JlWT ' 0 

Here, as for the 3D problems, T is the traveltime from Xo to x and 
A(x, x 0 ) is the corresponding ray-theoretic amplitude, derived by 
solving the eikonal equation 

1 
'Vr · 'Vr = c2 (x), r(xo, xo) = 0, (5.1.25) 

and the (first) transport equation 

2'VT. 'VA+ A'V2T = 0, 

subject now to the condition 

2-yhrrlx- xoi/cA---+ 1, as lx- xol ---+ 0. 

(5.1.26) 

(5.1.27) 
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Hint: 

Consider the case of a constant-background medium. Show 
that the Green's function in this case is iH61)(wr/c)/4, with 
r being radial distance from the source and H61) the Hankel 
function of the first kind (consistent with our choice of tem­
poral Fourier transform). Then, use the asymptotic expansion 
of this Green's function (Appendix E) to verify the spatial 
and frequency structure of the general Green's function defined 
above. 

5.4 Show that substitution of the WKBJ Green's functions into (5.1.24) 
yields 

us(x x w) ~ iwF(w) Jd2x o:(x) a(x i:)eiw</>(re,t;.) 
g, s, ~ c2(x) '" ' 

where 

Hint: 

Here, use 

¢(x, ~) = T(x, X8 (~)) + T(x9 (~), x), 

a(x, ~) = A(x, x8 (~))A(x9 (~), x). 

= lwlei7r/2sgn(w) = iw. 

(5.1.28) 

(5.1.29) 

5.5 Follow the discussion of the 3D derivation to conclude that the 
inversion operator should have the form 

o:(y) = J dwf(w) J d2~ B(y,~)e-iw¢(y,t;,)us(x9 ,x8 ,w), (5.1.30) 

where the kernel B(y, ~)and the function f(w) are to be determined. 
Explain why we have included a possible frequency domain filter here 
that was absent in the 3D derivation. 

5.6 Verify that the cascade of the forward-modeling formula and the 
inversion formula yields the representation 

o:(y) = J iwf(w)F(w)dw J d~ B(y, ~) 

. J d2x eiw{¢(re,t;.)-¢(y,t;.)}C(x, ~)o:(x), (5.1.31) 

where 
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(5.1.32) 

5. 7 Explain why the asymptotic structure of this equation must have the 
form 

o:(y) rv 1 d2x c5(x _ y)o:(x), 

or 

c5(x- y) rv I iwf(w)F(w)dw (5.1.33) 

. I~ B(y,~)eiw{4>(m,E)-4>(y,mc(x,~). 
5.8 Explain why we may use the approximations 

C(x, ~) ~ C(y, ~) 

and 

m=y 
5.9 Show that this last approximation leads to the introduction of a local 

wave vector, k, as follows: 6 

5.10 Show that 

iw { ¢(x, ~) - ¢(y, ~)} ~ ik · (x- y). 

k = wV ,¢(y,f.) = w'(l ,¢(x, ~) 1.~." 

k = k/k = sgn(w)Vy¢(y,~)/1Vv¢(y,~)l, 

(5.1.34) 

(5.1.35) 

relates ~ to k, independent of w, except for the trivial dependence 
on sign. Thus, the direction of k is completely determined by the 
acquisition geometry through the directions of the rays from source 
and receiver at the imaging point; that is, it is a function of x8 (~), 
x9 (~), and y. As noted in the text in the discussion of 3D inversion, 
this direction is called the migmtion dip. 

6 As noted above in the discussion of 3D inversion, for y "near enough" to x, 
there exists an exact change of variables from w, ~ to k for which the result here 
is the leading term of a Taylor series fork. See Lemma 5.2 in Section 5.5. 
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5.11 Show that, with k replacing the variables~ and w, (5.1.33) becomes 

8(x- y) f'V I d2k B(y,~)iw(k)f(w(k)) 

. F( (k)) a(y, ~) 18(w, ~)I ik·(m-y) 
w c2(y) 8(k) e . (5.1.36) 

Here, the function w(k) is defined via the expression (5.1.35) formally 
as 

(5.1.37) 

5.12 It is easier to calculate the reciprocal of the Jacobian appearing in 
equation (5.1.36), that is, the function, 8(k)/8(w,~). To do so, it 
is sufficient to compute the necessary derivatives directly from the 
definition of k in (5.1.35). Show that 

8(k) 
8(w, ~) = wH(y, ~) 

(5.1.38) 

[ 
V' ycf;(y, ~) l 

H(y, ~) = det 8 ( ) . 
8~Y'y¢Y,~ 

5.13 Verify that w[8(w,~)/8(k)] is a function of y and~' only. However, 
note that the absolute value of this function appears in (5.1.36), so 
we need to take some care to account for this in our analysis, below. 

5.14 Follow the arguments of this section to conclude that 

!( ) . ( ) B(y, Oa(y, ~) 1 
w zsgn w IH(y,~)lc2(y) = 4rr2' 

implying that 

and f(w) = -isgn(w). 

(5.1.39) 
5.15 Show that, with this value in place, (5.1.30) provides the high­

frequency inversion of the observed data for the wavespeed perturba­
tion as 

a(y) =-=!_ ~d~ IH(y,~)jc2(y) 
4rr2 a(y,~) 

·I isgn(w)dw e-iw¢(y,E)us(x9 ,x8 ,w). (5.1.40) 

We remark that the frequency domain filter, -i sgn ( w), is equiva­
lent to extracting the Hilbert transform of the temporal data. See 
Section A.7.1. 
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5.16 Explain why the discussion that leads to the derivation of (3 remains 
unchanged. However, show that the revised expression for (3 is as 
follows. 

(J(y)=-1 Jd~ IH(y,~)l 
4n2 a(y,~)IVy¢(y,~)l 

· j lwl dw e-iw</>(y,e)us(x9 , Xs, w). (5.1.41) 

5.1. 6 General Inversion Results, Stationary Triples, and 
COS ()s 

In Section 5.4, we will present a detailed asymptotic analysis of the ap­
plication of the inversion formula, (5.1.21), to Kirchhoff approximate data 
for a single reflector, paralleling the analysis of Section 3. 7. The essential 
details of that derivation arise from asymptotic analysis of the combined 
phase that arises from the cascade of the modeling and inversion integrals. 
Here, we provide a synopsis of that analysis with some qualitative remarks 
about the details of the analysis. 

The dominant contribution to the asymptotic expansion occurs when 
there are "stationary triples." A stationary triple consists of a source point 
X 8 , a receiver position x 9 , and a reflection point x, located on the scattering 
surface such that the law of reflection is satisfied at x for the given source­
receiver pair. Furthermore, the output point y is tied to this triple through a 
requirement on the gradients of the travel times to source and receiver points 
from y to the upper surface (see Figure 5.2). This latter condition takes 
on a slightly different form for each of the source-receiver configurations of 

FIGURE 5.2. The graphical representation of the "stationary triple" composed 
of the source position Xs, receiver position Xg, and reflection point x on the 
reflecting surface. 
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interest. However, by associating y with the stationary triple, this condition 
defines each of those points as functions of the output point y. 

In terms of the vector k defined by (5.1.14), the stationarity condition 
requires that the stationary value of k be the wavenumber vector pointing 
normal to the surface S. For each output point y on the reflector, as w 
and e vary over their domains, (5.1.14) defines a mapped k-domain. For a 
prescribed output point the only reflectors that could possibly be imaged 
are those for which the normal vector to the surface points in direction 
supported in the mapped k-domain. When there is no stationary triple for 
the given y, the output is asymptotically of lower order (and, presumably, 
smaller) at that output point. 

We characterize the inclination of the tangent plane of the reflector at 
each point by its normal, introducing the term reflector normal dip or, 
more succinctly, reflector dip. Then, we can state the condition that we 
just described for our inversion formula to yield an image at a particular 
point as follows. 

A stationary point in X and e exists for a given output point y on 
the reflector when the migration dip equals the reflector dip at that 
point. 

Alternatively, 

An image will only be produced at points where the sweep of 
migration dips includes the reflector dip. 

The first form here focuses on the asymptotic analysis; the second form 
implies a need to design the source/receiver array with an eye towards the 
range of dips of reflectors to be expected in the region of interest in the 
Earth. 

When the stationary triple does exist, the output is shown to be pro­
portional to the bandlimited singular function of the surface, introduced in 
Chapter 4, denoted by !'B(Y) or 8B(s). That is, 

f3(y) '""f(y)R(x, BshB(y), (5.1.42) 

where Bs is the angle of incidence (or reflection) for a specularly inci­
dent ray. In this equation, f(y) is a slowly varying function of y, which 
is equal to unity when y is on the reflector, S. Furthermore, R(x, Bs) is 
the geometrical-optics reflection coefficient at the incidence angle Bs deter­
mined by the stationary triple. 7 For yon S, x = y and /'B(Y) = 8B(O), 
where this latter function is easily expressed in terms of the filter and the 

7The subscript s is used to indicate that this is the angle that the incident or 
reflected ray makes with the vertical (and is, therefore, ~ the opening angle be­
tween the incident and reflected rays) for the special case of a specularly reflected 
ray. The reader should note that when cos() appears in an inversion formula, 
the () is a ray theoretic estimate of half the angle between two rays traced to a 
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FIGURE 5.3. When the stationary triple exists, the output point y is also the 
stationary point x on the reflector. The ray direction from the output point to 
the source is along V'rs = V' yT(y, x.). The ray direction from the output point 
to the receiver is along '\lr9 = V'yr(y,x9). The opening angle, 28., is the angle 
between these two vectors for the special case of a specularly reflected ray. 

same (} s. This leads to the result 

(3PEAK(y) "'R(y, Bs)8B(O) 

"'R(y, 88 )- F(k) dk, 1 ! 00 

27r -oo 
F(k) = F(ck/2cos88 ). 

But we show further that the transformation from a k-integral to an w­
integral leads to the result 

cos(}s 100 

(3PEAK "'R(y,Bs)-(-) F(w)dw, 
1fC Y -oo 

for y onS. (5.1.43) 

That is, the peak value of (3 for y on S is the geometrical-optics reflection 
coefficient multiplied by 2cos88 /c(y) times 1/27r, further multiplied by the 
area under the filter in the w-domain. 

Determination of cos(} s 

For y not on S, the angle (} is defined by the equation 

cos 2(} 
V'yr(y,xs) · V'yr(y,x9 ) = c2 (y), (5.1.44) 

which follows from the eikonal equation and the definition of the dot prod­
uct of two vectors. By computing '\l¢(y, e)·'\! ¢(y, e), we may apply (5.1.44) 
and the eikonal equation to show that 

particular subsurface location using the given background-wavespeed profile, and 
does not, in general, represent a specular reflection angle. 
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1Vy¢(y,~)l 2 = IVyT(y,xs)l 2 + IVyT(y,xg)l 2 

+ 2V yT(y, X8 ) • V yT(y, Xg) 

1 4cos2 e 
= c2 (y) {1 + 2cos2B} = c2 (y) . (5.1.45) 

Thus, 

c(y) 
cose = 2 IVy¢(y,~)l" (5.1.46) 

In particular, for y on S, this provides a means for estimating cos e" 
through the introduction of another inversion operator, differing from (3 
by one power of IVy¢1: 

1 J 2 lh(y,~)l 
f31(y) = 8n3 d ~a(y,~)IVy¢(y,~)l 2 

· j iw dw e-iw¢(y,~)us(xg, X8 , w ). (5.1.47) 

The asymptotic analysis of (31 proceeds exactly as for (J(y). The introduc­
tion of the extra divisor of IV y¢1, however, introduces this divisor in the 
asymptotic amplitudes of the result, as well. In particular, using (5.1.43) 
and (5.1.45), we conclude that 

f31PEAK(Y) rv R(y,Bs)..!_ JF(w) dw, for yon S. 
27r 

(5.1.48) 

The fact that these two operators differ by a factor of 2 cos e I c(y) allows 
us to estimate cos es from the ratio of the outputs without ever having to 
determine the specular source-receiver pair that produced the distinguished 
value of () s! This, in turn, allows us to determine R(y, e s) from either 
output. With knowledge of 88 and the background-wavespeed c(y), it is 
conceivable, within the limits of the accuracy of the data, that we should 
be able to estimate the jump in the propagation speed across S using the 
formula for the geometrical-optics reflection coefficient. At the very least, 
we would have a value of the reflection coefficient as a function of angle for 
the amplitude, versus, offset (AVO) analysis. 

We note also, here, that computation of (3 by (5.1.21) involves compu­
tation of a square root, IVy¢1 for each~' whereas the computation of (31 , 

above, involves computation of the square of the gradient-no square root. 
Now that we understand the role of factors of IV y¢1 in the amplitude, we 
could conceive of another inversion operator, say (32, with no factor of IV y¢1 
in the integrand. The output from this new operator would differ from (31 

by a factor of 4 cos2 e s I c2 (y). The ratio of the two outputs, (31 and (32, could 
just as easily be used to determine cos e s as the ratio proposed above. The 
advantage in computing (31 and (32 is that there is no square root necessary 
in the calculation. (Such computations do not require multiple migrations 
of the data. They require only that two different multiplications occur in 
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the innermost loop of the migration/inversion algorithm. Thus, one pass 
at the migration could generate both the {31 and /32 outputs.) 

Despite this observation, for theoretical purposes, we will continue to 
develop the theory in terms of f3 and f31· 

When Things Go Wrong 

In heterogeneous media, it is possible that the ray Jacobian that defines 
one or the other of the amplitudes in (5.1.8) might be zero for some choice 
of (y, e). (See (E.3.9).) The actual Green's function is not infinite there, 
but the simple structure A exp{ iwr} is no longer valid in such a region. 
Fortunately, such events occur at isolated points (a "set of measure zero," 
in mathematical jargon), and thus make a minor contribution to the in­
tegration process. Furthermore, the limit of the integrand in this case is 
zero, provided h remains finite at such a point. Thus, we can expect only 
small errors in the analytical integration through such points, even if we 
continue to use the asymptotic expressions for the Green's functions in a 
regime where they are not valid. Because such errors are a characteristic of 
the approximations we are using for the Green's functions, we could con­
sider replacing our classical WKBJ asymptotics with a more appropriate 
asymptotic expansion. A uniform expansion, for example, would produce 
a large, though not infinite, amplitude at such a point, but because the 
points are all isolated, this would result, again, in only a small contribution 
to the total integral. In practice, there is little reason to go to such lengths 
for this reason. 

When the integral is transformed into a sum, one simply needs a criterion 
to skip points where the Jacobian, on which the amplitude is based, is too 
small. Alternatively, one could explicitly write the amplitude in terms of 
the Jacobian. Then, the integrand would be zero at such points, because 
the amplitudes vary inversely with the square root of the Jacobian. 

The zeros of the Jacobian indicate that the geometrical optics ray is pass­
ing through an envelope or caustic of the ensemble of rays of the Green's 
function, such as might happen when rays propagate through a low-velocity 
lens on their path from y to source or receiver. With the caustic passing 
through the data-acquisition surface, on one side or the other of the surface 
point where there is a caustic, the caustic will be below the surface. At that 
point, the rays shall have passed through this caustic on their trajectory to 
the surface. The amplitude of the Green's function must then be adjusted 
with a phase shift to account for the passage through the caustic. We will 
not address such cases in the text, but the extension of these methods 
to deal with caustics with some degree of complexity is possible. See, for 
example, de Hoop [1998]. 

There is also the possibility that the Beylkin determinant might be in­
finite or zero. Again, if this occurs at isolated points, it indicates that the 
basic premises of the theory have broken down, but the contribution to the 
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overall sum or integral of more accurate representations of the integrand 
at such isolated points will be negligible. 

The only time either of these pathologies is a serious problem for the 
basic theory is if the particular value of ~ corresponds to the specular 
source/receiver pair~or is "near" the specular value, for the given y. Then 
the theory really does break down. 

In Section 5.3, we show that the Beylkin determinants for common-source 
or common-receiver inversion are proportional to the squares of the ampli­
tudes of the corresponding Green's functions. So the quotient, h/a = h/A2 

depends on simpler relationships between the coordinates that describe 
the ray directions and their relationship to the surface coordinates. This 
suggests that the quotient can actually remain finite when both functions 
approach zero. 

The situation is more complicated for common-offset inversion, owing to 
the structure of the Beylkin determinant for this case. Still, singularities of 
amplitude or of the Beylkin determinant do not cause serious error in the 
output, except when that choice of y and ~ is nearly a specular reflection 
point. 

Except for this case, an isolated violation of the basic hypotheses of the 
theory has a mild influence on the output that we obtain. Usually, the 
primary influence is on amplitude, while phase--which changes reflector 
location~is not affected nearly as much. That is, the reflector map remains 
intact, but parameter estimation might suffer. 

Similarly, if a small part of the bandwidth, say, 25%, fails to satisfy 
our high-frequency criterion, then, again, amplitude degrades more than 
reflector location. 

Other Geometrical Attributes 

The basic idea used to determine cos 88 can be used to determine other at­
tributes of the ray geometry for reflections at the specular reflection angle. 
For example, consider another reflectivity function whose integrand differed 
from the one in (31 by the factor, ¢(y, ~). Then, the output of these two 
reflectivities will differ by a factor equal to the total traveltime from source 
to specular point to receiver. Similarly, one could determine the separate 
traveltimes by using factors of T(y, x 8 ) or T(y, x 9). Other useful informa­
tion might be the direction of the normal, the specular source coordinates, 
the specular receiver coordinates, and so on. All can be determined exactly 
as we determined cos e s at specular, above; see the exercises and Geoltrain 
and Chovet [1991]. 

Exercises 

5.17 Show that an equivalent expression for (31 in 2D is given by 
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5.1. 'l An Alternative Derivation: Removing the 
Small-Perturbation Restriction at the Reflector 

Our method of deriving inversion formulas so far has been to create a for­
ward model using perturbation theory. A result of this has been that we 
have set the goal of inverting for the perturbation in wavespeed a(x) that 
was part of this formulation. Contained in these choices is the implica­
tion that the results are valid only if the jumps in wavespeed are "small 
perturbations" from a known background-wavespeed profile. 

The robustness of the seismic method in actual applications, even when 
the background wavespeed is not well determined, suggests that the seis­
mic method is not really constrained to imaging small perturbations only. 
In fact, geophysical common sense would indicate that the reverse is 
true-that stronger reflectors will be imaged better than weaker ones. 
Mathematically, the results of this section show that the output of our 
linearized inversion formulas, when evaluated in the neighborhood of a re­
flector, is an estimate of the reflectivity-a linear function of the specular 
reflection coefficient (which is a nonlinear function of the perturbation in 
wavespeed). The fact that we are seeing the fully nonlinear reflectivity 
function, rather than merely a linearized approximation to the reflectiv­
ity, suggests that the small perturbation constraint is an artifact of the 
derivation instead of being an actual limitation on the inversion formulas. 

It is, therefore, reasonable to try to derive our inversion formulas by start­
ing with a forward model that is not restricted to small perturbations across 
reflecting surfaces. Again, we will assume that the background propagation 
speed is known accurately down to the neighborhood of a given reflecting 
surface. We choose to derive an inversion operator that images the reflec­
tor, while yielding an estimate of its specular reflection coefficient. Note 
that we are no longer inverting for the perturbation a(x), but are going 
directly for the reflectivity. 

To do this, we start with a different forward model of the reflected 
wave-a model that is not restricted to small perturbations. The Kirchhoff 
modeling formula 

us(xg, Xs,w) rv iwF(w) is R(x, Xs)a(x, e) 

· (n · Y'x¢(x,e)) eiw<f>(oo,eldS. (5.1.50) 
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derived in Section E.8, is just such a representation. While the Kirchhoff 
modeling formula is restricted to high frequencies, it has no restriction 
in the size of the jump in material parameters across a given reflector. Of 
course, above the reflector, we must assume that the background wavespeed 
is close to the true wavespeed, both for locating the reflector in its correct 
output position and for estimating the reflection coefficient correctly .. Fur­
thermore, this is still a primaries-only theory in which multiple reflections 
are neglected. 8 Both of these omitted features of the seismic experiment 
still require that the perturbations in the wavefield above the reflector of 
interest be small, in some sense. 

As a first step, we want to rewrite (5.1.50) in a form that will allow 
us to recast this surface integral as a volume integral. Recall that all we 
want to recover is the reflector itself, and an estimate of R. In the forward 
model, then, we only care about the main contribution to the integral at 
high frequency, which is to say, the contribution produced by the method 
of stationary phase. While we do not want to carry out that analysis com­
pletely and have to make conjectures about the Hessian and its signature 
at stationarity, we can rewrite the integral in a somewhat simpler form by 
taking account of some of the consequences of stationarity. 

In particular, we know that at the stationary point, the normal and the 
gradient of the traveltime are anticollinear, the surface normal pointing 
upward and the gradient pointing downward, but in the normal direction. 
Consequently, 

(5.1.51) 

at stationarity. Thus, in (5.1.50), we could replace the factor n · '\7 x<f>(x, e) 
by the right side of (5.1.51) and still have the same leading-order asymp­
totic result for the specularly-reflected wave. Similarly, we can replace the 
pointwise reflection coefficient in (5.1.50) by its specular value. Without 
changing notation, let us assume, below, that this has also been done. 

Then, (5.1.50) can be recast as follows: 

us(x9 ,x8 ,w) "'-iwF(w) Is dSR(x,x 8 )'y(x) 

· a(x,e)i'Vx<f>(x,e))l eiwcf>(a:,E)_ (5.1.52) 

It is fairly straightforward to transform equation (5.1.52) into a volume 
integral, similar to (5.1.7). We introduce a new coordinate system in place 
of x, consisting of the two parameters on the surface S, and the normal 
distance to this surface. This transformation will break down at the eva­
lute of the reflector (which is to say, the surface made up of centers of 

8 See, for example, Hill, Dragoset, and Weglein [1999], and the follow-up 
articles of that special section for a survey of current results on multiple 
attenuation. 
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principal curvature of the reflector surface), but will be good closer to the 
surface than the evolute. That is, in a neighborhood of S, dSdnr = d3 x 
(the differential surface element multiplied by the differential normal ele­
ment) is exactly the differential volume needed to create a volume integral 
representation. We rewrite (5.1.52) as 

us(x9 ,x8 ,w)"' -iwF(w) J d3xR(x,x8 )/(x) 

. a(x,~)IY'x¢(x,~))l eiw¢(oo,e). (5.1.53) 

Here, the integral is over the entire region x3 ~ 0; 'Y( x) is the singular 
function of the reflecting surface. Clearly, we need some well-behaved ex­
tension of R off the reflecting surface; the particular choice of extension is 
not important, as long as it allows for our asymptotic analysis to proceed. 
In practice, our inversion will create a bandlimited singular function. For 
this function, it is necessary to require that the evolute be "many wave­
lengths" from the reflector so that the breakdown in the coordinate system 
occurs in a region where the contribution to the total integral is asymptot­
ically small. Under this restriction, we may proceed without regard to the 
breakdown of the coordinate system. This latter assumption is merely the 
requirement that the principal radii of curvature of the reflector at each 
point are among the length scales that must conform to the high-frequency 
criterion of Section 3.4. 

The product, R(x, X 8 )/(x), is exactly our reflectivity function, (J(x). 
Thus, we rewrite the previous result one more time, as 

us(x9 ,x8 ,w) "'-iwF(w) J d3x(J(x)a(x,~) 
·IY'x¢(x,~))l eiw¢(oo,e). (5.1.54) 

We now have an integral equation that is similar to equation (5.1.7). 
We make the following identifications between that equation and the 
representation ( 5.1.54). 

us(x9 ,x8 ,w) ----t iwus(x9 ,x8 ,w), 
a(x) ----t (J(x), 

a(x,~)/c2 (x), ----t a(x,~)IY'x¢(x,~))l, 
¢(x, ~) ____, ¢(x, ~). 

(5.1.55) 

We could, at this point, proceed with the derivation of the asymptotic 
inversion of (5.1.55) exactly as we did in Section 5.1 to invert (5.1.7). How­
ever, there is no need to do so. The same result can be obtained by making 
the identifications (5.1.54) in the inversion formula, (5.1.10), 
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1 J 2 lh(y,~)l 
(3(x) = 81r3 d ~a(y,~)IY1x¢(x,~))l 

· J iw dw e-iw</>(y,E)us(x x w) 
9l Sl • (5.1.56) 

This formula should be compared to (5.1.21) for (3(y). We see that the 
right sides agree. Thus, with some hand-waving, we have obtained the same 
result as before, without making the small perturbation assumption. This 
result will be verified by asymptotic analysis in the next section. 

5.1. 8 Discussion 

In Section 5.1. 7 we found that starting with the Kirchhoff modeling formula 
provides a quicker path to an imaging formula that yields the reflectivity 
function of a given reflector. We have said that we have "removed the 
small-perturbation assumption," yet the result is still a linearized inver­
sion formula. What we actually have done is shifted the emphasis of the 
process of linearization from "linearization in wavespeed perturbation" to 
"linearization in reflection coefficient." Most assuredly, in the presence of 
strong reflectors (such as volcanic layers), multiples will be generated, likely 
masking the data. Even if such multiples could be successfully removed 
through a preprocessing step, there may not be sufficient energy penetrat­
ing into the subsurface beneath a strong reflector to give the inversion 
formula anything to image. Thus, the concept of seismic imaging contains 
a built-in "small-perturbation requirement." We have removed only the 
small-perturbation assumption at the reflector of interest, which was an 
artifact of our derivation. 

Exercises 

5.18 The approximation C(x, ~) ""C(y, ~),for x near y, was used as part 
of the derivation of equation (5.1.19). Justify this approximation for 
x -/=- y by examining the relative sizes of the terms in the Taylor series 
expansion of C ( x, ~) defined by ( 5 .1.11) for a constant waves peed 
medium. 

5.19 Consider the four reflectivity functions, 

(~1(y),~2(y),~3(y)) = J d2~ ( 8¢~~~~), 8¢~~~~), 8¢~~~~)) 

and 
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FIGURE 5.4. Geometry of the slowness vectors, p 9 and p 8 • The opening angle, 
2(}, is the angle between these two vectors, and the direction of the vector p s + p 9 

is normal to the reflector surface when the output point, y, describes a specular 
reflection point. 

~4(Y) = J d2~ J iw dw e-iw</>(y,E;)us(x9 , X 8 , w). 

Explain why the ratios 

yield an estimate of the normal to the reflector, S, when evaluated 
on the reflector. How do you know where the reflector is? 

5.2 The Beylkin Determinant h, and Special Cases 
of 3D Inversion 

An important consequence of the formulation that we have created is that 
the influence of source-receiver geometry is completely described by the 
Beylkin determinant h(y, e). It is therefore worthwhile to examine the 
specific structure of this determinant. 

Recalling that 

we will use the notations 

V' yr/J(y, e)= Ps + P9 · 

Rewriting equation (5.1.17) using these definitions yields an expression 
for the Beylkin determinant 
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Ps +Pg 
8(ps + Pg) 

h(y, e) = det 86 (5.2.1) 

8(ps + Pg) 

86 
in terms of the slowness vectors p 8 and p 9 and their derivatives with respect 
to the surface coordinates (6, 6). The reader should be aware that these 
vector quantities are evaluated at the output point y. 

5.2.1 General Properties of the Beylkin Determinant 

Some general properties of the quantities that compose the Beylkin deter­
minant can be exploited for simplification purposes. Several properties that 
will prove to be useful in future computations are 

2 2 1 
Ps = p9 = c2 (y) (the eikonal equation), (5.2.2) 

. 8ps _ ~ 8(p8 • Ps) _ ~ 8(1/c2 (y)) _ O 
Ps 8~i - 2 8~i - 2 8~i - ' (5·2·3) 

P . 8p9 = ~ 8(p9 · p9 ) = ~ 8(1/c2(y)) = 0 
9 8~i 2 8~i 2 8~i 

for i = 1, 2, (5.2.4) 

with the last two results following because c(y) is not a function of 6 
or 6.9 The last two relations here state that a given slowness vector is 
orthogonal to the vector obtained by taking its ~i derivative, which we 
see is a consequence of the fact that the length of the slowness vector is 
independent of e. The notation may be simplified further by defining the 
quantities for V 8 , v 9 , W 8 , and w 9 , 

- 8ps 
Vs = 86' 

- 8ps 
Ws = 86' 

- 8pg 
and w 9 = 86 . (5.2.5) 

Using these new notations, the Beylkin determinant may be written as 

[ 
Ps + Pg l 

h(y, e)= det Vs + Vg 

W 8 +Wg 

where the expression on the far right is the representation of the 
determinant as a triple scalar product of three vectors. 

Using the relations in equation (5.2.5), it follows that the vectors defined 
by the cross products V 8 x W 8 and v9 x w 9 point in the same direction as 

91n the anisotropic case, the wavespeed will be a function of the direction of 
the ray, ultimately characterized by e. In that case, this simplification does not 
occur. 
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Ps and p 9 , respectively, implying that 

V8 X W 8 = J.t 8P8 1Vs X Wsl = J.t 8 C(y) P8 1Vs X W 8 1, 
v 9 X w 9 =: J.t9p9 lv9 X w 9 1 = J.t9c(y) p9 lv9 X w 9 1. (5.2.6) 

Here, J.t8 , /-tg = ±1, according to whether the respective cross products are 
collinear or anticollinear with p8 and p9 , respectively. This result implies 
the following triple scalar product forms 

Ps · Vs X Ws = c1;) lvs X Wsl and p9 • Vg X Wg = :;) lv9 X w 9 1. 

(5.2.7) 
Figure 5.4 shows the geometry of the p9 and p 8 vectors. We may define 

the angle 0 via the dot product of these two vectors as 

1 
Ps · p 9 = c2 (y) cos20. (5.2.8) 

Equation (5.1.45) now takes the form 

IPs+ Pgl 2 = (Ps + Pg) · (Ps + Pg) = Ps · Ps + 2ps · Pg + Pg · Pg 

2 4cos2 0 
c2 (y) (1 + cos20) = c2 (y) , 

and (5.1.46) becomes 

(5.2.9) 

Furthermore, (5.2.7) allows us to write the following triple scalar product 
relations: 

f.ts COS 20 
Pg · Vs X Ws = f.tsC(y)(p9 • Ps)lvs X Wsl = c(y) lvs X Wsl 

/-tg cos 20 
Ps · v 9 X w 9 = J.t9c(y)(p8 • p9 )lv9 X w 9 1 = c(y) lv9 X w 9 1. 

(5.2.10) 

With these relations and the identity 

1 +cos 20 = 2 cos2 0, (5.2.11) 

which we have used extensively, we are ready to write simplified forms of the 
Beylkin determinant for several common geophysical recording geometries. 

Exercises 

5.20 Verify the following identities 
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Ps, Vs X W 9 = I /Ls I [lvsl 2 (ws 'w9 )- (vs 'w9 )(vs · Ws)], 
C V 8 X Ws 

Ps · Vg X Ws = I /Ls I [lwsl 2 (vs · v 9 )- (vs · W 8 )(W8 • v 9 )], 
C V 8 X W 8 

Pg · Vs X w9 = I /Lg I [lw912(v 9 · V 8 )- (v9 · w 9 )(v9 · Ws)], 
C Vg X Wg 

P 9 · V 9 X Ws = I /Lg I [lv9 l2 (w9 · W 8 )- (v9 · W 8 )(w9 · v 9 )]. 
C Vg X Wg 

5.21 Use the eikonal equation, (5.2.2), to eliminate derivatives of p3 and 
show that 

1 [8Psi] 
Ps. Vs X Ws = c2(y)Ps3 det 8~j ' i,j = 1, 2, 

and 

1 [8p9i] 
p 9 · Vg X Wg = c2 (y)pg3 det 8~j , i,j = 1,2. 

Here, Psj, j = 1, 2, 3, is the j-th component of the vector p 8 , and 
likewise for p9 j. Thus, the three component cross produces of (5.2. 7) 
are replaced by 2 x 2 determinants, with the sign explicitly carried 
by the sign of those determinants. (Unfortunately, the cross products 
of mixed source and receiver vectors do not simplify in this manner.) 

5.2.2 Common-Shot Inversion 

In the common-shot geometry, the shotpoint is fixed and the receiver po­
sitions vary in space. Thus Ps is independent of the surface parameters e, 
because the source position is held constant. The Beylkin determinant in 
(5.1.17) simplifies to 

h(y,e) = det 

Using the new notations defined above, 

Ps +Pg 

8pg 
86 
8pg 
86 

(5.2.12) 

r 
Ps + Pg l 

det :: = (p8 +p9 )·v9 XW9 =p8 ·V9 Xw9 +p9 ·v9 xw9 . (5.2.13) 

The expression on the far right can be further simplified using equations 
(5.2.6), (5.2.10), and (5.2.11): 

(Ps + p 9 ) · (v9 x w 9 ) = :;) (1 + cos2B) lv9 X w 91 
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_ 2J.t9 cos2 (} I I 
- c(y) Vg X Wg 

= 2J.t9 cos2 (} p 9 • (v9 x w9 ). 

Translating this back in our original notation, we have 

(5.2.14) 

(5.2.15) 

Thus, for a fixed source point, we have reduced the computation of h(y, e) 
to the calculation of the determinant hg(y, e) and the opening angle of 
the rays from source and receiver, 0. By using this result and (5.1.45) in 
(5.1.21) and (5.1.47), the following two formulas are obtained for common­
shot inversion in a constant-density medium with background propagation 
speed that can be a function of all three spatial variables: 

f3(y) = c(y) jd2~ cosOih9 (y,e)l 
8rr3 a(y,e) 

· J iw dw e-iw<f>(-u,E)us(x x w) 
9l Sl l (5.2.16) 

and 

f3I(Y) = c2(Y) Jd2~ lhg(y,e)l 
16rr3 a(y,e) 

· J iw dw e-iw<f>(y,E)us(x9 , X 8 , w). (5.2.17) 

Note that the scaling by 2cos0jc(y), which allows us to determine the 
distinguished angle of incidence (} 8 for a point on a reflector, is now seen 
explicitly as the ratio of the integrands of f3(y) and {31 (y). However, this is 
symbolic; one must still compute this scaling factor for each e, y by using 
the definition (5.1.45). 

To specialize further, assume that c(y) = constant. In this case, 

T 8 = y- X 8 , T8 = Irs I, T8 = T 8 jr8 , 

r 9 = y- x 9 , r9 = lr9 1, r9 = r 9 jr9 , 

1/a(y,e) = 16rr2rsr9 , ¢(y,e) = [rs + r9 ]jc. 

We leave it as an exercise to show that, in this case, 

rg 
8xg 
86 
8xg 
86 

(5.2.18) 

(5.2.19) 
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Furthermore, for a planar horizontal upper surface with x91 = 6 and x92 = 
6, our representation for h9 further simpifies to: 

h9 (y, e) = ; 3 
3 . (5.2.2o) 

c r9 

The full Beylkin determinant is, therefore 

h(y, e) = 2 cos2 0 ; 3 3. 
c r9 

The corresponding formulas for {3(y) and f31(Y) become 

(5.2.21) 

{3(y) = 2Y~ Jd2~ r~ cos0Jiw dw e-iw[r.+rg]fcus(x9,X8 ,W) (5.2.22) 
1rc r 9 

(5.2.23) 

In practice, we use the fact that cosO = 1/2lrs + r9 1, to carry out the 
integration in equation (5.2.22). 

The results for the common-receiver geometry follow from similar 
arguments to those above. (For a discussion of other approaches to 
amplitude-preserving, common-shot migration, see Hanitzsch [1995, 1997].) 

Exercises 

5.22 Verify equation (5.2.19). Hint: Gaussian elimination. 
5.23 Verify equations (5.2.20), (5.2.22), and (5.2.23). 
5.24 Compute the Beylkin determinant h(y, e) and the respective formulas 

for {3(y) and {31 (y) for the common-receiver geometry. 

5.2.3 Common-Offset Inversion 

The first difficulty is to define what we mean by "common-offset" geometry 
when dealing with a 3D data set. As was discussed in Section 5.1, we 
will treat the simple case in which the source and receiver positions are 
referenced to a general surface coordinate e through constant vector h (see 
Figure 5.1b), such that 

If the recording surface is planar, then Xs, e, and Xg are collinear. This 
implies that the data set has been sorted into a collection of parallel source­
receiver pairs separated by a distance of 2lhl. Because all of the source­
receiver pairs are separated by a constant vector, the orientation of that 
vector is a distinguished direction in the problem. Thus, we may take the 
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orientation of the common-offset vector to be the 6 -direction, permitting 
the following to be written: 

The general form of the Beylkin determinant can be written for an 
arbitrary source-receiver geometry as 

h(y, e)= (Ps + p9 ) · (vs + v 9 ) X (ws + w 9 ) 

= (Ps + p 9 ) · Vg X Wg + (Ps + p 9 ) · Vs X Ws (5.2.24) 

+ (Ps + p 9 ) • Vg X Ws + (Ps + p9 ) · Vs X Wg· 

The first two terms can be recognized as being the Beylkin determinants 
for the common-shot and common-receiver geometries (see the discussion 
in the previous section). We may write the Beylkin determinant as 

h(y, e) = 2 cos2 B [hs(Y, e)+ h9 (y, e)J + (Ps + p 9 ) · [v9 X Ws + Vs X w 9 ], 

(5.2.25) 
where h9 (y,e) is the determinant defined in equation (5.2.19) and hs(Y,e) 
is the corresponding determinant describing the triple scalar product, 
Ps · Vs X W8 • Unfortunately, the term on the far right contains the cross 
products, Vs x w 9 and v 9 x W 8 , which are not easily simplified. 

Another way of writing the Beylkin determinant is 

h(y, e) = 2 cos2 B [hs(Y, e)+ h9 (y, e)] 
+ ha(Y, e)+ hb(Y, e)+ he(Y, e)+ hd(y, e), (5.2.26) 

where the respective ha, hb, he and hd are defined by 

(5.2.27) 

Unfortunately, we cannot write the general common-offset Beylkin deter­
minant in a form that has a common multiplier of cos2 e. This means that 
we can do no better than the general forms of the inversion formula for 
(J(y) and fJ1(y) given by equations (5.1.21) and (5.1.47). 

However, for the special case of constant wavespeed, with a generally 
nonplanar surface, some simplification is possible. Application of Gaussian 
elimination produces the following simplified forms for ha, hb, he, and hd 

( ) _ -1 A 8xs 8p9 
ha y' e = -2- r s . ac X ac ' 

c rs <,1 <,2 

h ( i:) _ -1 A 8p8 • 8x9 
e y,., = -2-Tg. ac X ac ' 

c r 9 <,1 <,2 

( ) _ -1 A 8p9 8xs 
hb y, e = -2-Ts. ac X ac ' 

c rs <,1 <,2 

(5.2.28) 

hd(y,e) = ~1 rg. aa~g x aa~s. 
c r9 <,1 <,2 

For the special case of constant wavespeed, with a planar horizontal 
recording surface, h8 , h9 , ha, hb, he, and hd become 
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(5.2.29) 

h _ Y3 cos2(} 
b = 3 2 ' c r8 r9 

h = Y3 cos 2(} 
c- 3 2 ' c r8rg 

Substituting these results into equation (5.2.25), the full expression for the 
Beylkin determinant may be written as 

h( c)= 2 2 (} y3 [(r8 + r9 )(r; + r~)l y,... cos 3 3 3 • c r8 r9 
(5.2.30) 

The corresponding formulas for (3(y) and (31 (y) for 3D common-offset, 
constant-wavespeed, and with a planar horizontal recording surface become 

(3(y) = 2y3 Jd2~ [(r8 +r9)(r; +r~)l 
7rc2 r2r2 

8 g 

·cos(} J iw dw e-iw[r.+rg]/cus(x9 , X 8 ,w) (5.2.31) 

and 

f31(Y) = Y3 Jd2~ [(r8 +rg)(r; +r~)l 
1rc r 2r 2 

8 g 

· J iw dw e-iw[r.+r9 ]fcus(x9 , X8, w). (5.2.32) 

Equation (5.2.31) exactly matches equation (30) in Sullivan and Cohen 
[1987], which was derived using a slightly different approach. For a com­
puter implementation of this theory for v(z) media, see Xu [1996a, 1996b]. 
See, also, Cohen and Hagin [1985]. 

Exercises 

5.25 Verify equations (5.2.28). 
5.26 Verify equations (5.2.29) and (5.2.30). 
5.27 Verify equations (5.2.31) and (5.2.32). 

5.2.4 Zero-Offset Inversion 

A number of simplifications occur when the offset between the source and 
receiver is zero. For this geometry, 

r(y,x8) = r(y,x9), cp(y,e) = 2r(y,x8), IY'y¢(y,e)l = 2/c(y), 

P8 = Pg = p, V8 = Vg = V, W8 = Wg = W, (5.2.33) 
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making 

p 

h(y, () ~ 8h,(y, e) ~ 8h,(y, e) ~ 8 del ~ ~ 8 det [ : ] . 

86 
(5.2.34) 

Now, there is no need to use both (5.1.21) and (5.1.47), because()= 0 and 
no new information can be gained by computing both inversions. Because 
of the simple form of (5.1.48), we choose to use the inversion formula for 
f3I(Y) in (5.1.47) for this case: 

(3 (y) = c2(y) Jd2c lhs(Y,e)l Jiw dw e-2iwr(y,m.)u ( w) 
1 4 3 <, A2( ) S mg, ms, . 

7r y,Xs 
(5.2.35) 

In this equation, A(y, x 8 ) is the ray-theoretic amplitude defined by 
(5.1.4). Of course, for this case, (3(y) differs from (31(y) only through a 
factor of 2/c(y). We leave it as an exercise for the reader to check that 
for constant background the formula for (3(y) obtained here agrees with 
(3.6.15). 

Exercises 

5.28 Show that the inversion formula (5.2.35) agrees with inversion formula 
(3.6.15). 

5.3 Beylkin Determinants and Ray Jacobians in 
the Common-Shot and Common-Receiver 
Configurations 

In the previous sections, we presented general results for Beylkin determi­
nants, and results for the special case of constant wavespeed and horizontal 
planar recording surfaces. In this section, we will explore ray-theoretic 
forms of Beylkin determinants for the common-shot and common-receiver 
configurations. 

Such a set ofresults was presented by Najmi (1997). In particular, his re­
sults relate the Beylkin determinant to the corresponding ray Jacobians for 
amplitude variations along a ray starting from point sources. These are the 
amplitudes for the corresponding Green's functions that we have denoted 
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by A(x, x 8 ) and A(x9 , x). The significance of these results is that they sim­
plify the total calculation of the weighting functions in the corresponding 
inversion formulas, such as (5.2.16) and (5.2.17). 

Najmi's result is restricted to horizontal planar upper surfaces. Here, 
we generalize that result to a curved surface, reflecting the generality in 
our acquisition surface geometry implicit in the representation x8 (~) and 
Xg(~). 

We focus on the common-shot Beylkin determinant here. Recall that, in 
this case, the shot position is constant and the general Beylkin determinant 
reduces to a determinant that depends only on the variation in the receiver 
position. That determinant was denoted by h9 (y,~) and defined implicitly 
in equation (5.2.15) by 

p 

8p 
h9 (y, ~) = det 86 

{)p 

86 

(5.3.1) 

We have dropped the subscript gin p9 for this discussion, because we will 
need to examine specific components of this vector, and we want to limit 
the proliferation of subscripts here. 

We will not start from this determinant. Instead, we begin our analysis 
by considering the ray Jacobian10 associated with the propagation between 
the point x 9 and x. Let us denote that Jacobian by 

ax 
8a1 

8(x) ox 
Jg(x, xg) = 8(u) = det 8a2 (5.3.2) 

ox 
8a3 

In this equation, we think of a family of rays as being set off at the source 
point X 8 and arriving at a generic point x. Later, we will evaluate our 
determinants at the specific pointy. The rays are labeled by the parameters 
(a1, a2), representing the initial directions of their trajectory. These could 
be the polar angles of the initial directions of the rays, for example, or any 
other parameter that characterizes these initial directions. 

The third parameter, a3 is a running parameter along the ray. The dif­
ferent choices of a3 characterize different scalings between this running 
parameter and arclength along the rays. For example, we could choose a 
parameter a= a3, for which the equations of the rays are 

10The reader unfamiliar with ray theory should review Appendix E. 
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1 
c2(x). (5.3.3) 

In Appendix E, we show that a is related to arclength, s, along the ray 
through the equation 

da = c(x)ds. 

As we shall see in the next chapter, this is a particularly useful choice in 
2.5D analysis. On the other hand, one might as easily want to use travel­
time as a parameter, or even one of the coordinates, such as z, when the 
wavespeed depends only on z-a good and practical first approximation in 
many applications. 

We will have need of a notation for derivatives of the traveltime, r(x, Xg), 

with respect to the surface variables Xg. Thus, we introduce the notation 

'\7 Xg T = Q (5.3.4) 

and observe that 
8qi 8pj 
8Xj 8Xgi. 

This just represents an interchange of orders of integration between the 
independent variables on the upper surface and the variables at depth. 

The particular endpoint, y, in (5.3.1) and (5.3.2) is associated with a 
particular ray, that is, with a particular choice of the parameters (a1, a2) 
and a value of the running parameter (a3, in general-a, in our particular 
example, above), for which the ray passes through y. Here, we are assuming 
that there is only a single ray trajectory that connects the points, y and Xg· 

Indeed, we have assumed this throughout our analysis, for simplicity, but 
the theory can accommodate more complicated situations with multiple 
travel paths and multiple arrivals, as well. 

In the Jacobian defined by (5.3.2), we want to make two changes of vari­
ables. First, we want to replace a3 by the traveltime T and, second, we 
want to replace the arbitrary parameters, (a1 , a2) by the specific param­
eters, (q1 , q2 ). We do this by using the chain rule for functions of more 
than one variable, that is, by multiplying appropriate Jacobians together, 
as follows. 

8(x) 8(q1,Q2,r) 8(a1,a2,r) 
8(q1,Q2,r). 8(a1,a2,T). 8(a1,a2,a3) 

(5.3.5) 

8(x) 8(q1,q2) 8r 
8(q1,Q2,T). 8(a1,a2). 8a3. 

In the first line, we have exchanged a3, the generic running parameter along 
the ray with a specific ray parameter, the traveltime T. In the next line, we 
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have exchanged the generic parameters, 0'1 and 0'2, that label the ray, with 
the specific parameters, q1 and Q2. (At the end of this section, we discuss 
alternatives to this formulation, such as using Ql, q3, when appropriate.) 
Finally, in the last line, we reduce the middle factor of the previous line to 
a 2 x 2 Jacobian, and the last factor to a simple derivative. We know this 
last derivative from the ray equations. For the particular example 0'3 = 0', 

in (5.3.3), this factor is just 1/c2 (x). In any case, it is always known. 
Let us now focus on the first factor in the second line of (5.3.6) and 

observe that 

8(x) 1 

where 

p 
8p 

8x9 1 

8p 
8x92 

(5.3.6) 

(5.3.7) 

Here, we have interchanged derivatives with respect to x and with respect 
to Xgl, Xg2· 

Note that, if the upper surface were a horizontal plane and the 
parameters that we chose to describe this surface were 

e = (6,6) = (Xg!,Xg2), 

then h(y, e) would be exactly the Beylkin determinant, h9 (y, e), defined in 
(5.3.1). This is Najmi's result. That is, for a horizontal and planar upper 
surface, we have related the Beylkin determinant to the ray Jacobian for 
common-source data, in a variable-wavespeed medium. 

Now we wish to go further and relate these two determinants when the 
acquisition surface is more general. That is, we want to relate J9 to the 
determinant h9 in (5.3.1). We see there that the differentiation in the second 
and third rows is with respect to 6, 6, whereas the differentiation here is 
with respect to the explicit first two coordinates, x9l,Xg2· Transforming 
from one set of variables to the other requires more than just another 2 x 2 
Jacobian. To see why, think of the differentiation with respect to each ~i as 
being carried out by using the chain rule, first differentiating 8T / 8xk with 
respect to Xgj and then multiplying by 8x9j/8~i and summing on j. That 
result includes a derivative with respect to x 93 , which does not appear in 
our result, (5.3.7), above. Thus, in (5.3.1), we must find a way to eliminate 
derivatives with respect to x93 in order to have a chance of relating that 
result with the determinant hand subsequently to J9 . That is what we will 
proceed to do here. 
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Below, we sum over repeated indices. We will have occasion to carry out 
some sums over the indices, 1, 2, and other sums over 1, 2, 3. We will use 
capital indices for the former range, lowercase indices for the latter range. 

We begin by setting 

!.__ 8T 8 2T 8Xgk 

8~1 8Xj 8Xgk8Xj 8~1 

(5.3.8) 

Here, the first line is just a statement of the chain rule. In the second line, 
we have first interchanged the order of differentiation between Xj and Xgk· 

Now, we eliminate the differentiation with respect to x 93 in this equation 
by using the eikonal equation in the form 

and then setting 

(5.3.9) 

We use this result in (5.3.8) to write 

(5.3.10) 

Recall that the indices I = 1, 2 in this equation form the elements of 
the second and third row of the matrix on the right side of (5.3.1), while 
the indices J = 1, 2 form the elements of the second and third rows of the 
matrix on the right side of (5.3.8). This last equation states that the last 
two rows of the former matrix are linear combinations of the last two rows 
of the latter matrix. It is a general rule of matrix multiplication that one 
can carry out such a summation as a product of matrices by performing the 
same linear combination on the columns of the identity matrix and then 
premultiplying the given matrix by this modified identity matrix. That is, 
we write 
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1 0 0 

p p 
8p 

0 
8x91 _ q1 8x93 8x92 _ q2 8x93 8p 

86 86 q3 86 86 q3 86 8x91 

8p 8p 
86 

0 
8x91 _ q1 8x93 8x92 _ q2 8x93 8x92 

86 q3 86 86 q3 86 
(5.3.11) 

The left side here is just the matrix whose determinant is h9 , defined 
by (5.3.1), while the determinant of the rightmost matrix is just h defined 
by (5.3.7). Hence, we need only calculate the determinant of the middle 
matrix. Let us carry out the direct multiplication and proceed to simplify 
the result: 

~9 = [8x91 _ q1 8x93] [8x92 _ q2 8x93] 
h 86 q3 86 86 q3 86 

_ [8x92 _ q2 8x93] [8x91 _ q1 8x93] 
86 q3 86 86 q3 86 

8(x91, x92) q2 8(x93, x91) q1 8(x92, x93) 

= 8(6,6) + q3 8(6,6) + q3 8(6,6) 
p 

1 
= -det 

q3 

8x9 

86 
8x9 

86 
cosB9 vf99 
q3 c(x9 ) · 

(5.3.12) 

In this last equation, we have used ()9 for the angle between the gradient 
vector p and the normal to the acquisition surface Sa with direction de­
termined by the direction of the cross product. 11 Similarly, we have used 
g9 to denote the determinant of the first fundamental tensor of differential 
geometry of the acquisition surface; that is, the differential surface element 
on Sa is related to the differentials in e through the equation 

I 8x9 8x9 I dSa = ffgd6d6 = 86 X 86 d6d6. 

(See Kreyszig [1991], for information on differential geometry.) We can 
see from the last form in (5.3.12) that this derivation will break down if 
the normal to the acquisition surface and the gradient of the traveltime 

11 We do not really care about the sign of this dot product as we will ultimately 
use only the absolute value in our inversion formula. 
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or, equivalently, the ray direction, are parallel. Furthermore, the deriva­
tion breaks down if q3 = 0. This is a consequence of having singled out 
x91 (u),x92 (u) in the original Najmi derivation. This makes sense if the 
acquisition surface is the upper surface. However, in the next chapter, we 
will consider 2.5D inversion, which is also applicable to VSP or well-to­
well diffraction tomography. (We are referring to the usage of this term 
as in Devaney and Oristaglio, [1984]). In those cases, it makes more sense 
to think of x 92 and x 93 as the independent variables. This will lead to a 
corresponding requirement that q1 "1- 0 and a result like (5.3.12), with q3 

replaced by q1 and derivatives with respect to x 91 on the right replaced by 
derivatives with respect to x93 .12 

Throughout the derivation, we have used a generic final point, x, along 
the ray, as we needed to examine the variation with respect to a 1 , a 2 as 
well as a3 in order to introduce the ray Jacobian, J9 . Now, we need only 
evaluate our result at x = y in order to relate the ray Jacobian to the 
Beylkin determinant. To do so, we need to use (5.3.12) in our earlier results, 
(5.3.6), and (5.3.7), to obtain our final result, 

Jg(y,~). hg(y,~) =::-.aT . :((q91,q92 )). cosB9(V9f· 
ua93 a91,a92 q93 c x 9 

(5.3.13) 

Here, we have restored the subscripts g to all variables to distinguish them 
from the result below for the relationship between J8 and h8 • 

We remark that the Jacobian is related to the ray-theoretic Green's 
function amplitude, A9 (y, ~), through the equation 

A2 ( c)= K 9(a91,a92) 
g y,~ Jg(y,~) ' (5.3.14) 

with K 9 (a1 , a 2 ) a constant along the ray that depends on the specific choice 
of parameters (a1 , a 2 ). Thus, we can as easily write h9 in terms of this 
amplitude as 

h ( c)_ A~(y,~) aT 8(q91 ,q92 ) cosB9..)!J9 
9 y, ~ - K9(a91, a92) . oa93 . 8(a91, a92) q93 c(x9) . (5.3.15) 

In summary, we compute the Beylkin determinant for common-shot in­
version from the same constituents that we need for the Green's function: 
raytrace-based traveltime and amplitude, plus additional factors that de­
pend on the parameterizations of the acquisition geometry x9 (~) and of 
the rays x(u). Clearly, the same result could be derived for the relationship 
between the Beylkin determinant h8 and the corresponding ray Jacobian. 
That is, 

12We will see that further simplifications are possible, as well. All functions 
will be evaluated in the x1, X3 -plane and these 3 X 3 matrices will be replaced 
by 2 x 2 matrices. 
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J ( c). h ( c)=_!!!____, a(q8 1,qs2) . cosBs.J9; ( ) 
sY,<; sY 1 <; "' "'( ) ( ) 5.3.16 

UO"s3 u O"sl, O"s2 qs3 C Xs 

COS Bs.J9; 
qs3 c(xs) . 

(5.3.17) 

5.4 Asymptotic Inversion of Kirchhoff Data for a 
Single Reflector 

The purpose of this section is to check the validity of the inversion formu­
las, (5.1.21) and (5.1.47). This will be done in two different ways. First, as 
in Chapter 3, the inversion formulas will be checked by applying them to 
Kirchhoff-approximate, upward-scattered data for a single reflector. We will 
assume that the background propagation speed above the reflector is known 
and is continued in some smooth but arbitrary way through the reflector. 
This approach repeats the method of Chapter 3, but now for a far more gen­
eral inversion formula, allowing variable-background propagation speed and 
a variety of source-receiver configurations. In this approach, multidimen­
sional stationary phase is applied to the integral over the source-receiver 
configuration and to the Kirchhoff integral over the reflecting surface, under 
the assumption of high-frequency data. The remaining frequency-domain 
integral will then be identified as a bandlimited delta function~the singu­
lar function of the reflecting surface~scaled by a factor that reduces to the 
appropriate multiple of the reflection coefficient, depending on whether the 
integral for (3(y) or (31 (y) is being analyzed. 

Second, the method of Chapter 4 will be applied. More precisely, we 
will show that the inversion integral applied to Kirchhoff data for a single 
reflector is asymptotically dominated by the integration over a small region 
containing the output point and a nearby section of the reflector. When 
this region is small enough, the change of variables (5.1.13) can be made 
exact and the inversion integral applied to Kirchhoff data is reduced to 
forward and inverse Fourier-type integration of a scaled singular function 
of a surface. The theory of Chapter 4 can then be applied directly to this 
integral to yield the desired result. 

In both of these methods, it is assumed that the Beylkin determinant, 
h(y, ~), defined by (5.1.17), is nonzero in some neighborhood of the reflec­
tor, S. In the first approach, this assumption will isolate the support of 
the singular function to the surface, S. In the second method, it will allow 
for the exact change of variables needed to reduce the multifold integral 
to an integral of Fourier type treated in the previous chapter. The first 
method shows the crucial role that physically meaningful principles~such 
as the reflection principle~relate to the asymptotic processing of model 
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data. The second method shows the close tie to Fourier inversion suggested 
by the formal analysis of the previous chapter. 

In addition to the rigorous asymptotic justification of the inversion for­
malism, the reader should come away with the idea that the tie between the 
Fourier domain and the spatial/frequency domain, implicit in (5.1.14), is 
an asymptotically dominant reality. In particular, the range of observations 
provided by the source-receiver configuration and the bandwidth provide a 
description of a Fourier domain over which parameter information can be 
deduced. 

5.4.1 Stationary Phase Analysis of the Inversion of Kirchhoff 
Data 

We first apply (5.1.21) to Kirchhoff-approximate data for the upward­
scattered field from a single reflector in response to a point source. We 
then evaluate the resulting integral asymptotically by the method of sta­
tionary phase. The Kirchhoff approximate wavefield is given by (E.8.17). 
In the constant-density case, in the notation used here, that representation 
is 

us(x9 ,xs,w) "'iwF(w) is R(x,xs)a(x,e)(n · \7x¢(x,e)) eiw</J(rv,~)dS. 
(5.4.1) 

In this equation, ¢(x,e) and a(x,e) are defined by (5.1.8) and R(x,x 8 ) 

is the geometrical-optics reflection coefficient given by (E.4.23). We repeat 
that result here: 

lfnT(x,xs)l- { 1/c!(x) -1/c2 (x) + [cfnT(x,x 8 )r} 112 

R(x, Xs) = 1/2 · 

JfnT(x,xs)j + { 1/c!(x) -1/c2 (x) + [cfnT(x,xs)r} 

(5.4.2) 
The unit normal n points upward and 8/ &n = n · \7 x; c+ ( x) is the 
propagation speed below the reflector. 

This result is to be substituted into equation (5.1.21); specifically, the 
inversion for f3(y) will be analyzed and then the second inversion operator, 
(31(y), will be discussed. The substitution of (5.4.1) into (5.1.21) leads to 
the following multifold integral representation of the output f3(y) when 
applied to these synthetic data: 

f3(y) "'- 8~3 J w2dwF(w) is< d2~ isx dS a(y, ~~~~~2(1y, e) I (5.4.3) 

· R(x,x 8 )a(x,e)(n. \7x¢(x,e)) eiw<I>(y,rv,El. 

In this equation, 
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<P(y, x, e) = ¢(x, e) - ¢(y, e) (5.4.4) 

is the difference of travel times. These are, respectively, the traveltime from 
the source point to the scattering point x (on the reflector) to the receiver 
point, minus traveltime from the source point to the output point y to the 
receiver point. The surface S is described parametrically in terms of two 
parameters (a1, a2) by an equation of the form 

(5.4.5) 

As in Section 3.7, in terms of these parameters, 

(5.4.6) 

with g being the determinant of the first fundamental metric tensor (of 
differential geometry) for S, 

g =I ax X ax 12 = ldet [ax . ax] I' k,m = 1,2. (5.4.7) 
aa1 aa2 aak aam 

Here, x denotes the vector cross product. (Again, we refer the reader to 
Kreyszig [ 1991], for information on the topic of differential geometry.) 

The method of stationary phase in the four variables ( e, u) will be applied 
to equation (5.4.4) under the assumption that F(w) constrains the band­
width of the data to "high frequency," as discussed in Chapters 2 and 3. The 
phase <P(y, x, e) is a function of these variables through the dependence of 
x on u and the dependence of X 8 and x 9 on~· Equation (5.4.4) is used to 
write the four first derivatives of <P(y, x, e) in terms of the derivatives of 
the traveltimes: 

a<P axs 
a~m = \78 [r(x, X8 )- r(y, X8 )]· a~m 

[ l 8x9 + \7 g T(X, x 9 ) - r(y, X g) • a~m, 

a<P ax -a = \lx [¢(x,e)J· -a ' for m = 1,2. 
am am 

(5.4.8) 

In this equation, \7 8 is a gradient with respect to the variables X 8 ; similarly, 
\7 9 is a gradient with respect to x 9 . 

The stationary points in (e, u) are determined by requiring that these 
first derivatives all be equal to zero. Note that a<Pjaam = 0, m = 1, 2, 
is just a statement of the law of reflection; that is, the sum of the gradi­
ents of the traveltime being orthogonal to two tangents in the surface S is 
equivalent to the condition that the angles of incidence and reflection with 
respect to the surface normal be equal. Equivalently, the sum of gradients 
must lie along the normal at the stationary point. In this second form, 
the stationarity condition generalizes to the case in which the reflection 
being modeled is a scalar representation of mode conversion, involving two 
different propagation speeds characterizing the traveltime from the source 
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to the reflector and from the reflector to the receiver. If, for a given point 
on S, there is no source-receiver pair for which the sum of gradients is 
normal at the point, then there will be no stationary point in all four vari­
ables; the asymptotic order (in w) will be lower and, presumably, smaller 
in magnitude than in the case where there is a stationary point. 

For y on S, one stationary point is easy to identify. Set x = y, with 
u chosen accordingly. Note that, in this case, 8<1> / 8~m = 0 because the 
traveltimes from x andy, respectively, to X 8 and x 9 are the same, making 
the differences in the first line in (5.4.8) identically zero. Thus, we need only 
to find a "specular" source-receiver pair, that is, a source and receiver for 
which the law of reflection is satisfied at y. This determines ~. Further, it 
confirms our earlier claim: imaging is achieved if, for some source/receiver 
pair in the survey, migration dip equals reflector dip. 

When the conditions of stationarity are satisfied, ~ and u are determined 
as functions of y as in the specific discussion here. Thus, X 8 , x 9 , and x 
are determined as functions of y. These are the geometrical coordinates 
of interest, while ~ and u characterize only a particular parameterization 
of the source-receiver surface and the reflection surface. We think of the 
former three vectors as being more fundamental than the latter two. Thus, 
below, we focus on the stationary triple, X 8 , x 9 , and x, where the two sets of 
derivatives in (5.4.8) are zero, rather than on the values of the parameters 
~ and u that make these derivatives equal zero. 

Furthermore, we are most interested in the asymptotic analysis for y near 
S and in the stationary triple that reduces to our special example above 
when y is on S. That is, we focus our attention on this stationary point, 
which has the limit x = y as y approaches S. The interest in this partic­
ular type of stationary point should remind the reader of the asymptotic 
analysis of the previous chapter for the case of a scaled singular function, 
Section 4.4.5. Recall that, for y on the support S of the singular function, 
the asymptotic inversion was significantly larger, 0(.\), than for points y 
not on S. It is this asymptotically-dominant contribution that will produce 
an image of the reflector. 

We proceed under the assumption that a distinguished stationary triple 
has been determined for y near S and that the corresponding values of u 
and ~ are interior points of their respective domains of integration. 

The result of applying the method of stationary phase to equation (5.4.4) 
is the following: 

In this equation, g is defined by equation (5.4.7), and 

I(y) = 2_ J F(w )eiw<I>(y,oo,e)+i( sgn (w))(7r/4) sig [<I>~"ldw. 
2rr 

(5.4.9) 

(5.4.10) 
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This integral, as well as the entire right side of equation (5.4.9), are func­
tions of y alone, because x, x 8 , and x 9 are determined as functions of y 
from the stationarity conditions; [<I>ea] is the 4 x 4 matrix 

(5.4.11) 

det[<I>ea] denotes the determinant of this matrix and sig [<I>ea] denotes the 
signature of the matrix. 

Because it is expected that (J(y) peaks for yon S, we are interested in 
evaluating equation (5.4.9) for y near S. First consider the behavior of the 
matrix [<I>ea] in equation (5.4.11) when y is on S. In this case, u can be 
fixed before evaluating the second derivatives with respect to ~k and ~m· In 
that limit, <I> = 0; the entire 2 x 2 matrix in the upper left-hand corner of 
[<I>ea] is a matrix of zeroes and the determinant of [<I>eal is just the square 
of the determinant of the 2 x 2 matrix in the upper right-hand corner: 

k,m= 1,2, 

(5.4.12) 
with x evaluated at the stationary pointy on Sand X 8 and x 9 evaluated 
to complete the stationary triple. 

From this result, the determinant is seen to be positive, meaning that 
the eigenvalues of each sign must occur in pairs. Thus, the only choices for 
sig [<I>ea] are ±4 and 0 and the only effect that the signature factor can 
have on the result in equations (5.4.9) and (5.4.10) is a multiplication by 
-1 or + 1, respectively. We show below that the signature is zero and the 
multiplier is + 1. By continuity, if this signature is equal to zero for y on 
S, then it must be equal to zero for y in some neighborhood of S, and 
it is assumed that this neighborhood is at least a few units of reciprocal 
wavenumber at the frequencies within the bandwidth of the data. Then, 
the depiction of the output described below will hold in a region around 
S sufficiently wide for the reflector to be detected. With sig [<I>eal = 0, the 
integral I(y) defined by equation (5.4. 7) becomes 

I(y) = 2_ J F(w)eiwiP(y,rD,E)dw. (5.4.13) 
27!' 

By assumption, the function F(w), is the spectrum of a bandlimited delta 
function. Thus, it can be seen that I(y) is a bandlimited delta function of 
the argument <I>(y, x, ~). Therefore, set 

I(y) = 8B [<I>(x, y, ~)], (5.4.14) 

where, as in earlier applications, the subscript B is used to represent the 
bandlimiting. 
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The function cJ> is equal to zero on the surface S. Thus, the support of 
this delta function includes S. This is the only zero in the neighborhood of 
S. To see why this is so, take the gradient of cJ> with respect to y, with x, 
X 8 , and Xr defined by the stationarity conditions: 

dcf> acJ> '"' [ acJ> aak acJ> a~k] 
dyj = 8yj + 7 aak 8yj + a~k 8yj , j = 1' 2' 3" (5.4.15) 

In this equation, 8cf>j8ak = 8cf>/8~k = 0, because these are the conditions 
of stationarity. Thus, the total derivative with respect to Yi is just the 
partial derivative with respect to the explicit Yi in cf>. The condition of sta­
tionarity was that this gradient be normal to the reflector at this stationary 
point. Normality would be trivially satisfied if the actual magnitude of the 
gradient were zero; this would require that the incident and reflected ray 
actually be tangent to the reflector at the stationary point. We reject this 
case as one in which the entire theory breaks down; the gradient is the first 
line of the matrix forming the Beylkin determinant and was assumed to be 
nonzero. Consequently, the surface S is an isolated zero of the argument of 
the bandlimited delta function (5.4.14). 

By standard rules about delta functions, we can now write I(y) in terms 
of a delta function of arclength along a curve normal to S. Denoting that 
arclength by s, 

8B(s) 'YB(Y) 
IVycf>(y,e)l ~=~(y) = IVycf>(y,e)l. 

(5.4.16) 

The delta function, 8(s) = r(x), with support on S, is the singular 
function of the surface S; its bandlimited counterpart is 8B(s) = /B(x). 
This result provides a partial confirmation of the asymptotic validity of the 
inversion formalism. That is, {3(y) has been shown to be proportional to 
a bandlimited singular function of the reflecting surface under reasonable 
conditions on the background propagation speed. This confirms that the 
processing proposed here constitutes mathematical imaging of the reflector 
and that graphic output will provide a visual image of the reflector. At this 
point, we have confirmed that our inversion operator is at least a migration 
operator. Further, this result suggests that if one just gets the phase right 
in the Kirchhoff operator and uses a "reasonable" amplitude function, then 
imaging is guaranteed when migration dip equals reflector dip. 

It remains now to study the amplitude to determine how its value on the 
reflector is related to the reflection coefficient. By using the result (5.4.16) 
in (5.4.9) with 8B(s) replaced by /B(x), we obtain 

a(x, e) lh(y, e) I n. \7 x¢(x, e) 
{3(y) rv -R(x,xs) a(y,e) I det[cf>e,.Jill2 1Vy¢(y,e)l2 v'YrB(x). (5.4.17) 

Recall now the definition of(} in (5.1.44). Similarly, define an angle, Ox, 
for the corresponding x-gradients and note that the two gradients make 
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equal angles with the normal at stationarity. Therefore, 

A • ., "'( C) = _ 2 COS Bx 
n Yx'f' x,.., c(x) (5.4.18) 

and 

(5.4.19) 

Note that for yon S, Bx = 08 , the specular reflection angle. Furthermore, 
we will show in Section 5.4.5 that 

(5.4.20) 

By inserting the results given by equations (5.4.18)-(5.4.20) into equation 
(5.4.17), we obtain 

/3PEAK(y) "'R(y, Xs)t5B(O), yon S. (5.4.21) 

In this equation, we return to the notation t5B(O), because the represen­
tation 'YB(Y) does not easily lend itself to the evaluation of this function 
for y on S. Modulo the few results that were postponed to later sub­
sections, this confirms the claim that the inversion operator (5.1.21), 
applied to Kirchhoff-approximate data, (5.4.1), yields an asymptotic output 
that is the bandlimited singular function of the reflecting surface multi­
plied by a "slowly varying function" whose value on the reflector is the 
geometrical-optics reflection coefficient. 

5.4.2 Determination of cos 08 and c+ 

We now explain the need for the operator /31 (y), defined by (5.1.47), to 
determine cos 0 8 and the change in propagation speed across the reflector. 
First, note from (5.4.21), that it is necessary to evaluate t5B(O) to determine 
the peak value of /3PEAK(y). To do so, use (5.4.16) to relate t5B(O) to I(y) 
and then (5.4.13) to evaluate I(y) for yon S. Then use (5.4.19) to evaluate 
the sum of the gradients and conclude that 

2cos08 1 I /3PEAK(Y)"' ----;;r:y)R(y, Xs) 211" F(w)dw, yon S. (5.4.22) 

This equation shows that the numerical value at the peak depends on 
the area under the filter in the frequency domain, the opening angle 08 

between the normal and each of the rays from X 8 toy on Sand from x 9 

to y on S, and the reflection coefficient at that opening angle. We know 
the filter and, hence, the area under the filter, but the separate elements 
08 and c+ remain coupled in this equation. 

First, consider 08 • Note that the factor of 2cos08 /c(y) is a result of 
quotients of factors of IY'x¢(x,e)l, n · Y'x<P(x,e), and IY'y</J(y,e)l at the 
stationary point, along with the results (5.4.18), (5.4.19), and (5.1.45). 
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Among these factors, the user has control over the power of the last of 
these appearing in the inversion operator (5.1.21). By changing the power 
of this factor in that operator, it is possible to change the power of the 
multiplicative factor 2 cos e s 1 c(y) at the peak of the output of the inversion 
operator. Therefore, in addition to processing the data with the inversion 
operator in equation (5.1.21), one can apply the inversion operator (5.1.47) 
to produce the output f31 (y). The asymptotic analysis of this inversion 
operator proceeds exactly as above for fJ(y). This function also produces 
the bandlimited singular function "!B(Y) scaled by a different factor. At 
the peak, that scale factor differs from the scale for {J(y) by !V¢(y, ~)l- 1 

evaluated at the stationary point on S. By using (5.1.45), we conclude that 

and 

fJ1(x) "'R(x,x8 )_!_ JF(w)dw, 
27T 

{JPEAK (x) 2 COS es 
fJlPEAK(x) rv ~' 

x on S, (5.4.23) 

x on S. (5.4.24) 

Consequently, when both inversion operators are applied to the data, 
the locations of the peaks of either of them determine the reflector, and 
then the ratio of the peak values determines cos e s. When we use multiple­
offset data to determine more than one inversion output, the estimates of 
incidence angles provide the necessary additional tool for AVA analysis. 1314 

Once cos e s is determined, either peak amplitude, {JPEAK or fJIPEAK' pro­
vides a single equation for the remaining unknown, c+(y). To see how 
this works out in detail, first rewrite the reflection coefficient in equation 
(5.4.2) in terms of es and X =yon s. Note first that, from the stationarity 
conditions, 

coses 
c(y) . (5.4.25) 

13In numerical experiments, such as in Sullivan and Cohen [1987] and in Bleis­
tein et al. [1988], the estimates of the cosine of the incidence angle tend to be an 
order of magnitude better than the estimates of the reflection coefficient itself. 
We believe that this occurs because the numerical processing in the numerator 
and the denominator is quite similar, with errors likely trending in the same di­
rection; hence, a tendency towards cancellation of error and increased accuracy in 
the calculation of the quotient of integrals, as compared to either integral itself. 

14In Kirchhoff migration the amplitude of the operator is simpler than the am­
plitude of our inversion operator. Nonetheless, the output produces an accurate 
image of the reflector. Furthermore, this quotient-of-integrals trick can still be 
used in any Kirchhoff migration operator. In the simplest case, it is only neces­
sary to get the phase right and use a crude amplitude normalization to get an 
accurate quotient. Then one can produce an estimate of the cosines of incidence 
angles, or any of a variety of geometrical attributes of the data; see Geoltrain 
and Chovet [1991] and Exercise 5.19. 
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With a slight abuse of notation, using arguments y and Bs for R, rather 
than x and X 8 , equation (5.4.2) can be rewritten as follows: 

( ) _ cosBs/c(y)- [1/c~(y) -sin2 B8 jc2 (y)] 112 

R y,Bs - 1;z· 
cosB8 jc(y) + [1/c~(y)- sin2 B8 /c2 (y)] 

(5.4.26) 

Suppose that both operators f3(y) and /31 (y) have been computed for a 
data set. Furthermore, a particular point y has been identified as being a 
peak of the bandlimited singular functions depicting the reflecting surface. 
Then cos() 8 is determined from the ratio of the outputs. Furthermore, di­
viding the peak value of /31 (y) by the area under the filter in the frequency 
domain provides a value for the left side of equation (5.4.26) at y. The 
solution of this equation for c+ (y) is most easily expressed in terms of the 
squared slowness. That is, 

1 1 [ 4R cos2 () s] 
c~(y) = c2 (y) 1 - (1 + R) 2 · 

(5.4.27) 

This completes the determination of c+(y). This expression is consistent 
with the angularly dependent geometrical-optics reflection coefficient. 

Variable Density; Mode Conversion 

It is possible to show that if the appropriate asymptotic Green's functions 
are used, the results derived here generalize to variable-density acous­
tic media and scalar mode-converted observations in elastic media~both 
isotropic and anisotropic [Geoltrain, 1989; de Hoop and Bleistein, 1997, 
1998]. In these cases, output at one incidence angle is not sufficient to 
determine the change in earth parameters across the reflector; one must 
use multi-offset data and attempt to derive parameter changes to provide 
a "best fit," say, in a least-squares sense to the amplitude versus angle 
estimates of the reflection coefficient(s). 

5.4.3 Finding Stationary Points 

The existence of stationary points for 1>(y, x, e), (5.4.4), will be considered 
further here for the most important cases of common-shot and common­
offset data sets. In the discussion, above, it was noted that for y on S, 
a stationary triple would exist for x = y if, in addition, there existed a 
source-receiver pair in the data set for which the geometrical-optics rays 
from those points satisfied the law of reflection; that is, the incidence angles 
of these rays at x = y made equal angles with the normal at that point. 
This turned out to be the distinguished stationary point that produced 
the peak value on the reflector that provided an image of the reflector 
through the bandlimited singular function. Here, we propose to consider 
such stationary points when y is not on S, but nearby. 
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s~ 

FIGURE 5.5. Stationary triple for common-shot inversion. 

Consider, first, a common-source experiment. It is fairly straightforward 
to describe geometrically how a stationary triple would be determined. We 
start from the law of reflection, obtained by setting the second line in (5.4.8) 
equal to zero: 

ox 
Y'x [¢(x,~)]· ~ = 0, m = 1,2. 

UUm 
(5.4.28) 

Given y and the fixed source point, X 8 , find a point on S for which the 
geometrical-optics rays from y and X 8 satisfy the law of reflection at x. 
Then, continue the ray from x through y up to the upper surface, s,, and 
choose x 9 to be the emergence point of this ray on the upper surface. This 
choice of x and x 9 completes the stationary triple. See Figure 5.5. 

To see why this is so, note first that, for the common-shot case, X 8 is 
independent of~- Consequently, from (5.4.8), stationarity in~ for this case 
means that 

V' g [T(X, Xg)- T(y, x 9)]· ~;~ = 0, m = 1, 2. (5.4.29) 

The ray from x to x 9 overlays the ray from y to x 9 ; the gradients appear­
ing in this equation are identical and their difference is zero. Hence, this 
stationarity condition is satisfied. By the choice of x on S, (5.4.28) is satis­
fied as well. If such a pair x and x 9 cannot be found for the given y (which 
is to say that there is no specular reflection point), then the asymptotic 
order in w of the integrals in ~ and u will be lower than when such a pair 
exists. 

Now consider the common-offset case. In particular, let us consider the 
traveltime surface, ¢(x,~), as a function of~' constrained by the station­
arity condition, (5.4.28). That is, for each source-receiver pair, identify the 
point(s) x on S for which the reflection law is satisfied. While this might 
be a multisheeted surface, in general, the value of ¢(x, ~) on this surface 
will be finite. 
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FIGURE 5.6. The traveltime surfaces ¢(x, e) and ¢(y, e) with the former subject 
to the stationarity condition, (5.4.28). 

On the other hand, consider the traveltime surface ¢(y, e) as a function 
of e for fixed y. For an unbounded source-receiver surface, this function is 
unbounded and must attain one or more interior minima. See Figure 5.6. 
Under the assumption that the condition, (5.4.28) is satisfied, stationarity 
in e is equivalent to seeking the extrema of the difference in these two 
traveltime functions. Because one function is bounded while the other is 
not, we argue that one or more internal local minima must exist. That is, 
at least one stationary triple, x, X 8 , and x 9 , must exist. 

This argument requires an unbounded source-receiver domain. In prac­
tice, that is not the case. For finite source-receiver domains, the stationary 
triple might not exist for the given y, and {J(y) will be asymptotically of 
lower order at such choices of y than it will be when a stationary triple 
does exist. 

It is somewhat unsatisfactory that a constructive demonstration of the 
stationary triple is not available in this case as it was for the previous case. 
However, for the simple example of a constant-background medium, with 
a horizontal, planar acquisition surface over a horizontal planar reflector, 
it is possible to be more explicit. Given y, drop a perpendicular to S. This 
defines the point x. Now pass a plane through that normal, parallel to the 
offset vector 2h, and consider the line of intersection of that plane with 
the upper surface. Find the source-receiver pair along that line for which 
the rays to x make equal incidence angles at that point. See Figure 5. 7. 
For that pair, (5.4.28) is satisfied. Moreover, for that pair, V' 8 r(x, x 8 ) and 
V' 9r(x, x 9 ) have projections of equal magnitude but opposite direction on 
the data surface, s~. The same is true for V' sT(y, Xs) and V' gT(y, X g)· Thus, 



268 5. Inversion in Heterogeneous Media 

FIGURE 5.7. The stationary triple for the common-offset case, planar reflector, 
planar source-receiver surface, and constant-background wavespeed. 

8if!/8~m = 0, m = 1, 2 in (5.4.8) because the separate pairs of derivatives 
with arguments x and y are each zero. 

In the two-and-one-half-dimensional inversion in the next chapter, the 
out-of-plane integration in the inversion operators will be approximated by 
the method of stationary phase. Analysis of the stationary points for the 
remaining in-plane modeling and inversion reduces to a two-dimensional 
integral in the two scalar variables, ~ and CT. The arguments used in the 
above discussion carry over to that simpler case. Hence, no further analysis 
is needed. 

As noted earlier, VSP and well-to-well inversion are special cases of 
two-and-one-half-dimensional, common-shot inversion in which the datum 
line(s) or curve(s) need not be the upper surface. Nonetheless, the same 
arguments apply in those cases. 

5.4.4 Determination of the Matrix Signature 

We will show here that the signature of the matrix [if!eo-L defined by 
(5.4.11), is equal to zero. Consider first the special case in which the back­
ground sound speed c( x) in the region between the upper surface and the 
reflecting surface is constant, the reflector is planar, and there is zero offset 
between sources and receiver. For this case, the analysis of sig [if!eo-] was 
carried out in Section 3. 7 and it was shown that the signature was, indeed, 
zero for y near S. 

Now consider deforming this constant-background, zero-offset model into 
the true model. Think first about changing the background wavespeed. If 
the signature is to change as the wavespeed model is deformed, then at some 
point in the deformation at least one eigenvalue must be zero. In fact, ex­
actly two eigenvalues would have to be zero at this point and both would 
have to change sign because det[if!eo-] at stationarity is a perfect square and 
hence is positive. Because the signature was zero to begin with, it remains 
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zero after two eigenvalues change sign. This might happen repeatedly as 
the wavespeed model is deformed from constant background to the true 
variable background. The same argument can be applied to the progres­
sive separation of source and receiver. In the next subsection, we show 
that det[il>~;a] is proportional to h(y,~). It has been assumed that h(y,~) 
is nonzero for the true model. Therefore, right at the wavespeed model 
and offset under analysis, det[il>~a] is different from zero-positive-and 
therefore its signature is zero. 

Cases in which det[il>~a] is allowed to be near zero are currently under 
study. For the present, we content ourselves with the knowledge that, for 
experiments and background models for which the Beylkin determinant is 
different from zero, the signature is zero. 

5.4.5 The Quotient h/i det[<I>~u]i 1 /2 

Equation (5.4.20) remains to be verified. As a first step, introduce the 
notation 

p(y, X8 ) = \1 yT(y, X8 ), p(y, X g) = \1 yT(y, Xg) 

and then set 

p(y, X 8 ) + p(y, X g) 
f) 

h(y, ~) = det 86 [p(y, Xs) + p(y, Xg)] 
f) 

86 [p(y, X 8 ) + p(y, x 9 )] 

(5.4.30) 

(5.4.31) 

To calculate this determinant, the matrix is multiplied by a matrix whose 
determinant is known: 

K = [ dx dx dx] 
dCJ1 ' dCJ2 ' dn ' 

(5.4.32) 

where each vector represents a column of K. Note that 

I detKJ =In. ddx x dx I= ,;g. 
(Jl dCJ2 

(5.4.33) 

Now, in multiplying K by the matrix in equation (5.4.31), the first two 
elements ofthe first row are both zero by equation (5.4.28), while the third 
element is given by 

, 2 cosB 
[p(x, X 8 ) + p(x, x 9 )]· n = c(y) , (5.4.34) 

which is just (5.4.18) rewritten in the notation of this subsection and us­
ing x = y. Thus, in expanding the determinant of the product by the 
first row, it is necessary to consider only the lower left 2 x 2 matrix after 
multiplication. A typical term is 
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a a I a~k a(Jm [T(y, X8 ) + T(y, x 9)] :IJ=y 

(5.4.35) 

a2<I> I 
- a~kaO'm "'=Y k,m = 1,2. 

It now follows that if the matrix in equation (5.4.31) is multiplied by 
the matrix K before calculating the determinant, the following result is 
obtained: 

2cosBs 1/2 
lh(y,e)lv'9= c(y) ldet[<I>{O'll , (5.4.36) 

for x =yon S. 
This verifies our claim, (5.4.20). 

Exercises 

5.29 The purpose of this exercise is to provide an alternative derivation 
of the result (5.4.20), with some added interpretation of the close tie 
between h and <I>{O'· We will start by considering a matrix closely 
related to the one in the rightmost expression in (5.4.12), which is to 
say, 

_.~- _ a2¢(x,e) 
'f'{s - f)~k88m ' k, m = 1, 2. 

Here, 8 = (81, 82) are arclength variables along the principle direc­
tions at the stationary point in u. Extend the variables 8 to three 
orthogonal variables, (8, 8 3 ), by introducing 8 3 as a variable in the 
normal direction in such a manner that (8, 8 3 ) forms a right-handed 
coordinate system. Finally, set 

Here, P is the representation of the gradient of ¢ in the coordinates 
(8,83). 

a. Consider the cross product 

a a 
a6 p X a6 P. 

Explain why 

ldet [t/J{s]l =I ~6 P X ~6 Pl
3

, 

where the subscript 3 denotes the third component or normal 
component of the cross product. 
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b. Show that 

c. Explain why 

ldet [¢esll =In· ~~1 p x ~6 PI, 
where, now, p is just the representation of the gradient in the 
usual Cartesian variables, x. 

d. Show that, at stationarity, 

ldet [¢esll = ll:l · ~6 P x ~6 PI· 
e. Show that, if 8 = u, then (5.4.20) is verified. 

5.30 We continue the previous exercise for the case when 8 =/= u. Introduce 
the matrix 

g = [OBi] ' 
oaj 

i,j = 1, 2. 

a. Show that 

b. Show that 

ldet 91 = I:~ x :~ I = g, 

the determinant of the metric tensor of differential geometry as in 
(5.4.6). 

c. Show that 

ldet [¢esll g = ldet [¢ea]l. 

d. Use this result and the previous exercise to confirm (5.4.20) for 
arbitrary parameters u. 

5.5 Verification Based on the Fourier Imaging 
Principle 

The purpose of this section is to verify the validity of the inversion formula 
(5.1.21) applied to Kirchhoff data for a single reflector based on the Fourier 
imaging theory of Chapter 4. Again, then, the formula of interest is (5.4.3) 
with the attendant definitions of the variables involved. However, we make 
one minor further assumption-that the integrand vanishes smoothly at 
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the boundaries of SandS~. This avoids details of analysis associated with 
"edge effects" that are of no interest here. 

Let us suppose now that y is near S. Introduce a neutralizer function, 
N(y,x), which is identically equal to unity in some ball, say IY- xl::; r1, 
identically equal to zero outside some larger ball, IY- xl 2 r 2 > r 1 , and is 
infinitely differentiable everywhere. We will prove the following lemma. 

Lemma 5.1. Consider the integrals obtained from (5.4.3) by introducing 
the neutralizer functions N (y, x) and N* (y, x) = 1-N (y, x) as multipliers 
in the integrand. Call the first integral fJN(Y) and the second integral f37v(y). 
Then f37v(y) = o(w-m), where m is limited only by the smoothness of the 
integrand. 

PROOF. The fourfold integral f37Y(y) in e and a is of the form 

(5.5.1) 

In this equation, the four variables 'TJ are just the variables ( 6, ~2 , u1 , u2), 

renamed to make the discussion below easier. The phase ci> 1 is just the 
phase ci> in the newly-named variables, while G is the (tapered) amplitude of 
(5.4.3) multiplied by N*(y, x ). The domain, Drp is just the pair of domains 
in e and a: s~ X S,;, and the dependence of the integrand on y has been 
suppressed. 

For y on S, the stationary point requires that x = y. Choose the support 
of the function N (y, x) so that the stationary value of x remains in the 
support of this function. Then, the integrand in (5.5.1) has no stationary 
points in D'l and vanishes coo smoothly on its boundary. Therefore, the 
integrand can be expanded as follows in preparation for integration by parts 
(the divergence theorem): 

G(ry)eiw1>1(11) = ;._ [\7 . [ \7<lh G(ry)eiw<I>ll + Gl('TJ)eiw<I>ll ' 
2W '7 l\7cJ>ll2 

(5.5.2) 

Substitute this identity into the previous equation and use the diver­
gence theorem to replace the first integral over D'l by an integral over the 
boundary of this domain. Because the integrand vanishes on the boundary, 
this first integral is zero and 

f37v (X) = ;._ r Gl ( 'TJ) exp [iwci>l ( 'TJ) l d'T]l d7]2d7]3d7J4. 
zw lv'1 

(5.5.3) 

This process can be repeated recursively, as long as the integrand has 
derivatives in D'l. Each time, another power of 1/iw is introduced as a 
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multiplier of the integrand while the integral itself remains finite. Thus, 
the claim of the lemma is confirmed. This ends the proof. D 

Now consider the integral f3N(y). This integral can be reduced to an 
aperture-limited Fourier identity operator of the type discussed in Chap­
ter 4. To do so, we must first make the approximation (5.1.13), (5.1.14) 
exact, in the support of N(y, x). The following lemma does the trick. 

Lemma 5.2. In some neighborhood of x there exists a change of vari­
ables from (w, ~) to k = (kt, k2, k3) with nonvanishing Jacobian, having 
the following properties: 

k = W [V' x [T(X, X8 ) + T(X, Xg)] + 0 (IX- yl)] (5.5.4) 

and 

a~~~~) = w2 H(y, x, ~) = w2 [h(x, ~) + 0 (lx- yl)]. (5.5.5) 

PROOF. Write the Taylor series for ¢(x, ~) = T(x, x 9) + T(x, x 9) as 
follows: 

¢(x, ~) = ¢(y, ~) + V' yc/J(y, ~). (x- y) + f I: ~ an:(u,; ~) (x- y)"'. 
v. y 

n=2il..,ll=n 

In this equation, 

v = (v1, v2, v3, v4), 

llvll ::::::: VI + V2 + V3 + V4, 

v!::::::: v1!v2!v3!v4!, 

(x- y)"'::::::: (x1- yl) 111 (X2- Y2t2 (X3- Y3t3 , 

8y"' = ayrl 8y~2 8y~3 8y~4' 

with the Vj 's being nonnegative integers. 
Now define the vector k by 

(5.5.6) 

(5.5.7) 

(5.5.8) 

One can check that k · (y- x) = w¢(y, ~) by multiplying Pj by w(xj - Yj) 
and summing on j to obtain the series in (5.5.6) multiplied by w. Note that 
the radius of convergence of each of the series in (5.5.8) is the same as for 
the series in (5.5.6). Furthermore, (5.5.4) follows by direct computation. 
Thus, in some neighborhood of x, the transformation from (w, ~) to k 
is one-to-one with the transformation to the Fourier-type phase function 
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being exact. Indeed, with hindsight, choose the support of N(y, x) to be 
small enough that H (y' x, e) is non vanishing on the support of N (y' X). 

This completes the proof. 0 

It is interesting to note that the regularity of the transformation does 
not depend on w, but only on the spatial variables. Furthermore, 

Lemma 5.3. The wavenumber k = k/lkl is a function of esgn(w) with 
nonvanishing Jacobian. Conversely, for each choice of sgn (w), e is a 
function of k. 
Remark 5.4. That is, if we were to pick two parameters, such as the first 
two components of k (or the polar angles of k) with respect to some set of 
axes, then these variables are functions of e (and only the sign of w) with 
nonvanishing Jacobian wherever H(x, e) is nonvanishing. 

PROOF. This follows from the proof of Lemma 3. 0 

This result has an important implication with regard to the aperture of k 
values in the domain of integration after transformation to these variables. 
The directions of the k-vectors in the domain of integration are solely 
a function of the source-receiver configuration. The approximate form of 
the transformation in (5.5.4) suggests further that this angular aperture is 
completely determined by the sum of the gradients of the traveltimes at x. 
Again, see Section 4.2. Equivalently, this is the sum of the tangents to the 
rays from the source and receiver. In Beylkin, Oristaglio, and Miller [1985] 
and Miller, Oristaglio, and and Beylkin [1987], extensive use is made of 
this fact. For our purposes here, the significance of this observation is what 
it implies about the integrand of (5.4.3) after transformation. Specifically, 
the integral takes the form 

(J(y)"' 8\ [ d3 kF(w(k)) [ dSf(x,y,k)eik·(re-a/). (5.5.9) 
n JDk ls 

In this equation, 

h a(x,e)n · Vx¢(x,e)lh(y,e)l 
f(x, y, k) = -R(x, Xs) a(y, e)IV¢(y, e)IIH(y, x, e)l' (5.5.10) 

The integral (5.5.9) is of the form (4.4.35), with certain changes, as listed 
below. 

1. The variables x' and x of the former result are replaced by x and y, 
respectively, in this discussion. 

2. The aperture limiting in k is partially characterized here by the function 
F(w(k)). 

3. The function f(x' / L, x/ L, k) of the former result is replaced by 
f(x, y, k) in this discussion. 

The first of these is just a change of variables; the second is a matter of 
replacing one slowly varying function of the variables by a different func-
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tion, which will not alter the asymptotic analysis applied to the integral, 
(4.4.35). The third amounts to neglecting explicit scaling in the arguments 
of the function f. 

The condition that the wavenumber be large for the results of the previ­
ous section to apply, first requires that V' y</J(y, e) be nonzero on the support 
of N(y,x). (Note that this gradient vanishes when the rays from X 8 and 
x 9 are tangent at y. That is, they are both part of a single ray from X 8 to 
x 9 . Such raypaths would naturally arise in transmission tomography. This 
theory does not apply to such cases. That this sum of gradients does not 
vanish is assured by the assumption that h(y, e) be nonzero, because this 
vector is the first row of the determinant in ( 5 .1.17). Once the minimum 
magnitude of this vector is determined, and the natural length scale L for 
the integral (5.4.3) is established, the burden of "large wavenumber" is put 
on the frequency parameter. In seismic applications, frequencies as low as 4 
Hz will prove to be high enough for the corresponding parameter, .X= KL, 
to be large. Thus, the theory of Chapter 4, particularly Section 4.4, applies 
in seismic applications. It follows from the analysis of that chapter, partic­
ularly the analysis of (4.4.35), that the output of (5.5.9) is proportional to a 
bandlimited singular function of the reflecting surface. The proportionality 
factor may be constructed from (5.5.10) and (4.4.17). When y is on S, this 
factor reduces to f(y, y, k), which we can evaluate from (5.5.10). In that 
equation, the quotient of a's is equal to one in this limit. Furthermore, it 
was shown above, (5.5.5), that the quotient h/ His equal to 1 in this limit. 
It only remains to evaluate the quotient of derivatives in that equation. 

We already know that the distinguished value of k must be ±n by ap­
plying stationarity to the derivatives in (4.4.10). (This is just the reflection 
law, as in the discussion in Section 5.1.7.) From the approximate form of 
k in (5.5.4), it is apparent that k must point downward, while the nor­
mal to S, n, in the Kirchhoff representation of us is an upward normal. 
Consequently, in (5.5.10), 

(5.5.11) 

Furthermore, from (5.5.5), 

H(x,x,e) = h(x,e). 

Thus, when the distinguished point, yon S, is in a region where there is a 
stationary point, 

f(y, X, k) = R(y, X 8 ). (5.5.12) 

In this equation, Xs is fixed by the stationarity conditions. This is an 
angularly dependent reflection coefficient. 
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We need not go any further. From ( 4.4.37), the multiplier of f is the 
area under the filter, for which we have previously introduced the notation 
DB(O). The verification is now complete. 

In summary, for a single reflector and for y near enough to S, we have 
shown that (5.4.3) can be asymptotically reduced to a Fourier-like inte­
gral operator of the type treated in Chapter 4. Then, the theory of that 
chapter yields the desired result. Along the way, we have shown that the 
approximate definition of k, introduced in (5.1.13) can be made exact in a 
neighborhood of the reflecting surface S. 

5.6 Variable Density 

So far in this chapter, we have developed inversion formulas for the 3D 
constant-density acoustic problem. The formalism presented here, however, 
is extendible to the variable-density problem as well. 

Recall that the Helmholtz or reduced form of the variable-density 
(acoustic) wave equation may be written as 

p(x)\1· [p(~) \1g(x,X 8 ,w)] + c~:)g(x,x8 ,w) = -b(x- X8 ). (5.6.1) 

The variable-density Helmholtz equation is not self-adjoint. The corre­
sponding adjoint equation may be written as 

\1· [p(~) \1(p(x)g*(x,x9 ,w))] + c~:)g*(x,x9 ,w) = -b(x-x9 ), (5.6.2) 

where g*(x, x 9 , w) is the adjoint Green's function. By the theorem of 
reciprocity, the equality 

follows. 
The necessary WKBJ Green's functions is derived in Section E.6.1. In 

particular, the necessary adjustment of amplitude is given by (E.6.8), so 
that 

g(x,x0 ,w) "'A(x,x0 ) (5.6.3) 

Here, A(x, xo) is the ray theoretic amplitude for constant density equal to 
1. Substitution of the WKBJ Green's functions into (5.1.3) yields 

(5.6.4) 

where 
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¢(x,~) = r(x, X8 (~)) + r(x9 (~), x), a(x, ~) = A(x, X8 (~))A(x9 (~), x). 
(5.6.5) 

Note that we are being purposely vague about what we mean by the "per­
turbation" avd(x). Certainly, there is the possibility of both a perturbation 
in wavespeed and density or possibly a perturbation in bulk modulus and 
density. 

We can still formally solve for an inversion formula for this perturbation 
to create an equation similar to equation (5.1.9), 

avd(y) = J dw J d2~ 

· B(y, ~)e-iwci>(y,~)us(x9 , Xs, w). (5.6.6) 

The only difference between equation (5.6.6) and equation (5.1.9) is the 
ratio of the square roots of density at the source and receiver position. 

Thus, a derivation similar to that in Section 5.1 may be created, yielding 
a formal result for avd(y): 

avd(y) = _1 jd2~ ih(y,~)ic2 (Y) 
8n3 a(y,e) 

;~::~ J dw e-iwci>(y,~)us(x9 , X 8 , w), (5.6.7) 

which is analogous to equation (5.1.19). 

5. 6.1 Variable-Density Reflectivity Inversion Formulas 

By inspection, we may write inversion formulas for reflectivity in variable­
density media that are analogous to equations (5.2.16) and (5.2.17), 
respectively: 

(3(y) = c(y) Jd2~ cosBih9 (y,~)l 
8n3 a(y,e) 

;i::~ J iw dw e-iwci>(y,~)us(x9 , X 8 , w) (5.6.8) 

and 

f3I(Y) = c2(y) jd2~ ihg(y,~)l 
16n3 a(y, e) 

;~::~ J iw dw e-iwci>(y,~)us(x9 , X 8 , w). (5.6.9) 

All other variations of the reflectivity formulas for constant-density media 
have corresponding variable-density analogs that differ from the constant-
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density formulas only by the factor J p(xs)/ p(x9 ) that is present in the 
integrand. This may appear to be a counterintuitive result. If the density 
is the same at the source and receiver positions, it appears that there is no 
change in the output due to density. This is not the case, however, as we 
will see in the next subsection. 

5.6.2 The Meaning of the Variable-Density Reflectivity 
Formulas 

Finally, following our analogy between the constant-density and variable­
density problems, we can parallel the discussion of Section 5.4 by 
substituting Kirchhoff approximate data into the inversion formula. There 
are only two differences in the analysis. 

The first of these is that the Kirchhoff modeling formula 

(5.6.10) 

differs from the constant-density Kirchhoff modeling formula ( 5.4.1) 
only by a factor of J p(x9 )/ p(x8 ), which exactly cancels the factor of 
Jp(x 8 )/p(x9 ), seen in the variable-density inversion formulas. 

In this equation, ¢(x, ~)and a(x, ~)are defined by (5.6.5) and Rvd(x, x 8 ) 

is the variable-density geometrical-optics reflection coefficient given by 
(E.6.13), which is to say, 

{ 
2}1/2 

_1_1 {)T 1- 1 1/c2 (x)- 1/c2(x) + [8rJ 
vd _ p(x) On P+(x) + On 

R (x,x 8 )- 112 , 

_1 lataul + 1 {1fc2 (x) -1jc2(x) + [8rJ2} 
p(x) CJn P+(x) + an 

(5.6.11) 
where T = r(x, X 8 ). As in the constant-density problem, the unit normal 
vector n points upward and {)I an = n . \1 X; c+ (X) and P+ (X) are the 
propagation speed and density below the reflector. 

All other parts of the stationary phase analysis in Section 5.4 are the 
same, yielding the same peak value as in equation (5.4.21): 

(5.6.12) 

with the only difference being that Rvd is the variable-density reflectivity. 
All other discussions in Section 5.1.3 follow analogously. 
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Exercises 

5.31 Using Green's theorem and the variable-density acoustic Helmholtz 
equation (5.6.1) find the adjoint equation (5.6.2). 

5.32 Discuss an approach to deriving an inversion formula for elastic media 
following the logic that has been used in this chapter. 

5. 7 Discussion of Results and Limitations 

We have developed a formalism for creating high-frequency asymptotic 
inversion formulas for the imaging/migration/parameter estimation prob­
lem in 3D variable-wavespeed and variable-density media. The technique 
is general enough to permit inversion of data gathered from experiments 
whose source-receiver geometry is compatible with the high-frequency 
assumptions inherent in our formalism. 

When the geometry of a source-receiver pair is not compatible with these 
assumptions, however, the inversion formalism presented here will fail in 
ways that may be mild to catastrophic. Catastrophic failure occurs when 
a particular Jacobian of transformation, which we call the Beylkin deter­
minant, becomes infinite. This determinant is a necessary ingredient for 
writing high-frequency modeling and inversion formulas as Fourier-like in­
tegrals, because it permits us to convert frequencies and survey coordinates 
into wavenumbers. Fortunately, in most of the seismic applications that we 
consider, such failures happen only at isolated positions away from the area 
of interest. Milder failure of the method occurs at output locations where 
the WKBJ approximation of the Green's function amplitude becomes in­
finite (such as in cusps of caustics), or where the Beylkin determinant 
vanishes. A reasonably coherent image in the vicinity of such output po­
sitions can still be obtained, at the expense of errors in the amplitude 
information. Thus, for traditional reflection experiments aimed at imaging 
deep targets, there may only be isolated points where there are problems. 

In contrast, the Beylkin determinant will always be equal to zero for 
purely transmitted raypaths, such as those in crosswell and vertical seis­
mic profile (VSP) surveys. Our formulas will not be able to image points 
that are sampled by purely transmitted energy (with no scattering), for 
this reason alone. Yet there is still need for our formalism for creating for­
mulas to invert data collected from such "near-transmission" surveys. Not 
all of the energy in these surveys consists of purely transmitted arrivals; 
some arrivals experience scattering, albeit at wider angles than in surface 
reflection-seismic experiments. If such scattered waves can be identified, 
then the application of Fourier-like methods is still appropriate. 
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Aperture Limiting 

We expect lower resolution and increased image distortion in crosswell and 
VSP surveys, even under the best of circumstances, because of the naturally 
limited aperture in these recording geometries. Recall that the k-domain 
aperture is scaled by cos 0, where 0 is the half-angle between rays from 
source and receiver as measured at the point being imaged. In VSP and 
crosswell applications, that angle is often nearer to 1r /2 than in surface 
experiments, causing lower resolution for a given bandwidth. In addition, 
as we saw in Chapter 4, the angular restriction of the k-domain apertures 
restricts the range of reflector dips that can be recovered, distorting the 
image at these points. (See Section 4.2.3 for details.) 

The trade-off is that the shorter propagation paths of waves in such 
experiments allow for the use of higher frequencies than are possible in 
traditional surface reflection seismic experiments aimed at imaging deeper 
structures. Thus, restrictions on the opening angle alone are not the whole 
story. In the literature, the application of Fourier-like inversion or migration 
appears under the name diffraction tomography. (Here, we are using this 
term as in Devaney and Oristaglio [1984].) 

Endpoint Artifacts 

Yet another source of image degradation results from the finiteness of the 
survey line, or equivalently, finiteness of the data within a line. Recall that 
all of our asymptotic analyses have assumed that the dominant contribution 
to the image output is from stationary-point contributions. To be valid, 
such analysis requires that contributions from the endpoints of integration 
be small when compared to contributions from stationary point 

Implied in this requirement is the assumption that the stationary points 
are far from the endpoints when measured in units of reciprocal wavenum­
ber or when the length scale L in (3.4.4) is the distance between the 
stationary point and the endpoint. The separation of these contributions 
is even better when the integrand vanishes at the endpoints of integration. 

For us, the endpoints of integration are naturally the ends of the survey 
lines, provided that the data are continuous along the survey, so that the 
latter condition cannot, in general, be relied upon to make our stationary 
point contribution dominate the output. Indeed, if there are discontinu­
ities in the data, such as gaps, or points that are poorly illuminated in 
the subsurface, such as the bottoms of sharp synclines, then effectively our 
formulas perform "piecewise integrations," putting potential "endpoints of 
integration" inside the survey, with contributions from these endpoints pos­
sibly being comparable in size to the stationary point contributions. The 
result is that we see artifacts commonly called diffraction smiles on output 
near the location of such terminations of the data. The diffraction smile 
can be viewed as a pseudoreflector created by the inversion formalism to 
characterize a discontinuous data set. In other words, the diffraction smile 
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is the "reflector" required to produce the data discontinuity; all of the re­
flections from the diffraction smile arrive back at the point of discontinuity. 
We will see examples of diffraction smiles in the next chapter. 

The discussion of artifacts could easily fill a textbook on its own and 
therefore we cannot tell the whole story here. Nevertheless, this beginning 
is provided to at least make the reader aware of these types of issues as 
they fall within the theoretical approach we employ. 

Failure of Ray Theory 

As noted in the preface, we have also avoided extensions of our method 
to the case in which there are caustics in the ray-family associated with 
point sources. In those cases, the Jacobian ofthe amplitude passes through 
zero and usually changes sign. The correct WKBJ solutions for the Green's 
function must include appropriate phase shift factors (the KMAH index15 

[Lewis, 1965; Ludwig, 1966; Kravtsov and Orlov, 1990; Ziolkowski and De­
schamps, 1980, 1984; Cerveny, 1995, 2000]), or the Green's function must 
be represented by functions of more general form than A exp{ iwT}. These 
extensions are in process at the time of this writing, with some results avail­
able in the literature. However, these more recent approaches are beyond 
the scope of this text. 

5. 7.1 Summary 

In summary, we have provided a formalism for imaging reflectors in the 
Earth and estimating reflection coefficients. The formalism allows for a 
wide variety of source-receiver configurations and reasonable complexity 
of the the Earth environment. Our operators can be described as appro­
priately weighted Kirchhoff migration operators with those weights arising 
from the underlying inversion theory. The method lends itself to exten­
sions with even greater complexity, both in the medium-leading to more 
general descriptions of the underlying Green's functions-and to multi­
component inversion, both isotropic and anisotropic elastic media, as well 
as to electromagnetic radiation, which we do not address at all. 

15The KMAH index keeps track of the phase shifts experienced by waves as 
rays pass through caustics. 



6 
Two-and-One-Half-Dimensional 
Inversion 

The formulas of Chapter 5 were derived for general 3D data sets, but, as we 
have mentioned in previous chapters, a large amount of oil industry seismic 
data is still in the form of seismograms collected along single lines. In 
Chapter 3, we introduced the concept of the two-and-one-half-dimensional 
(2.5D) geometry to compensate for the fewer degrees of freedom available 
in such single-line experiments. The two-and-one-half-dimensional formulas 
will allow for the inversion of a single line of data while accounting for 
many aspects of three-dimensional wave propagation. It is the method of 
choice when data are gathered along a line in a direction of dominant 
lateral changes in the subsurface (dip direction), providing an amplitude­
consistent inversion of the medium in the vertical plane containing the 
source-receiver line. The method cannot, however, account for scattered 
energy that arrives from outside the vertical plane, except by imaging these 
arrivals at equivalent, but incorrect, in-plane locations. It is also possible 
to perform 2.5D migration/inversion on lines making oblique angles with 
the dip direction [French, 1975], again, as long as that direction is fixed in 
the subsurface. The main point to be stressed is that the two-and-one-half­
dimensional assumption allows a reduction of the processing of the three­
dimensional inversion of Chapter 5, just as it did for the simpler constant­
background, zero-offset inversion of Chapter 3. (See Bleistein, Cohen, and 
Hagin [1987].) 

Indeed, the reader may want to review the discussion of Section 3.5 before 
proceeding further in this chapter. 

As described in Section 3.5, given one line of experiments in the dip di­
rection of a 2.5D model, parallel lines of otherwise identical experiments 
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will produce identical data sets. We denote the surface parameter in the 
out-of-plane direction by 6, and recognize that the data are independent of 
this variable. Therefore, in the integrals in (5.1.21) and (5.1.47), the only 
dependence on 6 is in the known amplitude and phase of the inversion 
operator. Thus, just as in the reductions of Section 3.5, the integration in 
6 can be approximated by the method of stationary phase. We will see 
below that this reduction leads to an inversion operator whose constituent 
elements can all be computed in terms of in-plane variables, reducing the 
two-and-one-half-dimensional inversion to purely two-dimensional compu­
tations. Because these 2D computations characterize in-plane propogation 
of waves from point sources in 3D, they are a closer representation of real­
ity than a completely 2D theory that does not recognize the out-of-plane 
geometrical spreading of waves. 

We introduce 2.5D ray theory for modeling in the next section, restating 
the conditions and thought experiment that lead to in-plane processing 
of 3D point-source data. In Section 6.2, we use these results to derive 
processing formulas for in-plane lines of sources and receivers, but with 
3D geometrical spreading in the Green's functions and data. We then dis­
cuss implementation for familiar 2.5D source/receiver configurations and 
provide some examples of processing of numerically generated data. 

6.1 2.5D Ray Theory and Modeling 

Because our methods depend on introducing ray-theoretic approximate 
Green's functions, a discussion of 2.5D ray theory (Cohen and Bleistein, 
1983; Bleistein, 1986b] is necessary. The discussion here will be somewhat 
brief. A more comprehensive discussion is contained in Appendix E, with 
Section E.5 being devoted to the derivation of 2.5D ray-theoretic results. 

6.1.1 Two-and-One-Half-Dimensional Ray Theory 

Our mental picture of the symmetry of a two-and-one-half-dimensional 
problem consists of the concept of raypaths confined to the vertical plane 
containing the source(s) and receiver(s), as depicted in Figure 6.1 for the 
special case of a common-shot geometry. At the end of this section are 
exercises that cover most of the concepts and results of ray theory that the 
reader will need in order to understand the applications in this chapter. 

Recall that the traveltimes and amplitudes in the inversion formulas 
(5.1.21) and (5.1.47) satisfy the eikonal and transport equations (5.1.4). 
The eikonal equation is solved by the method of characteristics, where the 
characteristics, or rays, are a solution of the system of ordinary differential 
equations (ODEs) 
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~I 

FIGURE 6.1. Schematic showing rays propagating in a 2.5D, in-plane fashion in 
a common-shot experiment. 

dx 
d(J' =p, 

dT 
d(J' (6.1.1) 

where p = '\h. These formulas are called the ray equations. In spite of 
the compact notation, the first (vector) ray equation, which relates x to p, 
represents three ODEs for three-dimensional wave propagation. The second 
(vector) ray equation also is a system of three ODEs. Thus, with the third 
formula appearing in (6.1.1), which is a single ODE, the ray equations 
are a system of seven ordinary differential equations for the problem of 
determining the rays (the first six equations) and the propagation of the 
traveltime along them (the seventh equation) in 3D media. 

The most straightforward problem for such a system of ODE's is an 
initial-value problem. To model propagation from a point source, the initial 
value of x is the source point x 0 , which, in the notation of (5.1.4), is either 
X 8 or x 9 , depending on the application. The initial value of p on a ray is 
restricted in magnitude by the eikonal equation itself, 

1 
p·p= c2 (x)' (6.1.2) 

but its direction is unspecified. From the first ray equation, we see that 
changing the direction of p changes the initial direction of the geometrical­
optics ray. Thus, by selecting the desired initial point on the ray, and the 
specified direction, we may "shoot" rays in the model. 1 

1 In practice, we need the solution for rays propagating from a specified initial 
point to a specified endpoint. This system of equations does not lend itself to 
simple solution techniques for such problems. Instead, we shoot a suite of rays, 
by varying the initial direction, then search for solutions with rays that pass near 
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For each solution of the six equations for x and p, the traveltime T can 
be determined along each ray be solving the third equation in (6.1.1), 

dT 1 

da c2 (x) · 
(6.1.3) 

The appropriate initial value for the traveltime in the point-source problem 
is T(x0) = 0. 

The special feature of the two-and-one-half-dimensional problem is 
that the medium parameters-both the background and the unknown 
perturbation-are independent of the out-of-plane variable, x 2 . Thus, in 
particular, c(x) = c(x1 ,x3 ) and 8c(x)j8x2 = 0. Consequently, in (6.1.1), 
the derivative of p2 , the second component of p, is equal to zero, from which 
it follows that P2 is a constant on each ray. Then, the equation that relates 
x 2 to p2 through the first expression in (6.1.1) has the simple solution 

(6.1.4) 

In-Plane Wave Propagation 

Let us consider the rays that propagate in the vertical plane below the 
source line, that is, the rays for which x2 = X2o· We see from (6.1.4) that 
this ray trajectory occurs only for p2 = 0. 

For this in-plane propagation, (6.1.1) is reduced from seven equations to 
five and the traveltime is determined from (6.1.3) in terms of the solutions 
for ( xr, x3 ), independent of the choice of x2o, because c( x) is independent 
of x2. Consequently, analysis of in-plane ray trajectories in the two-and­
one-half-dimensional medium becomes much simpler than analysis of three­
dimensional rays. 

Amplitude Along the Ray 

To determine the amplitude along a ray, we cannot yet completely abandon 
out-of-plane considerations. Recall that the amplitude is proportional to a 
Jacobian that characterizes the cross-sectional area of a tube of rays. We 
must, therefore, consider out-of-plane rays, but only those passing near the 
x2 = 0 plane. 

The value of x on the rays can be described in terms of the running 
variable a, the parameter p2 that characterizes the out-of-plane propagation 
of the ray, and a third parameter, say a1, which characterizes the initial 
in-plane direction of the ray. Typical choices of a 1 are the initial value of 
PI or P3 or an initial reference angle for which PI and P3 are proportional 
to sine and cosine of the angle. The particular choice of a1 is not important 
here. What is important, however, is that the amplitude A(x, xo) has the 

the final point of interest. The final step is to interpolate between known rays 
bracketing a particular endpoint to find the actual solution that we seek. 
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form 

A(x x ) = const. 
'0 J[JI' 

where the constant depends on the choice of a1 and 

dx 

J=det 

da 

dx 
da1 

dx 
dp2 

(6.1.5) 

(6.1.6) 

Again, some simplification occurs when the amplitude is to be evaluated in­
plane. In this limit, the second element of the first row, which, from ( 6.1.1), 
is just P2 itself, is equal to zero. Also, the second element of the second row is 
zero. This can be seen from the solution (6.1.4) for x2 , which is independent 
of the variable a1. Thus, for in-plane evaluation, the determinant of this 3 x 
3 matrix can be expanded by this middle column and thereby be reduced to 
the determinant of a 2 x 2 matrix multiplied by 8x2 / 8p2. We now determine 
the last element of this column by differentiating (6.1.4) implicitly with 
respect to P2, 

8x2 
8p2 =a, 

and setting p2 = 0. Here, we use the fact that a and P2 are independent 
variables in the suite of solutions of the ray equations. Therefore, we find 
that 

J = a det [ : ] = a J2v. 

da1 

(6.1. 7) 

In this equation, J2v is the determinant of the 2 x 2 matrix of the middle 
equation, while x = (xb x3) is a solution of the four equations in (6.1.1) 
resulting from disregarding the pair of equations in x2, P2 and setting P2 = 
0. (J2D is, in fact, the ray Jacobian for purely 2D ray amplitudes.) Thus, 
the amplitude and phase are determined by in-plane computations, with 
the out-of-plane spreading determined by the scaling y'a when (6.1.7) is 
substituted into (6.1.5). 

The variable a is somewhat of a hybrid ray parameter. More familiar 
parameters are arclength on the ray or traveltime. From (6.1.1), we can 
easily define the relationship between a and arclength s by noting that 

dx dx [ds] 2 1 
da.da= da =p·p=c2(x)' (6.1.8) 
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with ds being differential arclength along the ray. Thus, a is seen to be a 
ray parameter with dimension of [length] 2 /[time]. 

We now have the machinery in place for reducing the three-dimensional 
inversion formulas (5.1.21) and (5.1.47) to two-and-one-half-dimensional 
inversion formulas for a line of data gathered in the dip direction over a 
medium with two-dimensional variation. 

The exercises that follow are intended to familiarize the reader with the 
concepts of ray theory. The reader will find a comprehensive overview of 
the subject in Appendix E, which includes the 2.5D results that are not 
discussed in traditional treatments of ray theory. We also recommend that 
the reader consult Kravtsov and Orlov [1990] for a more detailed treatment 
of the subject of ray theory in heterogeneous media. 

Exercises 

6.1 Consider the case of in-plane wave propagation when c =constant. 

a. From (6.1.1), show that, in this case, p1 and p3 are constants that 
we can take to be of the form 

with j3 a constant. 
b. Further, show that 

sin/3 
Pl = --, 

c 

asin/3 
Xl-X10 = --, 

c 

cosj3 
P3= --, 

c 

cr cos j3 
X3- X30 = ---. 

c 

c. Consider the point-source problem in which (x10 , x30 ) is fixed, and 
identify j3 as the second parameter, cr1 , in (6.1.7). Calculate the 
determinant in that equation and show that the solution to (6.1.5) 
is 

A( ) _ const. 
a:, a:o - I . cr c 

d. Compare this result with the exact solution, 

1 
A( a:, a:o) = -, 

4rrr 

and conclude that, for this choice of the parameter cr1, the constant 
in (6.1.5) is equal to 1/4rr. 

Remark 6.1. For variable c, we argue that the constant depends 
only on c in the neighborhood of a:o, where c(a:) ~ c(a:0). Thus, 
we use the same constant for the solution with variable c. That 
is, we set 
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A(x,xo) ~ 4,~' J,n ~ dct [ ; 1 (6.1.9) 

6.2 For a depth-dependent propagation speed c(x3), it makes more sense 
to rewrite the ray equations (6.1.1) and the eikonal equation (6.1.3) 
with x3 as the independent variable. We do this by dividing the 
equations in a by the equation for dx3/da, 

a. Show that the resulting equations are 

dx1 Pl dT 1 

dx3 dx3 c2(x3)P3 ' P3 
da 1 dpl = 0 dp3 c'(x3) 

dx3 dx3 ' dx3 c3(x3)P3 ' P3 

where c' (x3) denotes the x3-derivative of c. 
b. Conclude from these equations that p1 is a constant that we 

can take to be sin ,8/ c( x30), and then conclude from the eikonal 
equation itself that 

For the remainder of this exercise, let us consider rays moving in 
the direction of increasing x3, and choose P3 to be positive so that 
the traveltime increases as x3 does. 

c. Derive the results 

2( ) _ c2(x3o) 
n z - c2(z) ' 

a(x)- a(xo) = c(x3o) 1" J d' 
x3o n2(z)-sin2,8 

In all of these results, we assume that n2(z) > sin2(,8) over the 
whole range of integration. 

d. Consider the point-source problem, as in the previous exercise. 
The objective now is to determine the amplitude A. To do so, we 
must compute the 2 x 2 Jacobian, J 2D. To this end, we remind 
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the reader that J2D is a Jacobian of a transformation between 
variables x1 , x3 and variables a, (3, and use the rules of Jacobian 
multiplication to conclude that 

IJ2vl = 8(x1,x3) = 8(x1,x3)8(x3,(3) = 18x18x31 
o(a,/3) 8(fJ,x3) 8(a,(3) 8(3 oa . 

Compute the two derivatives in the last expression to conclude 
that 

_ . I 2 . 2 cos(31x3 n2 (z)dz lhvl- y n (x3)- sm /3-(-) 3; 2 . 
c X3o x3o [n2 (z)- sin2 /3] 

6.3 The purpose of this exercise is to determine the constant of the am­
plitude in (6.1.5) for arbitrary choice of the parameter, a1 . We know 
that, even for variable background, the singular behavior of the source 
near the source point must be the same as for the constant-coefficient 
case, because it has to yield the correct distributional behavior near 
the source point. That is, 

1 
A(x,xo) ::::J -, 

47rr 
with r being the distance from the source. 

a. Show that 

. JaiJ2D(x, xo)l 
const. = hm . 

r-+0 47rr 

b. For small r, show that the solution of the ray equations, 

x ::::J p 0a = p 0c(x0 )r, 

where p 0 is the initial value of the p-vector at a = 0. 
c. Conclude, then, that the equation for the Jacobian, (6.1.7), 

simplifies to 

J2D =a det r :;O l = rc(xo) det r :;O ]· 
da1 da1 

d. The vector p 0 has constant length. By differentiating the dot prod­
uct of this vector with itself, show that p 0 is orthogonal to its 
a1-derivative. 

e. Conclude that 

(6.1.10) 

f. Now use this result to evaluate the constant of the solution as 

1 
const. =-

47r l
dp0 I c(xo) dal (6.1.11) 
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and, therefore, that 

1 
A(x, xo) = 411" 

c(xo) I dp0 I 
o"IJ2n(x, xo)l da1 · 

(6.1.12) 

Remark 6.2. Note that the amplitude is a symmetric function of the 
two endpoints in this simple acoustic, constant-density case. However, 
the constant's dependence on the initial point produces a representation 
in an asymmetric form. The conclusion has to be that the asymmetry 
of J balances the distinguished dependence on the initial point in this 
representation, so that the entire expression is, indeed, symmetric. 

6.2 2.5D Inversion and Ray Theory 

Suppose that the medium being investigated has only two-dimensional 
variation, say in the directions (x1, x3). Suppose that source(s) and re­
ceiver(s) are arrayed in some vertical plane parallel to the x1,x3-plane, 
at constant x2. Experimental configurations could be common-source, 
common-receiver, common-offset, well-to-well or VSP (surface-to-well). 
Consider now an identical set of experiments in a plane at a different con­
stant x 2 • By the nature of the experiment, the data are identical with the 
data for the experiment that was actually carried out. Therefore, by as­
suming the same data values in all planes parallel to the plane where the 
actual experiments were done, we fill out a surface array of data as required 
by the formulas (5.1.21) and (5.1.47). 

Parametrically, the data surface(s) take on the special form 

xs(e) = (xls(6), 6, X3s(6)), x 9 (e) = (x19 (6), 6, x39 (6)). (6.2.1) 

Consider first (5.1.21). The data are independent of 6, by assumption, 
thus, are a function only of 6 and w. Therefore, for such data, the integral 
in 6 can be computed once and for all. 

Fortunately, we can carry out this integration by the method of sta­
tionary phase, for any choice of source/receiver configuration. The phase 
is still defined by (5.1.8), with the formal large parameter being -w. The 
first derivative of the phase is 

(6.2.2) 

Note that the values of p2 are those for the ray starting at y and terminating 
at Xs or x 9 , because the derivative is with respect to the second coordinate 
of the source or receiver variable. Because p2 is constant on a ray, these 
values are just the negatives of the values on the rays directed from X 8 or 
x 9 toy. 

This derivative has to be zero at the stationary point. Analysis of the 
second component of the ray equations ( 6.1.4) for each of the rays of interest 
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here will help us determine the stationary value of 6- From (6.1.4) and the 
fact that x 28 = x 29 = 6, the equation of propagation for this component 
of each of these rays is given by 

(6.2.3) 

Here, we have been careful to show y as the initial point on the rays and 
X 8 or x 9 as the final point. We can do this, because the derivatives are with 
respect to 6, the out-of-plane Cartesian coordinate for both traveltimes. 
Because CT8 and CT9 are positive, it is necessary that the two P2's in this 
equation have the same sign. Therefore, the only way that the derivative in 
(6.2.2) can be zero is if each of these variables is separately equal to zero. 
In this case, 6 = Y2 at stationarity. 

Now, the theory of the previous subsection comes into play. At 
stationarity, 

• the propagation is in-plane; 
• the amplitude and phase of the inversion operator are independent of 

Y2i 
• the amplitude and phase of the WKBJ Green's functions in the inver­

sion operator are determined by two-dimensional calculations, with the 
scaling by .fii; and ..jii9 characterizing the out-of-plane spreading of 
the Green's functions. 

We need to calculate the second derivative of the phase at stationarity. 
That is, we need to calculate the derivatives of P2(x8 ,y) and P2(x9 ,y) 
with respect to 6 and evaluate them when these two variables are equal 
to zero and 6 = Y2. The easiest way to do this is by differentiating each 
of the relationships in (6.2.3) with respect to 6 and evaluating at the 
stationary point. There is some subtlety here. Although we have used the 
ray equations, we cannot think of CT 8 and CT 9 as independent variables. The 
reason is that, in this calculation, we are considering rays that are solutions 
of the two-point-initial and final-problem, rather than solutions of the 
initial value problem, and we are varying the second coordinate of the final 
point, X 8 or x 9 . Thus, we must consider the derivatives of both CT8 and 
CT9 when differentiating (6.2.3) with respect to 6- Let us carry out that 
differentiation without regard for subscripts s or g in (6.2.3): 

8p2(x, y) 8CT 
1 = 86 CT + P2 (X' y) 86 

82r(y,x) 8CT 
= 8~~ CT + P2(x, y) 86. 

We see, here, that 8CT/86 is multiplied by p2, which is zero whether we 
evaluate with subscript s or with subscript g. Furthermore, CT8 and CTg are 
symmetric functions of 6 - Y2 and, hence, their derivatives are zero at 
6 = Y2. Thus, the result of this differentiation is 
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and (6.2.4) 

6.2.1 The 2.5D Beylkin Determinant 

As might be expected from the analysis above, the Beylkin determinant, 
(5.1.17), also simplifies in the in-plane, two-and-one-half-dimensional limit. 
In that determinant, note that the element in the first row, second column 
is zero. To see why this is so, first note that in the notation introduced in 
(6.2.2) 

EP¢(y, e) a = P2(Y, Xs) + P2(y, Xg) = -p2(xs, y)- P2(x9 , y), 
Y2 

(6.2.5) 

as was mentioned above. This can also be seen by simply rewriting the ray 
equations, (6.2.3), as equations for y2 -6 and concluding that the change in 
sign on the right side implies a change in sign in each p2 when differentiation 
is carried out on T with respect to the y2 variable, rather than with respect 
to x2s or x29 . In any case, because the second set of P2's in (6.2.5) is zero at 
the stationary point, so is the first set. Hence, this element of the Beylkin 
determinant is equal to zero. Similarly, differentiation of (6.2.3) with respect 
to 6, evaluated at 6 = Y2 and p 2 = 0, reveals that the element in the (2, 2) 
position in the Beylkin determinant is zero, as well. The differentiation of 
the ray equation in (6.2.1) for p2 (xs, y), for example, goes as follows. 

8p2(x"' y) ( ) 8as 
0 = 86 as+ P2 Xs, Y 86 · 

Now, for p2 = 0, the second term is equal to zero and so, then, the first 
term must be equal to zero as well. Because as is not zero, the derivative 
of P2 with respect to 6 must be zero. 

The remaining element of this second column of the Beylkin determinant, 
which is to say, the (2, 3) element, can be calculated by using the same trick 
as above and by using the relationship between the first derivatives with 
respect to 6 and y2 , noted in the previous equation. That is, 

82cp(y, e) = 8p2(y, Xs) + 8p2(y, x 9 ) = _ 8p2(xs, y) _ 8p2(xg, y). (6.2.6) 

868y2 86 86 86 86 

We have already computed the last derivatives above in (6.2.4) to be 1/as 
and 1/a9 . Therefore, 

h(y,e) =-[as+ ag] H(y,6), 
a sag 
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(6.2.7) 

[ 
'Vy¢(y,6,0) l 

H(y,6) = det 8 · 
86 'V yc/J(y, 6, 0) 

In this equation, the gradient is to be reinterpreted as a two-component 
derivative including differentiations in y1 and y3 only. Because the variable 
6 has been set equal to zero, ~ = (6, 0) and there is no longer a need 
for either the vector ~ or the subscript 1. Consequently, we write H(y, 0, 
¢(y, ~), etc., with~ denoting the variable 6 of the vector~· 

In summary, applying the method of stationary phase to (5.1.21) 
amounts to the following. 

1. Evaluate the phase and amplitude by computations in-plane as defined 
by (6.1.5) and (6.1.7). 

2. Evaluate the second derivative at the stationary point by (6.2.3). 
3. Introduce~= 6; there is no longer a need for the subscript. 
4. Evaluate h(y, 0 by in-plane computations only, as noted in (6.2.6). 
5. Interpret y = (y1 , Y3), and interpret the gradient as a two-component 

operator in the same variables. 

6.2.2 The General 2.5D Inversion Formulas for Reflectivity 

With these items in place, we can directly derive the general variable­
background, 2.5D inversion formulas for reflectivity, corresponding to the 
3D formula (5.1.21) for (J(y), reflectivity multiplied by cosB8 , and that 
corresponding to equation (5.1.47) for f31 (y), which was reflectivity without 
the cosine multiplier. 

The stationary phase formula applied to (5.1.21) now yields 

() _ _ 1-jd IH(y,~)i J(Js+rJg 
(3 Y - [21rj5/2 ~ a(y,~)i'Vy¢(y,~)l JrJsrJg 

. J Mdwe-iw¢(y,E)+iw/4sgn(w)us(xg,Xs,W). (6.2.8) 

Similarly, the inversion for (31 in two-and-one-half dimensions is obtained 
by applying stationary phase to equation (5.1.47): 

1 J IH(y,~)i JrJs+rJg 
fJI(Y) = [27r]5/2 d~a(y,0i'V¢y(y,~)i2 yu;ag 

. J Mdwe-iw¢(y,~)+iw/4sgn (w)us(xg, Xs, w). (6.2.9) 

The resultant exponent i1r /4 sgn ( w) arises from two factors. First, iw in the 
earlier formulas (5.1.21) and (5.1.47) is rewritten as lwlexp{i7r/2sgn(w)}, 
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and this exponential is combined with a corresponding factor, exp { -i1r /4 sgn ( w)}, 
arising from the stationary phase formula, to yield the final result. 

These two inversion formulas provide a basis for inverting data gathered 
on a dip line on the surface of the Earth or with the sources and/or the 
receivers in a borehole (well-to-well or VSP). 

Exercises 

6.4 Suppose that the subsurface has only one dimensional variation and 
that a single zero-offset data set is available. 

a. Create the appropriate "thought experiment" to allow the appli­
cation of equation (5.1.21) to determine the reflectivity in this 
case. 

b. Following along the lines of the derivation of a 2.5D inversion 
in this section, apply the method of stationary phase in the 
transverse directions and show that one only needs to consider 
the three-dimensional wavefield on the vertical ray below the 
source/receiver point. 

c. Use the same logic as in this section to show that the elements of 
the matrix of second derivatives at the stationary point are 

c/Jij = 8ij/r:r, i,j = 1, 2. 

d. Show that the Beylkin determinant is given by 

h=-4-. 
c(z)cr2 

Show that the amplitude of the Green's function on the stationary 
ray is given by 

e. Show that 

Here, 

A= Jc(z)c(O). 
47rr:r 

(3( ) _ 8r:r J (( ) ) -iwr(z)d 
z - c(z)c(O) U 8 0 ,we w. 

t dz' 
T(z) = Jo c(z'). 

f. Specialize to constant background and compare to the result, 
(3.2.16). 

6.5 In Chapter 3, we set down criteria under which it could be expected 
that a stationary phase result would provide a reasonable numeri­
cal result for the purposes of forward modeling and inversion. For a 
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one-dimensional integral in dimensionless variables, the criterion was 
given by (3.6.5), and for such an integral in dimensional variables, 
with the dimension of length, such as our 6 here, we use (3.6.25) as 
well, to require that 

L2 d2¢(x) 
W d~~ ~ 7L 

a. Use this criterion and (6.2.4) to conclude that the accuracy of the 
asymptotic analysis that led to (6.2.8) and (6.2.9) requires that 

2 [ 1 1 ] wL - +- ~ 1r. 
as a9 

b. Specialize this result to a constant background medium and show 
that the criterion becomes 

wL [ 1 1] -L -+- ~7r, 
c r8 r9 

with the r's being the distances between the output point and the 
source or the receiver as indicated by the subscript. 

c. The relevant length scales of this problem are rs and r9 • Thus, 
conclude that 

WT8 [ Ts] - 1+- ~7r 
c r 9 

and 

- +- >?r. wrg [1 r9 ] 
c rs -

d. Explain why these criteria will always be satisfied when the 
underlying WKBJ approximation of the Green's functions is valid. 

6.6 The purpose of this exercise is to derive a 2.5D Kirchhoff modeling 
formula for the upward-scattered field from a single surface. This 
derivation will use equation (5.4.1) for 3D Kirchhoff modeling as a 
point of departure. 
Consistent with the 2.5D concept, we consider a cylindrical reflector 
whose mathematical description is essentially independent of the out­
of-plane variable. Thus, let us define the reflecting surface by an in­
plane parametric curve, 

A fixed value off, that is, a fixed XI= xi(€), xa = xa(f), and x2 free 
to vary, defines a straight line. The family of straight lines through the 
in-plane curve are the generators of the cylindrical surface. For this 
choice of parameters, dS in (5.4.1) is replaced by dx2 df. Furthermore, 
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it is necessary to assume that the source and receiver are in-plane; 
that is, 

It is further necessary to assume that the propagation speed, c, is 
independent of x2, as in the discussion above, in this section. 
With these changes, (5.4.1) can be further simplified by carrying out 
stationary phase in the x2-direction. It is that analysis that will be 
outlined here as a series of exercises. 

a. Consider the phase in (5.4.1), defined through (5.1.8) as 

</J(x, e) = r(x, Xs(e)) + r(xg(e), X). 

Show that this phase is stationary when 

8¢ fJr(x, xs(e)) 8r(x9(e), x) 
-f) = f) + f) = P2s + P2g = 0. 

X2 X2 X2 

b. Suppose that 6 -=f. x2. Consider the geometrical-optics rays from 
x to Xs(e) and to x 9(e), respectively. Explain why P2s and p29 
must be constant on the rays and of the same sign, which is to 
say, the sign of the difference, 6 - x2. 

c. Explain why the phase can be stationary only when 

P2s = P2g = 0, 

and that this corresponds to the phase being stationary for the 
choice x2 = 6. 

d. Write down an equation of the form, (6.1.4) for the second com­
ponent of rays from x to xs(e) and to x 9(e), respectively, with 
the two choices of a distinguished as as and a9, respectively. Dif­
ferentiate those equations explicitly and evaluate at P2s = P2g = 0 
to conclude that 

fJP2s 1 fJp29 1 
8x2 as' 8x2 = a9 

at the stationary point. 
e. Thus, show that 

82¢ 1 1 as+a9 ---+---=--.!!. 
fJx~ - as a9 - asag ' 

at the stationary point. 
f. Now, use the stationary phase formula (3.6.4) to conclude that 
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us(xg,w) = -~e-i7fsgn(w)/4F(w) 

. J R(x, Xs)(n. v x)¢(x, 0 (6.2.10) 

. ai(x,O Jus(x,Oug(x,~) eiw¢(re,t;)df. 

Jus(x, ~) + u9 (x, 0 
In this equation, there is no longer any dependence on x2 and 6 
and no longer a need for a subscript on the remaining variable, 
6, which has now been redefined as~· Thus, 

x(f) = (x1(£), X3(£)), Xs(~) = (xls(O, X3s(~)), 
x9 (~) = (x19 (~), X3g(~)). 

Furthermore, we have set 

g. Show that the constraint on parameters for use of this 2.5D 
Kirchhoff approximation (6.2.10) is as in the previous exercise. 

6.3 The Beylkin Determinant Hand Special Cases 
of 2.5D Inversion 

In this section, we specialize the inversion formulas, (6.2.8) and (6.2.9), to 
the cases of common-shot, VSP, well-to-well, and common-offset inversion. 
In each case, the details of the inversions operators will change slightly, 
but all are special cases of these two equations. This discussion will follow 
along the general lines of the 3D case, Section 5.2. Recall, then, that 

with the gradient now being two-dimensional in the variables x = (x1,x3). 
Of course, we will continue to use the notation 

'Vy¢(y, ~) = Ps + Pg· 

6.3.1 General Properties of the Beylkin Determinant 

As in Section 5.2, we introduce 

- 8ps 
Vs = 8~' 

and rewrite H, as defined in (6.2.7), as 

(6.3.1) 
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[ Ps + Pg l H(y, ~) = det . 
V 8 +v9 

(6.3.2) 

The elementary relationships among the vectors p8 , p9 , V 8 , and v 9 are 
essentially unchanged from what they were in Section 5.2.1. We list them 
here, without rederiving them: 

2 2 1 
Ps = P9 = c2 (y), Ps · Vs = P9 • v 9 = 0, (6.3.3) 

1 
Ps · p9 = c2 (y) cos 20, (6.3.4) 

We use the orthogonality in (6.3.3) to define a relative orientation between 
each p and v. Let us define J.Ls and J.L9 , such that V8 J.L 8 and VgJ.Lg are the 
respective right-hand rotations through angle 1r /2 from Ps and p9 . In the 
simple situation of a fiat horizontal reflector, constant-background wave­
speed, and source or receiver x1-coordinate increasing with ~, then J.Ls = 1 
or J.Lg = 1, respectively. Let us further define e1 and e3 as unit vectors 
along the respective x1 and x3 axes, and then set 

Note that e2 is defined opposite to the right-hand convention to suit the 
unusual choice of singling out the clockwise rotation from the p's as special. 
With this convention, 

1 1 
Ps X Vs = c(y) lvsl J.Lse2, p9 X v9 = c(y) lv91 J.Lge2 (6.3.5) 

cos 20 cos 20 
Ps X Vg = c(y) lv91 e2J.L9 , P9 X Vs = c(y) lvsl e2J.Ls· (6.3.6) 

Using these results, we are prepared to write down the general Beylkin 
determinant by first interpreting it as a two-dimensional cross product: 

IH(y,~)l = I(Ps +p9 ) X (vs +v9 )l 

=IPs X V8 + Pg X V8 + Pg X Vg + Pg X Vsl 

=I c(~) lvsl J.Ls(1 + cos20) + c(~) lv91 J.L9 (1 + cos20)1 

2 cos2 0 
= c(y) llvsl J.Ls + lvgl J.Lg I 

= 2 cos2 0 IHs(Y, ~) + H9 (y, ~)I. (6.3.7) 

In this last line, we have set 

1 
Hs(Y,~) = c(y) lvsiJ.Ls and (6.3.8) 
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6.3.2 Common-Shot Inversion 

For common-shot inversion, r(y, X 8 ) is independent of~' and V 8 = 0. Then, 
using (6.3.3) through (6.3.7), we find that the respective inversion formulas 
for (3(y) and (31 (y) are 

1 j cosO lap9 l ,Jas+a9 
(3(y) = [2n]5/2 d~ a(y, ~) a~ ,jasag 

. J ~dwe-iw¢(y,,)+i'rr/4sgn(w)us(xg,Xs,W) (6.3.9) 

and 

c(y) j 1 lap9 l ,ja8 +a9 
(31 (y) = 2[2n]5/2 d~ a(y, ~) a~ ~ 

. J ~dwe-iw¢(y,,)Hrr/4sgn(w)us(xg,Xs,w). (6.3.10) 

In these equations, the factor 2cos0/c(y), which allows us to identify the 
incidence angle for y on S, appears explicitly. That is, the first integrand 
can be obtained from the second by multiplying the latter by 2 cos 0/ c(y). 
However, it should be noted that this factor is really defined by (6.3.4). 

6.3.3 A Numerical Example-Extraction of Reflectivity from 
a Common-Shot Inversion 

Figure 6.2 shows a test of these formulas using synthetic 2.5D data gener­
ated on a simple two-plane model, with a vertical slice through the model 
shown in Figure 6.2a. The source point is at the center of the model, with 
receivers spread along a single line on the upper surface in both directions. 
Figure 6.2b shows the 2.5D model data, created with CSHOT [Docherty, 
1987, 1988, and 1991]. 

The additional plots are the demonstration outputs that come with the 
code CXZCS [Dong, 1990, and Dong et al. 1991]. Figure 6.2c shows the 
inversion of the data in Figure 6.2b for (3(y); Figure 6.2c shows the inversion 
of these data for (31 (y). In processing the data to obtain these outputs, the 
correct background velocity, c( x), was used. In both of these figures, we can 
see the loss of resolution away from the center of the model. With increasing 
offset, cos 0 s decreases and we know from the theory of the previous chapter 
that the normal wave vector is proportional to cos 0 s: 

k _ lkl _ 2lwl cosOs 
normal - - c(y) · 

With a decreasing spatial bandwidth of the image in the normal direction, 
resolution degrades. It is easy to check from the geometry, here, that cos08 

is less than 0.3 at the widest offset, and that the widths of the lobes of the 
output wavelet are more than triple at this offset compared to their widths 



300 6. Two-and-One-Half-Dimensional Inversion 

a) 

'""" 
2000 

3000 

""""' 

02 

Rango (M) 
02 04 D& oe 

v• 500011/s P'""c::ons.t 

v • 6000 his p . COfl5.t 

v • 7000 his p. C005t 

Model Plot 

Inversion (R) 

First Interlace (solld:exacl) 

••o• b) 
10 

f) 

~~--""""'~--~~~--~~~--~ 
-In) 

02 

Time Section 

... _1111 

Inversion (R • cos) 

Second Interlace (solld:exact) 

~----<000~--~~~--~~~--_J 
-(M) 

FIGURE 6.2. a) The two-plane model, and b) common-shot seismic section across 
the model generated with the program CSHOT. c) Inversion for the reflectivity 
function using equation (6.3.9), and d) for the reflectivity multiplied times cosO, 
using equation (6.3.9) with the exact wavespeed profile with program CXZCS. 
e) Values of cos Bs on the first layer extracted from the amplitudes of the seismic 
inversion compared with computed values. f) Values of cos Bs on the second layer 
extracted from the amplitudes of the seismic inversion compared with computed 
values. 
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at zero offset. More subtle is the degradation of resolution of the image of 
the second reflector at zero offset compared to the resolution of the first 
reflector, just above. Here, it is the increased value of c(y) that causes the 
degradation. On the other hand, due to the refractions at the first interface, 
es does not increase quite as fast with offset at the second reflector and the 
relative degradation with offset can be seen not to increase as fast on this 
reflector as it does on the first reflector. 

Figures 6.2e and 6.2f show comparisons of numerically computed esti­
mates of cos es for the upper and lower reflector, respectively, with their 
theoretically determined counterparts. Recall that this estimate must come 
from a ratio of peak values of the two outputs (3 and (31 . In this calculation, 
the local maxima were used for the peak values. We see a falloff in accuracy 
accompanying the falloff in resolution with increasing offset. The failure of 
agreement is small for this synthetic data set, but for real data more careful 
"peak correction" may be required. There is more than one way to perform 
such peak corrections. The most accurate way is by interpolating the data 
points with sine functions. A less computationally expensive, but nearly as 
accurate, way is by picking the nearest output points around the peak and 
then correcting those values to the nearest parabolic peak. Either technique 
would produce optimal results, with errors usually less than 1%. We can 
rarely justify the increased effort required for extracting amplitudes with 
this degree of precision from real data, however. 

6.3.4 Constant-Background Propagation Speed 

For a constant-background propagation speed, we use the following 
notation to simplify the integrands in (6.3.9) and 6.3.10): 

Ts"=Y-Xs, 

rs = IY- Xsl, 

In terms of these variables, 

r 9 :y-x9 , 

r9 = IY- x 9 1, 

r9 = r 9 jr9 , 

a9 = cr9 . 

which follows from (6.3.8) and the definition of v 9 in (6.3.1). 

(6.3.11) 

(6.3.12) 

For a horizontal planar upper surface, the determinant in the last line 
simplifies even further, 

(6.3.13) 
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and the common-shot inversion formulas for a constant-background wave­
speed and horizontal planar upper surface are obtained by substituting 
these results into (6.3.9) and (6.3.10). The results are 

(3( ) =~fdcJrs+rg.jT; () y ~ ., 3/2 cos 
v21rc3 r9 

. J .Jiwldwe-iwcf>(y,~)+i1r/4sgn (w)us(xg, Xs, w) (6.3.14) 

Remark 6.3. The operator, f31 (y) yields as peak value the area under the 
filter multiplied by the reflection coefficient. For constant background, there 
is no need to multiply by 2cosB/c as in the inversion operator f3(y), when 
what we really need is cos()= J1 + rs · r9 j2. In fact, an operator differ­
ing from f3I(Y) by exactly this factor is recommended. In the theoretical 
discussions here, we will continue to list f3(y) and (31 (y). 

6. 3. 5 Vertical Seismic Profiling 

Vertical seismic profiling (VSP) is a special case of the common-shot geom­
etry in which the source is on the upper surface and the receivers are in a 
well [Dong and Bleistein, 1990]. Three-dimensional inversion from a single 
VSP experiment is not possible. A two-and-one-half-dimensional inversion 
is possible, however, and meaningful only when the earth environment and 
the source-receiver configuration allow for the 2.5D in-plane propagation 
assumption to be made. First, the source-receiver array must (at least, 
nearly) define a vertical plane. Second, the out-of-plane variations should 
be minimal. 2 Third, there must be scattered arrivals. A typical application 
for VSP is the determination of interval velocities in the subsurface from the 
direct arrivals on the seismogram. The theory we have developed, however, 
requires that scattered energy be present. This is, of course, the case with 
the majority of VSP profiles, but this also means that we de-emphasize the 
importance of the direct arrivals. 

For the mathematical model, it is assumed that the source-receiver ar­
ray is in a vertical plane and that the propagation speed varies only in 

2Clearly, this basic idea admits an extension to an "oblique" plane in a medium 
with two-dimensional variation in another plane making an acute angle with the 
plane of the survey. 
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~2 ~I 

FIGURE 6.3. A schematic of a VSP survey in a 2.5D model. Only rays 
representing scattered energy are drawn. 

that plane. See Figure 6.3. The "thought experiment" for development of 
the two-and-one-half-dimensional inversion for this problem is to consider 
identical VSP planes, defined by identical wells, recording lines, and trans­
mitted and reflected ray paths. Only the out-of-plane coordinate of the 
sources and receivers characterizes these planes as being different. 

In this case, the suite of experiments is exactly like the suite of surface 
common-source experiments used above to reduce the three-dimensional 
inversion to the two-and-one-half-dimensional, common-shot inversions. 
Consequently, the inversion formulas (6.3.9) and (6.2.2) apply also to VSP 
inversion, with the specification to VSP carried in the description of the 
source-receiver configuration and the consequent evaluation of the functions 
in the integrand of those equations. Note that these formulas allow for a 
deviated borehole-in-plane, at least-through the equations that describe 
:Z:g ( ~) 0 

The specialization to VSP becomes more apparent when the inversion 
formulas (6.3.9) and (6.2.2) are further specialized to constant background. 
For example, set 

:Z:8 = (-h,O), :Z:g = (h,~). (6.3.15) 

For this parameterization, the major change from the computation above 
for the surface common-source inversion is that now 

8:z:g ( 75[ = 0, 1), (6.3.16) 

whereas previously the right side was (1, 0). The results (6.3.11) and 
(6.3.12) remain unchanged, but, in place of (6.3.13), we find in this case 
that 

(6.3.17) 
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That is, the total change in the formulas (6.3.14) and (6.3.15) for the case 
of VSP is merely that the factor of Y3 is replaced by y1 - h. Therefore, for 
VSP, 

{J(y) = 4lyl- hi Jd~~Fs 
~ r~/2 

·cos{} J ~dwe-iw<f>(y,.O+i·n"/4 sgn(w)us(x9 ,a: 8 ,w) (6.3.18) 

and 

a ( ) = 2lyl- hi fdc~Fs 
fJl y IF "' 3/2 

VL.7rC Tg 

· J ~dwe-iw<f>(y,€)+i11"/4 sgn (w)us(x9 , X 8 ,w). (6.3.19) 

6.3.6 Well-to- Well Inversion 

The two-and-one-half-dimensional inversion of well-to-well data is similar 
to the VSP case above [Dong and Bleistein, 1990]. The only difference is 
that the source, as well as the receivers, is at depth. Thus, for example, 
(6.3.15) would be replaced by 

X 8 = ( -h, TJ), Xg = (h, ~). (6.3.20) 

Here, 'fJ denotes the depth of the receiver in the well. Except for this change, 
the formulas of the discussion of VSP inversion apply to this case as well. 

6.3. 7 Invert for What? 

We have written down inversion formulas for VSP and well-to-well configu­
rations as if the requirements of the formalism developed above apply here 
as easily as they do for the surface experiments of the earlier discussions. 
In fact, they do not and some caution is necessary. 

In these experiments, it is often the case (for example, classical tomo­
graphic inversion) that the raypath from the source to the output point, and 
that from the output point to the receiver, are nearly two segments of a sin­
gle trajectory from source to receiver. This can occur because the reflection 
is at an oblique angle, or because the ray is bent, rather than scattered. For 
such trajectories, the two gradients \7 yr(y, x 8 ) and \7 yr(y, x9) are pointed 
nearly opposite to one another. Thus, \7 y¢(y, ~) = \7 yT(y, x 8 ) + \7 yT(y, Xs) 
is nearly zero. So the approximation (5.1.13), (5.1.14) is not very good (we 
need second-order terms in the Taylor series, at least), and the first row of 
the matrix in (5.1.17) is nearly zero. While it may be possible to stabilize 
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the inversion formulas, the limited aperture and effective wavenumbers as­
sociated with such near-transmission geometry (discussed in Section 4.2) 
is not possible to fix. 

These indicators should all cause the reader to question the validity of 
the application of this method in the near-forward scattering direction 
suggested by the configurations described here. That is, in the direction 
for which traditional tomographic methods are applicable, the inversion 
technique proposed here breaks down. It should be noted, however, that 
tomographic methods invert either perturbations in traveltime data or am­
plitude attenuation data to characterize the medium. In the context of the 
high-frequency inversion discussed here, these are inversions in the "slower" 
scales, which are assumed to be "many" units of reciprocal wavenumber. 
Thus, these are the inversion techniques for low-resolution or large-length 
scale characterization of the propagating medium. 

On the other hand, for source-receiver pairs and output points y where 
\7 yeP is bounded away from zero (smaller values of(), as in reflection from 
targets beneath both source and receiver), one should expect that the 
method will work as well as it does for surface surveys. Because of the 
similarity of the source-receiver configurations for (traveltime or transmis­
sion) tomography and common-shot, well-to-well migration or inversion, 
the latter is what we have been referring to as "diffraction tomography." 
See Devaney and Oristaglio [1984]. 

6.3.8 Common-Offset Inversion 

For common-offset inversion, in contrast to the common-source inversion 
above, both x 8 and x 9 are functions of~ and we need both terms in (6.3.7). 

By using these results in (6.3.9) and (6.3.10), we find that the formulas 
for (3(y) and (31 (y) become, respectively, 

and 

(See Sullivan and Cohen [1987] for comparison.) 
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FIGURE 6.4. a) The two-plane model, and b) common-offset seismic section 
across the model generated with the program CSHOT. c) Inversion for the re­
flectivity function using equation (6.3.9), and d) for the reflectivity multiplied 
times cosO, using equation (6.3.9) with the exact wavespeed profile with pro­
gram CXZCO [Hsu, 1992]. e) Comparison of reflectivities extracted from the 
seismic data for the first layer with computed values. f) Comparison of reflectiv­
ities extracted from the seismic data for the second layer with computed values. 
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6.3.9 A Numerical Example-Extraction of the Reflection 
Coefficient and cos Bs from a Common-Offset Inversion 

Figure 6.4a shows a test of these formulas for the same model as in Fig­
ure 6.2a. Again, data generated by CSHOT is shown in Figure 6.4b. In this 
case, 08 is constant at each level. Thus, we see no relative changes in reso­
lution at each reflector in the outputs in Figures 6.4c 6.4d. Figure 6.4e and 
Figure 6.4f, show estimates of the reflectivity, {3, for the two reflectors. The 
inversion is performed with the program CXZCO [Hsu, 1992]. (These plots 
are based on demos that are included with the code.) Again, no peak cor­
rections were carried out. The greater accuracy of the reflectivity relative 
to theory in Figure 6.4e compared to Figure 6.4f is serendipitous. For the 
parameters chosen for this model, for the first reflector, the peak sample 
was closer to the peak of the continuous sine function than it was for the 
second reflector. The result for the second reflector could be improved sig­
nificantly using sine interpolation to resample the output, and then picking 
the peak of the interpolated data. 

6.3.10 A Numerical Example-Imaging a Syncline with 
Common-offset Inversion 

Figure 6.5a shows a test of equation (6.3.9) using a synthetic data set gen­
erated over a model similar to that represented by Figure 1.1. Figure 6.5b 
shows the data generated numerically, again using CSHOT. The offset 
between source and receiver for this model is 40 m, with source-receiver 
midpoint spacing of 12 m. The bandwidth of the data was a trapezoid with 
corner frequencies of 10, 15, 45, and 50 Hz. Thus, this model represents a 
near-offset seismic geometry. 

Figure 6.5c shows the output, {3, for these data, again computed with 
CXZCO. This output shows several "diffraction smile" artifacts. As was 
discussed at the end of the last chapter, diffraction smiles are integration 
endpoint contributions. One way of viewing this phenomenon is that the 
inversion (or migration, for that matter) is creating a reflector for which 
the data stops abruptly. Such a reflector would have to turn upward in 
such a manner as to "aim" the specular arrival to one side of the abrupt 
end of the data stream at the upper surface. Here, one can see one such 
smile entering the figure from the left; the synthetic data was sufficiently 
close to the left end of the output domain for the endpoint contribution to 
be significant compared to the (interior) stationary point contribution that 
produced the reflector image. 

Furthermore, CSHOT, being a raytrace-based modeling code, does not 
correctly represent the terminations of the "bQw~tie" events representing 
the synclines. In full-waveform data (either real or synthetic) such bow-tie 
events taper smoothly to zero over a greater distance than what we see 
in the CSHOT model data. This failure to correctly model the bow-tie 
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FIGURE 6.5. a) The simple syncline model with piecewise-constant wavespeeds 
and densities, and b) common-shot seismic section across the model generated 
with the program CSHOT. c) Inversion for the reflectivity using equation (6.3.9), 
assuming the exact wavespeed profile as the background, showing diffraction 
smiles at points poorly represented by raytracing. 
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events leads to a discontinuous wavefield, easily observed in Figure 6.5b at 
about 1.4 seconds at 600 m and 1200 m, and again at about 1.1 seconds 
at 2450 m and 2550 m. The former pair produces two diffraction smiles 
that are clearly visible and well separated in Figure 6.5c, tangent to the 
reflector image on the two sides of the syncline at about 1000 m. The latter 
pair produces two nearby smiles that are most visible above the reflector 
between 1500 m and 2000 m. The inversion of correctly modeled bow-tie 
features would not have such diffraction-smile artifacts. 

6.3.11 Constant Background Inversion 

For constant-background wavespeed and a horizontal planar upper surface, 
set 

X 8 = (~- h, 0), Xg = (~ + h, 0). (6.3.23) 

With this choice, the results in (6.3.11) and (6.3.12) remain unchanged. In 
the last line, 8xgj8~ = (1, 0), as does 8xs/8~, which we need for calculating 
the analogous determinant, Hs(Y, ~). In fact, H9 (y, ~) is again given by 
(6.3.13) with x 9 now given by (6.3.23) and H 8 (y, ~), obtained by replacing 
the subscript g by the subscripts. Thus, we have 

(6.3.24) 

With these expressions substituted into (6.3.21) and (6.3.22), the common­
offset, constant-background inversion formulas become, respectively, 

4y3 j ~ r;+r~ 
f3(y)= ~2 3 d~yrs+rg( )3/2 

VL:rrcu TsTg 

·cosO j ~dwe-iw[r.+r.]+i'rr/4 sgn(w)us(x9 ,x8 ,w) (6.3.25) 

and 

6.3.12 Zero-Offset Inversion 

Finally, we consider the specialization to zero offset. Now, r(y, x 9) = 
T(y, X8 ), SO cf>(y, e) = 2r(y, X8 ), with a similar doubling OCCUrring with 
all of the subscripted variables in (6.3.21) and (6.3.22). Consequently, 
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(J(y) = c(y) Jd~ IHs(Y,~)I 
27!'5/2 y'O'.;A2 (y, X 8 ) 

. J ~dwe-2iwr(y,oos)+i11'j4sgn(w)Us(Xs, Xs, w). (6.3.27) 

In this equation, A(y, X 8 ) is the two-and-one-half-dimensional, ray­
theoretic amplitude defined by (6.1.5) and (6.1.7). This would be the 
inversion formula of choice for poststack, two-and-one-half-dimensional in­
version in a variable background. Of course, for this case, the formula for 
(J(y) will differ from this one by only a factor of 2/c(y) because(}= 0. We 
leave it as an exercise for the reader to verify that the further specialization 
to constant background of the current formula for (J(y) agrees with the zero­
offset, two-and-one-half-dimensional, constant-background inversion result, 
(3.6.24). 

Exercises 

6. 7 To obtain a zero-offset, constant-background inversion formula, (3, 
start from (6.3.25), set r 8 = r 9 = r and cos(} = 1. Show that the 
result agrees with (3.6.24), except for notational differences. 



7 
The General Theory of Data Mapping 

Throughout this text we have treated the seismic imaging problem as an 
inverse problem. To realize the goal of creating inversion formulas, we began 
with a simple idea. We created approximate forward modeling formulas, 
which we wrote as Fourier-like integrals. We then deduced their inverses, 
relying on the invertibility property of the Fourier transform. The inversion 
formulas that we obtained were also Fourier-like integrals owing to this 
procedure, with many of the classical Fourier-based migration techniques 
"falling out" as special cases of these more general formulas. 

Anyone familiar with seismic data processing should be aware of other 
integral equation-based processing techniques that bear a similarity in ap­
pearance to migration formulas. Many of these are Fourier-like integral 
operators, but with amplitude factors differing from those that appear in 
migration formulas. Classical examples of such formulas are those for per­
forming dip-moveout (DMO) and wave-equation datuming. More modern 
examples are the formulas for performing offset continuation, and those 
for data regularization. It is our goal in this chapter to show that these 
traditional techniques, as well as their more modern cousins, are members 
of a general family that we refer to as "data-mapping" formulas. 

Our plan is to present a general prescription that not only unifies the 
classical methods, but is sufficiently general to permit many other related 
formulas to be generated as needed. The reader should realize that this is 
a research chapter. Here we present results that are close to the cutting 
edge of a branch of geophysical research that is active at the time we are 
writing. Thus, we are not presenting "cut-and-dried" results, but rather a 
snapshot of research in progress. 
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7.1 Introduction to Data Mapping 

Geophysicists have always strained existing computational resources by 
processing increasingly large volumes of data, recorded in ever more com­
plicated acquisition geometries. Accordingly, data have been preprocessed 
to remove a variety of undesirable characteristics, either to reduce data 
volume or to make data suitable for further processing, usually with codes 
designed for simpler geometries. 

With the move to acquire seismic data in increasingly hostile environs, 
geophysicists must expect that data will be collected with a nonuniform 
trace spacing, and on a recording surfaces that are neither fiat nor hori­
zontal. While preprocessing techniques for remedying specific distortions 
of data differ for specific applications, all share common attributes in that 
they operate by remapping the data to an approximation of the data that 
would have been collected in a simpler setting. In the subsections that 
follow, we discuss specific examples of such data-mapping techniques. 

Normal NMO and Dip Moveout (DMO) 

The classical method of applying the normal moveout correction followed 
by stacking (the NMO-stack), and the related method of bin-stacking for 
3D data, are the most primitive techniques for mapping data to zero off­
set. Such methods are based on the simplistic assumption that the Earth 
consists of a single constant-wavespeed medium overlying a single fiat 
horizontal reflector. 

A more sophisticated approach to this operation called dip moveout 
(DMO) has been an important seismic data preprocessing technique for 
years. Because NMO fails to truly map dipping events in the data to zero 
offset, dip moveout was conceived as a way of mapping NMO-corrected 
data to true zero offset. Thus, NMO-DMO represent data mapping to zero­
offset.1 In the course of performing the NMO-DMO correction, a process 
called "velocity analysis" is performed. That is to say, the appropriate 
background-wavespeed model is found, such that NMO-DMO produces 
"flattened" shot gathers that are suitable for stacking. This estimate can 
serve as an approximation of the background-wavespeed profile needed for 
the final migration of the data. Thus, even with the availability of more 
powerful computers, as well as prestack migration codes, the NMO-DMO 
process has an intrinsic value. (See Byun [1990] for important papers on 
the topic of velocity analysis.) Therefore, understanding NMO-DMO in the 
context of data mapping to zero offset is a worthy endeavor. 

1See Hale [1995] for important papers on the topic DMO. Among the more 
relevant of these are Artley and Hale [1994], Black et al. [1993], Gardner and 
Forel [1988, 1995], Hale [1984], Hale and Artley [1993], Liner [1990, 1991], and 
Dietrich and Cohen [1993]. 
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Wave-Equation Datuming 

Seismic data, particularly those acquired in land-based surveys, may have 
significant traveltime and amplitude distortions due to variations in local 
topography. Similar distortions owing to hydrophone streamer feathering in 
ocean surveys may also be seen. Migration codes traditionally have not di­
rectly accounted for these topographic and feathering influences, however. 
To remove the time shifts due to nonuniformity in recording surface eleva­
tion, techniques for "downward continuing" seismic data, called datuming, 
were invented [Berryhill, 1979, 1984 and Bevc, 1995, 1999]. The idea is 
to remap data collected in a source-receiver geometry with topographic 
variations to the equivalent data set that would have been collected had 
the survey been conducted at a particular "datum" depth in the absence 
of topographic variations. (This datum elevation may be above or below 
the actual elevation of the topography, so the continuation need not be 
"downward" in all cases.) In this way, datuming produces output that is 
suitable for migration with a code that does not account for variations of 
topography. 

Offset Continuation and Data Regularization 

Traditional migration codes also have not accounted for nonuniform source­
receiver spacing within a survey. Such nonuniformity can result from 
obstacles on the surface of the Earth, the inability to record near a source, 
dead traces due to mechanical failure of receivers, or naturally nonuniform 
recording geometry, as in 3D surveys. Indeed, such convenient geometries 
as common offset, which may be straightforward to obtain in line surveys, 
may be difficult to realize in 3D data sets. Even if source-receiver pairs with 
the same offset can be found, there is no guarantee that such pairs will all 
be oriented in the same direction, as was assumed in our discussion of 3D 
common-offset inversion in Section 5.1. 

The name offset continuation is applied to any process that extrapo­
lates data beyond source-receiver positions in a survey, or that rotates 
data to new source-receiver orientations. Such processes are closely related 
to data regularization, which is the term applied to processing intended 
to fill in gaps where data are missing, or that are intended correct data 
for nonuniform source-receiver spacing. These processes, too, fall into the 
classification of what we call "data mapping." 

Fourier Integral Operations That Are Not Data Mapping 

Not all integral equation-based seismic data preprocessing operations are 
"data mappings," in the sense we intend to convey. Such processes as de­
convolution, k-domain filtering, T-p or slant-stack domain filtering may, 
indeed, modify or map data in some sense via a Fourier-like or migration-
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like process, but these operations are not wave equation~ based and, as such, 
are not data mappings of the variety we discuss here. 

7.1.1 Kirchhoff Data Mapping (KDM) 

How can we represent such data mapping operations in the theoretical 
setting developed in the first six chapters of this text? The simple answer is 
to consider inverting the data, via one of our inversion formulas, followed 
by a process of remodeling via an approximate modeling formula of the 
type that we used as the beginning of our inversion formula derivations. 
If we have the correct background-wavespeed profile, the output of the 
cascade of inversion and forward modeling should be expected to have 
the appropriately corrected amplitude for the new geometry, taking into 
account all point-source geometrical spreading effects, for example. 

Furthermore, because the traveltime curvature contains information 
about the reflector curvature [Hubral, Tygel, and Schleicher, 1995], we have 
good reason to expect that our formula will correct for the influence of re­
flector curvature on the geometrical spreading as well. Indeed, we confirm 
this expectation in the sequel. Less apparent is the question of what hap­
pens to the reflection coefficient as a result of this process. As we show 
below, the reflection coefficient does not change. The reflection coefficient 
of the input data is preserved in the output data. 

This basic idea of cascading two operations is clumsy. In practice, we 
do not want to perform the cascade of integrals of an inversion formula, 
followed by an equal number of integrals of a forward-modeling formula. 
This would be computationally impractical. Indeed, the classical Fourier 
transform~based DMO method of Hale [1984] has only the form similar to 
a Kirchhoff migration formula, which is just a single set of integrations (one 
integration in 2D). Thus, we are justified in expecting something similar 
for our data mapping formulations as well. 

Our intuition from previous problems provides a possible plan of attack. 
First, we can guess that our final formulas should merely be an integra­
tion over the recording surface, meaning that we will assume the form of a 
Kirchhoff-like integral for the final mapping formula. To this end, we sus­
pect that the method of stationary phase will provide a means of creating 
estimates of some of the integrals involved, thus reducing the total number 
of integrations to the desired smaller number. Because we are beginning 
with a cascade of Kirchoff modeling and inversion formulas, we will nat­
urally call the outcome of such a procedure Kirchhoff Data Mapping or 
KDM. 

Our term, KDM, does not describe a single formula, but rather a gen­
eral prescription for transforming data from one prescribed source-receiver 
configuration and wavespeed profile to another acquisition geometry and 
possibly different wavespeed model. The specific configurations and/or 
models dictate the final form of the KDM-based formulas. Note that, in 
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this description, the wavespeed profile that is assumed for the inversion 
need not be the same as that used for the subsequent remodeling, meaning 
that KDM has the potential of creating a broad range of different final 
formulas, covering both geometric and model-based possibilities. 

7.1.2 Amplitude Preservation 

A point we have stressed throughout the text is the value of amplitude­
preserving processing formulas; we make no exception to this rule in this 
chapter. We consider the preservation of amplitudes in data to be a critical 
issue with KDM as well. We can expect KDM to be a "true amplitude" 
process in the following sense. 

1. Traveltime and point-source geometrical spreading for the input 
configuration are transformed to those for the output configuration. 

2. Geometrical spreading associated with reflector curvature of the input 
configuration is transformed to that of the output configuration. 

The angularly-dependent reflection coefficient of the input configuration, 
however, is left unchanged by KDM in the output data, despite the fact that 
the incidence angle of specular rays is typically changed by the mapping 
process. 

On the other hand, as in Section 5.4.3, the formalism provides a mech­
anism for determining both the input and the output geometrical-optics 
incidence angles of the reflection process in these applications. Thus, we 
have a basis for amplitude-versus-angle (AVA) analysis. Both of these trans­
formations are model consistent, which is to say that they depend on the 
input and output physical models assumed for the processing. Therefore, 
if the inversion step is carried out using a background model that does not 
adequately describe the "true" Earth model, the resulting reflector map 
will be in error. If the modeling step is carried out with respect to an inac­
curate background model, the placement of reflection events on the output 
trace, as well as their amplitudes, will result in an inaccurate data map­
ping. Thus, we expect that data mapping will require accurate background 
models to produce meaningful output. In this sense, data mapping is also 
model consistent. 

7.1.3 A Rough Sketch of the Formulation of the KDM 
Platform 

As mentioned above, the basic idea of the formulation of data mapping is 
to operate on the data with a cascade of an inversion formula followed by 
a remodeling formula. 

We must take great care to distinguish the input variables er and W[ 

of the original data, from the coordinates of position within the model 
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produced by the inversion x and, in turn to distinguish these from the 
final output variables ~0 and wo of the new data. Thus, the inversion part 
of the process takes data in ~I and WI and produces an output model in 
the x-variables. The remodeling part of the process converts these model 
coordinates into new data in the ~0 and wo variables. 

While the input data set depends only on the variables of the acquisition 
geometry and the initial frequency content of the data-the variables ~I 
and WI-the full data-mapping operator is a function of the input and 
output parameters, as well as the reflectivity model variables. That is, 
data mapping depends on all of the variables introduced above. The idea, 
then, is to carry out the integration over the Earth modeling variables 
x, asymptotically, to obtain a weight that is a function of the input and 
output variables only. This weight is then applied to the input data set to 
produce the output data set. It is this asymptotic analysis alone that can 
be partially carried out in the absence of an explicit KDM implementation. 
This is why we use the word "platform," to describe the general form of 
KDM. 

We conduct our formulation in the frequency domain, as we have for 
all of the formulations of this text. 2 See Bleistein and Jaramillo [2000]. In 
Chapters 2, 3, and 5, we used the Born-approximate modeling formula to 
begin our derivations. We found that we had to perform additional analysis 
to "patch up" the result, to give reflectivity as the output. The reason for 
this difficulty is that the amplitude of the Born formulation is linearized in 
the wavespeed perturbation. In Section 5.1. 7 we found that the Kirchhoff 
modeling formula is a better starting point, because the amplitudes in this 
formula are linearized in terms of the reflection coefficient, directly. 3 For 
this reason, our remodeling formula will be the Kirchhoff modeling formula. 

Our derivation below is based on a single reflector model, requiring a 
good estimate of the Earth parameters above the reflector of interest. It 
neglects multiple reflections, as do all methods for data mapping (including 
classic DMO) to date. The approach used here does allow for larger jumps 
in medium parameters across the reflector of interest than would the Born 
approximation, however. In the absence of multi-pathing,4 the interpreta­
tion of the output in terms of the geometrical-optics reflection coefficient 
is direct and immediate in this approach. 

2See Tygel et a!. [1998], Jaramillo [1998], and Jaramillo and Bleistein [1998, 
1999] for a time-domain formulation of data mapping. 

3The reader should remember, however, that the reflection coefficient, itself is 
a nonlinear function of the medium parameter perturbations. 

4 Multi-pathing refers to the situation in which more than one raypath from 
a point at depth reaches the same point in the source receiver domain, on either 
input or output. Multi-pathing is neglected in the discussion here, as it has been 
in the rest of the text. 
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7.1.4 Possible Kirchhoff Data Mappings 

We use the term "macro-model" to denote the background-wavespeed pro­
file(s) used for the respective inversion and remodeling phases of the data 
mapping process. The reason for this choice of terminology is that we wish 
to make a distinction between these "models," and the "model" that is the 
output of the inversion process. 

Below is a list some possible mappings of data sets from an input 
macro-model and a given source-receiver configuration, to an output macro­
model and new source-receiver configuration. We expect that all of these 
operations can be carried out in 2D, 2.5D, and 3D: 

1. Offset continuation and TZO. KDM is not limited to transforming 
nonzero offset data to zero-offset; the formula lends itself to analysis of 
the transformation of data from one offset to another, with TZO as a 
special case. That is, (7.2.6) and (7.3.4), below, provide a platform for 
offset continuation along the lines of Fomel [1995a,b, 1996, 1997] and 
Fomel et al. [1996]. However, as soon as we apply the type of asymptotic 
analysis that leads to the classical NMO/DMO-type data mapping for­
mulas to the platform equations, the mapping requires "large" (in units 
of reciprocal wavenumber) change in offset to be valid. 

2. Transformation of common-offset data to common-shot data. 
In this case, the transformed data represent the response from a single 
shot at an array of receivers covering the upper surface, except for the 
fact that the reflection coefficient has the wrong incidence angle for the 
common-shot data. This could be corrected by processing data from all 
offsets, estimating input and output reflection coefficient, and matching 
them-that is, extracting the output data from the input data at an 
offset that makes the input and output incidence angles be the same. 
Such data have the advantage that they are the solution of the wave 
equation, whereas common-offset (and zero-offset) data are a collection 
of single responses to an ensemble of wave equations, one for each shot. 
These ensemble data do not constitute a solution of the wave equation, 
although they are treated as such in certain types of wave-equation mi­
gration, under the assumption that the data were generated at exploding 
reflectors. See Section 3.8. 

3. Mapping of data from variable-background propagation pa­
rameters to constant-background parameters. Time sections in 
constant-background media are easier to interpret. It is not clear to us at 
this point, however, how multi-paths will map, nor how data from verti­
cal and overhanging reflectors will map; we do not treat these cases here, 
but propose them in this list as open research topics. We expect singu­
larities of the mapping process for such cases. On the other hand, where 
the method works, it opens the mapped data set to a much broader 
suite of applicable migration/inversion programs and related analysis 
techniques. 
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4. "Unconverting" mode-converted waves. For example, one could 
map the scalar components of P-SV data to the scalar components of 
P-P data [Chen and Stewart, 1996]. If the "true" P-P data were avail­
able, a comparison of this latter data set with the mapped data set 
could provide a check on the assumptions made in the macro-model for 
the converted wave propagation. Furthermore, again, there are many 
more processing options available for P-P data than for mode-converted 
data. This mapping would provide a means of extending the range of 
processing options once the data are mapped. 

5. Velocity analysis. When data from a suite of offsets are all mapped 
to zero-offset, events should line up. To the extent that they do not, 
they provide the same type of information about velocity errors as does 
a common trace gather of a suite of prestack migrations/inversions. 

6. Wave-equation datuming. The acquisition surface can be changed 
for both the sources and receivers. Downward continuation of sources 
and receivers or mapping from irregular acquisition topography to a 
planar topography, are two potential datuming applications for this plat­
form [Sheaffer and Bleistein 1998]. For small increments in depth, the 
implementation of KDM provides an alternative to phase shift migra­
tion [Gazdag and Sguazzero, 1984], while for larger increments in depth, 
the implementation of KDM provides an alternative to wave equation 
datuming [Berryhill 1979, 1984, and Bevc 1995, 1999]. 

7. Data regularization. Data collected with uneven source-receiver 
spacing could be converted to equivalent uniformly spaced data. 

8. Mapping of swath data to a single line at zero azimuth. Swath 
shooting is a process whereby multiple lines of receivers are used with 
a single shot, as might occur if a boat were to tow more than one 
line of hydrophones. The data from the separate lines could each be 
mapped to a single .line that could be "straightened" to be along the 
line of the survey-given sufficient information about the deviation of 
the swath survey from that line and about the path of the boat [Biondi 
and Chemingui, 1994]. 

9. Combinations of the above. For example, consider the application of 
downward continuation of receivers (or sources). The continuation pro­
cess always yields output data over a shorter line than that of the input 
data. Starting from a prescribed shot gather with a given cable length 
of receivers, the cable length of asymptotically accurately mapped data 
decreases from the input cable length with increasing depth. On the 
other hand, consider first creating a single common-shot data set from 
the full array of common-offset gathers. This new data set effectively 
has a "cable length" equal to the length of the survey, typically much 
longer than the cable length for each shot. Now, the range of validity of 
the downward continuation of receivers "shrinks" from an initial length 
equal to the survey length. One can expect that the data could be con­
tinued much deeper into the subsurface while adequately maintaining 
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properly transformed geometrical spreading and traveltime corrections 
over a cable length that will be of sufficient length to make further pro­
cessing possible. As a second example of cascading, consider the process 
of first downward continuing the receivers and then downward contin­
uing the sources. This should provide the equivalent of true amplitude, 
simultaneous downward-continuation of sources and receivers. 

In part, the reader should view this as a statement of what we plan to 
present in the rest of the chapter. In part, however, this is a "wish list," 
based on what we believe are reasonable expectations based on our current 
familiarity with this type of problem. We have a few examples worked 
out in great detail, which we do present. Others simply have not been 
addressed, as yet. Furthermore, because this is relatively new material, 
we must investigate and justify the methods we use. We present these 
justifications as well. The reader must remember that we are avoiding some 
important issues. These include the influences of multi-pathing, multiple 
scattering, and the differences between (anisotropic) elastic wave theory 
and the scalar wave theory we employ. 

Accordingly, this chapter proceeds as follows. In the next section, we 
derive the fundamental three dimensional KDM platform equation, dis­
cussing both the spatial and frequency structure of the resulting formula, 
and derive formulas for determining the cosine of the incidence angles in 
the input and output geometries. 

In Section 7.3, we specialize our KDM platform to 2.5D. In the next 
section we test our results on Kirchhoff data, presenting details of the 
asymptotic analysis of our results. In Section 7.5 we present an example of 
KDM applied to the problem of datuming common-shot data. We discuss 
2.5D transformation to zero-offset (TZO), deriving formulas similar to the 
dip moveout formulas of Hale and of Gardner and Forel. In Section 7. 7 we 
return to our 3D formulation of KDM and derive 3D TZO representations, 
concluding our exposition. 

7.2 Derivation of a 3D Kirchhoff Data Mapping 
Formula 

Here, we derive the fundamental equation for space-frequency domain KDM 
in 3D. This will be done by cascading a Kirchhoff-approximate forward 
modeling formula with an inversion formula. Crucial to this analysis is the 
representation of the Kirchhoff modeling formula as a volume integral in 
which the only unknown from the point of view of the inverse problem will 
be the reflectivity function described in the introduction. That modeling 
formula was developed in Section 5.1.7, specifically equation (5.1.54). How­
ever, we need to rewrite that equation in the variables of the type described 
above. 
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The Remodeling Formula 

The Kirchhoff modeling representation we will use is 

uo(~o,wo) "'-iwoF(wo) J ao(x, ~o)IY' xro(x, ~o)I;J(x)eiworo(m,Eo)d3x. 
(7.2.1) 

In this equation, the subscript 0 is used to denote output variables. 
Below, input variables with subscript I will be introduced. The two­
component vector ~0 is used to parameterize the source and receiver 
locations X8 (~0 ) and x9 (~0 ), respectively, and wo denotes the frequency 
of the output wave. The traveltime and amplitude are given by 

ro(x, ~0 ) = r(x, Xs(~0)) + r(x, x9 (~0 )), 

ao(x, ~0 ) = A(x, xs(~0 )) · A(x, x9 (~0 )), (7.2.2) 

with the separate traveltimes and amplitudes being solutions of appropri­
ate eikonal and transport equations, respectively, for initial point X 8 or x 9 

and final point x. We choose not to be more specific here, allowing for 
different propagation speeds in the eikonal equations (including mode con­
versions) and transport equations appropriate to the degree of generality 
of the propagation model under consideration. The amplitudes can also 
include products of transmission coefficients arising from interfaces above 
the reflecting surface. 

The Inversion Formula 

We now want to use an inversion formula for ;J(x), but express the result 
in terms of the input acquisition geometry and data. The formula we need 
is given in equation (5.1.56). Written in a set of variables consistent with 
this discussion, the reflectivity function is given by 

;J(x) = ~~d2~I lh(x,~I)I Jiwi dwi e-iwiTI(m,EI)ui(~I>WI)· 
81r ai(x,~I)IY'xn(x,~I)I 

(7.2.3) 

In this equation, the subscript I is used to denote input variables (that 
is, the variables of the original acquisition geometry and data). The two­
component vector ~I is used to parameterize the respective source and 
receiver of the input data, Ys(~I) and y9 (~I ). In addition, WI denotes the 
frequency of the input wave. The traveltime and amplitude are given by 

TI(x, ~I)= r(x, Ys(~I)) + r(x, y9 (~I )); 
ai(x,~I) = A(x,y8 (~I)) · A(x,y9 (~I)). (7.2.4) 

The travel times and amplitudes are again solutions of the eikonal and trans­
port equations, except that now the initial points will be chosen to be Ys(~I) 
and y9 (~I ). Furthermore, 
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(7.2.5) 

is the Beylkin [1985] determinant of equation (5.1.17), rewritten in variables 
appropriate to this discussion. 

The Kirchhoff Data-Mapping Platform Formula 

Now, we are prepared to write down a formula to map data from the in­
put variables (ellw1), to the output variables, (e0 ,wo). To achieve this, 
the inversion formula that describes the physical model in terms of the in­
put variables, (7.2.3), is substituted into the data modeling formula in the 
output variables (7.2.1). The result is the following representation for the 
mapping of data from any input source-receiver configuration and back­
ground model to an alternative output source-receiver configuration and 
background model: 

(7.2.6) 

Note that the input data in the first line here are independent of the 
Earth-modeling variables x. Hence, for each choice of input and output 
Earth model and each choice of input and output source-receiver config­
uration, the integrations over x in the second and third lines could be 
carried OUt to obtain an operator kernel that is a function of e[, WJ, eo, 
and wo. Indeed, we anticipate carrying out those integrations by analytical 
methods, including asymptotic methods, such as multidimensional station­
ary phase. Numerical integration is out of the question, owing to the large 
computational effort required. There are O(n3 ) coordinates of integration, 
with O(n3 ) input variables and O(n3) output variables. Clearly, then's are 
different, but this is still an intractably large set of variables. The process­
ing of this formula would require an integration over O(n6 ) for each choice 
of O(n3 ) output variables. 

A better choice is to employ asymptotic analysis to the volume integral 
represented by the second and third line to obtain an analytically explicit 
kernel that depends only On the input and output variables, el, Wr, eo, and 
wo. However, we cannot proceed with that analysis until we know more 
about the source-receiver configurations and the background models, for 
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both input and output. It is in this sense that (7.2.6) is only a platform-a 
point of departure for further analysis for specific data mappings. 

In the specific example of 2.5D DMO [Bleistein et al., 1999], data 
mapping did not transform the reflection coefficient of the input data con­
figuration to the reflection coefficient of the output configuration, so this 
should not be expected in the general result here, either. We do anticipate, 
however, that geometrical spreading and curvature effects for the input 
configuration will be transformed to the correct behavior for the output 
configuration, as was true for the case of 2.5D DMO. 5 

7.2.1 Spatial Structure of the KDM Operator 

There is a certain amount of symmetry, some of which could have been 
predicted in advance, in the spatial structure of the KDM operator. The 
geometrical spreading of the input data is "undone" by the division by a1 , 

while the geometrical spreading of the output is introduced through the 
multiplication by ao. Similarly, the obliquity factor in the input data, ex­
pressed through the factor IV xTJ(X, el )I is undone by the division in (7.2.6), 
while the obliquity of the output data is introduced through multiplication 
by a similar gradient factor in the numerator. 

Because our representation is in the frequency domain, the arrival time 
of the input data manifests itself in the phase of the exponentials. This is 
undone by the multiplication by the negative of the input traveltime times 
the input frequency in the phase of the operator. Similarly, the positive 
product of output frequency and output traveltime in the phase of the op­
erator introduces the "correct" arrival time on output. All of these variables 
are evaluated at stationarity of the integrand. In the simplest of such eval­
uations, the determinant of the Hessian (the matrix of second derivatives) 
evaluated at the stationary point, will correct for the influence of curvature 
from input to output data. 

The symmetry that we see here is undone only by the Beylkin deter­
minant and the powers of WJ and wa. The key to seeing this result in 
symmetric form is to exploit the interpretation of h as a Jacobian of a 
transformation of coordinates between (w1 ,e1 ) and a local wave vector k 
as described in Section 5.1, equations, (5.1.13) through (5.1.17). 

Similarly, then, in (7.2.3), the inversion is asymptotically a Fourier inver­
sion with respect to some wave vector k, although the integration is over 
variables el and W[. Thus, in (7.2.3) and in (7.2.6) the factor of h arises 
through the identity 

3 I a(k) I 2 2 2 d k = a(e,w1 ) d 6 dw1 = wl lh(x,e1 )1 d 6 dw1. 

5In fact, this has been proven by Tygel et al. [1998], using a somewhat different 
(time-domain) approach to the same problem. 
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In fact, if h in (7.2.6) is replaced by the Jacobian appearing on the right side 
of this equation, then the remaining frequency dependence of the operator 
becomes wofwr and has the same quotient symmetry and explanation as 
do the spatial factors discussed above. That is, 

1 jwo 3 uo(~o,wo) "'--3 -ur(~r,wr)d k 
87!' W[ 

. jao(:c,~o) IVxro(:c,~o)l 
ar(:c,~r) IVxrr(:c,~r)l 

(7.2.7) 

with the change of variables from ~I, wr to k defined above. Note also that 
the Beylkin determinant has been "absorbed" into the definition of k and 
no longer explicitly appears in this form. That is, if we were to distribute 
the sources, receivers and frequency samples over a grid that was uniform 
in k, there would be no need for the Beylkin determinant, in either the 
inversion formulas or the data mapping formulas! 

Unfortunately, data generally are not uniform in this fashion, and it 
is not likely that such full data sets of this form will become available 
in the near future. Nevertheless, we might consider forming "common-k," 
common-angle, or common image-point gathers in data sets with sufficient 
coverage. This would likely be done for specific purposes, such as amplitude 
versus angle (AVA) analysis, or to study localized regions in the subsurface. 
The issue becomes one of being able to sort data efficiently, because the 
drawback is that a different data sorting is needed for each output point in 
the image [de Hoop and Brandesberg-Dahl, 2000]; [de Hoop, Spencer, and 
Burridge, 1999]. 

7.2.2 Frequency Structure of the Operator and Asymptotic 
Preliminaries 

We can anticipate an aspect of the asymptotic analysis from the form of 
result (7.2.6) alone. On the right side of the equation, there are two factors 
of frequency, wo ·w r-crudely speaking, the right side is explicitly quadratic 
in frequency. The amplitude of 3D point-source data has no power of fre­
quency in its asymptotic (WKBJ) representation, and the same should be 
true for the output. So, the left side of the equation is of zero order in 
frequency. The two sides should balance. 

Each spatial integral on the right that is carried out by stationary phase 
will produce an inverse power of the square root of frequency, if they are 
approximated by simple6 stationary point contributions. There are five 

6 A stationary point of a single integral is simple if the first derivative is zero, 
but the second derivative is not. In higher dimensions, all first derivatives are 
zero, but the matrix of second derivatives must have nonzero determinant. 
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FIGURE 7.1. Example of an isochron surface: constant-background, offset source 
and receiver. This isochron would arise in common-offset or common-shot source­
receiver configurations. 

such integrations to be performed. If all were approximated by the method 
of stationary phase, the resulting divisor would be of order 5/2 in fre­
quency. Taking account the explicit quadratic frequency dependence of the 
integrand, that leads to a result that is of order -1/2 in frequency, not 
balancing the frequency dependence of the left side (order zero). Thus, not 
all of the spatial integrals can be estimated by simple stationary point con­
tributions because the resulting power of w on the two sides of the equation 
will not match. Clearly, then, some other method besides stationary phase 
must play a role in the analysis of this integral operator.7 

Isochrons 

The natural geometry of the problem comes into play. We express this 
natural geometry through the interaction of the isochrons, that is to say, 
the surfaces of equal traveltime, associated with the respective inversion 
and remodeling formulas that we have cascaded to form the data mapping. 
See Figure 7 .1. 

Suppose, for the moment, that the first two integrals are carried out 
by the method of stationary phase, with the last integral in the direction 
of increasing traveltime analyzed separately. In general, an isochron of TJ 

is cut by the isochrons of To. It is fairly straightforward8 to show that 

7It is in this context that Tygel et a!. [1998] employ a different approach. 
Consider the integral over the interior variables, represented by the differential 
d3 x . Ultimately, this integral is recast as an integral over the isochrons of the 
input configuration, say, TI(X, eo) =COnstant= f1, followed by integration OVer 
t1. See Figure 7.2. 

8This is shown in 2.5D in Section 7.4.2 and in 3D in Section 7.7.1 
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source-receiver coordinates 
XIs 

't 1 isochron 

't0 isochrons 

FIGURE 7.2. A 2 .5D example of an isochron of the input source-receiver configu­
ration intersected by isochrons of the output source-receiver configuration. Here, 
we have used the ellipse and circles of TZO, the transformation of common-offset 
data to zero-offset data, with a constant-background wavespeed. 

stationarity occurs when the normals of the two traveltimes line up; that 
is, the phase is stationary when the isochron of To is tangent to the isochron 
of TJ. See Figure 7.2 for an example. Suppose, for some such stationary 
point, there was a reflector at that point in space whose normal also lines 
up with this common normal of the two isochrons. The matching of the re­
flector normal and the isochron normal (for either the input or output data 
set) is equivalent to the law of reflection for the incident and reflected rays in 
either the input or output source receiver configuration. Thus, if we always 
map data through the rule that the isochron normals must be collinear, 
we assure that a specular return in the input configuration will always be 
mapped- at least kinematically- to a specular return in the output con­
figuration. This observation generalizes a known feature of NMO /DMO 
processing. 

point of tangency 

FIGURE 7.3. A point of tangency of isochrons from two traveltime functions, 
corresponding to a simple stationary point in the integration over an isochron. 
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Figure 7.3 depicts this tangency occurring at a single point at the cen­
ter of the front edge of the two isochrons. This corresponds to a simple 
stationary point in the integral over the isochron, and the estimates of 
the asymptotic order of the stationary phase evaluation proceed as de­
scribed above. In the simplest of situations, however, offset continuation 
and TZO/DMO in constant-background, this is not what occurs. In such a 
medium, the isochrons are surfaces of revolution. They can be determined 
by taking the isochron in the vertical plane below the source and receiver 
and rotating about the line containing the source and receiver. 

Failure of Stationary Phase 

For constant-background KDM, consider the mapping from input to out­
put source-receiver configurations along parallel lines. In Section 7. 7.3, we 
consider this special case of KDM and show that there are no stationary 
points unless the out-of-plane input and output variables are the same, 
which is to say, ~12 = ~02; that analysis is the same for all such mappings. 
Now, the input and output sources and receivers will all lie along the same 
line. In this case, the isochrons are surfaces of revolution with the same 
axis, 6 2 = ~o2 . If the normals to the isochrons are collinear at one point, 
they will remain collinear along the entire curve of revolution through that 
point and there is an entire curve of stationary points, rather an isolated 
stationary point. 

In this case, the ordinary method of stationary phase in two dimensions 
will not apply. In fact , all directional derivatives in the direction of the 
curve of revolution at the stationary point will vanish if the first derivative 
vanishes. See Figure 7.4. Thus, asymptotically, the ~!2 integration behaves 
like a delta function and the integration in the direction of the generating 
curve of revolution. The order of the stationary point in this case is infinite. 
This is a manifestation of a known fact about 3D DMO/TZO in constant­
background (but now stated for a more general class of data mappings): 

curve of tangency 

X 

FIGURE 7.4. Tangency of isochrons along a curve of revolution. 
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while the kinematics of 3D DMO /TZO are straightforward, its dynam­
ics are not, and determination of amplitude dependence of the operator 
requires great care. 

Where Uniform Asymptotics is Required 

This also should serve as a warning about 3D processing for nonconstant 
background. Suppose that the propagation speeds of the model are nearly 
constant. Then, formally, the straightforward multidimensional stationary 
phase described at the beginning of this section will seem to work. However, 
with all derivatives vanishing in the limit of zero gradient in the direction 
of the curve of near-revolution, in particular, the second derivative in that 
direction will be small; indeed, it approaches zero with the gradient of the 
propagation speeds. In this case, the validity of the asymptotic expansion 
in terms of simple stationary points relies on that second derivative being 
bounded away from zero. Thus, there will be some lower bound on this 
second derivative, and hence also a lower bound on the gradient of the 
propagation speed, beyond which the asymptotic expansion in terms of 
simple stationary points will no longer be valid in the sense that the derived 
amplitude will be inaccurate (although the mapping of travel times will still 
be correct). Thus, to obtain a data mapping formula that yields accurate 
dynamics as well as accurate kinematics, with decreasing gradient of the 
propagation speeds, uniform asymptotic analysis is required. 

More generally, for the problem of offset continuation, a similar pathol­
ogy occurs. If the offset difference is small, then the two isochrons are quite 
similar. Again, near-total contact at stationarity will imply a small deter­
minant of the matrix of second derivatives arising in the denominator of the 
stationary phase formula. In this case, the asymptotics break down again, 
yielding a result for which the kinematics is right, but the dynamics is not. 
For example, TZO or its constant-background equivalent, NMO/DMO, is 
an asymptotic result that requires this type of stationary phase calculation. 
Thus, true amplitude offset continuation through small offsets cannot be 
achieved through the same process that produces this constant background 
results. Here, at the time of this writing, the alternative method for offset 
continuation of Fomel [1995a,b, 1996, 1997] and Fomel et al. [1996] is the 
method of choice. 

7.2.3 Determination of Incidence Angle 

When the input data are dominated by isolated specular reflection returns, 
the output will be dominated by such returns, as well. Asymptotically, 
in this case, the cascade of integrals is dominated by stationary phase 
contributions where the isochrons of the input and output traveltimes are 
tangent and share the same normal direction. This direction is also normal 
to the reflector at the specular point. In the absence of mode conversion, 
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at this specular point, 

2 cos B0 
IVxTo(x,~o)l = c(x) , 

where 2Br and 2Bo are the opening angles between the incident rays of the 
input and output source/receiver configurations at the point x. Thus, we 
introduce two other KDM operators, 

Here, (···)denotes the three lines of (7.2.6) beyond the integral sign. Then, 
the ratios of outputs, 

COS[ COSO 

ur(~o,wo)' uo(~o,wo)' 

will provide asymptotic estimates of 2cosBr/cr(x) and 2cosBo/co(x), 
thereby providing estimates of Br and Bo, respectively. This is simply a 
repeat of the method introduced in Section 5.1.6, except that we have al­
lowed for the possibility that the background wavespeed for the input model 
and the output model might be different. 

7.3 2.5D Kirchhoff Data Mapping 

In this section, we discuss the specialization of our KDM platform for 2.5D 
processing. We begin by recalling the appropriate thought experiment from 
which to derive this 2.5D counterpart of (7.2.6). 

Consider a medium in which the propagation speed and other 
medium parameters are independent of one transverse direction, say 
x2 . It is further assumed that the input data is gathered on lines of 
constant x2 , say, x2 = ~r2 . Finally, consider an output source-receiver 
configuration that is also confined to lines of constant value of this 
out-of-plane coordinate. In this case, the input data are independent 
of the out-of-plane variable, ~r2 , and the integration in ~r2 and in x 2 

can be carried out by the method of stationary phase. 

Actually, it is easiest to apply the stationary phase analysis in ~r2 first, 
and then in x2 as iterated integrals, rather than to do them together as 
a two-dimensional stationary phase calculation. The analysis has already 
been carried out in Section 6.2, so we need only briefly describe the main 
features in this modified application of the same technique [Bleistein et al., 
1999]. 

For the integration in ~r2 , the phase to be considered is Tr(x, ~I). The 
stationary point in ~r2 is at 6 2 = x 2 , and the second component of the 
gradient of the phase is zero at this point. Furthermore, similar to the result 
in (6.2.4), 



7.3 2.5D Kirchhoff Data Mapping 329 

82TI I 1 1 - --+-82 -a a· ~I2 €I2=x 2 Is Ig 
(7.3.1) 

In this equation, ais (ai9 ) is a running ray parameter along the ray from 
the source (receiver) to the scattering point x. 

When this value of 62 is substituted into the phase TI(x, ei ), the result­
ing phase is independent of x2 • This makes the second stationary phase 
analysis easier, because we only have to consider the phase, To(x,e0 ). 
The analysis on this phase again proceeds as described in Section 6.2. In 
this case, stationarity requires that x 2 = ~02, essentially eliminating the 
out-of-plane coordinates from further consideration. All second component 
variables take on the same value. Note that this is exactly as occurred in 
the derivation of the 2.5D inversion in Section 6.2. 

Finally, the Beylkin determinant, (7.2.5), also becomes simpler in this 
case, as in ( 6.2. 7). It is given by 

h(x, ei) = [.2__ + -1 ] H(x, 6 ), 
ais aig 

(7.3.2) 

with 

[ 
Y'xT(x,6) l 

H(x, 6) = det 8 ( ) . 
a~I Y'xT X,6 

(7.3.3) 

In this last equation, the gradient is a two-component operator in (x1, x3) 
and ~I is a scalar variable. 

Applying the method of stationary phase to the integral in (7.2.6) in 
both variables and taking account of the results stated above leads to the 
following 2.5D analog of that earlier result: 

~e-i7rsgn(w0)/4/ . 
uo(~o,wo) rv 0 2 ~emsgn(wi)f4dwid6ui(6,wi) 

47f 

Jao(x, ~o) IV' xTo(x, ~o)l..}ais + ai9 ..;a;a9 
ai(x, ~I) IV' xTI(x, 6 )I ..}as+ a9 .jaisaig 

·IH(x,~I)I· e[iworo(w,€o)-iwJTI(X,€I)]d2x. 

(7.3.4) 

In this equation, we have rewritten ~I for ~n and ~o for ~01, because the 
second component is no longer in the representation and the formerly two 
component vectors are now scalars. 

Equation (7.3.4) provides a platform for mapping data from any 
(curvi)linear input source-receiver configuration and input medium param­
eters to data from a (curvi)linear output source-receiver configuration and 
output medium parameters. It is a 2.5D transformation, meaning that it 
accounts for 3D geometrical spreading, but assumes modeling parameters 
that are only 2D, in that they do not depend on the out-of-plane variable. 
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As with the 3D data mapping formula, (7.2.6), we view this result as a plat­
form for further analysis when a particular data mapping is prescribed. As 
in the former 3D result, for each choice of source-receiver configuration 
and medium parameters of input and output, this integral should be car­
ried out in advance, preferably analytically, invoking asymptotic methods 
as appropriate. Then, for a given data set, one would only need to process 
the line of data by carrying out the integrals in the first line employing the 
simplified weighting function obtained by the preprocessing analysis of the 
second and third lines. This is the usual form of TZO (NMOIDMO), for 
example. 

Exercises 

7.1 Carry out the details of the derivation of (7.3.4) from (7.2.6) by the 
method outlined in the text. Draw liberally on the 2.5D calculations 
in Chapter 6. 

7.2 Derive a 2.5D version of the forward modeling formula (7.2.1). 
Rewrite the inversion formula (6.2.8) in the appropriate output 
variables, analogous to the result (7.2.3). Then, substitute this repre­
sentation for f3 into the 2.5D modeling result previously derived and 
obtain (7.3.4). 

7.3.1 Determination of Incidence Angle 

Because 2.5D processing is really a special case of 3D processing, the tech­
nique that we proposed in the previous section works here as well. The 
changes that must be made are as follows. First, the processing for the 
cosines must be based on (7.3.4), above. That means we must introduce 
two new 2.5D integral operators, 

(7.3.5) 

with (· · ·) now representing everything beyond the integral sign in (7.3.4). 
Then, again, the ratios of outputs, cosJ/ui(f..0 ,wo), cosaluo(f..0 ,wo), 

will provide asymptotic estimates of 2 cos fh I c and 2 cos Oo I c, respectively. 
Thereafter, the discussion proceeds as at the end of the last section. 
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7.4 Application of KDM to Kirchhoff Data in 2.5D 

In this section, we analyze the application of the 2.5D KDM platform equa­
tion (7.3.4) to 2.5D Kirchhoff data. That application leads to 2.5D Kirchhoff 
data again, but with the input variables of the test data transformed to out­
put variables. In the earlier discussion, below equation (7.2.6), we claimed 
that it was only the leading-order asymptotic output of our integral pro­
cessing that would provide the output data mapping we seek. That is what 
we show here by using the method of stationary phase to examine the cas­
cade of the data mapping platform formula to Kirchhoff-approximate data. 
We do so only for the 2.5D case, equation (7.3.4), because the analysis is 
simpler, but shows the essence of this asymptotic analysis. 

To begin, define the reflector S R through the curve, 

(7.4.1) 

Here, with no loss of generality, f can be taken to be arclength along this 
curve, which defines the reflector. The 2.5D Kirchhoff approximate data for 
the upward reflected field was derived in Chapter 6, in Exercise 6.6 given 
by equation (6.2.10). With appropriate modifications of notation to reflect 
the discussion above, that representation is 

ui(~I,WI) = -~e-i1l'sgn(wi)f4F(wi) J R(xR(f),xs(6)) 

· nR · \i'xTI(XR(f),~I)ai(XR,6) (7.4.2) 

. J O'Is(XR, ~I )O'Jg(XR, ~I) eiWI7'J(WR,f;.r)Jdf. 

Jais(XR, ~I)+ O'Ig(XR, ~I) 

In this equation, F(wi) represents the source signature and nR is the up­
ward unit normal on the reflector. Other expressions are defined as in earlier 
equations except that now one of the points is x R ( £) on the reflecting 
surface. 

This upward scattered field is inserted into (7.3.4). The result is 

ua(ea,wo) = -~e-i1l'sgn(wo)/4jlwiidwid6dfd2x g ei'l!. (7.4.3) 

In this equation, 

J O'Is(XR, ~I )ai9 (xR, ~I) ao(x, ~o) l\7 xro(x, ~o)l 
Jais(XR,6) +ai9 (xR,6) ai(x,6) l\i'xri(X,~I)I 

(7.4.4) 

(7.4.5) 

. Jais(X,~I) + ai9 (x,6) Jas(x,6)a9 (x,6) IH(x 6 )l 
Jas(x,6) + a9 (x,6) Jais(X,~I)ai9 (x,~I) ' 



332 7. The General Theory of Data Mapping 

is the cascade of the integrands of (7.4.2) and (7.3.4), exclusive of the 
explicit frequency dependence appearing in (7.4.3). 

The method of stationary phase in the variable f will be applied to this 
representation. The phase of interest is 

(7.4.6) 

To carry out the method of stationary phase, we need the derivatives 

(7.4. 7) 

In our convention of always using x3 or z as the depth coordinate, the 
indices i, j, only take on the values 1 and 3. In these equations and those 
below, summation over the repeated indices is to be understood, with their 
values being 1 and 3. Setting the first derivative of <I>1 equal to zero picks out 
the specular reflection point as the stationary point. Denote the stationary 
value off by R = R(6 ). Detailed analysis of the second derivative is deferred 
for the moment. After stationary phase in f, (7.4.3) becomes 

iw · j !flw IF(w )e-i1rsgn(w1 <I>n14Q-e-d2x dw de VIWII I ~ I <,I, 

where e = R(~I ). (7.4.8) 

Here, <I>~ denotes the value of the second derivative at the stationary 
point, 

<I>" = a2<I>(e) I 
1 8£2 l=l' 

(7.4.9) 

assumed bounded away from zero in the sense discussed in Section 3.6.1. As 
in Exercise 3.20, this restriction assures us that any caustic or focus of the 
reflected rays is bounded away from the observation surface. On the other 
hand, it does not tell us what the sign of this second derivative is. That 
would depend on how many caustics the arriving ray has passed through 
on its way to the observation surface. These are caustics arising from the 
geometry of the surface. The case in which point-source rays have caustics 
has been excluded, initially, by not including a KMAH index [Lewis, 1965; 
Ludwig, 1966; Kravtsov and Orlov 1990; Ziolkowski and Deschamps 1980, 
1984; Cerveny, 1995, 2000] in our original Green's functions in the modeling 
and inversion formulas. 
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Finding the Stationary Points 

Stationary phase in ~I is now to be applied to the integral in (7.4.8). The 
6-dependent part of the phase is 

(7.4.10) 

and the derivatives of this expression with respect to ~I are given by 

(7.4.11) 
where 

6. _ ()2TI(XR(R(~I)),~I) _ a2TI(x,~J) 
TI- a~; a~; (7.4.12) 

In the first line in (7.4.11), the last term is zero because the dot product 
there was set equal to zero to obtain the stationary point of <I> 1 in the 
variable t In the second line, summation over the repeated index j, for 
j = 1, 3, is understood. 

Consider the condition that the first derivative of <I> 2 is equal to zero. 
The first traveltime in <I> 2 is just the time for the specular raypath from 
source to SR to the receiver. This traveltime remains finite as ~ varies. 
On the other hand, the second term represents the traveltime from the 
source to a fixed point at depth to a receiver. If the source-receiver array 
were of infinite extent, this traveltime would increase beyond all bounds 
as the source-receiver pair moves off towards infinity in either direction. 
Nevertheless, this traveltime would achieve at least one local extremum (a 
minimum) at some finite value of ~I. Thus, the traveltime difference will 
approach -oo at the extremes and reach some finite maximum for some 
value(s) ~I· If such a ~I is in the range of integration, that is, in the range 
of source-receiver pairs for which data were collected, then the integral has 
a stationary point. If no such ~ is in the range, then, for that choice of 
x, there is no stationary point, and the contribution to the total integral 
is of lower order. We proceed as if there is an interior stationary point, 

6 = 6(x). 
Note that if x is on the reflector, then the ~I (and, therefore, R(~I), 

for which XR(R(6)) =xis the specular reflection point) satisfies both 
stationary phase conditions. An easy way to see this is to note that in this 
case, the rays from x and XR(£) to the source and receiver are the same 
and are specular. See Figure 7.5. 

The fact that the rays are specular makes <I> 1 stationary; the fact that 
these two points are the same makes their derivatives with respect to ~1 
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FIGURE 7.5. Stationary point in ~~ when x is on SR. 6 is chosen so that 
XR(f(~!)) =X. 

the same and the difference of derivatives appearing in a<P2ja~I is then 
equal to zero. It is for this reason that the difference of second derivatives 
is combined into the expression D..TI. This difference is equal to zero on 
the reflector and, therefore, near zero for x near the reflector. This will be 
important below. 

Finding the Second Derivatives of the Phase, at Stationarity 

In order to determine the second derivative at stationarity, the first deriva­
tive of £ with respect to ~I is needed. This derivative is determined by 
first setting a<Pifa£ = 0 in (7.4.7) and then differentiating implicitly with 
respect to 6. That is, we set 

'\7 ( (l!(c )) c). dxR = aTI(XR(l(6)),6) dxRi I = 0 xTIXR '>I ,..,I d£ ax. d£ _ , 
RJ l=t(er) 

and then differentiate: 
2 - -a TI(XR(f(~I)),~I) dXRj dXRk df(~I) 

axRjaXRk d£ d£ ~I 

+ a2TI(XR(7!(6 )), 6) dXRj I - = 0. 
axRj~I d£ l=l(er) 

The summation over j and k in the first term here is recognized as just <Pt, 
as defined by (7.4.9). Therefore, we find that 

- 2 -
.!!!:._=_a TI(XR(£(~I)),6) dXRj [<f!~rl. (7.4.l3) 
d6 a6aXRj d£ 

With this result, (7.4.11) is replaced by 

a2<f!2 __ [a2TJ(XR(7!(6 )), 6) dXRj] 2 [n,."j-1 A 
2 - ""1 + UTI• 

a~I a~IaXRj d£ 
(7.4.14) 

The summation in first factor on the right, is just a dot product, allowing 
the simplification 



7.4 Application of KDM to Kirchhoff Data in 2.5D 335 

1 82 TI(XR(R(~I )), ~I) dx!!j I = 18V xTI . dx_R I= 18V xTI X nRI 
868x Rj d.e 8~I d.e 8~I 

~~ xVxTII 

IV xTII 

(7.4.15) 

IH(xR,~I)I 

IV xTII 

In the second equality, we have exploited the fact that in two dimensions 
the magnitude of the dot product with the tangent is the same as the mag­
nitude of the cross product with the orthogonal vector, which is to say, 
the normal. In the next equality, starting the second line the collinearity 
(within a sign) of the surface normal and the traveltime gradient at station­
arity is used. The last equality, in turn, rewrites this two-dimensional cross 
product as a determinant, the same Beylkin determinant as appears in the 
inversion formula. Here, however, it is evaluated at the point, XR on the 
reflector, subject to the two stationarity conditions, above. Now (7.4.14) 
can be rewritten as 

<I>"= -IIH(xR,6)11 2 l<P"J-1 + ~ 
2 IV xTII 1 TJ. (7.4.16) 

As with <1? 1 , the notation, <I?~, is introduced for the evaluation of the second 
derivative at the stationary point. We remark that for x near the reflector, 
this second derivative is dominated by the first term and 

sgn ( <!?~) = - sgn ( <!?~), 

while this sign might change when x is "sufficiently far" from the reflector, 
presumably more than three units of reciprocal wavenumber away, for the 
sake of asymptotic analysis. The discussion of this possible latter region 
is postponed until later, and the analysis proceeds in the restricted range 
where the signs of the second derivatives satisfy the above relationship. 

Applying Stationary Phase to Equation (7.4.8) 

In this case, application of the method of stationary phase to (7.4.8) leads 
to the result 

u (c w ) = -27r Pw le-i7rsgn(wo)/4/F(w )dw d2x g ei'¥ . 
o .. 0, o v IWOI I I vi<Pr<l?~ 1 

(7.4.17) 

Here, the amplitude and the phase are to be evaluated at the dual 
stationary points in .e and ~~. 

The dependence on WI has now become particularly simple. There is the 
linear dependence in \f!, as defined by (7.4.4), and also the amplitude factor, 
F(wi ). IfF = 1, the WI- integration yields a delta function. We take the 
point of view that F is a filter that leads to a bandlimited version of the 
delta function that we will denote by 8 8 : 
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(7.4.18) 

By using this identity to carry out the WI integration in (7.4.17), we obtain 

ua(ea,wo) = -4n2~e-i71'sgn(wo)/4 

J eiw 
· d2 X Q 8 B ( TI (X R (f), 6) - TI (X, ~I))· J I <I>~ <I>~ I 

(7.4.19) 

The last factor here is a scalar delta function. Its argument is zero when 
x is on the reflector where the stationary phase conditions yield x = XR 
and the value of ~I makes the corresponding source-receiver pair specular. 
Furthermore, this zero is isolated; the gradient of the argument is just 
the gradient of the traveltime, which is normal to the reflector. Thus, the 
direction of maximal change of argument of the delta function is initially 
normal to the reflector. Within a scale factor, then, this delta function is the 
singular function of the surface, SR. The scale factor is just the magnitude 
of the gradient of the traveltime; that is, 

As an asymptotic approximation, we will replace the bandlimited delta 
function by the delta function, itself. In this case, we can evaluate all ampli­
tude factors on the reflector, SR. In particular, <I>~ in (7.4.16) is evaluated 
on SR. As noted above, the last term in that equation, jj. TI, defined by 
(7.4.12), is zero on SR, so that 

<I>~= -IIH(xR,~I)II 2 [<~>~rl 
IV' xTII 

on SR. In this case, (7.4.19) can be rewritten as 

uo(ea,wo) = -4n2~e-i71'sgn(wo)/4! df g ~IY':i:(xR(£),6)1. 
(7.4.21) 

In this equation, the stationarity conditions define 6 = 6 (f), choosing the 
value of 6 for which the input source-receiver pair are specular at XR(f). 
Now, the amplitude in this equation must be evaluated at stationarity and 
for x = XR· In this limit, from (7.4.5), 

g R(xR(f), Xs(~I)) ( c ) , 'r"7 ( ( 0 ) c ) 
= 47r2 aoXR,<,OnR'VxTIXRt-,<,I 

. IY'xTo(xR,~o)l Jus(XR,~o)ug(XR,~o) IH(x,~I)I. (7.4.22) 
IY'xTI(XR,6)1 Ju8 (XR,~o) +u9 (xR,~o) 
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Furthermore, with the term LlTI now equal to zero, and the simplification 
of 1>~ above, 

Obtaining the Kirchhoff Integral Equation Result 

These results are used in (7.4.21) to obtain 

uo(~o,wo) = -~e-i7rsgn(wo)/4 

(7.4.23) 

· J df. R(xR(f.),xs(~I))ao(xR,~o) (7.4.24) 

, V' ( (f.) c) IV'xTo(xR,~o)l 
·nR· xTI XR ,..,I I"' ( c )I 

v xTI XR, <,I 
,----,-----;:-----,---------;-----,;:---;-

. Jas(XR, ~o)ag(XR, ~o) eiwoTo(reR,~o) 
Jas(XR, ~o) + a9 (xR, ~o) . 

Because the integrand is evaluated subject to the stationarity relation 
between f. and ~I, 

nR · Y'xTI(xR(f.),~I) = -IV'xTI(XR,~I)I. 

Just as in (7.4.25), we set 

IV' xTo(xR, ~o)l = -nR. V' xTo(xR(f.), ~o). 

With these substitutions, 

uo(~o,wo) = -~e-iKsgn(wo)/4 

(7.4.25) 

(7.4.26) 

· j R(xR(f.),xs(~I))nR · Y'xTo(xR(f.),~o)ao(xR,~o) 
. Jas(XR, ~o)ag(XR, ~o) eiwoTo(XR,~o)ldf.. 

Jas(XR, ~o) + a9 (xR,~o) 
(7.4.27) 

This is the formula for the "Kirchhoff data" remapped via 2.5D KDM. 

Interpreting the Result 

Now compare (7.4.27) with (7.4.2). The Kirchhoff representation in the 
input source-receiver coordinates has been transformed into the Kirchhoff 
representation in the output source-receiver coordinates. In obtaining this 
result, a region of the x-domain integration where sgn ( 1>~) = sgn ( 1>7) 
has been neglected. In this region, the signature factor in the method of 
stationary phase becomes exp{ i1r /2 sgn ( w I) sgn ( 1>~)}, whose Fourier trans­
form is the Cauchy principal-value-1/t function, PV -1/t. Thus, the delta 
function that confined the support of the volume integral to the reflect­
ing surface is now replaced by this PV- 1/t function in the residual part 
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of the x-domain integration. As with the delta function, this function is 
singular at the zero of its argument-on the reflecting surface. However, 
we use this function in a spatial region that is bounded away from the 
reflector. In that region, the amplitude 1/t is relatively small compared to 
its value in the neighborhood oft = 0. In fact, in the Fourier domain, the 
function that is equal to ±i for ±w "large," produces the singular behavior 
of PV- 1/t, while the part of the function that is equal to ±i near zero 
produces the slowly decaying tail of 1/t. However, as noted above, this 
combination of signs, sgn ( <P~) = sgn ( <Pn, only occurs "far" -a few units 
of reciprocal wavenumber away-from the reflector and produces some low 
frequency-presumably, small amplitude contribution to the total asymp­
totic expansion. Thus, any contribution that might be obtained from this 
integration over w I and the integration over x in a region bounded away 
from the reflector will be of lower order asymptotically than the result 
given here. In this sense, Kirchhoff-approximate input data is mapped to 
Kirchhoff-approximate output data. 

We lack a proof in the most general case that the Kirchhoff integral pro­
vides the leading-order WKBJ approximate expansion of the return from 
specular reflections; this is always the case in asymptotic expansions that 
can be carried out explicitly. This is the basis of our claim that travel­
time and all geometrical spreading and curvature effects, including effects 
of "buried foci" -caustics produced by synclines-will be properly trans­
formed by the KDM process. Where the caustic pierces the upper surface, 
the arrival time is expected to be accurate, but no claims are made about 
the accuracy of the amplitude. The factor <P~ is zero in this case and the 
asymptotic analysis is invalid. Nevertheless, it produces an integrable sin­
gularity in the Kirchhoff integral, with the correct traveltimes in the phase, 
hence, our claim that the arrival time is correct, but the amplitude need 
not be. 

For edge-diffracted returns, the Kirchhoff integral produces the correct 
arrival time, but an inaccurate diffraction coefficient, except at the shadow 
boundary of the last reflected ray. The reason is that the asymptotic ex­
pansion of the diffracted wave arises from an endpoint contribution of the 
data-modeling integral. The traveltime from that endpoint to the obser­
vation point is just the diffraction raypath traveltime. Even in the region 
covered by specular reflections, this endpoint contribution is a next or­
der term in the asymptotic expansion; it is often visible, somewhat dimmer 
than the reflection response. Thus, the mapped data are expected to contain 
mapped diffraction arrival times with inaccurate amplitudes. The ampli­
tudes are inaccurate because the Kirchhoff approximations of the original 
forward model underlying the derivation are themselves inaccurate in a 
region close to the diffracting edge. 

There is another source of "error" in the amplitude. Note that, in 
(7.4.27), the reflection coefficient is evaluated at an incidence angle associ­
ated with the input source-receiver configuration, through its dependence 
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on the stationary value of ~~. For mapped data, we would prefer to have 
this dependence mapped to ~o, so that the reflection coefficient is mapped 
to its value in the output configuration and at the output incidence angle. 
Unfortunately, this is not the case. The input reflection coefficient is pre­
served, not mapped. This is known from the TZO case and is therefore not 
surprising in this general result. 

As in Section 5.1.6, we can see here how the additional integral operators 
cosr and coso of Section 7.2.3, produce estimates of the incidence angles in 
the input and output configurations. Because the entire integrand of each 
of the operators cosr and coso, is evaluated at its stationary value, this is 
true, in particular, for the traveltime gradients appearing in these integral 
kernels. Those stationary values are, indeed, just 2 cos 0 j c( x), subscripted 
either I or 0. Hence the ratio of operators is, asymptotically, as claimed. 

In summary, we have shown that the leading-order asymptotic input data 
are mapped to the leading-order asymptotic output data, except for the 
reflection coefficient, which maintains its input value everywhere. Clearly, 
the same sort of analysis could be carried out in 3D, starting from (7.2.6) 
and applying this operator to the 3D Kirchhoff data, (7.2.1). While the 
details of the higher-dimensional stationary phase analysis would be more 
difficult, analogous to the proof in Chapter 6 for the basic inversion formula, 
the analysis would proceed exactly along the lines presented in this simpler 
2.5D case, here. Thus, we forego that more difficult analysis. 

7.4.1 Asymptotic Analysis of 2.5D KDM 

The 2.5D KDM platform formula (7.3.4) is somewhat easier to analyze than 
is the 3D formula (7.2.6). As noted earlier, the first approach will be to ap­
ply stationary phase in so-called isochron coordinates, and that analysis 
is simpler in 2.5D than in 3D. See Figure 7.1. In this approach, we inte­
grate over a running parameter on a fixed isochron and then over a second 
coordinate, the temporal coordinate that moves us from one isochron to 
another. We will see that the first integration, the one along the isochron, 
can always be carried out by the method of stationary phase, subject to 
the second derivative of the phase being "large enough" for the method of 
stationary phase to be valid. At that point, one particular data mapping 
application will require special handling, while a more global approach in 
the frequency domain will apply to all others. The method applied to the 
exceptional case proves to be a time-domain method applicable to all cases 
for which the stationary phase method applied to the first integration is 
valid. 

Thus, we begin by introducing those new coordinates, one of which is 
the input traveltime TJ(X, er), defined in (7.2.4), and the other is a running 
parameter along each curve of constant TJ, that is, on the isochrons of TJ. 

Let us call that second parameter, 'Y· See Figure 7.6. For simplicity, we 
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Xg • 

FIGURE 7.6. Isochron coordinate system. 

choose the level curves of "! to be orthogonal trajectories to the isochrons. 
We remark that now x = x("!, t1 ) and that 

(7.4.28) 

with 

d2x = d"fdti I af~~)1 ) I· 
Because coordinate curves are orthogonal to one another, the Jacobian 
appearing here is just the product of the magnitudes of the derivatives 
appearing in each row. That is, 

d2 x = d"(dti 1 ~~ 11 z~ I· 
Now, laxjatii is just the directional derivative of x in the direction of 
increasing traveltime. To simplify this expression, observe first that 

I ax . 'VTJI =I axi aTJ I= dTJ = 1. 
ati ati axi dti 

Here, we use summation convention in the first equality and obtain the next 
equality by observing that this sum is just the chain rule for differentiating 
TJ with respect to tJ. However, because t 1 is just the value of TJ on each 
isochron, this derivative is equal to 1, which is the last equality. The two 
vectors in the first expression both point in the direction orthogonal to the 
isochron. Hence, this dot product is really the product of their magnitudes. 
On the other hand, the last result makes them reciprocals of one another. 
That is, 

I ax I 1 
ati = IVTJI. 

Next, observe that 

~~~~ = [~~ r + [~; r + [~; r 
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=1~~0 (~r+(~r+(~~r 
= lim Ju:::.xl)2 + (~x2)2 + (~x3)2 = I as I· 

Ll"f--.o ~1 a1 

Collecting these results, we can write 

d2x = d"fdti I aa: I , 
IV'ri(x,~)l , 

(7.4.29) 

with s being arclength along the isochron. 
With this change of variables of integration, (7.3.4) becomes 

~e-i7rsgn(wo)/4 

uo(~o,wo) rv 4n2 

· J ~ei1rsgn (wi)/4dwid6ui(6, WI) (7.4.30) 

. Jao(x, ~o) IV'ro(x, ~o)l ,jCJis + CJig ,;a;ag 
ai(x,6) IV'ri(x,6W ,JCJs+CJg ..jUisCJig 

·IH(x, ~I )I· e[iworo(oo,~o)-iwm(oo,~r)]d"(dti I~~ I· 
1.4.2 Stationary Phase Analysis in 'Y 

We will now apply the method of stationary phase, in the variable "(, to 
this last integral. Thus, we consider the phase function 

(7.4.31) 

The derivatives of this phase are 

dip = V'To . ax = aro axi 
d"( a'Y axi a'Y , 

(7.4.32) 

d2fP a2To axi axj aro a2xi ------+--d"(2 - axiaXj a"( a"( axi a"(2 . 

In these equations, the repeated indices are, again, to be summed over 1 
and 3. The same will be true for repeated indices that arise below. 

The phase is stationary when the first derivative here is equal to zero: 

ax 
V'To · a"( = 0. (7.4.33) 

We see here that the gradient of ro is required to be orthogonal to the 
tangent vector to the isochron, TI = t I. This is as predicted earlier and is 
depicted in Figure 7.2. 
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Now, we must evaluate the second derivative of the phase in (7.4.32). 
First, let us address the second term in that derivative. In the exercises 
below, we outline the derivation of the result 

OTo o2xi [ds] 2 

oxi O"f2 = -IV'To(x,~o)l ,..I d"f (7.4.34) 

Here, 1'\:J is the curvature of the isochron, TJ = t1, with the sign determined 
by the implied dot product on the left side, which is 

( d2x) sgn V'To(x,~o) · ds2 = -1. (7.4.35) 

This follows from the fact that, in the absence of multi-pathing, the gradi­
ent faces downward, while the curvature vector faces upward, toward the 
concave side of the isochron of TJ. 

Analysis of the first term on the right side of (7.4.32) requires more dis­
cussion. Let us denote by to the value of the traveltime To at stationarity. 
Now, consider the isochron of To defined by To= to. Denote the equation 
of that isochron by x = x' ( 'Y'). Then, by implicit differentiation, 

0- OTo ox~ 
- OXi 0"(1 ' 

0 = o2To ox~ oxj + OTo o2x~. 
ox~oxj O"f' O"f' ox~ O"f'2 

(7.4.36) 

In this equation, the first line is simply a statement that the traveltime 
gradient and the tangent to the isochron are orthogonal. In the second 
line, we can make the first term agree with the first term of d2if!/d"f2 at 
the stationary point if we choose "(1 as a local function of 'Y for which 

at the stationary point. Then, 

d"f' 
-=1 
d"( 

o2To OXi OXj o2To ox~ oxj 
OXiOXj O"f O"f = ox~oxj 0"(1 0"(1 • 

That is, the two tangent vectors appearing as second factors, here, now 
agree, as do the first factors, at the stationary point. The orthogonality in 
the first line of (7.4.36) leads us to conclude, as above, that 

OTo o2x~ OTo o2xi [ds'] 2 
!l!J:,} ,2 =~~=-IV'To(x,~o)l,..o -d, 
u~~ u~~ "( 

One can see here that we have obtained the same sort of expression as 
above, except that the curvature in question is now the curvature of the 
isochron of To, which is tangent to the isochron of TJ at stationarity. 
Combining these results, we find that 
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a2To axi axj 
axiaxj ary ary 

a2To ax~ axj _ aTO a2x~ 
ax~axj ary' ary' ax; ary'2 

aTo a2xi [ ds'] 2 

= axi ary2 = I'V'To(x, ~o)l i'i:O dry' 

= I'V'To(x,~o)l "o [~~] 2 

With these results, the expression for the second derivative of <I> in 
(7.4.32) becomes 

d2 <I> [ds] 2 

dry2 =1\i'To(x,~o)l dry (~i:o-li:I), ( d2<]>) 
sgn dry2 = sgn (~i:o- "I). 

(7.4.37) 
We use these results to compute the leading-order approximation by the 

method of stationary phase in ry applied to the integral in (7.4.30). The 
result is 

ei71" sgn (wo )/4[sgn (Ko -KI )-1] 

uo(~o,wo) rv [27rj3/2 

· J ~ei7rsgn(wi)/4ui(6,wi)dwi d6 

. j ao(x,~o) JI'V'To(x,~o)l IH(x,6)1 
ai(x,6) I'V'TI(x,6)12 Jlh:o-fi:II 

. VO"Is + O"Ig ~ dtieiworo(m,~o)-iwit1 • 
VO"s + O"g yfO"IsO"Ig 

(7.4.38) 

Here, x = x(ry, ti) defined by the change of variable of integration; ry is 
further defined as a function of ~I, ~o, t I at the stationary point, obtained 
by setting the first ry-derivative of the phase equal to zero, (7.4.33). This 
condition should be familiar to readers who have experience with constant­
background DMO. There, as in Figure 7.2, the common-offset isochrons are 
ellipses, while the zero-offset isochrons are circles. For each t I, there is a 
corresponding isochron of To, which satisfies the stationary phase condition 
or, its equivalent, the tangency condition between isochrons. In the absence 
of multi-pathing, there is only one stationary point for each fixed value of 
~J, ~o, ti; at that stationary point, x, to and ry are determined as functions 
of these variables. 

Exercises 

7.3 The purpose of this exercise 1s to verify (7.4.34). We begin by 
considering the isochron 
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TJ(x(1, ti),~o) = t1, 

and represent it as x = x(s(1)), with s being arclength on the 
isochron. 

a. Differentiate this equation with respect to "( to conclude that 

dx dx ds 

d"f ds d"f' 

d2x d2x [ds] 2 + dx d2s 
d"f2 ds2 d"f ds d"f2 

b. Let n be a unit normal to this isochron and explain why 

d2x dx d2s d2s 
n . d"f2 = n . ds d"f2 = n . ,., I d"f2 . 

That is, the normal projection of the second derivative with re­
spect to "( is proportional to the curvature vector of the curve, 
x=x(1-,tJ). 

c. Now verify (7.4.34). 

7.4.3 Validity of the Stationary Phase Analysis 

It can be seen from this last result that the amplitude of the integrand 
becomes infinite when the two curvatures are equal. The curvature differ­
ence arose through the evaluation of the second derivative of the phase in 
(7.4.37). Indeed, in Section 3.6.1, we discuss the asymptotic validity of the 
method of stationary phase. The essence of that result is that, in appropri­
ate dimensionless variables, wad2if! / d"(2 must be "large," say, greater than 
11'. The appropriate length and time scales for this calculation should be 
the "slow" scales over which the amplitude and traveltime varies, rather 
than the "fast" scales associated with wavelength and period. 

The form of (7.4.37), in terms of an arbitrary parameter, "(, lends itself 
to an easy identification of the second derivative in terms of an appropriate 
slow length scale. To do so, let us define L to be the length along the 
raypath from output source to receive; in the constant background case, 
for example, L = eta. Then, let us define 

"(=s/L, 

where s is arclength along the isochron. In this case, 

and we can then calculate 

d2if! 411' foL 2 
wo d"f2 = co cosBo IK;o- 1\;JI 
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47rfoL 
= -- cosBo LIKo- l'l:JI 2: 1r. (7.4.39) 

co 

Here, co is an "average" propagation speed in the output medium; f o is 
the frequency in Hz; Bo is the half-opening angle of the rays associated with 
To at the output point x. In the final form, we have written the inequal­
ity as 47r times three dimensionless factors. The first factor is the travel 
distance measured in wavelengths; the second factor is the half-opening 
angle between the rays from source and receiver to the stationary point, x; 
the third factor is the curvature difference on the isochrons normalized by 
the slow length scale. This result should be compared to the dimensionless 
large parameter, (3.6.5), for inversion. The new feature here is that the 
curvature difference on the input and output isochrons plays a role in the 
asymptotic validity of the result. 

We can see from (7.4.39) that validity of the asymptotic expansion 
requires that 

• the output travel distance must be a "few units of reciprocal wavenum­
ber" from the output acquisition points; 

• the half-opening angle between the rays cannot be too near to 1r /2; 
• the curvature difference cannot be too small, when measured in units of 

inverse travel distance along the output rays from source to stationary 
point to receiver. 

Effects of Relative Isochron Curvature 

In this list of requirements, the last observation is worth further discus­
sion. In (7.4.39), the presence of the last factor, the difference of isochron 
curvatures, presents an important limitation on simplifications of the data 
mapping platform (7.4.30) that are arrived at by carrying out the station­
ary phase computation, above. For example, for offset continuation through 
small offsets, or transformation to zero-offset from a small initial offset, any 
result produced through further analysis of (7.4.30) would not be valid.9 We 
remark that the classic NMO/DMO sequence arises from exactly this type 
of asymptotic analysis. Hence, this is one of the processes that is constrained 
as we have described here. While NMO /DMO is a kinematically accurate 
mapping from small offset to zero-offset, it will be dynamically inaccurate, 
unable to produce the true amplitude predicted in the introduction. That 
will be shown, below, in Section 7.6. 

We see, also, that the sign of the curvature difference influences the 
processing formula for uo in (7.4.38). If the curvature difference is positive, 
the total phase shift represented by the outside multiplier on the right side 

9 Actually, the kinematics would be right, but the dynamics would not. That 
is, the transformation of traveltime, or phase, would be accurate, but the output 
amplitude would not properly transform the geometrical spreading effects from 
input to output. 
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of that equation is zero. On the other hand, if the curvature difference is 
negative, the integration output on the right hand side is multiplied by 

ei7rsgn(wo)/4[sgn(t<o-t<J)-1] = -isgn (wo). 

The inverse transform of this factor is -1j1rt; as a convolutional operator in 
the time domain, this is the Hilbert transform. See (A.7.1) in Appendix A. 
Thus, if the output of the integral operations on the right side would nor­
mally produce a bandlimited delta function in the time domain, the result 
of this operator would be to transform the output into a bandlimited 1/t 
function, a form of doublet (different from a bandlimited t5' ( t), for example). 
In summary, the relative curvature of the isochrons changes the character 
of the output data in the time domain. 

In Figure 7.2, the input isochrons are depicted as having larger radii 
of curvature (smaller curvatures) than the output isochrons. In fact, in 
that figure, the isochrons are just the ellipse and circles of the constant­
background TZO, or NMO /DMO, data mapping. In this case, the curvature 
difference appearing in the phase shift multiplier preceding the integral sign 
in the first line of (7.4.38) is positive and the total phase shift represented 
by that factor is zero. On the other hand, suppose the processes were re­
versed, that is, mapping from zero-offset to finite offset. In this case, these 
phase shifts produce a multiplier of -i sgn (wo ), as noted above. This is 
the Fourier transform of the Hilbert transform kernel, 1/t, back in the time 
domain. Thus, given an input source signature in the time domain, a data 
mapping of this type requires transforming that source signature to its 
Hilbert transform on output. 

As a second example, consider the mapping from common-offset to 
common-shot. Now for input offset greater than the separation between 
source and receiver of the output, there is no phase shift due to curvature. 
However, when the input offset is less than the output offset, the curva­
ture difference is negative and we are in the second case; there is a phase 
shift due to curvature. Thus, the smaller offset part of the output data set 
requires no Hilbert transform, while the latter part of the data set, larger 
output offset, does require a Hilbert transform. 

Computing the Isochron Curvatures 

We remark that each of the isochron curvatures, K.o and K.J, appearing in 
(7.4.38) can be written in terms of the separate curvatures for the trav­
eltimes from source or receiver, respectively, to the point at depth. That 
is, 

cos(h [ 2 ] 
K.J = - 2- K.Js + K.Jg +tan fh'Vc · 'VTI , 

cosOo [ 2 ] K.o = - 2- K.os + K.og +tan Oo 'Vc ·\!To . (7.4.40) 



1.:) Common-Shot Downward Continuation of Receivers (or Sources) 347 

Here, as always, ei and &0 are the half-angles between the rays from the 
source and receiver meeting at the isochron in input and output config­
urations, respectively. The importance of this result is that the separate 
isochron curvatures can be computed along the rays at the same time that 
other ray quantities are. 

Note that for constant background, the gradient terms in (7.4.40) are 
absent, and the individual isochrons are circles. In this case, each radius 
of curvature is just the radius of the corresponding circle and the total 
curvature is just the average of the individual curvatures-or the average 
of the reciprocal radii-multiplied by cos ei or cos eo, respectively: 

K,I = cos&Is [2_ + 2_] 
2 ris rig ' 

(7.4.41) 

/'l,Q = cos Bas [-1- + _1_] . 
2 ros rag 

The gradient terms in (7.4.40) provide corrections that takes account of the 
component of the background propagation speed in the direction normal to 
the isochron of TI or To, respectively. The result, (7.4.40), will be derived 
at the end of the chapter. 

We would propose to proceed from this point by carrying out the inte­
gration in the variable, t I by the method of stationary phase applied to the 
phase function 

woTo(x('-y,ti),~o) -witi, 

with "( further defined as a function of ~I, ~o, t I through the above sta­
tionary phase analysis. In fact, there is one case in which the phase is linear 
inti and, hence, the method of stationary phase cannot be applied. Before 
proceeding to the next stationary phase analysis, then, we will pause to 
consider this implementation. 

7.5 Common-Shot Downward Continuation of 
Receivers (or Sources) 

Here we consider a the problem of performing the KDM form of datuming 
on a common-shot data set. The objective is to move the receivers from 
one datum surface to another. For example, we might want to move the 
receivers from an irregular acquisition surface to a regular one, or simply 
move the receivers to a different depth. (By reciprocity, we could do the 
same thing to sources by considering a common-receiver gather.) 

For this case, it is easy to explain the stationary phase condition (7.4.33) 
geometrically. Draw the ray from the input receiver through the output re­
ceiver and down to the isochron TI = t I. Draw the ray from that intersection 
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FIGURE 7.7. Geometry of the stationary phase analysis in "Y for downward 
continuation of receivers in a constant-background medium. 

point to the common source point. The input and output traveltimes share 
the same traveltime from source to isochron and then from isochron to the 
output receiver. In fact, they differ only by the traveltime from the input 
receiver to the output receiver, which is a constant in time for fixed input 
and output receiver location. Because the input and output rays overlay 
one another at the isochron, the two traveltime gradients are identical and 
the isochrons are tangent. This also means that the opening angles, 2fh 
and 2Bo, between the rays from source and receiver at the isochron, are 
identical. That is, 

(7.5.1) 

Here, we no longer distinguish between input and output opening angles 
because they are the same. Consequently, the reflection coefficient at input 
incidence angle is also the reflection coefficient at output incidence angle; 
that is, the reflection coefficient is preserved in this mapping. Furthermore, 
for this case, the output traveltime is less than the input traveltime; is 
radius of curvature at stationarity is smaller than the corresponding radius 
on the input isochron and, therefore, the curvature difference is positive; 
hence, we lose the phase factor from (7.4.38). 

It is now straightforward to transform (7.4.38) to the time domain by 
multiplying by exp{ -iwoto} /27r and integrating on both sides. The only 
wa-dependence on the right is now in the phase, producing a delta function 
in time, 6(to -To), thereby allowing us to carry out the time domain 
integration as well. The result is, 

U 1 j Dl/2(~I,ti) A(x,x9 (~0 )) 
o(~o,to)"" [27rj3/2 I\7TJ(x,~I)I3/2 A(x,xg(6)) 

V(J'Is + (}'Jg y'cJi IH(x,~I )I d6 . 

V(J's + (J'g y'cii9 VIKo- KJI 
(7.5.2) 
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Here, 

Dl/2(~,t) = 2~ J v!f~jei7rsgn(w)/4-iwtur(~,w)dw (7.5.3) 

is the Hilbert transform of the half-derivative of the input data. In the 
frequency domain, the product 

ei7r/2sgn(w1 ). ~e-i7rsgn(wr)/4 = isgn (wr). J-iwr, 

commutes, but their temporal counterparts, Hilbert transform and half­
derivative, respectively, do not. The reason is that fractional derivatives can 
be applied to causal functions only; application of the Hilbert transform 
to a causal function does not yield a causal function. Hence, we must take 
care to keep track of the order in which these operators are applied in the 
time domain. 

In (7.5.2), tr = tr(to, ~I, ~o ), through the stationary phase condition 
that fixes the input and output traveltime isochrons to be tangent. This 
type of mapping between input and output traveltimes is similar to the 
mapping of input to output traveltimes in DMO. Given to, 6, ~o, we draw 
the isochron To = t 0 and find the isochron of TJ that is tangent to it. This 
determines tr and we can proceed to evaluate the integrand. In Sheaffer 
and Bleistein [1998], the constant-background implementation of this result 
is discussed in greater detail. 

We remark that the Beylkin determinant and the ray-theoretic ampli­
tudes appearing in (7.5.2) admit some simplification because we are dealing 
with a 2.5D implementation. For the Beylkin determinant, we use (6.3.2); 
that is, we set 

IH(x,6)1 = 4~~;~ ()I 8p((x~~:g(6)) I= j'VTrl21 8p((x~~:g(6)) I· 
Furthermore, the 2.5D amplitudes are given by (6.1.5) and (6.1.7). The 
amplitudes appearing in 7.5.2) can each be expressed in the form (6.1.12). 
Of course, the O"'s and the p 0 's have to be chosen appropriately for the 
computation; they depend on the initial and final points along the ray. 

7.5.1 Time-Domain Data Mapping for Other 
Implementations 

The technique we used in the previous discussion-inverse Fourier trans­
form from wo to to-will always provide a mapping to output data in 
space-time. However, we have to account for the possibility that sgn (r;,o­
r;,I) = -1, leading to a nontrivial phase-shift in the first line of (7.4.38). To 
do so, we rewrite (7.4.38) as follows. First, set 

uo(~o,wo) = ei7rsgn(wo)/4(sgn(~<o-~<r)-l]do(~o,wo), with 
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do(~o,wo) = [21!"~312 J Jj~~jei1l"sgn(wi)/4ui(~I,WI)dwi d~I 
. J ao(x,~o) viVTo(x,~o)l IH(x,6)1 

ai(x,6) IVTI(x,6W Jlh:o -h:II 

. VC!Is + C!Ig ~ dtieiwoTo(m,~o)-iwiti. 
VCJs + C!g -jCJisC!Ig 

(7.5.4) 

Now, we can treat the inverse Fourier transform on the right side as the 
transform of a product, leading to a convolution in the time domain. Let 
us focus on the inverse transform of do ( ~o, wo): 

Do(~o,to) = 2~ j do(~o,wo)e-iwotodwo. (7.5.5) 

Observe that the only dependence on wo in do ( ~o, wo) is through the 
phase factor iwoTo(m, ~o) and, further, that 

2~ J eiwo{To(m,~o)-to}dwo = 8(To(x,~o)- to). 

We will use this delta function to carry out the integration in t I. Recall 
that the time To(x, ~o) is related to the time ti It is easier to carry out 
the temporal integral in to than in t I. To do so, observe that 

dti dTI 
dti = -d dTI = -d dTo 

TI TO 

= IVTI(X,~I)I dTo dto = IVTI(x,~I)I dto 
I"Y'To(x,~o)l dto I"Y'To(x,~o)l · 

Here, to obtain the second equality, we have set dtJ/dTI = 1 and used the 
chain rule to replace dTI by a scale factor multiplying dT0 . In the next 
line, we have written the derivative dTI / dTo as a quotient of gradients and 
replaced dTo by a scale factor multiplying dto. Finally, for the last equality, 
we have replaced that final scale factor by unity. 

Therefore, exploiting the delta function to carry out the ti integral re­
quires that we introduce this quotient of gradients as a scale factor in the 
amplitude on the right side of (7.4.38). (Note, from (7.5.1), that this scale 
factor is equal to unity in the downward continuation example, above.) 

The final result, then, depends on the value of the phase shift. We find 
that 

Uo(~o, to)= Do(~o, to), h:o > h:I, 
Uo(~o, to)= 1i[Do(~o, to)] 

-- ~ ioo Do(~o, t)dt, h:O < h:I· 
7r o t- to 

(7.5.6) 

Here, 1i denotes the Hilbert transform. See Section A.7.1 in Appendix A. 
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Thus, we see that the output might involve a last Hilbert transform after 
the processing by integration over the variables, ~~ and WJ, depending on 
the relative curvatures of the isochrons. For example, when mapping from 
finite offset to zero-offset, sgn (r;,o- r;,I) -1 = 0, and Do(~o, to) produces 
a formula for the data U o themselves. When mapping from zero-offset to 
finite offset, sgn (r;,o- r;,1)- 1 = -2 and the output, Do(~o, to), requires 
a further Hilbert transform to arrive at Uo(~o, to). 

When mapping from common-offset to common-shot, Do represents the 
data, themselves, when the output source and receiver are closer than the 
input common-offset; Do represents the Hilbert transform of the data when 
the output source and receiver are further apart than the input source 
and receiver. When upward continuing receivers in a common-shot gather, 
again, Do is the Hilbert transform of the data Uo. 

7.5.2 Stationary Phase in t1 

Let us now continue the asymptotic analysis of the integral in (7.4.38) 
under the assumption that the traveltime To is not a linear function of 
t I. In other implementations, this is true and we can apply the method of 
stationary phase to the t1 integral in (7.4.38). In this case, we will continue 
the asymptotic analysis by applying the method of stationary phase in t 1 

to the phase of that integral, 

(7.5.7) 

Here, · · · denotes other variables in <P. On the other hand, we have taken 
care to note on the right side that To depends explicitly on t1, and also 
implicitly on t1, through the stationary phase analysis of the ')'-integration, 
in particular, equation (7.4.33). This expression must be differentiated 
with respect to ti, in order to determine the condition under which it 
is stationary in that variable: 

d<P [8To 8To 8-y J 
dtl = WO 8t1 + 8-y 8t1 - WJ. 

Here, the first term represents the differentiation of To with respect to 
its explicit t1 dependence, while the second term arises from the above­
mentioned dependence of ')' on t I through stationarity. In fact, this second 
term is identically zero, again due to stationarity; the left side of equation 
(7.4.33) is merely a chain rule representation of the derivative of To with 
respect to -y. 

To proceed, then, we apply the chain rule to the first term to obtain 

d<P [8To 8xj] 
dtl = Wo 8Xj 8tl - WJ. (7.5.8) 

Here, summation over j over the values 1 and 3 is to be understood; the 
summation process, then, is just the dot product of two vectors. The first 
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vector is the gradient of the total traveltime, To; therefore, it is a vector 
pointing normal to the isochrons of To, with magnitude cos Oo / c( x). The 
second vector is just the derivative of the x-vector with respect to the 
traveltime t 1, and therefore is directed orthogonal to the isochron of TJ. 
Of course, both of these vectors are to be evaluated at stationarity of"(, 
which means that these two isochrons are collinear. Hence, we need only 
determine the magnitude of the second vector in order to find a simpler 
expression for this dot product. 

To do so, introduce arclength, s 1, in the direction of t 1 and then write 

ax = ax as! = nl IV'TJI-1 = nl c(x) . 
at! aslatl 2cos()I 

In this equation, n1 is the unit normal vector in the direction of increasing 
t1; that is, this vector is the unit normal along the mutual gradient direction 
of the isochrons of TJ and To (again, because everything is evaluated at the 
stationary value of "f). Clearly, this vector and V'To are collinear. Thus, we 
obtain the result that 

d<P cosOo 
- = Wo -- - WJ, (7.5.9) 
dt1 cos01 

from which we conclude that the phase will be stationary when10 

WO COS ()I 

w1 cos 00 · 
(7.5.10) 

This equation can be viewed as defining a scaling between input and output 
frequencies. This is familiar from migration/inversion outputs, as well as 
from DMO processing, where the change in resolution is observed. This 
rescaling actually assures that the final image resolution in the direction of 
the reflector-normal after inversion or migration will be the same, whether 
the input or output data are processed. 

To find a stationary point, here, one must examine the stationary points 
in 'Y for each t1. At each such point, and for given values of WJ and wo, it is 
necessary to check the ratio of cosines, cos OJ/ cosOo. If a t1 can be found 
for which this ratio satisfies (7.5.10), then that is the stationary value of 
tJ. 

For a stationary point to exist, WJ and wo must have the same sign. 
Furthermore, when mapping from a larger offset to a smaller offset­
cos()! < cosOo-then wo/WJ < 1; when mapping from a smaller offset 
to a larger offset-cosO!> cosOo-then wo/wi > 1. Thus, the range ofin­
tegration in WJ is restricted by the condition that the phase be stationary in 
t1. For either choice of ratio cos ()I/ cos Oo, either greater than unity or less 
than unity, there is a range of integration in WJ for which we can expect to 

10When the wavespeeds are different, this result becomes ~ = co"991 co(<..,"')). 
W[ COS Q CJ 

We will not mention this extension below. 
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find a stationary point in t I and a complementary ratio, less than unity or 
greater than unity, respectively, where there are no stationary point in t I. 

For this complementary range of integration, the contribution to the total 
integral is smaller, less than leading order in wo. Because this is a leading­
order asymptotic theory, we neglect those contributions and restrict the 
domain of integration in WI to assure the existence of a stationary point. 

When the ratio wo/wi is near to unity, the two cosines must be nearly 
equal; this will occur deep in the data set when there is little distinction in 
incidence directions for input and output rays. When mapping from larger 
offset to smaller offset, we can expect that the input offset will allow fh 
to approach 1r /2 "up shallow" while Bo is bounded away from that value. 
That is, up shallow, the ratio of frequencies in (7.5.10) will become small, 
which can occur only if WI approaches infinity with the same sign as wo. 
Hence, formally, we can think of the range of integration in WI, in this case, 
being sgn ( wo) ( 1, oo), corresponding to travel times ranging from large to 
small. On the other hand, when mapping to larger offset, it is Bo that 
could approach 1r /2 while (}I does not. In this case, it is necessary that w I 
become small in magnitude. Hence, now, the range of WI is sgn (wo)(O, 1), 
corresponding to traveltimes ranging from small to large with increasing 
magnitude of WI. 

We proceed to express the result of evaluating the right side of (7.4.38) 
by the method of stationary phase. The result is 

uo(~o,wo) rv ei71'sgn(wo)sgn(~~:o-~<J)/4 

· ~ r ~ei11'Sgn(K)/4dWI d6 UI(6,wi) 
21r ln 

ao(x,~o) v'IY'ro(x,~o)l IH(x,~I)I 
ai(x,6) IY'ri(X,~I)I Jl(~o- ~I)KI 

V(Jis +(Jig V(Js(Jg iwoto-iwiti . e . 
V(Js + (Jg yf(j'Is(j'Ig 

(7.5.11) 

In this equation, 0 is the restricted interval of integration imposed by 
stationarity. We have also used the fact that 

sgn (wi) = sgn (wo) 

to eliminate the 1r /4 phase shifts arising from the factors 

e-i71'/4sgn(wo) and ei71'/4sgn(wi) 

in (7.4.38). The traveltimes to and ti are functions of ~I,WI,~o,wo, de­
fined by the two stationarity conditions above. That is, first consider the 
points of tangency between isochrons for given input and output source 
and receiver locations. Among those, find the one for which the ratio of 
cosines of incidence angles satisfies (7.5.10). That determines the travel­
times in this formula. Also, K is related to the second derivative of the 
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phase with respect to t I, evaluated at stationarity. In the discussion of 
traveltime curvatures below, we show that 

WQ sin2 ()0 
K = {,.,;os + t1:o9 - 'Vc · 'Vro} 

c 

(7.5.12) 

As above, the ,.,;'s are the curvatures of the separate isochrons of the trav­
eltimes from source or receiver to scattering point and for input or output 
variables, subscripted appropriately. It is interesting to note that the second 
derivative in the direction orthogonal to the isochrons can be expressed in 
terms of the curvatures of the isochrons. This is peculiar to two dimensions; 
the three-dimensional case is much more complicated. 

7.6 2.5D Transformation to Zero-Offset (TZO) 

It is this application that was the primary motivator for this general theory 
of data mapping. As we have discussed at the beginning of this chapter, a 
standard preprocessing step in migration is to gather up data from multi­
offset experiments into equivalent zero-offset data, consistent with some 
assumed known background propagation speed. This is done approximately 
through the NMO-stacking or bin-NMO-stacking procedure, or via a com­
bination of NMO-DMO. From our discussions above, it is reasonable to 
conclude that this procedure is a data mapping. 

Two important observations: 

1. it is possible to modify the amplitude of the combined NMO /DMO 
operator so that it becomes a true amplitude operator in the sense of 
this chapter-this is just a special case of data mapping; 

2. for more general background propagation speeds, application of the plat­
form for data mapping does not produce a process that decomposes into 
a cascade of processes. 

Because of this last observation, we use a different name entirely for the 
true amplitude processing that we propose here, which is transformation 
to zero-offset (TZO).U 

11The term MZO, migration to zero-offset is also used [Tygel, Hubral, and 
Schleicher, 1996; Tygel, Schleicher, and Hubral, 1995a,b; Tygel, Schleicher, and 
Hubral, 1996a,b; and Tygel, Filpo, and Oliveira, 1997; Tygel, Schleicher, and 
Santos, 1998]. 
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'l. 6.1 TZO in the Frequency Domain 

We must specialize (7.5.11) to obtain the result we seek. For arbitrary 
variable-background media, there is little to be done with this general for­
mula, except to specialize the Beylkin determinant to the common-offset 
case. That is, we use (6.3.7) and (6.3.8) for H. Here, however, we have 
made the additional assumption that there are no caustics. In this case, 
the two determinants H1 and H2 have the same sign. Therefore, 

2cos2 fh I a I IH(~,~r)l = c(~) 86 (Prs + Pr9 ) • (7.6.1) 

In this equation, 

(7.6.2) 

Until we specialize to constant-background or to a depth-dependent back­
ground, where more can be done with the general equation, there is little 
more to do, except to note that the stationarity condition (7.5.10) simplifies 
to 

wo 
- =cos(}r, 
WJ 

(7.6.3) 

because, on output, the source and receiver rays are coincident and Oo = 0. 
Therefore, let us turn to the constant-background case, with a horizontal 

acquisition surface, where a significantly simpler formula will be developed 
in the specialization of (7.5.11). We can also simplify our notation here 
because we are dealing with the mapping of data to zero-offset. We do 
so with the help of Figure 7.8. There, the midpoint of the common-offset 
data is labeled by its x-coordinate, 6, and the zero-offset point by its x­
coordinate, ~O· In particular, Oo = 0 in this case and therefore we can 
dispense with the subscript on (h and set 

Or= 0 (7.6.4) 

for the remainder of this section and the related exercises. We can further 
simplify the notation as follows. We set 

FIGURE 7.8. The geometry of the rays for transforming finite offset data to 
zero-offset. 
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(7.6.5) 

That is, we have exploited the fact that at zero-offset, the rays from x to 
Xos and xo9 are the same ray, so we can simplify the subscripting for the 
elements of the output ray tracing. Once the subscripts s and g are deleted 
from the output notation, leaving only the subscript 0, we no longer need 
the subscript I to distinguish the input variables. 

Now, we can list some of the simplifications of the variables that appear 
in (7.5.11). The reader should also refer to Section 6.3.8 on common-offset 
inversion, as we use results and notational conventions from this section. 
For traveltime and amplitude, we find 

2ro (rs + r9 ) 
to=-, t1 = , 

c c 
1 

ao=-16 2 2' 
7r ro 

The gradients of the traveltimes are 

n T8 + r9 
VTJ = , 

c 
n 2ro 
vTQ = -, 

c 
2 IY'Tol = -. 
c 

(7.6.6) 

(7.6. 7) 

Here, the unit vectors, r 0 , r s, r 9 , point downward from the upper surface 
towards the stationary point where all the rays intersect. 

Next, note that CJ = rc, with the subscripts corresponding in each case, 
so that 

,jCJJs + C!Jg ya;ug ~ ro 
)C!s + C!g ,jCJJsC!Jg v'2ro yr;'i9 

(7.6.8) 

We take the Beylkin determinant from the discussion in Section 6.3.8: 

(7.6.9) 

For the isochron curvatures, we use the constant propagation speed re­
sult, (7.4.41), but specialize to the case where the output mapping is at 
zero-offset: 

1 
"'O = -, 

ro 
(7.6.10) 

The latter result admits further simplification because of the special ge­
ometry of the stationary point. Note that the two interior angles of the 
triangles at ~0 are supplementary. By using this fact and the law of sines 
in those triangles, one can show that 

1 1 2 cos e -+-=--. (7.6.11) 
r 8 r9 ro 

Consequently, evaluating the curvature difference appearing in (7.5.11), we 
find that 
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1 2 sin2 e 
"'O- "'I=- [1- cos 0] = --, sgn("'o- "'I)= +1. 

ro ro 
(7.6.12) 

We see here that the curvature difference, "'o - KI is positive, which is as 
predicted for TZO; the curvature of the elliptical finite offset isochron is 
less than the curvature of the circular zero-offset isochron. 

We also have to evaluate the factor K, using (7.5.12). In this case, with 
Oo = 0, the first expression on the right in that equation is also zero, so 
that 

K =-WI sin2 e [~ + ]_] =- 2wi sin2 Ocose' 
c r 8 r9 era 

sgn(K) = -sgn(wi) = -sgn(wa). (7.6.13) 

Let us now collect all of the results obtained so far and write down an ex­
pression for the TZO specialization of (7.5.11) to the constant-background, 
horizontal planar acquisition surface case. The result is 

(C ) 1 1 dw dC (C ) zr sr g COS 6J [ 1 1 ] iw t iw t UQ <,Q,WQ rv- I <,I UI <,I, WI ---.-2- 2 + 2 e o o- I I. 

7rC f! ro Slll 0 r 8 r g 

(7.6.14) 

In the stationary phase calculations that we carried out, the fixed inde­
pendent variables were 6, ~o, WI, and wa. Thus, it remains to be shown 
how all of the variables appearing here can be written in terms of those 
four variables. That is, we must find expressions for r8 , r9 , ro, ti, to, and 
cos e, in terms of the four variables listed above. Of course, the traveltimes 
are related to the distances through (7.6.6), so that we need only find the 
travel distances in order to find the traveltimes. 

One expression is particularly easy, this is the equation for cos(}, because 
it is given by the stationarity condition, (7.5.10). Thus, we can be content 
to leave the trigonometric functions in place, because their replacement is 
straightforward. We will find below that the signed distance between the 
midpoint of the input coordinates and the zero-offset point of the output 
coordinates arises naturally in our analysis. Therefore, we set 

(7.6.15) 

and turn now to the task of determining the relevant distance functions in 
terms of the fundamental variables listed above. We need three equations 
for the three unknowns, r8 , r9 , ro, and we find them in the law of cosines 
applied to each of the smaller triangles in Figure 7.8 and to the larger 
triangle. Those laws are 

4h2 = r~ + r~- 2r8 r9 cos 20, 

(h- 8)2 = r~ + r~- 2r8 ro cosO, 

(h + 8) 2 = r~ + r5- 2r9 ro cosO. 
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We use one other auxiliary result that will make the computation easier. 
This one comes from using the law of sines, again, in the two smaller 
triangles, but now with r8 , rg, and the two pieces of the offset line. Again, 
we use the fact that the angles at the shared vertex are supplementary to 
conclude that 

(7.6.16) 

This result allows us to rewrite the first equation in (7.6.16) as an equation 
in r~ or r~ alone, solve that one, and then use the above equation to find 
the other. The result is 

h(h- 8) 
Ts = L ' 

h(h + 8) 
Tg = L ' 

with 

L = Vh2 sin2 0 + 82 cos2 0 = ...jh2 - (h2 - 82) cos2 0. 

It is now fairly straightforward to show, also, that 

1 1 £2 h2 + 82 
r~ + r~ = 2 h2 (h2 - 82)2 · 

We can also use (7.6.17) and (7.6.11) to find that 

h2- 82 
ro = L cosO. 

(7.6.17) 

(7.6.18) 

(7.6.19) 

(7.6.20) 

We need an expression for z. This one is somewhat indirect. First, we 
write out the definitions of the distance functions, 

r~ = (x- 6 + h)2 + z2, r; = (x- 6- h)2 + z2, 

and take the difference to find that 
r2- r2 

x-6= s4h g 

Now, we can use the definition 

r~ = (x- ~o)2 + z2 = (x- 6 + 8)2 + z2, 

to obtain an equation for z in terms of quantities that we already know: 

After much algebra, this expression can be simplified to yield 

h(h2 - 82 ) • 
z = L2 smOcosO. (7.6.21) 

Finally, we turn to the evaluation of the phase. By using the definitions 
of the distances, above, we find that 
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WJL 
=-2-. 

c 

(7.6.22) 

When we gather up all of the results derived here and substitute into 
(7.6.14), we obtain 

( ) 2 { ( ) h h2 + 82 2iw Ljc ( ) 
uo ~o,wo '""1rcJo dw1 d6 u1 ~J,WJ cote L h 2 _ 82 e- 1 • 7.6.23 

The integrand, here, has two apparent singularities-one when e = 0 and 
the other when 8 = h. In fact, neither of the singularities is in the domain 
of integration. First, note that e = 0 could occur everywhere if h = 0, in 
which case we would not be mapping from finite offset to zero-offset. We 
eliminate all other possibilities by requiring that there is some minimum 
depth, above which there are no reflectors: 

Z ;:=: Zmin > 0. (7.6.24) 

Then, from (7.6.21), we see 8 = h and e 0 (as well as e = "Tr/2-
transmitted rays) are precluded at stationary points. However, we can at 
best obtain a coupled lower bound on e and upper bound on 8. We will 
need to do better. 

Another lower bound on e arises in a different manner. With increasing 
depth, this opening angle between the rays from offset source and receiver 
again approaches zero. If we combine some maximum time on the data 
record with the minimum depth, Zmin, we arrive at another possible lower 
bound for e. In order to include all possible stationary points, we define 
emin to be the lesser of these two possible bounds and then, 

e ;:=: emin > 0, 8 :S 8max < h. 

However, as noted above, these limits might be interdependent at this point 
and we need to obtain at least one of them independent of the other. Below 
we will obtain such an independent bound for 8, as well as the bounds on 
the domain of integration in WJ. Then, (7.6.21) will provide an independent 
choice for the lower bound on e, as well. With that in place, emin will also 
be well defined. 

First, from (7.6.3), and the bound on e, 
1 WJmin WJ 

--,..--= --:::; -, 
COS emin WQ WQ 

with the left expression defining w I min in the middle expression. 
We next consider the upper bound on wJ/wo. We begin by consider­

ing one of the consequences of stationarity, (7.6.17). By adding the two 
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equations there and solving for L, we find that 

L = ___l!!_h 
T 8 + Tg ' 

(7.6.25) 

where (r8 + r9 )/c can be viewed as the input traveltime on the stationary 
ellipse for the given values of the variables, 6, ~o, WI, and wo. We would 
argue that there is some smallest ellipse on which data are nonzero; this 
ellipse corresponds to the minimum traveltime for which data are nonzero. 
Furthermore, the traveltime on that ellipse has to be larger than 2h/c, 
implying that 

L S "(h, 
2h 

"(= <1. 
min{rs + r 9 } 

(7.6.26) 

We rewrite the first inequality here as L2 s ,..,?h2 , then use the second form 
of Lin (7.6.18) with cosfJ = wo/wi, from (7.6.3). After some algebra, this 
inequality can be rewritten as 

w2 82 
(1 _ "!2) _I + _ < 1. 

wb h2-
(7.6.27) 

In this inequality, wy can only assume its maximum when 8 = 0. We then 
find that 

1 WJ 1 -..,..---- s -2 s --2. 
cos2 Bmin w0 1 - 'Y 

(7.6.28) 

Now, let us consider the lower bound, WJ /wb = 1/ cos2 ei 2: 1. We use the 
absolute lower bound, one, in order to obtain an upper bound on 82 from 
(7.6.27) that is independent of Bmin: 

(7.6.29) 

Thus, the range of integration in 8 is 

0 s 82 s 'Y2 h2 < h2. (7.6.30) 

Further refinement is possible, but there is no need. We have assured a 
domain of integration in which the amplitude is not singular. The inequal­
ities (7.6.28) and (7.6.30) redefine the domain of integration, n, in (7.6.23) 
as a domain in both variables and as a domain that excludes the singular 
values of the integrand but includes all of the possible stationary points of 
our analysis above. In summary, 0 in (7.6.23) is defined by 

n { 

Wimin/wo S wJ/wo S 1/~, 

-hV1- (1- 'Y2 )wJ/wb s ~I- ~o s hV1- (1- 'Y2 )wJ/wb 
(7.6.31) 
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7.6.2 A Hale-Type TZO 

Hale [1984] developed transformation to zero-offset (Hale DMO) that 
uses input data in a wavenumber/frequency domain, but produces a 
space/frequency result, as we have here. That result can be derived from 
(7.6.23) by using the definition 

(7.6.32) 

reintroducing ti as the input time. When this representation is substituted 
into (7.6.23), only the operator depends on the variables, ~I and WI, while 
the data do not depend on these variables. We can then approximate the 
integrals in these variables by the method of stationary phase, applied to 
the cascaded phase, 

2 
<I>= k~I +Wit- -WIL 

c 

= k~I +wit-~ sgn (wo)Vh 2w] + tJ2w~. (7.6.33) 

We leave to the exercises to verify that the stationary values of ~I and 
w I are given by 

with the auxiliary results 

Atn 
cosB= -, 

ti 

(7.6.34) 

(7.6.35) 

The time tn is the normal moveout time. For a horizontal reflector at depth 
H, the plot of ti as a function of h is a hyperbola, 

2 4h2 4H2 
ti = -2 + -2-, 

c c 
so that 

2H 
tn=-, 

c 

is constant. That is, tn is independent of h; the plot of tn as a function of 
h is a horizontal line for a horizontal reflector (in a homogeneous medium, 
c = constant). 

We also leave as an exercise the evaluation by the method of stationary 
phase for the operator (7.6.23), with UI replaced by (7.6.32). The result is 

1 J dk dtn [ 2k2 h2 ] i8 uo(~o,wo) rv- -A- 1 + - 2 -2 Ur(k,tr)e . (7.6.36) 
27r w0 tn 
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Here, 

(7.6.37) 

We see here, that the integration variable has been changed to the NMO 
time, tn, while we have written the data in terms of the input time, t r. The 
transformation of the data, 

Ur(k, tn) = Ur(k, tr(tn)), 

amounts to NMO processing. The result here differs from the Hale DMO 
formula by the factor in square brackets. In fact, using the definition of A 
in (7.6.34), we can write 

2k2h2 k2h2 
1 + _2_2_ = A2 + 22' 

Wotn Wotn 

with the last term being exactly the quotient needed to determine A 2 itself. 
Hence, including this new factor requires an additional add and multi­
ply in the summation process that approximates this integral. Thus, it 
is fairly straightforward to transform any Hale DMO algorithm into one 
that is "true amplitude" in the sense of this chapter. If this is not done, 
then the classic Hale DMO will produce results with substantial amplitude 
differences from the one above when the second term in the brackets is 
significant. 

We can associate k-values with dips on the input data--equivalently, 
slopes of reflection events. Thus, for steep events at moderate times, the 
term in square brackets will differ significantly from unity. The shallower 
the event (smaller wotn), the more significant will be this difference. On 
the other hand, for deep reflections-large tn measured in units of period 
(wotn), this extra factor will be near unity for most dips. 

Exercises 

7.4 Define an output time by 

to= 2ro/c. 

Use (7.6.20) to write ro in terms of L and then use (7.6.35) to write 
Lin terms of the variables of Hale DMO to conclude that 

tn 
to= A. 

7.5 The purpose of this exercise is to verify the calculations that lead to 
the Hale-type TZO. 

a. Show that when (7.6.32) is substituted into (7.6.23), the resulting 
phase of the integral operator is given by the phase <I> defined in 
(7.6.31). 
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b. For this phase, show that the first derivatives are given by 

B<I> = k _ 2wb8 sgn (wo) , B<I> = t _ 2h2wi sgn (wo) . 
86 cJh2w7 + 82wb awl cJh2w7 + 82wb 

c. Set these first derivatives equal to zero and solve for 8 and w 1 to 
verify (7.6.34). Hint: Equate the two expression for Jh2w7 + 82w'b 
to obtain a linear relationship between 8 and WJ. Then substitute 
into either equation to obtain an equation in just one unknown. 

d. Show that 

det 

8~18w1 8wJ 

and use this result to verify (7.6.36). 

7. 6. 3 Gardner/Forel- Type TZO 

Gardner and Forel [1988, 1995] proposed a transformation to zero-offset 
that mapped space-time data to space-time data. Here, we can special­
ize (7.5.4) to obtain a version of that transformation consistent with the 
present theory. We remind the reader that we are still dealing with TZO, for 
which the input isochron is an ellipse and the output isochron is a circle. Be­
cause the circle fits inside the ellipse at tangency (stationarity), the circle's 
radius of curvature is smaller than that of the ellipse. Correspondingly, 

Ko > KI 

and, therefore, we use the first form in that equation, with Do defined by 
(7.5.4) and (7.5.5). 

For the specialization to constant-background, many of the results that 
we already derived become useful here. From our computations above, 
(7.5.4) simplifies as follows: 

1 I vr;r; v' cos() 
Uo(~o,to),....., 2(27r) 3/ 2ylc z D1;2(6,ti)---:;:;;- sinO 

· Jrs + r9 [ 
1
2 + 1

2 ] d~I· (7.6.38) r8 r9 

The independent variables here are 6, ~o and to. Thus, it remains to 
show how all other variables can be expressed in terms of just these three. 
The reader is reminded that we have all of the equations that arise from 
the stationary phase conditions in 'Y· We outline the necessary calculations 
below and leave the details as an exercise for the reader. 

First, note that 
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r 0 = cto/2, (7.6.39) 

so that we can use either ro or to as an independent variable. Below, we 
will use them interchangeably, as the need arises. 

We next substitute the second form of L, given in (7.6.18), into (7.6.20) 
to solve for cos 0. The result is 

(7.6.40) 

Because ro and 8 are given (linear) functions of ~~, ~o and to, cos(} is now 
determined in terms of those independent variables. 

Now, we can return to the definition of L in (7.6.18) to write 

(7.6.41) 

With L determined, we now can write expressions for r 8 and r 9 by using 
(7.6.17): 

-Jh2 A2 2~ rs- -u +r0Vw' - Jh2 A2 2 {h+8 r 9 - - u + r 0 y "h:=8" (7.6.42) 

Now, by summing these two, we obtain an expression for t1, 

rs+r9 2hJh2 -82 +r~ 
tJ=---=- . 

c c ..Jh2- 82 
(7.6.43) 

Finally, we obtain z by using (7.6.21). The result is 

z = ro . /(h2- 82)2- 82r2 
h2 _ 82 V o· (7.6.44) 

The list is now complete. For each choice of the variables, 6, ~o and to, 
we know the traveltime and input spatial coordinate at which to evaluate 
D1;2 (~I, t1 ). Furthermore, we have given a formula for each of the spatial 
variables appearing in the kernel of the operator in (7.6.36). 

When all of these results are substituted into (7.6.36), the final result 
takes on a much simpler form, 

(7.6.45) 

Here, the domain of integration in 6 is as defined in (7.6.31). 

Exercises 

7.6 Verify the results stated in equations (7.6.39) through (7.6.44). 
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7. 6.4 On the Simplification of the Second Derivatives of the 
Phase 

Equation (7.4.40) expresses the isochron curvature in terms of the sep­
arate curvatures of the isochrons of the wavefronts from the source and 
receiver. This, in turn, provides an expression for the second derivative of 
the phase in (7.3.4) with respect to "(, a parameter along the isochron of 
TI, at the point where the phase is stationary. Equation (7.5.12) provides a 
corresponding simplification of the derivative of the phase at stationarity 
with respect to t I, after the first stationary phase condition with respect 
to 'Y is applied. The significance of these two results is that they provide 
expressions for these second derivatives in terms of quantities that can be 
computed along the rays from the source and receiver, respectively, and in 
terms of the half-opening angle between those rays where they meet. Here, 
we derive those simplifications. 

The reader who is not interested in these derivations could skip this sec­
tion with no loss of information as regards the main theme of this chapter, 
which is to say, derivation of various specializations of the data mapping 
platform to applications of interest in seismic data processing. 

Isochron Curvature 

Here, we derive (7.4.40). Thus, we consider a single isochron, with the ob­
jective of expressing its curvature in terms of the curvatures of the separate 
source and receiver isochrons that intersect with the given isochron at the 
stationary point. 

Because the derivation will apply to both ro and TI, the subscripts 0 
and I will be omitted, for the moment. Thus, we begin with an equation of 
the form (7.4.28), but with the simplifications that the subscripts I are not 
used and the dependence of the traveltime on ~I is unnecessary, as well. 
That is, the relationship between the isochron traveltime t, the orthogonal 
variable 'Y on the isochrons, and the Cartesian coordinates x is simply given 
by 

t = r(x('Y, t)). (7.6.46) 

For the purpose of the analysis of derivatives along the isochron for a fixed 
choice of t, the variable 'Y can be chosen as arclength along the isochron. 
We apply the chain rule to this equation, with the objective of determining 
relationships between derivatives with respect to "(: 

ar axi 
0--­

- axi a'Y' 

82r axi axj ar 82xi 
0 = -- - - +- --2 . (7.6.47) 

8xi8Xj 8"( 8"( 8xi 8"( 

Here and below, summation over repeated indices is to be understood, with 
i, j, . .. assuming the values 1 and 3,. 
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In the second line, above, the second term can now be recognized as 
the dot product of the gradient of the total traveltime with the curvature 
vector of the isochron. Both of these vectors are normal to the isochron. 
The gradient of the traveltime points towards increasing traveltime, which 
would generally be the downward direction. In the absence of multi-pathing, 
the isochron is a convex-up curve, such as the DMO-ellipse; its curvature 
vector points in that upward direction. Thus, the curvature vector and the 
gradient point in opposite directions. That is, 

ar a2xi = -IVrl"' = _ 2cos0 "'· 
axi a~2 c 

In this equation, the second equality follows, as usual, from our knowledge 
of the magnitude of the gradient of the traveltime, with 20 still the opening 
angle between the rays from the source and receiver in the input geometry­
equation (6.3.3). Thus, we can solve for the second term in the second line 
of equation (7.6.47) as 

IVrl"' = 2 cos 0"' = ....!!2.___ axi axj. 
C axiaXj a~ a~ 

(7.6.48) 

We have now related the quadratic form in second derivatives of the 
traveltime r to the curvature of the isochron. Next, we will relate this 
quadratic form to corresponding expressions in the traveltime from the 
source T 8 and the receiver. See Figure 7.9. Recall that T = Ts + r 9 and, 
hence, 

a2r axi axj a2rs axi axj a2r9 axi axj 
axiaXj f:J-y a~ = axiaXj a~ a~ + axiaXj a~ a~ . (7.6.49) 

Therefore, let us consider the isochron of the wavefront from the source 
point passing through the stationary point. Let t8 denote the time on this 
isochron, and r8 (a:) denote the traveltime function itself. Further, let ~s 
denote arclength on the isochron and n 8 denote signed arclength on a curve 
normal to the isochron, measured from the isochron and positive in the 

FIGURE 7.9. The three isochrons of r, Ts, and r9 , crossing at the stationary 
point. 
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FIGURE 7.10. The tangents and normals to the intersecting isochrons ofT and 
T,. All are unit vectors except for \h. 

direction of increasing time. Then, x = f 8 ( 'Y s, n8 ) defines a local coordinate 
system near this isochron. In particular, the isochron, itself, is given by 

(7.6.50) 

Below, we will use the derivatives dx/d'Ys and dxjdn8 , where it is to be un­
derstood that these derivatives are calculated by differentiating the function 
fs('Ys,ns)· 

There are four vectors of interest to us in the analysis below: the unit 
tangent and normal to the isochron of T 8 , the unit tangent to the isochron of 
T, and the normal to that isochron, \h. They are all depicted in 
Figure 7.10. From the diagram, it is straightforward to check that 

ax ax ax . 
-a =-a cos()+ -a smB. 

'Y 'Ys ns 
(7.6.51) 

Using this result, the first expression on the right side in (7.6.49) can be 
rewritten as 

a2T8 axi axj = a2Ts [aXi axj COS2 () 

axiaxj a'Y a'Y axiaxj a'Ys a'Ys 
(7.6.52) 

axi axj . axi axj . 2 ] 
+ 2-a -a cosBsmB+ -a -a sm () , 

'Ys ns ns ns 

where all expressions are to be evaluated at the stationary point; m 
particular, ns = 0 there. 

The first double sum appearing on the right, here, is exactly the first 
term in the second line of (7.6.47), except for the subscripts, s. In fact, 
both lines of (7.6.47) are true for T 8 , with parameter 'Y replaced by 'Ys· 
Consequently, (7.6.48), is true for T 8 as well, except that now l~hsl = 2/c. 
Therefore 

a2T8 axi axj "'s 
8xi8Xj 8"(8 8"(8 c 

(7.6.53) 
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In this equation, K, 8 is the curvature of the isochron of T 8 at the stationary 
point. With this result, the first summation on the right side of (7.6.52) 
has been expressed in terms of an isochron curvature and the background 
velocity. 

Now, we turn to the two more difficult sums in that equation. The key 
here, is to relate the derivatives in the direction of n8 to derivatives along 
the rays associated with the eikonal equation that T 8 satisfies. In fact, with 
n 8 being arclength in the direction normal to T 8 , we might as well take n 8 

to be the arclength variable on the ray through the isochron at the point in 
question. In this case, we can use the ray equations in arclength variables 
in Appendix E, which is to say, (E.2.13); that is, we can set 

ax aps V'c aT8 1 
Ps = Y'Ts, Ps =CPs· (7.6.54) a=Ps, ans 2 ' ans ' ns c c 

We use these results to write 

aT8 1 aT8 a xi 
(7.6.55) --

ans c axi ans 

By taking a second derivative with respect to n8 , here, we can obtain two 
alternative expressions for the second derivative of T 8 , one from differenti­
ating 1/c, and the other from differentiating the last expression. Of course, 
both differentiations are carried out using the chain rule, allowing us to 
relate the second derivative with respect to n8 to derivatives with respect 
to x. As a first step, then, 

a2T8 a2Ts axi axj aT8 a2xi -=----+--. 
an; axiaXj ans ans axi an; 

(7.6.56) 

Note that the last term here is just the dot product of the gradient of the 
traveltime with the curvature vector of the ray. However, the gradient of 
the traveltime points along the ray, while the curvature vector is orthogonal 
to the ray. Thus, those two vectors are orthogonal, making the dot product 
equal to zero. Therefore, 

a2T8 a2T8 axi aXj 
an; axiaXj ans ans. 

Now, let us obtain the second derivative of T 8 by differentiating 1/c in 
(7.6.55): 

a2Ts 1 ac axi V'c ax V'c n 
----------·---- · vT an2 - C2 ax· an - C2 an - C S• s 1, s s 

By equating our two expressions for the second derivative of T 8 , we find 
that 

(7.6.57) 
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This is a representation of the third sum on the right side of (7.6.52) in 
terms of ray quantities and the underlying velocity function c(x). 

Now, we need to address the middle sum in (7.6.52). We can start again 
from (7.6.55), except that now we need to differentiate that equation with 
respect tors· That is, 

We claim that 

fhs cPxi = o. 
OXi 0/8 0n 8 

To see why this is so, observe that the first factor here is just the gradient of 
the traveltime and is therefore orthogonal to the isochron of T 8 • The deriva­
tive, ax I ans' is a unit vector in the same direction. Hence, the derivative 
of this vector with respect to Is is orthogonal to the vector itself, and thus 
also orthogonal to the gradient. Therefore, the claim follows. 

In summary, then, 

a2 Ts OXi OXj -~~ OXi - V'c. ax 
OXiOXj ans Ors c2 OXi 0/s 

(7.6.59) 

This simplifies the middle sum in (7.6.52). 
Now, we have all the terms we need to rewrite (7.6.52) in simpler form. 

We use results (7.6.53), (7.6.57), and (7.6.59) to do this, obtaining 

a2Ts OXi OXj "'s 2 V'c ax . V'c . 2 --- -- -- = -COS 8 - 2- · -COS 8 Slll 8 - - · V'T8 Slll 8. 
axiaxj 81 or c c2 Ors c 

(7.6.60) 
Recall that our objective is to use (7.6.49) to arrive at a relationship 

between the curvature of the isochron of T and the curvatures of the sepa­
rate isochrons of T 8 and Tg· Equation (7.6.48) gives the left side of (7.6.49) 
in terms of the curvature of T; equation (7.6.60) gives the first term on 
the right in (7.6.49) in terms of the curvature of the isochron of T 8 • Now, 
we need an analogous relationship between the second term on the right 
in (7.6.49) and the curvature of the isochron of Tg· That requires that we 
repeat the analysis immediately above for the traveltime function Tg, but, 
of course, it will not be necessary to do this in detail. The corresponding 
result for Tg can be deduced from the result above by making the following 
replacements: 

es -----+ -eg. 
Here, the last replacement follows from the fact that the gradients of T8 and 
Tg fall on sides of opposite of the gradient ofT, or, equivalently, that the 
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'ts 

ax 
a'Y 

FIGURE 7.11. The intersection point of the three isochrons of Ts, T9 , and T, with 
their respective tangent vectors. 

tangents to the isochrons of T8 and Tg fall on opposite sides of the tangent 
to the isochron ofT as in Figure 7.11. Thus, the corresponding result to 
(7.6.60) for Tg is 

f:J2Tg /:Jxi /:Jxj Kg 2 V'c /:Jx . V'c . 2 --- -- -- = - cos () + 2- · - cos() sm () - - · \7 T sm (). 
/:Jxi/:Jxj /:J"f f:J"( c c2 f:J"(g c g 

(7.6.61) 
We now use (7.6.48) and (7.6.49) to conclude that 

Ks+Kg \i'c [/:Jx /:Jx]. V'c sin2 () 
K =cos(} +- · --- sm(}-- · [\77 + \778]--. 

2 C f:J"(g /:J"(8 2 g COS() 
(7.6.62) 

Further simplification is possible here. From Figure 7.11, one can see that 
the tangents to the isochrons of T8 and Tg have the same projection on the 
tangent to the isochron ofT. Hence, the difference of those two vectors, ap­
pearing in this equation, has no projection on the last tangent and, instead, 
is a vector along V'T. Furthermore, it is easy to see that the magnitude of 
that normal vector is 2 sin(); that is, 

/:Jx /:Jx c\i'T 
--- = --2sin() = cV'Ttane. 
f:J"( g f:J"( s 2 cos () 

(7.6.63) 

Here, the middle expression is written as the product of a unit vector in 
the direction of V'T and the deduced magnitude of the sum of tangents. 
Therefore, the middle term in (7.6.62) becomes 

\7 c [ /:Jx /:Jx] sin2 () - · --- sin()= V'T · [V'T + \778]--, 
c f:J"( g f:J"( s g cos () 

while the last term in (7.6.62) is just half that same quantity. Therefore, 
the last two terms in (7.6.62) combine, leading to the result 

cos() 2 
K = - 2- [Ks +Kg+ \i'c · \i'Ttan (}]. (7.6.64) 
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This verifies claim (7.4.40), except, of course, that we have dropped the 
subscripts 0 and I for this discussion. The same derivation applies to both. 
Note that the result is an even function of 0. Thus, although we started with 
a particular orientation of source and receiver-thereby assigning (} to the 
former and -0 to the latter-we see, here, that the result is independent 
of that orientation and remains unchanged (as it should) if the source and 
receiver positions are reversed. 

The Second Derivative of the Phase with Respect to t1 

We turn now to the verification of (7.5.12), where K is the second derivative 
of the phase <I>, (7.5.7), whose first derivative is given by (7.5.8). Then, as 
above, chain rule differentiation leads to the result 

a2<I> [aTQ a2xi a2TQ axi axj] 
at~ = WQ axi at~ + axiaXj at! at! . 

(7.6.65) 

Our next objective is to make a substitution that replaces the second 
derivatives of the Xi's with second derivatives of a traveltime. To this end, 
we write the identity 

aTJ axi = 1 
axi at! 

The factor, axd at 1, treats the xi's as functions of t 1 (and 'YI), while the 
factor, aTJ/axi, recasts the traveltime as a function of x. Differentiation of 
this expression with respect to t1 leads to two terms: 

O _ aTJ a2xi + ~ [aTJ] axi 
- axi at~ at! axi at! 

BTJ 82xi 82TJ axi axj = --2- + -------. 
axi at! axiaXj at! at! 

The second form follows from the chain rule and leads to the conclusion 

a2xi aTJ 

at~ axi 

a2TJ axi axj 
- axiaXj at! at1 . 

Note that the gradient of TJ on the left side of this equation is parallel 
to the gradient of To at the stationary point where all of these functions 
are being evaluated. In fact, the only difference between them is a ratio of 
cosines, leading to the conclusion, 

a2xi aT a COS (}I 

at~ axi cos Bo 
a2TJ axi axj 

axiaXj at! at!. 

The summation on the left side of this last equation is the same as that 
appearing as the first term on the right side of (7.6.65). Thus, we conclude 
that 
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a2<P a2To axi axj a2TJ axi axj 
--2 =Wo ---w1-------. 
at1 axiax1 at1 at1 axiax1 at1 at1 

Here, we have also used stationarity condition (7.5.10) to eliminate the 
ratio of cosines. This expression contains two gradient vectors that we now 
replace by unit vectors. To do so, we introduce n as arclength in that 
gradient direction and rewrite this last equation as 

a2 <P _ c2 [wa a2TQ _ WJ a2TJ ] axi axj 
atJ - 4 COS2 (1[ axiaXj axiaXj an an . 

(7.6.66) 

Now, it is necessary to carry out an analysis similar to that following 
(7.6.49). There, the tangent (dxfd"f) to the isochron, T (To or TJ) was 
expressed in terms of the tangent and normal to respective isochrons T 8 and 
T9 . We were then able to derive simpler expressions for the quadratic forms 
in the second derivatives of these separate isochron functions, equations 
(7.6.53), (7.6.57) and (7.6.59). Here, the same sort of decomposition has 
to be carried out for the normal vector, dxjdn. This will lead to exactly 
the same quadratic forms as above, but in different linear combination 
reflecting the difference between the quadratic form in second derivatives 
with tangent vector components (previously) and the second derivatives 
with normal vector components (here). 

As in the previous analysis, we dispense with the subscripts I and 0 
for the following discussion. In either case, it is necessary to first write the 
quadratic form on the right side of (7.6.66) in terms of the quadratic forms 
in T8 and Tg, completely analogously to (7.6.49). That is, 

a2T axi axj a2T8 axi axj a2Tg axi axj ---- = ---- + --- -. 
axiaXj an an axiaXj an an axiaXj an an 

(7.6.67) 

With the aid of Figure 7.11, we set 

axi axi () axi . () -=-cos --sm 
an ans a'Ys 

(7.6.68) 

FIGURE 7.12. The intersection point of the isochrons Ts and T with the relevant 
unit vectors. 
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OXi OXi . 
=-cosO-- smO. 

on9 o19 

The first line should be compared to (7.6.51); the second line follows from 
the replacement of 0 by -0. 

Now, as in the earlier analysis, we focus on the expression in T 8 and write 

o2T8 OXi OXj = o2Ts OXi OXj cos2 O 
OXiOXj on on OXiOXj ons ons 

2 o2T8 OXi OXj O . O 02Ts OXi OXj . 2 O - -------cos sm + ------- sm 
OXiOXj On8 0"(8 OXiOXj 0"(8 0"(8 

(7.6.69) 

~ 2 ~ & . ~·2 = -- · "\h8 cos 0 + 2- ·- cosOsmO +- sm 0. 
c c2 0"(8 c 

Here, to obtain the second equation, we used equations (7.6.53), (7.6.57), 
and (7.6.59). 

There is no need to redo the analysis for T9 ; as previously, we can 
extrapolate that result from this one: 

o2T9 oxi OXj \i'c 2 V'c ox . /'i,g . 2 ------- = -- · V'T cos 0-2- ·- cosOsmO +- sm 0. 
OXiOXj on on c g c2 O"(g c 

(7.6.70) 
We now combine these last two results to obtain the right side of (7.6.67). 

That result is 

--- -- -- = -- · \i'Tcos 0-2- · --- cos0sm0 o2T oxi oxj \i'c 2 V'c [ox ox] . 
OXiOXj on on c c2 O"(g O"fs 

/'i,s + /'i,g · 2 0 + Sill . 
c 

(7.6.71) 

Finally, use the result (7.6.63) to obtain 

o2T OXiOXj \i'c n [ . 20] /'i,s+/'i,g · 2 0 ------- = -- · vT 1+sm + sm . 
OXiOXj on on c c 

(7.6.72) 

Here, we have also simplified the combination of trig functions in the first 
expression. 

Recall that our objective is to obtain an expression for the second deriva­
tive of the phase function in (7.6.66) in terms of ray quantities. To do so, 
this last result must be applied to To and to TJ, leading to the expression 

o2 <I> c2 [ { V' c [ 2 ] /'i,s + /'i,g 2 } 
Ot2 wo --c · V'To 1 +sin Oo + c sin Oo 

r 4 cos2 Or 

(7.6.73) 

{ V'c [ . 2 ] /'i,Js + /'i,Jg . 2 }] - w r - ~ · \7 TJ 1 + sm 0 r + c sm 0 r . 

Note, however, that 
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1 

IV'TJI2" 

Also, recall that, at stationarity, the two gradients are parallel and that 
(7.5.10) is satisfied; that is, 

woV'ro = w1V'r1 . 

By using these two results in (7.6.73) , we obtain the conclusion 

82 iP 1 
8t7 = IV'TJI2 K , 

(7.6.74) 

with K given by (7.5.12). 

7. 7 3D Data Mapping 

We return now to the 3D data mapping platform, equation (7.2.6) . The 
results obtained above for 2.5D data maps provide a guide to 3D applica­
tions. For example, again we can perform asymptotic analysis in traveltime 
variables. There is much to be learned from stationary phase analysis along 
the isochron, and that will be our first approach to 3D processing. Thus, 
we begin the analysis of this section by introducing the 3D version of the 
isochron variables in (7.4.28). That is, we introduce two coordinates on the 
traveltime surface"'(= ('"Yl , /z), with x = x("Y) on the isochron, and the 
traveltime itself as the third variable as shown in Figure 7.13. That is, 

(7.7.1) 

with 

FIGURE 7.13. Isochron and coordinate system for 3D data mapping. 
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y'gi 
=drndr2dtiiY'xTII. (7.7.2) 

In this equation, the second equality follows from the fact that the surface 
defined by x = x (I) is orthogonal to the direction of increasing t I. In the 
next equality, gy is the determinant of the elements in the first fundamental 
tensor of differential geometry for the isochron surface(s) of TI: 

g2=detldx. dxl = la(x)l2 
I dri drj a (I) 

Here, with i, j = 1, 2, the first equality is a definition and the second is a 
derivable result that can be found in any text on differential geometry, such 
as Kreyszig [1991]. Alternatively, one can obtain result (7.7.2) by observing 
that the surface area element of a basic parallelogram on the isochron, due 
to differential increments in 11 and 12, is given by 

ds = la(x) a(x)ld d a x a r1 12· 
/1 /2 

With these new variables, the 3D KDM platform equation (7.2.6) 
becomes 

(7. 7.3) 

7. 7.1 Stationary Phase in 1 

We can now apply the method of stationary phase in I· As in (7.4.31), we 
consider the phase function 

<P = To(x(T),e0 ). (7.7.4) 

The derivatives of this phase are 

a<P = "x~O. ax = aTo axi' v ,, p=1,2, 
a,p a,p axi a,p 

(7. 7.5) 

a2<P a2TQ axt axJ aTQ a2xi 
a a =-a a -a -+-a ' p,q= 1' 2· rp rq xt x1 rp a,q xi a,parq 

In these equations, summation over the indices i, j from 1 to 3 is to be 
understood. 

The phase will be stationary when the two first derivatives in the first 
line of the last equation are both zero. This requires that the gradient of 
the traveltime To be orthogonal to two independent tangent vectors in the 
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isochron surface of TJ. That is, the gradients of the two travel times '\1 x TJ 
and '\1 xTo must be parallel at the stationary point, or, equivalently, the 
two isochrons must be tangent at the stationary point. We might think of 
Figures 7.2 and 7.3 as showing slices of the isochron surface of TJ being cut 
by the isochrons of To with tangency occurring at a point. For the moment, 
we will proceed with the analysis here as if there is a single, identifiable 
stationary point. 

If n denotes the upward unit normal common to both isochrons at the 
stationary point, then we can write 

and we can set 

"VxTJ = -ni"VxTJI = -ncosfh/c(x), 
'\1 xTO = -nl'\1 xTol = -ncosBo/c(x), (7. 7.6) 

OTo o2xi 82x 
!:> a a = -n. a a IV xTol = -B~ql'\1 xTol, p, q = 1, 2. (7.7.7) 
UXi /p /q /p /q 

Here, B~q introduces the standard notation for the dot product in the 
middle expression. These are the elements of the second fundamental tensor 
of differential geometry. As in the analysis of the isochron curve in the 2.5D 
data mapping, above, this tensor characterizes the curvature of the isochron 
surface. We will say more about these coefficients below. 

In analogy with the 2.5D discussion, we now relate the second deriva­
tive of To in (7.7.5) to the second fundamental tensor associated with the 
isochron of the stationary value of To. As in the discussion leading to 
(7.4.36), we denote the equation of this isochron by x = x'(!'). Then, by 
implicit differentiation, 

OTo ox~ 
0=-- p=1,2 

axi a,~, 

82T ox' ox' OT 82x' 
0 - 0 " "+ 0 " 12 -------- -- ' p,q= ' . 

axiaxj a,~ a,~ axi a,~a~~ 

(7. 7.8) 

The first equation here is again a statement of the orthogonality of the 
gradient of To to each of two independent tangents in the isochron surface, 
equivalent to the orthogonality of the gradient to the isochron surface. In 
the second equation, we can make the first term on the right agree with the 
first term in the second derivative of <Pin (7.7.5) by taking the variables "f 1 

to agree with the variables "f, at least at the stationary point. Then, using 
(7.7.6), we find that 

02To OX~ OX~ 
-------
OXiOXj a,p a,q 

(7.7.9) 
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p,q = 1,2. 

That is, the second derivatives of To are related to elements of the second 
fundamental tensor of the isochron of the stationary value of To. 

By combining this result with our previous result about the second term 
of the second derivatives of ci> in (7.7.5), we find that 

a2ci> 
a a = [B~q- B~] IV xTol, p, q = 1, 2. (7.7.10) 

"(p "(q 

7. 7.2 Discussion of the Second Derivatives of the Phase 

We are now prepared to discuss the second derivatives of the phase func­
tion. The matrix of second derivatives will be expressed in terms of the 
derivatives of the second fundamental tensors for the isochron surfaces. 
Recall that the determinant of the matrix of second derivatives of ci> (the 
Hessian) and the signature of this matrix of second derivatives are given 
by 

[ a2 cf> ] 2 [ I 0] det a a = IV xTol det Bpq- Bpq , 
"(p "(q 

[ a2<P ] 
fl = sgn a'Ypa"(q . 

(7.7.11) 
This determinant and signature appear in the application of the method of 
stationary phase to (7.7.3). In particular, from (3.6.7), for the method of 
stationary phase to yield a computationally acceptable result, it is necessary 
that 

lwol£4 . 
--2 - mm(IAji) 2 1r. 

9I J 

In this equation, the Aj 's are the eigenvalues of the matrix 

[ a2ci> ] , p, q = 1, 2. 
a"(pa"(q 

We see here, that the eigenvalues of BJq - B~, the difference of second 
fundamental tensors of the traveltimes appearing in (7.7.11), play a crucial 
role in the asymptotic validity and utility of the application of the method 
of stationary phase to the ;-integration in (7.7.3). 

Let us now discuss the second fundamental tensors appearing in (7.7.10). 
If we view the second fundamental tensor as a 2 x 2 matrix, then the 
symmetry of the matrix assures that there exists an orthogonal transform 
that diagonalizes this matrix. In this diagonal form, the elements on the 
main diagonal are given by 

n. ~p [ :~J 2 , P = 1, 2. 

Here, we do not sum over p. Each fp is a local linear rotation of the original 
'Y's. On the other hand, the ~p's are the principal curvatures of the isochron. 
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They are collinear with n (within a sign) and their values are the minimum 
and maximum of the this dot product on normal slices through the isochron 
at the given point. 

Thus, if the principal directions of the isochrons were collinear, then 
the Hessian determinant here would just be a product of the differences 
of curvatures, a simple generalization of (7.4.37). This provides an insight 
into the possibility of failure of the method of stationary phase for the 
analysis of data mapping. In this simple case, where the principal directions 
are collinear, the Hessian will be zero (and the simple stationary phase 
formula will not provide a valid asymptotic expansion of the data mapping 
integral) if one or the other pairs of the principal curvatures are equal. This 
generalizes the results of the 2.5D discussion, where the matching of the 
isochron curves would cause the method of stationary phase to fail. 

More generally, when the principal directions of the two fundamental 
tensors do not agree, the eigenvalues of the matrix of the difference of 
fundamental tensors must be bounded away from zero. 

There is one particular case where we know that: (i) the principal di­
rections coincide and (ii) the curvatures of the isochrons in at least one of 
the principal directions agree. In this case, the Hessian is zero and we will 
require an alternative method to approximate the data mapping integral. 
That is the subject of the next section. 

Barring these pitfalls occurring, we can apply the 2D stationary phase 
formula to (7.7.3) to obtain 

uo(eo,wo) rv eisgn(wo)p:rrf4do(eo,wo), with 

do(eo,wo) = 4~2 J w1 dw1 d26 ui(e[lwi) 

Jao(x,eo) lh(x,ei)I y'gi 
. ai(x,ei) IY'xTI(x,eiW vJdet [B~- B:q] I 

. e[iworo(l1l,(o)-iwrtrldt[. (7.7.12) 

In this equation, 'Y = 'Y(e1, e0 , t1 ), is determined by the stationarity of 
<I>, setting the first derivatives in (7.7.5) equal to zero. Correspondingly, 
:z: = :z:('Y(el, eo. tl ), tl) as a result of its definition as a function of "'f. 

As a further consequence, 

To(:z:, eo) = To(:z:('Y(el, eo, t1 ), t1, eo)· 

That is, the output traveltime is coupled to the input traveltime and to 
the geometry of sources, receivers and rays through the stationary phase 
evaluation. 

Time-Domain Processing 

It is fairly straightforward to write down the formula for a general 3D time­
domain processing by taking the inverse Fourier transform with respect to 
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w0 . This follows the derivation in Section 7.5.1 for time-domain processing 
in 2.5D. Of course, the result becomes useful only when particular input 
and output source-receiver configurations and background wavespeeds are 
defined. Nonetheless, we proceed. One need only observe the simple time­
frequency dependence in the definition of do in (7.7.12) to realize that the 
inverse transform from wo to to will yield a delta function in time, allowing 
us to carry out the integration in ti, as well. This is exactly as was done in 
Section 7.5.1. That is, 

Do(eo, to)= j do(eo,wo)e-isgn(wo)!L'Il'/4-iwotodwo 

=~!WI dWI d2~I UI(ei,WI) 
41!' 

Jao(x,eo) lh(x,ei)I v'9i 
. ai(x,ei) IVxTI(x,eiw vldet[B~-BJq]l 

· e-iwrtr 8(to- To(X, eo))dti. (7.7.13) 

As in Section 7.5.1, to carry out the next integration, we need only realize 
that 

dti IV xTII 
dti = dto-d = dto-

1

., 

1
. 

to VxTO 

This allows us to transform the integration over t I into an integration over 
to and immediately evaluate that integral exploiting the delta function. 

The result is 

D (e )- 1 jao(x,eo) DI(ei,ti)Ih(x,ei)I 
0 0 't0 - 21l' ai(x,ei) IVxri(x,ei)IIVxro(x,eo)l 

· y'9i d2~I· (7.7.14) 
yfidet [Bg- BJq] I 

Here, 

(7.7.15) 

and the coupling between the traveltimes is determined by the geometry of 
the stationary phase condition that requires that the isochrons of TI = t I 
and To= to be tangent. 

Now it is a matter of relating this result for Do(e0 , to) to a corre­
sponding result for Uo(e0 , to) by using the relationship between the two 
functions as defined in (7.7.13). The final result, then, depends on JL, which 
is defined in (7.7.11) to be the signature of the matrix of second deriva­
tives. The possible choices of this signature are ±2 when the eigenvalues 
have the same sign, and zero when the eigenvalues have opposite signs. 
In the later case, Do = Uo; in the former case, they are related through 
Hilbert transform. That is, 
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J.L=O, 
(7.7.16) 

J.L=±2. 

In this equation, 1t denotes the Hilbert transform, (A. 7.6). 

7. 7.3 3D Constant-Background TZO 

In this section, we consider the case of 3D constant-background TZO, 
an implementation of the data mapping platform for which the above 
asymptotic analysis does not apply. It will be seen below why this is so. 

We assume that data are gathered along parallel lines, say constant value 
of the coordinate ~12, at constant offset from a midpoint ~Ill placing the 
source and receiver at (~II =F h, ~12, 0). The input travel times are then given 
by 

r(x, ~I)= [rs + r9]/c, 
~----------~----~~~ 

rs = J(x- ~01 + h)2 + (y- ~02) 2 + z2, (7.7.17) 

r9 = J(x- ~01- h)2 + (y- ~02)2 + z2. 

Here, 2h is the offset between source and receiver, and rs and r9 are the 
respective distances from the source and receiver to the point at depth. 
As in the case of 2.5D TZO, we dispense with the subscripts I on the 
distances associated with the input ray lengths. We retain the notation ro 
for the present, reserving the notation r0 for a simplification of this variable 
after the analysis below. The isochrons are ellipsoids on which r1 = t 1 , a 
constant, described parametrically, with parameters 11 and 12, as follows: 

x1 -~II =a cos11, x2 - 62 = bsin 11 sin 12, X3 = bsin 11 cos /2, 

(7.7.18) 

a=ctJ/2, b=Va2-h2. 

The lower half of these ellipsoids are covered by /1 in the range (0, 1r) and /2 
in the range, ( -1r /2, 1r /2). Similarly, the output isochrons are hemispheres, 
centered at ~0 = (~01,~02,0): 

to= ro(x,~0 ) = 2J(x1- ~01)2 + (x2- ~02) 2 + xVc = 2ro/c. (7.7.19) 

We will start from (7.7.3). We leave it as an exercise to the reader to 
show that, for this case, 

(7.7.20) 

The specialization of (7.7.3) to constant-background follows along the lines 
of the discussion of Section 7.6. We leave it as an exercise for the reader to 
verify that, for this case, that formula reduces to 
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(7.7.21) 

In this equation, 

B( c ) = pbsin"/1 (rs + r9 )(r~ + r~) 
"/1' '!>I 2 2 2 . e r8 r9 

(7.7.22) 

We propose, first, to examine the possibility of applying the method of 
stationary phase. For this example, the phase, <I> of (7.7.4) is given by 

2ro 2 
<I> = To = - = - ( 81 +a cos "(1)2 + b2 sin2 "(1 + 8~ + 282b sin "(1 sin "(2, 

e e 
(7.7.23) 

with 

81 = ~Il- ~01, and 82 = ~12- ~02· (7.7.24) 

Then consider the derivatives with respect to -y: 

8
8<I> = _3__ [-a sin "/1 ( 82 +a cos "11) + b cos "/1 (b sin "/1 + 82 sin "!2)] ' 

"11 era 
(7.7.25) 

8<I> 2 8ro 2 . 
- = --- = -b82 Slll"f1 COS"f2· 
8"!2 e 8"!2 era 

For 82 nonzero, the derivative with respect to "/2 is zero for "/1 = 0, 1r, or 
"/2 = ±1r /2, both of which place the stationary point at the upper surface. 
On the one hand, this is an unphysical choice of stationary point; on the 
other hand, the amplitude of the integrand in (7.7.21) is zero there any­
way. Thus, the leading-order asymptotic contribution will not arise from a 
simple stationary point contribution. Now, when 82 is zero, this derivative 
is identically zero. Indeed, the phase, <I>, is independent of "(2 for 82 = 0. 

This should bring to mind a phase of the form, iwa82"(2 , which also has 
the property of a nonzero derivative with respect to "(2 when 82 is nonzero, 
but is independent of "(2 (actually, zero) when 82 = 0. We know that inte­
grals with this latter phase will lead to delta functions when the amplitude 
is constant (or nearly constant). In our case, in the high-frequency limit, 
we need only that the amplitude be nearly constant on the length scale of 
reciprocal wavenumber associated with wo, efwo. This suggests that we 
search for an asymptotic delta function in the structure of the integrand of 
(7.7.21). 

7. 7.4 The "(2 Integral As a Bandlimited Delta Function 

Note that we have written (7.7.21) in a form in which the part of the 
mapping kernel that depends on "(2 explicitly appears in the integral, while 



382 7. The General Theory of Data Mapping 

B is independent of 12. Therefore, to analyze the 12 integration in that 
equation, we introduce the integral 

I 11f 12 b sin '"Yl cos '"Y2 2iw r led = 2 e o o '"Y2· 
-1r12 ro 

(7.7.26) 

The amplitude of the integrand here differs from the "(2-derivative of the 
phase in (7.7.26) by an extra power of ro in the denominator. On the other 
hand, 

8I 2i 11f 12 b sin '"Yl cos "(2 2iw r led 
-- =- e o o '"Y2· 
owo c -1r12 ro 

(7.7.27) 

From (7.7.25), we see that the amplitude is now proportional to the "(2-
derivative of the phase, allowing us to carry out the integration in 12 to 
obtain 

Here, 

oi 
owo 

e2iworole 17rl2 

wo/52 -1fl2 

r± = J(acos"(l + 81)2 + (bsin11 ± 82)2 

are just the values of ro at the limits of integration. 
Now, define 

ro = V(acos"(l + 81)2 + b2 sin2 "(1, 

and observe for future reference that 

r = ro + 0(8~), f = 82bsin12 + 0(/5~). 
ro 

(Note that ro-"r sub zero"-is different from ro-"r sub cap 0"-used 
above.) With these new variables, (7. 7.27) can be rewritten as 

of = e2iworle 2if sin{2wof/c}_ ( ) 
n 7.7.28 
uwo wo82 f 

The last factor here is of the form sin{>.x}jx, where we can think of>. 
being large in the high-frequency limit, because of the scaling by wo. This 
is one of the forms that leads to the delta function; that is, 

j oo sin >.x 
}~~ -= f(x)-x-dx = nf(O), 

for f(x) in an appropriate class of test functions. (See, for example, Sneddon 
[1972].) In fact, the integral need not extend from -oo to oo for this result 
to be valid, but the interval of integration must include the origin. On the 
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other hand, for finite >., the right hand side will be a reasonable approxima­
tion (to leading order in wo) only for the frequency "high enough" -again, 
an asymptotic result requiring that the interval of integration extend at 
least a few units of reciprocal wavenumber left and right of the origin at 
the given frequency. Therefore, asymptotically, we set 

sin{2wof/c} rv ( ) '(-)- 8(82) - ( ) '(' )~ _ sgn wo 1ru r - d- - sgn wo 1ru v2 b . . 
r r sm')'1 

(!52 

Here, in the last factor, the derivative of r has been evaluated at 82 = 0. In 
fact, we can now do this in the other terms in (7. 7.28) to obtain the result 

8I 27ri 2 · 1 
-- = sgn (wo)-e zworo c8(82)· 
8wo wo 

(7.7.29) 

This is the result we need to simplify (7.7.21). 
The integral I, equation ( 7. 7. 26), can be seen as a part of the integration 

on the right side of (7.7.21). However, we analyzed not I, but its derivative 
with respect to wa. Before we can proceed, then, we need to recast (7.7.21) 
as an equation in which the ')'2 dependence matches that of the result we 
just calculated. To do so, in (7. 7.21) we must 

i) divide by wo and 
ii) differentiate both sides of that equation with respect to wa. 

In doing so, on the left side, we restrict this operation to the leading-order 
asymptotic result by taking 

!____ [uo(~o,wo)] rv ~ 8uo(~o,wo). 
8wo wo wo 8wo 

We find now that 

8uo(~0 ,wo) -isgn(wo)j. 2 
"8 = 4 2 ZW1dw1d ~1u1(~I>w1)B(1'1,~1 ) 
z wo 7r 

. e2iworo/c-iwiti 8(82)d')'ldt1. (7.7.30) 

The seemingly superfluous factors of i, here, lend to the simple interpre­
tation back in the time domain. On the left side, the operator 8ji8w0 

is equivalent to multiplication by to. On the right side, the operator, 
-i sgn ( wo) transforms into convolution with -1/ 1rto; that is, the Hilbert 
transform of the remainder of the right side transformed to the time 
domain. See Section A.7.1. 

As a next step in this analysis, we can now exploit the delta function 
to carry out the integration in ~12 . From the definition of 82 in (7.7.24), 
we see that this amounts to evaluating the integrand at ~12 = ~02· Thus, 
asymptotically, the leading-order contribution to the TZO mapping arises 
only from the line of input data that contains the zero-offset output point. 
We proceed to carry out this evaluation to obtain 
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7. 7. 5 Space/Frequency TZO in Constant Background 

At this point, we have eliminated two integrations in the 3D TZO operator 
(7.7.21) to end up with an integral with much the same structure as (7.4.30), 
as regards the variables over which integrations are to be carried out. In 
particular, the integration over 11 here is exactly like the integration over 1 
there. The stationary phase condition (7.4.33) requires that the geometry 
of the rays be related as in Figure 7.8. Furthermore, the asymptotic analysis 
of the {-integral there follows along the same lines here. In addition, we can 
apply all of the specializations of constant-background 2.5D DMO, Section 
7.6, to this case. Indeed, our notation, r8 , r9 , and r0 was chosen to facilitate 
the analogy with that section. 

In particular, to apply the method of stationary phase here, we must 
evaluate the second derivative in (7.4.37); for this case, we already know 
that sgn ( ~~;0 - ~~;I) = 1. In that evaluation, it is straightforward to show 
from (7.7.18), with 12 = ±1rj2, that 

ds 
d11 = p, 

with the latter defined by (7.7.20). For the curvature factor in the second 
derivative, we use (7.6.12) and for IY'Tol we use (7.4.37). 

With these results, we can evaluate the 1 1 integral by the method of 
stationary phase. The result is 

8uo(~o,wo) -isgn(wo)ei?rsgn(wo)/4 J. 
iowa = (27r)3f2J2Iwol/c ~wrdwrd~nur(~n,~02,wi) 

. ylrOB(/1,~n,~o2) e2iworo/c-iwrtrdtr. 
psine 

(7.7.32) 

This last integral has the same structure as the 2.5D result, (7.4.38), in 
that it is an integral over the input source-receiver parameter, the input 
frequency, and the input time. It also has the same type of phase. In this 
integral, there is an additional fixed out-of-plane variable, ~o2 , but this 
variable will play no role at all in the further analysis of the right side. 
Rather than redoing the stationary phase analysis in t I for the integral 
above, we want to extrapolate from the result that we previously obtained 
to derive the frequency-domain data mapping for this example. Recall that 
the previous analysis led to (7.5.11), and it was this result that we used to 
derive the 2.5D TZO formula (7.6.23). 
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If we knew the specialization of (7.4.38) to constant-background TZO, 
then by comparing the integral operator in that specialization to (7.7.32), 
above, we could determine how to modify the earlier result, (7.6.23), to 
produce the result of stationary phase analysis in ti here. Fortunately, we 
wrote out all of the specializations of the elements of the integrand in 
(7.4.38) when deriving (7.6.23). They can be found in equations (7.6.6), 
(7.6.7), (7.6.8), (7.6.9), and (7.6.12). 

It is a fairly straightforward calculation, much like the one carried out 
in Section 7.6.1, to show that the specialization of (7.4.38) to constant­
background yields the following equation: 

auo(~o,wo) rv 1 J Pw lei1l"sgn(wr)/4u (C w )dw dC 
iOWa 2[27rj3/2yfc V IWII I <,I, I I <,I 

(7. 7.33) 

V' 8 ' 9V' 8 1 '9 s 9 dt 2tworo/c-twrtr Jz ~ ~r2 +r2 . . 
0 --- Ie 

rosine r;r~ . 

Our objective now is to rewrite this result to look more like (707032). We 
proceed as follows: 

. J vr;rg~ c2 B dtie2iworo/c-iwrtr 
ro sinO p(rs + r9 ) 

. J vr;rg yroB dt e2iworo/c-iwrtr 
3/2 0 e I 0 r ~+r psm 
Q v' S I '9 

In the first line here, B was introduced through its definition, (707022)0 In 
the second line, the frequency dependence was rewritten to appear as a 
multiplier on the frequency dependence in (70 7032) 0 

Now, a comparison of this result with (7. 7032) reveals that this integrand 
can be transformed into the latter one by introducing the multiplier 

M = 2 [~] -3/2 r6/2 ~ ~eiKsgn(wr)/4 [-isgn (wo)eiKsgn(wo)/4] 

2Jr vr;rg (27r)312J2Iwol/c 

(707.34) 

Next, we use the results of Section 70601. In particular, from (706011), 



386 7. The General Theory of Data Mapping 

and, from (7.6.3), 

sgn(wi) = sgn(wo). 

Thus, we obtain for M the surprisingly simple result, 

M= 2ro =2cos0h2-8r 
c cL 

(7.7.35) 

The last equality follows from (7.6.20). 
It is now a matter of using this multiplier in (7.6.23) to obtain the right 

side of (7.7.32) after the t1 integral is approximated by the method of 
stationary phase. The result is 

8ua(e0 ,wo) 41 .8 = - 2 dwi~Iui(6~,~o2,wi) 
% wo 7rc n 

·cot(} cos(} 22 (h2 + 8~)e-2iwrL('i.7.36) 

Here, the domain of integration is defined by inequalities (7.6.26) and 
(7.6.31). Also, we remind the reader that 

cosO= wa/wi, 81 = ~ll- ~01, 

and Lis given by (7.6.18) with 8 replaced by 81. 
Although this is a fairly simple result, we can do even better. On the 

right side, we have multiplied by 2r0 jc = t0 . On the left side, we have 
the Fourier transform of toUo(e0 , to). Thus, after transforming to the 
time domain, we would just cancel the common factors of to on both sides 
of the equation! We can achieve the same result by not introducing the 
extra multiplier, 2ro/c = to, on the right and not taking the derivative 
with respect to frequency on the left! Thus, we need only reinterpret this 
and all of our 2.5D constant-background TZO operators, in terms of the 
corresponding variables of the 3D data mapping, to obtain the 3D TZO 
operators. For example, we must replace the coordinate pairs ( 6, w 1) by 
the coordinate triple ( 61> ~02, w I) and the coordinate pair (~a, wo) by the 
triple, ( ~01> ~02, wo). Then, we find that the 3D constant-background TZO 
operator deduced from (7.6.23) is 

(c ) 21 .1. • de (c c ) (} h h2 + 8r 2iw L/c uo ..,0 , wo "' - UIJ.Jf <,ll UJ <,Ib <,02, WJ cot -L h2 82 e- 1 • 
1rc n - 1 

(7.7.37) 

7. 7.6 A Hale-Type 3D TZO 

As noted earlier in Section 7.6.2, Hale's DMO is a transformation between 
input data in wavenumber and time and output data in space and fre-
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quency. In 2.5D, the TZO analog of Hale DMO was given in (7.6.36). 
Again, we need only reinterpret the variables of that result in terms of 
our 3D variables. We find that 

1 J dkdtn [ 2k2h2 ] i8 uo(~0 ,wo)"' 2;r --y- 1 + w'bt~ Ur(k,~o2,tr)e . (7.7.38) 

Now, to account for the extra dimension, we modify the definition of 8 in 
(7.6.37) to be 

(7.7.39) 

Gardner/Forel-type 3D TZO 

It is now a straightforward calculation to rewrite (7.6.45) as a 3D TZO 
operator. The result is 

h/fO J h2 +8i Uo(~0 ,to)"' (2;r)3/2 D1;2(~n,~o2,tr)(h2 -or)2d~n- (7. 7.40) 

Exercises 

7.7 Verify this last result. 

7.8 Summary and Conclusions 

We have derived platforms for 3D and 2.5D KDM for the mapping of scalar 
wavefields. Our formalism assumes knowledge of a physical model for both 
the input and output data and prescribed input and output source-receiver 
configurations. By cascading an inversion formula with a modeling formula, 
we obtain the KDM platform formula. This cascade is a single-reflector 
formalism in the absence of multiple reflections and multi-pathing, and for 
the simplified model of acoustic wave propagation. In this sense, our results 
may seem somewhat limited, being restricted to the level of generality of 
standard migration or DMO formalisms. 

In the absence of a specific application, the formula includes a mul­
tifold integration over the physical model space that must be evaluated 
asymptotically for each example of KDM to permit the derivation of a 
computationally feasible formalism for implementation. Application of this 
formalism in constant-background 2.5D DMO produces the same formula 
as was derived in Bleistein et al. [1999]. 

On the other hand, we show how Kirchhoff-approximate model data in 
a given input configuration is mapped to Kirchhoff data in a different out­
put configuration for the 2.5D case. We have done this in great generality, 
without specifying any particular configuration transformation. From this 
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result, we conclude that the traveltime and geometrical spreading of the in­
put model are properly mapped to their counterparts in the output model, 
without altering the values of the angularly dependent reflection coefficient. 

In doing this, we have presented an approach that unifies a broad col­
lection of classical data mapping representations, demonstrated through 
the derivation of downward continuation (datuming), and the various ap­
proaches to dip moveout, which we recognize as transformation to zero 
offset (TZO). Further, we have introduced two additional operators that 
allow us to estimate the cosine of the specular reflection angle of a reflection 
event as a ratio of integral operators on the data. While we have not found 
everything on our "wish list" of possible data mappings outlined in Sec­
tion 7.1.4, the results of this chapter certainly point the way for attacking 
those problems, and others like them. 



Appendix A 
Distribution Theory 

We expect the reader to have some familiarity with the topics of distribu­
tion theory and Fourier transforms, as well as the theory of functions of 
a complex variable. However, to provide a bridge between texts that deal 
with these topics and this textbook, we have included several appendices. It 
is our intention that this appendix, and those that follow, perform the func­
tion of outlining our notational conventions, as well as providing a guide 
that the reader may follow in finding relevant topics to study to supple­
ment this text. As a result, some precision in language has been sacrificed 
in favor of understandability through heuristic descriptions. 

Our main goals in this appendix are to provide background material 
as well as mathematical justifications for our use of "singular functions" 
and "bandlimited delta functions," which are distributional objects not 
normally discussed in textbooks. 

A.l Introduction 

Distributions provide a mathematical framework that can be used to satisfy 
two important needs in the theory of partial differential equations. 

First, quantities that have point duration and/or act at a point location 
may be described through the use of the traditional "Dirac delta function" 
representation. Such quantities find a natural place in representing energy 
sources as the forcing functions of partial differential equations. In this 
usage, distributions can "localize" the values of functions to specific spatial 
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and/or temporal values, representing the position and time at which the 
source acts in the domain of a problem under consideration. 

The second important role of distributions is to extend the process of 
differentiability to functions that fail to be differentiable in the classical 
sense at isolated points in their domains of definition. In this role, distribu­
tions may localize the singular behavior of the derivatives of functions-for 
example, the singularities of the derivative caused by jump discontinuities. 

In a related role, the process of differentiation itself may be localized via 
distributions to specific positions and/or temporal values in a domain of 
interest. For example, dipole sources may be distributionally represented by 
localizing the derivative operation to a point. Or, an "exploding reflector" 
may be represented by localizing the derivative normal to a given surface 
to points on that surface. 

A.2 Localization via Dirac Delta functions 

The classical definition of the Dirac delta "function" originally used by 
physicists was 

for lxl ::/= 0 

for x = 0, 
(A.2.1) 

with the property that the "delta function" would not introduce any scaling 
of its own if it appeared in an integral. This second property is expressed 
by the integral I: 8(x)dx = 1, 

where we may think of 8(x) as being integrated with a function (not shown) 
whose value is unity near x = 0. The definition and property above are 
contradictory as written, because any function that is nonzero at only a 
finite number of isolated points has an integral that vanishes, even if the 
nonzero values of the function are arbitrarily large. 

The modern approach to distributions, based on the work of Laurent 
Schwartz [Schwartz, 195Q-1951], follows from a consideration of the theory 
of topological vector spaces. One result of this theory identifies 8(x) as a 
"measure." 

(A measure is a weight applied in the Lebesgue formulation of the in­
tegral.) Such modern treatments may be found in other, more advanced 
texts [Friedlander, 1982; Petersen, 1983; Hormander, 1983]; Treves, 1967; 
and Treves, 1980]. While this material is far outside the scope of our book, 
the exposition we present does, in fact, depend on these more advanced 
results. In particular, we need to have the ability to approximate functions 
and distributions, to an arbitrary degree of precision, with sequences of 
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smooth functions. This ability is guaranteed by theorems that are beyond 
the scope of our text. 

We will take a more classical approach through so-called "delta se­
quences." Such sequences of functions are discussed in mathematical 
physics and applied mathematics texts, such as Butkov [1968], Nussenzveig 
[1972], and Stakgold [1979]. This is the "generalized function" approach 
to describing distributions, and is also largely founded on the work of 
Schwartz. 

Distributions As the Limits of Delta Sequences 

The basic idea is to consider distributions to be a generalization of the 
concept of function. The way this is done is to consider a distribution, or 
rather the result of integration of a function with a distribution, as being 
a "linear functional." A functional is an operator that assigns a number to 
each function of a particular class of test functions. (The operation is linear 
because the linear combination of values assigned to several functions is the 
same as the value assigned to a linear combination of the same functions.) 

We then create a sequence of linear functionals, defined as integration 
with elements of a sequence of functions {Sn(x)}, in such a way that as 
n ---. oo, the limiting functional behaves the same way that the distribution 
in question would behave. In this way, the limiting functional can make 
sense even though the pointwise limit of the sequence { Sn ( x)} as n ---. oo 
does not exist as an ordinary function. This is one way to arrive at dis­
tributions such as 8(x). The properties of distributions can be determined 
only through integration with a "sufficiently well behaved" test function 
out of an appropriate class. 

For example, the reader may have already encountered the "box se­
quence." The graph of each function in the sequence is a box, with the 
integral of each function being equal to one. As n increases, the width 
of each successive box decreases towards zero, while the height, necessar­
ily, must increase beyond all bounds. If we allow infinity as a limiting 
value, then this sequence leads back to the "function" introduced in (A.2.1). 
Furthermore, 

2~~ /_: f(x)Sn(x)dx = f(O), 

for any f(x) in an appropriate class of test functions. This is the "sifting 
property" of the Dirac delta function. 

As a second example, and one that arises in various forms in the text, 
we introduce the sequence, 

s.(x) ~ { 
sin(mrx) _....:....__,;_' x=FO, 

1l'X 
n n = 1,2,· ·· . 

X= 0, 
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This sequence of functions does not have pointwise limits (except for infinity 
at x = 0), yet it can be shown that this sequence has the same sifting 
property as did the sequence of the previous example [Sneddon, 1972]. 

Let us now address the question of the appropriate class of test func­
tions. From the standard theory of distributions, these are defined to be 
those functions that are infinitely differentiable and have "compact sup­
port," meaning that each function is nonzero on a closed and bounded 
interval, but is zero everywhere else. Formally, test functions having both of 
these properties are called C0 test functions. Such a function and all of its 
derivatives will vanish smoothly (that is to say, without singularities) out­
side of some closed and bounded interval. In fact, the name "test function" 
is reserved exclusively for the C0 functions in much of the mathematical 
literature that deals with the subject of partial differential equations. 

By restricting the test functions to be extraordinarily well-behaved, an 
extremely wide range of entities can act as "distributions" because a broad 
class of functions, and other mathematical objects, including all delta se­
quence functions and their limits, can be integrated with a C0 function. 
The reader may have some question as to the validity of this approach, 
however. Is it not our interest to create distributions that will operate on 
ordinary functions? The answer to this question is that it is a standard 
trick in functional analysis to derive results for extremely well-behaved 
functions and then extend those results to "ordinary" functions by show­
ing that ordinary functions may be approximated by the well-behaved ones. 
The validity of such approximations depends on powerful theorems from 
functional analysis that show that well-behaved functions exist "arbitrarily 
closely" to any ordinary function that we may choose. One such result is 
that any continuous function f(x) with compact support can be uniformly 
approximated on a finite interval by C0 functions. 

For example, if ¢n(x) represents a delta sequence, that is, it behaves like 
8(x) as n---+ oo, and is nonzero in the domain of support of f(x), then it is 
possible to write 

1/Jn(x) =I: f(~)¢n(X- ~) d~. (A.2.2) 

This is just the convolution of our original function with an appropri­
ately chosen test function. There exists an n such that the C0 function 
1/Jn(x) approximates f(x) to any desired order of accuracy. This process 
of building smoother approximate functions through convolution with a 
test function is called "regularization" in the language of mathematical 
analysis. In the language of signal processing, this process is equivalent to 
applying a "smoothing filter" that preserves the values of the function on 
some part of its domain. That is, in the frequency domain, we multiply by 
a function that is (nearly) equal to unity over some bandwidth and then 
tapers smoothly to zero. We use the term "neutralizer" for such functions 
in several places in the text. In mathematical literature, these functions 
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are often referred to as "mollifiers," "approximate identity functions," or 
"partitions of unity." 1 

All of the properties of the delta function (really, the Dirac distribution) 
that are implied by the physicist's original formal2 definition may now be 
derived, with the primary property being the sifting property, introduced 
above, 

¢(0) = L dx ¢(x)8(x). (A.2.3) 

Here, q)(x) is the "test function" with support contained in the domain D 
with x = 0 being a point inside of D. Other properties follow, directly. For 
example, the effect of translation on the delta function is to make 

¢(xo) = L dx q)(x)8(x- x0), (A.2.4) 

where x0 is a point inside the domain D. If xo is not in D then the result 
of the integration is zero, whereas, letting x 0 --+ 0 gives us (A.2.3) back. 
This property expresses the localization of ¢( x) to the point x0 . 

Localizing Derivatives with Distributions 

Derivatives of q)(x) may be similarly localized through the expression 

(-l)mq)(m)(xo) = L dx q)(x)8(m)(x- xo), (A.2.5) 

again provided that the point x 0 lies in the domain D. The quantity, 
8(m) (x-x0 ), may be imprecisely described as the "mth derivative of a delta 

1The last term refers to a common technique used in analysis, which we also 
employ in this text. Suppose that we want to study a function f(w) with support 
on some (not necessarily finite) interval of the real line. We begin by partitioning 
the interval of support into a collection subintervals that have relevance to our 
study; for example, the function may have critical points at one or more loca­
tions. We may then define a series of neutralizers, each an infinitely differentiable 
function with support on a given subinterval, in such a way that the sum of all of 
the neutralizers is just the unit function on the entire interval. This is a partition 
of unity. 

We then multiply f(w) by the series of neutralizers, which produces a series 
of smoothly tapering functions, each with support on one of the respective sub­
intervals. Because the sum of the neutralizers is unity, the sum of the resulting 
series of smooth functions equals f(w). The effect is to isolate the points or sub­
intervals of interest of f ( w) so that they may be treated separately. This is useful 
because often different techniques of analysis must be applied to the different 
points of interest in the support of the function being studied. 

2 In mathematical language, the word "formal" means the same as "symbolic," 
and generally refers to steps that are performed by allowing the notation to 
operate mechanically, possibly carrying us farther than the original intent of the 
notation. The second step in any formal discussion is usually to show that there 
is additional justification for believing such an extension. 
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function," but it is more precise to say that this distribution "localizes the 
mth derivative" of ¢(x) to the point x 0 . The reader may verify (A.2.5) 
formally, via repeated integration by parts, treating 8( m) ( x - x0 ) formally 
as the "m-th derivative of the delta function," and by the application of 
equation (A.2.3). 

Additional properties of the delta function may be revealed by consider­
ing its argument to be a function that may be zero at one or more points. 
That is to say, we are interested in 8(g(x)), with g(xa) = 0 at one or more 
points Xa, but 

dg(x) I = dg(xa) -::J O. 
dx x=xa dx 

Then, changing the variable of integration to u = g(x), locally, in the neigh­
borhood of each point, Xa, introduces this derivative into the denominator 
of the integrand. The sifting property of the delta function then leads to 
the result 

{ dx ¢(x)6 (g(x)) = L I ¢(x.) I' lv a dg(xa) ---a:x 
(A.2.6) 

This result suggests the identity 

8 (g(x)) = L 8(x- xa). 

a I dgJ~a) I 
(A.2.7) 

Here, as with all distributional equalities, the "=" denotes that the 
distributions have the same action under integration with a test function. 

Higher Dimensions 

The sifting property extends naturally to the higher-dimensional domain 
D via the expression 

¢(xo) = L dx ¢(x)8(x- x 0 ), 

with x = (xb x2, ... , Xn) 3 and 

(A.2.8) 

(A.2.9) 

The n-dimensional test function ¢(x) may be represented as the product 
of n one-dimensional ego test functions, or it may be a function that is a 
ego function of all of its n variables. 

3In this section, the symbol n refers only to the nth dimension of space; it is 
not being used as an index counter as it was in the previous sections. 
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Analogous to the one-dimensional case, each of the delta functions may 
be, in turn, dependent on a function of x, that is, 8 (g(x)). Furthermore, it 
is possible for each of these functions to be zero on domains that intersect 
in such a way as to make all of the functions zero at one or more points. 
That is to say, a single delta function with vector function as its argument 
can be equivalent to the product of a collection of delta functions with 
scalar functions as their arguments, 

8(g(x)) = 8(gl(x))8(g2(x)) ... 8(gn(x)), 

where g(xa) = 0, at one or more points Xa, and the Jacobian 

8(g(x)) I = 8(g(xa)) :j:. 0 
8(x) X=Xa - 8(x) · 

As in the one-dimensional case, we can think of writing an integral that 
states the sifting property by making a change of variables from x to u = 
g(x), introducing this Jacobian in the denominator of the integrand in 
the new integral. Without carrying out the details this yields the higher­
dimensional the sifting property, 

1 d"x 1(x)O (g(x)) ~ L I 1(x.) I 
D a 8(g(xa)) 

8(x) · 

(A.2.10) 

The equality above suggests that 

(A.2.11) 

where the equality here is in the sense that each quantity has the equivalent 
action under integration with a test function. 

The Singular Function 

The singular function, !'(x), of a surface is a distribution with the property 

L dV !'(x)f(x) =Is dS f(x), (A.2.12) 

meaning that the support of !'(x) is on the surface S only.4 The singu­
lar function may therefore be thought of as a delta function of a single 

4 The plot of the singular function of the surface constitutes mathematical 
imaging of the surface. In many places in this text a bandlimited form of the 
singular function of reflector surfaces appears as a natural result of seismic in­
version formulas. Bandlimited distributions are discussed below. Clearly, it is the 
bandlimited singular function that is plotted. 
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argument, which is the normal distance 'TJ from the prescribed surface. Al­
ternatively, if the surface is represented by the equation, g(x) = 0, then 
the singular function can then be defined as 

'Y(x) = 8 (g(x))IV'g(x)l. (A.2.13) 

To see why this is so, consider using this definition on the left side in 
(A.2.12) and then setting dV = dSdg/IV'g(x)l, with dS, being the dif­
ferential surface area on the level surface(s) described by the condition 
g(x) =constant. The integration with respect tog then yields exactly the 
right side of (A.2.12). Alternatively, the singular function can be viewed as 
a delta function of normal distance from the surface of interest, expressed 
symbolically as 8(ry). A change of variables to two parameters on the sur­
face, s1 and s2 , and one parameter orthogonal to the surface, say a, can 
then be introduced. For example, this approach can be tied to the one 
above by thinking of this third variable as being given by a= g(x). Then 
x = x(s\s2,a) with the coordinates (s\s2 ,0) parameterizing the sur­
faceS. Note that the Jacobian of transformation between these coordinate 
systems takes the form 

O(XI, X2, X3) 
o(s\ s2 ' a) 

± 18(xbx2,x3) x 8(x1,x2,x3) 118(x1,x2,x3) I 
&1 a~ oa 

Here, the ambiguity of sign is of no consequence as only the absolute value 
of this determinant appears in the transformation 

1
8(x1,x2,x3)1 1 2 

dV = dx1dx2dx3 = o(sl,s2 ,a) ds ds da, 

to be used below. The directions of increasing a and 'TJ are chosen agree for 
simplicity, without loss of generality. These results can now be used on the 
left side of (A.2.12) as follows. 

L dVf(x)'Y(x) 

1 1 2 IO(X1,X2,X3)1 ( (1 2 )) ( (1 2 )) = ds ds da !;)( 1 2 ) f x s , s , a 8 'TJ s , s , a 
D' us ,s ,a 
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= l, dslds2dTJia(xla:~,x3) x D(xla:~,x3)1f(x(sl,s2,a(TJ)))b(TJ) 
(A.2.14) 

= 1, dslds21a(xla:~,x3) x 8(xla:~,x3) If (x(sl,s2,a))la=o 

= 1 dSf(x). 

In these equations, D' and S' are the images of D and S in the s1 , s2 , a­

domain. In the third line, we have replaced the product da(dTJ/da) by dT). 
Alternatively, returning to the relationship a = g( x), then da( dT) / da) = 
dg/IVg(x)l, from which it follows that 

dT) dg 
dada r(X) = IV g(x) I IV g(x )lb(g) = b(g)dg, 

leading to the same conclusion. 
The reader is encouraged to try this definition for the special cases of 

the singular function of a plane or the singular function of the surface of a 
sphere of radius R, represented in spherical coordinates by b(r- R). 

Because we also consider curves in 2D or 2.5D in our studies, we must 
also consider the analog, the singular function of a curve in 2D. Of course, 
we define the singular function in complete analogy with (A.2.12). That is, 
we define the distribution r(xl, x2) by its action, 

1 dS r(x)f(x) = fc ds j(x), (A.2.15) 

where s is arclength along the curve. In 2D, there are complete analogies 
with the discussion above; we will not present them here. 

A.3 Fourier Transforms of Distributions 

Many of the results in this text involve Fourier transforms or Fourier 
transform-like integrals. It is necessary, therefore, to be able to discuss 
Fourier transforms of distributions and test functions. 

The forward and inverse Fourier transforms are defined by the relations 

](w) =I: dt f(t)eiwt, 

(A.3.1) 

f(t) =- dw f(w)e-zwt. 1 100 
- . 

27T -oo 

We want to make sense of the same expressions for the situation when f ( t) 
or ](w) is a distribution. 
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Because distributions cannot be defined without also defining test func­
tions the analysis of the problem must begin with an expression of the form 
of equation (A.2.3). Beginning in the frequency domain, with ](w) defined 
as the Fourier transform of the distribution f ( t) and ¢( w) defined as a COO 
test function of w, we may write 

2
1 100 dw ](w);f>(w) = 2_ 100 dw 100 dt f(t)eiwt¢(w) 
1r -oo 27r -oo -oo 

= 100 dt f(t) [2_ 100 eiwt;j;(w) dw] 
-oo 27r -oo 

=I: dt f(t)¢( -t). 

See Titchmarsh [1948]. 
This means that we are trying to define the Fourier transform of the 

distribution f(t) by the formal expression 

1 100 100 

27r -oo dw ](w);f>(w) = -oo dt f(t)¢(-t). (A.3.2) 

It would be desirable that ;f>(w), ;f>(w), and ¢(t) all be COO functions in 
order to make the definition above be consistent with the original definition 
of distributions. However, it is easy to show that it is impossible for the 
Fourier transform of a C0 function to also be a C0 function. To see why 
this is true, consider a COO test function, ¢(t). The Fourier transform of 
this function is defined as an integral on some closed interval a :S t :S b, 
containing the support of ¢(t). That is to say, 

;f>(w) = 1b cp(t)eiwt dt. (A.3.3) 

However, ;f>(w) can be shown to be analytic everywhere in the complex w 
plane; its derivative, in fact, is the same type of integral with integrand 
it ¢(t) in place of ¢(t). Such functions are called entire. It is a straight­
forward result in complex function theory that an entire function that is 
constant on an interval is identically constant. Thus, ;f>(w) cannot vanish 
on any interval without being identically zero in the entire w-plane. How­
ever, ;f>(w) = 0 implies that ¢(t) = 0. Therefore ;f>(w) cannot have compact 
support. 

The only way out of this dilemma is to choose a new class of test func­
tions. The condition of only choosing test functions that are COO is too 
restrictive for permitting a self-consistent definition of Fourier transforms 
of distributions. 
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A.4 Rapidly Decreasing Functions 

There are other infinitely differentiable functions that, while they do not 
have compact support, do decay rapidly enough so as to vanish at infinity 
and provide us with a useful class of test functions that will permit us to 
define the distributions that we need, as well as their Fourier transforms. 

Such a class of rapidly decaying test functions may be defined by first 
representing the function by its Fourier transform 

¢(w) = /_: cp(t)eiwt dt. (A.4.1) 

It is possible to construct a formal result that will imply the necessary 
decay conditions in t and w to define this new class of test functions. 

Differentiating both sides of (A.4.1) with respect to w, m times, yields 
the result 

(A.4.2) 

Integrating the right-hand side of (A.4.2) by parts (n + 1) times yields 

( 1) n+l~oo dn+l ¢(m)(w) = ~ - [(it)mcp(t)] eiwt dt. 
ZW _ 00 dtn+l 

(A.4.3) 

Here, all of the integrated terms from the repetitive integrations by parts 
have been assumed to vanish, implying that tm ¢( t) and all of its derivatives 
vanish at infinity. Rewriting equation (A.4.3) so that the left-hand side is 
expressed as a product of ( -iw )n and cp(m) (w) produces 

1100 dn+l 
( -iw)n¢(m)(w) = ~ -- [(it)mcp(t)] eiwt dt. 

2W _ 00 dtn+l (A.4.4) 

Equation (A.4.4) may be used to define the new set of test functions. If 
the functions cp(t) decay as ltl ~ oo according to the rule 

lim ltmcp(n)(t)l = 0 
ltl->oo 

m = (1, 2, 3, ... ) and n = (1, 2, 3, ... ), 

(A.4.5) 
then the integral in equation (A.4.4) converges. Taking the limit as lwl ~ oo 
implies that 

lim lwn¢(m)(w)l = 0, 
lwl->oo 

m=(1,2,3, ... ) and n=(1,2,3, ... ). 

(A.4.6) 
Equations (A.4.5) and (A.4.6) state the decay conditions for the set of 

"rapidly decreasing" test functions. Note that a function that is rapidly 
decreasing in the direct domain is automatically rapidly decreasing in the 
transform domain, and vice versa. This property is called "continuity un­
der the Fourier transform" and the set of rapidly decreasing functions is 
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often called the "Schwartz space," and is designated by the symbolS. Be­
cause functions with compact support also vanish at infinity, the set of C0 
functions is a subset of S, when equivalence is judged by differentiability 
and decay. However, as seen above, the Fourier transform of a C0 function 
is not a C0 function, even though it is a rapidly decreasing function. In 
this case, it is the compact support that is lost. However, the decay of the 
transformed function is still "rapid" in the sense defined above, so the cas­
cade of forward and inverse transforms of a C0 functions is still defined, 
in that the rapid decay at infinity guarantee that the respective integrals 
converge. 

An example of a rapidly decreasing function is exp{ -t2 /2}, with Fourier 
transform exp{ -w2 /2} within a constant scale factor. In this particular 
case, J(w) is an entire function with the right decay properties on the real 
w-axis, which is the only location of concern to us, here. More generally, 
equations (A.4.5) and (A.4.6) tell us that any coo function that decays 
faster than any arbitrary algebraic power at infinity will be in the class of 
rapidly decreasing functions. 

A.5 Temperate Distributions 

By choosing test functions from the set of "rapidly decreasing" coo func­
tions, we constrain the permissible class of functions that can be used as 
delta sequence functions. Because we can define distributions only through 
integration with test functions, existence of integrals of the type 

1: f(t)¢(t) dt (A.5.1) 

will define the properties of f ( t). 
Noting that ¢(t) vanishes at infinity, it follows that any absolutely in­

tegrable function f(t) will make this integral converge. Also, f(t) may be 
any function of polynomial growth, such that lf(t)i :::; kitin as itl ---+ oo, 
where k is some constant. On the other hand, f(t) may not be a function 
of exponential growth. Because all of these conditions imply slow growth, 
distributions associated with rapidly decreasing test functions must be slow 
growing (as t---+ oo )-hence the name "temperate." It follows that all distri­
butions with bounded (but not necessarily compact) support are temperate 
distributions, because they fit the criterion of "slow growth" stated above. 

All of the usual properties of the Fourier transform may, therefore, be 
extended to temperate distributions. 
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A.6 The Support of Distributions 

There is a remaining problem, however. It is desirable to define the Fourier 
transform pair 

](w) =I: f(t)eiwt dt, 

f(t) = 2_ ~oo ](w)e-iwt dw, 
2n _00 

with f(t) or ](w) being a distributional quantity. While the exponential 
quantity in each of these integrals does have the property of being infinitely 
differentiable, these functions do not have the property of being members 
of the set of rapidly decreasing test functions discussed above. 

This problem is solved by considering the support of distributional quan­
tities. The support of a function is that part of that function's domain where 
it is nonzero. In contrast, the support of a distribution is determined by con­
sidering the intersection of all sets for which the integral of the distribution 
with an appropriate test function is nonzero. 

In general we would like to determine what conditions are necessary for 
the integral 

I= I: f(t)¢(t) dt (A.6.1) 

to converge when ¢(t) is infinitely differentiable, but not rapidly decreasing 
in the sense discussed above. If the support of f ( t) is contained within some 
interval a ~ x ~ b, then we may rewrite the integral above as 

I= j_: f(t)¢(t) dt = 1b f(t)¢(t) dt. (A.6.2) 

However, the support of f(t) may be represented equally well by a C0 
function v(t) that has a value of 1 in the region where f(t) -=f. 0, but 
vanishes C0 smoothly away from from this region. The integral I may 
then be rewritten as 

I= I: f(t)v(t)¢(t) dt =I: f(t)'lj;(t) dt, (A.6.3) 

where the function 'lj;(t) =: v(t)¢(t) is a C0 function identically equal to 
¢(t) on the support of f(t) but decaying away to zero C0 smoothly outside 
of that support. The function v(t) is an example of a neutralizer function. 

For the delta function 8(t), we know that the support is the origin itself. 
Applying a neutralizing function vc:(t), defined such that vc:(t) = 0 for 
ltl :2: c:, and that vc:(t) = 1 for ltl < c:, we now are free to write the 
"obvious" statement 
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1: Ve(t)8(t)eiwt dt = 1, (A.6.4) 

for c: chosen arbitrarily small. From this result, it is equally correct to set 

8(t) = 2_ 16o 1e-iwt dw, 
27!' -oo 

(A.6.5) 

and be assured that 8(t) means the same thing here as in the earlier dis­
cussions. In fact, replacing the 1 in this last equation by any sequence 
of neutralizers with progressively larger support approaching the entire 
real line provides a delta sequence. Each element of such a sequence is a 
bandlimited delta function, of the type discussed below. 

These observations lead to the relations between the derivatives of the 
delta function and their Fourier transforms, as follows: 

(A.6.6) 

and 

/_: 8(m)(t)eiwt dt = (iw)m. (A.6.7) 

The first of these relations may be verified by formally differentiating both 
sides of (A.6.5) m times with respect to t. The second relation may be 
verified through m integrations by parts. Again, we can be assured that 
o(m)(t) has the same meaning as in the original definition. 

A. 7 Step Functions 

Equation (A.6.5) gives us a meaning for the Fourier transform that is iden­
tically equal to a constant. An equally important and comparable function 
that arises in practice is one that is a constant for w > 0 and the negative 
of that constant for w < 0. This is an odd function, which implies that its 
inverse Fourier transform will be odd-certainly not an ordinary function, 
but an odd distribution. In order to make that distribution real back in 
the time domain, the constant in the frequency domain should be chosen 
to be imaginary. Thus, we are led to consider in the frequency domain, the 
function 

{ 
i, 

p(w) =isgn(w) =eisgn(w)1l'/2 = 0,. 

-z 

w >0, 
w=O, 
w < 0. 

(A.7.1) 

Here, the value at w = 0 is not important. However, the choice made 
here arises naturally in two ways. First, Fourier transforms of piecewise 
continuous absolutely integrable functions take on the average value at 
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their jumps. Second, numerical Fourier transforms of functions that are 
discontinuous at the origin will return an average, as well. If, however, the 
limits of integration are not symmetric, then the value at the discontinuity 
will also be a weighted average reflecting the asymmetry. 

The objective, now, is to determine p(t). Given the development of 
Fourier transforms of distributions above, it is necessary that the rules 
relating multiplication in one domain to differentiation in the transform 
domain still must hold. Thus, differentiation of (A.7.1) in a distributional 
sense leads to the conclusion that 

itp(t) ~ p'(w) = 2i8(w), (A.7.2) 

from which it follows from the inverse transform of the right side that 

1 
tp(t) = -. 

7r 
(A.7.3) 

Here, a factor of i has been dropped from both sides of the equation. 
A particular solution to this equation is obtained by dividing both sides 

by t. However, a little more care is necessary here, since this is a distri­
butional equation. If p(t) satisfies (A.7.3), so does p(t) + C8(t), for any 
constant C, because the distribution t8(t) = 0. However, evenness and 
oddness come into play here. Because p(w) is odd, the same must be true 
for p(t). Because 8(t) is even, it follows that the only choice for C is zero 
and 

1 
p(t) = -. 

nt 
(A.7.4) 

So, why the big fuss over what is apparently a nonissue? Consider the func­
tion 2iH ( w), which is neither even nor odd. The derivation of the inverse 
transform would start the same way, with the derivative of this function 
again being 2i8(w). The inverse transform of this function, however, clearly 
cannot also be p(t). In fact, by setting 

2iH(w) = p(w) + i, 
it follows immediately that the inverse transform of this function is equal 
to p( t) + i8 ( t); that is, C = i for this function. 

We still need to interpret the distribution, p( t). The issue is how this dis­
tribution "acts" on test functions. The key to the interpretation is (A.3.2). 
Let us define the integral on the left as the symmetric limit as A ---+ oo of 
integrals over intervals (-A, A) and use that limit to truncate p(w). Each 
truncation leads to an inverse transform, PA(t), that is no longer singular 
at the origin, but remains smooth in the neighborhood of the origin, as well 
as having odd symmetry. It takes some work to show that the integrals on 
the right side of (A.3.2) then have the same limit as the integral 

!~l: + 100 
dtp(t)¢(-t), 
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where we have simply truncated away the neighborhood of the origin, but 
then taken a symmetric limit as the endpoints converge on the origin. This 
is called the (Cauchy) principal-value integral and is standardly denoted 
by a dashed integral sign (-): 

£: dt p(t)¢( -t). 

Correspondingly, the notation 

is also used. 

1 
p(t) = PV-

7rt 

Of in the course of our derivations throughout the text, the functions, 

'gn (t) ~ { 

1, t > 0, {" 0, t = 0, and H(t) = ~' 
-1, t < 0, 0, 

also arise. From the results obtained in the discussion 
straightforward to conclude that 

~( ) 2i sgn w =-
w 

and H(w) = i + o(w). 
w 2 

t > 0, 

t = 0, 

t < 0, 

above, it lS 

(A.7.5) 

Here, the tilde - over the function symbol, rather than over the entire 
expression, indicates that this is the inverse transform of the function-sgn 
or H-evaluated at the argument w. 

A. 7.1 Hilbert Transforms 

This last function is closely related to the Hilbert transform, defined by 

1i[j(t)] = }:_joo j(t') dt'. 
7r ]_00 t'- t 

This result can be recast in terms of convolution as 

1i[f(t)] = f(t) * [- :t] ' 

(A.7.6) 

(A.7.7) 

with the convolution to be interpreted in the principal-value sense. By 
writing the Hilbert transform as a convolution, we now know how to rewrite 
it in terms of Fourier transforms of the function, f(t), and the transform 
of the kernel, -1/7rt. From (A. 7.4), 

1 
- 7rt = -p(t) 

and therefore, using (A.7.1), we conclude that 
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{ 
-i, w > 0, f: :~eiwtdt=-isgn(w)=e-isgn(w)?r/2 = ~' w=O, 

z w < 0. 

(A.7.8) 

We use the fact that the Fourier transform of a convolution is the product 
of the transforms to rewrite (A.7.7) in the Fourier domain as 

H[](w)] = -isgn(w)](w). (A.7.9) 

That is, we may calculate the Hilbert transform of a function by taking its 
Fourier transform, multiplying by -i sgn ( w) and taking the inverse Fourier 
transform. 

Hilbert Transforms and Causality 

Suppose that f(t) is a causal function; that is, f(t) := 0 for t < 0. Then, 
from (A.7.6), 

'H[f(t)] = ~100 f(t') dt'. 
1r Jo t'- t 

In particular, for t < 0, the Hilbert kernel is nonsingular and 

'H[f(t)] = ~ roo ~(t') dt', t < 0. 
1r } 0 t - t 

(A.7.10) 

That is, the Hilbert transform is an ordinary integral, in this case. However, 
it is not necessarily equal to zem, which means that the Hilbert transform 
of a causal function need not, itself, also be causal. 

A.8 Bandlimited Distributions 

A final result of this discussion is the concept of the "bandlimited distri­
bution." Many places in this text we refer to "bandlimited step functions," 
"bandlimited delta functions," and "bandlimited singular functions" that 
occur as the output of the seismic inversion formulas we derive. 

Using the Fourier transform results discussed above, it is possible to write 

(A.8.1) 

If ~( w) is bounded, locally integrable, and has bounded support, then this 
integral will converge, meaning that ~( w) may be considered to be a dis­
tribution that has a Fourier transform. For this transform to be considered 
a bandlimited delta function, it would further be necessary that ~(w) be 
nearly equal to 1 over a significant part of its support. We prefer not to be 
more precise than that, but suggest only that impulsive sources produce 
signals that we view as bandlimited delta functions. 
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The function ¢(w) may also be interpreted as being a "filter" (similar 
to the F(w) used throughout the text) that has all of the properties of a 
distribution, or we may view the inverse transform of ¢(w) as a member of 
a delta sequence. Note that, for the output to be purely real in the time­
domain, Re {¢(w)} must be an even function, and Im {¢(w)} must be 
odd. In either case, the idea of a "bandlimited delta function" is entirely 
compatible with the concepts of distributions discussed above. 

It is also possible to use the definition of the Fourier transform of the 
step function given in (A.7.5) to define the "bandlimited step function" as 

HB(t) =- - +- ¢(w)e-~wt di..J. 1 100 
( i 8(w) ) - . 

271' _00 W 2 
(A.8.2) 

Here, the second term contributes only if the support of ¢(w) contains the 
origin. If this is the case, then the constant displacement from the zero line 
of the step function is preserved and is represented by this second term. 
Note that most measured data (such as seismic data) does not contain infor­
mation at zero frequency. Consequently, we cannot recover the magnitude 
of a step from such a bandlimited step. It is this observation that moti­
vated our introduction of a derivative operator in our inversions to produce 
bandlimited delta functions in order to recover the discontinuities-the 
reflectors-in the Earth. 

Again, we must require that Re { ¢( w)} be an even function, and 
Im { ¢( w)} be odd, so that the output of the Fourier transform will be 
purely real. 

We remark that the elements of the sequence of box functions do not fit 
this description of bandlimited delta functions. For the function 

the Fourier transform is 

{ 
n 

2' Sn(t) = 
0, 

1 
ltl <-n 

1 ltl > -, n 

, { !!: sin(~), w =f= 0, 
Sn(w) = w n 

1, w =0. 

This function is real and even for w real, but it is not bandlimited; it is 
not zero beyond some finite value of lwl. However, it is "near" 1 for some 
neighborhood of w = 0 that increases with n; the main lobe of this sine-like 
function is the interval ( -mr, n7r). Thus, we could introduce a neutralizer 
in the frequency domain, whose support also increases with n, say, larger 
than the interval ( -mr, n1l'), and thereby create a bandlimited version of 
the box sequence in the time domain, behaving somewhat more smoothly 
than the box sequence itself, but still being a delta sequence. 

As a second example, let us interchange the roles of the box and the 
sine-like function: 
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s.(l.) ~ { 
sin mrt 

1ft 
n 

' 7r 

Now, the Fourier transform is given by 

t ~ 0, 

t = 0. 

A { 1, Sn(w) = O 
lwl <n 
lwl > n. 

Now the Fourier transform has bounded support for each n, and is an even 
function of n. In practice, we would usually "taper" this function to zero 
with something simple, such as a quarter cycle of a sine-function. This 
would reduce the size of the side lobes in the time domain, leading to a 
bandlimited delta function for which more of the energy lies in the main 
lobe than is the case for each Sn defined here. 

Finally, we present an example that is better suited for application to 
causal functions (or to functions of the radial variable in polar coordinates). 
Let 

{ 
0 s t - ' n( ) - 2t ~nt n e , 

t<O 
t > 0. 

This function peaks at t = 1/n, with peak value nje. Its Fourier transform 
is 

A n 2 [ n2 - w2 2iwn ] 
Sn(w)= (n-iw)2 =n2 (n2+w2)2 + (n2+w2)2 . 

For this function, Re Bn(w) is even, while the imaginary part is odd. Again, 
for w real, Bn ( w) is "near" 1 in some symmetric region around the origin, 
but Sn(t) is not bandlimited. However, one can show that 

lim {oo Sn(t)j(t)dt = lim f(t). 
n->oo } 0 t-->0+ 

The last expression here denotes the limit through positive values oft only. 
For causal functions of an appropriate class, this is the "right" type of delta 
sequence to use in order to obtain a meaningful definition of 8(t). 

Again, we could create a bandlimited delta sequence from this one, by 
introducing a neutralizer function that is equal to 1 on an appropriate 
interval around the origin, that interval necessarily increasing with n. For 
example, we could choose that interval to be the one in which Bn(w) > 1/2. 

In summary, we can see here how that there are useful delta sequences 
that are not bandlimited, but which are "close" to others that are. Clearly, 
physical experiments must lead to bandlimited impulsive sources. On the 
other hand, in mathematical modeling, it is easier to work with sequences 
that have relatively simple analytical expressions in the time domain, such 
as the first and third examples here. For many applications, it is rea-
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sonable to work with the simpler analytical examples and then introduce 
bandlimiting only at the very end of the analysis. 



Appendix B 
The Fourier Transform of Causal 
Functions 

In several places in this text, integrals are interpreted as being either for­
ward or inverse "causal" Fourier transforms. In this appendix, we will define 
and discuss this concept. Any forward transform that has semi-infinite 
integration limits may be interpreted as being a causal or anticausal trans­
form. However, care must be taken in defining the inverse causal Fourier 
transform. Fundamental to this definition is a stipulation of choosing an 
integration contour that passes above all singularities in the complex­
w domain. Here, we clarify what we mean by the term "causal Fourier 
transform" and we show how this choice of integration contour comes about. 

B.l Introduction 

Idealized physical models are often described as being of infinite spatial 
extent in one or more dimensions. Correspondingly, any wavefields that 
propagate in such models will have a domain of definition that is of similarly 
infinite extent as well. Because wavefields may be represented as Fourier 
integrals, the infinite limits of such integrals reflect the infinite spatial ex­
tent of the domain of the problem. An example in one spatial dimension is 
the forward transform 

F(k) = 1: f(x)e-ikxdx (B.l.l) 

and corresponding inverse transform 
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f(x) = 2_ Joo F(k)eikxdk. 
27f -oo 

(B.1.2) 

Physical signals, however, have the property of always being "turned 
on" at some finite time that can be set equal to zero. Thus, the time­
dependence of functions describing physical models will always be of semi­
infinite extent. This is the property of causality, and all such functions that 
are zero before time zero are called causal functions. Correspondingly, the 
semi-infinite domain in time of causal functions will be represented as semi­
infinite limits of integration in Fourier representations of these functions, 
as for the forward transform 

F(w) = laoo f(t)eiwtdt, 

with corresponding inverse transform 

f(t) = - F(w)e-iwtdw. 1 ! 00 
27f -oo 

(B.l.3) 

(B.1.4) 

There are two differences in character, one aesthetic, the other substantive, 
between equations (B.l.1) and (B.l.3). 

The aesthetic difference is that the sign of the exponent has changed. This 
means that the phase of the forward transform (B.l.l) will be of opposite 
sign to that in (B.l.3). Then, when inverting the Fourier transform of a 
function of k and w, we have the general form 

1 !00 !00 f(x,t) = (27r)2 -oo dk -oo dwF(k,w) ei{kx-wt}_ 

We view the right side here as a superposition over frequency w and 
wavenumber k of contributions of the form F(k,w) exp[i{kx- wt}]. Each 
such contribution represents a complex wave--a composition of sines and 
cosines-that propagates along the line with coordinate x as time pro­
gresses. The way we see this propagation is through the motion of the 
crests of the sines and cosines, or, for that matter, the way any point of 
fixed phase propagates with time. That is, we examine the movement of 
points where kx-wt =constant. The speed with which such a point propa­
gates is called the "phase speed" of the wave, and is given by Vphase = w / k. 
Had we not reversed the signs in these two transforms, then the phase speed 
would have been -w/k, which is somewhat less aesthetically pleasing, be­
cause we like to think of forward propagation as being represented by a 
positive quotient of like-signed variables. It often happens that, if we carry 
out the k-integration here, we find that not all w-k combinations propa­
gate, but only a subset, for which w = w(k). Such a relationship, along with 
its generalizations to higher dimensional problems, is called a "dispersion 
relation." 

The more substantive difference between the definitions is that the lower 
limit is -oo in the forward spatial transform (B.l.l), whereas the lower limit 
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of the forward temporal transform (B.1.3) is 0. Note that, in the former, if 
k becomes complex, the exponent has a real part, lm {k}x, where we are 
considering x as always being real-valued. If Im { k} < 0 and x ----? -oo, or 
if Im { k} > 0 and x ----? +oo, then the resulting factor of exp(Im { k }x) in 
the integrand will grow exponentially beyond all bounds, meaning that the 
integral will not converge in these respective cases. Conversely, if Im { k} > 
0 and x ----? -oo, or if Im { k} < 0 and x ----? +oo, then the resulting factor 
of exp(Im {k}x) = exp(-IIm {k}xl) will decay faster than any algebraic 
power of x. 

Conversely, in (B.l.3), with w considered as a complex variable and t re­
stricted to be positive only, the corresponding quantity I exp{Re ( iwt)} I = 
exp{-Im { w }t} will decay exponentially for Im { w} > 0 and t ----? oo. 
Furthermore, increasing lm { w} increases the rate of exponential decay of 
the integrand and improves the rate of convergence of the integral. Indeed, 
even if f(t) were to grow as a linear exponential-say, exp{at}-we need 
only take Im { w} > a to have an exponentially decaying integrand in this 
definition of the Fourier transform. Note that if t is allowed to approach 
both ±oo, as we did with x in the previous example, this trick will not 
work. 

So, in light of this discussion, the class of causal functions that have a 
classical1 Fourier transform can be expanded to include functions that are 
locally integrable2 with possible exponential growth, f(t) = O(exp{at}), 
as long as the imaginary part of w is restricted to be "large enough." That 
is, we define 

F(w) =loco f(t)eiwtdt, Im {w} >a. (B.1.5) 

Now, not only does the given integral converge in this restricted domain, 
but so do all of the integrals of the form 

p(n)(w) = 100 (ittf(t)eiwtdt, Im {w} >a, n = 1,2, .... 

These integrals represent the derivatives of F(w). These are functions that 
decay faster than any power oft. (Such "rapidly-decreasing" functions are 
discussed in Appendix A.) Thus, where this Fourier transform exists­
in some upper half w-plane defined by Im {w} > a-F(w) is an analytic 
function of the complex variable w, with the further property that IF(w)l ----? 

0, as do all of its derivatives, as lw I ----? oo, as long as Im { w} > a. This fact 

1 We mean to make a distinction between "classical" versus "distribu­
tional" Fourier transforms. Distributional Fourier transforms are discussed in 
Appendix A. 

2 "Locally integrable" means that the integral of f(t) over any finite interval 
exists, even as an improper integral. 
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allows us to bring the whole machinery of analytic function theory to bear 
on the analysis of the causal temporal transforms. 

To have a clearer view of how all of this works, we will explicitly write 
w as complex variable 

w = J.l + iv, (B.l.6) 

with real part J.l and imaginary part v. Equation (B.1.5) becomes 

F(J.L + iv) = 100 f(t)ei~-'t-vtdt, v > a, 

or (B.1.7) 

Fv(J.L) = 100 [f(t)e-vt] ei~-'tdt, v >a. 

In the second form, v plays the role of a parameter in the Fourier transform 
of the function 

t < 0, 

t > 0, 

to a function of the transform variable J.l· Now, however, this is a stan­
dard Fourier transform of an integrable function, g(t), on the time interval, 
( -oo, oo). The inversion, then, is immediate: 

or, rewriting the result in terms of f(t), 

2_ foe F(J.L + iv)e-i(!l-+iv)tdJ.l = 
27f -oo 

{ 
0, 

f(t), 

v >a, 

t < 0, 

v >a. 
t > 0, 

Note that transferring the real exponential back to the left side has no effect 
on the integration in J.L, because v and t are constants of this integration. 

To complete the story, this result must be reinterpreted as a contour 
integral in w. The contour in the complex w-plane is a straight line along 
which J.l = Re { w} varies from -oo to oo, while v = Im { w} is large 
enough that the contour of integration is located in the domain of analytic­
ity of the function, F(w). More succinctly, the contour is required to pass 
above all singularities of F(w) in the complex w-plane. Thus, 

- F(w)e-tw dw = 1 1 . t { 0, 
21r r f(t), 

t < 0, 

t > 0, 
(B.l.8) 
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with r being any contour that passes above all singularities of F(w), along 
which Re w ranges from -oo to oo. If there are no singularities down to 
and on the real w-axis, then the contour can be replaced by the real axis. If 
F(w) has no singularities above the real axis, but one or more on the real 
axis, then the contour of integration must pass above those singularities 
that lie on the real axis [Titchmarsh, 1948]. 

It is straightforward now to show by contour integration methods that 
the representation in (B.1.8) is zero for t < 0. This result uses Jordan's 
lemma, which states that 

Here, ldwl = Rd¢ is the differential arclength on C. 
For a < 0, Jordan's lemma is true for a semicircle in the lower half plane, 

with a replaced by lal on the right side of the above equation. (Of course, 
the same bound holds for any segment of the semicircle in question as well.) 

Now, consider, again the representation, (B.l.8), with t negative (and 
hence -t, in the exponent, positive). Replace the contour r by rR, the 
segment of r on which Re { w} ranges from - R to R. Note that in the 
limit, as R ---. oo, this contour approaches the original contour r. Close 
the finite contour of integration with a semicircle, C, in the upper half 
plane. See Figure B.l. The integrand is analytic on the closed contour. 
Furthermore, on the one hand, the integral around this closed path is equal 
to zero, by Cauchy's theorem. On the other hand, 

-R R 

FIGURE B.l. The portion of the contour labeled rR passes above any poles in the 
integrand. The contour labeled C, yields a vanishing contribution as IRI --+ oo, 
by Jordan's lemma. The result of integration around the full contour is zero, by 
Cauchy's theorem, because no poles are enclosed. 
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< 2~ fc IF(w)lle-iwtlldwl 

2
1 max (IF(w)l) jle-iwtlldwl 
7r Won C C 

< 

1 
-21 I max (IF(w)l) t Won C 

< 

--+ 0, as R --+ oo. 

Here, in going from the second to the third line, we used Jordan's lemma; in 
going from the third line to the fourth line, we used the fact that IF(w)l --+ 0 
as lwl --+ oo in the domain of analyticity. Thus, if the integral on the 
semicircle approaches zero in this limit and the integral around the entire 
path is identically zero, the integral on r must be zero as well. Hence, the 
structure of this Fourier representation assures the causality of the inverse 
transform, always. On the other hand, for t > 0, the contour could only 
be closed in the lower half plane, if at all. However, in general, F(w) will 
not be analytic there and we could not use the same trick to conclude that 
f(t) was zero for t > 0. 

The reader familiar with Laplace transforms should hear echoes of that 
theory in this discussion. With iw = -s, this is the Laplace transform. 
The right half plane of analyticity of that theory is the upper half plane 
of analyticity of the present theory. Similarly, the "Bromwich contour," to 
the right of all singularities of the transformed function, used for inversion 
in that theory, is a contour in the upper half plane, above all singularities, 
in this theory. 

-R R 

FIGURE B.2. The portion of the contour labeled rR passes above the poles at 
±ck in the integrand, as in the previous example. However, the contour labeled 
C is chosen to close in the lower half plane of w. The contribution due to C 
vanishes by Jordan's lemma, but the integral around the full contour yields a 
nonzero result by the residue theorem. 



8.2 Example: the lD Free-Space Green's Function 415 

B.2 Example: the lD Free-Space Green's Function 

We now carry out an example to show how the machinery of complex 
contour integration facilitates the inversion of a Fourier wavefield rep­
resentation. Fourier inversion will be carried out on the one-dimensional 
free-space Green's function for the wave equation, which is a solution of 
the problem 

g(x, 0) = og~x, t) I = 0. (B.2.1) 
t t=O 

This Green's function is causal in time, and its Fourier transform is given 
by 

G(k, w) = (XJ dt 1oo dx g(x, t)ei{wt-kx}. 
lo -oo 

(B.2.2) 

This Fourier transform is to be applied to the differential equation above. 
One subtle point is that the endpoint of integration, t = 0, is right at the 
support of the temporal delta function. For causal functions, such delta 
functions are to be defined as delta sequences, all of whose support resides 
in t ~ 0. In this case, the "full strength" of the delta function acts on 
the integral in the Fourier transform. (The last example of the previous 
appendix provided a delta sequence that would lead to just such a delta 
function). Alternatively, define g(x, t) for t on ( -oo, oo) to be identically 
zero for t :::; 0. Then, the Fourier transform of g with respect to t is still 
the causal transform, but we do not have to worry about this subtlety for 
defining a full-strength delta function at the initial time. In either case, 
transforming the differential equation and solving for G( k, w) leads to the 
result 

(B.2.3) 

Note that in the complex w-plane, the right side has two poles at w = 
±ck, but no other singularities. Thus, if we were to carry out the Fourier 
transform in w first, the contour of integration would be required to pass 
above the real w-axis. See Figure B.l. That is, 

c2 1oo 1 ei{kx-wt} 
g(x, t) = --2 dk dw 2 2k2 . 

4n _00 r w - c 
(B.2.4) 

One can readily check for this specific example that the representation on 
the right is zero for t < 0, by following precisely the procedure outlined 
above for the general case. Thus, the solution, g(x, t) is, indeed, a causal 
function. 

Now, fort> 0, again consider fR, the segment off for which Re {w} 
ranges from - R to R. Close the contour of integration on a semicircle in 
the lower half plane. See Figure B.2. For the specific integrand, one can 
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verify that the integral on this semicircle will approach zero in the limit 
as R--+ oo, again by using Jordan's lemma and estimating the integral as 
above. However, for every R the integral can be calculated in terms of the 
residues at the poles w = ±ck. The result is 

g(x, t) = - ic joe dk eikx eickt - e-ickt 
4n _00 k 

(B.2.5) 

This integral is, again, standardly calculated by complex contour integra­
tion methods. 

The careful reader may recognize each of the parts of this integral as 
being related to the inverse Fourier transform of the signum function, dis­
cussed in Appendix A. However, the calculation of this integral is left to 
the reader. 

We simply state the result: 

c 
g(x, t) = 2H(ct -lxl), (B.2.6) 

with H(x) = 1 for x > 0 and H(x) = 0 for x < 0. The real point of the 
discussion is that a causal solution was produced by carefully defining the 
inverse Fourier transform with respect tow. 

Alternatively, the k-integration could be carried out first. In this case, 
the poles at k = ±w are not on the real axis. If we think of the k-integral as 
producing a function of complex w, then the value of this function on the 
real w-axis can be determined by analytic continuation. For this purpose, 
the k integral is interpreted as a contour integral in the complex k-domain, 
with that contour being the real axis in k. The pole at w I c lies above the 
contour, while the pole at -wlc lies below the contour. Deform the contour 
below the pole at w I c on a small semicircle below the real k-axis and deform 
the contour above the pole at -w I c on a small semicircle above the real 
k-axis. Now, let Im { w} approach zero. The integration in k makes sense 
in this limit and the result defines a contour integral in k with Im { w} = 0. 
The contour in k can be described as a path on which Re { k} varies from 
-oo to oo, passing above the singularity at -w I c and passing below the 
singularity at w I c. 

Often, in the literature, this choice of contour is justified by "adding a 
little dissipation" to give a real frequency variable w a positive imaginary 
part. It can be seen from this discussion that such an artifice is not neces­
sary, nor should it be: the original problem is well-posed and the integral 
transform technique does not require artificial dissipation to go forward. 

Now, for x > 0 the contour integral in k can be closed with a large 
semicircle in the upper half plane, while for x < 0 the contour can be 
closed with a semicircle in the lower half plane. In the former case, the 
integral can be computed in terms of a residue at k = w I c, while in the 
latter case, the integral can be computed in terms of a residue at k = -w I c. 
After some manipulation, this leads to the result 
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ic 1 eiw[lxl/c-t] 
g(x, t) =- dw---

41T r w 
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(B.2.7) 

Now, for lxl/ c - t > 0, we obtain zero for this integral, by the same 
line of reasoning as above, while for lxl / c - t < 0, we obtain the result by 
evaluating the residue at w = 0. Thus, we obtain the result (B.2.6), again. 

For additional information about analysis of functions of a complex vari­
able, see Butkov [1968], Duffy [1994], Levinson and Redheffer [1970], Morse 
and Feshbach [1953], or equivalent texts. 



Appendix C 
Dimensional Versus Dimensionless 
Variables 

Throughout this text we relate quantities such as frequency, wavenumber, 
and wavespeed to each other within the spatial and temporal domains of 
the problems being considered. Many of the derivations we present rely 
on asymptotic methods that depend on the identification of a "large pa­
rameter." Because dimensional variables (variables with dimensions such 
as length and time) may contain arbitrary scaling factors, we must remove 
all dependence on these arbitrary factors before relative sizes of quantities 
may be compared. 

There are two issues related to dimensional scaling. First, all dimensional 
quantities are expressed in terms of units of measurement that must balance 
in any formula. Second, there may be "natural" scaling factors that are 
imposed by the physics of the problem being considered. These natural 
scaling factors result if the parameters in an equation have a preferred 
range of values. Both of these issues of dimensional scaling must be dealt 
with in formulas that describe physical problems. However, the notations 
that we employ throughout this text do not appear to distinguish between 
"dimensional" and "dimensionless" variables. Furthermore, we freely use 
data examples that are described in terms of the standard units of m, s, 
Hz, m/s, and so forth, with formulas created using asymptotic methods­
implying that the formulas are dimensionally independent. 

This appendix has been included for two purposes. First, we wish to reas­
sure the reader that proper care has been taken in dealing with dimensional 
versus dimensionless representations. Second, we want provide the reader 
with general examples of how to deal with the issue of dimensionality. 
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C.l The Wave Equation 

The fundamental governing equation for all problems in this text is some 
form of the wave equation, with the 1D version being 

( 82 1 82) 
8x2 - c2(x) at2 U(x, t) = -t5(x)t5(t). (C.l.1) 

Here, x, c(x), t, and U(x, t) are dimensional variables. To convert to di­
mensionless variables, X, T, and W, we make the substitutions x---* LX, 
t ---* TT, c(x) ---* eoC(X), and U(x, t) ---* UW(X, T). The quantities L, 
T, and co are dimensional scale factors that define the units that express 
length, time, and wavespeed in the respective relationships between the 
dimensionless and dimensional variables. The parameter U represents the 
scale factor relating the dimensional representation of the field U to the 
dimensionless field W. 

The product of delta functions of dimensional arguments carry dimen­
sions of their own. To see why, note that -t5(x)t5(t) = -t5(LX)t5(TT) = 
-t5(X)t5(T) I LT. By convention, we interpret the function symbol, t5, as 
having no inherent dimensions of its own, so that t5(X)t5(T) also carries 
no dimensions. Consequently, we must conclude that the delta function 
of a dimensional argument must carry a dimension that is the inverse di­
mension of that argument; that is, the dimension of t5(x) must be inverse 
length-1Im, 1Ift, 1lkm, etc.-while the dimension of t5(t) must be inverse 
time-1 Is, 1 I J..t sec, etc. Thus, depending on the dimensions assigned to U, 
the dimensions of the two sides of the equation might not match, which is 
unacceptable. We will deal with that in two different ways in the next two 
subsections. 

C.1.1 Mathematical Dimensional Analysis 

Using the transformations to dimensionless variables in the wave equation 
yields 

( 182 11 182 )- 1 
L2 8X2 - c6 C2(X) T2 8T2 UW(X, T) = - LTt5(T)t5(X). (C.l.2) 

For the purpose of this appendix, let [L] mean the dimensions of L, and so 
forth. Analysis of the units of the scaling factors in (C.l.2), above, yields 

[L] =Length, [T] =Time, and [eo] = Le~gth. 
T1me 

Often, the only need we have for dimensional analysis is to confirm con­
sistency in the equations that arise in our modeling and inversion. For 
this purpose, we need not prescribe the dimensions to the unknown, u, or 
equivalently, to U that arise from the underlying physical problem that the 
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equation models. Instead, can use a default dimension dictated by requir­
ing a balance between the two sides of the equation, with the dimensions 
of the right side being just 1/[L][T]. Let us proceed with this intent, then, 
to find the default dimensions of u, or equivalently, those of [VJ. Applying 
the brackets, [], to the wave operator yields 

Thus, the dimensionless representation of the wave equation may be written 
as 

u { ( a2 L2 1 1 a2 ) } 1 
L2 8X2 - c~ C2(X) T2 8T2 W(X, T) =-LT {o(T)o(X)}. 

(C.l.3) 
Here the parts in braces, { }, are dimensionless quantities. To make the 
units on the two sides match, we conclude that the default dimensions of 
U are 

[U] = Le~gth' 
Time 

(C.1.4) 

which are the units of particle velocity. 
The reader is encouraged to perform a similar analysis with the two­

and three-dimensional wave equations, with x =LX= (LXI, LX2) in 2D 
and x = LX = (LX1, LX2, LX3) in 3D. The delta function sources then 
become 

in 2D, and 

in 3D. The reader will see that the default dimensions of the factor of U 
are 1/[T] = 1/Time in two dimensions and 1/[L][T] = 1/Length ·Time in 
three dimensions, neither of which seem particularly physical. 

We note that in each of these cases, the units of the scale factors can­
cel, meaning that changing the equation into dimensionless form could 
have been accomplished by simply substituting the dimensionless variable 
symbols in place of the dimensional ones. In spite of this good fortune, a 
potential benefit of doing dimensional analysis is in checking results. The 
units of terms that are added or subtracted must be the same, and the 
units on both sides of an equality must balance, meaning that dimensional 
analysis can easily reveal an incorrect equation if the units fail to balance. 
Unfortunately, this is not a foolproof test, as it is possible to have incorrect 
equations whose units also balance. 
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C.l. 2 Physical Dimensional Analysis 

One point that we must stress is that the analysis above is a mathemat­
ical scaling analysis intended to check consistency between the two sides 
of a given equation. Such an analysis cannot account for the dimensions 
that are attached to quantities as a result of derivations based on physi­
cal considerations. The wave equation, (C.l.l), arises from a description of 
the dynamics of some physical phenomenon. As such, the function U(x, t) 
can be expected to have dimensions of its own that depend on the physi­
cal model that is the basis of the derivation of the equation. Even in the 
simple case of lD wave propagation on a vibrating string, "vibration" can 
mean displacement, velocity, or acceleration, or indeed, vibration can be a 
dimensionless quantity, depending on how we formulate the problem. 

How, then, do we resolve the inconsistency of this observation with the 
conclusion presented in the dimensional analysis of equation (C.1.4)? The 
answer lies in our interpretation of the source mechanism on the right side 
of (C.l.l). In that equation, we have described the right side totally in terms 
of the "natural" dimensions of the delta functions. Yet, in the formulation 
of the physical problem, we may represent the source (or forcing function) 
as a force-density, a force, or a displacement. In each case, [ U] will be 
different. 

[Stakgold, 1979] One common derivation of lD wave propagation on a 
string begins by formulating the problem with the 82 I 8x2 term having a 
coefficient that is a tension, which is a force, and with the 8 2 I 8t2 term 
being multiplied by a density. If the forcing function of the equation is a 
quantity with units of force per unit length (a force-density), we then have 

Here, 

( 82 82) 
T 8x2 - p 8t2 U(x, t) = -:F. 

Length 
[T] =Force= Mass· -.--2 , 

T1me 
Mass 

[p] = Length' 

[F] = Force = Mass . 
Length Time2 

Applying the brackets [] to the wave operator in (C.1.5) yields 

[ ( T ::2 -p gt22 ) ] = Leng~~s;ime2 

(C.1.5) 

Therefore, for the two sides of (C.1.5) to have the same dimensions, [U] = 
[ U] = L; that is, U is a displacement. For U to be particle velocity, as in 
equation (C.l.l), we would choose the source to be a force per length-time 
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and to obtain [U] = Acceleration, we would choose the source to be a force 
per length-time squared. 

C.2 The Helmholtz Equation 

It should be no surprise that the units cancel in the problem stated above, 
because the dimensional scaling factors relating wavespeed to space and 
time have been designed by common agreement to be mutually compatible. 
If our interest is in applying asymptotic analysis to a formula, however, then 
we must identify a large (or small) parameter. The formula is then expanded 
in an asymptotic series in the parameter. The asymptotic expansion is 
then truncated to a desired order of accuracy measured in terms of the 
large (small) parameter. An example of this process is the stationary phase 
formula. This formula results from saving the first term of the asymptotic 
expansion of a general Fourier-like integral. 

Many of the results in this text depend on the validity of the 
high-frequency or, more generally, the large-wavenumber assumption. To 
understand what "high-frequency" means, we will need to transform the 
wave equation into its frequency domain form-the Helmholtz equation. 
To do this, we apply the temporal Fourier transform to both sides of the 
wave operator. The temporal Fourier transform 

j(w) = 1oo f(t)eiwt dt 

may be written in a dimensionless form by the substitutions t --+ TT and 
w --+ woO = OfT as 

F(O) = 1oo F(T)eiwonTT TdT. 

Thus, the temporal Fourier transform introduces a factor ofT. In fact, from 
either of these equations, the dimensions of the function and its temporal 
transform must differ by a scale of time: 

[f(w)] =Time· [f(t)]; (PJ =time· [F(T)]. 

This is consistent with the Helmholtz equation 

(::2 + c~:)) u(x,w) = -8(x), (C.2.1) 

which, when written in dimensionless variables, is 

u { ( {)2 w~£2 [22 ) } 1 
£2 8X2+TC2(X) w(X,O) =L{-8(X)}. (C.2.2) 

Here, the substitutions X--+ LX, w--+ won, and u(x,w)--+ uw(X,O) have 
been made. Again, the terms in braces { } , are dimensionless quantities. 
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From the standpoint of balancing units, we see that the Fourier transform 
makes u = L, meaning that the units of the Helmholtz equation do, indeed, 
balance. In fact, in either form, the overall scale factor of the Helmholtz 
equation differs from the temporal form, (C.l.2), by a factor having the 
scale of time, resulting from applying the temporal Fourier transform. If we 
cancel the net factor of 1/ L that appears on both sides of the dimensionless 
Helmholtz equation (taking the default scale, [u] = L), we are left with the 
dimensionless Helmholtz equation 

(C.2.3) 

where 

We may now interpret w0 , L, and c0 as values of length, frequency, and 
wavespeed that characterize the specific problems we are interested in solv­
ing. The quantity wofco represents the wavenumber of the "characteristic" 
waves that propagate, while L represents the "characteristic length scale" 
of the medium in which the waves are propagating. The characteristic wave­
length is A = 27rcofwo meaning that the ratio of the characterizing length 
scale L to the characteristic wave length A is related to the parameter >. 
through the expression 

, = 21rL 
" A . 

We want to choose the dimensional scales in such a manner that>. reflects 
the relative size between w and its second derivative term on the left side of 
(C.2.3). For this to be the case, the combination of length, time and wave­
speed scales must be taken in such a manner that 0 2 /C2(X), the squared 
ratio of dimensionless frequency to dimensionless wavespeed, should be an 
"order one" quantity. That is, it should neither be particularly large or 
particularly small compared to unity. Then, >. will characterize the relative 
scale between the two terms on the left side of (C.2.3) as we wanted. The 
solution of this equation can then be characterized as "high-frequency" if 
the parameter >. is large compared to unity. In practice, we have found 
that in wave propagation problems, .X 2: 1r is large enough. That condition 
translates to 

21rL 7r< -­- A' 
2£ 

1<-- A' 
A -<L 2- ' 
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meaning that values of L must be larger than A/2 for the high-frequency 
condition to be true. 

This example deals with one-way propagation. In the inverse scattering 
problem, the wave propagation is two-way, meaning that the characteristic 
wavenumber is given by c0 /2w0 . Making this replacement in the definition 
of A, 

A= 2waL, 
co 

and again choosing A 2 1r, yields a condition for high frequency (or large 
wavenumber) that is the same as the Rayleigh criterion for resolution for 
single-frequency waves, L 2 A/4, (discussed more fully in Section 3.4). 

The typical wavelength A is determined by both the wavespeed and the 
bandwidth of the source or initial data of the underlying problem. The 
origin of the length scale L is a little more obscure. There are many possibil­
ities, depending on the problem under consideration. For example, L could 
be a typical distance of propagation from an isolated source to the first 
scattering surface in the earth. A second choice might be the radius of cur­
vature of a reflector. Another candidate might be a length scale associated 
with the variations of the propagation speed in the medium, determined as 
a typical value of 

c(x) 

ld~~)l 
c(x) 

I d
2c(x) ~-
dx2 

or 

In the first case, L characterizes the slope of the wavespeed; in the second 
case, L characterizes the curvature of the wavespeed (somewhat crudely). 

How, then do we choose L? The answer is that the problem "chooses" 
the length scale for us. Intuitively, we know that "high frequencies are 
better," in modeling and inversion problems. In the former, high-frequency 
wave propagation tends to look more like the propagation of plane waves in 
homogeneous media. In the latter, high frequencies are synonymous with 
better resolution of reflector images. We also know, however, there are 
natural constraints on the range of available frequencies dictated by the 
underlying physical experiment and medium configuration. For the seismic 
imaging problems, the experience derived from the long history of data 
acquisition has given the exploration geophysics community certain expec­
tations of the ranges of frequencies that are reasonable to expect, as well 
as the range of depths in the earth that it is reasonable to expect to be 
able to probe with those frequencies. Seismic sources and detectors have 
been designed to operate within these parameters, with survey cost being 
the primary constraining factor beyond this. 

All other parameters we have discussed here are beyond the control of 
the explorationist, being properties of the medium. Yet an analysis based 
on the limiting ranges of parameters such as the slope and curvature of the 
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wavespeed profile may be critical in interpreting the successes and, perhaps 
more importantly, the failures of imaging techniques that occur even when 
everything was done "right" by the experimentalist. 

Again, the reader is encouraged to try the computations for the higher­
dimensional forms of the Helmholtz equation, which correspond to those 
we have done here for the 1D problem. The results will be similar. 

The reader should not confuse the characterization of high-frequency 
with the constraints introduced in Section 3.6.1 for the validity of a specific 
high frequency asymptotic method. We note that the parameter we have 
called .A here was only a factor in the ultimate dimensionless parameter that 
we bounded below by 1r in that discussion. When that particular method 
fails, there are other, more sophisticated asymptotic approximations avail­
able. They, too, are high-frequency methods, required when the conditions 
for validity of the simple stationary phase formula are not satisfied. 

The point is that the high-frequency constraints that we have de­
scribed here mark a point of departure for introducing approximate-high 
frequency-methods for the solution of our forward modeling or inverse 
problems. 

C.3 Inversion Formulas 

In several locations in the text, important results are obtained by applying 
the method of stationary phase to Fourier transform-like integrals. These 
integrals may be inversion formulas, or may be the cascade of inversion 
formulas with forward modeling formulas-such as may result when we 
test an inversion formula with Kirchhoff data. 

To use the method of stationary phase, a large parameter must be iden­
tified in the formula being considered. This means that the equation in 
question must be rewritten in dimensionless form. 

In Section 3.6.1 we list several equations: (3.4.13), (3.4.19), (3.4.20), 
(3.5.3) (3.5.4), and (3.5.5), as examples of integrals that may be ana­
lyzed via the method of stationary phase. We will recast equation (3.4.13) 
in dimensionless form here as a demonstration, and leave the problem of 
recasting the other equations listed as exercises for the reader. 

Equation (3.4.13) is rewritten here as 

(3(x) = 4C: r d2~ r d3kk3e2i[kl(x1-~l)+k2(X2-6)-k3X3] 
7r }r, }Dk W 

·1oo dt tUs(~, t)eiwt. 

Several slight notational changes have been made here from the original 
form of equation (3.4.13) that appears in Section 3.6. In the original usage, 
the symbol c0 was used to denote the (constant) background wavespeed. 
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The symbol w0 denoted frequency as defined in equation (3.3.14). We have 
replaced these with the symbols c and w, respectively, because those sub­
scripts are not relevant to the current discussion, but we have another use 
for those subscripts, below. Also, the expression,..,· (p- e) that appears in 
the exponent of equation (3.4.13) has been rewritten in the expanded form 
as kl(xl- 6) + k2(X2- 6). The symbol n denoting the k-aperture (the 
domain of wavenumber integration) has been replaced with the symbol Dk. 
Otherwise, the notation is unchanged from the usage in the text. 

To convert this equation into dimensionless form, we make the following 
substitutions, 

(x1, x2, x3) --t (LX1, LX2, LX3), (6, ~2, 6) --t (LX01, LXo2, LXo3), 

w --t won, t --t TT, 

Us(x, t) --t UWs(X, T), f3(x) --t BB(X), 

(k1, k2, k3) --t (KK1, KK2, KK3). 

Equation (3.4.13) becomes 
2 -

BB(X) = 4c2 { L2d2Xo { K3d3KKK3e2i'P 
7f JE lvk won 

·100 TdT TT UWs(X, T)eiwofiTT, (C.3.1) 

where <I> = {KK1(LX1 - LXo!) + KK2(Lx2 - LXo2) - KK3LX3}. 
Simplifying yields 

BB(X) = (c2 £2K'f2f]) 42 { d2 X o { d3 KK3 e2iKLw 
Wo 7f JE lvk n 

·100 dT T Ws(X, T)eiwo'Trrr, (C.3.2) 

where \I! = {K1(X1 - X01) + K2(x2- Xo2)- K3X3}. Checking that the 
units balance requires that we recognize the following relationships: 

[L] --t Length, 

[ l --t Length 
c T' , 1me 

[T] --t Time, 
1 

[wo] --t -T. , 
1me 

1 
[VJ--t • 

Length · Time 

1 [K] --t , 
Length 

The last of these results arises from the 3D version of (C.l.2), for which 
the dimensions of 82 u I ax; must balance the dimensions of the 3D point 
source 

1 
-8(t)8(x) = -TL3 8(T)8(Xl)8(X2)8(X3). 

The result is that the right-hand side of equation (C.3.2) has the dimen­
sion of 1/ L, meaning that B also has the dimension of 1/ L. This is exactly 



C.3 Inversion Formulas 427 

what we should expect for a reflectivity function, which is a reflection 
coefficient (a dimensionless quantity, even when expressed in dimensional 
variables) multiplied by a bandlimited singular function, a one-dimensional 
delta function with dimension 1/ L. 

We must identify a large parameter in equation (C.3.2) as a prelude to 
asymptotic evaluation by the method of stationary phase. If we intend to 
apply the method of stationary phase to the T integral, then the large 
parameter is woT. If, however, we intend (as in Section 3.6.1) to apply 
stationary phase to the K and/or the X 0 integral, then the large parameter 
is 2KL, which is analogous to the factor of 21rL/A seen in the discussion 
in the previous section. 

Note from the derivation of this inversion formula, however, that the 
choices w0T and 2K L are not independent in the applications in the text. 
The frequency and wavenumber in the original variables are tied by the 
dispersion relation (3.3.14), 

w = cJ kr + k§ + k~ 
or 

Wo n = sgn ( K 3) I Kr + Ki + K§. 
cK V 

We want the dimensionless frequency fl and the dimensionless wavenum­
ber K to be of comparable size. Thus, the dimensionless frequency and 
wavenumber are tied to one another through the dimensionless scale w0 / cK, 
which must characterize the ratio of the dimensional variables w, c, and k 
in the original problem. 

There is a further aspect of scaling that we must address in the method 
of stationary phase. Consider the case of a dimensionless amplitude, f(X), 
and a dimensionless phase, wT<I>(X), with <I> dimensionless. Recall that the 
first term in the asymptotic expansion is proportional to 

f(X) -r==1== 

lwr~~~~ 
While we have not derived the correction terms in the text, suffice it to say 
that they are made up of higher derivatives off and <I>. In particular, one 
of the correction terms at next order has the form 

Here, we have neglected unimportant constants for this discussion. 
Suppose that L1 is the length scale of <I> and L2 is the length scale of f. 

Then, if x = L1X, 
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Here, in the last line, we have written the second derivative of f with the 
scale L~. By the assumption that L2 is the proper length scale of this 
function, that product is comparable in size to f itself, which appears in 
the leading-order term of the asymptotic expansion. We have done this at 
the cost of an extra multiplier, LI/ L~. 

Suppose, then, that we were to use our asymptotic criterion with L = L1 : 

If Li/ L~ -:::; 1, then the amplitude of this term would be comparable to the 
amplitude of the first term, except for the bounding factor, 1/;r, resulting 
from our assumption. On the other hand, if LI/ L§ > 1, then the growth 
of the amplitude factor might lead to this term not having sufficient decay 
compared to the first term. Of course, subsequent terms would have even 
larger powers of this offending ratio. 

How do we get out of this dilemma? Let us consider setting x = L 2X. 
Then, 

cl~L~d2j~x) 1 . 

dx I L§wT ~:11 
With this choice, the second derivative of f has the "right" scale to make 
it comparable to f itself. To insure that our asymptotic expansion yield a 
result of sufficient numerical accuracy, we simply require that 

That is, when there are two or more natural length scales in a particular 
application of the method of stationary phase, we should always choose the 
smaller (smallest!) length scale when setting our criterion. This insures the 
asymptotic expansion will yield a formula that will have sufficient numerical 
accuracy. Note that the additional factors on the right side, beyond wT, 
have to do with utility of the stationary phase formula. If wT were not 
large, the method of stationary phase might still be valid, say, in the far 
field, where the magnitude of L might compensate for the magnitudes of 
the other quantities here, so that this inequality is satisfied. That is, there 
is some interchange of physical characterizations possible, such as far field 
as an alternative to high frequency. In this case, we would think of the 
characterization "many wavelengths" as arising from range considerations 
as opposed to frequency considerations. 
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Finally, we would caution the reader that not all length scales of the 
stationary phase analysis are apparent in the integral. Some arise from the 
actual calculations of the elements of the stationary phase formula, most 
specifically, from the second derivative, in one dimension, or the Hessian 
determinant of the matrix of second derivatives, in higher dimensions. In 
particular, in the example of Section 4.4.2, we saw that the Hessian was a 
function of the radii of curvature of the surface over which the integration 
was carried out. Thus, these are additional length scales that must satisfy 
our asymptotic criterion. More subtly, the radii of curvature of the isochrons 
of the phase arise in some applications as well. Therefore, it is necessary 
to search for the smallest length scale in the final asymptotic formula and 
not in the integrand itself. 



Appendix D 
An Example of 111-Posedness 

In the text, we have discussed the concept of ill-posedness of inverse 
problems. As defined by the French mathematician Jacques Hadamard 
[1865-1963) a problem is said to be well-posed when a solution exists, is 
unique, and depends continuously on the initial data. On the other hand, a 
problem is said to be ill-posed if it fails to satisfy at least one of these cri­
teria. (See Hadamard [1923). Remember also that we use the word "data" 
in the mathematicians' sense of "known values," rather than the geophysi­
cists' sense of "field measurements.") Historically, many mathematicians 
have viewed this distinction of problems as equating "well-posed" with 
"solvable," and "ill-posed" with "intractable." 

While it is certain that problems having no solution are, indeed, in­
tractable, the same cannot be said of problems with nonunique solutions, 
or those having solutions that depend discontinuously on the data. We of­
ten deal with problems having a family of solutions, meaning that there 
is no single unique solution. We choose between the possible solutions by 
constraining the "acceptable output" through comparison with auxiliary 
data or through a statistical treatment. In seismic applications, the back­
ground wavespeed profile is a necessary piece of information for imaging 
the subsurface, but it is also the unknown quantity that we are attempting 
to find. We constrain the acceptable range of possible wavespeed profiles 
with borehole measurements or, at least, with the "stacking velocities" ob­
tained from seismic velocity analysis, or some other estimate of reasonable 
wavespeeds. 

For problems with solutions that do not depend continuously on the 
initial data, we associate a more familiar term with ill-posedness. This is 
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instability. In the remainder of this appendix, we discuss one example of 
a problem resembling our seismic inverse problem, by considering it from 
the standpoint of ill-posedness as instability. 

D .1 Ill-posedness in Inversion 

In several places in the text, we characterize our solution process for the 
inverse-scattering imaging problem as the reverse propagation of data from 
positions on the recording surface, back into the interior of the domain of 
interest. The intent is that the final position of the most singular part of 
the downward-propagated data has its peak values on the reflectors in the 
subsurface. We have shown in Section 3.8 that, at least for the constant­
background zero-offset case, there is a close relationship between inversion 
represented as back-propagation, and a solution of the wave equation with 
data prescribed on the recording surface, which for this example is z = 
X3 = 0. We saw in Section 3.8 that this was asymptotically true to two 
orders in w. Here, we start with the wave equation with data prescribed on 
the surface x 3 = 0. Our objective is to expose the inherent instability in 
the solution of this problem. 

To begin, let us suppose that U(x, t) is a solution of the wave equation 

a2u a2u a2u 1 a2u 
dx2 + dx2 + dx2 - c2 at2 = O, 

1 2 3 
(D.l.l) 

for x3 > 0 (positive downward), with the observed data for U being its 
value at x3 = 0, say U(x 1 , x2 , 0, t), and zero initial conditions, 

U= au =O at ' t = 0. 

We begin by introducing the cascade of the forward transverse spatial 
Fourier transform and the forward temporal Fourier transform of U, given 
by 

Then u is a solution of the following Helmholtz-like equation: 

~:i + [ ~: - ki - k~] u = 0, (D.1.2) 

with the Fourier transform of the data on the surface given by 

u(k1,k2,0,w) = J dk1 dk2 dw U(x11 x2,0,t)ei{-k1 x 1 -k2 x 2 +wt} 

=:=A(k1,k2,w). (D.1.3) 
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Equation (D.l.2) is a second-order ODE in the variable x3. If we consider 
the data represented in the Fourier-transformed form of equation (D.l.3), as 
subjecting this equation to a single boundary condition, we recognize that 
(D.1.3) has nonunique solutions, which is the first evidence of ill-posedness. 
These solutions consist of the family of all linear combinations of the two 
solutions, 

(D.1.4) 

The problem reveals itself when we define the k3 via the expressions 

k3 = J w2 I c2 - k~ - k~, w2 I c2 > k~ + k~, 

k3 = iVk~ + k~- w2 lc2 , w2 lc2 < k~ + k~, (D.1.5) 

with the square roots on the right side understood to be positive. When 
the inequality in the first line of (D.1.5) is satisfied, the solutions in (D.1.4) 
are both oscillatory and bounded for all choices of the spatial variables. 
When the inequality in the second line of this equation is satisfied, then 
one solution, with the negative sign, grows exponentially with increasing x 3 , 

while the other, with positive sign, decays exponentially with increasing x 3 . 

At the boundary between these two regions, k3 vanishes, and the solutions 
are bounded, but are not oscillatory in x3. 

With the value of u at X3 = 0, only, we do not have enough information to 
choose between the two solutions represented by the± choice in (D.1.4). At 
best we know only that we can take any linear combination with coefficients 
that sum to unity. This should elicit concern in light of our observation that 
one of the two solutions grows exponentially, which is to say, is unstable, 
when w2 lc2 < k~ + k~. 

We would be happy if we had only the solution that decays (the stable 
solution). Can we be sure that this is the case? In fact, on physical grounds, 
the answer is, emphatically, No! Recall that we are assuming that we have 
observed a wave that has propagated up to us, through decreasing values 
of x3; (recall that the values of x3 increase downward in our problem). It 
is reasonable to expect that this solution was attenuating-exponentially 
decaying-in the direction of propagation, based on the principle of conser­
vation of energy. If we were to reproduce this wave from the surface data, 
then, of necessity, that solution would have to grow exponentially in the 
reverse direction-which is the direction we propose to back-propagate the 
data. Thus, the inversion process we describe clearly has an identifiable 
instability associated with the choice of exponent sign. It would seem that 
we cannot avoid this bad choice. 

Suppose that the data we observe did not contain any energy in this 
problematic part of the spectrum; then we would not see the instability. 
Unfortunately, in any practical numerical solution, this part of the spectrum 
would come back to haunt us anyway through numerical noise. To see why, 
consider a specific choice of A in (D.1.3), 
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E 

A(k1,k2,w) = 1 + kr + k§' (D.l.6) 

and consider this solution for small values of E. The value of u at the surface 
in (D.1.3) can be made as small as we like, simply by taking this number 
small enough. Furthermore, the same is true of its first derivative with 
respect to x 3 at x 3 = 0 (which is the missing piece of data required to make 
the solution to the wave equation unique). As noted earlier, for fixed wand 
kf + k~ large enough, the solution (D.1.4) is characterized by exponential­
as opposed to oscillatory-behavior in x 3 . In particular, for the lower sign in 
the second half of (D.l.5), the solution grows exponentially as x 3 increases. 
This exponential behavior causes the solution to grow beyond all bounds 
with increasing x3 , no matter how small the amplitude of the original data 
at X3 = 0, which is to say, no matter how small we take E. 

So, how does noise enter the problem? Assume that we have a discrete 
process for propagating the data back into the Earth. Then there will be 
characteristic sampling intervals in space and time, say ~x1 , ~x2 , ~t. 

Associated with these sampling intervals will be maximum wave numbers 
and a maximum frequency of the observed data, the Nyquist wavenumbers 
and frequency, k1max = 7r I ~Xl , k2max = 7r I ~x2, and Wmax = 7r I ~t. 
Inevitably, numerical noise will infiltrate the computation of the solution 
of this problem at all wavenumbers and frequencies up to their maxima. 
Thus, if some part of the spectrum of the noise in the data satisfies the 
lower inequality in (D.1.5), then this noise will be treated as "small-valued 
signal," which will grow exponentially with increasing depth; that is, this 
noise in the undesirable part of the spectrum will produce a large inaccuracy 
in the computed solution at depth. 

In summary, we have a problem in which the solution exists, and which we 
could make the solution unique by prescribing 8ul8x3 at x3 = 0, 1 but the 
solution does not depend continuously on the data; small data amplitude 
can produce a large contribution-arbitrarily large-at sufficient depth, 
because of the exponential growth with increasing x 3 . As discussed in the 
introduction to this appendix, such problems are ill-posed in the sense of 
Hadamard, meaning that our inverse problem is ill-posed. 

Stable solutions to such problems can only be obtained by finding a way 
to assure that these exponentially growing contributions do not infiltrate 
our solution process. We do this by avoiding the "bad part" of the spectrum 
in our integral processing. In doing so, we must acknowledge that some in­
formation may also be lost, if the "true" solution contained data in this part 
of the spectrum. This regularized solution, therefore, is the best solution 
we can hope for in this situation. Fortunately, as can be seen in text, our 
regularized solutions provide us a great deal of useful information about 

1The choice oujoxg = -ikgu(xl, X2, 0, t, k1, k2, w) at X3 = 0, will produce only 
exponentially growing solutions at depth. 
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the subsurface. The key here is that our inversion is a Fourier synthesis. 
That synthesis requires only real values of the wavevector, which is exactly 
what our regularized solution provides. Of course, this rationalization fails, 
if we consider a modified wave equation that accounts for attenuation; in 
filtering out the imaginary values of k3, we lose all hope of inverting for 
attenuation effects. 

We have still not addressed the question of uniqueness in the range of 
real values of the wave-vector. The solution that we have chosen assumes 
that all of the scattered field is upward propagating; that is, it arrives at 
the receivers from below. In this case, in the Fourier domain, the normal 
derivative is related to the observed data themselves by multiplication by 
-isgn(w)k3, with k3 defined by (D.1.5). In fact, in ocean environments, 
multiple reflections arrive at the receivers from above. For our inversion 
formalism, those arrivals produce "ghost images." The elimination of mul­
tiples, both these ocean surface multiples and internal multiples, is beyond 
the scope of this book. 

The example presented here is a minor variation on one that is standardly 
used in partial differential equations courses to show that Cauchy problems 
(which is to say, "initial value" problems) for elliptic equations-and cer­
tain Cauchy problems for hyperbolic equations-can be ill-posed. A Cauchy 
problem for a second-order partial differential equation is one in which the 
unknown, u, and its normal derivative 8u/ 8n are prescribed on some sur­
face (or hypersurface in higher dimensions, such as in our four-dimensional 
problem-three space, one time). The wave equation is a hyperbolic par­
tial differential equation. If the hypersurface where Cauchy data are given 
is t = 0, then the problem for the wave equation is well-posed and the 
solutions depend continuously on the data. If, on the other hand, the hy­
persurface is x3 = 0, then, as we have demonstrated with the example in 
this appendix, the Cauchy problem is ill-posed. An interested reader can 
read more about these ideas in texts on the theory of partial differential 
equations, such as John [1982] or Garabedian [1964]. 



Appendix E 
An Elementary Introduction to Ray 
Theory and the Kirchhoff 
Approximation 

In Chapters 5 and 6, we make use of certain ray-theoretic results to approx­
imate Green's functions and to simplify computations involving Beylkin 
determinants. This is different from the usual geophysical role of ray theory 
as a computational method for generating synthetic seismic data. 

Though we cannot do justice to the broader issues of ray theory in this 
appendix, we can draw a rough sketch of the mathematical justification of 
the subject. Indeed, the mathematical basis of ray theory is often poorly 
treated in geophysical literature, as authors focus on practical issues of 
computation or concentrate on more theoretical issues related to the sub­
ject, assuming that the more elementary aspects are already known to the 
reader. Hence, many ray-theoretic technical papers begin with the set of 
first-order ordinary differential equations, known as the ray equations, with­
out ever telling the reader the origin of these formulas. (We refer the reader 
to the text of Kravtsov and Orlov [1990] for a comprehensive overview of 
ray theory.) 

Such treatments may be leave readers puzzled regarding the validity of 
the general ideas of ray theory. This confusion is often exhibited in the 
attitude that the ray representation is either an obvious consequence of 
geometry, and is therefore somehow "exact," or the reverse, that ray tech­
niques are based on ad hoc arguments, and are therefore to be mistrusted. 
Another prevalent attitude is that all of the technical issues of ray theory 
have been solved long ago, and that raytracing has no new research prob­
lems to offer. While the latter issue is far from true, addressing it is beyond 
the scope of this appendix; we hope to shed some light on the first two 
issues. 
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E.l The Eikonal and Transport Equations 

For our purposes, ray theory is that collection of mathematical results ob­
tained by solving the eikonal and transport equations. To use ray-theoretic 
representations, therefore, implies that we are primarily interested in mod­
eling waves only in the high-frequency regime-the regime where the 
eikonal and transport equations are valid. From Chapter 3, we have seen 
that the eikonal and transport equations may be obtained by substituting 
the WKBJ trial solution (also known as the De bye series), 

Loo A ·(x) 
u(x w) r-v wf3eiwr(m) - 3 -. 

' . (iw)J ' 
J=O 

(E.l.l) 

into the homogeneous (zero forcing function) form of the Helmholtz 
equation, 

£u= [V'2 + c~:)]u(x,w)=O. 
In equation (E.l.l), T(x) is traveltime and the Aj's are the frequency­
independent parameters representing wave amplitude that we must solve 
for in order to construct the asymptotic solution. 

The motivations for choosing this form of solution are many. In lD, 
where the Laplacian is replaced by a single second derivative, the Helmholtz 
equation is an ordinary differential equation. It can be shown rigorously 
that linearly independent solutions of the lD Helmholtz equation can be 
written in the asymptotic form prescribed by the lD form of (E.l.l) as 
lwl ---> oo. 1 Second, there are many cases where the known exact solutions to 
the higher-dimensional form of the Helmholtz equation have the asymptotic 
form of (E.l.l). 

Third, on physical grounds, (E.l.l) also makes a sense from our 
experience with simple wave propagation. The inverse Fourier transform, 

wf3eiwr(m)---> F(t- T(x)), 

represents a progressing wave in which the function F(t)-the inverse trans­
form of wf3-propagates in the direction of increasing T(x). Division by 
increasing powers of iw represents successive integrations in the time do­
main that may be interpreted as progressively smoother counterparts of F 
[Lewis, 1965]. Thus, the inverse transform of the first term in (E.l.l) 
represents the sharpest part or "most singular part" of the solution­
something we might associate with high frequency-while the later terms 

1 In complex function theory, the "point at infinity" in w is an essential singu­
larity of the solution as a function of w. Further, the type of essential singularity 
is one for which the structure of the solution is of the form (E.l.l) when there is 
only one independent variable. 
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represent progressively smoother-lower-frequency-contributions to the 
solution. Thus, this structure represents the general notion of what we 
mean by "high-frequency" approximation. 

Further, the factor of wf3 may be necessary to balance powers of w that 
may occur in source or other initial data of a specific problem for which 
the inhomogeneous form of the Helmholtz equation is used. (Actually, in 
some applications, multipliers involving sgn (w) appear as well.) Finally, 
we could have as a multiplier any function F(w), leading to the inverse 
transform, F(t- r(x )). Of course, we are most interested in such functions 
for which the bandwidth-the range in w where F(w) is substantially dif­
ferent from zero-qualifies as high-frequency for the length scales and time 
scales of the underlying problem. Still, the subsequent terms of the asymp­
totic series lead to progressively higher iterated integrals of F(t- r(x)), 
meaning progressively smoother terms in the propagating wavefield being 
represented. 

Given these motivations, we will apply the technique. The first step 
is to substitute this trial solution with unknown coefficients into the 
Helmholtz equation to derive differential equations for the traveltime and 
the coefficients in the representation (E.1.1). 2 

Here, from all that we have stated, we do not expect the final solution 
to yield a convergent series. Rather, we expect the form of the result to be 
an asymptotic series, with only the first one or two terms actually being 
relevant. 3 

To continue with the derivation, we substitute the trial series solution 
into the Helmholtz equation to obtain the following series: 

2We want to be clear that we are not talking about the classical method of 
Probenius, which may be familiar to the reader from his or her experience with 
the theory of ordinary differential equations (ODEs). In the method ofFrobenius, 
the trial solution consists of series of positive powers of the dependent variable of 
the ODE being solved. The result of such a solution is a convergent series solution 
to the ODE. That method works when the differential equation has a so-called 
singularity of the first kind. For ODEs, solutions similar to (E.1.1), but as series 
in the independent variable, can also occur. Such solutions arise, however, when 
the differential equation has a singularity of the second kind. Both for the ODEs 
and for the problem here, the method does not, in general, yield a convergent 
series; it yields asymptotic series. 

3Students often learn that only convergent series are "good," whereas diver­
gent series are "bad." Furthermore, there is a prevalent idea that more terms will 
give a better representation of a function via a series expansion. For asymptotic 
series, both of these ideas are generally incorrect. Asymptotic series are often bet­
ter representations than exact series results because there is no guarantee that a 
convergent representation will converge rapidly. By design, asymptotic represen­
tations are forced to have initial terms that start out closer to the values of the 
function they represent. For a discussion of this and other aspects of asymptotic 
series, see Erdelyi [1956], Bleistein and Handelsman [1986], Bleistein [1984]; for 
a numerical example, see Stockwell [1995a]. 
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£u ~ J'e"'' ~ (~); [w' { :, - ('h) 2 } A; (E.1.2) 

+ iw { 2~h · Y' Aj + Aj V'2T} + Y'2 Aj] . 

In general, the terms of different powers of w cannot be assumed to can­
cel each other. This means that the coefficients of the series must vanish 
independently. Thus, we will equate the coefficient of each power of w sep­
arately equal to zero, starting with the highest power, which is {3 + 2. This 
power arises only in the first series in (E.l.2) and only for j = 0; setting 
its coefficient equal to zero yields the "eikonal" equation 

2 1 
(Y'T(a:)) - c2(:z:) = 0. 

Note that we have not made the alternative choice, Ao = 0; we assume that 
the series in (E.1.1) starts with a first nonzero term. Note also that, with 
this choice, the entire first series in (E.l.2) is zero and we can focus our 
attention on the remaining two series. For the middle series, the highest 
nonvanishing power of w is {3 + 1, which arises, again, from the term for 
which j = 0. Note that the third series starts with a smaller power of w, 
which here is {3. Setting the coefficient of this now-highest power of w equal 
to zero yields the (first) "transport" equation 

2Y'T(a:) · Y' Ao(a:) + Ao Y'2T(a:) = 0. 

It is the solution of these two equations that will be discussed in the ma­
jority of this appendix. After solving these two equations, we can construct 
the solutions to all other Aj, recursively. We will briefly discuss those 
higher-order transport equations at the end of the appendix. 

E.2 Solving the Eikonal Equation by the Method 
of Characteristics 

To attempt a direct solution of the eikonal equation for T(a:) is not feasible 
in more than one dimension because, in general, the equation is nonlinear 
in this variable and its derivatives; indeed, for variable wavespeed c( a:) the 
eikonal equation is nonlinear in the derivatives. We derive here a somewhat 
indirect technique called the "method of characteristics" to find its solution. 

In general, we are interested in solving an equation of the form, 
F(x, y, z, u, Ux, uy, Uz) = 0. Here, the x, y, and z are the spatial variables, 
and u, Ux, uy, and Uz are the solution and its respective partial derivatives 
with respect to x, y, and z. The u corresponds to the T in the eikonal 
equation, and the Ux, Uy, Uz correspond to the components of the gradient 
ofT. We can look at the statement 
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F(x, y, z, u, Ux, Uy, Uz) = 0 

as describing a function in a seven-dimensional space. We can also look at 
this as being a function that defines a family of level surfaces in x, y, z­
space, one surface for each given constant value of u. The gradient of u 
describes vectors pointing normal to these level surfaces. For the eikonal 
equation, the level surfaces are the surfaces of equal traveltime ( wavefronts), 
with the gradient of u (the ray direction) pointing normal to the traveltime 
surfaces. Here, we will derive a system of ordinary differential equations 
that tells us how to move from one level surface of u to another. The 
solutions for the spatial coordinates will describe curves in the physical 
space. In general, those curves are called characteristics; hence the name, 
"method of characteristics." 4 The solutions for the components of the gra­
dient will tell us how that vector changes along each of the curves, while the 
solution for u itself tells us how the unknown u changes along the character­
istics. We will find that it is most convenient to describe the characteristics 
in terms of an auxiliary set of variables-two to label each characteristic 
curve and a third that will act as a "running variable" -such as arclength 
or time--along each characteristic. 

Using a slightly more compact notation, we can write the spatial variables 
as x = X1, y = x2 , and z = x3 , respectively, and the components of the 
gradient of u as 

respectively. To emphasize that we view these quantities as new variables, 
we write the general expression for F as 

(E.2.1) 

We certainly do not have, in hand, a technique for solving general nonlin­
ear partial differential equations of this stated form. Accordingly, our first 
objective will be to rewrite (E.2.1) in a form that we know we can solve--a 
system of linear, first-order ordinary differential equations. The equation 
F = 0 can be thought of as describing a surface (really a hypersurface) 
embedded in a seven-dimensional space. 

Our first step to reveal the structure of the system of the seven linear 
ODEs will be to see what happens when we move a small distance along 
the hypersurface described by F = 0. That is to say, we will move from a 
point x to another point, x + 8x. Of course, when we do this, both u and 
p change as well, but it is still true that 

4 A common source of confusion in terminology may result here. The curves in 
the full seven-dimensional space, which together compose the surface F = 0, are 
often also called "characteristics," but are more properly called bichamcteristics. 
The term Lagrangian manifold is often used for the surface F = 0 for the class 
of problems that includes all raytracing applications. 
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F(x+8x,u+8u,p+8p) = 0 

because we have not left the solution surface, even though we have per­
turbed the coordinates. Because F = 0 at the unperturbed point, we have, 
to linear order in the perturbations, that 

F(x + 8x, u + 8u,p + 8p)- F(x, u + 8u,p) (E.2.2) 

3 aF aF 3 aF 
= L 7)":8xi + 88u + L 7)":8p1 = 0. 

i=l x, u j=l PJ 

In the last expression, the partial derivatives of F are evaluated at the 
unperturbed point, (x,u,p). 

Ultimately, u, and therefore, p depends on x. Hence, we can write the 
perturbations of these quantities in terms of the perturbation in x, through 

and 

38 3 82 38 L Pj L u L Pi 8pj = -a 8xi = a a 8xi = -a 8xi, j = 1,2,3. 
x· x· x· x· 

i=l • i=l • J i=l J 

In the second line above, we have used the definition of Pj as a derivative 
of u; in the third line, we have effectively interchanged the orders of differ­
entiation with respect to Xi and x1 in order to write a result in terms of 

Pi· 
We now substitute these results into (E.2.2) to obtain the result 

t [F._+ F,p, + t,Fv,P<., ]8x, ~ 0. (E.2.3) 

In this equation, we have adopted the subscript notation for partial 
derivatives, 

aF 
Fx· = -8 . 

' Xi 

We remark here that the 8xi's (E.2.3) are actually independent. For any 
choice of these variables, the sum over i has to produce zero for u and p 
to be the elements of a solution to (E.2.1). In particular, we could take 
8x = (dxt, 0, 0) or = (0, dx2 , 0) or = (0, 0, dx3 ), and the equation would 
be satisfied. Because the multipliers of these three differentials are all inde­
pendent of the differentials, the equation is satisfied only if the multipliers 
are each separately equal to zero. That is, we must have 

3 

Fx, + FuPi + L FpiPi.,i = 0, 
j=l 

i = 1,2,3, 
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which we rewrite as 
3 

L FpjPixj = - [FXi + FuPi] ' 
j=l 

i = 1, 2, 3. (E.2.4) 

The left side of all three of these equations is of the identical form, 
V' pF · V' rePi. The reader may recognize this as the structure of a direc­
tional derivative, with differentiation taken in a direction in x, identified 
with the vector, V' pF. While these equations are nonlinear in p, they are 
linear in these first derivatives. Such equations are called quasi-linear and 
have a standard method of solution, which the reader may find in textbooks 
on partial differential equations, such as Garabedian, [1964], John, [1982], 
or Bleistein [1984]. This is the method that we discuss here. 

Let us introduce a differential vector dxjda and then define the direction 
of this vector by setting 

(E.2.5) 

Here, the scale factor >. characterizes the relative lengths of the vector 
dx / da and the vector V' pF. It also provides us a mechanism for choosing 
da as some appropriate multiple between a and the differential arclength 
ds = Jdxi + dx~ + dx~. We use this equation in (E.2.4) to rewrite that 
equation as 

1 dx 1 dp 
V' pF . V' reP = >... da . V' reP = >... da . 

Finally, (E.2.4) becomes 

dp 
da = ->. [V' reF+ Fup]. (E.2.6) 

Equations (E.2.5) and (E.2.6) are actually six equations. The first three 
define a direction in space, and a rate of change of x in that direction 
(modulo the choice of>.) and the last three equations tell us about the rate 
of change of p in that direction. Thus, we can think of the physical space 
as being filled with a field of tangent vectors, which in turn describe curves 
as streamlines of those tangent vectors. Those curves are the characteris­
tic curves or characteristics of this method, the method of characteristics. 
Then, at each point on a characteristic curve, the vector p defines a normal 
direction to a level surface of u. If we attach a differential tangential plate 
to each of these normals, then we essentially construct the level surfaces 
of u from these tangent plates. However, the function F might depend on 
u as well, and we do not yet know how to determine these values at each 
point on the characteristic; thus, we cannot totally define the characteristic 
curves and the differential tangent plates until we know we have a means 
of determining u itself on those characteristics. 

To complete the story, then, we need an equation for the rate of change 
of u along the characteristics. We obtain this equation as follows. We set 
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du ~au dxj ~ 
da = L....t ax · da = A L....t Pi FPi = p . A \7 pF. 

j=l J j=l 

(E.2.7) 

The first equality here is simply a chain rule description of the derivative 
in the characteristic direction; the second equality uses the definitions of 
the partial derivatives and (E.2.5); the third merely expresses the result in 
vector form to parallel the discussion above. 

It is useful now to write out all of the ordinary differential equations we 
have derived, explicitly. They are 

du 3 

da = A 2:>JFPr 
j=l 

(E.2.8) 

We can think of a, in calculus terms, as a dummy variable of integration. 
In physical terms, a is a running parameter along the characteristic curve, 
which, in our application of describing ray theory for the Helmholtz equa­
tion, will be a ray. The appropriate problem for this system of equations is 
an initial value problem, in which all of the variables are defined for some 
value of a. We may consider integrating this coupled system of equations 
to find the values of (x1.x2,x3,u,pbp2,P3) in terms of a, modulo those 
initial values. As it is not our purpose here to develop the general theory of 
the method of characteristics, we will postpone the determination of those 
initial values to the discussion of the specialization to the eikonal equation. 

E.2.1 Characteristic Equations for the Eikonal Equation 

Returning to the eikonal equation 

2 1 
(Vr(x)) - c2(x) = 0, 

we can identify r with u, and the components of Vr with Pi· Note, how­
ever, that r does not explicitly appear in this equation, meaning that all 
derivatives with respect to u = r, represented by the Fu in the characteris­
tic equations (E.2.8) above, will be zero. Thus, the special case of applying 
the method of characteristics to the eikonal equation is considerably sim­
pler than the general problem. We can define the magnitude of the p vector 
asp= iPi = IVrl = 1/c, and then rewrite the eikonal equation as 

(E.2.9) 
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We note, again, that there is no explicit dependence on r itself in this 
equation. The characteristic equations become 

dx1 
da = 2.Apl, 

dx2 
da = 2>.p2, 

dx3 
da = 2>.p3, 

3 
dr _ , ""' 2 2 _ 2>. 

- 1\ L....., Pj- 2 · 
da j=l c (x1, x2, x3) 

(E.2.10) 

These are the general form of the ray equations. These are seven equations 
in eight unknowns, if we include >. as an unknown, each given as a function 
of the parameter a. Thus, we have to either find another equation or elimi­
nate one of the unknowns, to make the number of equations and unknowns 
equal, permitting the system to be solved. However, as noted above, >. plays 
a special role, allowing us a normalization between the Cartesian variables 
of the original problem and the running parameter a. Thus, >. is at our 
disposal; we will discuss various options in the following sections. 

Unless we make>. a function of r, the first six equations are independent 
of T and form a closed system of equations for the six variables of x and 
p. Thus, for the eikonal equation, we can solve for the rays without ever 
determining the traveltime along the rays. For example, we could find all 
the rays normal to a reflector, essentially depicting the specular travel paths 
for zero-offset seismic surveys. We leave as an exercise for the reader to try 
this with the example of Figure 1.1, where the rays are straight lines. The 
region corresponding to the "bow tie" in the time plot will be seen to 
correspond to a region in the ray plot where more than one ray arrives at 
each point of the upper surface. Further, the cusps of the bow tie will be 
seen to correspond to points where an envelope of the rays cuts the upper 
surface. 

As we will see below, studies of ray plots also help us to predict amplitude 
variations on a qualitative basis. 

E.2.2 Choosing>.=~: a as the Running Parameter 

A more compact form of the characteristic equations can be written using 
vector notation and assuming that >. = 1/2. This choice is motivated by a 
desire to eliminate the factor of 2 appearing in several of the equations in 
(E.2.10). The result is 

dx dp _ 1 V' ( 1 ) _ V' c( x) 
da = p, da - 2 c2(x) -- c3(x) ' 

dr 1 
c2(x). (E.2.11) da 
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This is the form of the ray equations as they appear in Chapters 5 and 6. 
We can use our dimensional analysis of Appendix C to analyze the di­

mensions of rJ in this case. We leave it as an exercise for the reader to 
check that with this choice, >. = 1/2, rJ is a parameter with the units of 
Length2 /Time. 

This was the scaling of choice in Chapter 6. Although we are getting 
ahead of the story about amplitude determination, we point out here that 
for 2.5D in-plane wave propagation, this choice of rJ arose naturally as a 
parameter that describes out-of-plane behavior. 

E.2.3 Choosing).= c2 /2: T, Traveltime, as the Running 
Parameter 

For the choice>.= c2 (x)/2, the characteristic equations (E.2.10) take the 
form 

dx 2 
drJ = c (x)p, dp = c2 (x)V' (-1-) = _ V'c(x) 

drJ 2 c2 (x) c(x) ' 

The last equation here implies that rJ = T to within an additive constant. 
We may represent the ray equations in terms of traveltime as 

dp V'c(x) 
dT - c(x) · (E.2.12) 

Here, we have introduced the unit vector, c(x )p = p, in the first equation. 
This choice of ), may be better suited for numerical computations; at 

the very least, T is immediately known on each ray, as it is the running 
parameter, or independent variable, along the ray. 

E.2.4 Choosing).= c(x)/2: s, Arclength, as the Running 
Parameter 

In differential geometry, arclength s is often referred to as the "natural" 
parameter of geometrical systems [Kreyszig, 1991]. To trace rays with 
arclength as the running parameter, we choose >. = c( x) /2, yielding the 
form 

dx 
drJ =c(x)p, 

dT 1 

drJ c(x)' 

permitting us to replace rJ with s to write the ray equations with arclength 
as the running parameter; that is, 

dx ( ) , ds = c x p = p, 
dp V'c(x) 
ds - c2 (x) ' 

dT 
ds 

1 
c(x). (E.2.13) 

In this case, of course, the right side in the first vector equation is, indeed, 
just this unit vector, because 
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dx dx 
-·-=1. 
ds ds 

A nice qualitative insight into the way rays turn is readily derivable 
from this form of the ray equations in arclength variables. Recall that the 
curvature vector of a curve is given by 

d2 x 
K. = ds2 · 

Here, we can calculate that derivative from the first form of the equation 
for dx/ds, as follows. 

K. = dc(x) p + c(x) dp = V'c(x). dx p _ c(x) V'c(x) 
ds ds ds c2(x) 

= --1 {vc(x)- [vc(x) · dx] dx}. 
c(x) ds ds 

Here, we have used the ray equations themselves to move between p and 
dx/ds. The term in braces, { } is the part of the gradient of the wavespeed 
that is perpendicular to the ray, because the second term in the bracket re­
moves the tangential part of the gradient. Recall that the curvature points 
to the center of a circle that makes at least second-order contact (higher 
than tangential contact) with the curve itself; the length of the curvature 
vector is the reciprocal of the radius of that circle. Here, we see that the 
curvature vector points in the opposite direction of the gradient of the wave­
speed, which is to say, it points in the direction of decreasing wavespeed. 
Rays follow the circle of curvature; that is, they bend in the direction of 
the curvature vector. Hence, we conclude that rays tend to bend in the di­
rection of decreasing wavespeed and away from the direction of increasing 
wavespeed. 

We can think of refraction as an extreme case of this result, wherein 
the magnitude of the gradient has become infinite. Consider replacing that 
sharp discontinuity by a rapid but smooth transition zone. Then, when 
moving from a higher-velocity zone to a lower-velocity zone, rays will tend 
to bend towards the normal-away from the gradient of the velocity-while 
the opposite will be the case when rays move from a lower-velocity zone to 
a higher-velocity zone. That is, rays tend to focus when moving from higher 
velocity to lower velocity and defocus when moving from lower velocity to 
higher velocity. 

For water waves, in shallow water, the wavespeed is proportional to the 
squareroot of the depth of the water. Hence, rays bend in the shallower­
water direction. Consequently, even waves that start out obliquely to a 
beach in deep water, tend to line up so that their wavefronts, the waves 
that ultimately break, are more nearly parallel to the beach. 

In summary, now, for each of the choices of>. above we have reduced the 
eikonal equation to a system of first-order ordinary differential equations 
that may then be integrated by a variety of methods, depending on the 
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given problem and the desired degree of accuracy. For the discussions that 
follow, we will assume the form of the ray equations that result by taking 
A= 1/2, as in (E.2.11). 

E.3 Ray Amplitude Theory 

The solution of the eikonal equation yields information about only the 
traveltime behavior of the wavefield. The transport equation, 

2V'T(x) · V' A(x) + AV'2T(x) = 0, (E.3.1) 

(here we have written Ao as A) must be solved, if amplitudes are desired. 
We can simplify the transport equation by multiplying by an additional 
factor of A. The result can be recognized as an exact divergence via 

(E.3.2) 

Invoking the divergence theorem, we can write that, for any volume D 
bounded by the surface 8D, 

{ V'. (A2V'T(x))dV = { A2V'T(x) · n dS = 0. 
lD laD 

Here, n is an outward-pointing unit normal to the boundary 8D. If we 
choose the volume D to be a tube composed of rays on the sides, with end 
caps consisting of surfaces of constant a, we may then write 

{ A2V'T(x) · n dS = { A2V'T · n dS 
laD lsides 

+ { A2V'T(x) · ti2 dS2 (E.3.3) 
lr:.(u2) 

- { A2V'T(x) · ti1 dS1 = 0. 
lr:.(ur) 

In this equation, we have defined the ti1-direction to point interior to D 
on the ~(a1 ) end cap and have similarly defined the ti2-direction to point 
exterior to D on the ~(a2) end cap. With this choice, both unit vectors 
make acute angles with the rays in the tube for small enough ray tube 
cross-section. Because the divergence theorem that we use here requires an 
outward-pointing normal direction, we have adjusted the last expression to 
account for this by introducing a minus sign. 

Now, the integral over the sides of the ray tube vanishes; the sides are 
parallel to the V'"T = p direction, which is the direction tangent to the 
raypaths that make up the sides. Hence, n is orthogonal to p on the sides 
and the integrand over that part of the ray tube is equal to zero. This leaves 
only the integrals over the end caps to be considered 
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FIGURE E.l. Schematic of a ray tube. The sides of the tube are made of rays, 
while the end caps are surfaces of constant 0'. The end caps, designated E(O'I) 
and E(0'2), have unit normal vectors th and fT2, respectively. The coordinates ')'1 

and ')'2, which parameterize the end caps, serve to label each ray, being constants 
on each ray. The coordinate 0' is a running parameter along each ray. Note that 
the vectors p(O'l) and p(0'2) also point perpendicular to the respective surfaces 
of constant 0'. 

{ A2p · cf2 dS2 - { A2p · cf1 dS1 = 0, 
Jr:.h) Jr:.(ul) 

(E.3.4) 

where we have rewritten \IT as p. 
Let us now introduce coordinates 11, 12 , to parameterize the surface 

E(O"l), as in Figure E.l. Because each ray passes through a point of this 
surface, the rays may be distinguished by these parameters as well; that is, 
the rays are described by 

X= X(0',/1,/2), 

with the rays at 0' = 0'1 being on the surface E(0"1). In fact, given the range 
of values (1'1,'/'2)-call it r(1'1,/2)----on E(0"1), the same set of values fills 
out the domain D as 0' varies from a 1 to a2. Therefore, we can use the same 
parameters, /1,/2 in the range r('Yb/2) to describe the surface E(a2) if 
only we evaluate x = x(a2, /1, /2)· 

Explicitly rewriting (E.3.4) in terms of the new coordinate system 
(a, 11, /2) yields 

A p·u2 - x- d11d/2 1 2 .lax axl 
r{f'l .'Y2) a/1 a/2 'f:.(u2) 

1 2 • I ax ax I - A p . (1'1 - X - d')'1 d/2 = 0. 
r("Yl.'Y2) 811 8')'2 E(u1) 
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The vector cross products here are normal to the integration surfaces. Fur­
thermore, dxjda = p also points in the normal direction, 8-1 or 8-2, as the 
case may be. Thus, the vector cross product and the scalar dot product in 
this last result can be combined to yield 

1 2 lax ax ax I A (a2) a. a X a (a2)d')'1d/'2 
r(1'1 >'Y2) a /'1 /'2 

(E.3.5) 

1 2 lax ax ax I - A (a1) a . a X a (al)d')'1d/'2 = 0. 
r('"Yuy2) a /'1 /'2 

The triple scalar product that appears in each of these integrals is the (3D, 
in this case) ray Jacobian, 

hD(a) = [~: · :~ x :~](a). (E.3.6) 

Because the cross section r(/'1 , ')'2 ) is arbitrary, and can be taken as a 
differential cross section in (I'll /'2), we conclude that the integrands must 
be equal, pointwise. Therefore, we equate the integrands in (E.3.5) and 
write the general expression for the square of the amplitude A2(a) as 

A2( ) = A2( ) hD(ao) (E 3 7) a ao hD(a) . . . 

Here, we have rewritten a 1 as ao to represent an initial value of the run­
ning parameter a along the ray. The general value of this parameter is 
represented by replacing a2 with a, itself. 

The derivation in two dimensions is similar: 

A2( ) = A2( ) J2D(ao) 
a ao J2D(a) ' (E.3.8) 

with the exception being that we now have the 2D ray Jacobian 

J2D(a) = ~~= x :~I· 
Therefore, we will write 

A2( ) = A2( ) J(ao) 
a ao J(a) , (E.3.9) 

where the ray Jacobian is either J2D or J3D, depending on whether the 
problem is in two or three dimensions. 

E.3.1 The ODE Form of the Transport Equation 

It is possible to convert the transport equation (E.3.1) into an ODE with 
respect to a. This is most easily done for A 2 , rather than for A itself. A 
first form of this ODE may be obtained by rewriting the first term of the 
transport equation, using the equality 
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ax 
au= p = \JT 

from the first ray equation. By using this result in (E.3.1), we find that 

ax 2 2 
2A au . \7 A= -A (u)\7 T, 

which simplifies to 

(E.3.10) 

There is another way of constructing the derivative of A2 , however. We 
may differentiate (E.3.9) to obtain 

This expression may be rewritten as 

dA2 2 d [ 1 ] 1 2 ( ) d [ ( )] 
du = J(u)A (u) du J(u) =- J(u) A u du J u ' 

where we have used equation (E.3.9) to replace the A2(uo)J(uo) on the 
right-hand side above. Recognizing the logarithmic derivative of J in the 
rightmost expression here allows us to rewrite the transport equation as 

dA2 d 
du = -A2(u) du ln [J(u)]. (E.3.11) 

A comparison of equations (E.3.10) and (E.3.11) suggests the identity 

d 
du ln [J(u)] = \l2T. (E.3.12) 

To verify that this is true, we can either work in generalized coordinates 
on the right side to confirm that it equals the left side, or directly differen­
tiate the determinant on the left side to confirm that it is equal to the right 
side. We choose to do the latter. Because differentiation of determinants 
is a relatively lesser-known subject, we provide a derivation here, specifi­
cally for the 3D case. In the next two sections, we will apply the derived 
determinant-differentiation result to the left side of (E.3.12). 

E.3.2 Differentiation of a Determinant 

Consider a 3 x 3 determinant M, with elements, J.lij(u), that are all func­
tions of some independent variable, u, as indicated. For the purposes of 
this derivation, it is easiest to start from the general formula for the de­
terminant as a sum of all appropriately chosen products of three elements. 
That formula is 
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3 

M = L J.LliJ.L2jJ."3kEijk· 
i,j,k=l 

(E.3.13) 

In this equation, we have introduced the symbol Eijk, defined as follows: 

Eijk = { ~~: 
0, 

ijk = 123, 312, 231, 

ijk = 132, 213, 321, 

otherwise. 

That is, Eijk is equal to + 1 when ij k is a cycle permutation of the numbers 
1, 2, 3, is equal to -1 when ijk is an anticyclic permutation of 123, and is 
equal to 0 when two or more of the indices are the same. 

The reason this formula for the determinant is a good place to start 
is that we know how to differentiate a product. By the product rule, a 
function consisting of three factors will yield three terms, with only one 
factor being differentiated in each term. That is, 

dM ~ dJ.Lli ~ dJ.L2i 
da = ~ da J.L2jJ."3kEijk + ~ da J.L3kJ.L1iEijk 

i,j,k=l i,j,k=l 

(E.3.14) 

This result is a sum of three determinants ( n determinants, if we were 
considering then x n case). In each determinant, a column of the matrix 
[J.Lii] has been modified-it has been replaced by its derivative. 

Typically, the derivative formula is left in this form; however, we will 
need a slightly different version of this result that requires us to continue 
the analysis. Returning to the definition of Min (E.3.13), we observe that 
we can separate out any one of the sums to rewrite that result as 

3 3 3 

M= LJ.Llicof(J.Lli) = LJ.L2icof(J.L2j) = LJ.L3kcof(J.L3k), (E.3.15) 

where 

i=l j=l k=l 

3 3 

cof (J.LH) = L J.l,2jJ."3kEijk, 

j,k=l 

cof (J.L2j) = L J.LliJ.L3kEijk, 

i,k=l 
3 

cof (J.L3k) = L J.LliJ.L2jEijk· 

i,j=l 

We prefer to rewrite this result with all of the indices cyclically rotated, so 
that the index on the left is always i. That is, 

3 

cof (J.Lli) = L J.l,2jJ."3kEijk, 
j,k=l 

3 

cof (J.L2i) = L J.LlkJ.I,3jEijk, 

k,j=l 
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3 

cof (J.L3i) = L /.Llj/.L2kEijk· (E.3.16) 
j,k=l 

We use this result in (E.3.15) to obtain 

3 
dM ~ dJ.Lqi ( 
dO" = L..J dO" cof /.Lqi)· 

i,q=l 
(E.3.17) 

Now suppose that in the first line of (E.3.15) we were to replace /.Lli 

by /.L2i or /.L3i· In each case, we would be calculating the determinant of a 
different matrix, in fact, a matrix in which the first row was the same as 
the second row, or the first row was the same as the third row. We know 
that such matrices have determinant zero; that is, 

p= 1, 

p =F 1. 

Similarly, by using the other definitions of the determinant in (E.3.15), we 
can conclude that 

3 

L /.Lpi cof (J.Lqi) = M8pq, p, q = 1, 2, 3. 
i=l 

This is exactly the calculation to determine the elements of the product of 
two matrices, except for the fact that the summation here would seem to 
be performed on the column index in both factors. There is an easy way 
to fix that; we need only introduce the transpose of the matrix of elements 
of the right factor. To complete this small derivation, then, we set 

and observe that 

lliq = cof (J.Lqi)/M, i,p, q = 1, 2, 3, 

3 

L /.Lpilliq = Dpq, p, q = 1, 2, 3. 
i=l 

(E.3.18) 

(E.3.19) 

In words: the cofactors that appear in the formula (E.3.15) are the elements 
of the transpose of the inverse of the matrix with elements /.Lij multiplied 
by the original determinant M. 

By using (E.3.18) in (E.3.17), we can rewrite the derivative in terms of 
the elements of the inverse matrix, as follows. 

(E.3.20) 

Now, we have the tools we need to verify (E.3.12). 
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E.3.3 Verification of (E.3.12) 

Let us now return to the definition of hv in (E.3.6). We will take hv = M 
of the discussion above. In order to use an index notation as in the previous 
section, let us set 

We note that 

OXq 
/-lqi=~· 

U{i 

3 
'"""' OXq O(i = OXq = bqr, L.J ~ q,r = 1,2,3. 
. O(i OXr uXr 
t=l 

Here, the first equality is just a consequence of the chain rule and the second 
equality arises from the independence of the three Cartesian variables. The 
significance of this result is that it allows us to identify the elements of the 
inverse matrix, [viq] that we need, in order to use (E.3.20). In fact, 

O!i 
1/iq = OXq. 

Let us now substitute the results of this discussion into (E.3.20). The 
result is 

3 
1 dJ3D L [ f) OXq] O(i 

hv ~ = i,q=l 0{3 O(i oxq · 

Now, interchange the order of differentiation with respect to the in­
dependent variables, {i and 13 , in the first factor on the right to 
obtain 

Next, recall that 13 = O" and use the ray equations, again 

OXq dxq or 
0(3 = dO" = Pq = OXq . 

Substitute this result in the previous equation to obtain 

1 dhv _ t [ 8 or ] 81i 
hv ~ - i,q=l O(i oxq oxq · 

We can see here that the summation over i is just a chain rule differentiation 
with respect to Xq· Therefore, 

3 
_1_ dhv = I: ~ ar = v2r 
hv dO" q=l oxq oxq ' 

(E.3.21) 

which is what we wanted to prove. 
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E.3.4 Higher-Order Transport Equations 

To correctly formulate ray amplitude theory, we need to say something 
about transport equations that result from considering the coefficients of 
the higher-order terms of equation (E.1.2). Recall, the amplitudes A(a) 
that we solved for above are the 0-th order amplitudes. Whether in 3D or 
in 2D, we may write the following recursion formula for the higher-order 
amplitudes A1 as 

2~h · \7 A1 + A1\72T = -\72 A1_ 1 , (E.3.22) 

where j > 0. Using (E.3.12), multiplying by a factor of ..JJf.Oj, and 
applying the first ray equation, we have 

~dd; + i ~ln[J(a)] =-~\72Aj-1, 
which may be rewritten as 

d ( ..fJf.Oj Aj) ..fJf.Oj 2 
da = --2-\7 Aj-1(a). 

This expression may be integrated, to provide the recursion formula for the 
amplitude factors A1 

( ) ( ) J(ao) 1 1a ~( ') 2A ( ') ' A a = A1 ao J(a) - 2J(a) ao vJwJ\7 j-1 a da. 

We could use the values of Ao = A(a), derived previously, in the recur­
sion relation to solve for amplitudes of higher order. More terms do not 
necessarily guarantee that an asymptotic series will give a better represen­
tation, however. For most applications, the leading-order amplitude Ao is 
sufficient. 

E.4 Determining Initial Data for the Ray 
Equations 

We pointed out earlier that we need initial data for the ray equations, 
(E.2.11), in order to be able to completely solve for the traveltime. Sim­
ilarly, the solution of the transport equation, (E.3.7), has a constant of 
integration, given by A2 (a0)hD(a0 ). Here, we show how these constants 
are determined for various problems of interest. We start with the 3D and 
2D Green's functions, which are of direct interest. In particular, note that 
for this problem, the rays all emanate from the source point, meaning that 
the cross-sectional area of the ray tube becomes zero in this limit. We 
should expect, then, that hD and hD will be zero at this point, and the 
solution formulas (E.3.7) and (E.3.8) become singular as well. Thus, for 
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this problem of greatest interest, finding the appropriate "initial data" is 
somewhat delicate. 

We will also show how one determines initial data for reflected and trans­
mitted waves from initial data for incident waves. This is a much more 
straightforward problem. 

E.4.1 Initial Data for the 3D Green's Function 

Let us suppose that we have a point source 8(x- x 0 ) for the Helmholtz 
equation. We need to generate the initial data for the ray equations, 
(E.2.11). It is reasonable for this problem to assume that the rays all em­
anate from the source point and start with traveltime equal to zero. That 
is, we set 

X =Xo, T=O, for a= 0. 

We also need initial values for p. Again, we use our insight to define such 
data. We expect that no direction of propagation from the point source will 
be distinguished from any other. We note from (E.2.11) that the directions 
of the rays-in particular, the initial directions of the rays-are given by 
p. We propose, then, to allow these initial vectors to range over all angular 
directions. Furthermore, these vectors must have length p(xo) = lp(xo)l = 

1/c(xo), where the latter result comes from the eikonal equation itself. Thus 
the initial data also includes the initial values of the quantities 

p(xo) = p(xo)p, where p = (sin¢cosO,sin¢sinB,cos¢). 

Here, 0 :::; (J < 2rr and 0 :::; 4> :::; 1r. As they vary over these ranges, the 
initial ray directions cover the entire unit sphere of possible directions. 
Each fixed pair, (0,¢), determines a unique ray through its starting value. 
Thus, 0 and 4> are a particular choice for the coordinates 1'1 and 1'2 of our 
derivation. We remark that these are not the only choices. For example, we 
could have taken two of the components of p(xo) for these parameters and 
then determined the initial value of the third component from the eikonal 
equation, again. We will continue the discussion here with this specific 
choice, however. What remains is to determine the constant in the solution 
for the amplitude, A. We argue that this initial value should depend only 
on the medium in the neighborhood of the source point, x 0 • Thus, even for 
heterogeneous media, the constant we seek should be the same as for the 
problem in which we take c(x) = c(xo). To complete the derivation of the 
ray amplitude theory, then, we will determine the constant of the solution 
by determining its value for homogeneous media. To do so, we will need 
to draw on the fact that for a constant-wavespeed medium the Green's 
function is known to be 

g(x,xo,w) = 4 I 1 leiwlz-zol, 
1f X- Xo 
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meaning that A(x) = 1/47rlx- xol in a constant wavespeed (homogeneous) 
medium and that it should behave the same in the limit at the source point, 
even in a heterogeneous medium. 

For the constant wavespeed medium, we note from (E.2.11) that pis a 
constant vector, p = p(xo) p. From the first ray equation, we may solve for 
the distance from the source as a function of a to yield 

x- xo = 1" p(xo) p da' = p p(xo)a, 

which means that 

lx- xol = p(xo)a. 

If we use this result for lx- xol in the equation, A(x) = 1/47rlx- xol, we 
conclude that the correct expression for A(a) is 

1 
A(a) = 47rp(xo) a (E.4.1) 

We have, here, a solution of the constant-wavespeed problem in terms 
of a. It exhibits the appropriate singular behavior at a= 0. This solution, 
however, was not our final objective. We want to use it to determine a value 
of A2(a0)Jav(a0) in (E.3.9). We want a solution for all a > 0, because 
of our desire to use the same constant of the solution for point-source 
problems in heterogeneous media. This suggests that we should take a0 = 0. 
However, the singular behavior of the solution at that point precludes a 
simple evaluation. This is what makes the determination of initial data for 
the point-source problem "delicate." 

In light of this observation, let us modify our objective to seek a solution 
to (E.3.9) of the form 

K 
A( a)= J J3v(a), a> 0, 

with K being a constant (with respect to a) to be determined. Comparing 
this equation with (E.3.9), we see that 

K = lim A2(ao)J3D(ao). 
ao--+0 

To find this limit, we will compute Jav and combine it with the explicit 
form of the solution, (E.4.1) and then take the limit. 

We will determine J from the above explicit solution of the ray equations 
in homogeneous media, which we write out in detail as 

x1- x10 = p(xo)asin¢cos0, 

x2- x2o = p(xo)asin¢sin0, 

X3- X3o = p(xo)acos¢. 

Now, calculating J3v with respect to these variables is fairly straightfor­
ward. The result is 
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( - o(x(ao)) 3( 2 . 
J3D ao) = o(a,O,¢) =p x 0 )a0 sm¢. 

We may use this expression for hD(ao) and (E.4.1) for A(ao) to rewrite 
equation (E.3.9) as 

A2(a)hD(a) = A2 (ao)J3D(ao) 

_ [ 1 ] 2 3 ( ) 2 . ,;, _ p( Xo) sin¢ 
- 4 ( ) p xo a0 sm '~" - 4 . 1rp Xo ao 1r 

We see here that for constant wavespeed, the product A2 J is actually in­
dependent of the choice of a0 . This permits us to take the limit we need 
and write the solution of the transport equation for A( a), in terms of the 
Jacobian J, as 

where, again, 

8(x(a)) 
J3D(a) = 8(a,O,¢)" 

p(xo) sin¢ 
J3D(a) 

(E.4.2) 

We propose to use this last form of solution even for problems with a 
heterogeneous wavespeed profile. If we carry out power series expansions 
near a = 0 we can confirm that we have the "right" constant of integration 
for those problems as well. 

Thus, if we had the solution of the inhomogeneous problem for the rays, 
traveltime and amplitude, we would write the leading-order, or WKBJ 
(ray-theoretic) Green's function in 3D as 

g(x, Xo,w) rv A(x, Xo)eiwr(wo,w) 

1 
47r 

p=-('-::x:-"-'o):.......,-si7""n-'-¢ exp (iw r 1jc2(x(a'))da'). 
J3D(a) Jo 

(E.4.3) 

Again, we point out that another choice of the parameters, 1'1, /'2, would 
lead to a different constant of integration in the amplitude, corresponding 
to a different Jacobian as well. In particular, it should be noted that this 
solution has some numerical pathology near ¢ = 0 or ¢ = 1r. The numerator 
of the amplitude is nearly zero there. The same must be true for J3D for this 
choice of ray parameter, so that the quotient remains finite and nonzero in 
this region. This is much like the behavior of the surface area element on 
the unit sphere, sin¢ d¢ dO; it is a pathology of the choice of parameters 
and not of the underlying problem. Clearly, this is not a good choice for 
numerical calculations. See the exercise below for an alternative choice of 
ray parameters that does not have this pathology. 
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Exercises 

E.l For downward-propagating waves, an alternative choice of the param­
eters 1'1, 1'2 would be the initial values of P1 and P2, say, P1o = Pl(xo) 
and P2o = P2(xo). Then, the initial value of P3 would be the positive 
square root 

P3o = Vl/c2(xo) ~ Pio- P~o· 
a. Show that for this choice and constant wavespeed, 

(}'2 

hn = - 2-, 
c P3 

K 
A(x) = ;;n;:' 

CTCyP3 

with K, a constant to be determined, different from the choice of 
K above, for the parameters, ¢ and (). 

b. Use this result and the known amplitude for the constant­
wavespeed Green's function amplitude to conclude that even for 
variable wavespeed, 

1 
A( X) = -:--:--::--;::::==;=:::::;: 

47rc(xoh/ hn P3(xo) 

Note that we have exchanged a pathology at¢= 0 in the example 
in the text with a pathology at P3(xo) = 0 in the current solution. 
As above, the product, hn P3(xo) remains finite in this limit, but 
there are problems with numerical calculations. In the application 
to seismic inverse problems, we are less interested in horizontally 
propagating initial rays than we are with rays that propagate 
in the vertical near ¢ = 0. So this would be a better choice of 
ray-labeling parameters than the polar angles for our applications. 

E.4.2 Initial Data for the 2D Green's Function 

We will describe here the determination of initial values for the 2D ray 
theoretic solution for the Green's function. As above, we expect that the 
rays are initiated at the source point, x = x 0 at CY = 0. We take the initial 
value of the traveltime to be zero, such that T = 0 when CY = 0. 

Next, we need initial values for p. As in 3D, we use the fact that these 
initial values determine the initial directions of the rays. Thus, in order to 
allow for rays in all directions, we take those initial values to be p( x 0) = 
p(xo)(sin(),cos()), with 0 :<:; () < 21r. 

As above, we will determine an appropriate constant for the amplitude 
solution, because the Jacobian is zero at the initial point. To find this 
constant, we again consider the constant-wavespeed solution and argue 
that the constant value we derive for this solution will be correct for the 
variable-wavespeed solution as well. 
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Given the Green's function for constant-wavespeed media in 2D, 

( ) = isgn(w)H(l) (wlx-xol) 
gx,w 4 ° c(xo) ' (E.4.4) 

we will compare this amplitude with the ray-theoretic 2D amplitude in 
order to determine the constant in that solution. 5 In this particular case, 
we may consider replacing the Hankel function with its large-argument 
asymptotic form. The Green's function can be rewritten for large argument 
as 

1 
g(x,w)"" 2 c(xo) eiwlm-mol/c(mo)+isgn (w)7r/4 

27rJw!Jx- xol ' 

where we have used the asymptotic form of the Hankel function, 

Hdl)(z)"" {feiz-i71'/4, -1r < arg(z) < 21!', 

"" j2eiz-isgn(z)7r/4 y ;j;f ' z real. 

(E.4.5) 

As before, the first ray equation yields the result for the Jx- xol 
p(x0 )a0 • Recognizing that p = 1/c, we may rewrite equation (E.4.5) as 

g(x(ao),w)"" 1 ewip(mo) a+isgn(w)7r/4. 

2J27r JwJp2 (xo)a 

The factor of (1/v'JWT)exp{isgn(w)7r/4} that appears here should be 
viewed as a generalization of the factor wf3 in equation (E.1.1), so we 
conclude that the amplitude, given by A(x(ao)), is 

1 
A(x(ao)) = 2J211' p2(xo)a (E.4.6) 

For constant wavespeed, p = constant on the rays. Thus, this vector is 
given by its initial value and 

x1 = p(xo)acosB, x2 = p(xo)asinB. (E.4.7) 

Now we can compute the ray Jacobian, 

a(x(a)) 2 
J2D(a) = B(a,B) = p (xo)a, (E.4.8) 

and conclude that 

5This result is usually stated only for w positive. For causal functions, such as 
our Green's functions, we need results for both positive and negative w as analytic 
continuations from the upper half w-plane. The stated result is that continuation. 
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K 
A (a) = ---;:::::===;:::=;:: J J2D(a) 

We compare this result with (E.4.6) and conclude that 

1 1 
K = 2v'27f and A(a) = 2..;2irJW 

for heterogeneous media as well. We may, therefore, write the leading order, 
or WKBJ, (ray-theoretic) Green's function in 2D as 

g(x,xo,w) "'A(x,xo)eiwr(a:o,a:) (E.4.9) 

= 1 exp (iw1 17 1jc2 (x(a'))da' +isgn(w)7r/4), 
2J2Iwl7rJ2D(a) u 0 

where, again, we have written the traveltime T(x0 , x) by integrating the 
third ray equation, dTjda = 1/c2 . 

E.4.3 Initial Data for Reflected and Transmitted Rays 

The discussions of the previous sections have shown how the ray equations 
can be solved for continuous-wavespeed media. The presence of the gradient 
of wavespeed in the ray equations suggests that the wavespeed profile must 
be a function that is at least once-differentiable. We know, however, that an 
important part of wave propagation deals with reflections from interfaces­
places where there are jumps in wavespeed. 

Because we have shown how to compute the amplitudes Aj in equation 
(E.l.1), we may now assume that this equation represents the general form 
of the wavefield throughout any continuous medium. Indeed, because ray 
theory is the solution of a system of linear ODEs, we know that we can 
continue such a solution across a discontinuity in wavespeed by representing 
the discontinuity as the usual boundary conditions of continuity of the field, 
and continuity of the normal derivative of the field applied at a boundary 
(a reflecting surface). Thus (E.l.1) can be said to represent the general 
form of the wavefield in a medium with jumps in wavespeed, provided that 
the total wavespeed profile is piecewise continuous, with any discontinuities 
being confined to specific boundaries. 

Given an incident field u1 of the form 

oo AI.(x) 
u1(x,w) "'w.6eiw'TJ(a:) L -(~ )j , (E.4.10) 

. 0 zw 
J= 

we can assume that reflected and transmitted fields, UR and UT, respec­
tively, are generated at such a boundary. Thus, we assume that the total 
field is u = UI + UR on one side of the boundary, and is u = UT on the 
other. Because we will assume that UI is known, the application of continu­
ity conditions on the boundary between regions with different wavespeeds 
will permit us to solve for the initial data for the reflected field, uR, and 
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the transmitted field UT in terms of the elements of the incident wavefield 
evaluated on the boundary. By the term "initial data" we mean the values 
of the reflected and transmitted fields on the boundary. 

Application of continuity of the field says that u1 + uR = UT on the 
boundary. Hence, 

oo AI(x) oo AR(x) 
wi3Ieiwr:r(re) L _J -. + wi3ReiwTR(re) L _J -. 

j=O (iw)J j=o (iw)J 

oo AT(x) 
= +wi3Teiwry(re) ~ (~w)J . (E.4.11) 

J=O 

In this equation, we have taken UR and UT to have series of the same form as 
u1 in (E.4.10), but with I replaced by Rand T, respectively. An immediate 
consequence of this relationship is that 

(E.4.12) 

because, in general, terms of a different order in w cannot be equal. We 
must also have 

(E.4.13) 

on the boundary before we can even hope to match terms of like power in 
w that appear in (E.4.11). Note that this determines the initial values of 
the transmitted traveltime for the reflected and transmitted wavefields. 

If the boundary surface is parameterized by the coordinates ( a1 , a 2) such 
that x = x(a1 ,a2 ), then direct differentiation with respect to these coor­
dinates leads to the conclusion that like-derivatives of TI, ?R, and TT, with 
respect to these coordinates, must also be equal 

ax ax ax 
- · V'7i = - · V'TR = - · V'TT, j = 1, 2. (E.4.14) 
aaj aaj aaj 

This equation determines two components of the vectors PR and PT on the 
boundary, specifically, the projections of these vectors along two linearly 
independent directions on the boundary surface. 

Next, we need to determine the normal components of PR and PT· We 
define a normal coordinate fi to the boundary, and a directional derivative 
(the normal derivative) in that direction as 

A (A '1'7) A a n n· v =n-an 
and the tangential or in-plane gradient on the interface as 

Y'a=V'-fi:n. 

Then the equality above becomes 

V' a1i = V' aTR = V' aTT (E.4.15) 
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and the gradient of traveltime becomes 

~aT \"7 

p = nan + va-T· 

We will use the notation P- and P+ to denote the magnitude of traveltime 
on the incident and transmitted sides of the boundary. The wavespeeds 
on the incident and transmitted sides are c_ and c+, respectively; that is, 
P± = 1/c±. Thus, we can write the normal derivatives of traveltime as 

aTI [aTI] / an = sgn an v p:_ - (V' a-TI)2' 

~: = sgn [ ~:] Jp:_- (V' a-TR) 2 , 

~: = sgn [~:] VP~- (V'a-TT)2. 

(E.4.16) 

Several simplifications are possible. Because V' TI and V' TR must both sat­
isfy the same eikonal equation, IV'TII = IV'TRI· However, from (E.4.15), the 
in-surface components of the gradients are equal, so that the magnitudes 
of the normal derivatives of incident and reflected traveltimes must also be 
equal. For the incident waves to be traveling toward the boundary and the 
reflected waves to be traveling away from the boundary, however, the sign 
of the normal derivatives of the incident traveltime must be opposite that 
of the normal derivative of the reflected traveltime, 

(E.4.17) 

This determines the normal component of PR in terms of the data for the 
incident field. 

Now, let us turn to the normal component of PT· We note that the sign 
of this component must be the same as that of the normal component of p 
for the incident wave. In this manner, where the incident wave is directed 
toward the boundary on one side, the transmitted wave travels away from 
the boundary on the other side. We may write, 

OTT [ OTI ] J [ OTJ. ] an = sgn an p~ - (V' o-TT )2 = sgn on 2 2 OTJ ( )
2 

P+- p_ + on 
The square roots are assumed to be real, that is, we assume that the reflec­
tion is precritical. The method can be extended to postcritical reflection, 
but that is beyond the scope of this appendix. We refer the reader to the 
references for further development. 

With this last result, we have completed the determination of the initial 
data for the rays and the traveltime of the reflected and transmitted wave­
fields. What remains is to determine the data for the amplitudes of these 
wavefields. To do so, we need to introduce a second boundary condition. 
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For the purposes of this exposition, we will apply a fairly standard con­
dition, continuity of the normal derivatives of the total wavefield through 
the boundary. Thus, the normal derivatives on the two sides should agree. 

Taking the normal derivative of both sides of equation (E.4.11), canceling 
the factor of wf3, and setting TI = TR = TT, yields 

Equating terms of like powers in iw, it is possible to rewrite equations 
(E.4.11) and (E.4.18) as the recursion formulas 

OTI AI.(x) + OTR Al3-(x) =OTT AT(x) + !__ [AT_l(x)- AI._l + Al3-_l] 
8n 3 8n 3 8n 3 on J J J 

Aj + Af = AJ. (E.4.19) 

Taking A_1 = 0, as was done in previous sections, and considering only 
the 0-order term, yields the relations 

OTIAI( ) OTRAR( ) = OTTAT( ) 
on oX+On oX on oX· (E.4.20) 

These are two equations for the initial data for A~ and AJ. We choose 
to write the solution to these equations in terms of the reflection coefficient 
R and the transmission coefficient T defined by 

A~ =RA~ (E.4.21) 

The solution is made somewhat simpler by using the fact that 

OTR OTI 
on -an· 

Then, equation (E.4.20) becomes 

l+R=T, (E.4.22) 

By solving these equations, we find that the reflection coefficient is given 
by 

R - !!fn -~ - !!fn - sgn [ !!fn] J P~ - P~ + ( !!fn r 
- !!fn + iif - !!fn + sgn [ !!fn] J p~ - p~ + ( !!fn r 

and the transmission coefficient is given by 

(E.4.23) 
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~ + sgn [~] VP~ -p~ + (~) 2 
(E.4.24) 

These are the WKBJ forms of the reflection and transmission coefficients 
that appear in several places in the text. In the present context, they pro­
vide the initial data for the leading-order amplitudes of the reflected and 
transmitted wavefields. The conclusion is that, to leading order, the ray­
theoretic reflection coefficients are the same as those derived for plane waves 
incident on planar interfaces in piecewise-constant media, except that the 
wave vector is a local (pointwise) quantity along the interface. 

If we introduce fh as the acute angle that the incident and reflected rays 
make with the normal direction to the surface, then we can set 

~~ = sgn [ ~~] P- cosBr, 

and rewrite the above equations as 

P- cosBr- Jp~- p~ sin2 01 

R= ' 
P- cosBr + Jp~- p~ sin2 Br 

(E.4.25) 

and 

2p_ cosBr 
T = ----;:::===== P- cosBr + VP~- p~ sin2 Br 

(E.4.26) 

By using (E.4.18), recursively, we could determine the initial data for 
higher-order amplitudes of the wavefield. As noted above, in practice, these 
higher-order corrections are rarely either justified or computed. 

E.5 2.5 D Ray Theory 

In Chapter 6, we made use of the 2.5D ray theory of Bleistein [1986]. The 
objective of 2.5D ray theory (and 2.5D inversion) is to create a math­
ematical theory that allows us to process a single line of seismic data, 
but nonetheless characterize the wave propagation as being 3D. With the 
thought experiments that we introduced in Chapters 1 and 6, we showed 
that, under reasonable assumptions about the seismic survey, we needed 
3D wave propagation results only in a vertical plane below the survey line. 
In particular, when the survey line is described by x2 = 0, and it is assumed 
that the wavespeed is independent of x 2 , we then found that we need to 
know only about the 3D wavefield in the vertical plane, x2 = 0. 

Of course, for these specialized solutions and the consequent inversion 
results to be of practical value, the x1-direction should be the direction of 
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dominant dip in the actual Earth model. There is some discussion of this 
issue in the text. 

Our objective, then, is to develop a special case of three-dimensional 
ray-theoretic wave propagation in which the wavespeed depends only on 
two variables, x1 and x3, and further specialize to evaluating this wavefield 
only in the vertical plane in which x2 = 0. Thus, our wavefield will contain 
3D geometrical spreading loss. However, as we shall see below, analysis of 
the 3D wavefield elements reduce to calculations in-plane only; that is, in 
2D. 

E. 5.1 2. 5D Ray Equations 

We may write the ray equations for the 2.5D problem by assuming that 
the wavespeed varies only as c = c(x1, x3). Then, (E.2.11) becomes 

dxl dpl 1 a [ 1 ] 
da =PI, da = 2 ax1 c2(x1, x3) ' 

dx2 = p2, dp2 = ~ ~ [ 1 ] = 0 
da da 2 ax2 c2 (x1, x3) ' 

dx3 dp3 1 a [ 1 ] 
da =p3' da =2ax3 c2 (x1,x3) ' 

dT 1 
-- 2 . 
da c (x1, x3) 

(E.5.1) 

We may solve for p2 and x2 directly, to yield 

P2 = P2o, (E.5.2) 

where p20 = p2(x(O)). Vertical propagation is described by those rays for 
which x2 = 0, which can occur only if we set P2o = 0. To obtain our 
2.5D wavefield from our 3D ray theory, we will repeatedly return to this 
specialization. 

Having solved for x2 , we can now reexamine (E.5.1) in light of this 
solution: 

dx1 
da = P1, 

dx3 
da = P3, 

dT 
da = c2 (x1 , x 3 ) · 

Thus, the system of ray equations in 2.5D is the same as the system we 
would encounter in a 2D medium with coordinates (x1 , x3), with the eikonal 
equation being the same as that for a 2D problem, p~ + p~ = 1/ c2 (XI, X3). 
Of course, for the in-plane propagation, we still have one parameter free to 
label the rays; that will be determined as in any other 2D problem. 
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E.5.2 2.5D Amplitudes 

Because the 2.5D problem involves the full 3D wave operator, it must be 
that the amplitudes (in a high-frequency sense) are governed by some form 
of hD(a). 

Since P2 = P2o is constant on the rays, we will take that to be one 
of the ray parameters, say 12, and note that x2 is a function of this ray 
parameter only. The other ray parameter, 11 , along with P2o, will arise only 
in the solution for x1 and x3 along the rays. Therefore, let us examine the 
second column of J3D, which involves only derivatives of x2 with respect 
to the ray parameters. We find that 

dx2 _ 0 
d/1- , 

We evaluate J3D at P2 = 0, in order to determine the special Jacobian 
that we define as J2.5D. We find that 

8x1 8x3 0X1 
0 

OX3 
00' P2 00' 00' 00' 

h.5D(a) = det 
8x1 8x2 8x3 = det 

8x1 
0 

8x3 
0/1 0/1 0/1 0/1 0/1 
8x1 8x3 8x1 8x3 
8p2 

0' 
8p2 8p2 

0' 
8p2 P2=0 

J2.5D(a) = aJ2D(a). (E.5.3) 

The zeros here are a consequence of the specific evaluation at P2o = 0 and 
the fact that x2 is independent of 11 as can be seen from (E.5.2); that is, 
x2 is a function of a and P20 only. 

E. 5. 3 The 2. 5D Transport Equation 

Given the 2.5D ray Jacobian and eikonal equations, it is possible compute 
3D amplitudes in a wavespeed profile that varies in only two dimensions 
if we restrict our evaluation to the vertical plane, x2 = 0. However, to 
complete the analogy between 2D or 3D, and 2.5D, we will derive a 2.5D 
transport equation [Stockwell, 1995b]. That is, we want to derive an in­
plane (x2 = 0) propagating equation for the 3D amplitude, under the 
assumption that the wavespeed is independent of x2 • 

We begin with (E.3.12) and evaluate that equation in-plane as follows. 

X2 = 0. 

(E.5.4) 
Here, we have already simplified the first term with the observation that 
the second component of "VT = P2 is equal to zero when we evaluate this 
equation in-plane. We have also separated the Laplacian into two terms. In 
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the first term, we can evaluate both A and T at x2 = 0. In the second term, 
we must determine the second derivative with respect to x2 before setting 
x2 equal to zero. We can do this indirectly, by using the ray equation for x2, 
(E.5.2). It is important to realize here that the ray parameters P2 = P2o and 
a can be viewed as functions of x2, determined by solving the parametric 
equations for the rays for these variables (and 'Yl)· Thus, we differentiate 
this equation implicitly with respect to x2 to obtain 

0p2 Oa 02T Oa 
1 =-a a+p2-a =-a a+p2-a . 

X2 X2 X2 X2 

Now, we can solve this equation for the second derivative we seek: 

()2T = ..!:_ [1 - P2 oa ] . 
ox~ a OX2 

We do not know the derivative of a with respect to x2. Thus, in general, 
we cannot use this equation to solve for the T-derivative we seek. However, 
in-plane, we know that p2 = 0. Further, by examining power series solutions 
near P2 = 0, one can verify that the a-derivative is finite there. In fact, a 
has a minimum on the in-plane ray, when compared to nearby values for 
nonzero X2 and oa I OX2 = 0. 

Thus, we conclude that the full 3D Laplacian ofT is given by the following 
decomposition in the X2 = 0-plane 

'V2T(X1,X2,X3)1 -O = ..!:_ + 'V~vT(X1,0,x3), 
x2- a 

We now use (E.3.12) to rewrite this result in terms of Jacobians: 

d I 1 d -d [lnJ3D(a)J =- + -d [lnJ2v(a)]. 
a x2=0 a a 

This result can be used to rewrite (E.5.4) as 

2 A(x) 
2'V2nT(x) · 'V2vA(x) + A(x)'V2vr(x) + -- = 0, 

a 
(E.5.5) 

where x = ( x1 , 0, x3 ). We see that this equation is the 2D transport 
equation plus an extra term containing the out-of-plane component of 
geometrical spreading. 

To continue the analogy between 2.5D ray amplitude theory and the cor­
responding theory in two and three dimensions, we may also write (E.5.5) 
in the form of an exact divergence as, 

(E.5.6) 

This result may be verified by directly applying the 2D divergence in 
(E.5.6) to yield 

2aA'V2vr(x) · 'V2vA(x) + aA2 (x)'V~vr(x) + A2(x)'V2va · 'V2DT = 0, 

(E.5.7) 
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where x = (x1,0,x3). Recognizing that \la = c(x)p and \lr = Pfc(x), 
yields \l2Da · \l2DT = 1, in-plane. Then, dividing each term of (E.5.7) by 
a A( x) gets us back to (E.5.5). Comparing the divergence form of the 2.5D 
transport equation with the corresponding equation for 3D in (E.3.2) shows 
that ya A2D = constant · A2.5D, in agreement with the result determined 
from Jacobians above. Here, the constant is the ratio of the 2D to 3D 
amplitudes. 

In addition, we may write the 2.5D result corresponding to equation 
(E.4.3) by substituting a hD for hD to yield 

g (X X w) ,....., A(x X )eiwr(zo,z) 2.5D , Q, , 0 (E.5.8) 

1 p(xo) sin¢ (· 1u 2 1 ') 
= 47T aJ2D(a) exp zw uo 1/c (:e(a ))da . 

Finally, it must be mentioned that because 2.5D ray-theoretic results are 
just a special case of the corresponding results in 3D, we have the same 
theory of reflected and transmitted waves, as discussed in Section E.4.3, 
except that P2 is always zero. 

E.6 Raytracing in Variable-Density Media 

All of the ray-theoretic results derived in this appendix may be extended 
to variable-density media. The governing equation for wave propagation in 
such a medium is the homogeneous form of the variable-density Helmholtz 
equation, 

[ 1 ] w2 
.Cu(x,w) = p(x)'V· p(x) \lu(x,w) + c2(x) u(x,w) = 0. (E.6.1) 

Here p( x) is the density of the medium. 
As in the constant-density problem, we substitute a series trial solution, 

u(x w),....., wf3eiwr(z) ~ Bj(x) 
' L...J (' )1 ' j=O ZW 

(E.6.2) 

into (E.6.1) to yield the series 

Cu ~ w' e"'' t, ( i~ )i [ w2 { ~ - (Vr )2 } B; (E.6.3) 

+ iw {2\lr · 'VBj + p\7(1/p) · \lrB1 + Bj'V2r} + \l2B1]. 

As above, we set the coefficients of each power of w equal to zero. Setting 
the coefficient of the term of order wf3+2 equal to zero leads to the same 
eikonal equation as was obtained for constant-density wave propagation. 
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Thus, variable density does not affect wavespeed. That is, kinematically, 
variable-density media are the same as constant-density media. 

E.6.1 Ray Amplitude Theory in Variable-Density Media 

Setting the coefficient of the term of order w.B+l equal to zero leads to the 
(first) transport equation, 

2'Vr ·'VB+ p'V(11 p) · 'Vr B + B'V2r = 0, (E.6.4) 

where we have dropped the subscript, writing Bo simply as B. Here can 
see that variable density does effect amplitudes. To see how, we multiply 
equation (E.6.4) through by a factor of B I p, yielding 

2B 2 (1) B 2 2 -'Vr ·'VB+ B 'V - · 'Vr + -'V r = 0. 
p p p 

(E.6.5) 

The left side of this equation is an exact divergence, leading to the equation 

(E.6.6) 

By comparing equations (E.3.2) and (E.6.6) we see that B I JP satisfies 
the same differential equation as A; thus the amplitudes of the variable­
density problem differ from the amplitudes of the constant-density problem 
only by a factor that is proportional to .JP{;ij, such that 

B(x, xo) =constant· .JP{;ijA(x, xo). (E.6.7) 

To find the constant multiplier on the right-hand side, we consider the 
source region to be both constant wavespeed and constant density. In this 
case, B =A. This is true only if the constant= 11 J p(xo), where p(xo) is 
the density at the source point. Thus, 

B(x,xo) = (E.6.8) 

This means that we may write the variable-density result corresponding to 
equation (E.4.3) as 

1 
47!" 

(E.6.9) 

p(x)p(xo) sin¢ (· 1G 11 2 ( ( ')d ') 
( )J ( ) exp zw c :z: (7 (7 . 

P Xo 3D (7 Go 

Also, we may write the 2.5D, variable-density, ray-theoretic Green's 
function by making a similar modification to equation (E.5.8), 

gvd (x X w) B(x X )eiwr(:z:o,oo) 
2.5D ' o, "' ' 0 (E.6.10) 

p(x)p(xo) sin¢ (· 1G 11 2 ( ( ')d ') 
() () expzw C:z:(J" (7. 

P Xo (7J2D (7 Go 



E.6 Raytracing in Variable-Density Media 469 

In Section 5.6, we point out that the Green's function and its adjoint are 
related by 

g*(x,xo,w) = g(xo,x,w). 

We can see from the analysis here that the only asymmetry in the WKBJ 
Green's function is in the amplitude B(x, xo) in (E.6.8). Thus, we can 
immediately write down the relationship between the amplitude, B*(x, x 0 ), 

of the adjoint Green's function and the amplitude, A(x, x 0 ), which is to 
say, 

B*(x(xo) = 

Thus, by just using the ratio J p( Xo) I p( x) in place of J p( x) I p( xo) in 
(E.6.9) and (E.6.10), we obtain the leading-order WKBJ adjoint Green's 
functions for the variable density wave equation. 

E. 6. 2 Reflected and Transmitted Rays in Variable-Density 
Media 

We may complete the discussion of ray-theoretic results by formulating re­
flection and transmission coefficients in variable-density media, as we did 
in Section E.4.3. That is, we again want to determine initial data for the 
amplitude of the reflected and transmitted waves in terms of the ampli­
tude and traveltime of the incident wave. As a first interface condition we 
again require that the total wavefield be continuous. Thus, the analysis for 
the initial values of the traveltime and ray directions of the reflected and 
transmitted wavefields are the same as for the constant-density case. 

The variable-density case differs from the constant-density case in the 
choice of second boundary condition: consistent with the differential equa­
tion (E.6.1) we require that 11 p times the normal derivative be continuous. 
If we again use subscripts, - on the incident wave side and + on the 
transmitted wave side of the boundary, then equation (E.4.18) is replaced 
by 

~{ . 1 [~ OTJ BI(x) + ~ OTR BR(x) _ ~ OTT BT(x)] f::o (zw)J-l P- on 1 P- on 1 P+ on 1 

1 [ 1 oB1 1 oBR 1 oBT] } 
+ ( iw )1 P- o~ + P- o~ - P+ o~ = O. 

The equations corresponding to (E.4.20) and (E.4.21) now become 

1 OTJ BI ( ) 1 OTR BR ( ) - 1 OTT BT ( ) --ox+-- oX--- ox, 
P- on P- on P+ on 

B~ + Bf: = BJ, (E.6.11) 
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It is apparent that the solutions of these equations are exactly like our 
constant-density results, provided we make the following replacements 

fhr 1 arr arR 1 arR arT 1 arT 
--+-- --+-- --+--
an P- an ' an P- an ' an P+ an . 

Thus, we set 

B~ = RB~, and Bl = TB~. (E.6.12) 

We can solve for the variable-density reflection coefficient R as 

2_£n_- 2_fu_ 2_£n_- 2_ sgn [!fu.) /p2 - p:_ + (&)2 
P- an P+ an P- an P+ an V · + an 

R = 1 & + 1 Qn: = -=-:-1_a_r ----'-1-:"----[a_n_J-'-r= /2 =2=(=!fu.======) 2' 
P-an P+ an P- Fn + P+ sgn an yP+- p_ + an 

(E.6.13) 

and the transmission coefficient T as 

2.® 2 ®. 
~~ ~~ 

T = 1 1 = --:-----:----'---'------;======:: 
_Q!r +_§!I 1 fui 1 [ar) f 2 2 (ar ) 2 
P- an P+ an -an + - sgn 7fri P+ - p_ + Fn 

P- P+ 
(E.6.14) 

These are the WKBJ forms of the reflection and transmission coeffi­
cients in the variable-density case. As in previous cases, the WKBJ results 
reduce to plane-wave reflection and transmission coefficients for constant 
wavespeed and density, and a plane interface. 

Again, as we did in the constant density case, we introduce (}I as the acute 
angle that the incident and reflected rays make with the normal direction 
to the surface. Then, the variable-density reflection coefficients become 

P- (} 1 I 2 2 · 2 (} -cos I- P+ yP+ -p_sm I 

R = P- 1 (E.6.15) 
P- cos (}I + - ~ p~ - p:_ sin2 (}I 
P- P+ 

and 

(E.6.16) 

E. 7 Dynamic Raytracing 

The term "dynamic raytracing" refers to a method of generating ray am­
plitudes by solving additional ordinary differential equations along the rays 



E.7 Dynamic Raytracing 471 

to obtain the elements of the ray Jacobian, (E.3.6). (The most extensive 
discussion of dynamic raytracing, along with citations for original sources, 
can be found in Cerveny [2000].) Because we already have an equation 
for the elements of the first vector in that equation, dynamic ray trac­
ing amounts to deriving differential equations for the vectors 8xl8!l and 
ox I 812 . These differential equations are derivable from the ray equations 
that we already have. Specifically, we start from the first six equations in 
(E.2.13) that are formulated in arclength coordinates. We prefer, for this 
discussion, to rewrite those equations as 

dx 
ds = c(x)p dp = V' [-1 ] 

ds c(x) · 
(E.7.1) 

For the moment, there is no need to distinguish between 11 and 12 , so 
we will consider a generic variable, /, that labels the rays, with arclength 
s as the running parameter along each ray. Further, let us define the /­
derivatives by using the new symbols Q and P, 

~~ =Q, 

to simplify the notation. 

op =P a, , (E.7.2) 

We begin the derivation of the new equations by differentiating both 
equations in (E.7.1) with respect to/, noting that the order of differentia­
tion in 1 and s can be interchanged, as these are independent variables on 
the family of rays. The result of this differentiation is a system of ordinary 
differential equations for the propagation of Q and P along the rays. Those 
equations are 

dQ 
ds = c(x)P + pV'v · Q, dP = Q . V' [V' [-1 ] ] . 

ds c(x) 
(E.7.3) 

These equations can be simplified by using the fact that the derivative of 
Q is orthogonal to the ray. This can be seen by differentiating the following 
dot product of a unit vector with itself: 

dx. dx = 1. 
ds ds 

Differentiation of the right-hand side yields 0, so we have from the 
differentiation of the left-hand side, 

0 = ~ [dx. dx] = 2dQ. dx. a, ds ds ds ds 

We take the dot product of the first vector differential equation in (E.7.3) 
with dx Ids to obtain 

0 = c(x)P ·- + - · p (V'v · Q) dx (dx ) 
ds ds 
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da; 1 
= c(a;)P ·- + -vrv · Q. ds c(a;) 

(E.7.4) 

This equation allows us to solve for vrv · Q in terms of P and substitute 
the result back into (E. 7.3), yielding 

dQ da; da; - = c(a;)P- c(a;)P ·- -. (E.7.5) 
ds ds ds 

The role of the second term, here, is now more apparent. We know that 
dQ/ds is orthogonal to the ray. However, that need not be true for c(a;)P. 
The second term subtracts out the component of c(a;)P along the ray, to 
make the right side orthogonal to the ray, as well. 

We propose, now to write our system of equations in matrix form for 
the vectors written vertically-we will not bother with a superscript T to 
denote the transpose. Using (E.7.5) for the differential equation for Q and 
(E.7.3) for the differential equation for P, we find that 

dQ ds = c(a;) [I- D] P, 

In these equations, 

dP =WQ. 
ds 

wij = 82 (1/c(a;)) = __ 1_ 82c(a;) + _2_ 8c(a;) 8c(a;) 
8xi8Xj c2 (a;) 8xi8Xj c3 (a;) 8xi 8Xj ' 

i,j = 1,2,3. 

(E.7.6) 

(E.7.7) 

Now, we only need to use this same system of equations, with"(= "(1 or 
"f = "(2 , to determine the propagation of the vectors of the second and third 
rows of the ray Jacobian along the rays. They will only be distinguished by 
their initial conditions. When solving, then, we would use these equations 
with P and Q distinguished, say, by a superscript, as follows: 

8;~; = Q(i), 8P = p(i), i = 1, 2. (E.7.8) 
8"fi 8"fi 

Cerveny [2000] presents the equations (E.7.7) in different coordinate 
systems and with respect to different ray parameters. One distinguished 
system is called ray-centered coordinates, which he denotes by q = 
(q1, Q2, q3). The coordinate, q3 is a running parameter along the ray, such 
as our a, s, or T. The coordinates (q1, q2), are coordinates in a right-handed 
orthogonal system centered on a specific ray, denoted by n. This system 
of coordinates confines P and Q to the plane orthogonal to the ray di­
rection, so that it is necessary to solve for only two components of Q and 
two components of P; thus, ray centered coordinates lead to a system of 
four equations, while the result here is a system of six equations. However, 
the point of this discussion is not necessarily the determination of an opti­
mum system of equations for computation, but only a demonstration of the 
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possibility of determining the amplitude from a system of equations that 
describes the propagation of Q(l) and Q(2) along the rays. 

On the other hand, equations (E. 7.6) and (E. 7. 7) tells us something about 
the types of wavespeed model we need in order to obtain a well-posed6 solu­
tion for the amplitude. For linear systems of ordinary differential equations, 
such as this one for the combined variables P and Q, the criterion reduces 
to boundedness of the elements of the matrix of coefficients on the right 
side of the equation. Because those coefficients depend on derivatives of 
the propagation speed, their boundedness implies a requirement of bound­
edness on those derivatives. In this example, then, it is necessary for the 
second derivatives of the wave speed, which appear in W, to be bounded in 
order that the solution be well-posed. Indeed for numerical computation, 
we need this boundedness of the second derivatives, as well. 

If there are to be interfaces in our model, across which the propagation 
speed is discontinuous, then we need to do something other than integrating 
the differential equations across those interfaces in order to obtain the 
solution. In fact, we imposed interface conditions and solved for reflection 
and transmission coefficients to get through the interfaces, beyond which 
the solution for rays and amplitude can be continued by solving the system 
of differential equations, again. 

This constraint on second derivatives further suggests that the interfaces 
have to be reasonably well behaved also. It is necessary that second deriva­
tives can be calculated in arbitrary directions on either side of the interface, 
right up to the interface. In some sense, then, the interface itself has to be 
sufficiently smooth, say, with a differentiable normal, implying differen­
tiable tangent vectors along the interface. This is important in numerical 
modeling. 

Further, wavespeeds that are continuous, but have a discontinuous 
derivative, are not smooth enough for well-posed amplitude calculations. 
This is a popular type of model for raytracing in which the wavespeed model 
is described on a tetrahedral grid (triangular grid in 2D) in which the grid 
is small enough that a constant gradient wavespeed in each grid element is 
sufficient to describe a complex model. The discontinuity of the first deriva­
tive of the wavespeed across grid boundaries implies an unbounded second 
derivative and ill-posedness for amplitude calculations. 

E. 1.1 A Simple Example, Raytracing in Constant- Wavespeed 
Media 

We will show, here, a simple calculation of P and Q for the example of 
Section E.4.1. We take the ray parameters of that example to be 

6Recall, from Appendix D that a solution is well-posed if it exists, is unique, 
and depends continuously on the initial data. 
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(} = /1' ¢ = /2. 

The initial data for the problem are 

x = xo, p = poro("Y), s = 0. (E.7.9) 

In this equation, 

Po= 1/eo, ro("Y) = (cOS/1 sin/2,sin/1,sin/2,COS/2)· 

For constant wave speed, p is constant on the rays, given by its initial 
value above. The solution of the ray equations for x, in arclength variables, 
(E.2.13), is 

X= Xo + sro("Y). (E.7.10) 

Then, by direct differentiation, we find that 

Q(1) = s sin /2'YI, Q(2) = s..Y2, (E.7.11) 

with the two unit vectors here given by 

1'2 = ( cos/1 cos /2, sin /1 cos /2,- sin /2)· 

(E.7.12) 

It is now an easy matter to take the triple scalar product and find that 

J = dx. Q(1) X Q(2) = s2sin12. (E.7.13) 
ds 

Now, we want to determine Q(1) and Q(2) from the differential equations 
(E.7.6). First, we need the initial values for these variables. Those are ob­
tained by differentiating the initial values for x and p with respect to /1 
and /2 in equation (E.7.9). Thus, we find that 

Q(l) = Q(2) = 0, p(1) = Poi'1 sin12, pC2) = Po..Y2. (E.7.14) 

For constant wave speed, W, (E.7.7), is a zero matrix and then, from 
(E.7.6), p(1) and p(2) are constant on the rays, given by their initial values, 
(E.7.14). Note that these initial values are both orthogonal to dxjds, so 
that the equations for Q(1) and Q(2) in (E.7.6) reduce to 

dQ(1) ' . dQ(2) ' 
~ = f1 Slll/2, ~ = f2• (E.7.15) 

The solution of these two equations is just the result, (E. 7.11), obtained by 
direct differentiation. 

E. 7.2 Dynamic Raytracing in a 

We can also derive dynamic equations in the ray parameter a, for which 
the ray equations are given by (E.2.11). We need only differentiate that 
system of equations with respect to 1 to conclude that 
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dQ =P 
dO" ' 

(E.7.16) 

Here, 

i,j = 1, 2, 3. 

E. 7. 3 Dynamic Raytracing in r 

We can derive differential equations for P and Q in terms ofT by starting 
from (E.2.12). The derivation is similar to the derivation of the equations 
in s. The result is 

(E.7.17) 

Here, 

i,j = 1, 2, 3. 

E. 1.4 Two Dimensions 

Whether we are doing 2D modeling or 2.5D modeling, the ray Jacobian 
that is needed is J2D, belonging to a two-dimensional in-plane ray-family. 
In this case, 1 is a scalar. In fact, there is nothing new to do here to find 
8x/fJr. It is only necessary to reinterpret the derivation above, in 2D. Thus, 
the vectors x, p, Q and P, in the above equations, should be reinterpreted 
as two-dimensional vectors, and the matrices, D, W, etc., should now be 
interpreted as 2 x 2 matrices. With this done, (E. 7.6) provides the equations 
for Q and Pins, (E. 7.16) provides the equations in O", and (E. 7.17) provides 
the equations in T. 

E. 7. 5 Conclusions 

In summary, we have derived a system of equations that describes the 
propagation of the second and third rows of the matrix whose determinant 
is the Jacobian, J, needed in the solution for the amplitude along the rays. 
In this manner, the computation of the amplitude is incorporated into an 
enhanced system of ray equations. The differential equations are given for 
s, O", or T, the running variable along the ray. The example demonstrates 
the use of this system of equations to determine those Jacobian elements. 

We have not described the system of equations in ray-centered coordi­
nates. We cannot do justice to this approach in this appendix, and strongly 
refer the reader interested in implementation to Cerveny [2000]. 
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E.8 The Kirchhoff Approximation 

Green's theorem allows us to represent a wavefield on either side of a surface 
of infinite extent in terms of the wavefield and its normal derivative on the 
surface. Here, we distinguish between "representation" and "solution." By a 
Kirchhoff solution, we mean an integral over the surface in which the values 
of the wavefield are replaced by known quantities, so the representation is 
transformed into an integral formula that describes the wavefield away from 
the surface. 

The Kirchhoff approximation is a means by which we can transform 
the Kirchhoff integral representation into an approximate solution for the 
wavefield "scattered" upward or downward from an infinite interface. The 
method can be extended in a straightforward manner to reflectors of finite 
extent. (That extension will be mentioned in context, below). It can also be 
extended to vector wavefields: elastic-both isotropic and anisotropic-and 
electromagnetic. 

The essence of the approximation is the replacement of the unknown val­
ues of the upward and downward propagating wavefields and their normal 
derivatives by corresponding elements of the (assumed known) incident 
wavefield at the interface. Of course, we are going to use the results we 
developed about reflection and transmission in the earlier sections of this 
appendix to identify those values. 

The integrand of the Kirchhoff-approximate solution will have the fa­
miliar form, F(w)Aexp{iwT}. When the method of stationary phase is 
applied to the integral, the stationary point for the upward-scattered field 
is the specular reflection point for the given source and receiver points; 
for the downward-scattered field, the stationary point is the point that 
couples the incident and reflect wavefields through Snell's law. When the 
stationary point is simple--that is, when the matrix of second derivatives 
is nonsingular-we would expect that the result of stationary phase will 
agree with the reflected or transmitted wavefield derived from ray theory. 
In simple examples, this can be verified, but a general proof of this agree­
ment is not available, although it is generally accepted that the results 
agree. When the leading-order expansion arises from a higher order sta­
tionary point, the Kirchhoff approximation will still provide a reflected or 
transmitted wavefield, while the ray theory that we have developed will 
not. The reason is that in this case the wavefield is being evaluated right 
on a caustic surface where our simple ray theory breaks down because the 
Jacobian of the amplitude function is zero. 

With appropriate modifications of the amplitude in the Kirchhoff ap­
proximation, it can further account for caustics in the wavefields of the 
point-source ray families from the source and receiver. Further, for finite 
reflectors, in regions dominated by diffractions, the Kirchhoff approxima­
tion will get the traveltime values and the amplitude decay right, but will 
only provide an approximate diffraction coefficient. However, in transition 
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regions between reflection and diffraction, the approximate diffraction is 
sufficiently accurate for the Kirchhoff-approximate solution to provide a us­
able approximation of the transitional field. Thus, for numerical modeling 
of the upward-scattering field, it can prove to be superior to ray methods. 

Because of these features of the Kirchhoff-approximate wavefield, we hes­
itate to call the upward-scattered field the "reflected field," but have chosen, 
above, to call it the (upward) scattered field. Below, then, we will use the 
notation us for this wavefield. 

The amplitude and phase of the Kirchhoff approximation are functions 
of the observation point, as well as functions of the integration variables. 
Some applications will require differentiation of this wavefield. Caution is 
in order when carrying out those differentiations. We need to think of the 
amplitude as the first term of an asymptotic expansion of the type 

[A A1 ] iwr +iw+ ... e · 

Here, (· · ·) stands for lower-order terms in iw. Now, let D represent any 
sort of spatial derivative operator and calculate derivatives of this two-term 
expression. 

[ A1 ] · · D A+ iw + .. · etwr = [iw (A(DT) + DA + A1(DT)) + .. ·)] etwr 

D2 [A+:~ + .. ·] eiwr 

= [(iw)2 A(D2T) + iw{2(DA)(DT) + A(D2T) + A1(D 2T)} + · · ·] eiwr. 

At each order of differentiation, we can see that the second order expres­
sion on the right side involves both A and A1. Thus if, in the integrand 
of the Kirchhoff-approximation of the wavefield, we use only the ampli­
tude, A, and do not include the first correction term, A1 , we can only 
retain the first-term approximation of the derivatives of the amplitude; the 
second-order term arising from differentiation of A and T only, is incorrect. 

There is one exception to this rule. Suppose that D = 'V, for which 
D2 = 'V2 and (DA)(DT) = 'VA · 'VT. Suppose further that the phase 
satisfied an eikonal equation, 

Now consider the combination, 

2 1 
('VT) = 2' 

c 

[ 'V2 + ~:] [A+:~ + · · ·] eiwr = [iw[2('V A)('VT) + A('V2T)] + · · ·] eiwr, 

just as in our development of ray theory. Now the two-term expansion has 
led to a leading-order expression solely in terms of T and A; that is, not 
involving the next order amplitude, A1. Hence, for this exceptional case, 
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a two-order expansion in iw is valid. This idea is exploited in Section 3.8, 
where the phase satisfies the eikonal equation with wavespeed, c/2. 

E. 8.1 Problem Formulation 

Let us consider a problem in which a point source is set off above an 
infinite interface, denoted by S, across which the propagation speed c(x) 
and/or the density p(x), changes. As earlier in this appendix, we will use a 
subscripts- and+ on variables above and below S, respectively. Thus, the 
total wavefield is governed by equation (E.6.1) with subscripts- above the 
interface, and by the same equation with subscripts + on the coefficients 
below the interface. When necessary to distinguish the differential operator 
below the interface, we will use a subscript + on the operator, as well. 

The total field is assumed to satisfy the Sommerfeld radiation conditions, 
which are 

lim ru =bounded, lim r [f)f)u - iw u] = 0. 
r-+oo r-+oo r c 

(E.8.1) 

Furthermore, the total field satisfies the equations, 

C_u(x,x8 w) = p_(x)\7 · [P-~X) \7u(X,X8 w)] + c~:) u(x,w) 

= -F(w)8(x- X8 ), above S, 

C+u(x,X8 W) = P+(x)\7 · [P+~x) \7u(X,X8 w)] + c!c:) u(x,xsw) 

= 0, below S. (E.8.2) 

We write the total solution as follows: 

u = { UJ +us, above S, 
ur, below S. 

(E.8.3) 

We think of UJ as "the incident wave," us as the "scattered wave" above 
the reflector, and ur as the "transmitted wave" below the reflector. We 
further require that 

L-UJ(X,X8 ,w) = -F(w)8(x- X8 ), L-Us(X,X8 ,W) = 0, above S, 

(E.8.4) 

C+ur(X,X8 ,w) = 0, below S. 

Actually, for u1 , we propose to consider an extended wavefield below S in 
which the wavespeed and density have been continued in a smooth manner 
from their values above S. Further, we want that smooth extension not to 
admit turned rays. Then, for any extension of the medium parameters, the 
ray theoretical solution for UJ will remain unchanged. We think of UJ, then, 
as a "free-space" incident wave. 
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Moreover, if we denote by g(x,x 8 ,w) the equivalent free-space Green's 
function, that is, the function that satisfies the extended form of (E.8.4) 
with F(w) = 1, then 

UJ(X,X 8 ,w) = F(w)g(X,X 8 ,w). (E.8.5) 

As in Section E.6.2, we couple these wavefields above and below the 
reflector by requiring that the total wavefield be continuous and that the 
normal derivative multiplied by the density also be continuous across the 
reflector. 

Below, we will develop a Kirchhoff-approximate solution for the scattered 
wavefield, us, above the reflector. 

E.8.2 Green's Theorem and the Wavefield Representation 

We begin the discussion with equation (3.1.10). However, we have no need 
of the subscript zero, here. Thus, we rewrite that equation here as 

L {g* £u- uC*g*} dV =laD {g*~~- u ;~} dS. (E.8.6) 

In this equation, the normal direction in the differentiations is the outward­
pointing normal to the boundary, oD. The function g* is the adjoint Green's 
function that satisfies (5.6.2), that is, 

C*g*(x,x9 ,w) = -8(x- x 9 ). (E.8.7) 

As with UJ, this will be a free-space Green's function, satisfying (5.6.2) 
everywhere with the medium parameters extended smoothly as described 
above. 

We introduce a sphere of large radius, R (that will eventually approach 
infinity). See Figure E.2. This sphere will cut S in such a manner that 
the domains above and below S, say Da and Db, respectively, are roughly 
hemispherical. We denote by SR the part of S inside of D and by Sa and 

FIGURE E.2. Diagram describing the domains used in the derivation of the 
Kirchhoff approximation. 



480 E. Introduction to Ray Theory and the Kirchhoff Approximation 

sb the parts of the spherical surface, an, that lie above and below s, 
respectively. 

In (E.8.6), we take D to be Da. In this domain, by using the differential 
equations (E.8.2) and (E.8.7) on the left side of (E.8.6), we may write the 
integral equation 

r {g*.Cu- u.C*g*}dV = u(xg,Xs,w)- F(w)g*(xs,Xg,w) 
}Da 

= UJ(X9 , X8 W) + us(x9 , X8W)- F(w)g*(x8 , X9 , w) 

=1 { *a(ui+us) -( )8g*}ds g a UJ +us a . 
Sn+Sa n n 

(E.8.8) 

The Green's identity, (E.8.6), can also be applied to the functions, g* and 
UJ themselves, yielding 

{ {g* £u1- UJ.C*g*} dV = UJ(x9 , X8 W)- F(w)g*(x8 , x 9 ,w) 
}Da 

-1 { *au1 8g*}ds - g --UJ- . 
Sn+Sa 8n 8n 

(E.8.9) 

We use this identity in the last two lines of the previous equation to arrive 
at the result 

1 { *Bus 8g*} u8 (x9 ,xsw) = g -8 - us-8 dS. 
Sn+Sa n n 

(E.8.10) 

The next step is to examine the consequences in this identity of the limit 
as R approaches infinity. First, note that Sn approaches S in that limit 
and we need only concern ourselves with the convergence of the integral 
over that surface of infinite extent; this will be discussed below. 

Now consider the integral over Sa. We can set 

dS = R 2d0, 

where dO represents the differential solid angle on the surface of the sphere 
(or, equivalently, on the surface of the unit sphere with the same center). 
For increasing radius, the normal to Sn approaches the unit vector in the 
Cartesian radial direction, no matter the finite difference between the center 
of Sn and the origin of the coordinate system. Thus, 

{ *Bus 8g*} { * [Bus iw J [8g* iw *] } 2 g--us- dS= g ---us -us ---g R dO. 
8n an 8R c 8R c 

On the right side, the normal direction has been identified as the direction 
of increasing R. Further, the expression iwusg* fc has been subtracted and 
added in order to create the linear combination of function and derivative 
appearing in the second Sommerfeld condition in equation (E.8.1). 
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Now, in each expression on the right, we combine terms to yield two 
factors of the form Rus and Rg* and two factors of the form R times one 
of the square-bracketed expressions. According to the Sommerfeld radiation 
conditions, the former pair of factors remains bounded as n --+ ()() while 
the latter pair approaches zero in that limit. Thus, in the integral over Sa 
on the right side of (E.8.10), written as an integral in n, the integrand 
approaches zero with increasing n while the domain of integration remains 
bounded inn (by 4n). Hence, in the limit, R--+ oo, the integral over Sa in 
(E.8.10) is zero. Thus, we can write 

us(x9 ,xsw) =is {g*~~ -usi~}ds. 
Finally, we will make one more change in this equation. Recall that in 

Green's identity, the normal direction is pointed outward from the domain 
of integration. That, in turn, implies that the normal to S here is pointed 
downward. Our preference is to have a representation in terms of an upward 
directed normal. Thus, we write 

us(x9 ,xsw)= fs{us;~ -g* 88~}ds, (E.8.11) 

where now it is to be understood that n is an upward-pointing normal to 
the surface S. This, then, is our representation of the upward-scattered 
field above a surface in terms of the values of the wavefield and its normal 
derivative on the surface. 

It should be noted that S need not necessarily be a reflecting surface 
with discontinuous medium parameters on the two sides. The derivation, 
up to this point, makes no use of that part of the formulation of the pre­
vious section; that will become important only in the next section, when 
we discuss the Kirchhoff approximation. On the other hand, if S were a 
reflector, it need not be of infinite extent. One would need only to extend 
a finite reflector in some manner to infinity, allowing the possibility that 
the medium parameters were discontinuous only across a part of S. 

Remark E.l. In the derivation, no use was made of the relationship be­
tween ur and the Green's function, g. From this relationship, one can verify 
that 

UJ(x9 ,X8 ,w)- F(w)g*(x 8 ,X9 ,w) = F(w) [g(x9 ,X8 ,w)- g*(x8 ,X9 ,w)]. 

By using Green's theorem over the entire sphere, Da +Db, in the extended 
"-" domain, one can show that the Green's function difference in this 
equation is zero; that is, the free-space7 Green's functions of the differential 
equation and its adjoint differ only in the order of the spatial variables­
the interchange between apparent source and observation point in their 

7Equally true for the complete exact Green's functions of the original problem. 
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arguments: 

g(x9 , X 8 , w) = g*(x8 , x 9 , w). (E.8.12) 

Then, the surface integral in (E.8.9) must also be zero. Again, this is easy to 
verify. Simply surround the surface, Sn_ +Sa, by an even larger sphere whose 
radius will eventually move off to infinity while this surface remains fixed. 
Now, apply Green's theorem to the volume between these two surfaces. 
On the one hand, the volume integral is zero because there are no sources 
between the two surfaces. On the other hand, the Sommerfeld radiation 
conditions assure that the integral over the larger surface approaches zero 
as the radius of the surface approaches infinity. Thus, the integral over 
Sn_ + Sa must also be zero. 

Finally, we remark that, in the limit, as R -t oo, the integral over each of 
the surfaces, Sn_ and Sa must approach zero, separately. The Sommerfeld 
radiation conditions assure that the integral over Sn_ approaches zero with 
increasing radius just as did the integral over this surface with wavefield, us. 
Now, with the Green's function difference equal to zero, the only remaining 
term in the second equality in (E.8.9) is the integral over Sa. Hence it must 
be zero as well. 

This last can be verified independently, as follows. Consider the inte­
gral over the domain bounded by Sn_ and Sb. This, again, is equal to 
a corresponding volume integral by Green's theorem. However, there are 
no sources inside the interior volume bounded by these two surfaces. So, 
that volume integral is zero. On the other hand, the integral over Sb will 
approach zero with increasing radius, again as a consequence of the Som­
merfeld radiation conditions. Hence, the integral over Sn_ must approach 
zero in this limit as well. 

The reader may wonder why the surface integral in (E.8.11) cannot be 
shown to be zero by the same sort of argument that was applied to the inte­
gral with UJ in place of us. There is a fundamental difference between these 
two functions at the surfaceS. Both UJ and g* are downward-propagating 
functions at S and their continuations in the extended domain both satisfy 
the Sommerfeld conditions, (E.8.1). We can think of these two functions 
as outgoing functions. On the other hand, us is upward propagating at S. 
Hence, it is incoming; its continuation in the extended medium for which 
£_ remains the governing equation, would not satisfy the same Sommerfeld 
radiation condition at infinity in the lower domain. In fact, we would have 
to change the sign in the Sommerfeld condition, essentially replacing -i 
by +i. So, now suppose that we tried to "close" Sn_ with the approximate 
hemisphere Sb, and use the same trick of adding and subtracting a term in 
the integrand. Then, 
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J { *aus ag*} dS g---us-
sb an an 

J { * [aus iw J [ag* iw *] } 2 = g ---us -us ---g n dO. 
sb an c an c 

The Sommerfeld conditions assure us that the second integral on the 
right will approach zero as before; g* satisfies the Sommerfeld conditions, 
(E.8.11), in all directions. However, the opposite sign in the Sommerfeld 
condition for us in the lower domain allows us only to conclude that 

1 { * aus ag* } 1 iw * 2 g--us- dS~ -2 -g usn dO. 
sb an an sb c 

While the first Sommerfeld condition assures that this integral is bounded, 
it is certainly not guaranteed to approach zero as SR. ---+ oo. 

One point remains to be cleared up in our derivation: the convergence of 
the surface integral in (E.8.11). Actually, there is nothing to prove, here. 
The equality between this surface integral and us(x9 , X 8, w) assures us that 
the integral converges. This follows because us is a solution of a well-posed 
problem and is itself bounded as a consequence of the first Sommerfeld 
condition. 

E.8.3 The Kirchhoff Approximation 

We now have all the tools in place to write down a Kirchhoff approximation 
for the upward-scattered field from a reflecting surface. In fact, for the 
purpose of analysis of our inversion formulas for reflectivity, what we really 
care about is making an approximation that gets the reflected wave right. 
Anything more should be considered a bonus! 

We assume that some known wave UI is incident at the surface, S. In fact, 
we think of u I as being exactly the function u I ( x, x s, w) of the previous 
section. As a minimum, we cannot hope to get the reflected wave right in 
the upper medium if we do not get it "right" on the surface S itself. In 
earlier sections, we developed initial data on a reflecting surface by imposing 
appropriate interface conditions and then simultaneously solving for the 
initial values of the phase and leading-order amplitude of the reflected 
and transmitted waves. Whether dealing with the constant-density case, 
equations (E.4.21) and (E.4.23), or the variable-density case, equations 
(E.6.12) and (E.6.13), one relationship between the leading-order incident 
and upward-scattered wave is 

uR = Rui, on S. 

To leading order, we also saw in those discussions, that calculating the 
normal derivative simply amounted to 
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(i) multiplying by iw times the normal derivative of the travel time and 
(ii) noting that the normal derivative of the reflected wave is just the 

negative of normal derivative of the incident wave. 

That is, to leading order in iw, 

OUR - ROU[ s on - - on ' on . 

We now propose to identify our upward-scattered wave with this reflected 
wave on S and take as the Kirchhoff approximation the two conditions, 

R ous - ROU[ s (E ) us= ur, on -- on' on . .8.13 

While we have written a normal derivative of the total wavefield here, we 
must remember to retain only the leading-order term in iw in applying 
these approximations. Furthermore, in the ray theory, this approximation 
is coupled to an initial reflected ray direction that satisfies Snell's law. Here, 
we take the angle in the reflection coefficient as the angle that the incident 
wave makes with the normal to the reflector at each point. Thus, a different 
direction of reflection is picked out at each point on the reflector. Not all of 
these directions correspond to reflected rays that arrive at x 9 • However, as 
we have seen in examples throughout the text (Section 3. 7.2, Exercise 20, 
Section 5.4.1 and Section 7.4.1), the method of stationary phase will pick 
out the reflection points on the surface. 8 For any other type of wave, we 
should not expect a correct amplitude and can only hope (and check!) that 
the traveltime is right. 

We now use this approximation in (E.8.11) to transform that wavefield 
representation into the the Kirchhoff-approximate solution for the upward 
scattered wave. The result is 

f { og* *Bur} f 8(urg*) 
us(xg,Xsw) = ls R U[ on+ g an dS = ls R an dS. (E.8.14) 

This, then, is the Kirchhoff approximation to the upward-scattered 
wave. Historically, modeling formulas of the form of (3.7.1) were cre­
ated to describe the phenomenon of the diffraction of light through a 
perforated screen (a solid plane with a hole in it). (The term "diffrac­
tion" refers to ray bending that cannot be accounted for by either 

81t is a harder task to prove, in general, that the leading-order asymptotic 
expansion gives the same amplitude as the ray-theoretic reflected field at x 9 . In 
fact, the literature contains only approximate proofs, depending on ray-centered 
coordinate systems. The problem is that the Hessian matrix for the stationary 
phase analysis, involves mixed second derivatives of the the total traveltime. 
The ray Jacobian for the reflected wave contains only second derivatives of the 
reflected traveltime, which, of course, is linked to the incident traveltime through 
the boundary conditions. The connections are by no means trivial and we are not 
aware of a complete proof of the equivalence. We cite some of the literature on 
the approximate proof: Bortfeld [1989], Goldin [1986], Hubral et al, (1992]. 
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reflection or refraction.) Equation (E.8.14) most closely resembles the clas­
sical "Rayleigh-Sommerfeld" diffraction formula-the classical "Kirchhoff" 
diffraction formula of optics has a slightly different form. However, the 
name "Kirchhoff" is applied here because the "Kirchhoff approximation" 
is made as part of the derivation. See Goodman [1996], Born and Wolf 
[1980), or Bleistein [1984). 

We need also to address the possibility that the rays from a particular 
source point do not illuminate the entire surface. In that case, we would 
set R = 0 in the "shadow regions" on S, effectively reducing the domain 
of integration. Similarly, if the reflector had edges and did not extend to 
infinity, we would still treat S as infinite, but having reflection coefficient 
zero where the actual reflector did not exist, again effectively limiting the 
domain of integration to the reflector. 

To proceed further, suppose we denote the ray theoretic amplitude of 
the point-source free-space Green's function by A(x, x 8 ). This is just the 
amplitude discussed in Section E.3. Then according to (E.6.8), for the 
variable-density case, we should set 

B(x,x 8 ) = (E.8.15) 

Then, by using (E.8.12), we can also express the leading-order amplitude 
for g* as 

B*(x,x9 ) = (E.8.16) 

In this last equation, the interchange in arguments in A, as compared to 
the previous equation, is not important, because of the symmetry of the 
amplitude A in its arguments. However, the interchange of arguments in 
the quotient of densities is extremely important. 

We use these last two results in (E.8.14) and extract the leading-order 
expression in w to find that 

r p(xg) 
us(x9 , X 8 w) = iw Js R p(xs) A(x9 , x)A(x,xs) 

· (n · V' [T(x9 , x) + T(x, x 8 )]) 

. eiw{ r(oo 9 ,:c)+r(:c,:c.)} dS. 

(E.8.17) 

In this formula, R is given by (E.6.13) for variable-density media. We set 
the ratio of densities equal to unity and R is given (E.4.23) for constant 
density media. Of course, we will regularly use this result with x as the 
first argument in the amplitudes and traveltime. 
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E.8.4 2.5D 

It is not difficult to specialize (E.8.17) to 2.5D. We need only make the 
same assumptions about the wavespeed and density that were made in the 
formulation of 2.5D ray theory, which is to say that these functions are 
independent of the out-of-plane variable, x2. In addition, we must take the 
out-of-plane source and receiver coordinates to be the same, X 8 2 = x92 = 
x20 , as well. For this case we also have the result (E.5.2) for the second 
component of the rays 

Ps2 = Ps20, 

Pg2 = Pg2o, 

X2 = X20 + Ps20G's, 

x2 = x2o + P92oa9 . (E.8.18) 

Furthermore, we define the surface S by a curve in ( x1, X3) for any value 
of x2; that is, we set 

dS = dx2ds, 

with s being arclength along the defining curve, C. 
We now proceed with stationary phase analysis in x2 on the phase 

function 

(E.8.19) 

with first derivative 

(E.8.20) 

From the ray equations, (E.8.18), we can see that Ps2 and p92 must have 
the same sign for any choice of x2 on S. Therefore, the only way that the 
first derivative can be equal to zero is if the separate terms on the left side 
of this last equation are separately equal to zero. However, returning to 
(E.8.18), we can see that this means that, for stationarity, x2 = x2oi that 
is, x2 is the common second coordinate at the source and receiver. 

Now, we may consider the second derivative of the phase, 

d2¢(x2) 8Ps2 8pg2 -.,...:..,....-'- - -- + --
dx~ - dx2 dx2 · 

By differentiating the ray equations implicitly, we find that 

8Ps2 8a s 8p92 8a 9 
l=-d as+Ps2-d =-d-ag+Pg2-d · 

X2 X2 X2 X2 

(E.8.21) 

At the stationary point, the second term in each of the last two expressions 
is equal to zero, so we conclude that 

and 
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(E.8.22) 

at the stationary point. 
Finally, we apply the stationary phase formula to transform (E.8.17) into 

the equivalent 2.5D result, 

us(Xg,XsW) = ~e3i7rsgn(w)/4 

1 P~g) ~~ 
· CR -(-)A(x9 ,x)A(x,x8 ) (E.8.23) 

PXs as+a9 

· (n · V' [r(x9 , x) + r(x, x 8 )]) eiw{r(:z:g,:z:)+r(:z:,:z:.)}ds. 

Here, all dependence on the out-of-plane variable is gone and all vectors are 
two-dimensional, with components in the in-plane directions, (1, 3), only. 

E. 8. 5 Summary 

Through the application of Green's theorem, we have constructed high­
frequency representations of the scattered field us. We obtained an integral 
over the reflecting surface for 3D, and, respectively, an integral over the 
defining curve on the surface for 2.5D. These integrals are written in terms 
of the reflection coefficient R, rather than in terms of the perturbation in 
wavespeed a(x) that we saw in the Born-approximate integral equations 
that we used in the first part of the text. Because we wish to construct 
inversion formulas that are integrals in survey coordinates, which permit 
us to solve for reflectivity, these Kirchhoff representations of us provide 
a better starting point for constructing our inversion formulas than our 
original Born-approximate integral equations. Yet, in reality, the results 
obtained by starting from either the Born approximation or the Kirchhoff 
approximation to derive an inversion formula are much the same. In either 
case, we arrive at high-frequency asymptotic representations of reflectivity 
as our inversion results. 
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KMAH index, definition, 281 

Lagrangian manifold, 439 
Laplace transform, 414 
Large parameter, 102, 114, 115, 

130, 131, 136, 138, 151 
Length scale, characteristic, 2 
Linear systems, 27, 32, 79 
Linearization, 40, 94 

in terms of reflectivity, 241 

Macro-model in Kirchhoff data 
mapping, 317 

Microlocal analysis, 215 
Migration 

graphical, See Hagedoorn's 
graphical migration method 

oblique lines, 282 
prestack, 16 
reverse-time, wave-equation, 156 
Schneider's Kirchhoff, 127, 133, 

135, 216 
Stolt, 216 

2D, 142 
3D, 119, 126 

with topography, 218 



508 Subject Index 

Migration dip versus reflector dip, 
167, 225, 230, 233, 260, 262 

apertures and, 168 
defined, 167 

Models 
1.5D (one-and-one-half 

dimensional), 106 
2.5D (two-and-one-half 

dimensional), 20, 123 
2.5D (two-one-half dimensional), 

282 
2D (two dimensional), 138 

Monostatic, See Source-receiver 
geometries and gathers, 
zero-offset 

Multi-pathing, 27, 316 

Near-elastic models of attenuation, 
27 

Neutralizer function, 69, 272, 392 
NMO-bin-stacking, See Bin­

NMO-stacking of 3D 
data 

NMO-DMO, dynamical inaccuracy 
of, 345 

Normal (directional) derivative 
operator, 52, 65, 120, 162, 
190, 196 

Normal moveout correction (NMO) 
and NMO-stacking, 14, 173, 
312 

Offset continuation, 313 
and KDM, 317 

Perturbation theory, 36, 82 
Perturbation, a(y), 37, 90, 91 
Point scatterer, defined, 177 
Primary reflection, defined, 27 
Principal radii of curvature, 151, 

185, 197, 240 
Progressing wave expansion, 436 
Pseudodifferential operator, 41, 64 

elliptic, 65, 215 
symbol, 65 

Pulse-echo, 7, See Source-receiver 
geometries and gathers, 
zero-offset 

Quasi-linear equations, solving, 441 

Radiation condition, 29, 33-35 
Radiation conditions 

1D, 28, 29, 32, 36, 53, 81 
Sommerfeld, See Sommerfeld 

radiation conditions 
Rapidly decreasing function, 399 
Ray equations, 284 

initial data in 2D and 3D, 453, 
454, 457 

reflection and transmission, 459 
variable-density, 469 

Ray Jacobians and ray amplitude 
theory 

failure of, 236 
in 2.5D, 285, 286, 465 
in 2D and 3D, 448 

Ray parameter 
arclength s, 286, 444 
depth (xs), 288 
sigma (a'), 286, 443 
traveltime ( r), 286, 444 

Ray theory, 100, 435 
2.5D, 285, 290, 464 
dynamic, 4 70 
failure of, 281 
for modeling, 283 
geometrical optics, 27 
variable-density, 467 

Ray vectors (identified with 
wavenumber vectors), 163, 
188 

Ray-centered coordinates, 472 
Rayleigh criterion, 6, 114, 424 

resolution of narrowly spaced 
beds, 6 

Rays 
shooting, 284 
specularly-incident, 233 

Reciprocal wavenumber, 77, 114, 
261, 280, 305, 31~ 335, 338, 
381, 383 

and Fourier imaging, 198 
defined, 6 
radii of curvature, 158 

Reciprocity, theorem of, 40, 82 
3D, 93 

Reflection coefficient, 99, 102 



fully angularly dependent, 102, 
265 

normally incident, 105, 110, 117, 
120, 143, 148, 150, 153, 154, 
158, 160 

Kirchhoff-approximate, 145 
plane wave, 88 
preservation of, in KDM, 316 

Reflection seismic method, vii 
Reflectivity function, 26, 88, 105, 

162, 216, 221, 226, 238, 240 
Reflectivity series, 26 
Reflector curvature (information 

contained in traveltime 
curvature), 314 

Regularization, 42, 49 

Sampling, 79 
Scattered field 

v(z) medium, 104 
1D, 36, 38 

due to a layer, 56 
constant-wavespeed, 103, 107 
higher-dimensional, 91 
integral equations describing 

1D, 39 
Born-approximate, 93, 217, 

220, 227 
Born-WKBJ, 220, 229 
Born-WKBJ, variable-density, 

83, 277 
in terms of reflectivity (3, 240 

variable-wavespeed, variable­
density, 113 

Scatterer, 36 
Scattering problem, 90 

forward, 36 
Scattering source, 38 
Schwartz space, 400 
Schwartz theory of distributions, 

390, See Distribution theory 
Self-adjoint versus non-self-adjoint 

operators, 34, 221 
Signature of a matrix, defined, 128 
Sine function, defined, 55 
Sine interpolation, defined, 79 
Singular function 

asymptotic order estimate, 185 

Subject Index 509 

bandlimited, 216, 226, 233, 240, 
257, 260, 262-265, 275 

defined as a distribution, 395 
of a line, 120 
of a surface, 148 

Singular support, 65, 215, See 
Wavefront set 

Small perturbation assumption, See 
Born approximation, 11 

removing, 77, 238 
requirement in inversion, 241 

Smoothing operator, 65 
Sommerfeld radiation condition 

applying, 91 
Sommerfeld radiation conditions, 

90, 91, 93 
Source process time, 18 
Source-receiver geometries and 

gathers, 12 
common-(shot)source, 13 
common-angle, 323 
common-image-point, 323 
common-mid(depth)point, 13 
common-offset, 13, 98, 218 
common-receiver, 13, 98 
crosswell(crosshole), 14, 97, 304 
vertical seismic profiling (VSP), 

14, 97, 219, 268, 302 
zero-offset (approximate), 219 
zero-offset, monostatic, 

backscatter, pulse-echo, 7 
Spatial aliasing, 3 
Static correction, 218 
Stationary phase 

accuracy, 134 
Stationary phase, method of, 7, 23, 

165, 185, 198 
2.5D inversion from 3D, 293 
accuracy, 131 
applicability to Kirchhoff data 

mapping, 314, 335 
applied to KDM, 321 
applied to Kirchhoff data, 258 
applying, 132, 133 
Kirchhoff inversion from Born, 

127 
multidimensional, 257 
multidimensional formula, 128 
one-dimensional formula, 129 
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Stationary ( continuerf) 
accuracy, 130 

stationary triple, 232, 233, 243, 
260, 261, 266 

Stationary point, 128-132, 476, 486 
near an endpoint, 131, See 

Uniform asymptotics 
Stationary triple, 233, 266, 267 
Step function, 121, 402 

bandlimited, 48 
Synthetic aperture, 97 

defined, 164 
focusing technique (SAFT), 97, 

164 
radar, 164 

Tangent and cotangent bundles, 
See Migration dip 

identified with reflector and 
migration dips, 215 

Test functions, 391, See 
Distribution theory, 392 

Tomography, 4, 305 
Topological vector spaces, See 

Distribution theory, 391 
Total field, 37 
Transformation to zero-offset 

(TZO), 15, 173 
Transformation to zero-offset 

(TZO) and Kirchhoff data 
mapping (KDM), 317 

2.5D, general theory, 354 
Gardner-Forel, 363 
Hale, 361 

3D, general theory, 380 
Gardner-Forel, 387 
Hale, 386 

constant-background, space­
frequency formulation, 
384 

Transport equation 
higher order 

lD, 68 
in 2D and 3D, 453 

in 1D, 67 

in 2.5D, 465 
in 2D, 228 
in 2D and 3D, 101, 220, 221, 438, 

446 
ODE form, 448 

TZO, See Transformation to 
zero-offset (TZO) 

Uniform asymptotics 
defined, 151 
in data mapping, 327 
replacement for WKBJ, 236 

Updating the field (in inversion), 
71, 74 

Velocity analysis, 11, 32, 99, 219, 
312 

Vertical seismic profiling (VSP), See 
Source-receiver geometries 
and gatheres, vertical 
seismic profiling (VSP) 

Wave equation, See Helmholtz 
equation 

1D, acoustic, variable-density, 34, 
81 

1D, scalar, 29 
Wave equation-datuming, 218, 313 
Wave-equation datuming, See 

Kirchhoff data mapping 
(KDM) 

Wavefront set, 215 
Waves 

compressional, 7, 20 
elastic, 20 
evanescent, 111 
shear, 21 

Well log, 25 
Wiggle trace, 8 
WKBJ trial solution, 100 
Wronskian, 68 

Zero-offset, See Source-receiver 
geometries and gathers, 
zero-offset 
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