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Preface

The disciplines of applied science and engineering have become increasingly
mathematical in content during the past twenty-five years. The various
branches of geophysics are no exception to this trend.

Since 1921, when J. Clarence Karcher [Karcher, 1993] first used the reflec-
tion seismic method for petroleum exploration, geophysicists have sought
better ways of employing seismic data to gain information about the Earth’s
subsurface. While the reflection seismic method is still used primarily by
the oil and gas industry for the detection of hydrocarbons (petroleum and
natural gas) the technique has been applied successfully to image struc-
tures located in environments ranging from the Earth’s near surface (for
engineering geophysics applications), to the deeper crust and upper mantle
(for solid-Earth geophysics applications). Essentially the same technique,
though based on different physics, has been applied in the diverse fields
of ground penetrating radar, and acoustic and ultrasonic imaging, as prac-
ticed in the fields of materials science and medicine. Generically, all of these
techniques are special cases of “inverse-scattering” imaging. While our text
deals only with the seismic applications of inverse scattering, the mathe-
matical results we present here have applicability in these other fields as
well.

In its raw form, the data collected in seismic surveys offers only a crude
and distorted view of the subsurface. Techniques, generically called mi-
gration methods, were developed to correct the raw data, to produce
actual images of geologic structures. From a humble beginning as a graph-
ical method for analog data interpretation, migration has evolved into a
sophisticated exercise in applied mathematical physics.
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The push to an increasingly mathematical description of seismic migra-
tion began with the pioneering work of Claerbout, Stolt, Schneider, and
others in the early 1970s. The results obtained by these investigators were
based largely on the classical principles of geometrical optics, as well as
results from signal processing theory. Though intuitively satisfying to the
geophysicist, many of the early mathematical constructions of migration
formulas lacked mathematical rigor. The result of these investigations was a
hodgepodge of formulas that were obviously related but, as a group, lacked
a firm mathematical foundation. Furthermore, the heuristic nature of these
formulas made them difficult to generalize, hampering their extension to
new problems.

In this text, we present a collection of research results created at the
Center for Wave Phenomena (CWP), which is currently located the Col-
orado School of Mines, but was founded at the University of Denver. These
materials represent investigations conducted by the faculty and students of
CWP from 1977 through 1999. Our goal is to provide a unified approach
to seismic imaging, formulated as an inverse scattering problem in a small-
perturbation, high-frequency asymptotic regime. Our approach will permit
the reader to understand the classical results of seismic migration in a way
that reveals the inherent assumptions that were not explicitly stated by
the creators of these early results.

This understanding will carry the reader through the hierarchy of increas-
ingly complicated recording geometries and geologic models. Along the way,
many of the classical results of seismic migration will appear as special cases
of the general theory we present. In addition, the reader will see that other
topics, such as dip-moveout (DMO) processing, wave-equation datuming,
and offset continuation, also fit naturally in the theoretical framework we
present. Our intent is that the reader will develop an appreciation for the
open-endedness of this subject, so that he or she may use the general theory
we present here as a springboard to many new results.

This text began as a set of notes created by one of the authors (John
Stockwell) during the fall semester of 1987, the spring semester of 1988, and
the fall semester of 1989 for the courses “Mathematical Methods for Wave
Phenomena,” and “Multi-dimensional Seismic Inversion,” taught by Norm
Bleistein of the Center for Wave Phenomena, Department of Mathematical
and Computer Sciences, Colorado School of Mines. Portions of the text have
been based on Bleistein’s book, Mathematical Methods for Wave Phenom-
ena and the CWP Report #CWP-043, entitled Multi-dimensional Seismic
Inversion by Jack Cohen and Norm Bleistein. The latter set of notes was
prepared as part of a short course presented by Cohen and Bleistein at the
Norwegian Institute of Technology in Trondheim, Norway in 1986. Our text
is also based on material from the theses of graduate students of CWP, and
the many technical papers by the professors and students of the group.

Our primary goal in writing this book is to create a “hard copy” of a
course successfully taught to hundreds of students over a span of eighteen
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years, in both full-semester and short-course form. The diverse collection
of backgrounds of our students has shaped our approach in teaching this
material. Because the intended audience of this text is composed of peo-
ple with varied mathematical and geotechnical backgrounds, we present a
mixture of basic and advanced materials, more basic material than would
be in a purely mathematical treatment of the subject, but more advanced
material than geophysicists typically see. Thus, we intend that our text
bridge the gap between the theoretically minded applied-math community
and the applications-minded geotechnical community.

This is a mathematical-geophysics textbook, however. It is not a partial
differential equations book, nor is it a book on the mathematical theory of
inverse methods. We use the word Mathematical in the title as a geophysi-
cist, engineer, or implementation-oriented applied mathematician might
use it. Consequently, some mathematical precision is sacrificed to avoid
losing the thread of the story we are telling. On the other hand, we provide
comments and citations to the literature to direct the interested reader
to more rigorous sources. Also, appendices are supplied to familiarize the
reader with the topics of distribution theory, causal Fourier transforms,
ray theory, and dimensionless versus dimensional variables—topics that
are used in the main part of the text, but not discussed at length.

Chapter 1 begins with a heuristic and semihistorical overview, empha-
sizing the hierarchical structure of the subject of seismic migration, as seen
from the mathematical perspective of inverse problems. This hierarchy is
extended to delineate a plan for the investigation of more complex aspects
of the problem. We also describe the fundamental seismic experiments that
provide the data available for inversion, as well as an outline of the fun-
damental geometrical construction that leads to an image of the Earth’s
interior from a simple seismic experiment conducted in a correspondingly
simple Earth model.

In Chapter 2 we outline our basic approach to the creation of seismic
imaging formulas as Fourier-like integral equations, derived in the simplified
setting of 1D wave propagation. To do this, we employ the classical methods
of perturbation theory (the Born approximation) and Green’s theorem to
generate 1D modeling and inversion formulas. We rely on the simplicity of
1D to introduce many of the concepts that we employ in later chapters. We
do not, however, present any results that depend on characteristics that are
exclusive to the problem of one-dimensional wave propagation.

Chapter 3 deals with the derivation of Fourier-like inversion formulas
in higher dimensions for the migration of zero-offset, constant-background
seismic data. This is really just the 3D application of the ideas introduced
in Chapter 2. Both 3D and 2.5D inversion formulas for homogeneous me-
dia are derived, with several of the classic migration formulas (such as
those of Stolt and Schneider) appearing as special cases of the more gen-
eral theory. (The terminology 2.5D will be explained in context in that
chapter.) We test the general theory analytically by applying the inversion
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formulas to Kirchhoff-approximate data, with the resulting integrals being
approximated asymptotically, under a high-frequency or large-wavenumber
assumption. Qur primary tool for such analyses is the method of stationary
phase. Because these results are approximate, being based on asymptotic
methods, we introduce techniques to evaluate the robustness of numerical
implementations of our formulas.

In Chapters 2 and 3, we find that our zero-offset migration/inversion
formulas are Fourier-like integrals, which yield output consisting of a reflec-
tivity function that peaks on the surfaces of reflectors (the singular function
of the surface), yielding information about the reflection coefficient, but
which give no information about the smoother wavespeed variability of the
medium. This is in accordance with practical experience.

Chapter 4 shows that such results are based on fundamental properties
of Fourier-like integrals, when evaluated in the large-wavenumber regime.
In particular, the cascading of forward and inverse Fourier transforms on
data is found to yield, as the leading-order term, the most singular part
of the input data, under the large-wavenumber assumption. The most
singular part of reflection seismic data is the reflectivity function of the
reflectors—exactly the reflection coefficient times singular function results
of the previous chapters. Chapter 4 also shows that the effectiveness of the
inversion formulas we have created is due primarily to their Fourier-like
nature combined with the assumption of high frequencies. This frees us
from having to worry about many of the particulars—such as a specific
wavespeed profile or a specific type of seismic experiment.

We exploit this freedom to create inversion formulas for heterogeneous
media with general source-receiver geometries. Chapters 5 and 6 deal, re-
spectively, with 3D and 2.5D formulations of the problem. In Chapter 5, we
also eliminate, to the extent possible, the small-perturbation assumption
that was made as a point of departure in Chapters 2 and 3.

Chapter 7 brings us to the present (2000) by extending the concepts
and techniques developed in the previous chapters to the more general
problem of remapping seismic data from one source-receiver geometry to
another. This general subject contains the specific subtopic of dip-moveout
(DMO), under the heading of transformation to zero-offset (TZO), but
contains sufficient generality to be a potential springboard to other data
mapping techniques, including datuming, offset continuation, and data
regularization.

A text such as ours is characterized as much by materials omitted, as
it is by materials included. We view our text as being introductory, or
perhaps “classical” in nature, and therefore we do not include material
about elastic wave propagation, anisotropy, multiple elimination, deconvo-
lutional techniques, and many other topics that are important to seismic
data processing and are topics of current research.

Furthermore, there are new mathematical approaches to the subject
of seismic migration/inversion, which show that the “general” results we
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present are imbedded in an even more general theory based on pseudod-
ifferential operators and generalized Radon transforms. This direction of
research began with the pioneering work of Doug Miller, Mike Oristaglio,
and Gregory Beylkin at Schlumberger c. 1983 and has currently been ex-
tended by Maarten de Hoop, of CWP. Similarly, where the development
here relies on classical ray theory, on geometrical optics, and (slightly) on
geometrical theory of diffraction, the newer methodology exploits Maslov’s
method to work around some of the difficulties of ray families in the physi-
cal domain when the Earth structure is complex enough to produce caustics
in the ray fields from point sources. All of these (and more) are topics of
ongoing research at the time of this writing.

One of the coauthors, Jack Cohen, passed away while this book project
was in progress. Nevertheless, his point of view about exposition, style,
and content, as conveyed to the other two authors through many years of
friendship and collaboration, is very much a part of the material that was
revised and expanded after his death.

If the book has three parents, it also has many “aunts and uncles.” These
include students who suffered through the underlying course of the same
title—before there were lecture notes, and while the lecture notes were in
evolving form. The first students took this course in 1983 with Jack Cohen,
while the material was in its embryonic form; lectures presented one day
might be revised a few days later with new insights and new research re-
sults. Students in the last two classes before submission of this manuscript,
one at the Colorado School of Mines, the other at the University of Camp-
inas in Brazil, provided many constructive suggestions that were directly
integrated into the more fully developed set of lecture notes. Further, we
received constructive suggestions from the publisher-reviews. These, too,
we incorporated. The foremost of our reviewers, most worthy of special
mention, is Ken Larner, famous for his red pen, sharp eye, and incisive
remarks. While the red marks do not show in the final text, Ken’s hand
(and red pen) has touched every chapter. We believe that they are all bet-
ter than they might otherwise have been, thanks to Ken’s persistence and
fortitude in working through the book.

We have also been fortunate to have adequate funding for the students
and faculty, so that the ideas presented here could be developed. The major
source of our funding has been the Consortium Project on Seismic Inverse
Methods at the Colorado School of Mines. We have enjoyed this support
from the oil industry and its service companies since 1984. We also acknowl-
edge support from the Office of Naval Research, through the Mathematics
and Ocean Acoustics Programs, and from the Department of Energy. Dur-
ing the fall semester (spring semester in Brazil), 1999, Bleistein taught a
course using the current draft of this text, then under intense near-final re-
visions, at the University of Campinas in Brazil, under support of FAPESP,
the research and educational funding agency of Sdo Paolo State, Brazil.
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We have also had support from the Gas Research Institute and the
SEG Foundation, specifically for the development of the CWP/SU Seis-
mic Unix package. Seismic Unix is a free seismic processing and research
software environment, created at CWP by Jack Cohen, and currently
managed by John Stockwell [Stockwell, 1997,1999]. The package may
be downloaded at no charge, as full source code, from our web site at
http://www.cwp.mines.edu/cwpcodes.

With all of the help that we received, to the extent that we have not
fulfilled our expositional goals, the responsibility can only reside with us,
the authors. If the reader has questions or comments, please send email
to the authors at mmsimi@dix.mines.edu. For additional information,
please see our web site at: http://www.cwp.mines.edu/mmsimi.

Golden Norman Bleistein
Colorado Jack K. Cohen
February, 2000 John W. Stockwell, Jr.



Memorial: Jack K. Cohen !

On 24 October 1996, the Colorado School of Mines community lost a great
friend with the death of Jack K. Cohen. He was 56 years old. Jack received
his Ph.D. from Courant Institute of Mathematical Sciences, then spent
16 years at the University of Denver before joining the faculty at Mines
in 1983. A founding member of the Center for Wave Phenomena at CSM,
Jack left his immensely human and caring mark on students and colleagues
within CWP, as well as on mathematicians and geophysicists around the
world.

In the late 1970s, Jack co-authored two seminal papers characterizing
the seismic inverse problem. These works established a mathematical basis
for some of the algorithms used in seismic imaging. Thereafter, many more
applied mathematicians and theoretical physicists became involved in re-
search on this problem. Within five years of that work, the SEG Annual
International Meeting hosted multiple sessions and workshops on the topics
generated by these papers.

Jack’s skill as an innovator was not limited to the theoretical aspects
of his work. Jack saw a need for a line of seismic processing software that
would be freely available to everyone. Starting with a handful of codes writ-
ten by members of the Stanford Exploration Project, with the help of Shuki
Ronen, Jack created the Seismic Un*x, or SU package. This was long be-
fore the words e-mail, Internet, or free software entered the public lexicon.
Today, the CWP/SU Seismic Un*x package is freely distributed on the In-
ternet. The package now includes more than 380 individual modules which
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permit the user to perform many of the common seismic data manipulation
tasks, as well as provide an environment for the development of new seismic
software applications. Currently, there are more than 900 known installa-
tions of SU.2 The package is used by petroleum exploration companies,
government research facilities, and education institutions in more than 37
countries. Many users are well beyond the seismic exploration community.

Jack developed an expertise in symbolic mathematical languages, partic-
ularly Mathematica® With a colleague, Frank Hagin, Jack co-authored five
versions of a textbook integrating symbolic math software into an under-
graduate calculus program. This interest led Jack to become editor of the
Classroom Notes column in The Mathematica Journal.

Jack mastered the subject of wavelet transforms and provided the world
community with free wavelet software packages written in the Mathematica
language.

Jack also became interested in seismic anisotropy and contributed several
important papers on this complicated subject. His work has provided a
solid mathematical basis for some existing inversion methods for anisotropic
media and stimulated new research in anisotropic moveout modeling and
parameter estimation.

Jack’s broad spectrum of interests spanned the subjects of classical litera-
ture, impressionist art, folk music, jazz, and Brazilian music. He was always
ready to try new things, both scientific and nonscientific. He learned to ride
a bicycle at age 37. He was an avid hiker and cross-country skier in his early
years in Denver. Somewhat later, he started body-building, an activity that
he maintained up to the time of his death.

Jack was a compassionate humanist, with a great love of mankind. He was
popular in the classroom and known for having an off-beat sense of humor.
At one of the first workshops on inversion at SEG’s 1982 convention, a
colleague asked him for a simple explanation of inversion compared to the
more accepted “migration” of the geophysics community. Jack promptly
proceeded to rattle off a list of the then-proponents of inversion and said,
“Don’t you see? Inversion is Jewish migration!”

He is survived by his wife Diane and daughter Mara. In his memory, Col-
orado School of Mines has established the Jack K. Cohen Memorial Fund
for undergraduate scholarships. Donations may be sent to the Colorado
School of Mines Foundation, 931 16th Street, Golden, CO, 80401.

Norman Bleistein
John W. Stockwell, Jr.

2 As of August 2000, there are more than 2000 verified installs, in 54 countries.
3Mathematica™ is a trademark of Wolfram Research.
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1

Multidimensional Seismic Inversion

Our goal is to present a theory for determining the characteristics of the
interior of a body based only on observations made on some boundary sur-
face. In particular, we are interested in finding ways of imaging structures
inside a body. In addition to imaging, we have the more ambitious goal
of actually determining values of certain material parameters character-
istic to these structures. This problem is encountered in many branches
of applied science. These include such diverse disciplines as Earth science,
medicine, materials science, archaeology, and the ocean sciences—just to
name a few. These disciplines all face the same problem of mapping struc-
tures in environments where it is either impossible or impractical to make
direct observations.

A complete treatment of this broad subject would require a discussion of
a wide variety of techniques and physical settings. We can limit the scope
of the discussion, however, by identifying one common physical character-
istic that may limit the effectiveness of the many possible techniques—the
length scale of the targets being studied. Different applications have differ-
ent characteristic length scales. For example, three important geophysical
applications that have widely differing characteristic length scales are solid-
Earth geophysics, exploration geophysics (in particular, seismic prospecting
surveys), and engineering geophysics applications. Solid-Earth geophysi-
cists are interested in mapping the entire volume of the Earth, whose scale
is several thousand kilometers, with the goal of imaging structures on the
order of a few tens of kilometers to a few hundreds of kilometers in size.
Exploration geophysicists are interested in mapping structures that are
localized to a few kilometers in extent, with the desire of locating hydro-
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carbon deposits measuring a few hundreds of meters to a few tens of meters.
The scale of engineering geophysics surveys covers only a few hundreds to a
few tens of meters, with the size of the common targets being on the order
of a few meters.

The characteristic length scales encountered in medicine and in the
nondestructive testing applications of materials science are considerably
smaller, with targets of interest ranging from a few centimeters to micro-
scopic size. The distinguishing feature of the methods of this text that
makes them applicable to all of these problems is that the wavelengths of
the signals in our data are small, in an appropriate sense, compared to the
length scale of the physical model.

1.1 Inverse Problems and Imaging

The approaches to solving the imaging problem are as diverse as the phys-
ical settings mentioned above. Both active and passive measurements of
either static or time-varying quantities may be used for solving this prob-
lem. This text, however, is confined to active methods that involve the
introduction of signals that propagate as waves inside the body. These
waves, in turn, scatter from irregularities present inside the body and are
subsequently recorded on its surface.

The waves may be acoustic, elastic, or electromagnetic as long as the
governing equation is some form of a wave equation. Mathematically, this
specific type of imaging problem has been successfully treated as an inverse
problem.

Imagine that we have an equation or a system of equations, written in
terms of unknown material parameters, describing the origin and propaga-
tion of scattered waves in a medium. We can pose two types of problems
with such an equation or system of equations, depending on the type
of auxiliary data that we have available. In the classical direct problem,
the material parameters, boundary conditions, and source mechanism are
known, and the wavefield is the unknown quantity to be solved for. This
problem is at the heart of any text or course dealing with ordinary or partial
differential equations. In mathematical physics, the term modeling is usu-
ally applied to this subject, with common applications being the subjects
of acoustics, fluid dynamics, electrodynamics, or elastodynamics.

In contrast, this text will deal with the inverse problem. The available
data are the observations of the scattered wavefield, that is, the wavefield
after it has interacted with the medium.! In addition, we may have some
sketchy information about the wavespeeds in the interior of the body being

1The issues of scattering theory are broad. See Melrose [1995] and Colton and
Kress [1983] for different perspectives.
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imaged, but this information will always be incomplete. The unknowns to
be solved for are the material parameters and their discontinuity surfaces,
known as “reflectors.”

Fortunately, many of the tools used in solving the direct problem are
equally useful in solving the inverse problem. The common techniques asso-
ciated with solving differential equations and integral equations, including
Fourier theory and asymptotic expansions, will play a significant role in
our exposition. Thus, we expect the reader to have some familiarity with
these topics.

There are many side issues in the inverse-scattering imaging problem
that may be lumped under the name “signal processing.” These issues
arise because the practical problems of data acquisition often involve noise
suppression. These techniques, which involve a variety of filtering and de-
convolutional processes, are not closely related to the issues that we discuss
in this book. Therefore, to concentrate on the fundamentals of the seis-
mic inverse problem, we assume that any corrections in the shapes of the
waveforms made through signal processing do not adversely influence the
inversion of the data. As a result, our discussions will carry the implied
assumption that the waveforms have the shape of bandlimited impulses.

More problematic are the issues of missing data and incomplete angular
coverage of the target being imaged. Both of these are important problems
in inverse-scattering imaging. If data are not sufficiently finely sampled,
then spatial aliasing will be introduced. Though a number of techniques for
data interpolation have been invented to deal with this problem, no general
solution exists.? The problem of incomplete coverage is the issue of aperture
limiting that is discussed in Chapter 4. In each case, we will assume—
as a first approximation—that the data are sufficiently well sampled to
prevent spatial aliasing, and that targets have sufficient coverage that the
large-wavenumber (high-frequency) assumption is not violated.

Fortunately, the techniques described in this book are sufficiently robust
that the results “degrade gracefully” when the ideal conditions stated above
are not exactly met—as they never can be in the real world. For example,
if a surface would be imaged exactly for perfect data, then we seek inverse
methods that give only a slightly deformed image for slightly noisy data,
with the error in the image being in proportion to the error in the data.

This concept is well known in applied mathematics. Mathematicians
characterize problems as “well-posed” or “ill-posed” according to three im-
portant criteria. If a problem (1) has a solution, (2) that is unique, and (3)

2Though addressing such issues as those involving the approximation of miss-
ing data is beyond the scope of this text, the related topics of offset continuation
and data regularization are discussed in Chapter 7 as examples of our general
approach to data mapping.
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depends “continuously” on the data,? then it is said to be “well-posed.” If
the problem does not meet all three of these criteria, then it is said to be
“ill-posed.” (The term “ill-conditioned” is synonymous with “ill-posed.”)
The criterion of continuous dependence on data is usually the crucial one
and is closely related to the notion of “graceful degradation” mentioned
above. While rigorous study of the issue of ill- versus well-posedness is be-
yond the scope of this text, we must admit immediately that some inverse
problems are ill-posed. This includes the seismic inverse problem. See Ap-
pendix D for further discussion of this important issue. A general guiding
rule for solving such a problem is “Ask only for what you deserve from
the data!” Ill-posedness may be built into the mathematics of the problem.
If this is the case, the course of action is to make reasonable simplifying
assumptions (if possible) to suppress, or remove entirely, the ill-posedness.
If the ill-conditioning is related to the characteristics of the recorded data,
through the presence of noise, for example, then we know that it is not rea-
sonable to expect to recover all information under these conditions. With
knowledge of the characteristics of seismic data, and knowledge of the ap-
propriate mathematics, the goal of creating a seismic inverse theory that
“degrades gracefully” can be achieved.

It is important to distinguish between inverse-scattering methods and
“generalized linear inversion” methods. Some of these methods are rep-
resented by the broadly used term “tomography.” As mentioned above,
the inverse-scattering method is based on the governing equation (here the
wave equation) that produces the recorded data, and is therefore a full-
waveform inversion method. The simpler tomographic methods rely only
on a single attribute of the recorded data such as traveltime or amplitude.
By assuming that this attribute can be related to the physical parameter
of interest, it is possible to deduce, via a statistical process such as least-
squares optimization, the “best” model that would produce the observed
data attributes. Unfortunately, there is the potential for confusion because
there is a method given the name “diffraction tomography” that is really
an inverse scattering method [Devaney and Oristaglio, 1984].

1.2 The Nonlinearity of the Seismic Inverse
Problem

If the direct scattering problem is formulated so that the unknown material
parameter is represented as a perturbation from a known “background” pa-

3In the language of mathematicians, the term “data” does not refer exclusively
to physical measurements, but may refer to any known quantity that pertains to
a given problem. This is often a source of confusion, because many geophysicists
use the term exclusively to refer to data collected in the field.
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rameter profile, then a wavefield representation is obtained that is the sum
of a term that depends linearly on the perturbation in the medium param-
eters plus a term that depends nonlinearly on those parameters. The linear
part of the field may be loosely interpreted as that part of the scattered
field largely composed of once-reflected waves, while the nonlinear part may
be thought of as being largely composed of the combined effects of multiple
reflection. This second term is the product of the unknown perturbation
and the unknown scattered field at depth—in this case, this product is the
mathematical representation of the nonlinearity in the physical problem. If
this second term can be assumed to be small, then it may be ignored in favor
of the linear term. The linearized inversion formula that is obtained from
the linearized solution to the direct scattering problem may be thought
of as a back-propagator, in that it approximates a reversal of the process
that propagated the signal from the scatterers to the receivers. Here, we
are assuming that the signal consists only of single-scattered arrivals. The
effect of the inversion formula is to take a collection of time-varying data
recorded at positions on the surface of the Earth and convert it into a map
of estimated parameter values in the Earth’s interior.

This process provides an approximate image of the interior structures of
the subsurface. Because the back-propagation process is performed using a
formula based on the wave equation, the amplitudes of the waveforms on
this image can be related to the variation of the Earth parameters from
their assumed background values. An important result of this theory is
that a relationship can be established between these amplitudes and the
reflection coefficients of reflector surfaces in the Earth.

Finally, we should note that there are full waveform inversion methods
that address the nonlinearity of the inverse problem through optimization.
See, for example Mora [1987], Symes [1990], Tarantola [1987], and Sabatier
[1987] .

1.3 High Frequency

The mental picture of the solution of the inverse-scattering problem, repre-
sented as an imaging problem, is based on a “geometrical optics” approach
to wave theory. For example, the data recorded in a seismic survey can be
interpreted as being largely composed of primary reflections from sharply
defined discontinuity surfaces (reflectors) buried in the Earth. It is these
reflectors that are to be imaged.

Much has been accomplished by assuming that the rules governing the
scattering of waves from boundaries in the real Earth are, as a first ap-
proximation, the same as the rules governing the scattering of plane waves
from plane boundaries between constant-velocity acoustic media. These
simple ideas of the reflection and refraction of plane waves may be applied
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to heterogeneous media with curved reflectors only when the waves are of
sufficiently “high frequency.”

The term “high frequency” does not refer to absolute values of the fre-
quency content of the waves. What must be considered is the relationship
between the wavelengths (or correspondingly the wavenumbers) associated
with the frequencies available in the data, and the natural length scales
of the medium. This relationship is naturally stated in terms of reciprocal
wavenumber, a quantity proportional to the wavelength of some relevant
reference wave. In order for the data to be called “high-frequency data,”
the length scales of interest in a medium must be “many” (in practice, at
least three or ) times as large as the predominant reciprocal wavenumber
propagating in the medium (length-scale > 7/wavenumber « length-
scale times wavenumber > 7). When considering the resolution of closely
spaced reflectors (delineating the top and bottom of a rock unit), for ex-
ample, the high-frequency condition translates roughly into the familiar
Rayleigh criterion for resolution (bed thickness > wavelength/4).

As stated earlier, the theory does not fail catastrophically if the high-
frequency condition is not exactly met. Failure of the theory takes the form
of incorrectly predicted amplitudes and a growing error in the location of
reflectors. The minimum sizes that can be imaged is often expressed as a
fraction of the characteristic wavelength that is available for imaging. A
typical criterion for the resolution of narrowly separated beds is L = \/4,
where L is a physical length parameter and A is the wavelength of the
characteristic signal; however, because of the graceful failure of the theory,
it may be possible to detect (without actually being able to resolve) narrow
separations of perhaps as little as L ~ A/12.4

Under the high-frequency approximation, the propagation of wave en-
ergy may be modeled approximately as the propagation of “wave packets”
along definite paths called “rays.” The wave packets, in turn, define definite
surfaces called “wavefronts.” Simple scattering mechanisms such as reflec-
tion, refraction, and transmission as governed by Snell’s law may be used to
describe the interaction of waves with smooth portions of the reflector. In
addition, the geometrical theory of diffraction can be used to successfully
model wave interaction with the edges of reflector surfaces, or a variety of
other situations in which the simple approximations derived from modeling
wave propagation as the interaction of plane waves with planar interfaces
is too simplistic.

Mathematically, the high-frequency approximation implies use of asymp-
totic methods to create high-frequency formulations of the forward and
inverse problems. At our disposal are a collection of well-established re-

4The value of A\/12 was obtained empirically by one of the authors using
the Ames Package to model pinchouts and likely represents an extreme that is
unattainable in the real world.
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sults that we use frequently. These include a small-perturbation assumption
called the Born approzimation, a high-frequency asymptotic result called
the WKBJ-approximate Green’s function, and an assumption relating high-
frequency incident and scattered fields called the Kirchhoff approzimation.
An important method for finding approximate analytic solutions of Fourier-
like integrals, called the method of stationary phase, will prove to be an
invaluable tool for testing inversion formulas, as well as for extending those
formulas to specific applications.

1.4 Migration Versus Inversion

Our primary interest is the formulation of inversion theory with applica-
tion to the problem of seismic exploration.® The petroleum industry relies
heavily on seismic imaging techniques for the location of hydrocarbons. It
has been the fashion in the industry to distinguish between two classes of
techniques called, respectively, migration and inversion.

Migration began as a graphical method [Hagedoorn, 1954] for interpret-
ing analog seismic data,® based on applying the simple rules of geometrical
optics, which is equivalent to making a high-frequency assumption. The
problem was further simplified by considering the Earth to be a multilay-
ered fluid, rather than a fully elastic medium. We may illustrate the basic
idea by considering a simple example of seismic data recorded over a sin-
gle interface between two media having different constant wavespeeds. The
multilayer fluid assumption means that the wave propagation is governed by
scalar wave theory. Thus, the waves are compressional, or P-waves, as these
waves are called in seismology. A further simplifying assumption is that the
P-wave source and the seismic receiver are located at the same place on the
Earth’s surface. Common names for this recording geometry in geophysics
are zero-offset or backscatter, with the terms “monostatic” or “pulse-echo”
being commonly used in other disciplines. This simple recording geometry
is not the only possible one, by any means.

We can deduce the approximate appearance of the recorded data by ap-
plying the rules of geometrical optics, which describe waves through the
geometrical constructions of raypaths and wavefront surfaces—all high-
frequency concepts. Under these rules, the reflections from smooth portions
of reflector surface differ markedly from those from “corners” or disconti-
nuities of the slope of the reflector surface. The requirement that incident
and reflected ray angles must be equal means that only rays normally (per-

®See Dobrin [1976] or Telford et. al [1976] for an introduction to the exploration
seismic method.

®See Hagedoorn [1954] and Musgrave [1961], or Slotnick [1959] for further
information regarding classic analog interpretation methods.
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pendicularly) incident on the smooth portions of the reflector will return
a signal to the receivers. If the scatterer is an isolated point, an edge, or a
corner, however, energy will be backscattered along any ray that impinges
on it. The more a reflector deviates from being a planar surface, the more
complicated the pattern of the scattered waves. Repeating such an experi-
ment many times along a straight line on the surface of the model produces
a line profile of data that can be used to create an image of the “vertical
slice” through the Earth that the model represents. The result of making
such a line profile may be seen in Figure 1.1. The transverse coordinate is
the location of each coincident source-receiver pair; the vertical axis is time.
The response to an impulsive source (represented by a “wiggle trace”) is
drawn vertically at the source-receiver coordinate. Deviations to the right of
vertical represent the positive amplitudes of the returned signal; deviations
to the left are the negative responses.”

There is coherence visible in the ensemble of responses from all source-
receiver pairs. In fact, the data display represents a crude image of the
subsurface. However, this data-image of the subsurface is markedly different
in appearance from the model in many respects. Because we want the image
to look as much like the model as possible, the need for processing the data
is apparent. The complexity of the data occurs because few of the reflected
arrivals come from points on the reflector surface directly below the points
where the data were recorded. While it is true for a constant-wavespeed
medium that equal traveltime implies equal distance of travel, the direction
from which each ray has come is not specified. Thus, traveltime on the
seismic section cannot be directly translated into depth in the model. The
question is this: What process can put the arrivals in their proper z,z
positions of origin on the reflector surface as to correctly map the reflector?

The vertical axis on the seismic section, such as Figure 1.1a, represents
two-way traveltime. This is the time that it takes for the signal to travel
from the source at the top of the model down to a reflecting position in the
Earth model and return to the receiver, which, for this example, is located
at the same place as the source. We have to translate these times into
distances by assuming a wavespeed for the upper medium. If we scale the
time on the time section by half the wavespeed, then the vertical “length”
on that section will be exactly the same as the depth of the original model.
Note, for example, that the location of the nonzero part of the leftmost data
trace of the time section in Figure 1.1a is almost exactly the same as the
depth to the nearly horizontal left end of the reflector in Figure 1.1b. This is
a consequence of the particular scaling that we have used in these two plots
and allows us to view scaled time and vertical distance interchangeably for

"The exploration seismic community also uses the wvariable area display, in
which the area between each wiggle trace and its respective zero line is shaded
black for one polarity of response.
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FIGURE 1.1. a) A synthetic zero-offset seismic section and b) the Earth model.
The synthetic was made with the program CSHOT.

graphical purposes. (Of course, this assumes that we know that wavespeed!)
Indeed, if all of the reflections propagated vertically up to the surface, then
the scaled time plot would be a graphic display of the (horizontal) reflector
that produced the time section. However, the propagation is not vertical,
so we have to do better.

Each pulselike signal on a seismic trace is called an “arrival” or an
“event.” Unfortunately, there is no information about the direction from
which the signals traveled to get to the receiver, so we cannot specify the
reflection point based solely on data from a single seismic trace. Only if
the reflector is horizontal will the seismic arrival on this scaled time plot
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correspond to the reflector location. In our constant wavespeed example,
if we don’t know the actual location of the reflector, the best we can say
is the following: (i) the reflection point lies on a semicircle centered on
the source-receiver position; (ii) the radius of that semicircle is equal to
the distance computed by multiplying the traveltime of the event by half
the wavespeed of the medium; (iii) the reflector must be tangent to that
semicircle at the reflection point so that the ray trajectory is normal to the
reflector, as noted earlier.

In Figure 1.5, we show such an ensemble of circles for the time section
in Figure 1.1a. A complication to note is that the arrivals are not single
spikes—they are wave packets consisting of wiggles that oscillate for a few
cycles. If we do not know the exact time history of the source, then there
is an uncertainty as to which peak or trough of the wiggle will give us
the correct radius for the semicircle of possible reflector locations. In this
particular example, we will assume that the largest peak of a given wave
packet represents the correct arrival time.

As in the specific example of Figure 1.5, a pattern emerges from the
graphic display of the ensemble of semicircles. It is a small leap to real-
ize that the actual reflector is the envelope of the ensemble of semicircles.
That curve shares a normal direction and “correct” two-way traveltime
with each of the semicircles and, hence, matches the observed data at ev-
ery observation point. (See Exercise 1.1, Figure 1.5 and Bleistein [1999].)
Thus, the reflector will be “reconstructed” by exploiting the simple ideas
of the geometry of normal reflections. Admittedly, this example contains
many oversimplifications, but it represents the fundamental ideas behind
migration.

By constructing a wavefront chart fitting a particular subsurface veloc-
ity model, arrivals can be moved graphically or migrated to their correct
position on the seismic section. Though the days of analog data and graph-
ical solutions are over, the same ideas have been implemented through
both time-domain and frequency-domain methods for processing digital
seismic data. Modern migration addresses the traveltime issue by a direct
consideration of the wave equation.®

Thus traditional migration solves the first part of the inverse problem by
considering traveltime to be the only important parameter. The reflector is
imaged, in the sense that its position and shape are more correctly repre-
sented, but there is no attempt to recover information about the material
parameters of the subsurface. This difference in approach represents the
major distinction between “migration” and “inversion.”

SHistorically important migration papers may be found in Gardner [1985].
Another perspective on seismic migration can be found in Claerbout [1985]. See
also Stolt [1978] and Schneider [1978].
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To the early migrator, discussions of true amplitudes were moot because
of the difficulties of controlling the source and in calibrating the seismome-
ters. Therefore, in the mind of the early migrator, the output of a migration
procedure was a processed seismic section, as opposed to a subsurface pa-
rameter image. Consequently, early digital migration schemes were not
consciously designed to deal with the issue of true amplitude recovery. All
that changed in the early 1970s when the technique of identifying gas-
bearing strata by apparent high-amplitude bright spots on seismic sections
was established. Current interest in amplitude-versus-offset (AVO) mea-
surements for the determination of specific reservoir characteristics has
provided further incentive for true amplitude recovery.

The distinction between migration and inversion has blurred in recent
years as the more modern approaches to migration do attempt to address
the amplitude issue. This change was not as difficult as might be thought,
thanks to the serendipitous discovery that relative amplitudes are handled
correctly, in an inversion sense, by some migration algorithms. This hap-
pened because using the wave equation to directly handle the traveltimes
has the by-product of handling the amplitudes more correctly as well.

It should be noted with caution that the effects of linearization and the
high-frequency assumption are present in migration, just as they are in the
inversion techniques we develop in this text. For example, if we were to
apply Hagedoorn’s graphical migration method to the data in Figure 1.1a,
we would draw semicircles that are based on some assumed (constant)
background wavespeed profile. Even when this background is taken to
be heterogeneous and the semicircles are replaced by more general arcs,
the data will be “back-projected” over reasonably accurate curves only if
the assumed background wavespeed is approximately the same as the true
wavespeed. Thus, a “small perturbation” assumption is hidden within the
migration process. Furthermore, migration is based on the ideas of wave-
fronts, reflectors, and raypaths—all concepts of high-frequency wave theory.
These same assumptions appear in the derivations of the inversion formulas
in this text. Therefore, it will be a further goal of our text to show how
the geophysical “common sense” that is the basis of migration translates
into the mathematical assumptions that must be made to derive modern
inversion formulas.

As currently implemented, both migration and inversion only partially
“invert” the data, because producing images is still stressed over param-
eter estimation. Accurate background or first-guess wavespeed models are
needed if accurate images of the subsurface are to be generated. In response
to this need, the seismic exploration community has devised a collection of
statistical techniques to do wvelocity analysis. As we will show in this text,
velocity information can be extracted from the amplitudes of the inverted
data under ideal conditions. Owing to the inherent limitations in seismic
recording geometries, deficiencies in theory, and the general incompleteness
and noisiness of seismic data sets, this information has not been widely ex-
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ploited as yet. The quality of the data is simply not yet good enough (but
is steadily improving!) to make the amplitude of the output reliable for pa-
rameter estimation in most applications in seismic exploration. At best, we
can hope to handle relative amplitudes more correctly for such applications
as AVO. Inverse-scattering imaging as applied in other disciplines—for ex-
ample, in nondestructive testing or medical imaging—does not suffer to
the same degree from the data limitations we have mentioned. The data in
those applications of inverse methods are of higher quality because of the
greater control that the experimenter has over the data acquisition process,
meaning that greater information about the body being imaged should be
recoverable—to the extent that data quality limits the inversion process.

The migration/inversion techniques developed in this text lead, in a nat-
ural way, to the process of migration velocity analysis. While we do not
discuss migration velocity analysis in depth, we will see that a partial in-
version can be achieved by studying a limited subset of the data from a
seismic survey. Because there can be considerable redundancy between dif-
ferent subsets of such data, it is possible to build multiple images of the
same target reflectors. By analyzing the degree to which the different images
agree and disagree, we can judge the accuracy of the assumed background
velocity that was used for to do the migrations.

The extent of disagreement between such redundant images provides a
basis for a technique for correcting the back-propagation velocity which,
in turn, will improve the image. Thus, we can generate a background
wavespeed that best focuses the images of reflectors. We expect that this

“imaging velocity” will be a better representation of the actual wavespeed
in the Earth.

1.5 Source-Receiver Configurations

The simple model of a seismic survey discussed in Section 1.4 described an
ensemble of data acquired using a zero-offset recording scheme, in which
the source and receiver are located at the same point on the Earth’s sur-
face. Unfortunately, in real seismic experiments it is not possible to use this
simple shooting geometry because of persistent high amplitude reverbera-
tions associated with the typical explosion, airgun, or vibrator sources used
in seismic exploration. Previously, we spoke of the hierarchy of complexity
of propagation speeds. Now we consider another hierarchy of complexity,
that of recording and data sorting geometries. Seismic surveys are limited
to ensembles of experiments with a nonzero offset between sources and
their respective receivers. Each of the experiments composing the ensemble
usually consists of an arrangement involving one source and many receivers,
all in a line, or in a surface array, called a shot profile. While all data are
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FIGURE 1.2. Schematic for a common-source (-shot) seismic profile.

recorded in some form of this geometry, different ways of sorting the data
imply different geometries for analysis.

Therefore, a discussion of the different sorting geometries is warranted.
The various sorting techniques are usually referred to as gathers. We list
some common ones below.

Common-source gathers, also called Common-shot gathers, consist of
seismograms recorded at many recording positions with increasing range
(offset) from a single source.

Common-offset gathers consist of collections of seismograms whose
respective source-receiver separation is a constant value.

Common-midpoint gathers, abbreviated as CMP gathers, refer to col-
lections of data, recorded with different source-receiver spacings, but
with the same position on the Earth’s surface being the midpoint of the
source-receiver pair. These are often referred to as common depth point
(CDP) gathers in the literature, although, but for rare exception, the
reflection depth point in such data is the same only if the reflectors are
horizontal and the propagation speed is laterally invariant.

Common-receiver gathers are data sets representing a geometry simi-
lar to the common-source gathers, but with many sources and a single
receiver.

Each of these implied geometries or gathers has its unique advantages and
disadvantages. For example, common-source data have the advantage that a,

receivers

sources

reflector

FIGURE 1.3. Schematic for a common-offset seismic profile.
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single wave equation represents the experiment. Indeed, this is how seismic
data are usually collected in a survey, as a collection of common-source
gathers, obtained by moving the source and array of receivers along a line,
or over an area on the surface of the Earth. The positions of the source and
receivers are changed in a systematic way so that overlapping coverage of
the subsurface is obtained by the ensemble of the gathers.

For the alternative gathers listed above, each source-receiver pair comes
from a different experiment. This is because traces from different common-
source gathers in a survey are sorted to produce these other data sets. Thus
migration or inversion of these other gathers consists of processing data
generated by a collection of different “problems for the wave equation,”
where the sources and receivers are different. Though pains are taken to
make the source and receiver responses consistent from shot to shot, there
is nothing that says that everything is exactly reproduced from one seismic
experiment to another. Thus, there may be effectively a different wave
equation operating for each source-receiver gather. Therefore, there is an
implied assumption that the solutions to these different wave equations are
mutually consistent in a way that will allow data from different experiments
to be combined to synthesize a solution of a single problem for a single wave
equation.

It should be recognized that vertical seismic profiling (VSP), as well as
cross-hole (crosswell) seismic experiments, may also be viewed as consist-
ing of ensembles of common-source experiments. The latter geometries are
used primarily for tomographic imaging, rather than for the inverse scat-
tering that will be discussed in this text. The exception again is diffraction
tomography, which is a special case of inverse-scattering imaging.

The CMP geometry is important because it provides a collection of data
sets that can be used to construct an approximate zero-offset profile. This
is possible because all traces of a CMP gather sample approximately the
same zone of reflectors in the subsurface. The primary differences among
traces within a CMP gather are in reflection traveltimes because the seis-
mic waves have traveled over different distances for different source-receiver
offsets in the gather. The systematic traveltime increase caused by a sys-
tematic increase in source-receiver offset is called moveout, with that seen
in the special case of constant wavespeed being called normal moveout
(NMO). To make an approximate correction for NMO, an estimate of the
true wavespeed profile is needed.

By using well log data or by performing velocity analysis, which is to
say using successive NMO processings or migrations of a CMP gather (or
migrations of a range of CMP gathers) with different assumed wavespeed
profiles, it is possible to create such a wavespeed estimate. After the NMO
correction is performed, the data are summed or “stacked” for each CMP
gather. The resulting stacked section has the appearance of a zero-offset
seismic section with each equivalent source-receiver position located at the
midpoint coordinate of the corresponding CMP gather.
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The great benefit of stacking is that noise is suppressed and signal is
enhanced. However, some information is lost due to stacking because the
NMO correction only partially transforms the CMP traces into zero-offset
traces. In particular, the higher frequencies of the data may be suppressed
by stacking. This is because the arrivals may not be exactly aligned before
stacking, causing the stacking process to sum higher frequency components
out of phase.

As might be guessed, this misalignment comes, in part, from the tradi-
tional NMO correction procedure, which is built on the assumption that
the moveout paths are hyperbolic in shape. This is only true for a single
horizontal reflector overlain by a constant-wavespeed medium. As we know,
the real Earth is better modeled as an anisotropic elastic medium contain-
ing dipping layers, curved reflectors, and lateral velocity variations. These
are not handled correctly by traditional NMO processing. Modern attempts
to deal with this problem include moveout corrections for nonhyperbolic
moveouts.

Simply stacking NMO corrected data has the effect of enhancing informa-
tion about events with near-horizontal dips at the expense of information
pertaining to steep dips. This is caused because the offset of source and
receiver imposes a wavenumber filter on the data. To preserve information
at steep dips, dip moveout (DMO) correction algorithms were created.
However, the DMO correction is also not perfect, as it does not preserve
the amplitudes in the data and will also typically suffer where the medium
is laterally varying.

In reality, when we correct a CMP gather for moveout, what we really
are trying to do is to find an algorithm that will perform a transforma-
tion to zero-offset or TZO correction. Such an operation is an area of
current research and is discussed as a special case of the data mapping
theory presented in Chapter 7 of this text. In any case, an important
by-product of the NMO-DMO correction process is an improved velocity
analysis technique that is useful in choosing background-wavespeed profiles
for the migration/inversion process.

If CMP data are satisfactorily preprocessed via NMO followed by DMO
corrections, then the data may be stacked with a minimum of information
loss, though there may be amplitude distortion where amplitude varies
with offset. The resulting seismic section, composed of stacked CMP gath-
ers, may be migrated as though it were true zero-offset data. Despite any
disadvantages discussed above, the migration of DMO corrected data pro-
vides substantial noise reduction and often provides a sufficiently accurate
image of subsurface structure. Furthermore, because the volume of data is
substantially reduced by the process of stacking, the migration of DMO-
corrected data provides an economical alternative to processing unstacked
data.
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The above outline of seismic processing steps describes a process called
poststack migration or poststack inversion. A summary of the basic steps
involved in poststack migration/inversion may be stated as follows:

1. Seismic data are sorted into CMP gathers.

2. A deconvolutional process is applied to remove the bandlimiting and
phase distortion in the waveforms.

3. The data are corrected for the different reflection times associated with
differing source/receiver offsets by applying an NMO correction. The
data may be corrected for the reflection-time distortions associated with
both offset and reflector dip by applying a DMO correction.

4. The results are summed to produce an approximate zero-offset stacked
section.

5. The zero-offset migration/inversion algorithm is applied to the stacked
section.

Unless these processes are carried out in an amplitude-preserving man-
ner, the amplitudes of zero-offset inversion of these data no longer will be
accurate, possibly improving the quality of the image at the expense of
the parameter information. Such inversions may still provide useful quali-
tative information about reflection intensity and parameter changes across
reflectors, however.

The issue of moveout correction may be avoided if a prestack migration
or inversion process is used instead of the poststack process. The prestack
process preserves more of the high-frequency information of the seismic
data, but is more expensive because each data gather must be migrated or
inverted separately. Neither prestack nor poststack migration/inversion will
produce a “true” reflector map of the Earth’s interior unless the background
velocity used is the correct velocity of the Earth. Of course, if the true
subsurface wavespeed profile were known, then the inverse problem would
essentially be solved, and we would have no further work to do!

receivers
sources

reflector

FIGURE 1.4. Schematic for a common-midpoint seismic geometry.
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Because we can never know the true velocities, the best we can hope for
is to create procedures that provide improved estimates of the wavespeed
profile. Seldom does a first effort of an inversion or migration produce a
total success. Nevertheless, the output of a particular inversion often yields
clues on how the assumed background model can be changed to improve the
results. Thus, migration/inversion is often a recursive or iterative process,
beginning with an approximate background velocity profile and working
towards the “true” wavespeeds along with estimation of other parameters,
through recursive applications of the algorithm on the data.

The first three chapters of this text address the zero-offset source-receiver
configuration. Using these inversion methods, it is possible to invert approx-
imate zero-offset data in homogeneous media to obtain an image of the
subsurface with the reflectors being mapped as impedance discontinuities.
If constant density is assumed, these impedance jumps may be interpreted
as jumps in propagation speed.

The following chapters will ascend the hierarchy of increasingly com-
plex recording geometries and background wavespeed structures. Here is
included the development of methods for inverting common-offset and
common-shot data. This is one branch of the hierarchy of complexity. Intro-
ducing heterogeneous media takes us onto another branch of the hierarchy
of complexity. If the data are sorted into sets of different common-offset
profiles, then the inversion of these different data sets can provide enough
data to evaluate changes in both soundspeed and density or even more
parameters in an elastic medium. Assembling several common-offset data
sets is possible because the conventional shooting geometry contains this
redundancy of offsets.

More recent work has also included the development of methods for in-
verting common-offset and common-shot data. This is another branch of the
hierarchy of complexity. If the data are sorted into sets of different common-
offset profiles, then the inversion of these different data sets can provide
enough data to evaluate changes in both sound speed and density or even
more parameters in an elastic medium. Assembling several common-offset
data sets is possible because the conventional shooting geometry contains
a redundancy of offsets.

From the mathematician’s perspective, inversion of common-shot gathers
is attractive because data coming from a single experiment are governed
by a single wave equation. This is not true for data sets that are created by
sorting data from a number of experiments. The extent of reflection events
observed in a common-shot gather is limited by the range of coverage of the
receivers in that experiment. Typically, that range is less than the coverage
achieved by the ensemble of experimnets in a complete seismic survey.
While a common-offset gather receives information from reflection events
over the full range of the ensemble of experiments, it again is an ensemble
of single trace responses from a suite of experiments or, mathematically
speaking, an ensemble of solutions of the wave equation. The general issue of
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combining data from multiple experiments is unresolved, that is, there is no
known exact wave equation describing the generation of such an ensemble.

Nonetheless, there are conventional techniques often labeled under the
vague name “wave-equation migration,” that are applied to such ensembles.
One particular method is reverse-time, finite-difference migration made un-
der the assumption that the data recorded on the surface originated from
“exploding reflectors.” In Chapter 3, we will show that such wave-equation
migrations applied to constant-background zero-offset data satisfy the wave
equation, but only to two orders in frequency in the high-frequency limit;
they are not ezact solutions to the wave equation. In short, these turn out
to be asymptotic, rather than ezact techniques, contrary to the widely held
but erroneous opinion of many of members of the geophysical community!

1.6 Band and Aperture Limiting of Data

As the reader may have gathered from the preceding sections, certain as-
sumptions regarding the frequency content of data must be made so that
high-frequency inversion formulas based on inverse scattering theory can
be created. Because of the limitations imposed by the high-frequency as-
sumption, our ability to resolve structures of a particular length scale is
limited by the frequency band that is available.

Many factors contribute to the bandlimited nature of the inverse-
scattering problem; some of the more important ones are listed below:

1. The frequency content of the seismic source is related to the finite
nonzero process time,® and physical geometry of the source mechanism.
Equally important is the degree of coupling between the source and the
propagating medium.

2. The so-called “Earth filter” is, in part, the effect of anelastic attenuation,
behaving as an exponential decay with propagation distance as mea-
sured in wavelengths. Because high-frequency implies short wavelength
(and hence a greater propagation range as measured in wavelengths), the
Earth filter, combined with the omnipresence of noise, has the effect of
limiting the upper range of the available frequency band. The other lim-
iting factor is the presence of small heterogeneities randomly distributed
throughout the interior of the Earth. The heterogeneities scatter the
high-frequency energy in an incoherent fashion, preventing an image of
gross structure from being constructed with waves of too high a fre-

9From the theory of seismic sources, which deals with explosions, airguns,
or earthquakes, the frequency content of the source is directly connected to the
natural time constant of the source process; this is the “process time.” See Aki
and Richards [1980] for further discussion.
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quency. Thus, higher-frequency signals do not always guarantee better
resolution.

3. The frequency range of the receiver response is limited by the coupling
of the detector to the medium. In land-based surveys, the receivers are
geophones mechanically attached to the surface of the Earth, usually by
means of a spike pushed into the soil. Because the geophone is not rigidly
attached to the Earth, bandlimiting associated with natural resonances
of the soil-geophone system exists. Detector coupling is less of an issue
in ocean seismic surveys using standard hydrophone streamer!® arrays.

4. The design of the frequency response of seismic detectors is influenced
by the desire to limit ambient noise levels present in imaging surveys of
any type.

5. To prevent temporal aliasing of the data, analog frequency filtering is
used as part of the recording process before the data are digitized.

6. Seismic preprocessing involving deconvolution or other “wavelet shap-
ing” operations used to remove noise (such as water reverberations) may
further limit the bandwidth of the data.

7. The stacking of redundant data (such as traces in an NMO-corrected
CMP gather, or traces after migration) bandlimits data whenever the
background wavespeed assumed for NMO or for migration is incorrect.

While the causes of bandlimiting are complicated, it is satisfactory to
treat these processes as the action of a single filter, F(w), which will
be assumed to have the necessary properties—symmetric real part, anti-
symmetric imaginary part—to produce a real-valued output. We will see
that the area under the curve that describes the real part of this filter is
an important piece of information to have, in order to extract parameter
information (such as the reflection coefficient) from seismic data.

Bandlimiting in the frequency domain, however, is not the only limita-
tion that must be considered. The recording geometry introduces a filter
of its own in the wavenumber domain, which also degrades the resolution
of the image created by inversion. We discuss this for a collection of survey
geometries in the first part of Chapter 4. This wavenumber filtering, called
aperture limiting, worsens as the opening angle, the angle between the in-
cident ray and the reflected ray, increases. The reflector image becomes
fuzzier with an increase of opening angle.

A correction for aperture limiting will arise naturally in the derivation
of the seismic inversion formulas that we will discuss. Remarkably, we will

19The detector arrays used both on land and at sea have been designed to
suppress internal resonances, or to shift the frequency of internal resonances
away from desired seismic frequencies. These efforts have worked so well that
investigators experimenting with new instrumentation in different environments,
such as mines or boreholes, may be unaware of the potential for problems due to
such internal resonances.
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see that this correction does not destroy important amplitude-versus-offset
information, such as the angularly dependent reflection coefficients of re-
flectors. We will see that it is possible to extract the value of the opening
angle, and thus have an estimate of the angularly dependent reflection co-
efficient, by computing at least two inversions, while simultaneously seeing
an economical way of computing these inversions. This capability depends
on an underlying assumption that the events we are observing in the out-
put are the result of isolated reflectors in the Earth. In a subtle way, this
is part of the high-frequency assumption.

1.7 Dimensions: 2D Versus 2.5D Versus 3D

Traditionally, seismic data have been collected along lines that are straight,
whenever possible. In such situations, the data sets are effectively two-
dimensional. An inversion formulation using a 2D assumption will not
recover amplitudes correctly because the assumed amplitude decay will
be cylindrical, approximately varying with the square root of propaga-
tion distance. In fact, real seismic data are governed by the rules of
3D wave propagation, meaning that the amplitudes will decay with the
first power of propagation distance—which is spherical spreading in a
constant-wavespeed medium. A 3D inversion of a single seismic line is also
inappropriate as there is insufficient data in the direction transverse to the
line for such an inversion to work properly. The appropriate formulation
should contain the assumptions of spherical spreading, but with only 2D
variability of the medium (no variability transverse to the seismic line).
By applying the methods of high-frequency asymptotics to the formulas
that we create for three-dimensional inversion, we will be able to reduce
these 3D formulas to formulas that are appropriate for 2D data sets, but
handle the 3D amplitude variation of the wavefield correctly. Such “2.5D”
formulations will be thoroughly discussed in Chapters 3 through 7.

1.8 Acoustic Versus Elastic Inversion

The final, and perhaps most challenging, step in the seismic inversion hi-
erarchy is that from modeling the Earth as a fluid medium with variable
parameters, to viewing the Earth in the more physically correct light, as
being a variable-parameter elastic medium. We have assumed in all of the
discussions above that the propagation of P-waves in an elastic Earth may
be approximated by an acoustic wave model. The real Earth, however,
supports the propagation of both compressional and shear waves. This
inversion issue has only been recently addressed by seismic explorationists.
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An inversion formulation that makes use of both the P-wave and the
S-wave data provides valuable information about subsurface structure and
material parameters that is not available from a fluid model. Better esti-
mates of the elastic moduli representing the compressibility and the rigidity
of the medium, as well as other information regarding the microstructure of
the rock at depth should be obtainable. Even if we work only with P-wave
data, anisotropy can introduce errors in the apparent location of seismic
reflectors in the subsurface.

If we work with shear waves, then there are additional phenomena en-
countered. Considerable evidence suggests that the apparent splitting of
shear waves (birefringence) observed on seismic sections is an effect of
elastic anisotropy, that is to say, the directional dependence of the elas-
tic material parameters of a medium. It is believed that such observations
may be used to determine the orientations of systems of fractures in the
subsurface, the knowledge of which would greatly aid petroleum engineers
in the evaluation of reservoir permeability. The price for this increase in
information will be high, as there are difficult mathematical obstacles that
must be surmounted in the pursuit of useful elastic formulations. Inversion
techniques, formulated from the theory of elastic wave propagation, though
currently in their infancy, promise to provide a more complete view of the
subsurface.

While the advanced issues of elastic wave propagation are beyond
the scope of this textbook, we expect that material we present—though
grounded in scalar wave theory—will provide the reader with an important
foundation in the mathematical methods necessary to understand seismic
inversion, as it is currently practiced, while providing important tools that
will carry over into the anisotropic elastic inversion problem.

Exercises

1.1 Using the graphical migration method discussed in Section 1.4, mi-
grate the seismic section, Figure 1.1a. You will need a compass and
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FIGURE 1.5. An example of graphical migration, see Exercise 1.1.
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you may wish to enlarge this figure via photocopier. Your result
should look something like Figure 1.5.

1.2 Graphically construct a synthetic seismogram using the Earth model
in Figure 1.1b. This synthetic should agree with Figure 1.1a.

1.3 Discuss possible strategies for creating a computer program that
would perform an operation equivalent to the graphical migration
technique discussed in Exercise 1.1.

1.9 A Mathematical Perspective on the Geometry
of Migration

At the risk of destroying the nonmathematical festivity of this chapter, let
us examine the process of Exercise 1.1 with an eye toward the underlying
mathematics, so we may see how that mathematics will recur later in the
text. Denote by (£,0) the coordinates along the horizontal upper surface in
Figures 1.1a and 1.5, and denote by (z, z) the coordinates in the subsurface
in Figure 1.5.

The peak values on the traces in Figure 1.1a denote a two-way traveltime
for the normal-incidence reflection from the model reflector in Figure 1.1b.
We can denote this input traveltime by ¢7(£). In terms of the reflection
point, that two-way traveltime is given by

T(z,2,€) = \/(z — €)% + 2%/c, (1.9.1)

with (z, z) being a point on the reflector and ¢ being the propagation speed.
Unfortunately, we do not know that point on the reflector, so we draw a
family of semicircles in Figure 1.5 as a representation of all candidates for
possible reflection points. That is, for each &, we plotted the function,

®(z,2,8) =t1(§) — 7(z,2,€) =0. (1.9.2)

We then proposed that points on the envelope of this family of curves with
respect to ¢ form a surface for which each point is a normal-incidence point
with exactly the correct traveltime to satisfy (1.9.2). Mathematically, given
a family of curves ®(z, z,£) = 0, the way we find the envelope is to set the
first derivative of ® with respect to £ equal to zero, solve for £ as a function
of x and z, and then substitute it back into the equation of the family of
curves given by

®(z,2,£(x,2)) =0. (1.9.3)

The graph of this function is the envelope.

In Chapters 3 and 5, we will develop a general inversion technique for a
variety of source-receiver configurations and for variable back-propagation
speed. We will then test the inversion formula by applying it to asymptotic
data for a single reflector. Both the inversion operator and the model data
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will have as part of their structure a complex exponential of the form
exp{iw¢(-,€)}. Integration will have to be carried out over both £ and w in
order to produce an inversion or migration output.

The inversion operator will have a phase function that will be a gener-
alization of the function, 7. That is, for each &, it will propagate the data
back to a curve (or surface in 3D), 7 = constant, that is the generalization
of the semicircles of Figure 1.5. The modeling phase function will be a gen-
eralization of the function, ¢;, indicating an arrival time of the reflection
response for that particular £&. Thus, the combined phase will be just the
function @ in (1.9.2).

Setting the first derivative of ® equal to zero is the first step in the
method of stationary phase, applied to the integral in £. Thus, we will
approximate that integral by finding the envelopes with respect to & of
the functions, ® = constant. The question arises as to how the particular
choice, ® = 0, might be distinguished in that mathematical process. That
has to do with the structure of the remaining integral in w. Stripped of
details, that integral is of the form,

~v(z,2) = /_00 F(w)e™®dw, (1.9.4)

with the real part of F' being an even function of w and the imaginary part
of F being an odd function of w. This makes y(z, z) real. Furthermore, the
level curves of y(z, z) are the curves, ® = constant. In particular, the level
curve, & = 0, is where the peak value of v(z, ) resides.

Thus we could now plot wiggle traces of the output of our operator
applied to data, similar to the wiggle traces representing the input in Fig-
ure 1.1a. Whereas the peak values of the latter represent arrival times of
data at the upper surface, the peak values of the former locate the reflec-
tor. Consequently, the plot of the function y(z, z) constitutes mathematical
imaging of the reflector, an alternative to the geometrical construction here.
In Figure 6.5, we have used an intensity plot rather than a wiggle plot for
the inversion of model data from a physical model that is similar to that
of Figure 1.1a.

This alternative will work in far broader contexts, provided we appropri-
ately define the necessary traveltimes for those applications. Indeed, this
reduction to geometry, which is the core of the geophysicists’ “common
sense” approach to migration, is the primary reason that seismic migration
methods based on scalar wave theory have worked so well, in spite of the
fact that anisotropic elastic effects have traditionally been ignored.
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The One-Dimensional Inverse Problem

While presenting solutions to the migration/inversion/imaging problem we
also intend to familiarize the reader with the philosophy of research that
has proven to be effective in leading to these solutions. We hope that the
student will benefit from this text both by gaining insights into the specific
mathematical issues associated with the seismic inversion problem and by
acquiring a “feeling” for how to decide what issues take precedence in the
stages of a research project.

In Chapter 1, the hierarchy of geometrical complexity of the seismic in-
version problem was outlined. Identifying the natural levels of technical
difficulty of a problem is the first important step to finding a systematic
approach to its solution. Clearly, the simplest problems that can be for-
mulated must be solvable for there to be hope of solving the more difficult
problems. This chapter will begin with the problem of inverting plane-wave
data in an Earth model with one dimension of parameter variability to pro-
duce an image of a single plane reflector. After reading the discussion in
Chapter 1, the reader may be surprised that we have chosen such a simple
starting point—even the graphical migration technique discussed there is
a two-dimensional imaging method.

Indeed, while our starting model will have little direct geophysical ap-
plicability, it will permit us to introduce some important ideas in a simple
context. Those ideas will, in turn, provide motivation for our discussions
of the higher-dimensional problems that represent seismic imaging and in-
version in the real world. Furthermore, the asymptotic techniques that are
presented near the end of this chapter will lead us to similar methods for
imaging in heterogeneous 2D and 3D media.
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Owing to the simplicity of 1D models, more powerful mathematical meth-
ods are available to us here than will be available in the multidimensional
inverse problem. We will have the power to create an analytical solution
to our 1D test model. Rarely, beyond the 1D problem, will we have that
luxury! In contrast, the complexities introduced by higher dimensions will
force us to rely on asymptotic methods to create approzimate solutions to
the problems that we treat in later chapters. In any case, the mathematical
concepts that we introduce here will be refined in later chapters to permit
us to solve the inversion problem in higher dimensions.

2.1 Problem Formulation in One Spatial
Dimension

One-dimensional modeling and inversion theories are of practical interest
in situations where data or material parameters have only one dimension of
variability. These data may be measurements of a time-independent quan-
tity made in one spatial dimension, or may consist of measurements of a
temporally variable quantity that is spatially independent.

Historically, 1D models have played an important role in mathemati-
cal physics by providing a starting point for solving higher-dimensional
problems; this is how we will employ them here.

2.1.1 The 1D Model in a Geophysical Context

Geophysics has two ready examples of such 1D data sets. A well log is
an example of a 1D spatially variable, but time-independent data set. An
example of a spatially independent but time-dependent data set is a single
seismic trace.!

In the absence of other information, a model with one dimension of pa-
rameter variability can be implied by each of these data sets. The problem
in the first case is to construct a “synthetic seismogram” from the well log,
which is a forward modeling problem. In the second case, the problem is
to construct the “synthetic well log” that represents the wavespeed profile,
using the seismic trace as the input data. This is the corresponding inverse
problem.

Indeed, comparison of such synthetic traces and synthetic well logs with
their real-data counterparts has been an important interpretative tool in
seismic prospecting for years. To create a synthetic seismogram from a well
log, the geophysicist assumes that a seismic trace on a migrated section
can be represented as the convolution of a wavelet with a series of spikes,

'"We will assume that all 3D geometric spreading effects that exist in real
seismic data have been eliminated for this example.
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each representing an arrival, scaled with the appropriate amplitude com-
posed of the normal-incidence reflection coefficient, and any transmission
loss that would be present. The spikes may be primary reflections only, or
may include a sufficient number of multiple reflections as are necessary for
the specific application. This is called the convolutional model of seismic
wave propagation and the resulting collection of spikes is called the “re-
flectivity series.” All other attributes of the synthetic trace are delegated
to the waveform that is convolved with the reflectivity series to make the
synthetic seismogram. The term “reflectivity series,” used in the traditional
geophysical context must not be confused with the term reflectivity func-
tion that we use in this text. When we use the term “reflectivity function,”
we will be talking about, ideally, a spike train with spikes of height equal
to the reflection coefficients of the reflectors in the seismic model, placed at
positions corresponding to the positions of the reflectors. For the example
we are discussing here, these spike heights would be the normally incident
reflection coefficients, which is what we would like to see as the output from
a “perfect” migration or inversion of the seismic data. See Figure 2.1.

If the seismic data have been migrated correctly, then the synthetic trace
created from the well log should agree with the corresponding trace on the
migrated section. While a similar comparison can be made with synthetic
well logs, creating such synthetic logs is more difficult. This is because
the synthetic reflectivity series must be extracted from the seismic data
via a deconvolutional process, multiples must be extinguished, and the
heights of the remaining spikes of the reflectivity series must be corrected
for transmission loss. The result is the “reflectivity function” discussed
above. To complete the process of constructing the synthetic well log, the
spike train must be integrated to produce the expected steplike profile. In
either case, “stretch” problems may exist owing to incorrect velocity models
or logging-tool calibration errors.

well log reflectivity seismogram

FIGURE 2.1. Cartoon showing a well log, and corresponding reflectivity function
represented alternatively as a spike train, and as a seismogram. The reflectivity
function differs from the geophysicists’ reflectivity series in that there are no
multiple reflections represented, and the locations of the spikes are the same as
the locations of the reflectors. The seismogram form on the right is what we
would like a perfect migration to give us.
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2.1.2 The 1D Model as a Mathematical Testground

Our interest in 1D models is in using them as a testground for developing a
mathematically consistent approach to solving the seismic inverse problem.
As we saw in Chapter 1, the early treatment of the seismic imaging problem
was based on what might be called “geophysical common sense.” It is not
our intent to attack the geophysicists’ common sense approach, but to
support it by providing a solid mathematical structure on which we can
build more advanced theories.

Much of geophysical common sense is based on two important assump-
tions. The first of these is that the process governing wave propagation may
be represented in the first approximation as a “linear system.” It is this
linear-systems approach that is behind the idea of representing a seismic
trace as the convolution of a wavelet with a reflectivity series. In contrast,
real seismic experiments are subject to complicated behaviors, the most
noticeable being anelastic attenuation, which degrades the amplitudes of
seismic waves exponentially as they propagate.?

Another drawback of reflectivity series approach is that while it may be
used to represent specific multiply reflected arrivals (if we included more
than just primaries, and took into account transmission effects), it cannot
be used to represent the general effect caused by the many multiple reflec-
tions between layers that are present in real data sets. Again, the reader
must keep in mind that the theories we present in this text will assume
that data are largely composed of once-scattered waves, called primary re-
flections, and that multiply scattered arrivals compose a less significant
portion of a seismic record.

The second assumption is that wave propagation may be represented by
the principles of “geometrical optics”—a consequence of the high-frequency
assumption discussed in the previous chapter. It is through geometrical-
optics ray tracing that the reflection coeflicients and the arrival times of
the spikes in the reflectivity series are computed.

In the 1D problem, the ray tracing is trivial. In higher dimensions, how-
ever, difficulties are introduced by the complexity of the wavespeed profile.
An example of such a difficulty is the presence of multiple propagation

“There are linearized models of attenuation, the simplest being the assump-
tion that material parameters, such as the wavespeed, have complex values, thus
yielding an exponential decay that has the appearance of the decay seen in seismic
wave propagation. Such models, called “near-elastic models” are justified from
laboratory stress-strain measurements, which exhibit a phase delay between stress
and strain, when stress is varied in time on rock samples. Near-elastic models
cannot be the whole story, because attenuation observed in seismic wave propa-
gation is frequency dependent. In response to this, numerous relaxation models
have been proposed, which are also linear models. See Ben-Menahem and Singh
[1981], for a discussion of a number of these. For strain values of the order of
magnitude of 107°, stress-strain curves show nonlinear effects; see White [1983] .
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paths between source and receiver (multi-pathing) or, conversely, the ab-
sence of ray coverage in shadow-zones. Such difficulties can be overcome
(at the expense of accuracy) by making simplifying assumptions regarding
the smoothness of the model.

2.2 Mathematical Tools for Forward Modeling

The ultimate goal of this investigation is to derive a formula that repre-
sents the solution to the inverse scattering problem. However, our analysis
will begin with a mathematical statement of the forward scattering prob-
lem. Our specific goal in this section is to create an integral equation that
describes the wavefield seen at a specific receiver location due to a source
located at a different specified position. It is this integral equation that we
will seek to invert.

Formulation of the forward scattering problem requires knowledge of
the physics of wave propagation, expressed mathematically as a governing
equation. The solutions of the governing equation will be constrained by a
specific set of boundary (or, for unbounded media, radiation) conditions.
The final result will be obtained via application of Green’s theorem.

For background information in the subject of ordinary differential
equations (ODEs), we refer the reader to Coddington and Levinson [1984].

2.2.1 The Governing Equation and Radiation Condition

The formulation of the forward scattering problem will be conducted in
the frequency domain for some observable parameter, u(z, zs,w), called the
“field.” Here, x represents the general field or observation position, while z,
represents the location of the source, and w represents frequency. The field
may represent plane acoustic pressure waves (propagating parallel to the
z-axis) in a two- or three-dimensional medium, the transverse displacement
of a string in one dimension, or some other equally appropriate parameter
that may be represented as a one-dimensional wave. The specific physical
meaning of the variable u(z, zs,w) is not important for this exposition. The
only important condition is that the propagation of u(z, z5,w) be governed
by the scalar Helmholtz equation
d? w?

where we have used the symbol £ on the left as shorthand for the expression
in brackets in the middle. The wavespeed of the medium is given by v(z).
The forcing function on the right-hand side represents an impulse located
at the position z = x,.
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The Helmholtz equation is just the temporal Fourier transform of the
familiar scalar wave equation,

d? 1 d?

{daﬂ v2(x) dt?

In place of frequency dependence, we have time dependence, and for the

forcing function, we have a temporal impulse located acting at the position
T = .

We will assume that u is bounded for all z, and satisfies the conditions

} Ulz,xs,t) = —6(t)0(x — xs).

du
dr T v(z)

This expression is called a radiation condition. Physically, the radiation
condition insures that the primary energy from the source is outward prop-
agating. Mathematically, this condition insures that the solutions to the
Helmholtz equation are unique.

u—0, as  — too. (2.2.2)

2.2.2  Fourier Transform Conventions

An important tool in wave theory for both forward and inverse problems
is the Fourier transform. In fact, our inversion formulas will be Fourier
transform-like integrals. A discussion of the Fourier transform conventions
that we will be using is therefore important.

For example, the choice of signs in the statement of the radiation condi-
tion in equation (2.2.2) must be consistent with the signs of the exponents
of the exponentials in the respective forward and inverse Fourier transform
definitions.

We will use the following forward and inverse temporal Fourier transform
conventions,

fw) —/ F(t)e™'dt, forward,

0
F(t) = %/Ff(w)e‘“tdw, inverse. (2.2.3)

The reader should note that the limits of integration of the forward trans-
form imply that no data exist for ¢ < 0. This is a statement of the physical
condition of causality; that is, the source is initiated at some finite time that
we can take to be t = 0. Therefore, we will refer to the forward Fourier
transform definition above as the causal Fourier transform.

In problems that can be solved exactly, it is common that complex
variables methods will be used to analytically evaluate inverse Fourier
transforms.® The choice of the integration path in such an evaluation is

3We refer the reader to such classic texts as Levinson and Redheffer [1970],
or Spiegel [1953] for an introduction to complex variables methods.
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FIGURE 2.2. Sketch of the integration contour I', for the case of simple poles at
w = *+ck.

influenced by the requirement that the result be causal in the t-domain.
Therefore, the integral expression for the inverse Fourier transform is rep-
resented here as a contour integral, with T" being the path of integration in
the complex-w plane.

The condition of causality translates into a condition of analyticity in the
complex-w plane, restricting the possible choices for this integration con-
tour. The general rule that we will follow when dealing with causal inverse
Fourier transforms may be simply stated. In causal problems, given the ex-
ponent sign convention above, Re w ranges from —oo to oo on the contour
of integration, I'. The contour of integration passes above all singularities
of the integrand. (This rule is explained in Appendix B.)

Causal Fourier and Fourier-like integrals appear in many places in this
text. Often, we will simply write the integrals as having integration limits
of +00, however, the reader should be aware that the rules stated above
apply to each of these integrals. See Figure 2.2.

For the transforms of spatially varying functions that are defined on
—00 < x < oo, we will use the opposite exponent sign conventions,
represented in the definitions of the forward and inverse spatial transforms

f(k)z/ F(x)e %2 dg, forward,

—00

F(z) = i/f(lc)e“w”dlc, inverse.
2m Jp

Again, it will be common for us to use complex variables methods to
evaluate inverse Fourier transform integrals in problems that have analyt-
ical solutions. The result of such an evaluation will be a function that will
be defined over the full range of —oco < < co. The integrands commonly
seen in wave theoretic problems will generally have more than one simple
pole on the real axis. Commonly poles will be the pair of values +kg, where
ko = w/c, with ¢ being the wavespeed. While the preferred method of solu-
tion of such problems is a simple residue evaluation, the fact that there are
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FIGURE 2.3. Sketch of the integration contour T, for the case of simple poles at
k=+4w/c.

multiple poles (or other singularities, for that matter) is a potential source
of confusion as it increases the number of possible choices for the path of
integration.

Actually, the confusion occurs because the implications of causality are
discarded too soon. It is necessary to consider all integrals in k and w
under the condition that Im w is positive. In this case, the poles that
would otherwise appear on the Re k axis will no longer be there, but
will reside above and below that axis. In this case, it is easy to see which
poles are avoided by passing below them—those with Im & positive—and
and which are avoided by passing above them—those with Im % negative.
Now, when Im w approaches zero, the path in k passes above and below
the various poles properly and the solution for Im w = 0 is obtained as an
analytic continuation of the solution for Im w > 0. See Figure 2.3.

The integration contour I' is then chosen to pass along the real k-axis,
on the interval —oo < Re k < oo, passing above or below singularities
as dictated by the analysis just described. When the only singularities are
poles, for example, the integral is evaluated by the residue method for the
two cases of the closure of I" in the upper and lower half planes, respectively.
The choice is determined by exponential decay of the integrand, which in
turn is usually different for x sufficiently positive or sufficiently negative.
The two choices will cover the entire range of  values and will combine to
form f(z) on the full range, —00 < z < oco.

Such a result will typically contain a factor of exp{iko|r — x|} from the
residue evaluation of the exponential in the integrand, with the choices of
x — o positive or negative tying directly to choice of closure of the contour
of integration in the upper or lower half k-plane. We have said that kg has
a small imaginary part, i, such that kg = u + in. This means that the
exponential factor will be of the form exp{iu|z|} exp{—n|z|}, ensuring that
the solution is either purely oscillatory, or is oscillatory with exponential
decay (rather than growth), as |z| — oo. This will occur only if n > 0,
which is equivalent to the pole-shifting convention chosen above.
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The reader may have some question as to the justification of assuming
a complex-valued k. In wave problems, ky = w/c, where w is frequency
and c is wavespeed. Some authors (for example Aki and Richards [1980])
make the argument that the possibility of attenuation, expressed through
a complex wavespeed, ¢, is a potential source of this complex-valuedness.
It is our preference, however, to consider w to be complex-valued. Such
an assumption is entirely consistent with the discussion of causal Fourier
transforms given in Appendix B and does not introduce any new physics
into the problem.

2.2.3 Green’s Functions

If the problem consisted of the Helmholtz equation, with the wave-
speed v = const., then the forward modeling problem could be solved
with the information given in the previous three subsections. Given the
Helmholtz equation, a set of boundary conditions or a set of radiation con-
ditions (boundary conditions at infinity) for unbounded problems, and the
principle of causality, we could find a unique solution for the field w.

When the forcing function (source function) of the Helmholtz equation
is an impulse, as in equation (2.2.1), then the solution is a special result
called the Green’s function. In linear systems usage, the terms transfer
function in the frequency domain or impulse response in the time domain
are alternate names for the Green’s function. For problems with constant
coefficients, as in the case of a constant-wavespeed problem, the Green’s
function can be found analytically for unbounded-media problems by using
Fourier transform methods. (A few cases of bounded-media problems can
be solved this way, but this is beyond the scope of our discussion.)

Because the wavespeed is not a constant in most geophysical problems,
we usually do not have analytical expressions for the Green’s function. At
best, we can imagine starting with an approximate representation of the
wavespeed profile that is arrived at by some other method, for example
from velocity measurements made from well logs or from seismic velocity
analysis. Our best hope is to use this approximate representation as a first
guess, and then solve for a better estimate of the wavespeed profile using
our (yet to be derived) inversion formula.

We will, therefore, use approximate Green’s functions created by a mod-
eling scheme that uses the first-guess wavespeed profile. If the guessed
wavespeed profile is constant, then the exact Green’s function for that pro-
file may be used as an approximate Green’s function. If the guess wavespeed
profile is something other than constant wavespeed, then other methods
may be needed to construct the approximate Green’s function. For exam-
ple, the wave equation can be solved by the finite-difference method or, as
emphasized in this text, an asymptotic method such as ray theory may be
used to construct the approximate Green’s function.
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2.2.4  Green’s Theorem

Though we are interested in solving the 1D problem for the specific example
in this chapter, it will be beneficial for subsequent chapters to discuss the
more general problem for an arbitrary number of dimensions.

From the discussions so far, we have a governing equation that describes
a particular wave propagation problem, with a given source function.
The field in this equation is unknown. As auxiliary information, we
have boundary (or radiation) conditions and the Green’s function for the
medium.

The forward modeling problem may be stated mathematically as two
equations

Lu(z) = - f()
Lg(x,x) = —6(x — x0). (2.24)

Here, the boldface of * and xq indicates that these are vector quantities.
The first equation describes the unknown field u(z) in terms of a known
source — f(x). The second equation describes the Green’s function g(z, o)
for the problem, which is assumed to be a known quantity. The £ for our
problem is the Helmholtz* operator.

Our plan is to create an integral-equation representation for the field
u(xp), using the information from the source —f(x) and the Green’s func-
tion g(x, o), while taking into account any boundary conditions that may
be present. Here, the location xq is a distinguished location in the medium,
which for our purposes will be identified with the position of a recording
instrument.

If the £ is the Laplacian, V2, we can combine the left-hand sides of
equations (2.2.4), and integrate the result to form Green’s theorem,

/D l9(@, ) V2u(z) — u(z) Vg (x, z0)|dV
- / V- [gVu - uVgldV (2.25)

:/ [9( - V)u — u(f - V)g]dS.
oD

Here, D is the domain or volume of the problem and 9D is the bounding
surface. The surface integral has been created using the divergence® theo-

“The Green’s theorem method that we outline here is generally applicable to
many problems in mathematical physics. Examples of other equations that might
appear in such a formalism include the Laplace, Poisson, Schroedinger, and heat
equations. See Morse and Feshbach [1953], Butkov [1968], or other mathematical
physics texts for additional information about the Green’s-function method.

5The reader should note that in 1D the divergence theorem reduces to simple
integration by parts, with the “boundary” term being the part that is evaluated
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rem. The expression (7 - V) is the derivative normal to the boundary 0D
and will often be written as 0/0n. Here, n points in the outward direction
from 0D.

By applying equation (2.2.4), we solve for u(xo):
ueo) = [ gla,z0)f(@)av (2.26)
D

v [ Jatee0) gouta) - u(@) e, a0)| s

Boundary conditions on 8D consist of specified values for u (a Dirichlet
condition) or Ou/On (a Neumann condition). If 0D is at infinity, we call
the problem “unbounded” and define a radiation condition, as in equation
(2.2.2).

Many operators can be substituted for V2 in equation (2.2.6) leaving the
form of equation (2.2.6) unchanged (see Exercise 2.2); however, this is not
always the case. In general, we have to write the problem as

Lu(x) = —f(x)
Lg*(x, ) = —6(x — x0), (2.2.7)

where the x indicates that a different operator and respective Green’s func-
tion compose the second equation. The operator £*, called the adjoint of
L, is simply the appropriate operator that will make the integrand in the
volume integral portion of Green’s theorem an ezact divergence.

If £* = L then the operator is called self adjoint. We will see that
problems governed by the Helmholtz equation are self adjoint, but that
problems governed by the variable-density acoustic wave equation are not.
In any case, the volume integral in Green’s theorem takes the form

/ 0" (@, @) Lu(®) — u(®) L*g* (, 2o)]dV = / A-QdS.  (228)
D oD

That is to say, we choose or construct £* in such a way as to make the
integrand of the integral over D an exact divergence, implying that

g Lu—ulrg"=V-Q.

The 7 - Q term will be a function of g* and u, and will contain derivatives
of one order lower than the original £ and £*. For example, in (2.2.6), Q =
gVu — uVg. However, it is not always possible to write a neat expression
like equation (2.2.6), because there may be parts of £ and/or £* that carry
over into the Q. While boundary and radiation conditions in such problems
will still be written as conditions on w and Ou/0n, the surface integral
expression may be complicated with derivatives on additional parameters

on the endpoints of integration. Conversely, we say that the divergence theorem
is integration by parts in higher dimensions.
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(such as the wavespeed or density). See Exercise 2.5 for a non-self adjoint
problem that is of interest to us—the variable-density acoustic problem.

Exercises

2.1
2.2

2.3
24

2.5

2.6

2.3

Prove Green’s Theorem, equation (2.2.6).

Show that Green’s Theorem (2.2.6). is also true when £ is the
Helmholtz operator,
W2
v? :
{ * c?(wJ

Verify equation (2.2.6).

Specialize the problem to 1D. Assume constant coeflicients and
an unbounded medium. Show that equation (2.2.6) reduces to the
convolution theorem

) = [ " f@)g(e - wo)da,

implying that equation (2.2.6) may be thought of as a generalization
of the familiar principle of superposition.

Let Lu = pd/dz[1/pdu/dz] + [w?/c?|u. This is the 1D form of the
variable-density wave equation. Show that Green’s theorem for this
equation is

< du ud(ﬂg*)} ’

b
/a [g"Lu — ul*g*]dx = [g & o de

a

where L£*g* = d/dz[1/pd(pg*)/dz] + [w?/c?]g*. (Hint: Integrate

b
/ g Lu dx

by parts, twice, to construct the other three terms that appear in
Green’s theorem.)

Construct a set of radiation conditions for the variable-density acous-
tic problem for an unbounded medium. (Hint: Consider what happens
to the integrated terms, as ¢ — +00.)

The Forward Scattering Problem

The mathematical tools of the previous section provide the general recipe
for finding analytical solutions to forward modeling or boundary value
problems. We seldom know the exact Green’s function for a problem.
However, we often have approximations of the Green’s function obtained
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through techniques such as ray tracing, through finite-difference model-
ing, or through other approximate techniques. Whether or not we have the
exact Green’s function, we are probably using an approzimate wavespeed
profile as input for the modeling, anyway.

This means that we cannot write a set of ezact representations such as
those in (2.2.4). What we can write is an equation in terms of the approxi-
mate Green’s function, with the operator £ depending on the approximate
wavespeed profile. To relate this approximate wavespeed profile and Green’s
function to their true counterparts, we will employ a method known as
perturbation theory. In our application, perturbation theory amounts to
representing an unknown quantity as the sum of a known reference quan-
tity, called the background, plus a small deviation from the background
called the perturbation.

If the approximate wavespeed profile is almost the same as the true
wavespeed profile, then we may represent the true wavespeed as being the
sum of a background wavespeed profile plus a perturbation, also called the
scatterer. Following this logic, we may consider the true wavefield u seen
in the first equation of (2.2.4) as being the sum of a background wavefield
plus a perturbation, also called the scattered field.

Because we know the respective background wavespeed and wavefield,
our approximate modeling formula will represent the scattered wavefield
as a function of the value of the perturbation in wavespeed.

2.8.1 The Forward Scattering Problem in 1D

Keeping all of these ideas in mind, we will formulate the 1D forward scat-
tering problem by considering the propagation of waves in a model with
variability in only one spatial dimension. To keep things simple, we will
consider a constant-density problem for which the soundspeed is unknown
only in part of the wavespeed profile. An impulsive point source will act
at time ¢ = 0 at the position £ = =, and will be represented by the distri-
butional quantity —6(z — x5)é(t). (See Appendix A for an overview of the
theory of distributions.) A recording instrument is located at the position
T4, the receiver position, which for geophysical applications, is assumed to
be a geophone or a hydrophone.

The wavespeed profile will be assumed to be known in the range of
distances from —co < # < z} and unknown in the range z} < z < oo

g
(see Figure 2.4). The position z is located to the right of z,. We further

assume that the soundspeed is b(g)unded as x — 00, becoming a constant for
large range. If the “source” and “geophone” are located at the same place,
zs = x4 = &, then this is the simplest example of a zero-offset experiment.

The governing equation for the problem is the Helmholtz equation
(2.2.1), with the radiation condition specified by equation (2.2.2). Our
method of formulating this problem is to use two Helmholtz equations,

as in (2.2.4), and apply Green’s theorem to create an integral-equation
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FIGURE 2.4. Cartoon showing a background wavespeed profile c¢(z) and the
actual wavespeed profile v(z).

representation of the scattered field, as in Exercise 2.2. We now show how
perturbation theory can be used to create the two Helmholtz equations.

Suppose that the wavespeed profile, v(z), can be represented as a per-
turbation from a background profile ¢(z). While there are many ways to
represent such a small deviation, our choice will be constrained by a de-
sire to preserve the form of the Helmholtz equation. To do this, we use an
expression of the form

7 = 2 L e (2.3.1)

For the present discussion, a(x) will be assumed to always be “small”
when compared to other relevant quantities in the problem. We assume
that the Green’s function (the impulse response in linear-systems language)
of the Helmholtz equation posed in terms of c¢(z) is known or can be ap-
proximated. Rewriting (2.2.1) using the perturbation representation (2.3.1)
yields an equivalent Helmholtz equation

d? w?
Lou(z, z5,w) = [E—x—? + CT(ZE)—] u(z, s, w)

w2

()
Here, the term involving «(z) has moved to the right side of the equation.

Equation (2.3.2) is posed in terms of the “total field” u(z,z,,w) gen-
erated by the impulsive source —6(z — z5) plus the more complicated
“scattering source” represented by the term on the far right in (2.3.2).
The scattered waves generated by this new “source” have interacted with
regions at greater depth than z, and x4, and thus contain information about
the wavespeed profile at these greater depths.

It is this part of the wavefield that is of greatest interest. It is reason-
able to assume that there is a distinction between the direct-wave energy
propagating away from the source position and the scattered energy that
propagates back to the receiver. Because the wavespeed structure of the
medium has been represented as a reference profile plus a perturbation, a

—6(x —xs) — a(x)u(z, s, w). (2.3.2)
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similar representation of the wavefield u(z, zs,w) is also appropriate. It is
proper, therefore, to think of u(x,zs,w) as being made up of a reference
field, ur(z,zs,w) (u-Incident), which would be present in the absence of
the perturbation, plus ug(z, zs,w) (u-Scattered), which represents the de-
parture from u(z,zs,w) due to the presence of the perturbation, a(z).
The expression for this decomposition of the total field,

u(z, zs,w) = ur(z, 5, w) + ug(z, T4, w), (2.3.3)

is analogous to the wavespeed perturbation expression (2.3.1).

An advantage of using this formal decomposition of the field is apparent,
because we see that the Helmholtz equation (2.3.2) may be written as the
sum of two Helmholtz equations. We require that incident field uy(z, z5,w)
be a solution of the problem,

d?uy w?
- + -
dz? = 2(z)

with u; bounded for all x and satisfying the radiation conditions,

Lous = ur = —6(z — zy), (2.34)

6

d
% F i%u; — 0, as z — Foo. (2.3.5)

We then substitute the formal field decomposition (2.3.3) and the equation
describing the incident field (2.3.4) into (2.3.2), to obtain the Helmholtz
equation

w?

Loug(z, x5, w) = —%a(x) [ur(z, zs,w) + ug(z, zs,w)], (2.3.6)
written in terms of the background wavespeed c¢(z), and having the “scat-
tering source” as its forcing function. The Helmholtz equation describing
the total field (2.3.2) is equal to the sum of the equation describing the
incident field (2.3.4) plus the equation describing the scattered field (2.3.6).

The scattered field representation (2.3.6) has important consequences.
Notice that, while there is no explicit representation of the delta function
source in (2.3.6), the primary source is contained implicitly in uy, although
we also have a term involving the unknown wavefield. The price for creating
such a representation is that a more complicated “equivalent source” is
needed to generate the correct ug. This new source is no longer a simple
distribution acting at one point (z5). It is now a source that depends on
the general coordinate z, through a(z), and depends also on the values of
the field ug—itself a function of both the general coordinates z and the
perturbation a(z).

SWe must require “reasonable” behavior from c(x) as z — +o0o. This means
that c(z) must “eventually” become constant, or that ¢ — const. while being
“sufficiently” differentiable for large |z|.
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As noted above, our intent is to create an integral equation that will
represent the field at z, due to a source at . To achieve this, we introduce
a Green’s function with excitation point z = z, that satisfies our second
Helmholtz equation
d2 w2

+ —:I g($7$g7w) = —5(.’13 — .’Eg). (237)

Eog(l',l‘g,W) = Ii@ 02(111')

We impose the same boundedness and radiation conditions on g(z,z4,w)
as were imposed on u;(z, zs,w) in (2.3.4). Note that, from equation (2.3.4),
we know us(z,zs,w) = g(z,z,,w), and, since we also know z4, it follows
that, g(z,z4,w) is also a known quantity.

The reader should note that while the equations for the total, incident,
and scattered fields ((2.3.2), (2.3.4), and (2.3.6), respectively) depend on
each other, this new equation (2.3.7) is independent of all of these. Equa-
tions (2.3.6) and (2.3.7) may therefore be solved using Green’s theorem to
create the desired integral equation for ug(zg, s, w). It is left as an exercise
for the reader to show that the integral equation relating the observations
of the scattered field at x4, ug(zg,zs,w), to the interior values of that
unknown field and the unknown perturbation, a(z), is

ug (g, Ts,w) = w2 /0°° ;((?) [ur(z, zs,w) + us(z, T5,w)] g(z, T4, w)dz.

(2.3.8)

Exercises

2.7 Prove Green’s Theorem in one dimension; that is, show that

o

/ " (8(@) Lolz) - W(e) Lod(2)} dz = (p(a) (@) —v(@)P @)] |

where Ly is the Helmholtz operator
d? w?
e (x)’

2.8 Use Green’s Theorem and equations (2.3.6) and (2.3.7) to show that

Lo

* a(z)
ug(zg, Ts,w) :wQ./O Zz(—m)u(x,ms,w)g(x,xg,w)dm

o0

+g(IE,ZL‘g,W)UZQ(IE,ZL‘S,W)

—00
o0

- g'(x,xg,w)us(m,ms,w)

—0o0
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a. Apply the radiation condition (equation (2.3.5)) to the terms eval-
uated at oo, and use the fact that a(x) = 0 for z < 0 to obtain
the integral equation for the scattered field (2.3.8).

b. Explain why the condition of ¢(z) — const. as  — oo is necessary
for the formulation of this problem.

2.9 Solve the general unbounded-media problem

It

Lg(z,z5) = —6(x — xz4)
Lrg*(z,xg) = —6(x — xy4),

with £, L*, being defined as in equation (2.2.8), to prove the theorem
of reciprocity

g*(mm l'g) = g(mgaxs)-

2.8.2 The Born Approrimation and Its Consequences

We say that the integral equation (2.3.8) is nonlinear because it has a term
that contains the product of the unknown field ug and the perturbation
a(z). This introduces a difficulty because, in the inverse problem, a(x) is
the unknown that we seek. An important approach to solving such nonlin-
ear problems is to find a “nearby” linear problem that we can solve. This
solution is then viewed as a first approximation—subject to correction—of
a solution to the nonlinear problem. The common method for finding such
a nearby linear solution is to linearize the problem.

Here “linearization” means removing the product us(z, zs,w)a(z) from
the right side of equation (2.3.8). If a justification for ignoring this prod-
uct can be found, then the linearization can be accomplished. In the worst
possible scenario, ug(z, zs,w) is of comparable size to u;(x,xs,w), mean-
ing that there is no justification for making the approximation mentioned
above.

First observe that the Green’s function g(z, z4,w) is of comparable size
to ur(z, zs,w), because our “incident field” is also the response to an im-
pulsive source, located at a different point z = x,. From the scattered-field
Helmholtz equation (2.3.6), it is easy to conclude that ug(z, =5, w) vanishes
when a(z) = 0. It is reasonable to assume that if a(x) were “small” then
ug(z,zs,w) would also be “small.” Hence the product, a(z)us(z,zs,w)
appearing under the integral in (2.3.8) should be significantly smaller than
the product a(z)us(z,zs,w). The former is (in some sense) quadratic in
a(x), while the latter is only linear in «(z). It is natural to conclude that
for small a(z), the former term may be neglected in favor of the latter.
Thus, it should be possible to obtain an approximation to ug(z, s, w) that
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is accurate to linear order in a(z), yielding

o0

ug(zg, Ts,w) = w2/ o(z) ur(z,zs,w)g(z, Tg,w)dz. (2.3.9)
o cA(z)

The linearization performed here is often called the Born approzimation

by physicists.” The resulting integral equation is therefore often called the

Born modeling formula.

2.8.3 The Inverse Scattering Integral Equation

In the problem, the wavefield u(zy,zs,w) is observed and the wavefield
ur(zg, Ts,w) is assumed to be known, implying that we can deduce the
values of the scattered field at z,, represented by ug(zg,zs,w). Thus, the
objective of our inverse problem will now be to determine a(z) from the
“observed data,” ug(zg, zs,w).

As noted above, uj(z,zs,w) = g(z,zs,w), permitting (2.3.9) to be
rewritten as

o0

ug(xq, Ts,w) = w2/ o;(a:) 9(z,zg,w)9(z, s, w)dz. (2.3.10)
o c(z)

We have formally reduced the inverse problem to the problem of solving

this integral equation for a(z) using the observed data ug(zg, zs,w).

In the formal theory of integral equations, equation (2.3.10) is called a
Fredholm integral equation of the first kind. That part of the integrand
excluding a(z) is called the kernel of this integral equation (or integral
operator). An important issue that arises when trying to solve such an
equation is whether or not small changes in the data ug lead to small
changes in the solution . When this is not the case, then the integral
equation is said to be “ill-conditioned,” or to have an “unstable inverse.”

In general, there is no guarantee that a “Fredholm I” integral equation
will have a stable inverse. There is, however, a class of such integral equa-
tions that does have stable inverses. These are the Fourier transforms and
their extensions, the pseudodifferential operators, and Fourier integral op-
erators, with the inverses being respectively, the inverse Fourier transform
and the inverse pseudodifferential operator, and the pseudo-inverse Fourier
integral operator. In addition to being stable analytically, these inverse
operators are also stable numerically.

As we will see in the body of this text, the choices of approximate Green’s
functions will contain factors of complex exponentials, meaning that our
Born modeling formula may be treated as a Fourier transform or a Fourier
transform-like integral. Though Fourier transforms have stable inverses,

7 Actually, this approximation was first applied to the Schrodinger equation
by Kirchhoff, but the origin has been blurred, as to both the originator and the
implementation.
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finite bandwidth and finite spatial range may degrade the solution if the
inverse transform is not handled correctly. We will see below how we regu-
larize the solution to avoid problems associated with finite bandwidth and
finite spatial range.

The reader should keep in mind that this is the linearized problem and
that infinite-bandwidth information in w has been assumed. No rational
claim can be made about the “exact” solution to the finite-bandwidth,
fully nonlinear problem, from the information provided here.

2.4 Constant-Background, Zero-Offset Inversion

The Born approximate integral equation for the scattered field (2.3.9) may
be understood more clearly if applied to a simple problem. Consider, there-
fore, the case where the source and receiver are located at the same place
(for simplicity we choose zs = 24 = 0 and ¢(x) = ¢p). This is the simplest
“zero-offset problem.” The Green’s function may then be written explicitly
as

iw|z|/co
Cpe
O,w) =— 24.1
(see Exercise 2.10), making (2.3.10) take the form®
o0
ug(0,w) = —/ gEf—)e2i“””/c°d:c. (2.4.2)
0

Note that z values are assumed to be positive, so |z| has been replaced
with z.

Consistent with the assumptions made in formulating the inverse prob-
lem, a(z) = 0 for z < x5 (z < 0, here) meaning that a(z) behaves as a
causal function of the time variable, 2z/cy (the two-way traveltime of a
reflected arrival is the minimum time at which a once-scattered signal can
exist). It is permissible, therefore, to treat this equation as a causal Fourier
transform, (see Appendix B and equation (2.2.3)), and proceed to invert
using the definition of the inverse Fourier transform, with the caveat that
if there are any singularities on or above the real w axis the integral must
be interpreted as a contour integral that passes above those singularities.
Except for this caution, this is an equation for the Fourier transform of
a(z) evaluated at the “wave number” k = 2w/c) representing the data
ug(0, cok/2). Thus, a(z) is represented in the inverse Fourier transform
form as

4 [ -
alz) = —— ug(0,w)e™2ws/ gy, (2.4.3)

TCo J_oo

8Here and below, whenever the source and receiver are coincident, and located
at the origin, we will write the argument, 0, only once.
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The constant multiplier is a simplified form of

1,k

2m dw
with the first factor coming from the definition of the inverse Fourier
transform, the second coming from the divisor of 4 in (2.4.2), and the
third coming from the relationship between w and the “true” Fourier
variable £ = 2w/cy, noted above. The reader should note that through
this transformation, temporal/frequency information has been equated to
spatial/wavenumber information. A form of this transformation will be
common to all of the inversion formulas that will be derived in this text.

That is to say, we will always “trade” the time dimension for one spatial
dimension.

Exercises

2.10 Given the heterogeneous scalar wave equation

2 1 d?
[E - %d_t?] G(z,zs,t) = —6(x — z4)6(t),
use the definitions of the causal Fourier transform in Section 2.1 and
Appendix B to show that

cOeiw|z—zs|/co

g($7$S7W)= 27/“)

2.4.1 Constant-Background, Single-Layer

The zero-offset, constant-background inversion formula (2.4.3) derived
above is the first example of the kind of formula that is the goal of our
investigations. We rely on the fact that the properties of the integral repre-
sented here (an inverse Fourier transform) are well established in the world
of applied mathematics, from both theoretical and computational stand-
points, at least for arguments that are, in some sense, “well behaved.” It
is easy to test this preliminary result to see if further investigations in this
direction may be profitable.

An advantage in the 1D problem is that exact scattered-field data can
be generated analytically for a variety of wavespeed profiles. The simplest
of these profiles is a perturbation of size €. This steplike wavespeed change,
located at the position = h, defines the boundary between two constant-
wavespeed media and is represented mathematically as:



44 2. The One-Dimensional Inverse Problem

a(z) =eH(z — h), (2.4.4)
Co, < h,
v(z) =

ct=co/V1i+e, z>h

Here, H(z — h) is the Heaviside step function, equal to 0 for z < h and
equal to 1 for z > h. The second line follows from the definition of a(z) in
(2.3.1).

The exact solution to the problem (2.2.1) for this wavespeed profile is

ur(z,w) + ur(z,w), z <h,

u(z,w) = (2.4.5)
ur(z,w), T > h,
with
COeiwx/co coRe—iw(z—2h)/c0
urlow) = =5 unlew) = T
(2.4.6)
COTeiw[(:b—h)/cl-}-h/co]

ur (@, w) = 2iw ’

where the “reflection coefficient” R and the “transmission coefficient” T
have the usual definitions

R_cl—co_l-—\/1+s
_cl—f—co N 1++vV1+¢

2c; _ 2vV/1+¢

c1 + ¢ - 1+\/1+6.
(2.4.7)

and T =

Remark 2.1. We have used the notation u; to represent a part of the
solution in the region, < h. Previously, we defined u; as the wavefield in
the absence of the perturbation, «. In fact, with ¢y taken to be the reference
speed ¢ in our formalism, the function u; introduced here is ezactly the
incident wave of our derivation.

The scattered wave ug(0,w) needed for (2.4.3) is then just the expression
for the reflected wave ug(zr,w) in (2.4.6), evaluated at z = 0. Thus, the
integral representation of the wavespeed perturbation is

AR /oo e2iu.)(h—a:)/co

dw. (2.4.8)
T

afz) ,

oo 2tw
For this analytic representation of the data, the caveat about passing above
singularities on the real w-axis becomes important. It is left as an exercise

for the reader to verify that
af(r) = —4RH(z — h), (2.4.9)

under the assumption that equation (2.4.8) represents a causal Fourier
transform.
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If we compare the result in equation (2.4.9) with equation (2.4.4), we see
that the discontinuity is in the right location but that the magnitude of
the jump is not exact. However, for small ¢,°

R=—¢/4+ O(?). (2.4.10)

This result follows by using the binomial theorem to expand the square
roots in the numerator and denominator of the expression for R in (2.4.7)
and by expanding the resulting factor of 1/(1+¢/4) into its geometric-series
representation. The theory was presumed to be valid only to leading-order
in o, meaning that this result is a verification of the method when applied
to this simple problem.

Two important questions can be raised:

1. How would numerical integration deal with the singular integral in
(2.4.8)7

2. How would the bandlimiting present in any real-world experiment
change the result?

The answer to the first question is fairly straightforward, but has some
implications regarding the implementation of the theory. First, no real-
world experiment will provide observations at w = 0. If the value for w = 0
is simply taken to be zero, the result would be akin to the principal value
integral, which is the odd function

a(zr) = —4R[H(x — h) — 1/2] = —2Rsgn (z — h).

Therefore, the error caused by the lack of zero-frequency information is an
additive constant, converting the step into something more like a signum
function.

The result may be signum-like, but it need not be placed symmetrically
about the z-axis, as is seen by the following simple argument. The zero-
frequency portion of a(x) is just the integral of this function over its domain
in x, meaning that the absence of zero-frequency data implies that the
integral of a(z) over its entire domain of support is zero. If the z = h
position (where a(x) begins to act) is located in the exact center of the
range of integration, or if the range of integration is infinite, then the result
will be an exactly symmetric signum function (see Figure 2.5). If, however,
the point = h is located off-center, with the range of integration in x being
finite (as will be the case in numerical representations), then the signum-
like function will be asymmetric. (The result will be two rectangles of equal
area, one above and one below the z-axis.) The practical meaning of this

9The expression f(g) = O(¢) means that f() /e is bounded as & — 0. Similarly,
in this equation, —(R+¢/4)/e* is bounded as € — 0. This convention is a means of
measuring the “order of vanishing” of a small quantity with respect to some scale,
in this case, €. At times, we will measure the order of vanishing as a parameter
approaches infinity, using a corresponding definition in that case.
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a)
Full-Bandwith Step Data

Amplitude (units)
o

Time (sec)

Step Data, Zero-Frequency Information Removed

Amplitude (units)
<

N
w

0 1
Time (sec)

FIGURE 2.5. a) A full-bandwidth representation of a step function. b) A step
function lacking only zero-frequency information.

error is that in the absence of zero frequency data, we can reconstruct a(z)
only up to an additive constant. If the background wavespeed is known to
be the ezact wavespeed for = 0, then a(0) = 0, which defines the constant
needed to make the result of the inversion formula agree with reality. In
practice, it should be possible for the experimentalist to know the value of
v(0) by direct measurement.

In summary, for a step in wavespeed like the one in Figure 2.5a, numerical
inversion in the absence of zero-frequency information produces the output
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Step Data, 0--50 Hz

Amplitude (units)
<

0 1 2 3
Time (sec)

FIGURE 2.6. A 0-50 Hz bandwidth (sampling interval, 4 ms) representation of
a step function.

in Figure 2.5b. The positive and negative lobes have equal area above and
below the horizontal axis, exactly canceling each other.

Let us now consider the second important question raised above, that of
limited bandwidth. Bandlimiting of observed data has a variety of causes,
some of the more important of which have been listed in Section 1.6.

Although the causes of bandlimiting are clearly complicated, the com-
bined action of these processes on the inversion problem may be treated
satisfactorily by assuming that a real-valued filter F'(w) has been applied
to data. The question that must be answered is: How much of the infor-
mation regarding the jump in parameters is retained in bandlimited data?
Assume that the observed field is similar to the expression in (2.4.6), but
with a multiplicative factor F(w). Because data must be real-valued in the
space/time domain, the filter, F'(w), must be symmetric and nonnegative
in the w-domain. The scattered field in (2.4.6) is then replaced by

CORe—iw(z—Zh)/co

us(z,w) = —F(w) (2.4.11)

21w
When this function is substituted into (2.4.3), the output will be some
bandlimited version of a(z), represented here as ag(x), given by

00 2iw(h—z)/co
= @/ Fw) o dw. (2.4.12)

aB (I) 2iw

T J-oo

Where (2.4.8) yielded the step function of (2.4.9) as a solution, this integral
yields a bandlimited version of the same step function.
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Remark 2.2. Note that we have not tried to solve the bandlimited in-
verse problem directly. Instead, we have introduced bandlimited data into
our solution of the full-bandwidth inversion problem. We will proceed to
analyze the influence of bandlimiting on this “solution.” This approach
to the problem of bandlimited data will be a theme that will be repeated
throughout the text. In contrast, some approaches attempt to directly solve
the ill-posed problem of finding a full-bandwidth solution from bandlimited
data. Such an approach is equivalent to numerical analytic continuation of
a (complex-valued) function of a complex variable (w) away from its origi-
nal domain of definition. That problem is known to be ill-conditioned and
admits exponentially growing solutions.

Numerical comparisons

What, then, is the result of bandlimiting on the step function example of
Figure 2.5a? If we think of the 4 ms (.004 s) sampling interval commonly
used in geophysical exploration, this is a “full-bandwidth,” 0-to-125 Hz
(zero to Nyquist) step. Figure 2.6 shows the result of limiting the bandwidth
to 0-50 Hz. The result is not seriously degraded. From the discussion of the
causes of bandlimiting in Chapter 1, we see that it is necessary to study
the result of the truncation of the spectrum at the lower limit if we are to
obtain an accurate picture of the bandlimiting experienced by real data.
We already know what to expect if the sample at 0 Hz is the only low-
frequency information that is missing—the step is shifted to make the mean
value of a equal to zero. In Figures 2.7a and 2.7b, we show this, with 4-
50 Hz and 10-50 Hz outputs, respectively. From the former we conclude
that even a moderate loss of low frequency energy already makes the step
unrecognizable and indistinguishable from an a(x) that is slowly varying—
except in the neighborhood of x = h, where it exhibits a rapid, doublet-like
behavior. From Figure 2.7b, an even further degradation of the output is
apparent, although the region of the discontinuity of the propagation speed
is certainly still recognizable. It should be noted that the frequency range,
4-50 Hz, corresponds here almost exactly to data points 4-50 in the (di-
mensionless) frequency domain. In accordance with the Rayleigh criterion
for resolution (discussed in Chapter 3), any dimensionless frequency larger
than 3 (or 7) is a high frequency. Thus, the qualitative features that we are
observing here are features of high-frequency bandlimited Fourier inversion.
From this example, the reader should conclude that slow variations in
propagation speed cannot be recovered from high-frequency data by this
method. However, it is apparent that the discontinuity of the original func-
tion still produces a recognizable artifact in this bandlimited inversion. This
suggests that for inversion of high-frequency data, we should first concern
ourselves with finding the discontinuities of the propagation speed (and/or
other appropriate Earth parameters). That is, we should seek the reflectors
in the unknown medium. Of course, this is the geophysicists’ traditional



2.4 Constant-Background, Zero-Offset Inversion 49

goal, motivated by geometrical optics “common sense.” 10

If the discontinuities are our primary interest, there is a better way to
process the data than to simply take the inverse transform. Bandlimited
delta functions are easier to identify than are bandlimited step functions.
It is not difficult to obtain Fourier data for a bandlimited delta function
from Fourier data for a bandlimited step function. All that is required
is to introduce a multiplicative factor of +iw or +ik, depending on the
type of forward and inverse transform under consideration. Such a factor
corresponding to the derivative operation in the respective frequency or
wavenumber domain. For the numerical example of the previous figures,
the correct multiplier is —iw because the inverse Fourier transform (from
frequency to time) is defined to have a kernel exp {—iwt} The result of
applying this multiplier to the 10-50 Hz step function Fourier data is shown
in Figure 2.8. The location and polarity of the discontinuity are clearly
revealed by the peak of the spike that represents the bandlimited delta
function. Furthermore, we will show below that the height of the spike
equals the magnitude of the step scaled by the area under the filter applied
to the data. This is, of course, only within the numerical accuracy of the
discretization process used in carrying out the Fourier inversion, and the
picking process for obtaining the peak amplitude.

As a check that this result is not peculiar to a single step, we show in
Figure 2.9b the bandlimited delta function output for the series of steps in
Figure 2.9a. Each delta function is properly centered on the discontinuity
and has peak amplitude proportional to the jump in the input function
multiplied by the area under the filter. Because the amplitudes in the figure
have been divided by the area under the filter, the heights of the spikes in
Figure 2.9b are the same as the heights of the steps in Figure 2.9a.!!

10We have chosen here to extend the bandwidth of the inversion by interpreting
the telltale signature of Figure 2.7 as the infinite bandwidth Fourier transform
of a step function. It is tempting to believe that we are extending, or perhaps
analytically continuing, the data back to zero frequency, and thus overcoming
the ill-posedness imposed by bandlimiting, effectively recovering data that we
did not have in the first place. This is not the case. We have simply chosen
a particular method of “regularizing” the solution, which means that we have
made assumptions that lead to a result that is stable, but which is not necessarily
correct, in general.

11t is important note that these diagrams represent only the properties of
Fourier transforms as applied to step functions that have been converted to
bandlimited delta functions. These are not actual reconstructions of jumps in
wavespeed made from seismic data. Real data may have amplitude and travel-
time distortions arising from the transmission of seismic waves through overlying
layers, as well as possibly large multiply reflected arrivals. We have not yet ad-
dressed these issues. However, if we can successfully correct for these sources of
error, then the discussion here shows that the bandlimited Fourier transform will
give us the desired result.
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a)
Step Data, 4-50 Hz
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FIGURE 2.7. a) A 4-50 Hz bandwidth (4-ms sampling interval) representa-
tion of a step function. b) A 10-50 Hz bandwidth (4-ms sampling interval)
representation of a step function.

We return now to consideration of the bandlimited solution in (2.4.12).
Following the line of the discussion above, we will take the z-derivative of
ap by multiplying the integrand in (2.4.12) by the factor, —2iw/cg. The
result is a new function Sp(x) defined by the expression

Be(z) = _4R/ F(w)e2wh=z)/co gy, (2.4.13)

TCo — 0

If F(w) were replaced by unity here, the integral would be proportional to
the Dirac delta function:
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Step Data, 10--50 Hz, (with derivative operator)

Amplitude (units/filter area)
o

Time (sec)

FIGURE 2.8. A 10-50 Hz (4 ms sampling interval) representation of a step func-
tion with the —iw (derivative) operator applied, and the resulting amplitude
scaled by the area under the filter.

o0

L eziwth-a)jeo g, L ((h = z)/co) = 8(z — h). (2.4.14)
mCo J_oo €o
To obtain the last equality we have used the evenness of the delta function
and the scaling property, aé(az) = §(z).

This result may seem to be a bit puzzling at first, because the value of
a delta function 6(0) is not defined. In real life, however, we never have
infinite bandwidth, so the expression that we really have is a bandlimited
representation of a delta function, rather than being an actual distribution.
If we define the bandlimited delta function, ég(x — h), as

ép(z —h) = =N / F(w)e?wh=a)/co g, (2.4.15)

TCo J—oo

then our expression for the bandlimited reflectivity function, Sg(z) will
become

Bg(z) = —ﬁég ((h—1z)/co) = —4Rbp(x — h). (2.4.16)

Co

This a promising result! By multiplying by —2iw/cq before taking the in-
verse transform of the data, we have produced a bandlimited delta function
that peaks at the location of the reflector. Furthermore, the peak ampli-
tude of the output is —4Ré5(0). Thus, division of the peak amplitude by
the known factor, —465(0), yields an estimate of the reflection coefficient
as well!
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a)
Full-Bandwidth, Multistep Data
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FIGURE 2.9. a) A full-bandwidth representation of a series of steps. b) A 10-50
Hz (4-ms sampling interval) representation of the above series of step functions,
with the —iw (derivative) operator applied.

Redefining Our Goals for Inversion

This result suggests that our goal needs to be redefined. To correct for
bandlimiting, we will purposely design our inversion formulas to correctly
identify the location of reflectors as bandlimited delta functions. This re-
quires the introduction of the appropriate derivative operator (here, a factor
of —2iw/cy). Also, the appropriate scaling factors (here, —1/4) will be in-
corporated into our inversion formulas so that the peak amplitudes of these
bandlimited delta functions will yield the reflection coefficient scaled only
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by the area under the filter F(w). This means that we will introduce an
overall multiplier of iw/2cy into the inversion formula, (2.4.3), to obtain an
inversion that produces a “properly scaled” delta function; the result will
be referred to as the reflectivity function,
2 [ .
Bp(z) = ——5 iwug (0, w)e 2w/ gy, (2.4.17)
T J—oo

This operator, when applied to the specific example under consideration
here would yield the result

Bp(z) = Rép(x — h), (2.4.18)
with a peak value at x = h given by
B (h) = R65(0) = % / F(o) do. (2.4.19)
0 J-c0

(The reader should remember that F(w) has support over a finite range, so
that the infinite limits of integration written here are really just formal.)

It remains to be seen what the output of the inversion formula (2.4.17)
will yield for more general problems. We will check its validity and utility
with both analytical and numerical examples below. It must be mentioned
that, in computer implementations, § may be defined so that the peak
amplitude is just the reflection coefficient, R. This would be done here by
multiplying by ¢y and dividing by the area under the filter. However, the
scaling of —iw/2¢y used to obtain equation (2.4.17) yields a result that is
more aesthetically pleasing for analytic investigations.

Exercises

2.11 Let u(z,w) be a solution of the problem

2 2
Z_m% + 1—}%}7& = —6(z)
with radiation condition
Z—z$i$u—>0, as x — £oo.

Here,

co, T < ha,

v(iz) =4 ¢, hi <z <hg,
co, hy <z

The objective here is solve this problem by writing down fairly general
solutions in each of the three regions, with constants to be determined



54

2. The One-Dimensional Inverse Problem

by interface and radiation conditions. However, we can take advan-
tage of some advanced knowledge to simplify the most general of
representations. For example, we know that for x < 0 there should
only be a left-propagating scattered wave, the left-propagating inci-
dent wave that was initiated by the source and the left-propagating
scattered wave that has already passed by the receiver. Similarly, for
x > hg, there is only a right-propagating wave. We also know the
form of the Green’s function in the absence of any variation in the
propagation speed—the free-space Green’s function.

Part of this exercise is to demonstrate that the choice of a
smart general solution form can simplify the computations for the
coeflicients.

a. Such a smart choice for this problem is

w= _i.o_ [eiw(z(/co +Aleiw(2h1—m)/c0] ’ for z < h11
2w

g=——2 [A2eiw(h1/co+(x-h1)/c1)
2w

+ A3€iw(h1/co+(hl_m)/cl)], for i<z« h2,

u = —ﬁ_O—A4eiw[h1/CO+(h2_h1)/cl+(z_h2)/02]a for hy < .
21w
Explain the choices of the phases in the exponentials. Also, ver-
ify that this solution is continuous at x = 0 and that its first
derivative is discontinuous there, with “jump” —1.
b. Require that u and its first derivative be continuous at © = h;

and x = hg. Show that this leads to the system of equations,

Al —Ay—A3=-1

A2eiw'r/2 +A36—iw'r/2 _ A4eiw7’/2 =0

A2 ; A3 ; A4 ;
__ezw'r/Z _ _e—zw'r/Z _ __ezw'r/Z =0.
C1 C1 C2

Here
T = 2[h2 - hl]/cl.
c. Solve for A; and thereby show that

u(0,w) = _ i+ Roe™” g2iwhi/co

2w 14 Ry RoetwT
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Here,

€1 —Co
R =—=, and Ry= )
c1 + ¢y co +C1

_C—C

d. Show that

u(O, w) — _202% 1+ R162iwh1/co

+ Rg[l _ R?]eiw‘r—k%mhl/co ¥, ’

where ... denotes higher order terms in R; and R,. Explain each
term in the above sum in terms of primary radiation, reflection,
and transmission and explain the relationship between the phases
and traveltime.

2.12 The purpose of this exercise is to provide the reader with some insight
into the nature of bandlimited delta functions. We define

I(t) = % /ﬂ e, (2.4.20)

Here, 2 is the symmetric domain, w_ < |w| < w4. This is equivalent
to introducing a filter,

Flw) 1, wo <lw|<wy
w) =
0 otherwise,

and setting

I(t) = = / ” Fw)etat,

Note that for F'(w) replaced by 1, I(t) = é(¢).
a. Show that

1
I(t) = g [sinwit — sinw_t) (2.4.21)
iy

- o (25555 [ (=52) ]

b. Define the sinc function sinc(n) by

sinmn
" # 0,
sinc (n) = (2.4.22)
1, n=0.

Show that
I(t) = 2f4 sinc (2f 1) — 2f_sinc (2f_t), ws =2nfy. (2.4.23)
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1D Model
depth
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Cy = 1.0 km/s h,
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¢; = 3.0 km/s
2.0
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FIGURE 2.10. The 1D wavespeed profile for the numerical example shown in
Figure 2.11.

c. The percentage bandwidth of the I(t) is defined by

percentage bandwidth = 100 - e Al
Wy +w-
Generate plots of I(t) for 40%, 50%, and 60% bandwidths. Note
that Figure 2.7 is the plot of a sinc function of 66.66% bandwidth.

2.4.2 More Layers, Accumulated Error

The next logical question is: What is the result of applying the inversion
formula to data gathered in a multilayer model? To address this question,
we will apply our constant-background inversion formula (2.4.17) to data
gathered in the two-layer model of Exercise 2.11. The wavespeed profile,
v(z), is assumed to consist of three constant values,

co, = <hi,
v(z) =< c1, h1 <z < hg, (2.4.24)
Co, ho <z

as in Figure 2.10. We will assume that the total bandlimiting may be
represented satisfactorily by simply introducing the filter F(w).

It follows from Exercise 2.11 that the analytic expression for the scattered
field is

co Ri+ Rgei“ﬂ

2iwh
STy L (2.4.25)

us(0,w) = —~F(w)

where
_a—6 R_C2—C1

= =2[ho—h . (2.4.26
01+CO’ 2 CQ+01, and T [ 2 1]/01 ( )
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Expanding the denominator in (2.4.25) in a geometric series yields

us(0,0) = =P Reoh

o0
+R2 1 - R2 Z R1R2 n—1 znwr+21h1w/c(3
n=1

(2.4.27)

First consider the case F(w) = 1. The Fourier inversion of each term in
this series is exactly like the inversion carried out above for the case of a
single layer. The only difference will be that the step at z = h in (2.4.9)
will have to be replaced by a step at the appropriate position determined
by the phase of the particular term in the series. We find that

a(m) =4 [RlH(CC - hl) + RQ[l - R%]H ((h2 e hl)C(]/Cl + hl - .CE)

o0
+Ry[1 = R} [~RiRo]" " H (n(hg — hy)eo/c1 + by — z) .
n=2

(2.4.28)

The first term in this expression is just what was obtained for the single
layer, —4R;, where R; is the reflection coefficient of the first boundary. For
small perturbations o = O(e), this term reproduces the step at © = h; to
all orders in €. The second term produces a step at = hy + (ha —h1)co/c1,
instead of a step at = hs. This timing error is caused by the failure of the
assumed background wavespeed model to agree with the true wavespeed
in the region hy < < ho. For small perturbations, the error here in the
location of the second step is O(g) times the length of the interval between
the steps. Furthermore, the amplitude, Ra(1 — R?) is correct to order e.

The remaining terms in the series produce steps at multiples of the er-
roneous interval between steps, £ = hy +n(hy — h1)co/c1, with amplitudes
decreasing as €2("~1). These subsequent terms arise from the multiple re-
flections that are disregarded in the Born approximate integral equation
(2.3.9), from which the inversion formula was derived. These terms pro-
duce spurious reflector images, but with amplitudes that rapidly decrease.
Unfortunately, it is possible that one or more of these false images will
appear in the output with amplitude greater than the noise threshold of
the data. A theory that does not account for multiple reflections cannot
accommodate these terms!

Let us now return to the bandlimited data, which is to say F'(w) is no
longer identically equal to 1. Here, as above, we compute the reflectivity
function ((z), defined by (2.4.17), to the solution representation (2.4.27).
The computations are exactly as they were for the example of a single layer.
Analogous to the result in (2.4.18), we obtain
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B(x) = Ri6p(z — h1) + Ra[l — R%)65 ((ha — h1)co/c1 + h1 — 2)
+ Rz[l - R%] i[—RlRﬂn‘léB (’I’L(hg — hl)CO/Cl + h1 - $)

(2.4.29)

as the output from the inversion formula.

The result is a series of delta functions. The first spike is at the cor-
rect location with amplitude equal to the reflection coefficient of the first
reflector. The second delta function peaks at a point that is slightly mis-
placed from the true location, of the second reflector and has amplitude
that is 1 — R? times the desired value of Ry. Again, the errors are caused
because the background wavespeed profile deviates from the true profile
in the hy < = < h; region. We might anticipate that an inversion that
accounted for the change in propagation speed from ¢y to ¢; at hy would
place this second reflector properly. It would also be desirable if that theory
could produce the reflection coefficient Ry at that location, as well. This is
the topic of Section 2.5.

2.4.83 A Numerical Example

In Figure 2.11a we show a synthetic seismic trace generated over the wave-
speed profile shown in Figure 2.10. In Figure 2.11b we show the inversion
of these data, assuming a constant wavespeed of 1.0 km/s, which is the
wavespeed in the top layer. As expected, the location of the first reflector
is correct, whereas the location of the second is at approximately 1.67 km,
instead of the correct value of 2.0 km. This is in accordance with our ex-
pectations, as the theory above predicts the location of the second reflector
image to be at hy + (hy — hy1)co/c1 = 1.5+ (2.0 — 1.5)(1.0/3.0) = 1.667
km. As expected there are additional multiples present, but only two have
sufficient size to be seen.

Similarly, the estimates of the reflection coefficients also follow our predic-
tions. The exact reflection coefficient for the first reflector is Rjezqct = 0.5.
The value extracted from the peak amplitude of the inversion is Rjest. =
0.50055, which represents an overestimate of 0.11% caused by numerical
and picking errors. The exact reflection coefficient of the second reflec-
tor is Rgegact = 1/7 ~ 0.14286. The value extracted from the height
of the second peak is Rages:. = 0.1072795. This is a 25.1% underesti-
mate of the correct value. Our theory above predicts that the estimate
of Roest. = (1 — R?)Raegact, which for our case is 0.75Roezqct—a 25.0%
underestimate of Rgezqct- Thus, our numerical results differ by only about
0.1% from the theoretical predictions.
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FIGURE 2.11. a) A single synthetic seismic trace recorded over the model in
Figure 2.10. The bandwidth of the data is a trapezoid with corner frequencies
of 10, 20, 50, and 60 Hz, respectively. Though five multiple reflections were gen-
erated, only three arrivals are easily seen. b) Inversion of the synthetic data set
performed according to the theory presented in Section 2.4.2. The exact reflection
coefficients for the first and second reflectors are Riegact = 1/2 and Raezact = 1/7,
respectively. The estimates from the inversion differ from those predicted by the
theory by only about 0.1% due to numerical and picking errors.

2.4.4  Summary

Before proceeding, let us review what has been learned from these simple
examples.

1. The theory was applied to data that would be obtained from piecewise-
constant wavespeed models consisting of a single reflector, as well as
that for a model with two reflectors. A constant-background wavespeed
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equal to the first wavespeed that waves would encounter was assumed
for the inversion. The inversion formula reproduced a(z) to leading or-
der, assuming that a(x) represents a small change from the background
wavespeed.

2. When the data are bandlimited to a range of frequencies that might be
typical of a seismic experiment, the inversion output suggests that re-
covery of information about discontinuities of a(z) from the data should
be expected. (This is not peculiar to this application; it is a property of
high-frequency bandlimited Fourier data.)

3. By multiplying the data by a scale factor proportional to iw before in-
verting, a series of Dirac delta functions peaking at the discontinuities
of the previous output is obtained. Because these discontinuities are
just the reflectors in the medium (plus possibly some small spurious
artifacts), the output obtained in this way is called the reflectivity func-
tion or reflectivity map of the medium. The scaling is chosen so that
the output is approximately the reflection coefficient at each reflector
multiplied by the peak value of the bandlimited delta function, with
the argument of the delta function being the (signed) distance from the
reflector. This is the reflectivity function first discussed in Section 2.1.1.

4. It is important to note that the appropriate scaling factor for producing
the reflectivity function form of the inversion formula depends on the
formulation of the problem. In particular, the factors scaling the argu-
ment of the delta function, as in (2.4.16), will contribute to the final
form of the scaling factor.

2.5 Inversion in a Variable-Background Medium

Based on the insights gained in the previous section, we will seek only
a ‘“high-frequency” solution to the inverse scattering integral equation
(2.3.10). This means that we are free to use a high-frequency approximation
of the Green’s function. To this end, we replace the Green’s function by a
high-frequency approximation. Furthermore, because the Born approxima-
tion implies that multiply scattered energy is ignored, only the downward
propagating component of the Green’s function will be used. Therefore,
we define the approximate Green’s function to be the so-called “WKBJ'2
Green’s function”

A

o er(@0), (2.5.1)

g(CL',O,W) = gWKBJ(xaovw) - -

2The letters stand for names Wentzel, Kramers, Brillouin, and Jeffreys,
several of the many physicists who independently employed this and similar
representations.
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z dl‘/
where 7(z,0) = / — for z>0.
o c@)
The phase factor 7(z,y) here represents the total traveltime for the earliest
possible transmitted wave that departs from a position z and arrives at the
position y in a variable-wavespeed medium. (See Exercise 2.13.) The WKBJ
amplitude, A(z), is somewhat harder to define. In the simplest case, when
c(z) is a continuous function,

A(z) = /e(0)e(x). (2.5.2)

The WKBJ Green’s function may be thought of as the leading-order term
in a series of inverse powers of w, the sum of which represents the total field
in the variable-wavespeed medium. A formal derivation of this important
result has been included as an exercise. (The result is “formal” because we
do not prove that the derived expression has any particular relationship to
the exact solution of the differential equation. In fact, it does; it is possible
to show that it is the leading term of the asymptotic expansion in powers
of (iw)™! of an exact solution to the differential equation. See Bleistein
[1984].)

The same formula, (2.5.1), can be used when c(z) is discontinuous, ex-
cept, in that case, the amplitude must include scaling factors to account
for transmission losses at each interface across which the propagation speed
jumps, which is to say, at each reflector. An example of the type of factor
needed is demonstrated in the last part of Exercise 2.14. In that example,
the factor \/co(0)co(h)/c1(h) exactly matches the amplitude of the trans-
mitted wave to the amplitude of the incident wave at the discontinuity and
the factor T is the same transmission coefficient that arises in piecewise
homogeneous medium (which is to say that the wavespeed is described by
a piecewise-constant function c(z)).

Because this discussion deals with high-frequency solutions, u; =
F(w)g(0,z,w) will be taken to be the representation of the incident field.
Using the WKBJ Green’s function (2.5.1) for ¢(0,z,w) in the inverse
scattering integral equation (2.3.10), with the bandlimited incident field
ur(0,z,w), the integral equation for the scattered field becomes

us(0,w) = — /Ooo F(w)%emm(”’o)dm. (2.5.3)

This Fourier-type integral (so called because of the oscillatory exponential
multiplier) bears strong resemblance to the constant coefficient integral
equation, (2.4.2). That equation was solved by Fourier inversion. The es-
sential feature of the inverse operator was the multiplication by another
complex exponential whose phase was just the negative of the phase in the
integral equation, (2.4.2). Though the phase of the exponential in (2.5.3)
is more complicated than in the previous case, the same logic will be used
here; however, the form of the amplitude factor in this more general Fourier
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inversion remains to be deduced, and will be left as an unknown for the
time being. The general form of the inversion operator will be written as

o
a(y) :/ b(y, w)ug(0,w)e” 270 gy, (2.5.4)
—00
with the amplitude factor b(y,w) remaining to be determined.
Now, we will see why making a careful distinction between the input
variable z, and the output variable y was a good idea. This is because our
next step is to substitute (2.5.3) for ug(0,w) into this equation:

at)=- [~ w8 [™ dorp 0. (255)

4c*(z)  J o

The result is an equation of the form,

a(y) = /000 a(z) f(z,y)dz, (2.5.6)
with
flz,y) = —ﬁg(—(?) /_00 F(w)b(y,w)e%‘”(w’y) dw. (2.5.7)

For x and y greater than zero, the equation (2.5.6) will be satisfied
asymptotically if we set

f(z,y) = é(z —y). (2.5.8)

(This choice is motivated by the fact that f(z,y) exhibits a delta function—
like sifting property, but is bandlimited by the F'(w) present in the original
definition of the problem.) In (2.5.7), it is possible to construct that result
with a b that is independent of w; that is, b{y,w) = b(y). Then,

A2 (I) * 2iwT(x, _ 7I'A2(1,‘)b(y)
—m\/_ooF(W)e () du}——m‘)—éB(T(JJ,y)),

(2.5.9)
where we have applied the definition of the bandlimited delta function from
equations (2.4.14) and (2.4.15), and have recognized that the (h — z)/co
that appears in (2.4.14) is replaced with 7(z,y) in (2.5.9). Applying the
property |f'(z0)|6(f(z)) = 6(z — xo) to the bandlimited delta function,
recognizing that 7/(z) = 1/c(x), and noting that the action of the delta
function is at z = y yields,

flz,y) = —%i—zl))—(y)&;(x —y)= —%63(@" —y). (2.5.10)

f(:r,y) =

The reader should remember that these are “asymptotic” equalities that
depend on the high-frequency assumption. At best, the construction above
is an heuristic sketch which avoids dealing with deeper mathematical issues.

If the bandlimited delta function is visualized as being a sinc-like wave-
form, then sufficient content of high frequencies will sharpen the main lobe
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of the function, while sufficiently broad bandwidth will make the side lobes
small compared with the main lobe. If both of these conditions exist, then
the equalities stated above will be true, asymptotically.

The choice of b(y) needed to make (2.5.8) true is apparent from (2.5.10),
because

de(y)
by) = — .5.11
and the inversion operator, (2.5.4) becomes
_ 4c(y) OO —2iwr(y,0)
a(y) = A2y /_oo us(0,w)e dw. (2.5.12)

As a simple check on this result, note that when c(y) = ¢y = constant,
this result reduces to the constant-background inversion formula (2.4.3)
derived earlier in this chapter. It must be remembered that high-frequency
approximations were freely used to arrive at this inversion formula. There-
fore, good results should not be expected a priori if full-bandwidth data
are processed for a(y) using this formula.

In the constant-background example it was possible to extract mean-
ingful information about the discontinuities in «, that is, the location of
reflectors in the unknown medium, and an estimate of their reflection coef-
ficients. This required that the processing formula be altered to produce the
formula for the reflectivity function B(y), equation (2.4.16). That change
was achieved by differentiating the expression for a(y) with respect to y
and multiplying by —1/4.

The same idea will be used here. We are now committed to using the
leading-order asymptotic results of a high-frequency assumption, and do
not need to include terms of lower order in w. Therefore, when performing
the differentiation of a(y) it is permissible to keep only the leading-order
term. This is the term resulting from the differentiation of the exponent in
(2.5.12), which introduces a factor of iw in the integrand. Differentiation of
the amplitude multiplier outside the integral sign produces no such factor
and therefore the result must be lower order in w.

In summary, paralleling the procedure that was used to obtain equation
(2.4.16), the reflectivity function for the variable-background wavespeed
case is obtained by multiplying the solution, (2.5.12), by (—2iw/c(y)) -
(—1/4) = iw/2¢c(y) yielding,

Bly) = 2 " s (0,w)e=2wTw0) g 2.5.13

Yy __;AQ_(ZIS/ iwug(0,w)e w. (2.5.13)

Again, note that, for constant background, this result reduces to the
constant-background inversion formula (2.4.17).

But is there justification for these assumptions? Considered as the result
of truncating an asymptotic expansion, equation (2.5.10) is equivalent to
the statement that = y is the dominant “critical point” (see Bleistein and

—00
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Handelsman [1986]) of the double integral (2.5.5) and that (2.5.12) is really
a leading-order asymptotic approximation of a(y) for high-frequency data.
(This can be proven rigorously—see Bleistein [1989]—and will be discussed
at greater length in Chapter 4.) With this in mind, it is possible to simplify
the integrand of equation (2.5.5). If the phase 7(x,y) is replaced by the first
term of its Taylor series expansion in & about the point, y,

2wr(z,y) =k(z—y), with k=—= (2.5.14)

and then (2.5.5), with b independent of w, takes the form

c ©  az)A?(z) [ ,
ay) = ___b(y)2 (y)/o dz 4(4(3;(1275 )/ dk F(c(y)k/2)e™*@v),

—00
(2.5.15)

Here, w has been replaced by k in the last integral and an extra factor,
¢(y)/2 = dw/dk has been introduced outside the integral.

For F(c(y)k) = 1, this double integral is just the cascade of a forward and
an inverse spatial Fourier transform. For the bandlimited integration here,
we denote the result by ap(y). Then, to the same order of approximation
made above,

TA%(y)bly) [
__W/o a(z)ép(z — y)dz. (2.5.16)

This result leads to the same choice of b(y) as does (2.5.10). That is, the
double integral (2.5.5) behaves asymptotically like the cascade of a forward
and an inverse Fourier transform with respect to  and k = 2w/c(y). This
insight will prove useful in the higher-dimensional problems seen later in the
text. Furthermore, it lends further credence to approximating the deriva-
tive of a(y) by multiplying by —ik = —2iw/c(y) to obtain the reflectivity
function.

ag(y) =

2.5.1 Modern Mathematical Issues

In fact, there is even stronger mathematical justification for these ideas
in the theory of pseudodifferential and Fourier integral operators, as first
discussed in the context of inverse-scattering imaging by Beylkin [1985]. In
particular, the loss of low frequencies in our solution means that we can
recover a(x) only up to an “entire function,” one that has a power series
with infinite radius of convergence. That is, we are giving up knowledge
of the smoother part of the solution and determining, at best, only the
“singular part” of the solution. Indeed, we have interpreted our output as
arising from a step and have used further Fourier filtering—multiplication
by —2iw/c(y)—to enhance our identification of steps, converting them into
their derivatives, which are bandlimited delta functions. We are further
regularizing away problems arising from bandlimiting when we choose to
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interpret all “spikelike” images in our output as being bandlimited delta
functions, seeking nothing more exotic in our output.

The representation of a(y) in equation (2.5.4) has the general form of
an operator, represented in the frequency domain by its “symbol,” which
for the general class of problems we are considering is of the form of some
function o(w,y). Think of this as a kind of “dynamic filter.” If o(w,y)
is the symbol of a special class of operators, called a “pseudodifferential”
operator, then it has the property that it will not add singularities (which
is to say, spurious artifacts that look like reflectors) to the output. In our
problems, the symbol will be of the form of o(w,y) = w’b(y), where 3 is an
integer. For the specific case of the 1D problem, § = 0, making o = b(y).

If o(w,y) has the property of being invertible, and preserves the singu-
larities of the data, then the operator corresponding to this symbol (the
result of applying the “filter” in the frequency domain) is called an “elliptic”
pseudodifferential operator. In mathematical language, elliptic pseudodif-
ferential operators are said to preserve the singular support (discontinuity
information) of the data. If, however, the operator has the property of de-
stroying reflector information contained in the data ug, then this would be
called a “smoothing operator.”

Fortunately, for us, the symbols of the pseudodifferential operators that
we encounter in the construction of our inversion formulas all meet the
criterion of ellipticity stated above. All of these symbols are invertible
(or, at worst, approximately invertible) by algebraic manipulations, such
as those that precede equation (2.5.13), implying that the correspond-
ing pseudodifferential operators are invertible or at worst, approximately
invertible.

By the same argument, we can see that any process that we may apply
to the data as a filtering process is required to also have the property of
ellipticity, if the singular support of the data is to be preserved. Indeed,
the factor —2iw/c that we introduced into equation (2.4.12) to obtain the
inversion formula for the reflectivity, Sp, given by equation (2.4.13), may
be viewed as being the “symbol” of an elliptic pseudodifferential operator,
and thus will preserve the singular support of the original data. Thus, by
the arguments above, this filter will not destroy the reflector information,
or add spurious reflector-like artifacts.

We must recognize that our good fortune in obtaining invertible pseu-
dodifferential operators is a result of the asymptotic formulation we chose.
While the approximate problem is elliptic, and thus possesses the desirable
properties mentioned above, we cannot say the same about the ezact in-
verse problem. The reader should note that we set the stage for generating
this type of formulation by choosing a Fourier-like integral representation,
through linearization by the Born approximation, for the process by which
the data were generated. Indeed, allowing an increasing amount of “real-
ity” into the inverse problem requires mathematical objects that are more
general than pseudodifferential operators.
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Even if we still use the Born approximation, the choice of more real-
istic approximations for the Green’s function will cause our formulas to
be more general than pseudodifferential operators. The simplest of these
will consist of Fourier-like integrals having more complicated phase func-
tions than those obtained by simply cascading forward and inverse Fourier
transforms. In turn, the simplest of these operators are the Fourier integral
operators. The discussion of these more general operators is beyond the
scope of this text. There is, however, an issue that we discuss at length in
Chapter 4. This issue is the influence of restricted recording geometry, as
well as bandlimiting on Fourier-like integrals of the type we derive in this
text.

It is the desire of the mathematician to be able to tell a priori the type
of operator that he or she possesses. For the kinds of operators encoun-
tered in imaging theory, these issues are still a topic of current research,
especially as investigators try to extract more information from their data.
In contrast, seismic data processor approaches this problem experimentally
by performing inversions on test suites of known data. This is, of course,
not acceptable as a mathematical proof, but works well in practice. Though
their methods differ, the seismic processor and the operator theorist have
the same goal—preserving the reflector information (the singular support)
of the data.

See Saint Raymond [1994], Taylor [1984], and the first volume of Treves
[1980] for an introduction to the theory of pseudodifferential operators. The
second volume of Treves [1980] contains an introduction to the theory of
Fourier integral operators.

2.5.2 Summary

We have derived a formal asymptotic solution to the 1D inverse problem in
a variable-background medium. In that solution, we interpret our output as
a series of bandlimited delta functions located at the position of the steps
in « as approximated by the background propagation speed c(z) through
the relationship between space and time defined by the second equation in
(2.5.1). This formal solution suffers from the same problem with multiples
as does the earlier constant-background solution. The introduction of a
variable-background propagation speed here, however, opens the possibility
of properly locating reflectors beyond the first one, which we could not do
correctly with the constant-background wavespeed solution.

Exercises

2.13 The objective of this exercise is to derive the leading-order term of the
WKBJ solutions to the homogeneous form of equation (2.3.4) with
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radiation condition (2.3.5). This will be an asymptotic solution for
“large” values of w and, hence, will be determined as series in inverse
powers of iw.

a. Assume a solution of the form

u(z,w) = (iw)Pem@ 3" leir;()a;).
n=0

(The equality here is an “asymptotic equality” only; in general,
such series do not converge.) Substitute this form into (2.3.4) and
collect terms in like powers of iw to obtain the following equation.

Lou(z,w) = (iw)?exp {iwt(z)} Z{(iw)2_"An [(7')? = 1/c?]
n=0

+(iw) T 24T + ApT"] + (iw) AL}

Here, (') means d/dz.

b. To determine 7 and the values of A, for n = 0,1,2,..., set the
coefficient of each power of iw equal to zero, starting with (iw)?+2
and proceeding to lower powers. Show that setting the coefficient
of this highest power equal zero leads to the equation

(T2 =1/,
(the 1D eikonal equation) with two solutions,
dx’
c(z’)
Here, we use z’ as a dummy variable of integration to distinguish
it from the endpoint x. That is, the lower limit is arbitrary in the
integral—r is determined up to a constant—and there are two
possible solutions, which we denote by ui, below.

Note that the entire first series in Lou(z,w) is now zero.
c. Show that we can eliminate the next order in iw by requiring that

7' =+1/c and T(x)zi/

27 Ay + 1" Ag = 0,
(the 1D transport equation) with solution

A2=c(z) — Ay=Ky/c(z).

Of course, each of the two solutions u+ will have its own constant.
d. Conclude that the two leading-order solutions are of the form

us(2,w) = ()P K /@) exp {ﬂw | —"(—;’—)} ,
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with the constants, K., the lower limits of integration, and the
choice of 8 undetermined without further information about the
solutions we seek.

. Define the Wronskian, W, by

u+(x,a)) U_(.’E,W)
W = det

v (z,w) vl (z,w)
Show that, to leading order,
W = 2K, K_ (iw)?+1,

That is, the Wronskian is equal to zero only if we take one of the
constants K1 equal to zero. This insures that the two solutions
are linearly independent and that we can build solutions to het-
erogeneous equations in terms of them. We remark also that the
theory underlying this method assures us that the two formal se-
ries solutions we generate are asymptotic to two exact solutions to
the given homogeneous equation. (For further information about
Wronskian theory, see any standard text on ordinary differential
equations, such as Coddington and Levinson [1984].)

. Show that we can now determine all of the amplitudes A,

recursively by solving the system of equations

27/ Al + 7" Ay = — ALy, n>1

n-—-1)

(the 1D form of the higher-order transport equations).

Remark 2.3. Each solution, u.., should have only one free constant.
By leaving the lower limit of integration in the phase free, as well as
having two constants, K., we effectively have two free constants in
each solution. In practice, however, as in the next example, we pick
the lower limit of integration of the phase conveniently and put all of
the burden of satisfying radiation and continuity conditions on the
K’s.

2.14 The purpose of this exercise is to derive the leading-order WKBJ ap-

proximation of the Green’s function, g(z, £, w), that is a solution of the
heterogeneous Helmholtz equation (2.3.4) with radiation condition
(2.3.5) (see Bleistein [1984], pp.136-140.)

a. We begin by assuming that for x > £ and for z < &, g(z,{,w) is a

(different for each range) linear combination of the two solutions,
u+, derived in the previous exercise. For convenience, we take
all the lower limits of integration in the integrals that appear in
the phase to be £. (Note the remark at the end of the previous
exercise.)
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b. Use the radiation condition (2.3.5), saving only terms of leading
order in iw, to eliminate one term on each side, x > £ and = < £,

and conclude that!?
w)P X exp{ / d:z’/c(a:’)}, x> €,
1

/e 4
w)P X222 exp{ / dw’/c(m’)} z <E.

c. Now, to determine C1 and (3, we must apply the correct conditions
at x = . First, we must require that g itself be continuous at £. (If
not, the first derivative would be a delta function and the second
derivative would be an even more singular distribution.) Show
that continuity at z = £ leads to the requirement that C, = C_.

d. The first derivative will be discontinuous at x = £. We want to
pick that jump so that the second derivative exactly matches the
delta function on the right hand side of (2.3.4). Choosing that
jump to be equal to —1 will do the trick! Show that this condition
determines the power [ as well as the common constant C, and
that the WKBJ approximate Green’s function is

_Mexp {z’w/;dz’/c(a:’)}, T >,

2iw

c()c(z ¢
_%exp{iw/z da:’/C(a?/)}, x <§.

2.15 A neutralizer is an infinitely smooth function that is equal to 1 on an
interval I and vanishes outside a larger interval J, where I is a subset
of J. Neutralizers are convenient mathematical tools for restricting
the support of a function without introducing new singularities into
the function or its derivatives. Consider the z-integral in (2.5.5), ex-
cept that b = b(y), independent of w. Introduce a neutralizer, v(z),
such that, on the support interval of this function, each of the func-
tions of z are infinitely differentiable. Multiply the integrand by this
factor. Call the resulting integral o, (y):

g(z, & w) =

g(z, & w) =

13Note that one negative power of iw has been introduced here, as compared to
the general discussion of the previous exercise. The reason for doing this is that
we “know” this is right from the constant-coefficients Green’s function, which has
already been calculated. However, it has the effect of shifting 8 by 1, compared
to the discussion of the previous exercise.
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[o ]
o) =-40) [ o () 22D [” 4y poperiertew,
o 4c2(z
Assume also that ¢(z) is bounded away from zero. Now carry out the
z-integration symbolically via repetitive integration by parts, inte-
grating the exponential and differentiating the amplitude. Introduce
multipliers (and divisors) of the derivative of 7(z,y) as necessary.
Conclude that

a,(y) = /OOO dm% [—c(m)%]n_l {V(m)f‘%i(‘%@]

dw (2iw) " F(w)b(y)e?w @) n=123,---.
-0
Conversely, suppose that on the support of v(z) the perturbation
a(z) has a discontinuity at zg, an interior point of the interval where
v(z) = 1, but that the integrand is otherwise as described above.
Now show that

A2 (af())b

a(s) = lafan) - afeo—)] A [ du(ain)  P(u)erierienn

de(mg) oo

To— 2

AL L et
-/_oo dw (2iw) "1 F(w)b

That is, z-intervals where the integrand is infinitely differentiable
lead to Fourier integrals in which the integrand decays faster than
any algebraic power of w. On the other hand, z-intervals where a(z)
(or A(z) or ¢(z)) are discontinuous lead to Fourier integrals with
an integrand that is of order 1/iw. Thus, the latter double integrals
are “asymptotically dominant” over the former integrals over smooth
functions for the condition of high frequency. Similarly, a discontinu-
ity in some derivative of the integrand leads to contributions of one
higher negative order in w. Because the z-integral can be decomposed
into such “neutralized” integrals, we can conclude that contributions
of algebraic order in w arise from these discontinuities of the inte-
grand, while intervals where the integrand is infinitely differentiable
contribute more negligibly to the Fourier integral.

(y)e%ur(z,y) .

2.5.83 Implementation of the Variable- Wavespeed Theory

Consider again the scattered field ug(0,w), from the two-reflector model of
Exercise 2.14 and equation (2.4.27), given as

co Ri+ RZCZW[M al 2iwhy /co
2iw 1 4+ Ry Rye?iwlha—hi]

us(0,w) = —F(w)— (2.5.17)
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We will now perform a more sophisticated inversion of this ug than was
done in Section 2.4.2. Our plan will be to use the variable-wavespeed
inversion formula for the reflectivity 3(y), derived in the previous section.

In the first medium, for 0 < y < hq, the wavespeed is ¢y and the WKBJ
Green’s function has exactly the same form as the exact Green’s function
that we have seen before. This means that for this case, the WKBJ Green’s
function in (2.5.1) is the same as the exact right-traveling wave (where
positive y lies in the direction to the right of the source), represented by
equation (2.4.1). Consequently, the first pass at inverting these data for the
reflectivity function is just the result (2.4.29). As before, the first reflector
is found to be located at y = hy, with reflection coefficient R;. (Remember,
the output is now measured in terms of the output coordinate y instead
of the input coordinate z.) From this output it is possible to solve for the
propagation speed, ¢; for y > hq.

Updating the Incident Field with Approximate Green’s Functions

We now go beyond the constant-background theory of Section 2.4. For
y > hi, we use the WKBJ Green'’s function that takes account of the jump
in propagation speed at y = h;. In fact, the WKBJ Green’s function in
this range is just the function, up(y,w) defined in (2.4.6), with h replaced
by h;. Therefore, in the range y > hj, the amplitude, phase, and Green’s
function are now

2
A B -“CoTl = — 1 ,
Co + C1
— h h
r(y,0) = L= + =2, (25.18)
C1 Co
A
QWKBJ(y,w) = Telwr(y,o).
W

Note, this is not the exact right-traveling field in the range h; < y < ho.
It is only the representation of the first right-traveling arrival and, as such,
does not contain any of the contributions of the multiple scattering in the
h1 <y < hg layer.

Changing both the factor of A and the phase in the inversion formula
effectively “updates” the incident field u;(0,w) to account for transmission
through the first interface. If u;(0,w) is modified in this manner, the single
reflection from the interface back towards z = 0 becomes part of the inci-
dent field. That is, if the second line of (2.4.5) represents uy for z > hq, the
first line of (2.4.5) represents u; for < h;. In this case, equation (2.4.25)
no longer represents ug for this new wu;. Just as one term was subtracted
from the total field of Exercise 2.11 to obtain the scattered field in (2.4.25),
a second term should now be subtracted.

In higher-dimensional problems, however, such an updating would be
computationally expensive and numerically impractical. Owing to the lack
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of accuracy in the identification of layers and the determination of prop-
agation speeds in the real world, it is not reasonable to expect to see the
perfect cancellations in field data like those seen in this analytical example.
For the present we will continue the processing without modifying ug, and
reserve that correction for the next subsection.

Under this assumption, the formula for 3(y) is given by

-2

—— [ sl et dgs, (25.10)

Bly) =

Substituting the wg from equation (2.4.27) into this formula for
B(y) (with the denominator of ug expanded into its geometrical series
representation), yields

I@(y) _ 2 /oo F(w)co |:Rle2iwh1/c0 + RQ[]. _ R%]e2iw[h2—hl]/cl+2iwh1/60

71'coT2
+ R2[1 _ R?] Z[__RlR2]n—le2z‘nw[h2—h1]/c1+2z'wh1/c(] (2'5‘20)
n=2

. g~ 2wl(y—h1)/c1+h1/co dw, y>h.

Here, the first term of the sum in (2.4.27) has been placed on the first line
and the lower limit of the sum has been taken to start from n = 2.

The integration is to be carried out term-by-term. The result is a series
of bandlimited delta functions, as in (2.4.29). The locations of the support
of some of the delta functions have changed, however. The first integrand
had phase —2iw[y —h1]/c1. Therefore, this output (the first integrated term
in (2.5.20) is proportional to §(y — h1). This representation is valid only for
y > hy, however. We reject this term, therefore, because we are concerned
only with y < hy, at this point in our discussion. (Note that if this term
were retained, the reflection coefficient would be R;/T?Z, representing an
error from the correct value.)

The second integral in (2.5.20) has phase —2iw[ha — y]/c1, producing a
delta function with support at hs. Note that the modified phase of this
inversion integral, as compared with the phase of the constant-background
inversion integral, places the second reflector at its proper location. Denote
this contribution to G(y) by B2(y). The complete value is

1 00 ,
52(4) = ol [1 - R / Flw)e-2oli-hal/er g,
= % / F(w)e ?wlv=hal/en gy (2.5.21)
= Rabp(y — ho).

The first line here is just a direct substitution, as stated above the equation;
the second line is obtained by using the definitions of R; in (2.4.26) and
Ty in (2.5.12); the third line uses the result (2.4.14).
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This result properly locates the second reflector and identifies its correct
reflection coefficient. From the reflection coefficient and the known value of
¢1 it is possible, in this analytic example, to determine the speed cy. This
is an improvement over the constant-background inversion.

The remaining integrals in (2.5.20) yield spurious “reflectors” beyond
ho, now at multiples of ho — hy rather than multiples of [he — hi]co/c1,
the positions of the constant-background inversion in (2.4.29). Given the
now-known change in propagation speed at y = hs, however, we know
those outputs are inaccurately placed. Of course, we also know that these
multiples are spurious artifacts.

To proceed further, it is necessary to determine the WKBJ Green’s func-
tion for y > ho. As in the previous case, it is not the exact Green’s function,
but only the first arrival of the right-traveling wave. As in the inversion in
the region h; < y < hs, the WKBJ Green’s function does not take into
account the portion of the right-traveling field that results from the multi-
ple bounces in the layer. Using this Green’s function is consistent with the
fact that our inversion theory is based, in part, on the Born approximation,
which ignores multiply scattered events.

The solution needed for the theory developed above is deduced by treat-
ing the Green’s function defined in (2.5.18) as an incident wave. We
then determine the transmitted wave through the interface at ho, while
disregarding the presence of multiple reflections. This function is given by

_ A iwT(y,0)
9(yw) = 2iwe ’
—h ho —h h
r(y,0) =242 227 M (2.5.22)
C2 (4] Co
2
A= —C()T]_TQ, TQ = 2 .
c1 + Co

The corresponding formula for the reflectivity in the region y > hs is given
by

_2 ; 2iw —h co+ h —h1 (21+h1 Ci
,8(1-/) = jolj]Tjg / w U,S(O; )6 [(y 2)/ 2 ( 2 )/ / D]dw

—0Q
When the data are substituted into equation (2.5.23) we have

2
- TeATiTS

5(1/) / F(w)co [(Rl + R2[1 i R?]ein[hz—hl]/Cl) e2iwh1/co

— 00

+ R2[1 _ R?] Z[_RlR2]n—162inu‘11+2iuh1/co:l

n=2

. e—2iw[(y—h2)/cz+h1/co] d(.d, for y > h2. (2524)

Here ¥ = [(y — ha2)/ca + (ha — h1)/c1].
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The first two integrated terms in (2.5.24) will now produce delta
functions with support outside the domain of validity of this inversion
formula. The remaining terms produce delta functions with support at
y = ha + (n—1)(ha — hy)ca/c1. Therefore, the spurious reflectors that arise
from multiple reflections in the interval (hq, ho) survive this inversion using
a “primaries-only” Green’s function. On the other hand, a third reflector
beyond he may be hypothesized. It should be clear that the phase of this
primaries-only Green’s function is ideally suited for the identification of
this next hypothetical reflector.

Updating the Field with the Exact Green’s Function

We now consider using the exact Green’s function for y > hg. This function
is derived in Exercise 2.16. The new Green’s function is the same as the
result (2.5.22), except for the value of A:
coT1 Ty

A== 1 + Ry Rye?iw(ha—h1)/cx (2.5.25)
This amplitude is a function of w. Our inversion theory was developed for
an amplitude that is independent of w. If we are to use this amplitude in
the inversion formula (2.5.13), at the very least the amplitude must appear
under the integral sign instead of outside of it. Though an inversion theory
has not been created to justify this extension, we substitute this amplitude
in (2.5.13), the phase 7(y,0) defined in (2.5.22), and the representation
(2.4.25) for ug(0,w).

The resulting integral is

1 o0 . .
_ R R 2zw[h2—h1]/61] 1 ’Lw[hz—h1]/01:|
B(y) ——wconTzz/ [ 1+ Rae [ + R Rae

—00

- F(w)e~Zwlly=ha)/cat(ha=h1)/er] g, (2.5.26)

Note that one result of using this amplitude has been to remove the
denominator of the response. This was the factor that led to the geometric
series and the set of spurious reflectors from the multiple reflections. The
integral is now a finite sum; it is a linear combination of four delta functions.
The supports of these delta functions are at the points, ha—(h2—hi)ca/c1 <
ha, ha, (two of them), and hg + (h2 — hi)ca/c1. All but the last of these
points are in y > hgy, which is outside the region of validity of this inversion.
For bandlimited data, the support of the middle delta function does extend
into the domain of validity. Because the location and reflection strength of
the reflector at y = hy will have been determined before this computation,
this output would not be used to identify the reflector at y = hg. The
last delta function has support in the domain of interest, but an amplitude
that is O(R3), generally significantly smaller than the output from primary
reflections and no worse than the first term of the infinite series obtained
with the cruder inversion. This operator, though of questionable theoretical
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validity, has successfully annihilated all but one of the spurious reflectors
arising from multiple reflection responses in the input data.

It is obvious that the two spurious delta functions here result from the
extra factor of (1 + Ry Rye?™[f2=Pl) in the numerator which comes from
the square of the Green’s function present in the inversion formula. It may
occur to the reader that simply introducing a single factor of this variety in
any of the WKBJ Green'’s function—based inversion formulas would remove
the spurious multiples. We might justify this by considering that we should
use the WKBJ Green’s function for the right-traveling Green’s function,
but use the exact Green’s function for the left-traveling Green’s function.
Our use of the Born approximation makes it difficult to justify this choice,
because our theory explicitly rejected the importance of multiple scattering.

Multiple-Suppression by Deconvolution

An alternate way of looking at this is to consider applying a factor of
(1+ Rlee%w[h?_hl]) to ug as a frequency-domain preprocessing step be-
fore performing the inversion. In other words, we might consider applying a
step to “deconvolve” the signal to suppress the multiples. Indeed, a classical
technique for suppressing water-bottom multiples is to convolve a seismic
trace with all or some part of itself [Backus, 1959]. Because of our ex-
act knowledge of the wavespeed and water-layer thickness in the example
above, we are able to construct an exact, amplitude-preserving deconvo-
lution operator from wave-theoretic considerations. (For classic papers in
the use of deconvolution, see Webster [1978], and for more recent papers
on related topics, see Robinson and Osman [1996].)

Unfortunately, the computation of the Green’s function amplitude in a
way that accounts for multiple reflections is far more difficult in higher-
dimensional problems owing to curved reflecting surfaces, and an imprecise
knowledge of the wavespeeds and layer thicknesses in the media. In earlier
times, the techniques that were used involved identifying attributes of the
spectra of the data that are characteristic of such multiples, and suppressing
them via techniques such as Wiener filtering. More recently, operator-based
theories have been developed. While they seem promising at this time,
they are also highly computer intensive. The discussion of such techniques
is beyond the scope of this text, although we include some references to
the approaches that are more closely related to our inversion procedures.
Here, we will assume only that, if such techniques have been applied as a
preprocessing step, they do not degrade the amplitudes of the data.

The demonstration of an exact wave-theoretic, amplitude-preserving de-
convolution operator presented here is encouraging, but it will certainly be
difficult to realize in higher-dimensional problems. Even in one dimension,
it is not likely that estimates of the reflector locations and their respective
reflection coefficients can be determined with sufficient accuracy to yield
the perfect annihilation of spurious reflectors seen in this analytical exam-
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ple. Such approaches should lead to an amplitude at the spurious reflectors
that is smaller than predicted by the multiple powers of reflection coeffi-
cients appearing in the previous inversion result. Finally, note that even for
small reflection strengths, ultimately the error has to accumulate, and both
the location of reflectors and estimates of reflection strength must degrade.
Thus, to be practical, such methods most likely must exploit the primary
reflections in the data itself, as a way of constructing the necessary esti-
mates of the secondary, tertiary, and so forth, reflections that constitute the
multiples. The estimate of the multiples could then be used to annihilate
the multiples in the data.

Approximate methods of multiple suppression, related to the method
we describe above, have been studied. One such method is the inverse-
scattering series method of multiple suppression of Weglein, et al. [1997],
Weglein and Matson, [1998] and Weglein, [1999], which is a higher-
dimensional version of the simple example we present, but which exploits
the primary reflections in the data in the manner we have discussed at the
end of the previous paragraph.'4

2.5.4 Summary

We have seen from our 1D example some features of the implementation
of the WKBJ inversion operator.

1. First, an inversion using a “free-space” Green’s function is carried out,
with the output variable allowed to range far enough to identify the
bandlimited delta function corresponding to the first reflector.

2. The peak amplitude of that output is used to estimate the change in
propagation speed.

3. The Green’s function is revised beyond the first reflector to account
for the change in propagation speed. Although this effectively revises
what is meant by the incident field and scattered field observations,
in practice the scattered field is not adjusted. If the revised amplitude
and phase of the Green’s function were “perfect,” the next reflector
and reflection strength would be accurately determined and the WKBJ
Green’s function could be accurately updated.

4. Beyond the position of the primary reflector, the inversion with the
WKBJ Green’s function produces false reflectors from the multiple re-
flection response of the reflectors already determined. An oddity of the
one-dimensional problem is that inversion using the exact transmitted
Green’s function annihilates all but one of these false reflectors arising
from multiple reflections. In practice, owing to the practical limitations

14See Berkhout and Verschuur [1997] and Berkhout [1999] for a discussion of
iterative methods of multiple removal. See also Filpo and Tygel, [1999] and Sen
et al. [1998].
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stated earlier in the section, there will be no attempt to make such a
detailed updating of the Green’s function

In the computer implementation of this theory, the primaries-only
Green’s function for a particular layer is used to process data far enough
into the next layer to completely form at least the main lobe of the ban-
dlimited delta function associated with the reflector between the layers.
The updated Green’s function is then used starting at a distance from the
reflector. Clearly, for this process to be successful, the layers must be sep-
arated enough for the bandlimited delta functions to be distinct. This is
consistent with an asymptotic theory. The length scales of the problem,
such as the separation between successive reflectors, have to be “many”
units of reciprocal wave number in length; in practice, “many” translates
into “at least three.” (See the discussion of reciprocal wavenumber in Chap-
ter 1, page 6.) Again, in practice, 7 is more convenient to use as a scale than
three because of the factor of 7 in the relationship between wavenumber
and wavelength.

Exercises

2.16 In Exercise 2.11, show that for = > ha,

w(z,w) = _ o [T+ Rl + Ryl
T 2iw 1 4 Ry Rye2iwlha—hil/ar

. exp{iw[(x — hg)/CQ + (hg - hl)/cl + hl/Co]}.

2.6 Reevaluation of the Small-Perturbation
Assumption

In the previous sections, we created 1D inversion operators that have
the form of Fourier transform-like integrals. Our method of derivation
contained an explicit small-perturbation assumption that was expressed
through our use of the Born approximation. The results of the analytic
investigation of the 1D inversion operators, however, showed that, even
in multilayer problems with arbitrarily large wavespeed jumps (conditions
that clearly violate the small perturbation assumption), it was still possible
to extract useful estimates of reflection strength and of reflector locations.
The primary error caused by a large wavespeed jump in multilayer media
was the introduction of a series of reverberations into the data. Though
the size of these reverberations does depend on the size of the respective
wavespeed jumps, we saw that the arrivals of interest, representing the true
reflectors, were not greatly distorted.
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While our inversion formulas could not eliminate the reverberations, the
formulas did accurately represent the size and location of the reflectors,
exhibiting only a systematic error that depends continuously on the size
of the perturbation. Where we were able to eliminate reverberations from
the data via a preprocessing step, our inversion formulas yielded acceptable
results, even for large jumps in wavespeed. This degree of success suggests
that the small-perturbation assumption, while necessary for the derivation,
was really too stringent a requirement of the inversion formulas themselves.

In other words, the formulas work better than we expected, given the
small-perturbation assumption, because we were able to separate the in-
version problem into a preprocessing step to extinguish multiples before
actually applying the inversion formula. Again, our experiences parallel
those of the geophysical community, reflecting the mathematical support
for geophysical common sense. In the real world, multiple suppression has
traditionally been treated as a separate subject from migration.

2.7 Computer Implementation

We can see other parallels between our theoretical approach and the expe-
riences of geophysicists when we try to implement equations (2.5.12) and
(2.5.13) in a computational setting. These two equations represent a simple
data transformation operation. In particular, note that (2.5.12) is just the
inverse Fourier transform of the data, ug(0,w), evaluated at the “time”
27(0,y), making

o) = =29 1 0,27(0,)). 2.7.1)

A?(y)

Here, Ug denotes the signal in the time domain. This result shows that it
is not necessary to transform the data to the frequency domain to obtain
a(y). In practice, however, there are good reasons to do so. The data may
contain high-frequency noise, beyond the range where coherent information
can propagate. Thus, a filter could be applied in the frequency domain to
truncate the bandwidth of the data and taper it smoothly to zero. Again,
this is an example of separating the inversion or imaging problem into a
preprocessing step followed by a migration.

To continue the discussion, let Ug denote the time-domain data, which
may or may not have been filtered. Seismic data are usually acquired with
a constant time sampling interval. Any processing (Fourier transform, fol-
lowed by filtering, followed by an inverse transform) produces output with
the same constant time interval. For uniform values of the output spatial
variable y, however, the associated traveltime values, 7(0, y), which are re-
quired for the migration process, are not guaranteed produce values that
fall exactly on the time sample values of the original data. Thus, given a
value of y, with a corresponding value of 7(0,y), it usually is necessary to
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interpolate between adjacent values of ¢ to convert the computed 7(0,y)
values into the y values necessary for the computation of «(y) or B(y). The
best interpolation scheme is to resample the data by fitting a sinc -function
to the datapoints. This is computationally expensive, so linear interpola-
tion is often used. It has been the experience of the authors that linear
interpolation gives somewhat ragged results, even for numerically gener-
ated synthetic data. A compromise is to use quadratic interpolation, which
gives satisfactory results in most cases.

Computation of 8(y) using (2.5.13) requires one additional step. The
data either have to be differentiated in the time domain or have to be mul-
tiplied by iw in the frequency domain, along with whatever other filtering
is done. In practice the latter approach is used because finite-difference
differentiation on noisy data may not yield satisfactory results. It is useful,
therefore, to define the preprocessed data as

1 [ )
D(t) = %/ iw ug(0,w)e” ™ dw, (2.7.2)
and write the inversion formula as
4
B(y) = ——5—~D(27(0,y)). 2.7.3
(v) = =gy P 0.9) (273

Again, we must interpolate the data from the uniform grid in ¢ to the
uniform grid in y.

Note that, in the course of creating these computational algorithms, we
have reduced the 1D inversion problem to, at most, a frequency-domain
filtering operation followed by a shift of the data—both linear processes.
The higher-dimensional results that we derive in Chapters 3 and 5 are also
reducible to a “data transformation” operation, which involves summing
over equal traveltimes in the data.

This simplification is no surprise to the geophysicist, because this result
fits the traditional linear systems model of data processing. The advantage
of our more mathematically rigorous approach is that it allows us to see
why our results work and, more importantly, to analyze potential prob-
lems that may arise. Our approach will allow us to extend our formulas to
more general inversion problems. Our mathematical insights will also prove
invaluable in dealing with additional computer implementation issues.

2.7.1 Sampling

We return to the issue of spatial and temporal sampling of data. The sam-
pling interval in y should be determined by the bandwidth of the data.
Recall that the theory predicts that 3(y) has the form of a series of ban-
dlimited delta functions. Suppose, for example, that the useful bandwidth
of the data ranges from 27 finin = Wmin 10 27 frnaz = Wmaz and the filter
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is a simple box function in the frequency domain. Then, using c(h)!® as an
approximation of ¢(y) near y = h, the bandlimited delta function observed
on output has the form

1 )
F) —h) = —2iw(y—h)/c(h) d
B(y ) WC(h) /wminslwlfwmaz ‘ “
1 . )
BEE)) [8in 2wimaz (¥ — h)/c(h) — sin 2wmin (y — ) /c(h)]
2

= ;T-(?_—h—) sin [(wmaz - wmin)(y - h)/C(h)]
- €08 [(Wmaz + Wmin) (Y — h)/c(h)] (2.7.4)
2 .
= ;(—y——h)— Sin [277(fmam - fmm)(y - h)/C(h)]
- COS [QW(fmam + fmzn)(y - h)/C(h)] :

The first zeros of this function away from y = h occur when the argument
of the cosine is equal to 7/2; that is, when |y — h| = ¢(h) /4] fmaz + frmin]-
Thus the width, w, of the main lobe of ég(y — h) is just twice this value,

c(h)
W= e 2.7.5
2[fmam + fmin] ( )
The sampling interval in y should be sufficient to delineate this main
lobe. A suitable sampling interval is one that will provide four points per
wavelength:

_ c(h)
8[fma:c + fmzn] .

It is normal practice to select a constant sampling interval for the entire
output. In this case, instead of c(h), we choose the minimum background
propagation speed for the entire section.

This interval should be compared with the alternative based on the sam-
ple interval in time, At; the sampling interval cA¢/2 is often used. The
extra factor of 2 occurs here as in the definition of the wave number £,
because of the effective speed ¢/2 in the two-way traveltime between the
source/receiver position and the scatterer. Using values reasonable for a
seismic experiment, suppose that

fmaz =40Hz, foin =10Hz, ¢=1500m/s, At=.004s. (2.7.7)

Ay (2.7.6)

In this case,

c cAt
8[fma.x + fmzn] 2 ( )

5For the discontinuous example of the previous section, we would use the limit
from the right, ¢(h—).
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The latter choice samples 25% more densely than the former. Such over-
sampling, while not a computational burden in one-dimensional inverse
problems, may prove too expensive in higher-dimensional problems.

This discussion is a bit of a red herring, because, in field-recording prac-
tice, At is purposely chosen to oversample the data. Instead of using cAt/2,
one could certainly choose cA/k, where k is a tunable parameter, if cAt/2
was seen to be too much of an oversampling.

2.8 Variable Density

The one-dimensional problem for both variable density and variable wave-
speed will be considered here. The main result will be that inversion will
now yield an estimate of the impedance of the medium, involving the
product pv, with p and v being the density and the propagation speed,
respectively. We will see that, from the type of experiment discussed so far,
it is not possible to obtain changes in medium parameters; something more
has to be done. It is not our intent to present the best solution to the one-
dimensional inverse problem here. (Recall that this chapter is really just
a “warm-up” for the more difficult higher-dimensional inversion problems
of later chapters.) For inversion in higher dimensions, the same methods
we employ here will provide a means of separating out parameters. The
problem considered in this chapter will correspond to the simplest configu-
ration of coincident source and receiver (zero-offset, backscatter, pulse-echo,
monostatic) in higher dimensions. Thus, this final section is presented be-
cause of its more general problem formulation and because it presents a
more realistic inversion output than does the simpler problem of variable
soundspeed alone, treated above.

We begin by considering the acoustic equation for pressure in a variable-
soundspeed, variable-density medium with source at a point z,:

d [ 1 du(z zsw) w?
L EER = -5 s L)y
u(x, Ts, w) p(a:)dm [p(x) In ] + 1)2(36)11(3: Tg,w)
= —6(x — xs). (2.8.1)
The radiation condition
d
d_Z F ZU—EUQS —0, as z—+o0

is the same as in previous problems.

The density and wavespeed functions, p(z) and v(z), are assumed to be
known in the vicinity of the source and to be bounded at some large value
of z > 0, finally becoming constant at large range. The impulse response
will be observed at a point x4, located in the range of x where the density
and velocity functions are known.
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As before, perturbation theory will be used to describe the problem. It
is desirable here to introduce a notation that allows variations in density
and soundspeed to have parallel form. Therefore, set

1 1

5p(x)}
po(x) |’
(2.8.2)

v(z) = vo(z) + bv(x),

11 1 26v(zx)
v(z)  vh(z) vo(z) |

These representations are substituted into (2.8.1), and only linear terms in
6p and év are retained. After some algebra, the resulting equation is

Lou — d |1du w?
0% = PGz | po do v3
w? 26v d [ép] du

As in the previous derivation, we introduce us(z,zs,w) as the response
to the delta function in the unperturbed medium and ug(z,zs,w) as
everything else:

u(z, zs,w) = ur(z, z5,w) + us(z, z5,w), (2.8.4)
with
Lour(z,zs,w) = —6(x — ). (2.8.5)

We now use equations (2.8.4) and (2.8.5) in (2.8.3). As in the earlier deriva-
tion, we neglect terms in products of the perturbations and ug on the left
side of the equation and obtain

w? 26v(z)

Loug(z,z5,w) = 2@ w0(@) ur(z,zg,w) +

d [bp(x)] dus(z,zs,w)
dzx [Po(ﬂﬁ)] e~
(2.8.6)
We now propose to write down a Green’s function representation of the
solution to this equation, observed at the point =, (geophone location). It
should be noted here that the differential operator Lg is not self-adjoint.
Therefore, we use the Green’s function g*(z,z,,w) which is the impulse
response for the “adjoint equation,”

2

39" 23,6) = 2 | (e (0,200 | + 507 (00200)
= —b(z — z4). (2.8.7)

We use the symmetry of the Green’s function, or theorem of reciprocity,
(see 2.3.1, and Exercise 2.9) to set

g*(x,xg,w) =g($g,x,w). (288)
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Here, g(z4, z,w) is the Green’s function for the operator, Lo. Note that this
Green'’s function differs from uy, defined by (2.8.5). First, the source point is
different: x4 instead of x,. Second, the arguments have been interchanged,
with the source point as first argument and the running variable z as second
variable.

The solution of (2.8.6), written in terms of this Green’s function, is

ug(zg, Ts,w) = — /000 lvéu(x) 2500(%) ur(z, zs,w)g(zg, z,w)

[5;}(17)] dur(z, zs,w)

In 9(zg, x,w)j| dr

(2.8.9)

X
uI(fL'yxs’w)g(xgvwi)

d duy(z, zs,w)
o [g(xg,x,w) I Hdw
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In the second form of the result, we have integrated by parts to eliminate
the differentiation of §p. The reason is that we ultimately expect to apply
this result when 8p is discontinuous, thus this derivative is a distribution.
In this form, the differentiation is carried out on the continuous functions
instead.

We are concerned only with high-frequency inversion of this equation.
To that end, we will use WKBJ approximations for u; and g,

1 ,
- _ A wT(z,Ts)
ur(z, s, w) _2in(w) (z,z5)e ,
1 wt(zg,r
9(zg,z,w) = —%A(a:g,x)e (@g,2), (2.8.10)

w8 = [ o)

T = min(x,f), > = max(x,ﬁ).

It is important to note that, for the case of continuous vy and pg,

Alw,25) = Ve@ele)p@/p(s),  Alg,z) = \/ele)e(ze)plzy)/p(z).
(2.8.11)
We then substitute these WKBJ approximations into (2.8.10) and retain
only the leading-order terms in w [O(w2)], to yield the result,

us(zy, Ts,w) = h wl bv(z) | bp(z)] Alz,z5)A(zg,7)
s(@g, s, w) /0 Flw)3 [ o@) " Po(x)} v ()
. ptwdT(@es)+7(2g,2)} g (2.8.12)
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This equation should be compared with (2.5.3). Here, the source and re-

ceiver points are separated along the line; there, they were coincident. As
a consequence, the observed field is ug(zq, zs,w) as opposed to ug(0,w),
and we have two different amplitudes arising from u; and g, whereas in
(2.5.3) the square of a single amplitude appeared. Here, phase involves a
sum of traveltimes from the source and receiver points to the scattering
point at depth; there, the phases were the same and a two-way traveltime
appeared in the exponent. The unknown —a/4 of the previous expression
is replaced by [6p/po + dv/vo]/2. We leave it as an exercise to show that
these unknowns are “identical” when 6p = 0.

The derivation of the inversion formula carried out below (2.5.3) can be
repeated here step-by-step with these modifications in place. With some
thought, it becomes apparent that the result of inversion for this equation
can be deduced from (2.5.12) by making the same changes in the inversion
formula as were observed in the comparison of (2.5.3) and (2.8.12). That
is, we

1. rewrite (2.5.12) as an equation for —a(y)/4;
2. replace c(y)/A%(y) by vo(z)/A(z, z5) A(zg, );
3. replace 27(y,0) by 7(y,zs) + 7(y, z4).

The result of these replacements is
1 [611(9) N 6p(y)]
2 lvo(y)  po(y)

vo(y) / —iw{r(y,zs)+7(xg,y)}
= ug(xq,Ts,w)e at Y1 dw.
WA(y,ws)A(acg,y) —00 ( e )

(2.8.13)

Similarly, for the reflectivity, 3(y), we obtain the result,

-2 * ,
= : il (Y20 +7(20 W)} g
Bly) A, 22) Alzg,9) /_oozw ug(zg, zs,w)e W
(2.8.14)

Previously, 8(y) produced bandlimited delta functions, scaled by the jump
in —a(y)/4, which turned out to be just the linearized reflection coefficient.
With the above replacement, this quantity is replaced by

1[év(y)  6p(y)] _ 6(pv) 1
2 [vo(y) " po(y)} 200 2

8[ln(pv)]. (2.8.15)

That is, the bandlimited delta functions in the output S(y) will now be
scaled by the linearized approximation of the impedance of the medium.
At a discontinuity,

6(pv) o PAVE PV PV T A0 (2.8.16)
2pv 2p_v_ P+V+ + p_v_



2.8 Variable Density 85

The right side here is the exact impedance (reflection) coefficient in a
variable-density medium.

In Section 2.4 it was shown that an inversion theory based on a Born
approximation for the forward scattering problem yields the “exact” reflec-
tion coefficient as the scaling factor of the bandlimited delta functions in
the output 8(y). The same result follows here. That is, if ug(zg,2s,w) for
a discontinuous medium were replaced by its WKBJ approximation, then
the exact impedance coefficient would scale the bandlimited delta functions
of B(y); that is,

Bly) ~ 3 _énly = hy)Z;. (2.8.17)

Verification of this result will be carried out in the exercises. Unfortu-
nately, we cannot separate the jumps in soundspeed from the jumps in
density in this result. Some other kind of experiment is needed to do this.
In higher dimensions, we can use source-receiver offset to provide additional
information. Here, this method can go no further.

Exercises

2.17 Repeat the derivation of the 1D inversion formula in Sections 2.3.3-
2.4.1 under the assumption that the data are observed at =, # 0,
still in the negative z-direction of the support of a(x). The source for
the experiment is still at x5 = 0. Specialize the problem to constant-
background wavespeed cg, as in Section 2.4.1. Use the data for a single
step in a(z) to obtain the same inversion formula (2.4.8).

2.18 Consider the propagation of a 1D acoustic wave that begins at po-
sition x = 0 and propagates in the positive z-direction through a
medium composed of many layers. The boundaries of these layers
are taken to be at the positions z;, with j = 1, k. The thickness of
each layer is Az; = ¢; — x;_1, with _; = 0. The wavespeed in the
negative z-direction from xzq is ¢y, with the speed in each subsequent
interval in the positive z-direction being c;.

a. If the incident field in the layer Axg is the free-space Green'’s func-
tion for a medium with wavespeed cg, verify that the transmitted
field seen at position xy is

o 1 2c P Az

0 j . i

ur(Tg,w) = —— [———} exp } iw E .
21w =1 Cj+¢Cj—1 = i

b. Show that, in the limit as the wavespeed profile becomes continu-
ously and smoothly varying, the transmitted field is described by
the WKBJ Green’s function




86 2. The One-Dimensional Inverse Problem

gwiBI(z,0,w) = —M exp {z’w /Oz —C—li} .

2iw c(o)
Hint: Rewrite the factor in square brackets [ ] in part (a) as
exp{—In(1-4;/2¢;)} = exp{A;/2¢;4+0(A%)}, for Aj=cj—cj1.

Now carry out the product over j by summing in the exponent to
obtain the result
Fo
3 = 5 nle(@nas)/e(@nin)] + O(A), A =max(a,).

j=1

In fact, using this method, an exact series solution (called the Brem-
mer Series [Bremmer, 1950]) can be constructed for the 1D problem
for selected wavespeed profiles. The WKBJ Green’s function is the
first term of this exact series.

2.19 Derive the WKBJ Green’s function for the variable-density problem
using the same method.

2.20 In Section 2.8, a variable-density/variable-wavespeed inversion oper-
ator was derived. Verify the derivation in the text. Assume that the
perturbation is now represented as small variations in density p and
bulk modulus &, such that

p(z) = po(z) +6p(x),  K(z) = Ko(z) + bk(x).

Show that the relationship v(z) = +/k(z)/p(z) and the above
definitions imply

p(x)  po(z) po(z)
1 1 [1 ép(z) 5m(x)]
vi(z)  v§(z) po(z)  ko(z)
for small perturbations in density and bulk modulus and define a(x)
in terms of the density and bulk modulus.

2.21 Following the method of Section 2.8, derive the inversion formula

assuming variable density and variable bulk modulus.
2.22 Let u(z,w) be a solution of (2.8.1) subject to the radiation conditions

stated below that equation. Furthermore, assume that

11 [1 5,)(3;)]

v(x) = vp = constant

and
po, = <hy,
p(x) =< p1, hi1 <z <hy,
p2, h2 <z,

with pg, p1, and pg, constants. Furthermore, assume that at each of
the interfaces,
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) 1 du(z,w) .
u(z,w) continuous, ————= continuous.

dx

a. Show that these continuity conditions lead to exactly the same
system of equations as in Exercise 2.11b, except that in the phase,
all propagation speeds are replaced by vp and the coeflicients co,
c1, and cg, in the resulting continuity equations are replaced by

Po, P1, and po. Thus, conclude that
Vg R1 + Ree™™ ,.n
0 _ [t W 1/’U0
u( ’w) 25w 1+ Ry RpewT

except that now

P1 — Po P2 — pP1
Ri=———, Ry=-—"—=, and 7=2hy— hi]/vo.
' p1+ po 2 p2 + p1 [2 1]/ 0

b. Conclude that the inversion (2.4.17) now yields the result
,BB(x) = RléB(CE - hl) + Rz[l — R%](SB(CE - hg) +...,

where (...) represents bandlimited delta functions with support
beyond hs. That is, the locations of the first two reflectors are now
correct because the background propagation speed is the exact
speed throughout the medium and only the density changes.



3

Inversion in Higher Dimensions

In Chapter 2, formulas were created to determine the wavespeed profile
of a medium with one dimension of parameter variability only, via high-
frequency inversion of plane-wave data. The original plan of Chapter 2
was to invert the data for the actual wavespeed profile or, rather, the
perturbation a(y) from a known background wavespeed profile. However,
results influenced by the bandlimited nature of the data, represented by
a symmetric filter F(w), motivated a change to the new goal of imaging
the discontinuities of the wavespeed profile—the reflectors. This yields a
new output, the “reflectivity function” S(y), which was found to consist of
bandlimited delta functions having peak amplitudes occurring at reflector
locations, with size scaled by the normal-incidence, plane-wave reflection
coefficient. The reflectivity function is analogous to a similar reflection co-
efficient series that may be obtained in the process of creating a synthetic
well log from seismic data. Equivalent results in higher dimensions will be
the goal of all subsequent inversion formulations found in this text.

In this chapter, we will extend the one-dimensional high-frequency inver-
sion method to the three-dimensional problem. Paralleling the derivation
in Chapter 2, the starting point is a statement of a forward modeling for-
mula, which will be an integral equation created by applying perturbation
theory to the Helmholtz equation to create two Helmholtz equations. We
will then create the desired integral equation by solving for the scattered
field via Green’s theorem. As before, the resulting integral equation will be
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linearized using the Born approximation. It is this linearized formula that
we will invert.!

Owing to the greater number of degrees of freedom afforded by the
greater number of dimensions, the 3D problem has added richness. A
greater number of possible recording geometries and phenomena exist (first
discussed in Chapter 1), owing to the higher-dimensional variation of the
background propagation speed.

A recapitulation of the method that was used to derive the high-
frequency inversion formulas in Chapter 2 is outlined here as an aid to
the reader. This outline is also a statement of the general program that we
follow in this chapter.

Deriving a High-Frequency Inversion Formula

1. Derive a linearized forward modeling formula, written in terms of the
unknown material parameters, describing the processes that generate
the seismic data.

2. Find a way to invert the modeling formula to solve for the unknown
material parameters.

3. Test the inversion formula, analytically if possible, on a set of known
model data to see if the form of the output is satisfactory for the desired
application. (If the test data are created numerically, it should be done
using a different modeling formula than the one in step (1) to avoid a
circular result.)

4. If the form of the output is not what is desired, adjust the formula
accordingly. (“Adjustment” can include searching for errors in the
derivation, redefining the desired goals to take into account aspects of
the physics of the model and characteristics of real data, or choosing a
new mathematical approach to the problem.)

As in the one-dimensional inversion problem, much insight will be gained
by first deriving an inversion formula assuming a constant-background
wavespeed. To simplify the problem, we introduce the added restriction that
the source and receiver be located at the same place. (This source-receiver
geometry is given various names, including zero-offset, normal-incidence,
pulse-echo, monostatic, or backscatter experiments. See discussion on page
81.)

Solutions to this special case will be the topic of this chapter. In later
chapters, we will remove this restriction, permitting the derivation of
inversion formulas for a variety of source-receiver geometries.

In addition to the issue of limited bandwidth addressed in Chapter 2, the
problem of limited spatial aperture—the angular coverage of the target be-

'Papers relevant to this discussion are Bleistein and Cohen [1979a, 1979b] and
Bleistein, Cohen, and Hagin [1985].
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ing imaged—must be addressed before the reader will be prepared to handle
the more general problem of variable-background inversion with nonzero
offset between source and receiver. This topic is addressed in Chapter 4.

3.1 The Scattering Problem in Unbounded Media

As stated above, the first step in the derivation of a high-frequency inversion
formula is the creation of a forward model describing the “scattered waves.”
We begin the derivation by introducing the familiar right-handed Cartesian
coordinate system such that (z,y, z) = (x1,Z2, x3), with z = z3 positive in
the downward direction. The propagation speed is assumed to be known
for z < 0 and unknown in some portion of the region z > 0. For now we
will assume that the medium has constant density.

The waves originate from a bandlimited impulsive point source acting at
the position s and at the time ¢ = 0. The response generated by this source
is observed at one or more receivers located at the receiver position(s) x,.
The objective is to obtain information about the propagation speed v(x)
from observations of the wavefield. We assume that the signal propagation
is governed by the three-dimensional Helmholtz equation,

(.4.)2
v ()

The function u(z, zs,w) and all wavefields introduced below are assumed
to satisfy the Sommerfeld radiation conditions,

Lu(x,x,,w) = {VZ + ] wx, zs,w) = —F(w)b(x —xs). (3.1.1)

ru  bounded, r [B_u - Zﬂu] —0 as r—ooo, r=lz]. (3.1.2)
or v
(Compare these radiation conditions with the much simpler radiation con-
dition in the 1D problem, stated in equation (2.2.1).) These conditions
ensure the uniqueness of solutions to the Helmholtz equation in unbounded
media. These conditions prevent waves from propagating inward to the
source from infinity (part of the physical constraint of causality), while
guaranteeing that their amplitudes decay with range at least as quickly
as do those of the Green’s function. By “Green’s function,” here we mean
the impulse response obtained under the condition of causality. The added
condition insures that the decay in amplitude due to geometrical spreading
is represented correctly.
As in the one-dimensional problem, the wavespeed is represented as
a perturbation with respect to a known reference speed, c(x), expressed
mathematically as

-1 _(l+a@). (3.1.3)
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Substitution of the perturbation representation (3.1.3) into the original
equation (3.1.1) produces the equivalent Helmholtz equation,

w2

c*(z)

Lou(z, x5,w) = —F(w)b(x — x5) — a(z)u(z, s, w). (3.1.4)

Here

_ |2 w?
Lo = [V + %]

is the Helmholtz operator with the known background wavespeed c(x).

Again following the one-dimensional derivation, we decompose the wave-
field into a reference or incident field, ur(x, zs,w), which is the impulse
response in the absence of the perturbation a(x), plus a scattered field,
us(x, xs,w), which is the modification of uj(x,x,,w) in response to a(x).
Thus, the formal decomposition of the field is represented by

uw(x, x5, w) = ur(x, zs,w) + us(x, T, w), (3.1.5)

with the requirement that u;(x,z,,w) be a solution of the unperturbed
equation,

Loup(x, 25, w) = —F(w)b(x — x5), (3.1.6)

subject to the Sommerfeld radiation conditions, (3.1.2). The factor of F(w)
contains the combined losses owing to bandlimiting discussed in Chapter 2
and will appear throughout the derivation.

An additional constraint is required for the Sommerfeld radiation con-
ditions to hold. The size of perturbation a(z), must be restricted to some
small subset of the total volume of the problem. Without such a restriction,
the spatial extent of the scattering region could conceivably be the entire
volume of the body being imaged—the total volume of the Earth, in the
seismic problem.

In practice, seismic recording for a given source is done over an area
of the Earth’s surface limited to few kilometers, at most. In addition, the
recording time of seismic data sets is restricted to no more than several
seconds. If the data (possibly after a stage of preprocessing) are assumed
to be high-frequency bandlimited impulses, then these spatial and temporal
restrictions translate into a restriction on the volume of the Earth that is
being sampled. Consequently, a(z) can be treated as if it is of finite extent,
permitting us to assume that v(z) — c(z) for great distances from the
source. We can equate “great distance” with the distance r that appears
in the statement of the Sommerfeld radiation conditions (3.1.2), greatly
simplifying the derivation of the forward and inverse integral equations.?

2Owing to the petroleum industry’s long experience with seismic prospecting,
geophysicists select sources and recording equipment that generate data compat-
ible with these assumptions. In other problems, for example seismology involving
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We may continue the derivation, as in Chapter 2, by subtracting (3.1.6)
from (3.1.4) to obtain the Helmholtz equation describing the scattered field,

w?

()

An integral equation for ug(xg, s, w) can be written in terms of the
Green’s function, ¢*(x, €4, w), that is a solution of

Loug(x, x5, w) = a(x) ur(z, zs,w) + us(x, Ts, w)] - (3.1.7)

L3g" (2, 2g,w) = —6(x — @) (3.1.8)

The superscript “x” is used to distinguish the adjoint operator and the

adjoint Green’s function, from the direct operator and the direct Green’s
function, respectively. While the constant-density problem is self-adjoint,
we will still retain the x notation for generality.

The general form of the integral equation for the scattered field ug is
created by solving equations (3.1.7) and (3.1.8) using Green’s theorem,
expressed here for a general operator as,

/ {9"Lou —ulig*}dV = / - QdS, (3.1.9)
D oD
where 7 is the outward-directed normal to the boundary surface 8D and
{g*Lou —uLlfg*} = V - Q. The reader should note that £} and g* are
simply the respective operator and Green’s function needed to make the
integrand of the integral on the left an exact divergence. The fact that the
integrand of the left-hand side of equation (3.1.9) is an exact divergence
permits us to apply the divergence theorem to create the right-hand side.
For the constant-density problem, we can explicitly write Green’s
theorem as

* * % _ *au 89*
/D{g Lou —ullg*}dV = /aD {g o Yo }dS’, (3.1.10)

where 9/dn is the outward normal derivative to dD, often written as 7+ V.
For an unbounded problem (boundary 8D at infinity), the surface integral
term is zero, by the application of the Sommerfeld radiation conditions
(3.1.2).3

Under these conditions, we may further simplify the notation by applying
the reciprocity theorem,

g*(w,wg,w) =g(wg,:1:,w). (3'1'11)

See Exercise 3.1c.

the whole Earth, or acoustic imaging of flaws in manufactured items, consider-
able effort may be required to create data sets for which all of these assumptions
hold.

3For further details, see Courant and Hilbert [1962], Sommerfeld [1964],
Garabedian [1964], or Bleistein [1984].
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For the special case of the constant-density Helmholtz equation, the
adjoint operator is the same as the direct operator; the constant-density
Helmholtz equation is self-adjoint, meaning that the identity g(x4, x,w) =
g(x, x4, w) holds. In anticipation of extending the method to the more gen-
eral problem, the arguments of the Green’s function have been written in
the proper order here.

The solution for the scattered field is the integral equation

ug(@g, Ts,w) = wz/ o(z) [ur(z, zs,w) + us(:c,:cs,w)]g(a:g,a:,w)de.
D

()
(3.1.12)
Here, the domain D of integration must contain the support of a(x)—
assumed to be some finite subdomain of z > 0. We are free, therefore, to
take D to be the semi-infinite domain z > 0.

Exercises

3.1 Consider the general problem

Lu(z) = —f(x)
L g*(x,xy) = —6(x — xy4).

a. Show that the integral equation of the field is
u(xy) / f(x)g*(z,z4) dV

" /8 o) 28 - ) 2220 s

b. Derive the Sommerfeld radiation conditions (3.1.2) (see Bleistein
[1984], pp.180-191) in the 3D problem. That is, show that the
surface integral term in the integral equation for the field above
vanishes as the radius of the surface becomes infinitely large, thus
showing that an unbounded medium is equivalent to a medium
with “boundary at infinity.”

c. For a general operator £ and its adjoint £*, but for an unbounded
medium, set f = —6(x — x5) in the problem above to prove the
reciprocity theorem:

g(wngs) = g*(xs, ‘Eg)-

3.2 Let the operator £ be the Helmholtz form of the variable-density,
acoustic-wave operator defined by the expression
2

1
Lu = pV - [;Vu} + Yo

c2
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Begin with the expression

I:/ g Lu dV.
D

a. Through successive applications of the divergence theorem, show
that Green’s theorem for the variable-density acoustic wave
equation problem is

* * % — *i_gi *
/D[g Eu—uﬁg]dV—/aD {g 3 pan(pg )Jdﬁ

b. As part of this derivation, show that the adjoint operator L£* is

* ok 1 * w2*
L*g =V‘[;V(P9 )]+079~

c. Show that the Sommerfeld conditions work as long as Vp/p
remains bounded at infinity.

3.2 The Born Approximation

The same difficulty seen in the 1D problem is encountered here. Equation
(3.1.12) is an integral equation for the scattered field containing the prod-
uct a(x)ug(x, zs,w), meaning that it is a nonlinear equation in these two
unknowns. For small a(z), linearization of the equation is possible if it
could be argued that ug(x, z,,w) is also small (that is, O(a)) for o small.
As in the one-dimensional problem, this quadratic term in « could then be
ignored when compared to the product a(z)ur(x, s, w) that appears as
the first term under the integral sign. Unfortunately, this is not always true
in three dimensions. In particular, think of the reflected field beyond the
critical angle of reflection. The reflection coefficient has unit magnitude,
meaning that the amplitude of the scattered field is of comparable magni-
tude to that of the incident field, at least in that subdomain of D. Thus,
caution must be exercised in the three-dimensional problem, because it is
not always possible to neglect a(x)ug(x, s, w) in favor of a(x)ur(x, x5, w).
For near-zero-offset or backscattered observations, however, it is true
that small o implies small ug because the major contributions to the
scattered field will be the near-normally incident, specularly reflected ar-
rivals. For near-zero-offset source-receiver geometries it is safe to make the
Born approximation. The result is an integral equation relating a(z) to
the observations ug(x,s,w) at the source/geophone positions x4. The
Born-approximate integral equation for the scattered field is written as

us(xg, Ts,w) = w2/D ;((z)) ur(z, s, w)g(zy, T, w)d3z. (3.2.1)




3.2 The Born Approximation 95

This is the modeling equation that we will use as a starting point for
generating the inversion formulas of this chapter. Sufficient generality has
been retained to make the equation remain valid even for the variable-
density problem (non-self-adjoint operator) provided that uy(z, zs,w) and
g(x4, x,w) are properly interpreted, with a(x) being replaced by the appro-
priate linear combination of perturbations of density and propagation speed
(or density and bulk modulus as in Exercise 2.20). Furthermore, equation
(3.2.1) also extends to scalar decomposition of vector wavefields with mode
conversion, again, as long as us(x, €s,w) and g(xy, z,w) are properly in-
terpreted and «a(z) is replaced by the perturbed quantities appropriate to
the problem. See the exercises for examples.

So far nothing has been said about the range of values of x, and .
A count of the degrees of freedom in the Born-approximate integral equa-
tion will help us make a decision about what is required. Implicit in the
notation a(x) is the assumption that this quantity is a function of three
variables, meaning that the perturbation has three degrees of freedom in
its variation. Of necessity, then, observed data must have at least three
degrees of freedom. The first of these degrees of freedom comes from the
range of w (or of time, t). The other two can come only from the range
of &5 and x,. Therefore, when a(x) depends on all three variables, the
source-receiver configuration must range over a surface to provide the nec-
essary information to reconstruct the behavior of a(x) in the full three
dimensions. Given less than surface coverage, it is unreasonable to expect
to determine three-dimensional dependence of o on x.

With this in mind, let us consider some of the standard configurations
of inversion experiments.

Zero-Offset Surface Experiment

For this experiment, the source and receiver occupy the same position on
the boundary surface of the domain containing the unknown perturbation
a. The data will consist of an ensemble of such experiments.

There are good reasons to study the zero-offset problem. First, it is the
easiest multidimensional inverse problem to formulate, meaning that an ap-
proach to inversion that fails on zero-offset data is not likely to succeed on
more difficult problems. Second, experiments exist for which it is possible
to obtain true zero-offset data. Third, though virtually all seismic data are
collected using geometries involving a nonzero source-receiver offset, the
advantages of processing zero-offset data have encouraged the geophysical
community to create a number of preprocessing techniques to transform
data to an approximate zero-offset geometry. Because the methods of seis-
mic preprocessing are not be completely successful, amplitude information
in such pseudo-zero-offset data often suffers considerable degradation. See
Chapter 7 for a discussion of the proper handling of amplitudes in such
data mapping processes.
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Zero-offset geometry is practical for imaging flaws in solids and in medical
ultrasound imaging, however, because the same transducer that is used as
the source can also be used as the receiver. Also, with sufficient time delay
between the initiation of the acoustic source pulse and the first recorded
arrival, reverberations originating in the vicinity of the source-receiver array
have time to dissipate.

Zero-Offset Linear Experiment

Data gathered along a single straight line with source and receiver coin-
cident are true zero-offset data sets. Seismic data sets collected in CMP
gathers, with traces moveout-corrected (by both NMO and DMO) and
stacked, yield seismic sections that approximate the zero-offset geometry.
In either case, there is only one spatial degree of freedom in addition to
that from frequency (or time). It is not a reasonable expectation to re-
construct a three-dimensional a(z) from such a dimensionally constrained
data set. Instead, we must be content seeking a two-dimensional inversion,
with the first spatial variable on the output consisting of the horizontal
spatial coordinate running parallel to the seismic line, and the second be-
ing depth into the subsurface. When the unknown medium has minimal (or
no) variation in the out-of-plane direction, this is a reasonable experiment.
Achieving this geometry in practice is often a matter of picking a direction
along which to gather data, but the Earth and conditions on its surface
may not be so accommodating. Historically, in oil exploration, gathering a
single line of data was the method of choice for purely economic reasons.
Processing a single line of data might also be the method of choice (as it
was in earlier times) because of limited computer capacity.

Single Zero-Offset Experiment

Here, the only independent variable in (3.2.1) is w and the reasonable ex-
pectation is to obtain « as a function of only one variable, usually depth. If
it were known a priori that « is a function of one variable making some an-
gle with the vertical, however, inversion would still be possible by a simple
coordinate rotation. Such a geometry might be practical in a geologic set-
ting consisting only of planar layers, such as in the shallow sediments of the
abyssal plane in deep ocean environments; but, for petroleum exploration,
this is too constrained a geological model for practical consideration.

Common-Shot Experiment

In the common- or single-shot experiment, an array of receivers is deployed,
and the response to one source is recorded. When the receivers are set out in
a surface array, there are again two degrees of freedom in the spatial coor-
dinates, but all in the locations of 4, with no variation in «s. Nonetheless,
at least the “count” is right, and it is reasonable to expect to invert data
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from such an experiment for «(x), at least within some limited volume. If
the receivers are set out along a line, again the degrees of freedom are re-
duced by one in the data, implying the same of the solution. There are two
ways to use this kind of experiment. We are either solving for one unknown
that is a function of two spatial variables (propagation speed variations, for
example) or solving for two unknowns (propagation speed variations and
density variations, for example) that are each functions of one independent
variable.

In both of these problems, the forward model should still describe
propagation in a three-dimensional medium; only the spatial dependence
of the medium is lower dimensional. For the case of one unknown, say
v(zx, z), the spatial dependence is two-dimensional while the propagation is
three-dimensional. We call such a problem—3D propagation, 2D medium—
two-and-one-half dimensional. The model problem should be designed in
such a manner that the dependence of the medium parameters on only two
spatial variables can be exploited. This cannot always be done in practice.

Synthetic Aperture

In either the three-dimensional or two-and-one-half-dimensional case, one
experiment does not provide enough information to obtain an inversion of
an adequate region of the unknown medium. Instead, many common-shot
experiments are used to broaden the aperture of observations and thereby
to increase the region of the subsurface from which upward-scattered waves
are observed. These many experiments also offer some redundancy in these
data. This redundancy can be used to diminish the noise-induced errors,
while also permitting more sophisticated options in the choice of inversion
results, such as solving for more than one material parameter. Because of
the increase in aperture achieved by employing many experiments, inver-
sion of this type has been called the synthetic-aperture focusing technique
(SAFT) in nondestructive testing of solids.

Vertical Seismic Profiling (VSP) and Crosswell Surveys

Two special cases of common-shot experiments are worthy of special note.
They are single-offset vertical seismic profiling and well-to-well experi-
ments. In the former, a source is placed on the surface of the Earth and
receivers are placed in a borehole (or vice versa). Data that reach receivers
after reflection or diffraction from the scattering region are well suited to
this theory. Transmitted data are not. A suite of such experiments in which
the source is moved progressively further away from the borehole provides
a synthetic aperture that increases the region over which an inversion can
be achieved. Depending on the range of source positions, this can be a
three-dimensional or two-and-one-half dimensional inverse problem.

In well-to-well experiments, sources are placed in one well or borehole, re-
ceivers in another. This is strictly a two-and-one-half-dimensional problem.
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Reflection experiments of this type are referred to as diffraction tomography
(here we mean this term in its original usage of Devaney and Oristaglio,
[1984]) to distinguish them from true tomographic experiments, which
invert transmitted data. Thus, diffraction tomography is neither a tomo-
graphic experiment nor a diffraction experiment, but merely another form
of common-source reflection experiment.

Common-Offset Gathers

In seismic exploration, constructing a common-offset gather is more a
matter of rearranging or sorting the data from a suite of common-shot
experiments, than it is a method of gathering data in the field. In other ap-
plications, such as radar or acoustic nondestructive testing, it may be more
practical to actually gather the data using this source-receiver geometry. In
either case, a suite of different experiments is represented by each seismic
trace, as each is the response from a single (different) source. The offset
between each source and each respective receiver is fixed, with the lines be-
tween sources and receivers chosen to all be parallel. If the source-receiver
pairs all lie on a single straight line, only one spatial degree of freedom ex-
ists in the observed data; thus only two-and-one-half-dimensional inversion
is possible. If, however, the source-receiver pairs are not confined to a sin-
gle line, but range over a surface, then, on the basis of degrees of freedom
alone, we can conclude that three-dimensional inversion is possible.

Common-Receiver Gathers

This geometry consists of data set representing many sources and a single
common receiver. Again, such a data set would be obtained by rearranging
or sorting data from a collection of common-source gathers. The principle
of reciprocity allows for the derivation of an inversion formula for common-
receiver data given an inversion formula for common-shot data. The count
of degrees of freedom, then, is the same as in the cases of common-shot
inversion, above.

Other Choices

So far we have no other method to evaluate or eliminate from consider-
ation any particular source-receiver configuration other than by counting
the degrees of freedom. For the examples cited above, migration and in-
version techniques have been demonstrated and techniques for parameter
estimation have been established. Some configurations can be eliminated in
a fairly straightforward manner. Others are less clear. For example, suppose
that sources are all configured on one line and receivers on an orthogonal
line. Such arrays always yield some partial success, but the results do not
yield complete information about the subsurface. Eventually, we will de-
velop a criterion that at least warns us when to be cautious, if it does not
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provide a definitive answer to the question of what we can expect different
source-receiver arrays to deliver.

Compatibility with High Frequency

Earlier, we observed that wide offset and the Born approximation might be
inconsistent, owing to the large reflectivity of wide-angle reflections. In the
current discussion, we have not concerned ourselves with the issue of failure
of the Born approximation, but have concentrated only on the count of de-
grees of freedom. Consequently, we address this issue below. Ultimately, we
show that the output of the inversion derived on the basis of the Born ap-
proximation has an interpretation in terms of high-frequency “Kirchhoff
data,” which is to say, model data created using the Kirchhoff model-
ing formula. (See Exercise 3.12.) Because there is no small-perturbation
assumption in the Kirchhoff modeling formula regarding reflection coeffi-
cients (or, consequently, in any inversion formula derived from it), we will
be able to allow for wide offset between source and receiver. Thus, we
ask the reader’s forbearance while we continue to develop inversion opera-
tors based on the Born approximation. We assure the reader that we will
ultimately arrive at a result that frees us from the restriction of consid-
ering only small changes in parameters across a reflector, so long as the
background parameters above that reflector are near to their true values.

Summary

In summary, for techniques in current use, the count of degrees of freedom
is consistent with the kind of inversion results that are obtained. While the
target is always a three-dimensional Earth model, the implied geometry of
the experiment is controlled by the number of degrees of freedom available.
It is one of these theories, high-frequency inversion for reflector mapping
and parameter estimation, that will be developed here.

In practice, data are gathered from “many” experiments, with the shot
and receiver locations varied. This produces redundant data from the point
of view of the counts we were making in the above discussion. Such data
redundancy is important as it may be used to reduce noise and to permit
the extraction of more parameters than a simple a(x). In addition, data
redundancy permits background wavespeed profiles to be generated by a
variety of velocity analysis techniques that are independent of the actual
inversion process. Because our goal is to formulate inversion techniques, we
will not discuss these other side issues.

3.2.1 The Born Approzimation and High Frequency

The ultimate objective of our derivations is to develop formulas for high-

frequency inversion. Because the source term in (3.1.7) involves the product

w?a(x), it might appear that assuming high frequency is incompatible with
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the Born approximation, because “large w” and “small a(x)” are competing
to determine the ultimate size of this source term. We will show here that
this is exactly the “right” combination of powers to create a balance that
allows for both high frequency and small perturbations, independently.

Suppose that the true velocity, v(z), is known, but that we still want to
consider the decomposition of (3.1.3). We will examine the interplay of high
frequency and small o on the WKBJ formalism for high-frequency wave
propagation. To this end, we represent solutions to the Helmholtz equation
in the form of a series in inverse powers of iw:

u(m,w) ~ (@) Z An(m)

n=0

where () is traveltime. (This is the WKBJ series trial solution.) It is
assumed that the total solution is made up of one or more series of this type
with linearity permitting us to examine each constituent series individually,
except at places where they might interact, such as at reflectors. Away from
the source point xg, equation (3.1.4) takes the form
2
o(x)w

Lo(u) = —(c—gu(m,ms,w). (3.2.2)
We then substitute the WKBJ series trial solution into equation (3.2.2) to
obtain the series representation that provides a basis for ray theory in a
perturbed medium (see Appendix E),

Lou = &7 i (i:)n [uﬂ {(;1_2 - (Vr)z} An

n=0

+iw {2VT - VA, + A, V?7} + VQAH}

e A
= —w?—e™T L 3.2.3
w CZe Z (zw)" ( )
n=0

In the formal process of solving this equation, we equate the coefficients
of like powers of w appearing on each side of (3.2.3). Note that the leading-
order terms on each side are of order w?, with each successive order term
being in smaller powers of w. After canceling a common factor of Ay, the

leading-order equality is

2__1_ _ a(z)
(Vr(z)) 2@ = 2(@)
Because
1 _ 1 1+ a(z)], (3.2.4)

V(@) cA(x)

this equation for 7 becomes
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1
2
(Vr(x)) ) 0, (3.2.5)
which is the eikonal equation in a medium with velocity v. That is, the prod-
uct w?a, provided the precise balance needed to guarantee that the eikonal
equation in the perturbed medium became the correct eikonal equation for
the full wavespeed v(x).

The eikonal equation describes the traveltime behavior of the waves un-
der the condition of high frequency. To examine the amplitude behavior
under this condition, it is necessary to consider terms of lower order in w.
If we equate the coefficients of the terms of the next order in w of equation
(3.2.3), we obtain

1 1
A {— - —J + [2Vr - VA + A0V2T] = —Al(%,

cz  v?
where the first term on the left side is obtained by using the eikonal equa-
tion (3.2.5). Again, using the relation (3.2.4), this becomes the transport
equation for a medium with wavespeed v:

VT - VAy+ Ay V3T = 0.

We see here, again, that there is no conflict between the small perturbation
formalism in « that leads to the Born approximation and the standard high-
frequency formalism of ray theory. That is, the factor w?a on the right side
of equation (3.1.7) is exactly the correct combination of powers to avoid a
conflict between these two limits. Clearly, this balance will occur in all of
the higher-order transport equations for As, As, ..., leading to the standard
equations for each of those coeflicients. (We refer the reader to the text of
Kravtsov and Orlov {1990] for a comprehensive overview of ray theory. See
also Bleistein [1984] and Appendix E of this text.)

Because the solutions of the eikonal and transport equation(s) form
the basis of asymptotic ray theory, we will take the position that the
assumptions of high frequency and small perturbations are compatible.

There are regions where this analysis does not prevail, which is to say
locations where the amplitude of the scattered field ug(x, xs,w) is large.
These regions include the vicinity of the source, areas near caustics, and
regions of supercritical reflections. Yet, these are also the places where we
generally expect high-frequency theories, including ray theory, to break
down.

Another example of a region where this analysis does not apply is the
forward-scattering or downward-propagating direction. In that direction,
the wave denoted by uj(x,zs,w) and defined by (3.1.6) accumulates a
phase error relative to the “true” downward propagating wave. That er-
ror is approximately iw [ a(x)/c(x)ds, where s denotes arclength along
the geometrical-optics rays or paths of propagation. This is a region in
which the product wa comes into play. With increasing propagation range
through the region of nonzero a(x), this integral will increase in magni-
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tude, eventually attaining a value of m. At such places, ur(z, zs,w) and
the true downward field are of opposite sign. The field we call ug(x, zs,w)
will have to undo this error, which is of order unity in a(z). Consequently,
the downward propagating part of us(x,xs,w) cannot be only O(a). This
suggests that inversion as developed here is not the method of choice for
tomographic imaging, which depends largely on transmitted, rather than
scattered, energy. We will not use our methods on such problems. Indeed,
we will see this breakdown in the forward scattering direction more explic-
itly later, when we see that the “true” large parameter depends also on the
cosine of the half-angle between the geometrical-optics rays from source
and receiver at the scattering point: for transmitted rays, that half angle
is /2, and the parameter that we would like to be large is actually equal
to zero!

Under the high-frequency assumption, the upward propagating part of
us(x, xs,w) arises from reflections at jumps in a(x). At normal incidence,
such waves are scaled by a reflection coefficient proportional to the jump
in a(x), hence they are of order O(a). For small-offset angles between
incidence and reflection, this remains the case. As the offset angle in-
creases towards critical, however, the magnitude of the reflection coefficient
approaches unity. For small o, that critical angle will be large; as « in-
creases, that critical angle decreases, restricting the viable range of angles
of incidence.

Now we have some idea where we can expect the upward-scattered field to
be small when «(z) is small. This will be when the offset angle between the
direction of incidence and reflection is small compared to the critical angle.
For the present, this is the type of experiment to be considered; specifically,
we treat the special case of zero-offset in this chapter. Eventually we will
show that this inversion has a range of validity that is broader than its basis
in the Born approximation would suggest. We will show this by analytically
studying the output of this inversion formalism when applied to Kirchhoff-
approximate data for a single reflector.

The Kirchhoff approximation is not constrained to small increments in
medium parameters across reflectors, nor to angles that are small com-
pared to the critical angle. Furthermore, we will show that the output
of the inversion operator can be interpreted in terms of the fully nonlin-
ear geometrical-optics reflection coefficient. This means that estimates of
parameter changes can be made without linearization. (We still have a lin-
earized problem, but it is linearized in terms of the reflectivity, instead of
in terms of perturbations of material parameters.) Again, this echoes the
results already derived for the one-dimensional problem.

Thus, to a degree, the small-perturbation constraint of the Born approxi-
mation can be removed (or ignored). To properly locate the “test reflector,”
it will still be necessary to have a background or reference speed above the
reflector that is “close” in some sense to the true propagation speed. It
will also be necessary that multiples from reflectors above the test reflector
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be small enough that they can be disregarded. This means that the vio-
lation of the constraint of small a(x) can still be a source of error, if the
background-wavespeed profile differs significantly from the true profile.

This suggests that a recursive application of the inversion operator
could be used to gain information that progressively improves the esti-
mate of the background wavespeed. If such a procedure were applied in a
“layer-stripping” fashion, then each successive reflector could be more pre-
cisely located, with its reflection strength yielding information about the
wavespeed jump into the next deeper region being imaged.

Therefore, the Born approximation is merely a vehicle for getting the
derivation started, rather than being an end in itself. The real power of our
methods comes from the robustness of high-frequency asymptotic wave
theory. Extensions of the validity of our inversion schemes, through a con-
sideration of the properties of Fourier-like integrals, will provide the means
of overcoming many of the constraints of the original derivation.

3.2.2  The Constant-Background Zero-Offset Equation

Some specializations of (3.2.1) will provide insights into solution of the
general problem. The simplest problem to deal with is one in which the
source and receiver are coincident, €, = x4, on a flat horizontal surface,
z = z3 = 0, and the background speed c(xz) = ¢y = constant. In this case,
it is convenient to introduce

g = (€17€27 0) =T = Ty, (326)
and the exact solutions,
wr/co

dmr

iwr/co

e €

, ur(x, & w) = F(w)

g€, z,w) = r=|z—€, (3.27)

drr

and rewrite (3.2.1) as

2 2iwr/co
us(€,w) = F(w) L:—CJ />0 Oz(m)e . dz. (3.2.8)

Here, r = \/(z1 — £1)% + (72 — &)? + 22.

3.2.3 One Experiment, One Degree of Freedom in o

Suppose that data are collected for a single zero-offset experiment and
that the medium has variability from the background wavespeed in the
vertical direction only. For our inversion formula, this means that we let
the wavespeed vary from constant velocity as a function of the depth z,
only. This is a useful case to study from a geologic perspective, because
as a crude estimate, wavespeed can be assumed to generally increase with
depth in the Earth. At the very least, if we have only limited well log data,
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the variation of wavespeed with depth will be known with greater precision
than will the lateral variations.

Whatever the justification for considering such a problem, we will seek
an inversion only for a(x) = a(z). Furthermore, the coordinates of the
source in that single experiment might as well be taken to be (0,0,0), so
that (3.2.8) becomes

w 2iwr/co

us(0,0,0,w) = F(w) [——r / o

4meg 72

where  r=+/2?+y%+ 22 (3.2.9)

In this case, the integrand depends on z and y only through 7, permitting
us to perform the integration in (z,y) by exploiting the high-frequency
assumption. When we introduce polar coordinates (p,§)* in place of (z,y),
equation (3.2.9) may be rewritten as

e

dz,

W e2iwr/co

2 27 oo
us(0,0,0,w) = F(w) [—} dzs a(:c;;)/ d0/ dpp
2>0 0 0

4meg r2

where 7 =4/p?+ 2% (3.2.10)

Integrating with respect to 6 yields a multiplier of 27, and reduces the
integral to

2

w oo e2iwr/c0
us(0,0,0,w) = F(w)s———z—/ dzs Oé((Cg)/ dp p———- (3.2.11)
TCh Jx3>0 0 r

While it is not possible to evaluate the integral over p exactly, it is possible
to find an approximation to this integral that is consistent with the high-
frequency assumption. To do this, we require that Im w > 0 (consistent
with r/cg > 0) and integrate by parts in p, retaining only the leading term
at high frequency to approximate the p-integral. The term being integrated
is exp{2iwr/co}-p/r, noting that p/r is just the p-derivative of r. The result
of this integration, to leading order in w, is

u5(0,0,0,w) NF(w)lg:CO/ 0 O‘Z‘”’)em“/%dm, (3.2.12)
ac3>

where ~ indicates that this is a high-frequency asymptotic approximation,
rather than an exact equality.

For F(w) = 1, equation (3.2.12) defines the observed data as a mul-
tiple of the Fourier transform of a(z3)/z3. The solution is obtained by
Fourier inversion. We seek the bandlimited approximation ap(z) of the
true perturbation. (Note that z is the output variable that corresponds to
the z3 input variable.) As in one dimension, the actual transform variable

4The polar coordinate p = y/z3 + z# and the density p will not be introduced
in the same context.
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is k = 2w/cp and the Fourier inversion formula must be with respect to k,
with dk = (2/co)dw. Consequently, solving for a(z), we have

ap(z) = 162/ Ewe—mz/% dw. (3.2.13)

— 00
It is important to recognize that ug(0,0,w) contains the bandlimiting
represented by the filter F(w) in equation (3.2.12).

This result should be compared to the one-dimensional inversion formula,
(2.4.3). While these results show certain similarities, they also exhibit im-
portant differences. Although «(z) here has only one-dimensional variation,
the observed field is still three-dimensional. It is reasonable to expect a
difference in the processing formula to account for the differences in prop-
agation in one versus three dimensions. In particular we should expect the
3D formula to account for geometrical spreading, which is not present in
1D wave propagation.

As in the 1D problem, we will test the formula on known data. Suppose
we have a horizontal plane reflector in the subsurface at a depth A, but no
other perturbations from the background wavespeed cy. Such a medium is
consistent with the assumption that « is a function of z alone. For this
problem, the leading-order asymptotic representation of the field scattered
from such a reflector is

e?iwh/CO

8h

Here, R is the normal-incidence reflection coefficient, exactly the same as
in 1D; 2h/cy is the two-way traveltime from the source to the reflector and
back to the receiver; 8wh = 4w - 2h is the geometrical-spreading factor for
propagation down to the reflector and back to the source-receiver point.
When this result is substituted into inversion formula (3.2.13), the result
is

us(0,0,w) = RF (w) (3.2.14)

2R [ ein[h—z]/co
apl(z)= = [ F@)——dw
= -4R%H3(z —h). (3.2.15)

Comparing this result with the 1D results of Chapter 1, we see that the
factor of —4R can be recognized to be equal to a(z) to leading order. The
bandlimited step is located at the right place, z = h; however, it is scaled
by another factor, z/h, which is equal to 1 on the reflector surface. This last
factor represents a further degradation of the bandlimited result in three
dimensions, as compared with that in the one-dimensional formalism.

Alternately, suppose we were to define a reflectivity function, 3(z) for
this problem, exactly as we did in the 1D problem, by multiplying the data
in (3.2.13) by iw/2¢o before inverting, just as we did to obtain the formula
(2.4.17). Then, the formula for a reflectivity function for this point-source
problem, replacing (3.2.13), is
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8 * )
Ba(z) = = / (0, 0,0, w)e%%/%0 gy, (3.2.16)
0 J—-co

The result (3.2.15) would then be replaced by

Bs(2) = R=85(z — h),

just as in the one-dimensional problem. We might feel more comfortable
replacing z/h by 1 because this is also a high-frequency approximation.
The reader must remember to visualize 5(z — h) as a sinc-like waveform
with peak located at z = h. So, while the peak amplitude of 8g(z) has the
desired value of R, bandlimiting introduces an error that grows for z > h.
If our reflector location is off, then the error introduced by the factor of
z/h will be correspondingly larger.

Also, it is not clear at this point that multiplication by 4w/2cq is correct
in the general 3D problem. Here, “correct” means a proper general formula
for B(zx), whatever that means. This is a subject for further discussion.
At the very least, the inversion has the correct appearance for this simple
problem.

3.3 Zero-Offset Constant-Background Inversion in
3D

In the previous section we found that making a simplifying assumption on
the background-wavespeed profile simplified the problem, permitting us to
write an asymptotic approximation of the forward modeling formula. We
recognized that the forward modeling formula was a forward Fourier trans-
form, permitting the corresponding inverse Fourier transform-like inversion
formula to be written by inspection.

This simplifying assumption of full 3D wave propagation with only 1D
variability of the wavespeed profile is often called a “1.5D” or one-and-one-
half-dimensional model. The next logical step would be to assume that the
perturbation a(x) is a 2D-varying quantity. It is as difficult to perform
the computation for a 2D result, even as a high-frequency asymptotic ap-
proximation, as it is for the full 3D problem, however. So it is really easier
to do the full 3D problem first. The so-called “2.5D” (2D media with 3D
geometrical spreading) will be postponed to a later section, after we have
gained experience and insight from the 3D computation.

We return now to (3.2.8) and assume that the vector £ ranges over the
entire upper surface of the domain of the problem, providing coverage over
the full spatial aperture of the medium. When F(w) = 1, this equation ad-
mits an ezact solution. That solution will be derived here. Ultimately, we
will show that limiting the range of these variables limits the domain of val-
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ues of the Fourier transform variable, k, over which the three-dimensional
transform of a(x) is defined.

To begin, consider the integral equation (3.2.8) with F'(w) replaced by
unity:

2 2iwr/co
us(é,w) = {721—7%8} /2>0 a(a:)e ]~ d3z, (3.3.1)
where £ = x;, = x4, (3.2.6), and r = |z — £|, (3.2.7). Here we have also
modified the notation used for the observed field. There is no point in
noting both the source and receiver position when they are coincident and
equal to & Thus, we have set us(zy, Ts,w) = us(§,w).

The key to solving this integral equation is to realize that it is in con-
volution form in the transverse spatial variables, the function a(z) being
convolved with the function 7=2 exp {2iwr/cy}. Thus, a Fourier transform
in these two variables will replace the integration in z; and z3 by mul-
tiplication of the two transformed functions. Unfortunately, the Fourier
transform of this function of r is unknown to us. If there were only one
power of r in the denominator, that is, if the kernel of the integral equa-
tion were 1 exp {2iwr/cy} instead, then the kernel would take the form
of the free-space Green’s function, a function which has a known Fourier
transform. We can achieve this change in the integrand by differentiating
the integral in (3.3.1) with respect to w, but only after the multipliers in
w are moved to the left side. Multiplying each side of (3.3.1) by c2/w? and
taking the w derivative of the resulting equation yields

o e2iwr/co o 2
o /D Wa(m) &’z = Ew (w—gus(&w)) ,

or
/D Bz a(x)g: (€ — x,w) = —27?@'08% (#) ) (3.3.2)
where
2iwr/co
g1 —z,w) = i TE |z — & (3.3.3)

The function g; is the free-space Green’s function for a medium with a
constant wavespeed of cg/2 (a “half-speed” free-space Green’s function).
The two-dimensional “transverse” Fourier transform of this function will
be derived below.

It will prove useful to define the spatial Fourier transform for this problem
with a factor of two in the exponent. This corresponds to the appar-
ent “wavenumber” 2w/cy appearing in the integral equation. The forward
spatial transform

F() = /_‘: /_O; d2p e=2%P £ (p) (3.3.4)
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and the inverse transform
1 o0 o0 X -
flp) = — / / d?k e¥*P f(K) (3.3.5)

are defined with the conventions p = (x1, z2) and, similarly, the wavevector
K, is defined in terms of the two wavenumbers, k; and ko, by k = (kq, k2).
The fact that the components of the wavevector k are really half of the
normal definition of the wavevector accounts for the absence of the fac-
tor of 1/4 normally found in the 2D inverse Fourier transform definition.
Application of the spatial Fourier transform equation (3.3.4) to (3.3.2), as
noted above, converts the convolution to a multiplication in the k-domain,

o . . . 0 [Us(k,w
/0 dzs a(k,z3)d1(K, T3, W) = —2#103% <%> , (3.3.6)

with the transverse Fourier transform of g;(x,w) being given by

g1(Kk, z3,w) =

. . 2
/ ) / C o (~2ik - p+ (2iw/co) [o* +23]")
) .
oo ar [p? + a3)"?

—00

There are several ways of obtaining g1 (k, z3,w) by explicitly performing
the above integration. The simplest and most physically enlightening way of
finding the expression is by recognizing that (3.3.3) is the Green’s function
for the Helmholtz equation with wavespeed cy/2:

,  Aw?
Ve + =z 91(21, %2, 23,w) = —6(21)6(22)6(z3).
0
The transverse Fourier transform defined in (3.3.4) may be applied to this
equation to yield

2 2
{gx_g —4K% + %-—} 91(K, z3,w) = —8(x3).
(Note that the factor of 4 multiplying k2 is a result of having a factor of
2 in the exponent of the transform kernel.) We may rewrite this equation
using the following definition for the vertical wavenumber k3 (again, this
is really a half-wavenumber in the traditional sense) if we recall that k% =
w?/c3 = k% + k2 + k2. Thus,

2
k2 = (‘”—2 - f#) , (3.3.7)

permitting us to write

52
[é‘gg + (2/93)2] g1(Kk,x3,w) = —6(x3).

It is now apparent that §;(k,zs,w) is just the Green’s function for a one-
dimensional wave equation. As this problem has already been solved in
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Chapter 2 (with wavenumber w/co rather than 2ks3), we may write the
result,

#62’“63'%3 |’
4’Lk‘3
directly, taking care that an additional factor of 2 appears in both the
exponent and the denominator of the expression.
Upon substitution of the expression for §;(k, z3,w), we obtain

/ dzs Gk, z3)e?*elzsl = —87rkgcgi <M> , (3.3.8)
0

gl(nax:%w) - -

Ow w?

which is an integral that is nearly a Fourier transform in z3. To complete
this identification, first note that |z3| = z3 on the domain of integration,
so we can extend the lower limit of integration to —oo. Recall that a(x)
was defined to be zero for z3 < 0, meaning that &(k,z3) = 0 for this range
of z3, as well. Note that we assume that the range of k3 is restricted to real
values only. We will present a discussion of the rationale for this choice at
the end of this section.
We may thus rewrite (3.3.8) as

/ dzs &(k, z3)e?*3%3 = —8rksc 0 <M> , (3.3.9)
0

wW=wo

Ow w?

where wy represents the specific range of w where k3 is real-valued. While
we clearly have the relation that

wg(n, k3) = 0(2) [k% + k% + kg] ,

we will define wo(k,k3) more carefully in equation (3.3.14) in the next
section. The left side of this equation has the form of a causal Fourier
transform, but to a variable, k3, which is itself only partially defined by
(3.3.7) as a function of k and w. Below, we will complete that definition.
For the present, assume that this has been accomplished and that we can
invert this Fourier transform to write

a(k,z3) = —863/ dks 163i <_—us(n,w)>

—2’“631)3
) 2 € .
oo w w

w=wo

Hence, inverting the Fourier transform in k, we find that

e 0 (is(k,
O[((E): 7r2CO/ dgkk?,é; <L’Zw)>

g2ilp—haza) (33 10)
w

wW=wo

The result is still not in the most desirable form, because the € dependence
that existed in the original problem is not present here. Recall that the
first step in the derivation was to transform out this dependence with the
transverse Fourier transform defined in equation (3.3.4). Therefore, the
relationship
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i) = [ [~ Peetntus(e

can be substituted back into equation (3.3.10) to yield

a(m)z_fzcg/ dskk/ d2 — <ﬂ€’—2>
. (3.3.11)

Similarly, the data are recorded in the time domain, meaning that the
inversion formula should be written as a function of time, not frequency.
Writing ug(€é,w) in its causal temporal Fourier representation further
modifies the inversion formula to be

3 00
a(z) = o0 / @k ks / P il o€ k5w

7[-2
[amend (3)

Now, note that the differentiation of the term in parentheses produces

a 1 twt Zt 2 twt
‘az;(w“ )*:ﬁ[l‘w]e :

permitting the inversion formula for a(z) to be written as

a(z) = 5 / d*¢ / &k k‘”’ 2’["“’ €)~ksas]

in2

e2i[n-(p—£)—k3z3] ]

w=wo

w=wo

/ dt tUg(€,t)e™ ! [1 + 2—2] , (3.3.12)
wo
with wp defined below as a function of k and k3 by (3.3.14).

This is an exact solution to the integral equation, (3.3.1). More precisely,
(3.3.1) is an equation in the space-frequency domain, meaning that (3.3.11)
is a solution of (3.3.1) and this equation is the result of reexpressing the
observed data in space-time.

As noted earlier, (3.3.1) was an idealization of the “true” integral equa-
tion, in which both the spatial and frequency domains are of finite extent.
There are two ways to approach the solution of the “aperture-limited”
inverse problem. First, one could attempt to solve this limited-aperture
problem directly. Second, the above solution formula could be applied to the
aperture-limited data, in particular high-frequency data of limited spatial
extent, to ascertain the effects of the high-frequency assumptions present
in this formula. For such a solution, the limits of integration should re-
flect this limited aperture. We will take this latter approach. We will see
that it is useful to introduce a reflectivity function as we did in the one-
dimensional problem. It is possible, therefore, to relate the output of the
inversion formula to the normal-incidence reflection coefficient. These ideas
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|
k3< 0 Alrg(k|3 )=1/2 k,>0

- COK c,K

T

FIGURE 3.1. The restriction of the complex ks-plane implied by equation
(3.3.13).

will be applied in the next section. Later, in the extension to finite-offset
data, the inversion output will be related to the fully angularly dependent,
geometrical-optics reflection coeflicient.

3.8.1 Restrictions on the Choice of k3

Equation (3.3.12) contains a restriction on the frequencies, which arises
from the restriction that ks be real-valued. A justification and discussion
of this restriction is given in this subsection.
The value of the vertical component of the wavenumber, ks, is defined
by the expression
W A
k=(k,ks) = —k.
Co
The fact that k is a unit vector follows from (3.3.7). We will carefully define
k3 by
2

1/2
sgn (w) [i—% - nz] for |w| > cok , 1 [n:" -

w2

1/2
ks = Zg] . (3.3.13)

for |w| < ok

with the square roots here always real-valued and positive. This permits
us to easily see that ks will be real-valued only for |w| > cok and that the
upper equality in (3.3.13) describes k3 in this case. The factor of sgn (w)
makes sense when we recall that ¢g; is an “outgoing” Green’s function.
That is to say, it must satisfy a radiation condition guaranteeing that each
Fourier component, when multiplied by exp {—iwt}, represents a wave that
is directed towards +o00 in z3 as time increases. This choice of sign guar-
antees that behavior. In particular, note that for k = (0,0), k3 = w/c and
their signs agree.

Purely imaginary values of ks represent the contributions of the
evanescent regime of the data, being arrivals associated with leaky
modes, boundary waves, and the transmitted fields of supercritically re-
flected arrivals. If present in the data, evanescent contributions decay as
exp{—|ks|L}, with L the upward propagation distance of these modes, and
may be assumed to be vanishingly small owing to the relatively large size
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of the product |ks|L for the separation of the support of a(x) from the up-
per surface. It is, therefore, safe to assume that the condition of |w| > cox
exists for our data, that is to say, k3 is real. If evanescent data do survive,
amplitude-consistent inversion of such arrivals will require exponential en-
hancement, and we would have to change the sign of Im (k3) to process the
data in this range. This would lead to the undesirable result that any noise
present in the data will be enhanced exponentially along with the data,
reducing the overall signal-to-noise ratio in the output. (See Appendix D
for a discussion of the ill-conditioning arising from the attempt to invert
waves in the evanescent regime.) Fortunately, a(2) can be constructed from
purely real values of k, hence from purely real k3 data. Thus, discarding
evanescent contributions to the data regularizes the solution for a(x).

An important consequence of the above definition of k3 is that w will be
represented by

w = wo(k, ks) = cosgn (ks)y/ k% + k2 = cosgn (ks)y/k? + k2 + k3
(3.3.14)
in the range |w| > cok. As w varies from —oo to —cpk and from cyk to oo,
k3 varies from —oo to oo, meaning that ks has the appropriate behavior to
be the conjugate Fourier variable to 3.
As long as we can believe the above justifications, the forward Fourier
transform

flks) = / f(ws)e®™ %3 dag (3.3.15)
— 00
and the inverse Fourier transform
1 [ . )
flzs) = ;/ Fks)e™2%s7s dkg (3.3.16)

are both defined for our problem; provided w is evaluated at wg, the value
of w implied by the assumption that k3 is always real-valued.

Exercises

3.3 This exercise is a repeat in three dimensions of the derivation of the
inverse-scattering integral equation for acoustic waves in a variable-
propagation-speed, variable-density medium from Section 2.8. Follow
that derivation. Note that the divergence theorem is the generaliza-
tion of integration by parts to three dimensions. Let u(x, z;,w) be a
solution of the equation

Lu(x, zs,w) = pV - BVU] +

a. Introduce
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p=po+08p, v=10+6v

and derive the following equation linear in §p and dv:

29

Vo Vo Po
b. Introduce, u = u; + ug and linearize in the above equation to
obtain
2
w* 260 6
Lous = +——u;+V [_p} -Vuy.
Uy Yo Po

3.4 Derive the integral equation,
226 o
ug(x, x5, w) = —/ {%——Um +V (_p> -Vu;] g*dz.
z>0 Po

In this equation, ¢* = g*(x, x4, w) is the Green’s function for the
adjoint equation,

* _* 1 * w2 *
Lig* =V - | =V (pog")| + 59" = —b(x — z).
Po Yo

Be sure to show where the Sommerfeld radiation condition is needed
in this derivation.

a. Now use the divergence theorem on the first integrand in the
integral equation above to rewrite that equation as

296 )
us(xg, s, w) = —/ [W_Z—U‘UIQ* - —pV - (Vurg®) dz.
z>0 LYy Vo Po

b. Finally, assume the following forms:

ur = Alezwn’ g* — Agei“"rg,
and obtain
2 v
2
us(®g, Ts,w) = —w ArA, {—2—
z>0 Yy Vo

+ (V)2 + V7 - VT, 6_p e+l By
I Po

3.4 High Frequency, Again

When considering the one-dimensional problem in the previous chapter, we
introduced the idea that in most experimental problems the recorded data
are high-frequency data. One consequence of this bandlimiting was that it
was no longer feasible to attempt to reconstruct a(z) itself, but instead we
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found that it was more desirable to reconstruct a scaled derivative of a(x)—
the reflectivity function, 3(z). The same will prove to be true in higher
dimensions. Developing these ideas in higher dimensions and exploiting
them constitute the major purpose of the remainder of this text. Our goal
will be to create formulas for imaging discontinuities—reflectors—using
aperture-limited, large-wavenumber, or high-frequency data. In addition
to imaging the reflectors, we are also interested in estimating parame-
ter changes across reflectors using these data. High-frequency inversion is
then reduced to the problem of relating the observed wavefield data to the
Fourier data describing the interior medium.

As discussed in Chapter 2, deciding what constitutes high and low fre-
quency in imaging problems depends on the relative size of the scattering
object compared to the dominant wavelengths or reciprocal wavenumbers
that interact with it. Thus, frequencies that are considered “low” when
imaging small objects may be easily considered “high” when imaging larger
scatterers.

The Rayleigh Criterion

But how small is small? We will answer this question by considering the
minimum permissible length scale L as a fraction of the dominant wave-
length A to be the deciding value. One such measure used in optics is the
Rayleigh criterion® for resolution for a single-frequency wave, which we
interpret to mean that length L is considered “large” if

A
> —.
L_4

This quasi-empirical criterion has been used in optics to characterize
smoothness of optical reflector surfaces and in geophysics to character-
ize the resolution of closely spaced beds. Here both L and A have units of
length. As we show in Appendix C, it is mathematically desirable to express
the large parameters appearing in asymptotic analyses in a dimensionless
form. Assuming that the waves travel at the background wavespeed cg, we
may write several equivalent forms

g <AL _ALf Ly (3.4.1)

A Co TTCo

where the two equalities on the right follow by recalling that w = 2x f
and noting that the wavenumber of interest for our problem is the two-way
wavenumber, k = 2w/cg. If we introduce a dimensionless parameter, A,
defined by

5The Rayleigh criterion states that two components of equal intensity are
“just resolved” when the maximum (the peak) of one component coincides with
the principal intensity minimum (first zero crossing) of the other of the other.
See Born and Wolf [1980] for details. The original reference is Rayleigh [1879].
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AmfL
o dmiL (3.4.2)
Cy
then the condition
A>T (3.4.3)

is equivalent to the Rayleigh criterion (3.4.1). We will, therefore, use this
as the criterion for deciding if data are high-frequency.

A few examples are in order. A plausible range of frequencies that might
be used in seismic investigations (including high-resolution surveys) is from
about 5 Hz to about 500 Hz. (This frequency range, while not realistic
for any individual seismic data set, is useful for illustrating the overall
limitations of the seismic method.) If ¢g = 2000 m/s, and f = 5 Hz, then L
must be 100 m (328 ft) or greater for 5 Hz to be considered high-frequency;
that is, for A > m. On the other extreme, if the same wavespeed is used,
f = 500 Hz may be considered high-frequency for any L > 1 m because,
again, this lower limit on L guarantees that A > = for this frequency and
wavespeed.

The L may represent the depth to a reflector, the distance between re-
flectors, or a measure of the lateral variability of reflectivity. In seismic
experiments, while there is little danger of the reflector depth being a length
that might violate our high-frequency criterion, the spacing between reflec-
tors may easily be a problem. Indeed, the detection and resolution of thin
bedding is an ongoing issue in reflection seismic investigations.

There is one additional modification of this criterion that becomes im-

portant when the sources and receivers are separated. In this case, equation
(3.4.2) should be replaced by

__4mfLcos6
= o )

A (3.4.4)

Here, 6 is half the opening angle between converging rays from a source and
receiver. In inversion, the effect of separating the source and receiver is to
scale the “aperture” in the wave-vector domain by this factor of cos 6, and
this, in turn, leads to a loss of resolution in the spatial domain wherein the
main lobe of bandlimited delta functions delineating reflectors is broadened
by sec§. The reason for this modified large parameter will become apparent
in Chapter 5.

Current research into amplitude-versus-offset (AVO) behavior has been
motivated by the desire to characterize the spatial variability of reflectivity
as an aid in evaluating the properties of prospective hydrocarbon reservoirs.
While the horizontal extent of a producing reservoir may be measured in
hundreds to thousands of meters, variations in rock properties on the scale
of tens of meters can be important in the analysis of a reservoir. Thus, the
validity of the high-frequency assumption may be an issue here, too.
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Failure of the High-Frequency Assumption

What does the failure of the high-frequency assumption mean to our theory
of reflector imaging? Simply this. The ability of an imaging/inversion pro-
cess to represent the geometry of a scatterer deteriorates as the wavelengths
of the problem fall below the limit required by (3.4.3), using either (3.4.2)
or (3.4.4) for A. So, instead of the sharp reflector surfaces envisioned above,
lower-frequency data produce an image with thick fuzzy zones delineating
the reflectors. Where the lateral variability is expressed as a substantial
curvature of the reflecting surface, local focusing may further violate the
high-frequency assumption. It is easy to imagine that, for a sufficiently long
wavelength, all of the reflector images will run together, causing the output
of the inversion to fail to produce a meaningful image of the subsurface.
Mathematically, as w — 0,

2

{VQ + w—z] - [V];
0

that is, the Helmholtz operator becomes the Laplace operator, and the

wave problem becomes a quasi-static potential problem in the extreme

case. Thus the validity of the high-frequency assumption appears to be a

necessary condition for successful imaging.

High-Frequency, Aperture-Limited Inversion

Owing to the high-frequency assumption, any result that can be expressed
as a series of quantities multiplied by inverse powers of w may be accurately
approximated by the leading-order term(s) of the series. Equation (3.3.12)
is a result with just this form, and the 2i/wot term is dropped in practice.
That is, we neglect a term of magnitude 2/wgt compared to unity. Note
that neglecting this term is justified by considering the consequences of
the Rayleigh criterion, (3.4.1), in the temporal-frequency domain instead
of the spatial-wavenumber domain. That is, for L the distance to the first
scatterer of interest, T = 2L/cy is the minimum traveltime for a nonzero
response to be recorded as part of Ug. Now, with 27f = w, (3.4.2) is seen
to take the form

A=wT. (3.4.5)

Thus, if a condition like the Rayleigh criterion is taken as the basis for
neglecting terms of lower order, neglecting this term in (3.3.12) is justi-
fied. This assumes that the data Ug are bandlimited and that the temporal
Fourier transform in (3.3.12) yields a function that does not cover the full
frequency domain with nonzero data. Further, it is necessary to acknowl-
edge that the spatial integral in (3.3.12) will be carried out over only a
finite domain. This is an added feature of the multidimensional solution
over the one-dimensional solution of the previous chapter. In analogy with
the early discussion, the result of processing this bandlimited and spatially
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aperture-limited data will be called ap(x), defined by

8¢3 ka .. o0 )
ap(z) = 20 / d*¢ / &’k w—ge%[ﬂ'“’*ﬁ)*km] / dt tUg (€&, t)e™o!,
b Q 0

o gm2 0
(3.4.6)
where, again, p = (x1,z2). Here X represents the total domain of recording
positions £ on the surface of the Earth; €2 represents the k-domain corre-
sponding to the bandlimited range of w and the requirement that ks be
real.

At this point, all we have is a formal integral whose relationship to the
true unknown a(z) is unclear. It is an aperture-limited and bandlimited
version of the operator that produces an exact solution to the integral equa-
tion (3.3.1), applicable when the data are not band- or aperture limited.
Our task in later sections will be to clarify the meaning of this equation.

3.4.1 Reflection from a Single Tilted Plane

Following the development of the previous chapter, we will test equation
(3.4.6) using the high-frequency representation of the waves that would be
scattered from a single plane reflector. Because the reflector need not be
horizontal, we will consider the general case of the response of an inclined
reflector (see Figure 3.2). The angle of inclination will be 6 (the dip) with
respect to a horizontal axis, which itself makes an azimuthal angle ¢ (the
direction of maximum dip) with the £; axis. The plane is assumed to be at
depth h at £ = 0. The source-receiver point is located at surface coordinates
(£1,&2), and the normal distance from this point to the reflector is {. For
such a reflector, the high-frequency temporal data will be

_ 08(t —2l/co)
US(€7t) =R 87Tl 3

where l=hcost — (& cos ¢ + &2 sin @) sin 6.

(3.4.7)

Here, R is the normal-incidence reflection coefficient, which is the same as
the one-dimensional, or plane-wave reflection coefficient,

FIGURE 3.2. A single tilted plane.
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_a—0C

ot
By 6p we mean a bandlimited delta function whose temporal Fourier trans-
form is F'(w) instead of unity. Clearly, this plane will intersect the upper
surface for some finite choice of & whenever § # 0. The domain ¥ in (3.4.6)
is assumed to not include such an intersection. Because our immediate
interest is in the leading-order contribution only, the effects of finite inte-
gration limits will be ignored here. Later, we will address this important
issue in the context of a more general problem.

We begin the computation in (3.4.6) by carrying out the integral with

respect to ¢ for the data in (3.4.7). The result is

[e%e} ) R .
/ t Us(§, t)ettdt = .— F(w)eiwol/eo, (3.4.8)
0

TCo

with wo(k) = cosgn (k3)\/k? + k3 + k2, as defined by (3.3.14). The integra-
tions in £&; and &3 will now be carried out. Note that these variables appear
only linearly in the phase. If the domain of integration were of infinite ex-
tent, the integrals would each be just delta functions with arguments equal
to the respective multipliers of £&; and &;. This result is correct to leading
order for high-frequency data. To this order of accuracy, we continue to
use an equal sign for the result of this computation, though we really mean
“asymptotic equality.” The result is

2 [e%e}
an(@) = 228 [ P PO el fa(k)jet b e/
it ) WA
(3.4.9)
where
fi(k) =2 [“’—(’c@ cos sin 6 + kl] . fa(k) =2 [-"ﬁlc(—’f) sin ¢sin 6 + kz | .
0 0

The Dirac delta functions can now be exploited to carry out two more
integrations. (See Appendix A for information about properties of delta
functions.) We choose to compute the integrals in k; and k2. There are
two ways to proceed. First, one could compute the integrals iteratively,
say, solving for k; as a function of (k3,k3) by setting fi = 0, and then
computing the integral in kjy, taking account of this new function of ks.
The second method is to simultaneously compute the double integral in
the two variables and use the result that

d(f1, f2)

5(/{;1 — klo)é(kQ - k?O) J =4 de)

6[f1(k))6[f2(k)] = 7] ’ A(ky, k2)

ki1=kio,k2=k2o
Here kg, koo is the simultaneous solution of the pair of equations f; = 0
and fo = 0. We leave it to the reader to verify that

kiop = —kscosptanf, kog = —kzsin¢tanb,

wo = cokssecd, J=4cos?6. (3.4.10)
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When these results are used in (3.4.9), that representation reduces to

. (m) _ E /oo %F(cOkB sec 9)6—-2z‘k3{(x1 cos ¢+x2 sin ¢) tan f+(x3—h)}
T J_oo tks
(3.4.11)
It will simplify our discussion below if we recast this result as an integral
in w = coks sec . The result is
aB(m) _ E /oo (.Z_wF(w)e—%w{(xl cos ¢+x2 sin @) sin 6+ (z3—h) cosG}/cO.
T Joo W
(3.4.12)
This result should be compared with (2.4.12), which was shown to repre-
sent a bandlimited step function with height —4R located at the position
representing the zero of the phase function. The same result obtained here
places the step at the right location, because the zero of the phase is the
location of the reflector of the model data, (3.4.7). Furthermore, —4R is
the “right” height of the step at that location, confirming the validity of

our inversion formula for this simple example.

3.4.2  The Reflectivity Function

The structure of the result (3.4.11) suggests that we can proceed, at least
for this simple example, to introduce a reflectivity function, exactly as in
one dimension, by multiplying the data by iw/2cy. (Again, remember that
w is restricted to wp, which are the frequencies for which k3 is real-valued.)
That is, starting from (3.4.6), introduce this factor to define 5(x) by

2 o ‘
ﬂ(:l:): 4—c20/d2§/d3kﬁe2i[n'(ﬂ—€)—k3$3]/ dt tUs(E,t)eWOt,
™ 3 Q wo 0
(3.4.13)

This equation is similar to Stolt’s [1978] Fourier-based migration formula,
although our method of derivation is quite different from that used by
Stolt.® Our approach relates the output to reflection coefficients, whereas
the stated goal of the migration approach is to propagate the ensemble
of zero-offset observations back to their locations at some initiation time,
under the assumption that the ensemble is, itself, a solution of the wave
equation with propagation speed c¢p/2. A detailed comparison of the Stolt
migration formula with equation (3.4.13) is left as an exercise.

For the specific example of a single reflector, the result of applying this
operator to the model data (3.4.7) is obtained by introducing the same
multiplier, iw/2co, in (3.4.12). That is, for the single reflector,

8See also Gardner [1985].
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ﬂ iL') _ _Ri_ OO dwF(w)e—Ziu{(ml cos¢+:52sind))sin9+(m3—h)cost9}/00.
TCy J—0o

(3.4.14)
From the analysis of Chapter 2, it follows that

B(x) = Rép {(z1 cos ¢ + z2sin @) sin b + (x5 — h) cos b} . (3.4.15)

The argument of the delta function measures distance normal to the planar
reflector. It should be noted that this is true independent of the inclination
of the reflector. (This bandlimited delta function of normal distance to a
surface will arise in a more general context later. It is sufficiently important
to have its own name. It is called the singular function of the surface. In
the next chapter, it will be more rigorously defined. See also Appendix A
for a discussion of the properties of singular functions.)

Usually, one would expect to obtain a normal derivative by multiplying
the Fourier data by ik -7t where 71 is a vector normal to the reflector. Here,
we obtained a normal derivative by multiplying by iw/cy for any choice of
normal direction. The question arises: Why should this work? The answer
lies in the results (3.4.10). First, note that in our definition of the Fourier
transform, k = (k1, k2, —k3), because the sign of the last Fourier variable
was opposite to the signs of the first two. From (3.4.10), note that the
action of the delta functions was to evaluate k at

k = —ks(cos¢ptanf,sinptan, 1)
= tksgsecOn (3.4.16)
= +kn,

with the choice of + being opposite to the sign of k3. That is, k- nn = +k,
so that multiplication by w/cy = —sgn (w)k is asymptotically equivalent
to multiplication by 4k - nn. The specific choice and the extra scaling in-
troduced in our definition of F(x) has resolved the ambiguity in sign here
to produce the desired result, that is, a bandlimited Dirac delta function
multiplied by the reflection coefficient, R. We will verify this result for a
more general reflector below. In the next chapter we will show this result
as a property of Fourier transforms. We will then be prepared to apply its
generalization in later chapters to inversion in heterogeneous media, where
the relationship between k and w is more complicated than it is for the
homogeneous background case considered here.

Exercises

3.5 In this exercise we will explore the properties of the singular function
of a dipping plane reflector in a somewhat simplified setting, by con-
sidering the 2D singular function of a line through the origin at an
arbitrary angle. Define the singular function of the line as
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flz,y) = 6(xcosd + ysing).

. Draw the support of this delta function in two dimensions and find
its Fourier transform, f(k). Verify that the support of the Fourier
transform is line whose direction is the normal to the support of
f(z,y).

. Suppose that we limit the bandwidth of the Fourier data by setting
the data values to zero in a strip, |k sin¢ — ka cos ¢| < [, for any
finite [. Find the bandlimited inversion.

. Define the dipping step function

g(z,y) = H(zcos¢ + ysin @).

Find its Fourier transform, g(k).
. Show that

—i(k-7)j(k) = f (k).

In this equation, 7 = (cos ¢, sin ¢) is the normal to the support of

f(@,y).

. Exploit the constraints imposed by the delta functions in § to
show that

—ik sgn (k2) (k) = f(k),

as long as ¢ > 0. The point of this last result is that we need
not know the normal direction in advance to process data for
g to produce the singular function of its line of discontinuity.
(The multiplier —ik sgn (k2) is independent of 7 or, equivalently,
independent of ¢).

3.4.8 Alternative Representations of the Reflectivity Function

There are two alternative representations of the solution (3.4.13), arising
from requiring w = wy(k), as defined by (3.3.14), as one of the variables of
integration instead of k3. Note, from that equation that

dw = cpsgn (kg)——‘ﬁ—————dkg, = cg%dkg, (3.4.17)

Vk? + k3 + k3

implying that

w
dk3 = —— dw. 4.1
3 C%k3 W (3 8)

Using equation (3.4.17) in (3.4.13) yields

4 . o0 ,
Bz) = — / d%¢ / d?k / dw e (P=€)=kazs] / dt tUg(€, t)e™t,

T p) Q 0
(3.4.19)
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FIGURE 3.3. The black line depicts a source-receiver array located on the axis
of a buried half-cylinder. The shaded strips are only two of the many possible
zones on the half-cylinder that could be represented by the data collected by the
array.

where p = (x1,22), & = (k1,k2), and d%k = dk; dks. Now, k3 is defined
by (3.3.13); Q is still the domain of real values of k within the bandwidth
of the data. This result allows an integration by parts in w to eliminate
the power of t appearing in the Fourier transform. That is, we integrate
the term exp {iwt} and differentiate the term exp {—2iksz3}. There are no
contributions from the endpoints of integration because the data have finite
bandwidth and are assumed to vanish smoothly. The result is

(&9
/ d*¢ / d’k / du ——2ilK-(p—&)—ksas] / dt Us(€, t)e™".
> Q ks 0
(3.4.20)

Applying equation (3.4.18) to this equation yields an inversion formula,

Blx) =

8£L‘3
3¢k

(e}
Bx) = Si; / d’¢ / d’k / dkge?Ir (p=8) ~kazs] / dt Us (&, t)e™”,
s b3} 0 0
(3.4.21)
that is free of explicit dependence on w.

On one hand, the explicit factor of ¢ seen in equation (3.4.19) is familiar
to the geophysicist, being a common gaining factor that is applied as a
preprocessing step, prior to migration, to correct for geometrical spreading.
On the other hand, there is an advantage of using equations of the form
of (3.4.20) or (3.4.21), which do not have the explicit factor of ¢. While
we expect seismic signals to have amplitude decay proportional to t~1,
consistent with the multiplicative factor of ¢ seen in (3.4.19), the noise seen
in real data need not decay at that rate. Consequently, inversion formulas
with the explicit factor of ¢ could possibly enhance noise at large observation
times. Equations (3.4.20) and (3.4.21) will not suffer from that problem.
Such considerations follow because the inversion of data consisting of signal
plus noise need not be a linear process.
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3.5 Two-and-One-Half Dimensions

Though computer technology has advanced to permit the processing of
areal surveys as single data sets, line-by-line processing of seismic data is
still widely used because of the cost benefits. Equation (3.4.13) cannot be
used to process a single line of data. In fact, a single line of data cannot
be used to reconstruct a 3D medium. Here is a simple example of why this
is the case. Consider a single line of sources and receivers lying at the axis
of a buried half-cylinder. If the “reflector” consisted of a single strip lying
on the surface of the cylinder, parallel to the data line, then the observed
data would be the same, no matter where the strip is located. It takes
observations from other data lines to distinguish one strip of the cylinder
from another. See Figure 3.3.

There are situations, however, where the gathering and/or processing
of a single line of data will suffice to produce an adequate inversion for
the interior medium. Suppose, for example, that in a given region, the
parameter variations were (nearly) two-dimensional such that the primary
variations in the subsurface parameters were in one lateral direction.

Let us designate that direction as the direction of mazimum dip, and the
orthogonal direction as the direction of strike, echoing the geologists’ terms
characterizing the orientation of a rock layer. It is reasonable to expect that
data gathered along the maximum dip direction of such a model will provide
enough information to invert for the profile.

Mathematically, we idealize the problem as follows. Assume that the
medium parameters vary only in one lateral direction, say x, and in depth
z. Let the survey be conducted along a line in the z-direction, at a particular
y value, say at y = 0. Our first objective, therefore, is to invert this one
line of data to produce an image of the subsurface. See Figure 3.4.

The reader should realize that this is not a two-dimensional inversion
problem. The medium is still three-dimensional; our sources are point
sources in three dimensions with all their three-dimensional propagation
characteristics. The 3D Helmholtz equation is still the governing equa-
tion for the problem. Only the nature of the medium parameters and our
fortuitous choice of the direction of the experimental line suggest a two-
dimensional problem. A fully two-dimensional problem would be equivalent
to using line sources in this three-dimensional world, with quite different
propagation characteristics. (In 2D, the incident wave has nonzero energy
propagating throughout the y = 0 plane for all time greater than zero,
and all spatial positions. This is in contrast to the 3D incident wave, which
passes through a given range from the source at a given time and is gone
after a time governed only by the duration of the source.)

We will refer to problems involving three-dimensional wave propa-
gation in media having only two-dimensional parameter variability as
two-and-one-half-dimensional problems. The key to solving the two-and-
one-half-dimensional inverse problem is to realize that there really is enough
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5

FIGURE 3.4. The black line depicts a source-receiver array located over a 2.5D
model. All raypaths are confined to the & = 0 plane.

information from a single line of data to solve the three-dimensional in-
verse problem, as long as the medium parameters really depend on only
two variables.

Given such a line of data, say at & = 0, we propose the following

Thought experiment: Consider the data for which the entire source-
receiver array for each experiment in the ensemble of experiments is
moved to any line &, different from zero, and

Claim: The data for the ensemble of experiments on the new line are
exactly the same as the data for the ensemble of experiments on the
line at &, = 0.

Note that the presentation here is not tied to the particular ensemble
of zero-offset experiments of interest in this chapter, but to any suite of
experiments carried out on a single line, as long as the assumptions about
the medium parameters and the direction of the experimental line are as
described above.

Application of our thought experiment implies that, from a single line
of data, we really have an areal survey of data for the two-and-one-half-
dimensional inverse problem. Furthermore, those data are independent of
&2, the surface coordinate in the strike direction. Now, in (3.4.13), for ex-
ample, the only dependence on &; in the inversion formula is in the known
kernel of the inversion operator. This is prototypical. Whenever a three-
dimensional inversion formula is derived, specialization to two-and-one-half
dimensions leads to an integral in which the £ dependence is in the in-
version operator, and not in the data. Therefore, the &5 integral in the
inversion formula can be computed analytically, at least to leading order,
by asymptotic means.

Exercises

3.6 In this exercise, we will explore the concept of the 2.5D geometry.
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a. Suppose that a seismic survey is to be carried out in a region
in which the subsurface is essentially cylindrical, that is, it varies
only with one lateral variable and with depth. Define a coordinate
system and design a suite of zero-offset experiments over the entire
surface, so that the observed data are represented by a function
of only one surface variable, and time.

b. Repeat for a suite of common-offset experiments. Call the half-
offset h; introduce surface coordinates, £ and &3, and write down
the coordinates of z; and x4 in terms of &;, &, and h. The exper-
imental design should be such that the data are a function of &,
independent of &;.

c. Repeat (b) for a suite of common-shot experiments in which the
receivers are restricted to lie along a line.

3.5.1 Zero-Offset, Two-and-One-Half Dimensional Inversion

Let us apply the idea of the previous section to (3.4.13). We will assume
that the zero-offset survey was gathered along a dip line at & = 0 and we
fill out the data needed in (3.4.13) by using the same data for every &,.
We can do this because the data are independent of ;. Now consider the
&, integral in (3.4.13). The result is a Dirac delta function with support at
ks = 0. More explicitly,

/ dére™ 2282 — 976(2ky) = w6 (ko). (3.5.1)
P

With this result, we can now proceed to carry out the ko integration by
simply evaluating the integrand in (3.4.13) at k2 = 0. In addition to the ex-
plicit k2 dependence, we must take care to evaluate wy, defined in (3.3.14),
at ko = 0. Note that a subsidiary result of this evaluation is that the re-
sulting inversion formula is independent of 5. Therefore, we might as well
disregard the second coordinate entirely in all further discussion, setting

k= (ki,ks), x=(z1,z3),

wo = cosgn (k3)y/k? + k2.

Using (3.5.1) in (3.4.13) yields the two-and-one-half-dimensional inversion
formula

42 | = 4
B(z) = 290 / de / 2158 itk (21 -8) ko / dt tUs(€, )60, (3.5.3)
= Q Wo 0

™

(3.5.2)

In this equation, we have set £; = £ and denoted the data as a function of
this scalar spatial variable.

We could try verifying this formula on data reflected from an inclined
plane; however, that calculation has already been carried out in the previous
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section. In particular, consider the data in (3.4.7) with ¢ = 0. For such data,
&5 = 0 defines the plane of maximal dip. Furthermore, the fourfold integral
in € and k, carried out in that discussion, includes exactly the integral in
&5 and ko carried out here. Thus, it follows that the result of applying the
inversion formula above to the data (3.4.7) with ¢ = 0 is the result (3.4.15)
with ¢ = 0, which is the desired output.

The same computations as those that led to the results (3.4.19) and
(3.4.20) can be carried out for this two-and-one-half dimensional inversion
result. We state, with no further discussion, the alternative representations,

B(x) = glr_/dé‘/dkl/dwe%[kl(ml—ﬁ)—k:e,xs]/ dt tUS(g’t)eiwt’ (3.5.4)
2 Q

0

,8(27) 8Z3/d£/dk1/dw_e2z[k1(r1 &)- ksxs]/ dt Us(g’t)eiwt‘

ncE

(3.5.5)
Finally, applying equation (3.4.18) we can arrive at a result that does not
explicitly depend on w,

o0
B(zx) = %/dﬁ/ dkl/dk362i[k1(ac1—£)—-k3x3]/ dt Us(f,t)eiwt.
3 Q 0
(3.5.6)

Exercises
3.7 The purpose of this exercise is to compare Stolt’s [1978] 3D migration
formula and the 3D inversion formula for 3(x), (3.4.19). The relevant

equations in Stolt’s paper are as follows. The data are written as
¥(X,Y,0,t), with Fourier transform

1
= [dx [ady
AP0 0) = s [ ax |
- /dt W(X,Y,0,t) exp {—i[PX + QY — wi]}.
The output of Stolt’s method is defined by
WXV, 2,0) = o / / dQ
: /d@ B(P,Q,&) exp {i[PX' +QY - 2@2/0]} .

In this equation,
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1
V1+[P?+ Q?|c? /402
A [P,Q,J)\/l TP Q2]c2/4a)2,0] .

B(P,Q,w) =

Earlier, Stolt defines
A(P,Q,w,Z) = A(P,Q,w,0) exp [—iz\/4w2/02 Y QQ] i

Stolt does not distinguish between input and output variables. Here,
tildes have been introduced over the output variables. (In particular,
note that there is now an @, as well as an w. Make a table identifying
Stolt’s variables with the variables of the inversion formula (3.4.19)

for B(z).

3.6 Kirchhoff Inversion

The inversion formulas of the previous section, obtained by Fourier trans-
form methods, were seen to be almost identical (within a scale factor) to
Stolt’s zero-offset migration formulas (see Stolt [1978]). In this section,
we apply the method of stationary phase to the k integrals to obtain
formulas in which the processing of the data will consist of a temporal
transform, (followed possibly by the application of filter), followed by an
inverse (frequency to time) transform, and followed finally by an integration
over source-receiver points.

This result will be seen to agree with Schneider’s Kirchhoff zero-offset
migration formula to within a scale factor (see [Schneider 1978]).” The
names—Kirchhoff migration, Kirchhoff inversion—are a consequence of
the resemblance of these processes to the Kirchhoff integral representa-
tion of solutions to the forward problem. Indeed, Schneider started from
that representation to obtain his result. The derivation here establishes
the analytical equivalence of the Fourier and Kirchhoff methods of migra-
tion/inversion to leading order, asymptotically, for high-frequency data. Of
course, in practice, each has its own numerical artifacts. These are discussed
extensively in the literature.

3.6.1 Stationary Phase Computations

The high-frequency criterion—(3.4.2) and (3.4.3)—allows us to make
asymptotic approximations in the integral inversion formulas (3.4.13),
(3.4.19), (3.4.20) and (3.5.3), (3.5.4), (3.5.5) to recast them in other useful
forms. This is by no means apparent, because the criterion is expressed in

"See also Gardner [1985].
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terms of a dimensionless parameter, and the integrals in the above set of
equations are written in dimensional variables, with that parameter not in
evidence.

In Appendix C, we show how to convert formulas of the type listed above
into formulas with dimensionless variables. In this way we can see that
the method of stationary phase can be applied to any of these integrals.
The formal calculations of the method of stationary phase can actually
be carried out either in the dimensional or the dimensionless variables,
however, when doing the former, one must remember that the justification
is based on the fact that an appropriate representation in dimensionless
variables can be achieved.

The Multi-dimensional Stationary Phase Formula

The method of stationary phase provides a means of approximating
integrals of the form

I(A)z/f('r])eim(”)d"n. (3.6.1)

It is assumed here that the parameter A is “large.” In fact, although the
mathematical formalism is a statement of the leading-order approximation
of the integral as |A\| — oo; in practice, we apply the method for finite
values of A that large enough, in a sense to be described more fully below,
for the leading term provided by the method of stationary phase to give
adequate numerical accuracy.

!defined The method predicts that the value of the integral is dominated
by the value of the integrand in the neighborhood of certain critical points
called stationary points, provided such points exist. At a stationary point,
say 1, all of the first derivatives of the phase function ® must be zero
(hence the name, stationary phase):

V®(n)=0 at n=mne. (3.6.2)

If there is one such point in the domain of integration, then the method
predicts that the integral (3.6.1) is well approximated as follows:

I\ = /f(n)eiw(n)dnn ~ [2—75 "2 f(mg)er () Hin/4sen (M) sig (1))
|)\| \/ldetq)iﬂ ’

2
where  ®;; = [M] . (3.6.3)
On;On;
The matrix ®;;, is the matrix of second derivatives or Hessian matrix of the
phase ®. The term, sig (®;;) denotes the signature of the matrix ®;;, which
is the number of positive eigenvalues minus the number of negative eigen-
values of the matrix. The symbol ~ should be read as “is asymptotically
equal to.” The reader should understand that there is a precise mathemat-
ical definition to this type of approximation. It states that the difference
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between I()\) and the given approximation vanishes “faster than” 1/|)|™/?
as |A| — oo; that is,

|)\|n/2

— 0,
1/ | det (Dij|

as |\ — oo.

27(} n/2 f(no)eiké(no)+i7r/4sgn (A) sig (@i5)

I\ — {m

See Bleistein [1984] or Bleistein and Handelsman [1986] for further dis-
cussion. If there are more stationary points, then the leading-order
approximation is a sum of such contributions over all of the stationary
points. If there are no stationary points, then the integral approximation
involves a higher negative power of A and the value of the integral is smaller,
at least for A large enough (more precisely, in the limit as |A| — 00). The
result also assumes that the matrix ®;; is nonsingular, that is, that all of
its eigenvalues are nonzero. When the matrix ®;; is singular, one or more of
the eigenvalues is zero and the above formula is no longer valid, the power
of 1/X is smaller and the value of the integral is larger. Both the case of
integrals with no interior stationary points and the case of vanishing eigen-
values can be dealt with by the theory that produces the result stated here;
see Bleistein [1984] or Bleistein and Handelsman [1986] for further details.

The One-Dimensional Stationary Phase Formula

The case of one-dimensional integrals arises often enough that it is
worthwhile to list its formula separately. That result is

I\ = / f(m)e?*Mdn (3.6.4)

2m ; in/ds Z
~ f(ng)e?®(mo)tim/4sgn (A) sgn (27 (no))
Al (o))

In these formulas, the integrands can depend on other parameters that
are allowed to vary over some range for which the matrix ®;; or the second
derivative ®”(7,) is bounded away from zero. Such a situation arises most
naturally in a multifold integral in which the method of stationary phase is
applied only to some of the integrals and not to others. Also, it is natural
for the integral I(\) to be a function of position, a function of time, or a
function of position and time. The former case will arise in our inversion
integrals as well as in forward modeling problems, while the latter case
arises in forward modeling problems.

While the theoretical convergence as |A\| — o0, mentioned above, is
reassuring, we are concerned about the practical application of these ap-
proximations for some finite value of A. Then, the question of how large is
“large enough” becomes an issue.
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Accuracy of 1D Stationary Phase

Let us begin this discussion by considering the one-dimensional integral
(3.6.4). There are two relevant issues here. First, further analysis of this
approximation reveals that subsequent terms contain increasing integer
powers of |A]|®”(no)| in the denominator, so that this is the “true” large
parameter in this asymptotic expansion. Second, these subsequent terms
involve higher derivatives of both ®(7) (beyond the second) and f(n) (from
the first derivative onward). Thus, for any fixed finite choice of A, we
would want that the correction terms—at the very least, the first correc-
tion term—really be smaller than the term that is retained.® For this to be
true, we would want that the derivatives of f and ® not grow significantly
with increasing order and that |A||®”(ng)| be “large” enough. Assuming the
former, what we have earlier proposed on empirical grounds for the latter
is

X9 (10)] > . (3.6.5)

In our applications, A is proportional to frequency, w or f, for which
there is a whole range of values involved—the bandwidth of the signal
that arrives at the receivers. If this asymptotic criterion fails only for some
frequencies, then, to a degree, the failure of the asymptotic expansion is
“mild.” As progressively more frequencies fall below the threshold indicated
here, the amplitude will tend to degrade before the phase does. In our
applications, phase is related to position, while amplitude is related to
parameter estimation. Thus, with such partial failure of our asymptotic
criterion, a reasonably accurate image will be produced, but parameter
estimation should be viewed as suspect.

If the criterion in (3.6.5) fails, we can think of |®”(n9)| as being “small” at
the stationary point. In this case, ®”(ny) might be equal to zero for some
nearby value of n and the integrand is likely to have another stationary
point too near 7y for asymptotic expansions based on isolated stationary
points to be valid. There are other ways that the asymptotic expansion
(3.6.4) might fail that are not indicated by the size of the second derivative,
however. The method depends on all types of critical points being isolated.
In particular, these include endpoints of integration or points where f or
® or one of its derivatives is discontinuous, or singular in some manner.
As an example, let us consider the case of an isolated endpoint, say, 7,
where the integrand is “well behaved” and f is nonzero. Then, the leading
order asymptotic expansion of the contribution from this point, treated in
isolation, begins with the power 1/iA®’(n;). If ng is “near” 7;, then the
denominator here will fail to satisfy a criterion similar to (3.6.5), say

8See the last part of Appendix C for further discussion of this issue. The issue
is how we scale the dimensional variables to obtain this dimensionless form of the
phase and its derivatives.
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A" ()| > .

The situation is actually a little more severe than that, however. If the
asymptotic expansion of the entire integral is to be given by this one sta-
tionary phase contribution, (3.6.4), then we would want this endpoint term
to be small compared to the stationary point contribution. Thus, for in-
teraction between a stationary point and a “regular” endpoint, we need to
impose the requirement

L1 e
M(nn SN L] oy o 389

We will not bother to test this ratio in applications. The reader should be
aware that the leading-order asymptotic expansion obtained by the method
of stationary phase will break down when the stationary point is too near
the endpoint of integration, however. In our analysis, we will apply the
method of stationary phase to the source-receiver coordinates, in particular,
for given values of the output point, . For some range of output points,
the stationary point may well be near an endpoint of integration. While the
traveltime at stationarity will be correct, the amplitude will not. That is,
our processing will recover an image, perhaps obscured somewhat by the
endpoint contribution, but the amplitude will be unreliable for parameter
estimation.

Accuracy of Multidimensional Stationary Phase

For the multidimensional case, the criterion for numerical accuracy of an
asymptotic expansion derived by the method of stationary phase becomes
a little more complicated. A result similar to this last one arises for each of
the iterated integrals in this case, but only after the independent variables
are transformed to the principal directions defined by the eigenvectors of
the matrix ®;;. Then, the eigenvalues play the same role as the second
derivative of the one-dimensional case. That is, if we define A;, j =1,...,n,
to be the eigenvalues of ®;;, then we find that there are really n correction
terms at the next level of accuracy and each of those has to be appropriately
small. Equivalent to (3.6.5), in this case, we must require that

min(|A[|\;]) > . (3.6.7)
j

When we deal with problems in dimensional variables, the parameter A
will not appear explicitly. In these cases, we apply the above formulas with
A = 1—or some other constant multiplier that naturally arises in the phase
of an integral—and the symbolic variables, 77, being one or more of the
dimensional variables of the problem. Always, one will find in the result
that the neglected terms will involve a dimensionless large parameter, such
as the product wyt/2 in equation (3.3.12), that justified neglecting this term
compared to unity in deriving equation (3.4.6).
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Applying Multidimensional Stationary Phase to Equations (3.4.19) and
(3.4.20)

Indeed, this is exactly the case for the integrals appearing in the inversion
formulas (3.4.13), (3.4.19), (3.4.20) and (3.5.3), (3.5.4), (3.5.5). With this
point of view, we consider the phase function in (3.4.19) and (3.4.20), and
introduce the phase function

b=k (p — £) — k3.’L’3, (368)

where p = (21,22), & = (k1,k2), & = (£1,&2), and kf = w?/cf — &%
We evaluate the integrals in x by the method the stationary phase . For
future reference, note that with this definition, the formal large parameter
in (3.4.19) and (3.4.20) is just 2. In this application all variables other than
ki and ko, are treated as parameters. Thus we will apply formula (3.6.3)
with n = 2, and 7; and 7 replaced by k; and k,.

To apply the method of stationary phase, we need the first and second
derivatives of the phase function (3.6.8):

0o k;
=&y — G4 743, )= 15 2)
o z; =&+ s x3, @
5% (51‘3' kzkj
= _ s ., | = 1,2 369
Ok:0k; {kg P (3.6.9)
L, 1=},
where 51'3‘ = . .,
0, ©#7.
The stationary points are the solutions of the equations
0% k;
=x;— &+ —xz3=0. 3.6.10
ok, = " &+ ey 78 0 ( )
Recognizing that
ks = |klis = =23 where  r=4/p?+12,
Co T
we may solve for k; in equation (3.6.10):
fy = YT implying that & = ——_. (3.6.11)
Co T Co

The last equation is the result of evaluating ® as defined in (3.6.8), using
the derived solution for k at the stationary point.

The method of stationary phase also requires the value of the determinant
and signature of the matrix of second derivatives at the stationary point.
The determinant is fairly straightforward to compute from (3.6.9). The
result is

(3.6.12)

det[ 0% ]_m%uﬂ ot d

Okidk; |~ ki T 22w?’
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with the last result obtained by using the stationary value of k3 determined
by (3.6.11). This determinant is positive. Therefore, the eigenvalues of the
matrix are of the same sign. This is true for any choice of k. Therefore, to
check the sign of the eigenvalues (to determine the signature of the matrix),
we might as well check when & = 0. In this case,

9%® _ 1/k3 0
Ok;Ok; |

0 1/ks
For this diagonal matrix, the eigenvalues are each 1/k3 and hence have the
same sign as w. Therefore, we may write

0?®
g [akiakj} = 2sgn (w). (3.6.13)

It is possible in this simple two-by-two case, to determine the explicit eigen-
values and simply read off their signs. The indirect method presented here
has wider application and will prove useful later in determining signatures
of larger matrices, however.

We now have the necessary components to compute the leading-order
asymptotic expansion in (3.4.19) and (3.4.20) by the method of stationary
phase. By applying the formula (3.6.3) to the present example, with n =
2, A = 2, and using (3.6.9) in (3.6.3) to evaluate (3.4.19), we obtain the
result

B(x) = dzg [ € [ gy e2iorfeo / dt tUs(€,t)e™*.  (3.6.14)

mco Jn 2 Q

In a similar fashion, we obtain the following result for (3.4.20):

B(z) = 8153/ f/zw dw e—2zwr/€o/ dt Us(&,t)e iwt, (3.6.15)

7TCO

In this last result, the temporal integral is just the Fourier transform of the
data. Therefore, we can also write

ﬂ(:c) _ 813/ g/zw dw us(£ w) —2zwr/(:g (3616)

’/T(O

In each of the results here, the output is obtained as an integral (a sum)
over all source-receiver locations. The integrand (summand) is frequency-
filtered data evaluated at the two-way traveltime 2r/cq, and then spatially
filtered or weighted, as well. It is left as an exercise to show that the last
result is the same as Schneider’s [1978] Kirchhoff migration formula, to
within a constant scaling factor.

Applying Multidimensional Stationary Phase to Equation (3.4.13)

To complete the discussion of modifying the three-dimensional inversion
formulas, we should compute the asymptotic expansion in (3.4.13). In that
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formula, k plays the role of w in the above analysis, and the asymptotic
expansion should be carried out with respect to the polar angles of k.
When this is done, the results obtained are exactly (3.6.9) and (3.6.14).
Some extra care is necessary in this calculation because wp, as defined by
(3.3.14), is a function of the polar angle in the k-domain, in the fairly trivial
way that the sign changes in the upper and lower half k-spaces.

Accuracy

Let us now consider the implications of the criterion (3.6.7) in terms of

these dimensional variables. To do so, we introduce dimensionless variables
7 through the equation

w

K=—

c

n

and rewrite the phase in (3.4.19) as

w_r[n (p—¢) ﬂ}

C

3
T T

Blk) = -2

Here, we cannot neglect the factor of —2 in the original phase; hence, we
use a new variable name, ¢, for the phase function. In addition,

r=(-& (p-&+12} and ns=1/1-n?—n}.

The dimensional phase has now been rewritten in dimensionless variables
as

¢(k) = ¢(n/L) = A2(n), (3.6.17)
with

and ® now used as the “generic” phase in (3.6.1).
Now, differentiate in (3.6.17) to obtain
00(m) _ 1 (ko)
87]1'87’]]' L2 Bkzak] '
From this last equation, we conclude that if A; is an eigenvalue of the matrix

®;; (in dimensionless variables) and v; is an eigenvalue of the matrix ¢;;
(in dimensional variables), then

M =L%;, j=12

Therefore, we can rewrite (3.6.7) as

min(L2|y;|) > 7. (3.6.18)
J

We leave it as an exercise to show that, for ¢;;, the eigenvalues are given
by
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2re 2re r?
Vp=———, V=-—-3,
w w 73

with the first one having the smaller absolute value. Thus, after multi-
plying by L~2, we conclude that the asymptotic expansion will provide a
sufficiently accurate result when
2|wlr “ ar|f|r
c  c

> .

We see here that the criterion for validity is exactly the condition, (3.4.3),
with the length scale of that equation just being the distance between a
source-receiver point on the upper surface and the output point of the
inversion formalism at depth. Of course, we would want this criterion to
hold as the source-receiver point ranges over the entire upper surface, hence
for minimum of r. Thus, we revise the criterion to be

2|w|zs _ 4r|f|z3 _

c c

The implication of this result is that this transformation from a Stolt-like
inversion to a Kirchhoff-like inversion is only valid when the data acqui-
sition surface is as far away from the output points as defined by our
high frequency asymptotics criterion or, equivalently, by the Rayleigh cri-
terion. In deleting a term of order 1/wyt, earlier, we have already restricted
our results to such a domain. This adds no new constraint to our analy-
sis; the Kirchhoff inversions here are valid under the same high-frequency
constraint as the earlier Stolt inversion.

Exercises

3.8 The purpose of this exercise is to compare equation (3.6.16) with

Schneider’s [1978] Kirchhoff migration formula,

10 ... U(z,4,0,R/C)

U(:c,y,z,O)———ZF& /dmdy—-—ﬁ—-————

This is the 3D migration formula presented in Schneider [1978], p. 53,

Figure 4. Here, the notation has been changed to distinguish the input
variables (Z,§, Z) from the output variables (x,y, z). Also

R=\-2P+ (-9 + 2

a. Show that multiplying by the factor —2iwzs/rcy on the right
side of equation (3.6.16) is asymptotically equivalent to taking
the derivative with respect to x3. Rewrite equation (3.6.16) in
Schneider’s form by using this fact.

b. Recognize that this new form of equation (3.6.16) contains an im-
plicit correction for geometric spreading that may be represented
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by a multiplication by 27 /cp. Remove this correction factor to per-
mit a direct comparison with Schneider’s formula. The formulas
should differ by a factor of 8.

c. Verify (3.6.1).

3.6.2  Two-and-One-Half-Dimensional Kirchhoff Inversion

The objective here is to obtain analogous asymptotic expansions for the
two-and-one-half-dimensional inversion formulas (3.5.4) and (3.5.5). There
are two ways to proceed. First, we could carry out the one-dimensional
stationary phase computation for the k; integrals in those equations. Sec-
ond, we could apply the method of stationary phase to the & integrals in
(3.6.14), (3.6.15), (3.6.16), above, under the assumption that the data are
independent of &;. The latter method presents another example of the ap-
plication of stationary phase; the former method is exactly like the results
carried out above and we leave it to the exercises.

For any of the integrals (3.6.14), (3.6.15), (3.6.16), the phase to be
considered is

=r, (3.6.19)

with formal large parameter —2w/cg. The first derivative of this phase
function with respect to &; is
0 _ fz — T2
8&2 r ’
which is stationary when £ = 3. That is, in the two-and-one-half-
dimensional survey, the dominant contribution occurs in the vertical plane
passing through the survey line. The stationary phase calculation, then,
will effectively carry out the delta function computation that led to the
exact result when we passed from three dimensions to two-and-one-half
dimensions in Section 3.5.
At the one and only stationary point,
o*® 1
— =, = 3. 3.6.21
52 " §2 =2 ( )
We apply (3.6.3) to (3.4.19), now with n = 1, using the results calculated
above, to obtain

4333 ] -2 T U 6.
iwr/co+im/4sgn (w)/ dtt t)e* ¢
\/710 / 7-3/2/ | |€ 0 S(S, ) ’

(3.6.20)

(3.6.22)
where 1 =/(z1 — €)%+ 22

In this equation and the results immediately below, & = (z1,23) = (z, 2).
Also, we have combined factors of sgn (w) as follows:
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im/2sgn (w)’ —im/4sgn (w) in/4sgn (w)

isgn(w)=e isgn(w)e

Note here that multiplication by /|w|exp{—i7/4sgn (w)} is equivalent
to taking the half-derivative in the time domain, while multiplication by
isgn (w) is equivalent to taking the Hilbert transform in the time domain.
(See Appendix A for a discussion of the Hilbert transform.) Thus, the filter
that we are applying in (3.6.22) and below is equivalent to applying the
Hilbert transform to the half-derivative in the time domain.

The same analysis applied to (3.6.15) yields the result

83 / —2iwr/co+im/4sgn (w)
fla) = €o\/TCo /rl/Q/dw wle

=e€

: / h dt Us(€,t)e™t. (3.6.23)
0

As in the previous subsection, this last result can be rewritten in terms of
ug(€,w) as follows.

8:1:3 / —2.WT 1T sgn (w
Ble) = co\/ﬂ—cv/ r1/2/dw B

In each of these formulas, the reflectivity is computed as an integral
(sum) over source-receiver points of spatially weighted and frequency-
filtered data. In each case, the frequency-domain processing is computed
only once, for any choice of background propagation speed. For each term
in the integral (sum) the processed data are retrieved at a traveltime, 2r/cy,
so that only the spatial integral(s) need be recomputed when ¢y is modified.

Exercises

3.9 Apply one-dimensional stationary phase in k; to the integrals (3.5.4)
and (3.5.5), to obtain the two-and-one-half-dimensional inverse
scattering formulas (3.6.22) and (3.6.23).

3.10 Introduce polar coordinates in (3.5.3), for both the two-dimensional
wavevector and the position vector. Apply the method of station-
ary phase to the integral in the polar angle of k. Confirm that the
asymptotic expansion agrees with the results (3.6.22) or (3.6.23).

3.11 Introduce polar coordinates for the wavevector and the spatial vector
in (3.4.13) and carry out stationary phase in the polar angles of k to
obtain a result equivalent to (3.4.19) or (3.4.20).

3.121n (3.3.1), apply the transverse Fourier transform, defined in (3.3.4),
directly to this equation. Determine the transverse transform of the
function exp {2iwr/co} /[47r?] by multidimensional stationary phase,
and obtain the result
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