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Abstract—This paper studies a novel decomposition technique,
suitable for blind separation of linear mixtures of signals com-
prising finite-length symbols. The observed symbols are first
modeled as channel responses in a multiple-input–multiple-output
(MIMO) model, while the channel inputs are conceptually con-
sidered sparse positive pulse trains carrying the information
about the symbol arising times. Our decomposition approach
compensates channel responses and aims at reconstructing the
input pulse trains directly. The algorithm is derived first for the
overdetermined noiseless MIMO case. A generalized scheme is
then provided for the underdetermined mixtures in noisy envi-
ronments. Although blind, the proposed technique approaches
Bayesian optimal linear minimum mean square error estimator
and is, hence, significantly noise resistant. The results of simula-
tion tests prove it can be applied to considerably underdetermined
convolutive mixtures and even to the mixtures of moderately
correlated input pulse trains, with their cross-correlation up to
10% of its maximum possible value.

Index Terms—Blind source separation (BSS), convolution,
convolution kernel compensation (CKC), multiple-input–mul-
tiple-output–(MIMO) systems, sparse signals.

I. INTRODUCTION

BLIND source separation (BSS) is becoming an increas-
ingly important tool. Over the last decade, it has been

successfully applied to the areas of radar, audio processing,
telecommunications, separation of seismic signals, image pro-
cessing, and to the analysis of biomedical data [1, pp. 391–448].

Recently, separation of sparse time series has gained a lot of
attention [2], [3]. Assuming the source signals have a sparse
representation on a given basis, the proposed methods utilize
maximum likelihood (ML) estimators in order to iteratively
learn both the mixing matrix and the source signals out of
the observed data. They provide reasonably good results, also
for the underdetermined mixtures. However, by artificially
dividing signals into short blocks and by employing the basis
functions of popular coding transformations (such as discrete
cosine transform or wavelet transform) they completely ignore
the time localizations of the underlying signal structures.
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A more general single-channel generative model, in which
the signal is described as a linear combination of shift-invariant
basis functions was proposed by Lewicki and Sejnowski [4]
and Olshausen [5]. Their methods inherently capture the best
temporal positions of the predefined basis functions and pre-
serve the information about the temporal structure of the sig-
nals. However, they focus on predefined basis functions only.
The idea of shift-invariant basis functions was further extended
by Blumenshath et al. [6], Wersing et al. [7], and Jost et al. [8],
who proposed an iterative learning of fundamental signal struc-
tures considered as signal-specific basis functions. But they con-
strained their search to the set of uncorrelated basis functions.

In this paper, a different approach to sparse identification of
shift-invariant signal components is presented as we address the
multichannel linear mixtures of finite-length symbols (corre-
lated or not). As explained in the next section, such observa-
tions can always be modeled as convolutive mixtures of sparse
pulse trains, which carry information about the arising times
of the detected symbols, and the symbols themselves. Instead
of directly estimating the symbols, i.e., convolution kernels, we
rather focus on the properties of triggering sparse trains. More
precisely, we combine their spatial and temporal statistics with
the information about their overlapping probability in order to
blindly reconstruct their pulse sequences. The shapes of the ob-
served symbols are lost during the decomposition, but can al-
ways be recovered by a phase-locked averaging of observations
[9]. Throughout this manuscript, we do not assume any prior
probability density function of the modeled pulse trains. We do,
however, assume these pulse trains (at most) weakly correlated
and sufficiently sparse, so that the subsequent repetitions of the
same symbol are unlikely to overlap.

The assumed decomposition background is not completely
new. The derived estimator shares almost identical functional
form with the computationally attractive linear minimum mean
square error (LMMSE) estimator, which is Bayesian optimal for
linear mixing systems [10, pp. 379–418]. However, the LMMSE
estimator supposes the first two moments of the source signals,
i.e., their mean and their cross-correlation with the observa-
tions, are known in advance. A supervised way to overcome
this problem was already proposed for interference suppres-
sion in the direct sequence (DS) code division multiple access
(CDMA) receivers [11]. It starts by a transmission of predefined
sequences of test signals that comprise known source symbols.
These test signals are then used on the receiver side to determine
the requested source statistics. Also more sophisticated estima-
tion techniques were developed, such as the ML estimator de-
scribed in [12, pp. 233–257]. But the ML approach suffers from
high computational load and requires at least partial knowledge
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of the mixing matrix [11]. Our approach upgrades the afore-
mentioned decomposition techniques by iteratively improving
the unknown source filter.

The paper is organized in six sections. In Section II, the as-
sumed convolutive data model is derived in the form required by
our decomposition approach, which is revealed in Sections III
and IV. Section V presents numerical results obtained by the
decomposition of synthetic mixtures, while a preliminary ap-
plication of this method to the real surface electromyograms
and electrocardiograms have been described in [13] and [14],
respectively. Section VI concludes the paper.

Throughout this paper, boldface uppercase letters denote ma-
trices, boldface lowercase letters denote vectors, while italics
denote scalars. Discrete time series are denoted by the sub-
scripted boldface lowercase letters, e.g.,

, where denotes a single (the th) sample. The
vector of samples taken from time series at the th time in-
stant is denoted by . The super-
script stands for transpose, while and denote the ma-
trix inverse and Moore-Penrose pseudoinverse, respectively.

II. DATA MODEL AND DECOMPOSITION BACKGROUND

Assume different discrete-time observations
; given, each comprising

mixtures of up to different samples long symbols

(1)

where stands for the th
symbol, as appearing in the th observation,

with is the pulse train
whose pulse at time indicates the th repetition of the th
symbol, and stands for the Dirac impulse. We additionally
assume, the subsequent repetitions of the symbol are at least few
samples apart, while , where

is mathematical expectation. When noisy observations are
considered, (1) extends to

(2)

where the additive noise is com-
monly modeled as a stationary, temporally and spatially white
zero-mean Gaussian random process.

The aforementioned multiple-input–multiple-output (MIMO)
data model corresponds to many real world situations and can
be applied whenever the observations can be individually in-
terpreted as linear mixtures of separate signal components. A
large area of application, which has been under intense investi-
gation, is most certainly the field of biomedical signals. In the

case of electromyograms, for instance, each symbol corre-
sponds to an action potential of the th motor unit as detected by
the th uptake electrode [15]. Similar interpretation can be found
in the case of electrocardiogram, electroneurogram, and even in
the case of electroencephalogram [16]. Another very popular
field of application are digital communication systems. For in-
stance, when employing DS-CDMA coding technique, the sym-
bols correspond to transmitted information bits modified by
the users’ spreading codes and by the transfer channel responses
[12, pp. 849–861]. Further applications include speech recogni-
tion, audio separation, stereo image processing, etc.

A. Extension to the Matrix Form

The convolutive relationship described in (1) can always be
expressed in the matrix form [17]. First, the vector of sam-
ples related to the th time instant in observations

is extended by delayed repetitions
of each observation to comprise blocks of samples for each
observation

(3)

Extending the noise vector in the
same way, (1) evolves to

(4)

where the vector

(5)

is an extended form of vector ,
which contains a block of consecutive samples
of each , and stands for the mixing
matrix

...
. . .

... (6)

which contains the detected symbols enclosed in
convolution kernels, shown in (7) at the bottom of the

page. In the sequel, the th element of vector will be de-
noted by , while the sequence
will be referred to as the th extended pulse train.

Assuming the detected symbols are generated in random time
instants, the pulse trains can be modeled as uncorrelated random
pulse sequences. Moreover, when sampling frequency is high

...
. . .

. . .
. . .

. . .
(7)
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enough (with respect to the symbol rate), the pulse trains be-
come highly sparse. The decomposition approach described in
this paper builds on these assumptions. In particular, the infor-
mation contained in the mixing matrix is ignored as we try
to compensate the convolution kernels and focus strictly on
the properties of the pulse trains .

To make it more comprehensible, the description of the
proposed convolution kernel compensation (CKC) approach is
divided into two sections. Section III reveals the decomposition
under ideal circumstances, i.e., when the assumed MIMO
system is overdetermined and noise-free. The underdetermined
case and the influence of noise are then discussed in Section IV.

III. CONVOLUTION KERNEL COMPENSATION IN A NOISE-FREE

OVERDETERMINED CASE

Suppose the number of symbols is smaller than the number
of observations , and that the extended pulse trains are
weakly correlated, i.e., they have small, but significant number
of overlapping pulses. In addition, assume the observations
are ergodic and denote by the correlation
matrix of extended observations. Finally, suppose the extension
factor is large enough to guarantee ,
while thematrix isof full columnrank.Then,bycalculating the
square of Mahalanobis distance for vector , the convolution
kernels are compensated yielding a so-called activity index

(8)

where stands for correlation matrix of . The activity
index can be thought of as an in-
dicator of global pulse train activity. Being always positive, it
differs from zero only at those time instants where at least
one extended pulse train is active, i.e., ;

.
Suppose there are trains active in the observed

time instant and denote them by the set of indices
, i.e., . By using a

premultiplying vector instead of in (8), we obtain
the following linear combination of extended pulse trains:

(9)

where stands for the th element of matrix .
Now, assume the correlation matrix is diagonally dom-

inant. As proven in Appendix A, its inverse has a superior
diagonal, while all the off-diagonal elements are much smaller
than the diagonal ones. This implies the pulse sequence

has strong contributions only from
the pulse trains that are contained in , while the contributions
from all other trains are much smaller in amplitude. As a result

(10)

According to (10), the entire train can be reconstructed,
providing we have found a time instant with a contribution
from that train only. However, finding such a time instant is
not a trivial task. Moreover, the probability of finding nonover-
lapped pulses decreases with the number of extended pulse
trains . Hence, more formal procedure for
separation of superimposed trains (10) is needed.

A. Separation of Superimposed Pulse Trains

Suppose all possible overlaps of pulses from the th and
the th extended pulse train are independent, equally prob-
able random events and denote their probability by

. Define and
note that is, at least in the case of weakly correlated pulse
trains, relatively close to zero . Use (10) to recon-
struct the pulse sequence ,
randomly select a pulse in it and denote by the time of
its occurrence. Now, compute and denote by

the set of indices of all pulse trains with
pulses at , i.e., . Because the
instant was chosen according to , there is at least one
train active in both instants and , i.e., ;

. Generate a sequence of element-wise products
, randomly select

pulses in it and denote by ; their
arising times. For each ; there are two
complementary explanations.

Assumption 1: At least in one train from , a pulse
appears at .

Assumption 2: There is no train in with a pulse at
, but at least two different trains have pulses at . The first is

contained in set difference , the second in .
For each instant ; generate a new se-

quences , denote by the set of
pulse trains active in , and observe the number of pulses in
element-wise product

(11)

The probability that trains are active in all selected time
instants can be estimated as

(12)

where denotes the cardinal number of . For the
sake of simplicity, let and assume that the time instant
fulfils Assumption 1, while fulfils Assumption 2. Then the in-
tersection containsat leastonepulse train,while
Assumption 2 guarantees that is an empty set.
Usinginequality(12),wequicklyrealize theprobabilityofhaving
more than two pulse trains in any intersection ;
becomes negligible when . For the same reason, the inter-
sections and are,with high
probability, empty sets. As a result, the total number of pulses
in the product (11) can be estimated as (Appendix B, Case 1)

(13)
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where, for the sake of simplicity, we assumed the total number
of pulses for all pulse trains equals .

Now, assume that both selected time instants and fulfil
Assumption 1, i.e., the intersection
comprises at least one pulse train, while (12) guarantees the
probability of having more than one train in this intersection
is negligible. Following the assumptions from the case above,
the number of pulses in the product (11) can be estimated as
(Appendix B, Case 2)

(14)

According to (13) and (14), the superimposed pulse trains can
be separated by observing the number of pulses in the element-
wise product (11), providing that . When
this is not the case, the number of components in (11) can be
increased. Generally speaking, the higher the probability , the
higher the optimal value for . However, by increasing the value
of the time complexity of the CKC method also increases. In
all our experiments, proved to be a good compromise.
The exact procedure for separation of superimposed trains is
described in Section IV.

IV. CONVOLUTION KERNEL COMPENSATION IN

UNDERDETERMINED CASE

Now, assume the extended pulse trains are uncorrelated and
equals the identity (note that this assumption is only made

to simplify the theoretical derivations in this section). If the
number of symbols is greater than the number of observa-
tions , the mixing matrix be-
comes rectangular and has more columns than rows. As shown
in Appendix C, its influence cannot be completely compensated
by (9). What remains is an orthogonal projector :

(15)

where denotes the th element of matrix . We found
experimentally that when is close to a square matrix, is
close to the identity matrix. By increasing the ratio

, gradually loses its diagonal form and the impact of
the mixing matrix in (15) increases. Nevertheless, keeping the
ratio below 2, at least a part of the diagonal
in remains dominant (Appendix C).

The pulse trains corresponding to the dominant diagonal el-
ements of the matrix still comply with the theory from the
overdetermined case, and the procedure derived in Section III
can readily be applied to the underdetermined MIMO systems.
This is further confirmed by comparing the LMMSE estimator
to our approach. Namely, employing probabilistic separation of
superimposed pulse trains (Section III), the triggering times of
a single, say the th, pulse train can be grouped together into a
common subset of time instants . As-
suming the mixing process is ergodic, the observation vectors

can then be averaged over all time instants from the set
. The obtained mean vector yields the cross-correlation be-

tween the th pulse train and all the observations

(16)

By inserting (16) into (9), we obtain the LMMSE estimator of
the th pulse train [10, p. 382]

(17)

A. Noise Reduction

With respect to (16), the influence of noise in (9) can be
expressed as:

(18)

While the first two right-hand side factors in (18) converge to
zero when the vector is averaged over a large enough set

, this averaging hardly changes the rightmost factor. Its im-
pact can be reduced by truncating the eigenvalues of matrix

. Namely, the influence of noise projected to the space of
input pulse trains can be estimated as [18, pp. 411–417]

(19)

where stands for the condition number of matrix , and
is the noise projection to the space of

extended pulse trains . By setting the smallest singular values
of to zero, we improve its condition number and increase
the robustness of our decomposition [18, p. 418].

Now, assume the matrix equals the identity matrix. Then
the conditional number of can be controlled by truncating the
eigenvalues of , i.e., by setting the smallest
eigenvalues to zero

(20)

where stands for the diagonal matrix with eigenvalues of
, sorted in descending order, is a matrix of corresponding

eigenvectors, and denotes the matrix with all
elements equal to zero. Afterwards, a new correlation matrix

is constructed and used in (17) in place of
. The optimal degree of eigenvalue truncation depends on

the number of symbols, , and the signal-to-noise ratio (SNR),
and will be further clarified in Section V.

The final CKC decomposition procedure is described in
Fig. 1. The noise variance in step 1 can be estimated by
observing the smallest eigenvalues of the matrix [1, p.
129], whereas the threshold in step 5 can be computed as a
product of the observed signal length and the lowest expected
symbol rate.

V. SIMULATION RESULTS

The proposed decomposition algorithm was tested on three
different sets of synthetic signals. The first experiment evalu-
ated the influence of number of observed symbols, the second
experiment studied the influence of pulse overlapping prob-
ability , while in the third experiment the decomposition of



HOLOBAR AND ZAZULA: MULTICHANNEL BSS USING CONVOLUTION KERNEL COMPENSATION 4491

Fig. 1. Pseudocode of the proposed CKC decomposition approach.

ill-conditioned linear mixtures was investigated. In all three
experiments, three different performance measures were ob-
served: the number of reconstructed pulse trains, sensitivity
of decomposition algorithm, i.e., the percentage of accurately
identified pulses per pulse train, and false alarms, i.e., the
percentage of false pulses per reconstructed pulse train. The
proposed decomposition approach was additionally compared
to LMMSE estimator. Recall that the LMMSE estimator
supposes the cross-correlation vector in (17) known in
advanced. This means the comparison of the decomposition
results obtained by LMMSE and our CKC is feasible just in
simulated cases, while in real situations only the separation by
CKC approach is implementable.

A. Experiment 1: The Influence of Number of Symbols

The first experiment evaluated the CKC performance in de-
pendence of the number of symbols . Fifteen simulation runs
were performed, with set equal to 10, 20, and 30 (five runs
per each ). In each run, random input pulse trains,

, were generated with the mean
interpulse interval (IPI) set equal to 50 samples and the values

; , uniformly distributed over the interval
. In this way, the probability of overlapped pulses, , was

estimated according to . Parameter was fixed to 20
samples, yielding pulse overlapping probability of .
The length of simulated pulse trains was set equal to 10 000
samples. Random zero-mean symbols of length of
samples were generated and convolved with the simulated pulse

trains to produce the observed signals (1). Note that the repeti-
tions of the same symbol in each observation did not interfere.
The number of observations was set equal to 25. Finally, five
realizations of noise per each simulation run and each SNR were
simulated, resulting in 375 different mixtures. These mixtures
were then extended by the empirically selected factor
for and for and . As a re-
sult, the number of extended pulse trains increased to 190 for

, 580 for , and 870 for , while the
number of extended observations was fixed at 250 for ,
and at 500 for and , respectively.

Each mixture was decomposed three times, with the degree
of eigenvalue truncation set equal to 0%, 20%, and 40%,
respectively. Here means no truncation at all, while

indicates that, according to (20), 40% of the smallest
eigenvalues of were set equal to zero. The results, averaged
over all simulation runs, are reported in Figs. 2–4, respectively.

In the case of , almost all pulse trains were identi-
fied by both estimation techniques (CKC and LMMSE) down
to SNR of 0 dB. For and SNR down to 5 dB, the av-
erage percentage of pulse trains identified by the CKC method
dropped to 65%, and further decreased to approx. 55% when
dealing with 30 symbols . This agrees perfectly with
the theoretical expectations presented in Appendix C. Namely,
both cases correspond to the underdetermined convolutive mix-
tures, with the ratio set at 1.17 and 1.74, re-
spectively. This is also reflected in the performance of LMMSE
estimator, which reconstructed only approx. 5% of input trains
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Fig. 2. Average number of recognised pulse trains depending on the number of
symbols, N , the level of eigenvalue truncation (T ) and SNR. The results are
normalized with respect to the number of symbols N . Note the different scale
on the ordinate.

Fig. 3. The average number of accurately identified pulses per reconstructed
pulse train (sensitivity) depending on the number of symbols, N , the level of
eigenvalue truncation (T ) and SNR.

Fig. 4. The average percentage of incorrectly identified pulses per recon-
structed pulse train (false alarms) depending on the number of symbols N , the
level of eigenvalue truncation (T ), and SNR. Note the different scale on the
ordinate.

more than the CKC method. However, even with a highly under-
determined system, the eigenvalue truncation proved to be ben-
eficial, increasing the number of reconstructed trains at

by more than 5%, on average. The optimal degree of trun-
cation depends strongly on the level of noise. For example, for

the optimal value of yielded 0% at
and increased to 20% at .

Fig. 5. The average number of reconstructed pulse trains for different values
of overlapping probability p versus SNR. The number of symbols was set equal
to N = 10.

The CKC method proved to be highly robust. On average,
more than 97% of reconstructed pulses were accurately recog-
nized down to the SNR of 5 dB, while there was hardly any
misplaced pulse (Fig. 4). This is consistent with the theoretical
derivation in (16), where it was shown that the accuracy of the
CKC method matches the accuracy of the LMMSE estimator.
In the case of and , however, a slight de-
crease in CKC performance was noticed at SNR of 0 dB. The
results in Fig. 3 also demonstrate a significant positive correla-
tion between the sensitivity of CKC method and the degree of
eigenvalue truncation. Separating the mixtures with
symbols at SNR of 0 dB using the 0% of eigenvalue truncation,
for example, the sensitivity of CKC method dropped to 97%.
Increasing the degree of truncation to 20%, the sensitivity index
increased back to 98%. At the same time, there was a slight in-
crease of false alarms, indicating a possible negative correlation
between the specificity of the CKC algorithm and the eigenvalue
truncation.

B. Experiment 2: The Influence of Level of Correlation Among
Pulse Trains

The second experiment studied the influence of pulse over-
lapping probability . Both the number of symbols, , and the
extension factor, , were fixed at 10. The number of observa-
tions was set equal to 25. Following the simulation protocol
from the first experiment, 10 000 samples long random pulse
trains were generated. The mean IPI was set at 50 samples, while
the IPI variability was uniformly distributed over the interval

. In this experiment, parameter was set at 10, 6.6, and 5,
yielding pulse overlapping probability of ,
and , respectively. Finally, random zero-mean symbols

of length samples were convolved with the simu-
lated pulse trains to produce the observed signals (1). The ob-
servations were additionally corrupted by additive zero-mean
Gaussian noise (five realisations of noise per each SNR). The
results, averaged over five simulation runs per each , are de-
picted in Figs. 5–7.

As expected, the performance of the CKC method drops sig-
nificantly with the overlapping probability . Each time is in-
creased by 0.025, the percentage of reconstructed pulse trains
drops by approx. 8%. At , only 75% of all the pulse
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Fig. 6. The average number of accurately identified pulses per reconstructed
pulse train (sensitivity) for different values of pulse overlapping probability p
versus SNR. The number of symbols N was set equal to 10.

Fig. 7. False alarm index for different values of pulse overlapping probability,
p, versus SNR. The number of symbols, N , was set equal to 10.

trains were reconstructed (with SNR of 10 dB and ).
Also the sensitivity decreased, while the false alarms increased
significantly (from 0.004% at to 0.009% at
for SNR of 10 dB). There are several possible explanations of
this phenomenon. The first, and most probable one, relies on
the probabilistic separation of the superimposed pulse trains
(Section III). By increasing the probability the beneficial av-
eraging effect in (16) decreases. As a result, the impact of both
noise and superimposed pulses is increased. This also agrees
with the observed increase of the CKC sensitivity to noise. In
addition, high overlapping probability causes the correlation
matrix (and, hence, its inverse) to become significantly non-
diagonal, which additionally increases the devastating impact of
the superimposed pulses in the reconstructed pulse trains. At the
same time, no significant correlation between the probability
and the LMMSE estimation was noticed (except maybe in false
alarm index). This was expected because the LMMSE estimator
utilizes prior knowledge on the correlation between the obser-
vations and input pulse trains.

C. Experiment 3: Decomposition of Ill-Conditioned Mixtures

The final experiment was conducted on a simulated surface
electromyograms (SEMG), based on a planar volume conductor
model [19]. The thickness of the skin, fat and muscle layer was
set equal to 1, 3, and 10 mm, respectively. Imitating the anatomy
of skeletal muscles, synchronously active muscle fibers were
first grouped into so called motor units (MUs) [20]. MUs were
randomly scattered over the detection volume with their size

Fig. 8. Average number of recognised MUs depending on the number of simu-
lated MUs, N , the level of eigenvalue truncation, T , and SNR. The results are
normalized with respect to the number of simulated MUs,N . Note the different
scale on the ordinate.

varying from 25 to 2500 fibers. Average semifiber length was set
equal to 70 mm. The mean muscle fiber conduction velocity was

. When activated, each MU transmitted detectable
electric potentials. These potentials were additionally low-pass
filtered to simulate the effect of biological tissues that separate
the MU from the pick-up electrodes. Biopotentials, which cor-
respond to the symbols in our data model, were detected
at the surface of the skin. Because of different MUs depths in
the muscle tissue, the biopotentials differed significantly in am-
plitude, yielding the power ratio of up to 10 dB. The average
length of all detected biopotentials was 12 ms. The number
of pick-up electrodes, , was fixed at 60 (a 2-D electrode grid
of 13 5 electrodes with interelectrode distance of 5 mm was
simulated, while the signals were detected in longitudinal single
differential configuration). Based on a MU recruitment model
[21], three different muscle contraction levels were simulated
corresponding to , , and simultane-
ously active MUs. For each MU, a random sequence of innerva-
tion pulses was generated. The average motor unit discharge rate
was set equal to pulses per second, while the average
IPI variability equalled 20% of the mean IPI. Finally, SEMG
observations were sampled at 1024 Hz. Before the decomposi-
tion took place, these observations were additionally corrupted
by additive zero-mean Gaussian noise (five realizations of noise
per each SNR) and extended by the factor for
and for and . This resulted in a con-
dition number of about for the mixing matrix . The de-
composition results, averaged over 15 simulation runs (5 runs
per each ), are depicted in Figs. 8–10.

Both the CKC and LMMSE estimator exhibit a significant
drop in the number of reconstructed pulse trains (when com-
pared to the results of the first experiment). At and

only 70% of simulated MUs were identified
by the LMMSE estimator. Under the same conditions the CKC
method reconstructed only a half of simulated MUs (compare
this to almost 100% reconstruction in Experiment 1). This is not
unexpected, as the decomposition of surface electromyograms
is well known to be strongly ill-conditioned. In addition, due to
large differences among the powers of different MUs, smaller
MUs are often missed and considered a background noise. In
spite of these facts, the reconstruction of pulse trains still proved
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Fig. 9. The average number of accurately identified pulses per reconstructed
MU (sensitivity) depending on the number of simulated MUs, N , the level of
eigenvalue truncation T , and SNR.

Fig. 10. The average percentage of incorrectly identified firings per recon-
structed MU (false alarms) depending on the number of simulated MUs, N ,
the level of eigenvalue truncation T , and SNR.

to be highly accurate. Slight decrease of the CKC sensitivity was
noticed (compared to the results of Experiment 1). At the same
time, a slight increase of false alarms was observed (for both the
CKC and LMMSE estimator), but this had no significant influ-
ence on decomposition performance.

VI. CONCLUSION

The proposed CKC decomposition method can be applied to
a variety of linear mixtures whenever the observations can be
interpreted as compound signals comprising finite-length sym-
bols. By compensating the shapes of the detected symbols, it ef-
ficiently combines all the assumed statistical properties of their
arising times and operates directly in the space of sparse pulse
trains. The proposed approach is significantly noise resistant,
while successfully resolving also the underdetermined convolu-
tive mixtures with a relatively large number of input trains.

In this paper, three different experimental settings were
tested, evaluating the performance of CKC in the case of under-
determined and ill-conditioned mixtures (Experiments 1 and 3),
and in the case of weakly correlated pulse trains (Experiment
2). Simulation results proved the accuracy of the CKC perfectly
matches the accuracy of the LMMSE estimator. But, contrary to
the LMMSE estimator, the CKC method exhibits a significant
negative correlation between the number of reconstructed pulse
trains and the pulse overlap probability . There are several

possible explanations of this phenomenon, the most probable
one including the induced non-diagonality of the correlation
matrix (see the discussion of Experiment 2). Invariance of
the LMMSE estimator to the pulse overlapping originates from
the necessity of a prior knowledge of the trains’ cross-corre-
lation with the observations. The drop of performance in the
case of correlated pulse trains is the price we have to pay for
reconstructing the pulse trains blindly.

Both the CKC and LMMSE estimator exhibit a significant per-
formance drop when decomposing ill-conditioned and underde-
termined mixtures. Typically, only the strongest observed sym-
bols (in the sense of signal energy) are reconstructed, while all the
others are treated as a background noise. In the case of biomed-
ical signals, this is not a serious problem as the number of recon-
structed input trains is already limited by the detection volume
of the pick-up electrodes [13]. In the case of communication sig-
nals, on the other hand, the ratio between the number of observa-
tions and the number of users can be improved by increasing the
sampling frequency. This also decreases the overlapping prob-
ability and, hence, improves the performance of the proposed
approach. The number of reconstructed pulse trains could be in-
creased also by subtracting the identified symbol observations
from the observed mixtures [22]. However, in the case of noise,
this idea proves difficult to implement as it is very hard to ob-
tain a perfect cancellation of the identified symbols.

Finally, the proposed decomposition approach reconstructs
only the arising times and shapes of the detected symbols. In
many cases (e.g., when decomposing biomedical signals), this
ends the decomposition, as we are only interested in the detected
form of symbols. When processing the communication signals,
however, an additional single-input multiple-output (SIMO) de-
composition step is needed in order to compensate the effect of
the transfer channels and estimate the original source symbols
out of their observations.

APPENDIX A
INVERSE OF DIAGONALLY DOMINANT MATRIX

Suppose the pulse train correlation matrix is diagonally
dominant, i.e., [18, p. 184]. If the pulse
trains are weakly correlated we also have

(A.1)

The matrix can be written as a sum of its diagonal and
non-diagonal part , where
and . Then,
using the Neumann series, the inverse of can be expressed
as [18, pp. 126]:

(A.2)

providing the absolute value of each eigenvalue of the ma-
trix is smaller than 1. According to Gerschgorin’s the-
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orem, the eigenvalues of are contained in a union of
the circles defined by [18, p. 498]

(A.3)

Therefore, the first-order approximation of yields

, which, when
and (A.1) are taken into account, proves the inverse of
has a superior diagonal. According to extensive numerical
simulations, similar conclusions also apply to the matrices
which are not strictly diagonally dominant but still fulfill the
condition in (A.1).

APPENDIX B
AVERAGE NUMBER OF PULSES IN THE ELEMENT-WISE

PRODUCT OF PULSE TRAINS

Although the number of components in (11) can be con-
sidered an arbitrary value, we only focus on two cases (
and ). The derivations for other cases follow those pre-
sented here and are left to the interested reader. For the sake of
simplicity, we also assume the number of pulses in each train
equals .

First, observe the pulses in the element-wise product
, . This

product will certainly contain the pulses of all the trains from
. Their average number of pulses can be estimated

as where , while
with ; denotes the correction factor
introduced by the fact that the pulses of the trains in
mutually overlap

(B.1)

where denotes the number of combinations of ele-

ments, taken elements at a time. The product will also
contain all those pulses of any pulse train from the set difference

which randomly overlap with the pulses of any pulse
train from . Their number can be estimated as

(B.2)

Hence, the average number of pulses in the product
yields

(B.3)

We can follow the same route in the case of com-
ponents in (11). First, define the following mutually disjunctive
sets:

(B.4)

with and , , . Using
denotation , the average number of pulses in
(11) can be estimated as:

(B.5)

where, supposing , all the factors multiplied by to the
second or higher powers were neglected. According to (B.5),
the average number of pulses depends mainly on the number of
trains in the sets , , and and their distribution
in the corresponding sets. In the sequel, we are going to study
just the cases that prove the (13) and (14), respectively.

Case 1: Suppose the set contains a single pulse train,
while sets , , and are empty. Fur-
ther assume that , , are all equal to or less than 1. Then
(B.5) yields

(B.6)

Use and
recall that, on average, the number of pulse trains in the set
can be estimated as , where stands for the
number of symbols, is extension factor and is the symbol
length. Then, (B.6) simplifies to .

Case 2: Suppose the set contains a single pulse train,
while sets , , and are empty. Further
assume that , , are all equal to or less than 1. Then (B.5)
simplifies to

(B.7)

APPENDIX C
ELIMINATION OF UNDERDETERMINED MIXING MATRIX

Define where is an arbitrary mixing
matrix of size , with

. By definition, is orthogonal projector and positive
semidefinite [18, pp. 434]. Denoting by the matrix of the right
singular vectors of , the th element of matrix can be
calculated as

(C.1)

where denotes the th element of the matrix . Consid-
ering the orthogonality of matrix and denoting by its th
column, three different cases can emerge.

1. The energy of is concentrated in the first ele-
ments. This is the ideal case as (C.1) guarantees the diag-
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onal element will be close to 1, while all off-diagonal
elements will be close to 0.

2. The energy of is distributed among all elements.
This is the most probable case and implies the value
of the diagonal element decreases with the ratio

, while the values of off-diagonal
elements simultaneously increase.

3. The majority of ’s energy is concentrated in the last
elements. This is the worst case sce-

nario as (C.1) shows the diagonal element will be close
to zero.

The number of columns being concomitant with case
3, is limited. Namely, supposing all the columns of the unitary
matrix correspond to case 3, it would necessarily imply that

is similar to the projection matrix mapping -
dimensional space onto -dimensional
subspace. These arguments further support the following empir-
ical observation:

Observation 1: For most , supposing the ratio
small, the matrix will have at least

a part of its diagonal elements superior to all off-diagonal
elements.

The numerical simulations further reveal the dominant diag-
onal elements are at least several magnitudes higher than the
corresponding off-diagonal elements, as long as the number of
extended pulse trains, , does not exceed the
number of extended observations, , by factor 2.
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