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ABSTRACT 

 
In this paper, a Blind Source Separation (BSS) algorithm for 
multichannel audio contents is proposed. Unlike common 
BSS algorithms targeting stereo audio contents or 
microphone array signals, our technique is targeted at 
multichannel audio such as 5.1 and 7.1ch audio. Since most 
multichannel audio object sources are panned using the 
Inter-channel Loudness Difference (ILD), we employ the 
ILVS (Inter-channel Loudness Vector Sum) concept to 
cluster common signals (such as background music) from 
each channel. After separating the common signals from 
each channel, we employ an Expectation Maximization  
(EM) algorithm with a von-Mises distribution to 
successfully classify the clustering of sound source objects 
and separate the audio signals from the original mixture. 
Our proposed method can therefore separate common audio 
signals and object source signals from multiple channels 
with reasonable quality. Our multichannel audio content 
separation technique can be applied to an upmix system or a 
cinema audio system requiring multichannel audio source 
separation. 
 

Index Terms— Multichannel, Blind source separation, 
von-Mises distribution, Inter-channel loudness difference 
 

1.  INTRODUCTION 
 
In this paper, we tried to separate object and background 
signals from a multichannel audio source (such as 5.1ch, 
7.1ch, or a higher channel format). The issue of audio Blind 
Source Separation (BSS) has been widely investigated using 
various approaches. The Degenerate Unmixing Estimation 
Technique (DUET) [1] is a source separation technique used 
to separate a source with an amplitude and phase difference. 
In addition, source separation for an underdetermined source 
using a Gaussian Mixture Model (GMM) [2] or Laplacian 
Mixture Model (LMM) was proposed [3]. Recently, BSS 
techniques for a multichannel microphone [4] and 
Multichannel audio content [5] have also been proposed.  

However, unlike previous works related to BSS, which 
cluster signals using the ratio information from two channels 
[2,3,5], our proposed technique clusters an audio source 
from a multichannel signal at the same time as the vector 
concept. In addition, rather than taking inter-channel phase 

difference (IPD) into consideration such as in [1] and [4] for 
a multichannel microphone, we focus solely on ILD 
information since most multichannel movie audio tracks and 
multichannel music contents are mixed using the inter-
channel loudness difference (ILD). We also employed the 
inter-channel loudness vector sum (ILVS) concept and set 
the channel loudness vector axis to express the panning 
information and uniqueness of the signal.   

Using the  ILVS  ratio, we are able to separate common 
signals such as background music from a multichannel 
audio signal. After separating common signals from an 
original multichannel source, we employ an EM algorithm 
with a von-Mises distribution, which is appropriate for a 
circular distribution, to cluster the sound object from the 
ILD. We therefore obtain separate sound object signals from 
multiple channels. Finally, we evaluated the performance of 
our algorithm using a well-known BSS evaluation technique 
[6].  
 

2. VECTOR REPRESENTATION  
   
As mentioned previously, we focused on the fact that most 
multichannel audio content expresses spatial sound 
information using the ILD. To analyze the panning 
information more properly through a vector representation, 
we set the axis for each channel with an equal interval angle, 
as shown in Fig. 2. The center channel is omitted because it 
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Fig. 1. Data flow of the proposed method. 
 



typically contains only the speech signal. Like other 
previous works [1,2,3], the sparsity of the source is assumed, 
which means there is only one source signal TF (Time-
Frequency) bin. Equation (1) describes how an ILVS for one 
TF bin is plotted on the vector axis. Equation (1) also 
describes how the ILVS and channel axis work. ( , )iX f τ  is 
the absolute value of the Modified Discrete Cosine 
Transform (MDCT) of the i-th channel signal at the TF bin 
( , )f τ , where f indicates the frequency and τ is the frame 
index. These values are multiplied by the axis rotation 
matrix with channel axis angle i viθ θ= ⋅ . Thus, the ILVS 
value ( , )f τV equals the sum of the angular transformed 
signal vectors, ( , )i f τs , from each channel.  
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We were therefore able to draw the ILVS from every TF bin 
and obtain clusters over a 360 degree polar plot, as shown in 
Fig. 4.  
 

3. COMMON SIGNAL SEPARATION 
 
Unlike stereo audio content, in multichannel audio, a 
common signal such as background music can exist on more 
than two channels. For a multichannel environment, 

conventional two-channel ratio-based clustering [2,3,5] is 
unable to distinguish a common signal from a center-panned 
signal. This problem is easily described in Figs. 2 (b) and 2 
(c). If we only monitor two channels, a non-common signal 
that only exists on channels L and R, and a common signal 
that exists on every channel, can be clustered in the same 
position, as shown in Figs. 2 (b) and 2 (c). To solve this 
problem, we defined variable ( , )R f τ , which is the ratio of 
the sum of the individual loudness of the channel signal and 
ILVS. ( , )R f τ can be described as follows. 
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( , )R f τ  is determined based on the number of channels 

involved in the ILVS. If we set the channel axis interval as 
vθ  and assume an equal loudness for the channels involved, 

the ideal value of ( , )R f τ  can be determined as shown 
below.  

 
 

(3) 
 
 
 

If we plot ( , )R f τ from every TF bin in the original 
multichannel signal, the ( , )R f τ value will be clustered as 
shown in the upper section of Fig. 3. In a real-life situation, 
the peaks are not exactly placed as predicted by equation (3) 
because the loudness of the involved channel signal is not 
equal. However, for a common signal, if one exists, the peak 
tends to be located near zero, which is far from the other 
peaks. We applied the EM algorithm with GMM to identify 
the leftmost peak location and width. The lower area in Fig. 
4 shows the leftmost peak and the other part modeled using 
the GMM. After obtaining the ( , )R f τ  value of the leftmost 
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Fig. 2. Example vector representation and the ILVS. The 
loudness of each channel signal is described with a dashed 
arrow, and the ILVS is described with a solid arrow: (a) 
common signal ILVS with equal loudness on every channel, 
(b) common signal ILVS with biased loudness, (c) non-
common ILVS of two-channel panning, and (d) non-common 
ILVS of three-channel panning. 

 
 

Fig. 3. Plot of ( , )R f τ  value in equation (2), where the 
angular interval of the channel axis is / 3vθ π=  in 7.1ch 
audio. 

One channel : ( , ) 1R f τ =  
Two channel : ( , )R f τ = cos( )/2vθ                       

Three channel : ( , ) (1 cos( ))/3vR f θτ = +  
All channel : ( , ) 0R f τ =  



peak, we are able to separate a common signal from a 
mixture of the source for each channel based on a sparsity 
assumption. Equation (4) describes the classification 
criterion of a common signal where 
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rµ denotes the mean value of the leftmost Gaussian model, 
and d is the decision threshold. , ( , )c iX f τ and , ( , )n iX f τ are 
common and uncommon signals of the i-th channel, 
respectively. After separating the common signals from each 
channel, we constructed the original common signal by 
taking the average of all common signals from all channels 
to minimize the interference from non-common signals, as 
described in (5). After obtaining the sum of the common 
signals, we subtracted the common signals from the original 
signal. During subtraction, we adjusted the gain using the 
root mean square (RMS) ratio of the averaged common 
signal and individual common signal from the i-th channel, 
as described in equation (6), where 
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, , ,( ),  ( ),  ( )n i org i total ix t x t x t are the desired non-common signal 

in the time domain, original i-th channel signal in the time 
domain, and time-domain signal of , ( , )c totalX f τ in equation 
(5), respectively. Since a common signal is usually a 
wideband music signal in practice, common signals tend to 
overlap with non-common signals in the TF bin. Subtraction 
in the time domain can significantly reduce artifacts caused 
by the TF bin overlapping when compared to separation 
using a sparsity assumption. 
 

4. NON-COMMON SIGNAL SEPARATION 
 
Since we should express our signal in a polar coordinate, we 
had to consider the ILVS in the polar coordinate to have 
circularity. Therefore, if we apply a traditional EM method 
using a GMM [2] or Laplacian model [3] to a polar 
coordinate, it will suffer from an edge effect since Gaussian 
and Laplacian distributions have no circularity and are 
limited to both ends. Despite the existence of techniques to 
compensate the edge effect, the proposed compensation 
technique cannot solve the edge effect perfectly. To deal 
with this problem, we applied a von-Mises distribution [7] 
using the EM algorithm. Since a von-Mises distribution is 
based on a circular domain, this approach never suffers from 
an edge effect. Fig. 4 (b) shows the result of the clustering. 

4.1. EM procedure with the von-Mises distribution.  
 
If we express the polar coordinates as Cartesian coordinates, 
the 2-D variables ( ),( , ) ( , )i iX f Y fτ τ in equation (1) and 
the mean values of those variables ( , )x yµ µ in the Cartesian 
coordinates can be described as follows: 
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where 0r  and 0θ are the mean radius and mean angle value, 
respectively. To project all values on the unit circle, we set 

1.r = Therefore, after substituting (5) into the Gaussian 
distribution, the von-Mises distribution can be expressed as 
follows: 
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where 0I is the Bessel function of the first kind, and 

2
0 /m r σ= , where σ is the variance of the original Gaussian 

distribution. With this distribution, we employ the EM 
algorithm to every TF bin data and express the total 
distribution with a mixture of von-Mises distributions. The 
E and M steps of the applied EM algorithm can be described 
as follows. 
 
1) E-step: Evaluate the responsibility nkγ with weight 
kπ and von-Mises distribution function 0,( | , )v n k kf mθ θ , 

where k denotes the index of the von-Mises distribution 
model, and n denotes the sample index. 
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2) M-step: Estimate the weight values 0,kθ and km using a 
maximum likelihood estimator. Evaluate the weight value 
from responsibility nkγ  
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4.2. Separation of an object signal from a channel signal 
  
A histogram of the ILVS data can be clustered as shown in 
Fig. 5 using the EM algorithm described in 5.1. If the data 
are clustered properly, the sound source can be separated 
based on the panning location. The decision rule (Algorithm 
1) shows how we extract a signal from the original channel 
signal.  If the ILVS is on the i-th axis, it may be the result of 
multiple (for most cases, three) channels or a single channel. 
These cases can be distinguished by the ( , )R f τ value in 
equation (2). If the ILVS is not on the channel axis, it must 
be the result of two or more channels. The nearest two 
channels would be the most probable case. If there are more 
than three channels, the other one or two channel signals 
will be very weak, and even if they are loud, will be 
considered as common signals.  
 

5. EXPERIMENTAL RESULTS 
 
To test the performance of our algorithm, we made our test 
set using background music as a common signal, and sound 
effects from movies as a non-common signal. The overall 
performance was evaluated using the algorithm proposed in 
[6]. The experimental results of our proposed technique are 

described in the table 1 and table 2. We tested our proposed 
algorithm with different panning combination. “n-ch 
panning source” in the Table 1 and Table 2 means that n-
channel is involved to pan one sound source. Four sources 
were used for test 5.1ch system and six sources were used 
for test 7.1ch system. The performances of non-common 
signal sources were averaged. Since proposed common 
signal separation technique uses common signal which 
exists in every channel and take average of extracted 
common signals, common signal showed better source 
separation quality than non-common signals. 
 

6. CONCLUSION 
 
We proposed a technique to separate sound sources from 
multichannel audio panned using the ILD. By employing a 
vector representation, we successfully separated a common 
signal and non-common signal with reasonable quality. This 
result can be applied to an up-mix algorithm that needs to 
analyze spatial information and extract an object audio 
signal from multichannel audio content, such as that 
proposed by [5]. In addition, using our proposed technique, 
it is possible to control the volume of the background music 
and other sound effects separately while watching a movie 
or listening to multichannel audio content.  
 
 

 
                      (a)                                        (b) 
Fig. 4. (a) Plot of ( , )f τV values in polar coordinates. (b) 
Plot of log scale histogram of (a) and result of clustering 
with mixture of von-Mises distribution 
 
Algorithm. 1. Channel signal summation decision rule 
Inputs : ( , )f τV : ILVS      ( , )R f τ  : R value  

,( , ) ( , )i n iX f X fτ τ= : i-th channel signal (non-common) 
Outputs : ( , )kS f τ  :  k-th separation output  
1:  if ( , )f τV is on i-th channel axis   
2:     if ( , )R f τ ≈1 do ( , ) ( , )k iS f X fτ τ=  
3:     else  do 1 1( , ) ( , ) ( , ) ( , )k ii iS f X f X f X fτ τ τ τ− += + +  
4: if ( , )f τV is between i-th channel and (i-1)-th channel 
axis  do 1( , ) ( , ) ( , )k i iS f X f X fτ τ τ−= +      
5: if ( , )f τV is between i-th channel and (i+1)-th channel                 
axis  do 1( , ) ( , ) ( , )k i iS f X f X fτ τ τ+= +      
7: return ( , )kS f τ  

 mixA mixB mixC mixD 
Number of 1ch panning source 2 0 0 0 
Number of 2ch panning source 2 4 3 2 
Number of 3ch panning source 0 0 1 2 
Number of common signal source 1 1 1 1 

Non-common signal 
(dB, Averaged) 

SAR 9.4 10.0 8.7 6.1 
SDR 9.1 9.7 8.4 4.9 
SIR 24.1 22.4 21.2 15.8 

Common signal 
(dB) 

SAR 11.9 11.6 12.2 11.9 
SDR 11.7 11.4 12.0 9.6 
SIR 26.4 25.6 25.7 13.6 

Table. 1.  Performance measurement of 5.1ch multichannel 
format. 

 
 mixA mixB mixC mixD 

number of 1ch panning source 3 0 0 0 
number of 2ch panning source 3 6 5 4 
number of 3ch panning source 0 0 1 2 
Number of common signal source 1 1 1 1 

Non-common signal 
(dB, Averaged) 

SAR 3.0 3.5 3.5 2.8 
SDR 2.5 2.8 2.9 1.8 
SIR 14.6 16.0 14.8 12.9 

Common signal 
(dB) 

SAR 10 10.5 10.2 9.7 
SDR 9.8 10.3 9.9 9.5 
SIR 23.2 23.7 22.7 23.0 

Table. 2.  Performance measurement of 7.1ch multichannel 
format. 
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