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Abstract—We describe multichannel blind source separation
and tracking algorithms based on clustering wrapped inter-
channel phase difference (IPD) features. We pose the clustering
problem as one of multimodal circular-linear regression and
present its probabilistic formulation. Phase wrapping due to
spatial aliasing is explicitly incorporated by modeling the IPD
features as circular variables. We present two methods based
on Expectation-Maximization (EM) and a sequential variant of
RANdom SAmple Consensus (RANSAC). We show that their
strengths can be combined by using RANSAC to initialize EM.

The IPD clustering algorithm is applied to separate stationary
speakers from a multichannel mixture. We then extend it to
the case of moving speakers by tracking their directions-of-
arrival with the Factorial Wrapped Kalman Filter (FWKF)
using RANSAC as a data pre-processor. Experimental results
demonstrate that the proposed methods perform well in the
presence of reverberant babble noise and spatial aliasing. The
FWKF successfully tracks and separates moving speakers with
separation quality comparable to that for stationary speakers.

Index Terms—directional statistics, interchannel phase differ-
ence, blind source separation, wrapped Kalman filter

I. INTRODUCTION

In this paper, we are interested in separating (possibly
moving) speakers who are in the far field region of a compact
microphone array. Formally, multichannel Blind Source Sepa-
ration (BSS) is the inverse problem of recovering K unknown
source signals from C observed mixtures (one from each
microphone). Beamforming methods [1] approach BSS from
an array processing perspective. A spatial filter is designed
so as to allow signals impinging on the array from particu-
lar directions to pass undistorted while blocking interfering
signals incident at other angles. The Delay-and-Sum (DS) and
Linearly-Constrained Minimum Variance (LCMV) beamform-
ers are well-known examples. Many variants have been pro-
posed including the Speech Distortion-Weighted Multichannel
Wiener Filter (SDW-MWF) [2], which seeks to balance noise
reduction with speech distortion.

Another famous approach known as Independent Compo-
nents Analysis (ICA) [3], [4] attempts to invert a mixing
matrix that relates the sources to the mixtures. A third
approach to BSS, which we adopt in this paper, is the
Degenerate Unmixing Estimation Technique (DUET) [5] and
its extension to more than 2 sensors [6]. These algorithms
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cluster inter-channel phase and level differences (IPD, ILD)
to construct a time-frequency (TF) mask and are known to
produce extremely clean speech separation results in non-
reverberant environments. Three assumptions made in DUET
are that (1) the source signals are approximately disjoint
in a TF representation, (2) at most one sample of delay is
observed between the channels, and (3) early reflections are
negligible. Speech signals are remarkably disjoint in the short-
time Fourier transform (STFT) domain, even in the presence of
strong reverberation [7]. Thus, the first assumption often holds.
The second assumption is violated for high sampling rates or
arrays with more than a few centimeters of separation between
the microphones due to spatial aliasing. Solutions include
oversampling [8] and explicit modeling of phase as a wrapped
quantity [7], [9], [10]. We will adopt the latter approach in this
paper. The third assumption is violated when there are strong
early reflections from objects near the array [11].

These algorithms are often further extended to separate
moving targets by tracking their positions over time. This
can have a major impact on source separation performance.
In the experiments section, we report improvements over
the proposed batch algorithm of up to 7 dB by adapting it
to track the sources. This requires that we estimate some
quantity related to the source position such as time-delay-
of-arrival (TDOA) or direction-of-arrival (DOA). The Gener-
alized Cross Correlation (GCC) method [12], [13] computes
pair-wise channel correlations on a short-term basis and looks
for peaks in the resulting function over TDOA space. A
generalization to more than two channels called Multi-Channel
Cross Correlation (MCCC) was proposed in [14].

For compact arrays with 1-10 centimeters of spacing be-
tween the microphones, accurately estimating TDOAs can
be difficult in a noisy environment. In this case, it is more
appropriate to estimate the DOAs of the sources. The Steered
Response Power (SRP) method scans DOA space with a
beamformer and looks for peaks in the output power. A
potential downside of this approach is that the SRP must be
computed for each search direction on a grid. In addition, the
resolution over DOA space is poor for arrays with closely-
spaced elements. In this case, a more effective approach is the
MUltiple SIgnal Classification (MUSIC) [15] algorithm, which
identifies signal and noise subspaces of a channel correlation
matrix. A “MUSIC spectrum” is calculated that contains peaks
at the source DOAs. This requires that there be more channels
than sources (i.e. C > K). To avoid having to scan over DOA
space, search-free variants of MUSIC have been proposed such
as root-MUSIC [16] and ESPRIT [17].

Tracking on the unit circle shows up in many contexts
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including localization [1], phase-locked loops [18], and phase
unwrapping [19]. We will represent the source locations
by their azimuth angles (DOAs) and model these with the
wrapped Gaussian (WG) distribution [20]. This distribution
was used to learn source trajectories with a wrapped-phase
HMM [21] and more recently to derive the Wrapped Kalman
Filter (WKF) [22] and its multi-target variant, the Factorial
WKF (FWKF) [23]. The Kalman filtering framework [24]
is convenient in that it allows for sophisticated, statistically-
grounded approaches to the tracking problem. A related
method [25] uses DUET-style TF masking to follow multiple
moving sources with a particle filter [26].

In previous work [7], we used the von Mises distribu-
tion [20] to model wrapped IPD features as circular-linear
data [27], reducing the underdetermined BSS problem to one
of multimodal circular-linear regression. We applied a sequen-
tial variant of the RANdom SAmple Consensus (RANSAC)
algorithm [28] to perform the regression and cluster the
features. We will explore the wrapped clustering problem
in more detail and introduce an Expectation-Maximization
(EM) [29] algorithm to solve it. We will then show that the
RANSAC procedure can be used to initialize EM so as to
avoid local optima and speed convergence. Finally, we apply
RANSAC as a pre-processor in a FWKF to perform efficient,
on-line tracking and separation.

The contributions of this paper are:
• a probabilistic formulation for the wrapped IPD clustering

problem and an EM algorithm to solve it
• a detailed account of the RANSAC-based source separa-

tion algorithm presented in [7]
• an extension of this algorithm for non-stationary sources

via the Factorial Wrapped Kalman Filter [22]
• experimental validation of the proposed methods

II. DIRECTIONAL STATISTICS

Directional statistics [20] is concerned with the analysis of
quantities that lie on a circle, torus, or sphere. In this paper,
we will find use for two directional distributions on the unit
circle: the von Mises and wrapped Gaussian.

A. Unit circle

The unit circle is the 1D subspace of R2 consisting of all
unit vectors x:

S1 = {x : ‖x‖2 = 1 , x ∈ R2} . (1)

Alternatively, we can represent each unit vector with the
scalar angle θ = ∠x. Thus, S1 can be interpreted as a 1D
interval, where the boundaries represent the same value:

S1 = {θ : θ ∈ [−π, π]} . (2)

We will find the latter representation more useful.

B. Wrapped distributions

We will model wrapped quantities as circular random vari-
ables θ ∈ S1 with the von Mises (vM) and wrapped Gaussian
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Fig. 1. (Top) Wrapped Gausian pdf (µ = π
3

) on the unit circle in R2

shown with 2D Gaussian contours (σ2 = 0.8). (Bottom) WG pdf in [−π, π]
(µ = π

3
). The θ axis is the unit circle, unfolded. (This figure appears in [22].)

(WG) distributions. We define a useful mapping ψ : R1 → S1
that folds the real line around the unit circle:

ψ(x) = mod(x+ π, 2π)− π . (3)

1) Wrapped Gaussian (WG): The wrapped Gaussian arises
from applying (3) to a Gaussian random variable on R1:

p
(
θ ; µ, σ2

)
=

∞∑
l=−∞

1√
2πσ2

e−
(θ−(µ+2πl))2

2σ2 . (4)

We can visualize it on the unit circle in R2 or directly in S1
(see Fig. 1). We will use the WG to cluster IPD features in an
EM algorithm and to model the speaker DOAs in the FWKF.

2) von Mises (vM): The von Mises distribution is parame-
terized by a mean µ and a concentration κ:

p (θ ; µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ) , (5)

where I0(κ) is the 0th-order modified Bessel function of
the first kind. It is derived by conditioning a 2D Gaussian,
N
(
µ, σ2I

)
, ‖µ‖2 = 1, on the unit circle and converting from

Cartesian to polar coordinates [30]. The conditioning is such
that κ = 1/σ2. We choose the vM for its simplicity to model
IPD features in the RANSAC clustering algorithm.
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III. INTER-CHANNEL PHASE DIFFERENCE FEATURES

We will use inter-channel phase differences (IPD) as fea-
tures to perform joint multi-source separation and tracking. To
account for spatial aliasing, the IPD representation is modified
from that of [5] so as to incorporate phase wrapping explicitly
in a statistical model (this is similar to the approach taken
in [31]). We show that these wrapped IPDs compose a circular-
linear dataset and present a probabilistic interpretation of the
regression problem.

A. Feature Extraction

A microphone array captures C time-domain signals that are
converted to a time-frequency representation using the Short-
Time Fourier Transform (STFT):

X(i) ∈ CD×T , i = 1, . . . , C , (6)

where D denotes the coefficient index in the DFT corre-
sponding to half the sampling rate and T denotes the number
of frames captured. We ignore the second half of the DFT
because it contains the same information as the first half.

Since the Fourier transform is a linear operation, we have
that the DFT coefficient at each time-frequency bin is equal to
the sum of the contributions from the sources. In the absence
of reverberation, this gives:

X
(i)
ft =

K∑
j=1

S
(j)
ft aij e

−jωdij , ω =
πf

D
, (7)

where S(j)
ft is the DFT coefficient of the jth source, aij and

dij are the attenuation and delay for the direct path between
the ith microphone and the jth source, and ω is the digital
frequency corresponding to the f th frequency band.

We compute element-wise logratios to consolidate the STFT
information across pairs of channels. When, for example, C =
K = 2, we have:

Fft = log

(
X

(1)
ft

X
(2)
ft

)

= log

(
S
(1)
ft a11e

−jωd11 + S
(2)
ft a12e

−jωd12

S
(1)
ft a21e

−jωd21 + S
(2)
ft a22e

−jωd22

)
. (8)

If the signals are assumed to be approximately disjoint in
the STFT domain [5], i.e.:

∀ f, t S
(1)
ft S

(2)
ft ≈ 0 , (9)

then we can simplify (8) to the one-source case:

Fft ≈ log

(
Sfta1e

−jωd1

Sfta2e−jωd2

)
= log

(
a1
a2

)
− jω (d1 − d2) .

(10)

The negative imaginary part of (10) yields the IPD:

δft = − Im(Fft) = ω (d1 − d2) = ∠X(2)
ft − ∠X(1)

ft . (11)

Thus, the features lie on a wrapped line in a plot of
frequency versus phase difference:

δft = ψ(α f) , α =
π

D
(d1 − d2) , (12)

Fig. 2. IPD plot for a synthetic mixture of three speakers, colored according
to von Mises assignment probability. The mean lines under this model are
superimposed. (This figure appears in [7].)

where ψ(−) is defined in (3). To make the dependence on
frequency explicit, we form the following feature vector:

δft = [δft , f ] . (13)

Now it is clear that a collection of these vectors composes a
circular-linear dataset. The case of three or more sources (K ≥
3) is no different as long as the disjointness property (9) holds
for all source pairs. For three or more microphones (C ≥ 3),
the IPD feature vector contains C − 1 phase differences:

δft = [δft(1, 2), . . . , δft(1, C) , f ] , (14)

where δft(1, i) denotes the IPD calculated from the 1st and ith

channels. This representation is similar to that in [6].

B. IPD features as circular-linear data

We have seen that an acoustic wavefront that arrives at a
microphone array at an angle induces a time delay between the
microphones that corresponds to a phase shift in the frequency
domain. More shift will exist at higher frequencies, resulting
in data that lies along a wrapped line.1 When multiple speakers
are present and they satisfy (9), we observe IPDs that trace
out multiple wrapped lines. An example of this for a synthetic,
anechoic mixture of three sources is shown in Fig. 2. We
can only expect to locate the lines when the microphones are
sufficiently closely-spaced since, otherwise, extreme wrapping
effects arise. At a sampling rate of 16 kHz, a reasonable upper
limit on inter-channel spacing is 10 cm.

To perform IPD-based BSS, we must cluster the fea-
tures (14) and partition the mixture STFT accordingly. This is
equivalent to performing multimodal circular-linear regression,
namely, recovering the underlying wrapped linear models.

1This has also been called a “barber pole regression curve” in the directional
statistics literature [27] because it can be visualized as a helix on the surface
of a cylinder.
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Fig. 3. (Top) 10,000 circular-linear data points showing several wrapped-line
trends in the presence of outliers. (Bottom) Log likelihood as a function of
DOA. The parameter κ determines how strongly outliers are penalized.

C. Probabilistic Circular-Linear Regression

Consider the case of fitting a single wrapped line of the
form (12) to an IPD dataset ∆ = {δft}. We can score a line
with slope α according to a likelihood criterion such as:

L (∆ ; α) =

D∏
f=1

T∏
t=1

p (δft ; ψ(αf), κ) , (15)

where the probability distribution p (δft ; −,−) is arbitrarily
chosen to be von Mises for the sake of discussion.

An example of multimodal circular-linear data and the
corresponding likelihood function (15) for three values of κ
are shown in Fig. 3. Roughly half of the data can be considered
outliers. Nevertheless, it is clear that peaks of (15) correspond
to the orientations of the wrapped lines.

In Section VI, we will see how to separate the speakers
given estimates of their IPD lines. What remains is a robust
and efficient algorithm for estimating the slopes α.

IV. FITTING A MIXTURE OF WRAPPED LINES WITH EM

We have reduced the source separation problem to one
of multimodal circular-linear regression. We now view this
as a parameter estimation problem with latent variables and
apply the Expectation-Maximization (EM) framework [29].
The observed variables are the IPD features ∆, the hidden

Algorithm 1 EM to fit Mixture of Wrapped Gaussians
E step

ηtjl =
N(δt ; µ̂j+2πl , σ̂2

j ) π̂j
K∑
j=1

∞∑
l=−∞

N(δt ; µ̂j+2πl , σ̂2
j ) π̂j

M step

µ̂j =

T∑
t=1

∞∑
l=−∞

(δt−2πl) ηtjl

T∑
t=1

∞∑
l=−∞

ηtjl

σ̂2
j =

T∑
t=1

∞∑
l=−∞

(δt−µ̂j−2πl)2 ηtjl

T∑
t=1

∞∑
l=−∞

ηtjl

π̂j =
1
N

T∑
t=1

∞∑
l=−∞

ηtjl

variables are the TF bin labels z, and the unknown parameters
are the slopes α, variances σ2, and weights π. In this section,
we review the EM algorithm for fitting a mixture of wrapped
Gaussians and extend it to cluster across frequencies.

A. Clustering in a single frequency band
Consider a dataset of T samples δt ∈ S1 , t =

1, . . . , T drawn i.i.d. from a mixture of wrapped Gaussians
(MoWG) [32]. The MoWG pdf, defined over S1, is given as:

p
(
δ ; µ,σ2,π

)
=

K∑
j=1

πj

∞∑
l=−∞

N
(
δ ; µj + 2πl, σ2

j

)
. (16)

A standard derivation leads to the EM procedure summa-
rized in Algorithm 1. The posterior:

ηtjl = p
(
zjl | δt ; µj , σ2

j , πj
)
, (17)

represents the assignment probability of the tth sample to
the lth component of the jth WG. We truncate the infinite
summations to 3 terms centered at l = 0 for tractability.

Clustering in each frequency band individually fails to
capture the wrapped-linear structure of the dataset, making it
unclear how to group the clusters across frequencies according
to speaker identity [33]. Thus, we modify this algorithm to
perform the clustering jointly.

B. Clustering across frequency bands
To incorporate the linear trend of the IPD data across

frequency, we reparameterize the model from the previous
section in terms of the slopes αj :

µjf = αjf . (18)

In each frequency band, we have a mixture of WG distri-
butions and the means for each source are tied together across
frequency. For tractability, we assume statistical independence
between the univariate WGs. The joint pdf of these mean-
locked mixtures of wrapped Gaussians (ML-MoWG) is:

p
(
δ ; α,σ2,π

)
=

D∏
f=1

K∑
j=1

πjf

∞∑
l=−∞

N
(
δf ; αjf + 2πl , σ2

jf

)
.

(19)
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Algorithm 2 EM to fit Mean-Locked Mixtures of Wrapped Gaus-
sians

E step

ηftjl =
N(δft ; α̂jf+2πl , σ̂2

jf) π̂jf
K∑
j=1

∞∑
l=−∞

N(δft ; α̂jf+2πl , σ̂2
jf) π̂jf

M step

α̂j =

D∑
f=1

T∑
t=1

∞∑
l=−∞

f (δft−2πl)
σ̂2
jf

ηftjl

D∑
f=1

T∑
t=1

∞∑
l=−∞

f2

σ̂2
jf

ηftjl

σ̂2
jf =

T∑
t=1

∞∑
l=−∞

(δft−α̂jf−2πl)2 ηftjl

T∑
t=1

∞∑
l=−∞

ηftjl

π̂jf = 1
T

T∑
t=1

∞∑
l=−∞

ηftjl

Given a dataset of T vectors ∆ = {δt}, δt ∈ SD,
sampled i.i.d., we can solve for the parameters using an EM
algorithm [23] (see Algorithm 2). The posterior:

ηftjl = p
(
zjl | δft ; αj , σ2

jf , πjf
)
, (20)

represents the assignment probability of the (f, t)th data point
to the lth component of the jth WG in the f th frequency.

We must consider more terms in the summation over l than
in Algorithm 1 since a wrapped line may cover multiple cycles
(see (18)). The number of terms is chosen based on the amount
of wrapping expected in the highest frequency band for the
largest time delay. Algorithm 2 is easily extended for multiple
microphone pairs by using multivariate WGs in (19).

C. Discussion of the EM approach

The wrapped and noisy nature of IPD data leads to the
presence of many local optima. Since EM performs a local
optimization, it will most likely converge to a solution that
doesn’t correspond to the true source DOAs. Fig. 4 shows a
ML-MoWG fit to IPD data. The features were extracted from
a synthetic mixture of two speakers in a 2D room of size
5× 5 meters.2 The data is colored according to the posteriors
from the last iteration of EM.3 Fig. 5 depicts contours of the
likelihood as a function of the slopes. In this visualization,
the variances and weights were held fixed at 0.1 and 0.5,
respectively. Each trace shows the progress of one run of EM
from a random initialization.

EM has the advantage of explicitly modeling the wrapped
nature of the data. The clustering will generally succeed if the
initial parameters are close enough to the correct solution. In
the next section, we present a fast method to find the slopes
that serves as an initialization for EM.

V. MULTIMODAL REGRESSION BY RANDOM SAMPLING

We now describe a fast method for clustering noisy IPD
data based on the RANSAC algorithm [28], [34].

2The T60 reverberation time was 130 milliseconds.
3EM converged when the log likelihood improved by less than 10−4 %

between iterations.

Fig. 4. Two-component, mean-locked mixtures of wrapped Gaussians fit to
IPD data with EM. The data is colored according to its posterior probability
and 50 of the mixtures are superimposed.

Fig. 5. Log likelihood contours for the IPD data in Fig. 4 over the slopes
with the variance and mixing weights held fixed. Each trace shows the path
of EM to a local maximum. A good initialization is necessary.

A. RANSAC

RANSAC is a hugely important method in the computer
vision literature for estimating a simple model from a dataset
with a substantial proportion of outliers. If the model can be
fully described by a small set of points, one simply needs to
find such a set in the data to recover the parameters. In this
paper, we are interested in fitting a line that passes through
the origin in IPD space. Thus, we only need one point to fully
specify the model. Candidates (samples) are chosen at random
from the dataset ∆ = {δft} such that at least one is an inlier
of the true model with high probability. The inlier criterion is
chosen to reflect similarity between data points.

We must sample a sufficiently high number M of candidates
to ensure a good fit. This is given by the expected number
of trials E[t] until an inlier is chosen. If the proportion of
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Algorithm 3 Sequential RANSAC for Wrapped Line Fitting
Inputs: ∆ = {δi} : N feature vectors

K : number of wrapped lines to fit
Output: α̂ = {α̂j} : K slopes

Y =M samples from ∆ selected uniformly at random
I = 0N×M

for m = 1 :M do
Fit line with slope αm to Ym
I (i,m) = 1 if δi is inlier of mth line (see (21))

end for
α̂ = { }
A = {1, . . . , N}
for j = 1 : K do

m̂ = argmax
m

∑
i∈A

I (i,m)

α̂ = α̂ ∪ αm̂
A = A \ {i : I (i, m̂) = 1}

end for

inliers in the dataset is p and we need one data point to fit a
model, it can be shown [28] that E[t] = p−1. In practice, M
is overestimated for robustness (e.g. M = 10 p−1).

B. Sequential RANSAC

Efficient, sequential variants of RANSAC have been pro-
posed to identify multiple planar homographies for a stereo
imaging application [35], [36]. As discussed in [7], we can
apply a similar approach to cluster the IPD data. We adopt
the same probabilistic model as in (19), replacing the WG
with the von Mises (vM) for the sake of convenience. The
procedure is summarized in Algorithm 3, where the data is
indexed by i rather than an {f, t} pair for clarity. The matrix
I indicates whether each sample is an inlier of each candidate
line and A indicates the set of samples that have not yet been
counted as inliers of any line. In practice, M is scaled up by
the number of sources K.

C. Example

An illustration of Algorithm 3 as applied to IPD data is
shown in Fig. 6. Fig. 6(a) shows five RANSAC samples chosen
uniformly at random from the data. Fig. 6(b) shows the line
candidates corresponding to these samples and their inlier
counts. The orange line is chosen and removed along with its
inliers. This process is repeated to find the next best candidate,
the yellow line, as shown in Fig. 6(c).

D. Why sequential RANSAC works

We have found that sequential RANSAC works very well
for a wide range of conditions. In [7], we gave the example of
a stereo recording in a stairwell whose T60 reverberation time
was 1.5 seconds. Even though outliers made up roughly 65%
of the data, the line-fitting procedure was still successful. We

can understand this by considering the original probabilistic
model presented in Section III-C.

When RANSAC samples are drawn from the dataset ∆,
they are effectively sampled from the likelihood function
shown in Fig. 3. We expect to draw candidates most frequently
from high-density regions in the likelihood function. This is
why so few samples are required to fit the IPD lines.

Although this method is fast and robust to outliers and
wrapping issues, it guarantees only that the solution will be
near a global optimum with high probability. It is therefore
beneficial to use RANSAC as an initialization scheme for the
EM algorithm. From this starting point, EM will refine the
parameters of the wrapped lines and converge to the nearest
maximum of the log likelihood.

We found that this approach works well on synthetic data
sampled from a ML-MoWG with a portion of the samples
replaced by uniform noise (to simulate outliers). However,
this is not generally the case when working with IPD features
extracted from a noisy, reverberant audio mixture due to model
mismatch. This can be remedied by a number of adjustments
that are discussed in the experiments section.

VI. BLIND SEPARATION OF STATIONARY SOURCES

We review the BSS method in [7] based on sequential
RANSAC for stereo unmixing and elaborate on how this is
extended when 3 or more microphones are available. Phase
difference features δft are constructed as in (13). Sequential
RANSAC is then applied to fit K wrapped lines. The (f, t)th

point is considered an inlier of the jth line if δft is within ± τ
of the mean µjf = ψ(αjf). Since the IPDs live in a circular
domain, this is equivalent to the criterion:

cos (δft − µjf ) ≥ cos (τ) . (21)

Note that cos (−) is a measure of proximity (as opposed to
distance). The optimal choice of threshold depends on the
recording environment (i.e. how noisy the IPD features are).
We found that τ = π/8 was an effective default value (a more
thorough discussion can be found in [37]).

To recover the K source signals, we apply TF masks to
the mixture STFT and transform the result to the time domain
with the overlap-add algorithm. The mask weights in each bin
are calculated via the posterior probabilities:

wftj =
p (δft ; µjf , κ)
K∑
j=1

p (δft ; µjf , κ)

=
eκ cos(δft−αjf)

K∑
j=1

eκ cos(δft−αjf)
. (22)

These probabilities represent the soft assignment of the
(f, t)th bin to the jth source. More aggressive separation is
achieved (at the cost of artifacts) with a larger κ. In the limit
as κ → ∞, (22) reduces to a binary mask where each bin
contributes to the reconstruction of only one source:

∀ f, t wbftj =

{
1 if wftj = max

l
wftl

0 else
. (23)

We can also apply this technique with more than two
channels by extending the IPD feature vectors as in (14). The
higher-dimensional data has multiple circular axes instead of
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Fig. 6. (a) IPD data with 5 RANSAC samples overlaid. (b) First iteration of sequential RANSAC showing candidate wrapped lines and their inlier counts.
(c) Second iteration of sequential RANSAC after removal of the inliers of the first model.

one. This can never decrease the inter-cluster distances and
may increase them substantially, resulting in better clustering
and separation. We calculate inliers by generalizing (21):

C−1∑
i=1

cos (δft(1, i+ 1)− µjfi) ≥ (C − 1) cos (τ) , (24)

where µjfi = ψ (αijf) is the value of the jth wrapped line
in the f th frequency band and ith circular axis. αij denotes
the jth slope in the ith circular axis. This criterion assumes
that the error is measured with a multivariate von Mises
distribution [38] with independent components. The mask
weights are also generalized via the multivariate von Mises:

wftj =

C−1∏
i=1

eκ cos(δf,t(1,i+1)−αijf)

K∑
j=1

C−1∏
i=1

eκ cos(δf,t(1,i+1)−αijf)
. (25)

VII. CONCURRENT SOURCE TRACKING AND SEPARATION

We have shown how sequential RANSAC can be used to
estimate multiple wrapped line slopes from IPD features. This
assumed that the sources were physically stationary relative
to the microphone array. If the sources are moving, the slopes
will change over time. We assume that the source positions
don’t change too quickly between STFT frames. The Bayesian
filtering framework is quite popular in this context as it
provides a method for recursively estimating an unobserved
quantity over time from noisy measurements [39]. We will
track the sources’ DOAs instead of their slopes as this leads
to a reduction in the variance of the filter.4 RANSAC will be
used on a short-term basis to generate DOA votes that act as
measurements in the tracking algorithm. We implement the
tracking with a Factorial Wrapped Kalman Filter (FWKF).
Details of the WKF and FWKF can be found in [23].

A. Conversion from IPD line slope to DOA

We will relate the slope α of an IPD line to the azimuthal
direction-of-arrival (DOA) θ of a sound source. We know from

4The DOA and slopes reside in S1 and RC−1, respectively [22].

(12) that the IPD line slope α is linearly related to the inter-
channel delay, e12 = d2 − d1, by:

α = − π
D
e12 . (26)

Slopes are converted to time delays and the least-squares
method [40] can be applied to estimate the DOA. Note that
this requires knowledge of the array geometry.

B. Factorial Wrapped Kalman Filter

We can track a speaker in azimuthal DOA space in the
interval

[
−π2 ,

π
2

]
with a 2-microphone array and the stan-

dard Kalman filter. When tracking on the unit circle with 3
microphones, an issue arises since the DOAs −π and π are
identical. The Wrapped Kalman Filter (WKF) [22] deals with
this in a statistically-grounded way by representing the DOA
distribution as a wrapped Gaussian.

When multiple sources are present, we can apply the
Factorial WKF (FWKF) [23]. The FWKF consists of multiple
WKFs running in parallel, where observations are probabilis-
tically associated with each WKF according to the likelihoods
under each emission model.5

C. Blind separation of moving sources

We track moving speakers with a FWKF using DOA votes
extracted with RANSAC. These votes act as measurements to
“steer” the filters. At time t, we compute an IPD feature δft for
each frequency bin and determine if each feature is an inlier
of each of the wrapped lines using (21). The means µjf are
determined by calculating the inter-channel delays implied by
the source DOAs and relating the delays to the means with (26)
and (18). A feature that is not an inlier of at least one IPD line
is removed. The remaining features are transformed to DOA
votes using the method described in Section VII-A and passed
on to the FWKF. The FWKF computes a final measurement for
each source via weighted averages of the DOA votes (see [23]
for an extensive description of the FWKF).

5Methods for assigning observations to tracks can be found in the literature
on Probabilistic Data Association [41] and Multiple Hypothesis Tracking [42].
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The track estimates from each WKF dictate what IPD lines
to use for calculating the mask weights in the tth frame of
the mixture STFT. Indeed, any method for adapting the IPD
lines as the sources move is applicable here. For example,
we could track the slopes of the IPD lines directly. However,
this is undesirable for two reasons: (1) we would be tracking
in a higher-dimensional space, incurring greater variance in
the DOA estimator and (2) we are not guaranteed to maintain
slope estimates that are physically consistent with a DOA. The
second issue is important if we want to use the DOA tracks for
more than just source separation. Thus, we chose the FWKF
for its statistical grounding, interpretability, and effectiveness.

VIII. EXPERIMENTS

We demonstrate the utility of the proposed algorithms
through a number of experiments.6 We first apply RANSAC
and RANSAC+EM to separate stationary speakers from mul-
tichannel mixtures. Then, we introduce a FWKF to simultane-
ously track and separate moving speakers. In all experiments,
the number of speakers K is assumed to be known and the
audio is resampled to 16 kHz.

A. Separation of stationary sources

We ran source separation experiments in a 2D, simulated
room with walls of length 5 meters using 2- to 3-second
utterances from the TSP speaker database [43]. The array
consisted of three microphones placed in a right triangle
formation with sides of 8 centimeters and was positioned in
the middle of the room. The speakers were placed at random
on a unit circle centered at the array. The speaker DOAs were
chosen from non-overlapping sections of equal length on the
circle. We applied the image method [44] to simulate room
reverberation with a T60 time of 0.55 seconds. The speakers

6Demo code is available at http://cal.cs.illinois.edu/∼johannes/research/
RANSAC MoWG bss.zip

TABLE I: BSS Eval [45] metrics for “dev3” dataset from
SiSEC 2013 for two T60 reverb times: 130 ms, 380 ms.
Mixtures are 10-second, 3-channel recordings of 4 speakers.

Method SDR (dB) SIR (dB) SAR (dB) Time (s)
RANSAC 0.70, -1.95 1.35, -1.19 12.74, 10.90 1.6

RANSAC+EM 2.23, -2.36 7.26, 1.46 6.86, 3.92 9.79
[31] -1.38, -2.83 -0.88, -2.09 12.60, 10.37 15.9
[46] 0.9, -1.2 3.9, -0.8 9.0, 8.5 14,400

signals were roughly equal in energy to give a 0-dB mixture.
Twenty other speakers were placed uniformly at random in
the room to simulate babble noise with the condition that
they lie at least 1 meter away from the array. STFTs were
calculated with a window size of 1,024 samples and 1/4 hop
size. At a sampling rate of 16 kHz, each frame consists of 64
milliseconds of audio.

We found that naively applying Algorithm 2 with the slopes
initialized by RANSAC led to unsatisfactory results. This is
due to mismatch between the statistics of the IPD data and the
probabilistic model given in (19). However, RANSAC reliably
provides accurate slope estimates. In addition, we found that
we get the best separation results by holding those slopes,
and therefore the means in (18), fixed. Since the means are
fixed, few iterations are required to adapt the variances and
weights (no more than 10). This approach is highly efficient
since RANSAC runs several times faster than real-time and
the EM iterations can be parallelized across frequencies. We
included a uniform component with half the weight of the
mixture to assist in rejecting outliers. This further improved
the separation quality by 1-4 dB.

Fig. 7 shows the separation results with soft masking
for a DUET-like approach, RANSAC, EM initialized with
RANSAC, and the true wrapped line model evaluated with
the BSS Eval toolbox [45]. The mask weights were derived
via (25) with κ = 5 for the first two and via the posterior
probabilities from the E step of Algorithm 2 for the latter
two. The DUET approach estimates the slopes by finding
the K largest peaks of a smoothed histogram of frequency-
normalized IPD features. We improved the robustness of the
methods by weighting each IPD feature by the magnitude of
its associated TF bin. In the DUET and RANSAC methods,
this is done by replacing each sample’s contribution to the
histogram/inlier count by its corresponding weight. In the EM
algorithm, the weights are multiplied with the posteriors in the
E step. In the DUET method, spurious peaks are detected as a
result of spatial aliasing [5]. In contrast, the proposed methods
explicitly model the wrapped nature of the data, leading to
better separation performance.

In addition to these synthetic experiments, we compared the
proposed algorithms with two others using the “dev3” dataset
from the 2013 Signal Separation and Evaluation Campaign
(SiSEC).7 It consists of 4 10-second-long reverberant mixtures
of 4 speakers with T60 times of 130 or 380 milliseconds.
Results8 for the source spatial image estimation task are
summarized in Table I. In general, either of the proposed

7For more information, see https://sisec.wiki.irisa.fr/tiki-index.php.
8See [45] for definitions of the Signal-to-Distortion (SDR), Signal-to-

Interference (SIR), and Signal-to-Artifact (SAR) Ratios.
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Fig. 9. DOA paths found by the FWKF for a real mixture of three speakers.

algorithms outperforms the others according to each metric.
The advantage of adapting the model parameters with EM is
evident in the SIR numbers, which are vastly improved over
those of the RANSAC method alone.

The algorithm in [31], called MLESAC-F, identifies the IPD
lines by searching over all valid inter-channel time delays.
MLESAC-F appears similar to RANSAC+EM, but there are
key differences. First, RANSAC+EM constructs a TF mask
that is adaptive to the data. This is not done in [31]. Second,
MLESAC-F identifies the source DOAs by computing per-
pendicular distances between IPD features and wrapped line
candidates. This requires that all IPDs be replicated every ±2π
radians. The added computations cause MLESAC-F to run
slower than real time (see Table I). In contrast, the proposed
methods explicitly model the directional statistics of the IPDs,
avoiding the replication step. Finally, MLESAC-F requires
knowledge of the array geometry to search over all valid time
delays, whereas the proposed methods do not.

B. Separation of moving sources

We ran experiments in a simulated environment identical to
that used in section VIII-A to test the ability of the FWKF
to adapt the wrapped line models over time. The array was
placed in the (horizontal) plane of the speakers. The speaker

locations evolved according to a wrapped dynamical system
(WDS) [22], which models DOA and angular velocity. We
included an additional component for the distance from the
array. Handling cross-over in the DOA tracks is beyond the
scope of this paper, so we included a repulsive step to prevent
it. In these experiments, we used the masking procedure
described in Section VI with binary masking.

Fig. 8 shows a trial with two speakers using three frames
to extract DOA votes. The target-to-ambient-speech SNR
was 6.16 dB. The T60 reverberation time was 0.42 seconds
with a Direct-to-Reverberant Ratio [47] of 10.35 dB. Under
these noisy, reverberant conditions, the tracking is challenging
during pauses in the target speech and when a speaker moves
far from the array. Despite this, the FWKF (equipped with
RANSAC) tracks the speakers to achieve an output SIR
comparable to the stationary case (18.04 dB). In contrast, the
batch RANSAC method achieves an SIR of 0.79 dB. This
shows the importance of adapting the IPD lines over time.

We performed a similar experiment with two and three real
speech sources. The array consisted of three omnidirectional
Behringer ECM8000 microphones placed 1.5 meters above
the ground with the same configuration as in previous experi-
ments. Sentences from the TSP database were played through
a loudspeaker as it was swept around the array at a radius
of approximately 1 meter. We recorded each source as well
as ambient speech separately and added the signals together
such that the target-to-ambient-speech SNR was 6 dB. The T60

time was approximately 0.25 seconds for the target speakers
and 0.45 seconds for the ambient speakers. We estimated the
ground truth DOAs with the IPDs from the individual speaker
recordings as the peak of (15) in each frame.

The tracking results for the three-speaker experiment are
shown in Fig. 9. Using the individual speaker recordings
as a reference, we found that the SIR for the ground truth
DOA parameters and the FWKF and batch RANSAC methods
were 10.5, 9.6, and, 2.6 dB for the two-speaker experiment
and 3.2, 3.2, and -2.5 dB for the three-speaker experiment.
Qualitatively, this mirrors the results of the synthetic trial.
The quantitative difference is likely due to real-world non-
linearities in the IPD features [11].

IX. CONCLUSION

In this paper, we addressed the problem of separating
speakers from a multichannel recording by regarding IPD
features as samples from a circular-linear probabilistic model.
We presented a novel EM algorithm to simultaneously discover
the wrapped-line structure across frequency bands and the
mixture distributions within each frequency band. We showed
that this approach requires a good initialization to find a
good solution. Thus, we introduced an approach based on the
RANSAC algorithm to estimate the line slopes. We showed
that RANSAC is highly robust to outliers and provides an
excellent initialization scheme for EM. We then presented
experiments showing that RANSAC and EM can be combined
to achieve good speech separation performance at a low
computational cost. Finally, we extended the proposed method
to handle moving sources by tracking the speakers’ DOAs
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with a Factorial Wrapped Kalman Filter (FWKF) and using
RANSAC as a feature pre-processor.

X. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] J. Benesty, J. Chen, and Y. Huang, Topics in Signal Processing:
Microphone Array Signal Processing, vol. 1, Springer, 2008.

[2] A. Spriet, M. Moonen, and J. Wouters, “Spatially pre-processed speech
distortion weighted multi-channel wiener filtering for noise reduction,”
Signal Processing, p. 23672387, 2004.

[3] P. Common and C. Jutten, Handbook of Blind Source Separation:
Independent Component Analysis and Applications, Academic Press,
1 edition, 2010.

[4] P. Smaragdis, “Blind separation of convolved mixtures in the frequency
domain,” International Workshop on Independence and Artificial Neural
Networks, 1998.

[5] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via
time-frequency masking,” IEEE Transactions on Signal Processing, vol.
52, pp. 1830–1847, 2004.

[6] S. Araki, H. Sawada, R. Mukai, and S. Makino, “Underdetermined
blind sparse source separation for arbitrarily arranged multiple sensors,”
Signal Processing, vol. 87, no. 8, pp. 1833 – 1847, 2007.

[7] J. Traa and P. Smaragdis, “Blind multi-channel source separation by
circular-linear statistical modeling of phase differences,” Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013.

[8] Y. Wang, O. Yilmaz, and Z. Zhou, “Phase aliasing correction for robust
blind source separation using DUET,” IEEE Transactions on Signal
Processing, 2011.

[9] N. Mitianoudis, “A generalized directional Laplacian distribution:
Estimation, mixture models and audio source separation,” IEEE Trans-
actions on Audio, Speech, and Language Processing, pp. 2397–2408,
2012.

[10] C. Kim, C. Khawand, and R. M. Stern, “Two-microphone source
separation algorithm based on statistical modeling of angular distribu-
tions,” IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4629–4632, 2012.

[11] J. Traa and P. Smaragdis, “Robust interchannel phase difference
modeling with wrapped regression splines,” IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM), 2014.

[12] C. H. Knapp and G. C. Carter, “The generalized correlation method for
estimation of time delay,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 24, no. 4, pp. 320–327, 1976.

[13] S. T. Birchfield and D. K. Gillmor, “Fast Bayesian acoustic localization,”
in the proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2002.

[14] J. Chen, J. Benesty, and Y. Huang, “Robust time delay estimation ex-
ploiting redundancy among multiple microphones,” IEEE Transactions
on Speech and Audio Processing, vol. 11, no. 6, pp. 549–557, 2003.

[15] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3,
pp. 276–280, 1986.

[16] R. Kumaresan and D. W. Tufts, “Estimating the angles of arrival of
multiple plane waves,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 19, no. 1, pp. 134–139, 1983.

[17] R. Roy and T. Kailath, “ESPRIT - estimation of signal parameters
via rotational invariance techniques,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.

[18] G-C Hsieh and J Hung, “Phase-locked loop techniques. A survey,” IEEE
Transactions on Industrial Electronics, vol. 43, no. 6, pp. 609–615, 1996.

[19] J. Estrada, M. Servin, and J. Quiroga, “Noise robust linear dynamic
system for phase unwrapping and smoothing,” Optics Express, vol. 19,
no. 6, 2011.

[20] K. Mardia and P. Jupp, Directional Statistics, Wiley, 1999.
[21] P. Smaragdis and P. Boufounos, “Learning source trajectories using

wrapped-phase hidden Markov models,” IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, pp. 114–117, 2005.

[22] J. Traa and P. Smaragdis, “A wrapped Kalman filter for azimuthal
speaker tracking,” IEEE Signal Processing Letters, vol. 20, no. 12,
pp. 1257–1260, 2013.

[23] J. Traa, “Multichannel source separation and tracking with phase
differences by random sample consensus,” M.S. thesis, University of
Illinois at Urbana-Champaign, 2013.

[24] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Tech.
Rep., University of North Carolina at Chapel Hill, 2006.

[25] X. Zhong and J. R. Hopgood, “Time-frequency masking based multiple
acoustic source tracking applying Rao-Blackwellized Monte Carlo data
association,” IEEE 15th Workshop on Statistical Signal Processing, pp.
253–256, 2009.

[26] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[27] T. D. Downs and K. V. Mardia, “Circular regression,” Biometrika, vol.
89, no. 3, 2002.

[28] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.

[30] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[31] L. Litwic and P. J. Jackson, “Source localization and separation using
Random Sample Consensus with phase cues,” IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA),
pp. 337–340, 2011.

[32] Y. Agiomyrgiannakis and Y. Stylianou, “Wrapped Gaussian mixture
models for modeling and high-rate quantization of phase data of speech,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 17,
no. 4, pp. 775–786, 2009.

[33] H. Sawada, R. Mukai, S. Araki, and S. Makino, Speech Enhancement
- Chapter 13: Frequency Domain Blind Source Separation, Springer,
2005.

[34] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach,
Prentice Hall, 2003.

[35] E. Vincent and R. Laganiere, “Detecting planar homographies in
an image pair,” 2nd International Symposium on Image and Signal
Processing and Analysis, pp. 182–187, 2001.

[36] Y. Kanazawa and H. Kawakami, “Detection of planar homographies
with uncalibrated stereo using distribution of feature points,” British
Machine Vision Conference, vol. 1, pp. 247–256, 2004.

[37] J. Traa and M. Kim, “Phase and level difference fusion for robust
multichannel source separation,” in the proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[38] K. V. Mardia, G. Hughes, C. C. Taylor, and H. Singh, “A multivariate
von Mises distribution with applications to bioinformatics,” Tech. Rep.,
University of Leeds, 2007.

[39] V. Cevher, R. Velmurugan, and J. H. McClellan, “Acoustic multitarget
tracking using direction-of-arrival batches,” IEEE Transactions on Signal
Processing, vol. 55, no. 6, pp. 2810–2825, 2007.

[40] K. M. Varma, “Time delay estimate based direction of arrival estimation
for speech in reverberant environments,” M.S. thesis, Virginia Polytech-
nic Institute and State University, 2002.

[41] T. Kirubarajan and Y. Bar-Shalom, “Probabilistic data association
techniques for target tracking in clutter,” Proceedings of the IEEE, vol.
92, no. 3, pp. 536–557, 2004.

[42] S. S. Blackman, “Multiple hypothesis tracking for multiple target
tracking,” IEEE Aerospace and Electronic Systems Magazine, vol. 19,
no. 1, pp. 5–18, 2004.

[43] P. Kabal, “TSP speech database,” 2002, Telecommunications and Signal
Processing Lab, McGill University.

[44] J. Allen and D. Berkley, “Image method for efficiently simulating small-
room acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4, pp. 943–950, 1979.

[45] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement
in blind audio source separation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 14, no. 4, pp. 1462 –1469, 2006.

[46] K. Adiloglu and E. Vincent, “Variational bayesian inference for source
separation and robust feature extraction,” Tech. Rep., INRIA, 2012.

[47] Y. Hioka, K. Niwa, S. Sakauchi, K. Furuya, and Y. Haneda, “Estimating
direct-to-reverberant energy ratio using d/r spatial correlation matrix
model,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 8, pp. 2374–2384, 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2014.2365701

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

Johannes Traa (M ’13) received the B.S. degree in
electrical engineering from Northwestern University,
Evanston, IL, in 2011 and the M.S. degree in electri-
cal and computer engineering from the University of
Illinois at Urbana-Champaign (UIUC), Urbana, IL,
in 2013. He is currently pursuing the Ph.D. degree
in electrical and computer engineering at UIUC.

He has been a Research Assistant with Paris
Smaragdis at UIUC since 2011. In the summers of
2012-2014, he interned with the theory group at
Lyric Labs, Analog Devices in Boston, MA. His

research interests include audio source separation and localization, sound
mixture analysis with additive modeling techniques like non-negative matrix
factorization, and applications of various areas of statistics (e.g. compositional,
directional) to audio problems.

Paris Smaragdis (paris@illinois.edu) is an assistant
professor in the Computer Science Department and
the Electrical and Computer Science Department at
the University of Illinois at Urbana-Champaign, as
well as a senior research scientist at Adobe Research.
Prior to that he was a research scientist at Mitsubishi
Electric Research Labs, during which time he was
selected by MIT Technology Review as one of
the top 35 young innovators of 2006. His research
interests lie in the intersection of machine learning
and signal processing. He is a Senior Member of the

IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2014.2365701

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


