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Physical synthesis of the sound field that is generated by a moving virtual sound source
has been the subject of extensive research in the recent decade. The article presents a new
analytical modeling approach based on the wavenumber domain representation of the field
emitted by a virtual monopole under uniform motion. Explicit and implicit frequency domain
driving function expressions are derived for planar and linear secondary sources using the
Spectral Division Method (SDM) and Wave Field Synthesis (WFS). The proposed method
results in analytically correct driving functions and thereby correct synthesis of the Doppler
effect.

1 INTRODUCTION

Sound Field Synthesis (SFS) aims at the physically cor-
rect synthesis of a virtual sound field by driving a set of
secondary loudspeakers with appropriate driving signals.
The objective of SFS is to provide proper driving functions
to the secondary source distribution (SSD) so that the su-
perposition of their individual sound fields results in the
desired virtual sound field over a listening area.

When analytical SFS techniques are developed, the tar-
get sound field is most often a plane wave or the field
induced by a virtual point source, whereas the loudspeaker
arrangement is typically linear, planar, circular or spheri-
cal due to available analytic closed form expressions for
driving functions. For the case of linear or planar SSD the
most prominent technique is Wave Field Synthesis (WFS),
based on the Rayleigh integral formulation of the virtual
sound field [1–3]. For circular and spherical SSDs most
techniques rely on Ambisonics, which gives an explicit for-
mulation of the driving signals based on mode-matching
in the spherical harmonic domain [4–7]. Besides the WFS,
an Ambisonic-like mode-matching solution—termed the
Spectral Division Method (SDM)—has been recently intro-
duced [8, 6], which gives an explicit solution to the problem
in the spectral (wavenumber) domain.

In addition to the SFS of stationary sources, the synthesis
of moving sound sources has gained an increasing interest.
A typical example is the synthesis of dynamic sound-scenes
in virtual reality or cinema sound systems. In these appli-
cations, the proper reconstruction of the Doppler effect is
of primary importance.

Early implementations of WFS with moving sources sim-
ulate the source motion as a sequence of stationary positions

[9]. The technique results in a Doppler-like frequency varia-
tion, however, the generated sound field suffers from several
artifacts. In conjunction with the deviation from the physi-
cally correct Doppler-frequency shift, a spectral broadening
arises that makes the correct synthesis of an arbitrary wave
front unfeasible. A recent approach attempts to incorpo-
rate the physical description of moving source dynamics
into 3D WFS [10, 6]. The method provides mathematically
correct time-domain driving functions for planar secondary
sources. However, for a linear SSD a mathematically in-
consistent solution was presented.

The present article revisits the SFS for virtual sound
sources moving with a uniform speed. An analytical ap-
proach is formulated that reproduces the target sound field
using a linear SSD. Analytical driving function expressions
are presented both in the wavenumber domain using SDM
and in the space-frequency domain by applying the estab-
lished WFS approximations.

The article is structured as follows: Sec. 2 briefly recon-
siders the main concepts of SDM and WFS. Sec. 3 derives
the frequency and wavenumber domain representations of
the field generated by a moving virtual monopole source.
Sec. 4 applies the results of Sec. 3 for synthesis using both
SDM and WFS. Finally, Sec. 5 presents numerical valida-
tion of the developed driving function expressions.

2 PRINCIPLES OF SOUND FIELD SYNTHESIS

The general arrangement used throughout this article is
shown in Fig. 1. The listening area is the [x, y > 0, 0]T

half plane. The secondary sources are modeled as identical
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Fig. 1 SFS geometry under discussion.

point sources forming an infinite linear distribution along
the x-axis.

If the SSD is driven by the driving function D(x0, ω),
where ω denotes the temporal angular frequency, then the
frequency content P(x,ω) of the synthesized sound field at
the location x = [x, y, z]T is expressed as [6]

P(x, y, z,ω) =
∫ ∞

−∞
D(x0,ω) G(x − x0, y, z,ω)dx0, (1)

where G(x,ω) denotes the field of a secondary point
source located at the origin. For 3D problems secondary
source elements are most often modeled as acoustic
monopoles, where G(x,ω) = e−j k |x|/4π|x| is the 3D full
space, freefield Green’s function, and k = ω

c is the acoustic
wavenumber. The derived linear driving function is often
referred as 2.5D driving function, referring to the fact that
instead of the 2D Green’s function 3D point sources are
used for 2D SFS problem as well [1].

2.1 Spectral Division Method
The explicit solution for the reproduction problem relies

on the fact that integral Eq. (1) represents a convolution
along the secondary source line. A temporal Fourier trans-
form w.r.t. t and a spatial Fourier transform w.r.t. x yields
the wavenumber domain representation P̃(kx , y, z,ω) of
the synthesized field in the form of a spectral product.
Specifically, the desired field on the reference line can be
formulated as

P̃(kx , yref, 0,ω) = D̃(kx ,ω) G̃(kx , yref, 0,ω), (2)

and the driving function is computed by a spectral division:

D̃(kx ,ω) = P̃(kx , yref, 0,ω)

G̃(kx , yref, 0,ω)
. (3)

The SDM employs no approximation, ensures perfect
synthesis on the reference line, and can be therefore re-
garded as a reference solution. However, direct applications
require the inverse spatio-temporal transform of the driving
function D̃, which often cannot be calculated analytically.

2.2 Wave Field Synthesis
As the alternative of SDM, traditional WFS provides

an implicit solution for the problem based on the Rayleigh-
integral formulation of the virtual sound field. The Rayleigh

integral represents the wave field in the half space y > 0
merely using boundary conditions on the boundary plane
y = 0 [3]:

P(x,ω) = ∫∫∞
−∞ −2

∂ P(x0, y, z0,ω)

∂y

∣∣∣∣
y=0︸ ︷︷ ︸

D3D(x0,z0,ω)

G(x − x0, y, z − z0,ω)dx0dz0.

(4)

The Rayleigh integral provides a straightforward way of
perfect SFS by driving a planar secondary monopole dis-
tribution with the normal derivative of the desired field at
y = 0. In order to obtain the driving functions D(x0, ω)
for a linear secondary array, the stationary phase method
[11] can be applied. The method is based on the second
order Taylor series expansion of rapidly oscillating func-
tions, followed by an analytical integration along the z-axis,
and results in a frequency-dependent correction term [12,
3, 13]. As the result of the approximation, phase-correct
synthesis is restricted to the synthesis plane, i.e., the hor-
izontal plane containing the virtual sound source and the
SSD. Furthermore, correct synthesis w.r.t. amplitude and
phase is restricted to the reference line, parallel to the sec-
ondary sources. While for a planar SSD geometry SDM and
WFS provide exactly the same result [14], linear WFS can
be regarded as the far-field/high-frequency approximation
of the linear SDM, as shown, e.g., in [13].

3 DESCRIPTION OF MOVING SOUND SOURCES
IN THE SPECTRAL DOMAIN

The presented two approaches of SFS may be applied to
arbitrary virtual sound fields, including the field of mov-
ing virtual sources. Application of WFS requires the nor-
mal derivative of the desired field on the boundary plane,
SDM utilizes the wavenumber domain representation of
the virtual field on the reference line. This section provides
analytical expressions for the frequency and wavenumber
content for a virtual spherical monopole source moving in
an arbitrary direction along a infinite straight line in the
z = 0 plane. First the case of the motion, parallel to the
x-axis is introduced which is then extended in Sec. 3.2 for
arbitrary inclination angles. The presented description can
be applied for sources moving at subsonic velocities (i.e.,
v < c). As it was pointed out in [6], the SFS of sources
moving at supersonic velocities is of little practical use as
the human auditory system is not aware of the properties of
the sound field generated by such a moving source.

3.1 Temporal Fourier Transform Representation
The description of the time history of the sound field

generated by the moving source is analogous to that given
in [6]. Consider a translation invariant, harmonically oscil-
lating moving source located at xs(τ) = [xs + vτ, ys, zs]T

and radiating with a source time history q(τ) = ejω0τ. The
arrangement is depicted in Fig. 2. The sound field can be
expressed as the response of a linear time-variant system
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Fig. 2 Arrangement for description of a moving sound source.

with a time-varying impulse response gm(x–xs(τ),τ):

pm(x, t) =
∫

(τ)
gm(x − xs − vτ, y − ys,

z − zs, t − τ) ejω0τ dτ. (5)

Expressing the source impulse response gm(x, y, z, t) with
the double inverse Fourier transform of its wavenumber-
frequency domain representation G̃m(kx , y, z,ω) results in

gm(x − xs − vτ, y, z, t − τ) = 1
(2π)2∫

(ω′)

∫
(kx )

G̃m(kx , y, z,ω′) e−jkx (x−xs−vτ)

dkx ej(t−τ)ω′
dω′.

(6)

Performing a forward Fourier transform with respect to
time, the frequency content Pm of the field of the moving
virtual source is obtained as:

Pm(x,ω) = Ft {p(x, y, z, t)}
=
∫

(t)

∫
(τ)

∫
(ω′)

∫
(kx )

1

4π2
G̃m(kx , y − ys, z − zs,ω

′)

e−jkx (x−xs−vτ) dkx ejω′(t−τ) dω′ ejω0τ dτ e−jωt dt.

(7)

Reversing the order of integration, simplifying the Fourier
transform of exponentials with Dirac delta functions and
exploiting the sifting property of the Dirac delta function
along with applying the similarity theorem, the following
final expression for the frequency content is obtained:

Pm(x,ω) = 1

v
G̃m

(
k̂, y − ys, z − zs,ω

)
e−jk̂(x−xs), (8)

where k̂ = ω−ω0
v

.
For the case of a virtual monopole sound source, the

wavenumber content G̃m is written as

G̃m(kx , y, z,ω) = − j

4
H (2)

0 (−j kt rt) , (9)

where H (2)
0 denotes the Hankel function of the second kind

and order 0, rt =
√

y2 + z2 is the transversal distance, and
kt = √

k2
x − (ω/c)2 is the transversal wavenumber.

3.2 Sources Moving Inclined to the x-axis
The field of a virtual moving source arriving at the x-

axis under a given angle of inclination ϕ can be formulated
by a rotation of coordinate axes (refer to Fig. 3). The new

v
x x

yy

v

x’

y’

(a) (b)

Fig. 3 The field of a source moving in arbitrary direction can be
derived from a source, moving parallel with x-axis in a rotated
coordinate system.

coordinate system x′ = [x′, y′, z] is defined by the relation

[
x ′ y′] =

[
cosϕ sinϕ

−sinϕ cosϕ

][
x − xs y − ys

]
. (10)

In the shifted and rotated coordinate system the source is
located in the origin at the time origin and travels parallel
to the x′-axis. According to Eqs. (8) and (9), for a moving
monopole arriving at the x-axis at an angle ϕ, located at t =
0 at [xs, ys, 0]T the frequency content of the generated field
is given by

Pm(x,ω) = − j

4v
H (2)

0

(
−j k̂t

√
y′2 + z2

)
e−jk̂x ′

, (11)

where k̂t =
√

k̂2 − (
ω
c

)2
.

The same transform may be applied to the spatio-
temporal description of a moving source, as given by [15,
(11.2.13)] in order to describe the time history of a source
moving at arbitrary direction in the original coordinate
system:

pm(x, t) = 1

4π

e
j ω0

(
t− M(x ′−v t)+

√
(x ′−v t)2+(y′2+z2)(1−M2)

c(1−M2)

)
√

(x ′ − v t)2 + (y′2 + z2)(1 − M2)
, (12)

with M = v
c denoting the Mach number. In the following

chapters this formulation will serve as a reference solution
for numerical simulations.

3.3 Spatio-Temporal Fourier Transform
Representation

The spatial Fourier transform of Eq. (11) is considered in
the most relevant z = 0 plane only. The wavenumber content
can be given as (see the appendix for the derivation)

P̃m(kx , y, 0,ω) = π

v|sinϕ|
exp

(
−j k̂ y−ys

sinϕ

)
√(

cosϕ k̂−kx

sinϕ

)2
+ k̂2

t

exp

(
j kx

sinϕ xs + cosϕ (y − ys)

sinϕ

)
. (13)

As the derivation utilizes the Fourier similarity theo-
rem (see .2 in the Appendix), which is defined only for
not-zero scaling ratio, the above expression is undefined
for ϕ = 0. However, the parallel case is easily handled by
the direct transform of Eq. (8) where only the exponential
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Fig. 4 (a) Snapshot of �{pm(x, t)} calculated in the wavenumber-
frequency domain via double inverse transforming Eq. (13) and
(b) the field compared with the reference solution (Eq. (12)) taken
at y = −10 m.

term depends on x:

P̃par(kx , y, 0,ω)

= − j

4v
H (2)

0

(−j k̂t |y − ys |
)

ej k̂ xs 2πδ(kx − k̂). (14)

It can be proven, that Eq. (13) converges weakly into Eq.
(14). The spectral representation of the field evoked by a
moving virtual sound source is of primary importance in
the aspect of SFS utilizing the SDM.

In order to demonstrate the applicability of the theoretical
results, the sound field of a moving harmonic monopole is
computed by means of the direct numerical evaluation of
Eq. (13), followed by a double inverse Fourier transform.
The point source travels with an angle of ϕ = 45◦, at a
velocity of v = 200m/s, and radiates at ω0 = 2π · 60rad/s.
The results are depicted in Fig. 4. The perfect match with
the reference solution Eq. (12) indicates the validity of both
the derived frequency domain and wavenumber domain
representations Eqs. (11)–(13).

4 SYNTHESIS OF MOVING SOUND SOURCES

4.1 2.5D Driving Functions for SDM
Having found the wavenumber domain representation of

the virtual sound field, the application of the SDM for sound

field synthesis is straightforward. The driving function is
computed by a spectral division, cf., Eq. (3)

D̃(kx ,ω) = P̃m(kx , yref, 0,ω)

G̃(kx , yref, 0,ω)
, (15)

where P̃ is defined by Eq. (13) and G̃ is given by Eq. (9).
For this general case only the wavenumber representation
of the driving function is available. For a virtual source
moving parallel to the secondary sources, using Eq. (14)
the driving function simplifies to

D̃(kx ,ω)

= 2π

v

H (2)
0

(−j k̂t |yref − ys |
)

H (2)
0 (−j kt |yref|)

e j k̂ xs δ(kx − k̂). (16)

The frequency domain representation of the driving func-
tion is obtained by means of an inverse Fourier transform.
The sifting property of the Dirac-delta function can be ex-
ploited (kx = k̂). As kt |kx =k̂ = k̂t , the resulting driving func-
tion is given by

D(x0,ω) = 1

v

H (2)
0

(−j k̂t |yref − ys |
)

H (2)
0

(−j k̂t |yref|
) e−j k̂ (x0−xs ). (17)

This means that for the special case of a source, moving
parallel to the SSD the spatial inverse transform can be
carried out and an analytic closed reference solution was
found.

4.2 3D and 2.5D Driving Functions for WFS
For the application of WFS with a planar SSD, the y

directional derivative of the virtual sound field Eq. (11)
needs to be formulated on the boundary plane y = 0 (cf.,
Eq. (4)). The resulting driving function is given as:

D3D(x0, z0,ω) = e−j k̂ x ′

2v

(
k̂ sinϕ H (2)

0 (−j k̂t r ′
t )

− k̂t cosϕ y′

r ′
t

H (2)
1 (−j k̂t r ′

t )
)
, (18)

where x′ = cosϕ (x0 − xs) − sinϕ ys and y′ = −sinϕ (x0 −
xs) − cosϕ ys with r ′

t =
√

y′2 + z2. This driving function
ensures perfect reconstruction in the y > 0 half-space.

In order to obtain the WFS driving functions for a lin-
ear SSD, the integration along the vertical direction in the
Rayleigh integral needs to be carried out analytically. This
can be done using the large-argument exponential approxi-
mation of the Hankel functions as given by [16, (10.2.5-6)],
and applying the method of stationary phase for a fixed
evaluation position xe at z0 = 0 [12]. The obtained driving
function reads

D(x0,ω) = 1

v

√
r

k |y′| − j k̂t r⎛
⎝
√

k̂t

j
cosϕ +

√
j

k̂t
k̂ sinϕ

⎞
⎠ e−k̂t |y′|−j k̂ x ′

, (19)

where r = |xe − x0|, with x0 = [x0, 0, 0]T. This driving
function is valid for a fixed observer position xe. The
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convolution expression for the synthesized field reads

P(xe,ω) =
⎛
⎝
√

k̂t

j
cosϕ +

√
j

k̂t
k̂ sinϕ

⎞
⎠ 1

v∫ ∞

−∞

√
r

k |y′| − j k̂t r

1

4π r
e−k̂t |y′ |−j(k̂ x ′+k r) dx0. (20)

In order to achieve perfect synthesis along a reference
line instead of a reference point, the same procedure is
carried out as given in [1, Ch. 3.1] for stationary virtual
sources. We suggest that the pressure in the evaluation point
xe = [xe, yref, 0]T is dominated by the contribution of one
secondary source at x∗

0 = [x∗
0 , 0, 0]T and its close neigh-

borhood. The secondary position x∗
0 is obtained by finding

the stationary point along the x-axis, where the derivative
of the exponential in Eq. (20) with respect to x is zero. The
resulting stationary distance r0 = |xe − x∗

0| is independent
of the observation position, and can be expressed as

r0 = |yref|
√

k2

(k̂ sinϕ − j k̂t cosϕ)2
. (21)

This wavenumber-dependent distance, substituted in place
of r in Eq. (19) ensures amplitude correct synthesis on the
reference line y = yref .

D2.5D(x0,ω) = 1

v

√√√√ |yref|
(cosϕ + j k̂

k̂t
sinϕ) |y′| + |yref|(

cosϕ + j
k̂

k̂t
sinϕ

)
e−k̂t |y′|−j k̂ x ′

. (22)

All three approximations are valid in the far-field, mean-
ing that the synthesis will be correct only relatively far from
the SSD.

For sources moving parallel to the SSD the driving func-
tion simplifies to

D2.5D(x0,ω) = 1

v

√
|yref|

|ys | + |yref|e−k̂t |ys |−j k̂ (x0−xs ). (23)

It can be easily proven that the large argument approxima-
tion of the SDM solution given by Eq. (17) coincides with
Eq. (23), meaning that similarly to the case for a stationary
source, the two techniques lead to the same result in the far
field.

A recent approach for WFS of a moving source obtains
valid driving functions for planar secondary sources by
evaluating the directional gradient of the description for
a moving source in the time domain [6]. For linear sec-
ondary sources, however, it applies the constant correction
term obtained for a stationary virtual source, and omits the
spatio-temporal dependency of the angular frequency, mea-
sured along the SSD. As the derived driving function Eq.
(22) is frequency-dependent, it is obvious that 2.5D cor-
rection will depend both on space and time. Therefore, the
heuristic assumption about the prefiltering will lead to am-
plitude errors over the listening area—even on the reference
line—as it was confirmed by simulations.

It is important to note that sources moving inclined to the
x-axis will always be located in front of the SSD for a certain
time interval. As it is a standard prerequisite for both SDM
and WFS (not involving focusing), that the virtual source
is located behind the SSD, the derived driving functions
require special interpretation. From symmetry properties
of the Rayleigh integral, the synthesized fields can always
be interpreted as that of a moving source that bounces back
from the the SSD with opposite amplitude and angle of
reflection π − ϕ. Also, at the time instant when the virtual
source reaches the SSD or the reference line, the driving
function becomes singular, which is a direct consequence
of the acoustic monopole’s non-physical nature. Due to
the mentioned two artifacts, the practical applications of
the presented methods are restricted to space-time regimes
when the moving source does not enter the listening area.

5 NUMERICAL EXAMPLES AND COMPARISON

5.1 Parallel Case
The first presented example is SFS of a harmonic

monopole moving parallel to the secondary sources. The
source is located at xs = [0, −1, 0]T at the time origin and
travels with a speed of v = 200m/s. The source frequency
is ω0 = 2π · 50rad/s. The secondary sources are located
along the x-axis, and the reference line is at a distance of
yref = 3m from the secondary sources.

WFS simulation was carried out in the time domain,
and the driving functions were obtained by performing the
numerical inverse Fourier transform of Eq. (23). The length
of the secondary source array was L = 200m, with a spatial
resolution of �x = 0.2m. The duration of the calculated
pass-by was T = 5s, with a sampling frequency of fs =
8kHz.

Fig. 5(a) displays the time history of the synthesized
sound field at the observation point x = [0, yref, 0]T and
compares the result of WFS with the analytical time domain
reference solution given by Eq. (12). Apparently, the de-
rived driving functions provide perfect reconstruction suf-
ficiently far from the SSD.

Fig. 5(b) displays the instantaneous frequency of the syn-
thesized signal as the function of time and compares the
numerical results to the theoretical time-dependence of the
observed frequency [15, (11.2.16)]. The perfect match be-
tween the theoretical and the synthesized results indicates
the proper reproduction of the Doppler effect in time do-
main.

5.2 Inclined Case
The next numerical example is SFS of a monopole trav-

eling in an inclined direction of ϕ = 30◦ with a velocity
of v = 200m/s and oscillating at a source frequency ω0 =
2π · 20rad/s. The source is located in the time origin at
xs = [0,−5, 0]T and the reference line is set to yref = 10m.
Again, the length of the SSD was 200 m, with a resolution
of 0.25 m. In case of the planar synthesis the vertical length
of the secondary plane was 100 m. The pass-by, with a
duration of 5 s was sampled at fs = 1500 Hz.
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Fig. 5 (a) Time history and (b) measured instantaneous frequency of a virtual source pass-by using WFS.

For this setup, both WFS and SDM results are pre-
sented. The WFS provides analytical driving functions in
the spatial-frequency domain, but the driving functions of
the SDM are only available in the wavenumber domain. The
numerical inverse Fourier transform of Eq. (15) may lead
to several undesired effects as explained in the following.

Sampling in the kx wavenumber domain results in alias-
ing in space, i.e., multiple virtual sources passing by in
the same direction. To overcome aliasing, the spectrum of
the driving function was oversampled by a factor of 3 and
the space domain driving functions were low-pass filtered
and decimated to achieve the final spatial resolution. The
second numerical problem stems from the spectral divi-
sion. As the spectrum of the stationary monopole decreases
exponentially with the wavenumber kx in the evanescent do-
main, the division may lead to large numerical errors. This
is a well-known issue in the field of Near Field Acoustic
Holography. To avoid round off errors, numerical regular-
ization [11] is needed. The applied regularization method
is low-pass filtering with a smooth transition at kx = ω

c .
Fig. 6 displays the snapshot of the analytically available

target wave field and the result of the linear WFS at t =
0. It can be seen, that using the derived WFS driving func-
tions phase correct synthesis of the original wave front can
be achieved in the plane of synthesis. Amplitude devia-
tions from the reference field are emphasized by plotting
cross-sections of the synthesized fields: Fig. 7 compares the
results of three SFS techniques by displaying the simulated
field at t = 0 along the reference line. The techniques are
(a) WFS with a planar SSD Eq. (18), depicted together with

WFS with a linear SSD Eq. (22), and (b) SDM Eq. (15).
The simulation results of all techniques are compared to the
analytical solution.

As expected, the result of planar WFS provides perfect
match. We note here that in this case the analytical virtual
field is captured at any point in front of the secondary plane.

For the case of the linear WFS and the SDM slight ampli-
tude errors occur. Linear WFS yields the largest deviations
around the location x = 0. These errors are caused by the
horizontal stationary phase approximation applied in Eq.
(22).

Although the SDM should ensure a perfect synthesis
on the reference line, Fig. 7(c) shows growing amplitude
errors with increasing x. These errors originate from the
spatial aliasing and can be reduced by higher oversampling
of the wavenumber spectrum. Besides the amplitude errors
both techniques applying linear secondary arrays result in a
phase-correct synthesis on the reference line. This confirms
the validity of the theoretical results given in the previous
sections.

6 CONCLUSION

This article presented an analytical approach for the de-
scription and synthesis of moving virtual sound sources.

Based on the spectral description of a moving source,
an analytical expression was formulated for the frequency
and wavenumber content of a virtual monopole traveling in
an arbitrary horizontal direction. By utilizing the spectral
description and applying the method of stationary phase,

Fig. 6 The field of a monopole source moving at ϕ = 30◦ at t = 0 (a) calculated from the reference solution 12 and (b) synthesized by
2.5D WFS.
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Fig. 7 The reproduction of a sound source, moving at ϕ = 30◦ to the x-axis at t = 0: cross-section of the synthesized sound field along
the reference line using (a) WFS with planar and linear SSD, (b) and SDM.

a compact analytical formula was found for the WFS of
moving sources with linear SSD. Based on the introduced
wavenumber representation, explicit wavenumber domain
driving functions were given for the SDM. As the main
finding of the research a mathematically consistent solu-
tion was given for SFS utilizing both WFS and the SDM.
For the case of a sound source moving parallel to the SSD,
the frequency domain SDM driving functions were found
analytically, and it was shown that similarly to the sta-
tionary case, WFS provides the far-field approximation for
the reference SDM solution. Theoretically, the presented
techniques are capable of handling sources with arbitrary
excitation time histories. However, their direct numerical
application is computationally expensive and needs further
development.
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APPENDIX

.1 DEFINITIONS OF FOURIER TRANSFORMS

The temporal Fourier transform (or frequency content)
of a function f(t) and the spatial Fourier transform (or
wavenumber content) are defined in the same manner as
in the related literature, e.g., [8]:

Ft { f (t)} = F(ω) =
∫ ∞

−∞
f (t) e−j ω t dt, (24)

Fx { f (x)} = f̃ (kx ) =
∫ ∞

−∞
f (x) ej kx x dx (25)

.2 SPATIAL FOURIER TRANSFORM OF THE
FIELD OF A MOVING SOURCE

By using Eq. (11) and the convolution theorem [11], the
Fourier transform to be evaluated is written as

− j

4v
Fx

{
H (2)

0 (−j k̂t |y′|) e−j k̂ x ′}
= − j

4v
Fx

{
H (2)

0 (−j k̂t |y′|)
}

∗kx Fx

{
e−j k̂ x ′}

. (26)

The second term is the Fourier transform of an
exponential and can be easily evaluated. By substi-

tuting the original coordinates, the result is written
as

Fx

{
e−j k̂ x ′}

= 2πδ(kx − cosϕ k̂)e−j k̂ (sinϕ (y−ys )−cosϕ xs ). (27)

For the first term we utilize that the function to be trans-
formed is even and make use of the expression [17,
(6.677,9.)], with substituting β = 0

Fx

{
H (2)

0 (−j k̂t |x |)
}

= 2j√
k2

x + k̂2
t

. (28)

As y′ = −sinϕ x + (sinϕ xs + cosϕ (y − ys)), we may use
the similarity and shifting theorems to obtain:

Fx

{
H (2)

0 (−j k̂t |x |)
}

= 2j

|sinϕ|
ej kx

sinϕ
(sinϕ xs+cosϕ (y−ys ))√
(− kx

sinϕ
)2 + k̂2

t

. (29)

The convolution will sift out kx = kx − cosϕ k̂:

− j

4v
Fx

{
H (2)

0 (−j k̂t |y′|) e−j k̂ x ′} = π

v|sinϕ|
e−j cosϕ k̂−kx

sinϕ
(sinϕxs+cosϕ(y−ys ))√(

cosϕk̂−kx

sinϕ

)2
+ k̂2

t

e−j k̂(sinϕ(y−ys )−cosϕxs ). (30)

After rearrangement and using basic trigonometric identi-
ties, the equation takes the form as given in the body text
Eq. (13).
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