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The sound field synthesis of moving sound sources is of great importance when dynamic virtual sound
scenes are to be reconstructed. Previous solutions considered only virtual sources moving uniformly
along a straight trajectory, synthesized employing a linear loudspeaker array. This article presents
the synthesis of point sources following an arbitrary trajectory. Under high-frequency assumptions
2.5D Wave Field Synthesis driving functions are derived for arbitrary shaped secondary source
contours by adapting the stationary phase approximation to the dynamic description of sources
in motion. It is explained, how a referencing function should be chosen in order to optimize the
amplitude of synthesis on an arbitrary receiver curve. Finally a finite difference implementation
scheme is considered, making the presented approach suitable for real-time applications.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Wave Field Synthesis (WFS) aims at the physical
reproduction of a target sound field over a listening area
using a densely spaced loudspeaker ensemble, termed as
the secondary source distribution (SSD). The loudspea-
kers are fed with properly derived driving functions, so
that the field in the listening area—i.e. the resultant
field of the secondary sources—coincides with the target
sound field.

WFS extracts the driving functions from an ap-
propriate boundary integral representation of the tar-
get wave field. Early WFS theory—often refered to as
traditional WFS—was able to synthesize a virtual 3D
point source using secondary sources distributed along
a straight line. The driving functions were obtained
from the Rayleigh-integral representation of the target
field1–3. The theory was later generalized towards the
synthesis of arbitrary virtual sound fields applying arbi-
trarily shaped enclosing secondary arrays4, utilizing the
high frequency approximation of the general Kirchhoff-
Helmholtz integral5.

All WFS approaches rely on a dimensionality re-
duction, in order to derive driving functions for a practi-
cally applicable 2D secondary source contour instead
of an ideal 3D SSD surface. This dimensionality re-
duction maintains phase-correct synthesis in the listening
plane, but restricts amplitude correct synthesis to par-
ticular locations. These locations are chosen along an
infinite reference line parallel to the SSD in case of tra-
ditional WFS, while the generalized formulation ensures
amplitude-correct synthesis in a single reference point. In
a recent work from the present authors it is demonstra-
ted, that by introducing a proper referencing function
WFS is capable of amplitude correct synthesis along an
arbitrary listening curve using an arbitrarily shaped SSD
contour6.

In addition to the synthesis of stationary virtual
sound fields—e.g. plane waves and stationary point
sources—the synthesis of moving point sources gained

increasing interest. For this dynamic case the primary
challenge is the proper reconstruction of the Doppler-
shift, which is inherently solved when the dynamic des-
cription of the target field is adapted to WFS theory7,8.
As a particular case, the synthesis of sources under uni-
form motion using a planar/linear SSD is well-studied.
In recent articles by the authors driving functions were
obtained for linear secondary sources by adapting traditi-
onal WFS theory to the dynamic scenario9, and by alter-
natively applying the explicit spectral solution, termed
as the Spectral Division Method10. The general case of
virtual sources moving along an arbitrary trajectory with
arbitrary velocity profile has not been investigated so far
in an analytical manner.

The present article deals with the general solution
of the dynamic sound field synthesis (SFS) problem. By
adapting the moving source dynamics to the recently in-
troduced unified WFS formulation6, driving functions are
given for arbitrarily shaped SSDs, ensuring amplitude
correct synthesis on an arbitrary shaped receiver curve
in the high-frequency region. Besides generalizing WFS
theory towards virtual sources under arbitrary motion,
the presented treatise further demonstrates that the uni-
fied WFS formulation is adequate for dynamic synthesis
scenarios as well.

The paper is structured as follows: Section II.A in-
troduces the concept of wave field synthesis, and Section
II.B derives the sound field of a 3D monopole following
an arbitrary trajectory. Section III adapts WFS to the
field of the moving source, and derives 3D driving functi-
ons for arbitrarily shaped surface SSDs, as well as 2.5D
driving functions for curved SSD contours. By utilizing
the referencing function concept, referencing functions
are derived for the 2.5D case, allowing amplitude cor-
rect synthesis along a predefined reference curve. Section
IV presents numerical validation of the derived driving
functions. Finally, Section V presents an efficient com-
putation scheme that allows real time computation of the
driving functions.
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II. THEORETICAL BACKGROUND

A. Wave Field Synthesis theory

The general SFS problem can be formulated as fol-
lows. Consider a secondary source distribution consisting
of identical sources, located at x0 = [x0, y0, z0]T ∈ S.
The synthesized pressure field at the receiver position x
reads as

p(x, t) =

∫
S

∫ ∞
−∞

d(x0, t0)h(x− x0, t− t0)dt0dx0, (1)

where h(x, t) is the spatio-temporal impulse response of
the secondary sources and d(x, t) is the driving function
to be derived, so that the synthesized sound field equals
to the target sound field in the listening area.

WFS extracts the driving functions from a boundary
integral representation of the target field. If the listening
area V is bounded by the smooth surface S, then the
sound field in x ∈ V can be expressed by its Kirchhoff-
Helmholtz integral representation (KHI):

p(x, t) =

∫
S

∞∫
−∞

p(x0, t0)
∂

∂nin
g(x− x0, t− t0)dt0dx0−

−
∫
S

∞∫
−∞

∂

∂nin
p(x0, t0)g(x− x0, t− t0)dt0dx0 (2)

where g(x, t) = 1
4π

δ(t−|x|/c)
|x| is the acoustic Green’s

function, e.g. the field of a monopole, and c denotes
the speed of sound. In order to eliminate the impractical
dipole sources represented by the normal derivative of
the Green’s function, two approaches may be followed.
If the listening area V is an infinite half space boun-
ded by the infinite plane S, then the dipole contributions
cancel out and the KHI simplifies to the Rayleigh inte-
gral. Alternatively, by assuming convex enclosing boun-
daries and high-frequencies (where the wavelength is sig-
nificantly smaller than the boundary dimensions), the
Kirchhoff/Physical Optics approximation may be applied
to the KHI. Under these assumptions the boundary can
be considered locally planar, and the KHI is approxima-
ted locally by the Rayleigh-integral. In both cases, the
resulting boundary integral representation can be formu-
lated as

p(x, t) =

∫
S

∞∫
−∞

d3D(x0,t0)︷ ︸︸ ︷
−2w(x0)

∂

∂nin
p(x0, t0) g(x−x0, t−t0)dt0dx0.

(3)
The new term w(x0) is a windowing function that selects
the illuminated region of the SSD. These are the locations
where the target field propagates towards the listening
area:

w(x0) =

{
1 〈k(x0) · nin(x0)〉 > 0

0 elsewhere,
(4)
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S: 3D SSD surface

C: 2.5D SSD contour

FIG. 1. General 3D WFS geometry for the derivation of 2.5D
driving functions. The SSD surface S = f(x0, y0) is chosen
to be independent of the z-coordinate in order to be able to
evaluate the integral with respect to z0 using the SPA. If the
virtual sound field is a 2D one, propagating in the direction
parallel to the listening plane, then the SSD can be interpreted
as a continuous set of infinite vertical line sources along C
(described by the 2D Green’s function), capable of the perfect
synthesis of a virtual 2D field inside the enclosure.

where k(x0) denotes the local wavenumber vector of the
target sound field and 〈 · 〉 denotes the inner product of
two vectors. In the aspect of WFS this type of windowing
is referred to as secondary source criterion4,11.

Equation (3) implicitly contains the driving function
as the normal derivative of the target field on the SSD.
Equivalently, in the frequency domain (assuming a time
dependency ejωt )

P (x, ω) =

∫
S

D3D(x0,ω)︷ ︸︸ ︷
−2w(x0)

∂

∂nin
P (x0, ω)G(x− x0, ω)dx0,

(5)

where G(x, ω) = 1
4π

e−jω|x|/c

|x| is the 3D Green’s function

in the frequency domain. In the frequency domain, the
local wavenumber vector can be defined as

k(x) = −∇∠P (x, ω), (6)

where ∠ denotes the phase of an arbitrary sound field.
The wavenumber vector points in the direction of local
propagation, and is perpendicular to the wavefront.

Note that the derived driving functions would ens-
ure perfect synthesis for a planar SSD, where the enclosed
listening area is a half space. In this case the windowing
function is identically one. For any other SSD geometries
high-frequency assumptions must hold.

Practically, the SSD is realized by a contour of
loudspeakers, restricting the phase correct synthesis to
the plane, bounded by the SSD, termed the listening
plane. In order to derive driving functions for an SSD
contour, the geometry of Figure 1 is applied. By assu-
ming an SSD surface independent of the vertical coor-
dinate, the Kirchhoff-integral (3) can be approximated
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FIG. 2. Arrangement for the description of a source, moving
at an arbitrary trajectory

by a contour integral, by applying the stationary phase
approximation (SPA). The latter formulation implicitly
contains the driving functions for an SSD curve, termed
the 2.5D WFS driving functions. These driving functions
can be adapted to ensure amplitude correct synthesis al-
ong a prescribed reference curve by further utilizing the
SPA. The derivation is explained in details in the cor-
responding section, applied directly for a moving virtual
point source.

B. Description of moving sources on arbitrary 3D trajectory

The following subsection deals with the analytic des-
cription of 3D point sources under arbitrary motion12.
Consider a translation invariant point source, moving al-
ong the trajectory xs(t) = [xs(t), ys(t), zs(t)]

T and radi-
ating with the source time history q(t). The geometry is
illustrated in Figure 2. The radiated field pm(x, t) at the
receiver position x can be written as the convolution of
the source signal and the time varying impulse response
of the moving source:

pm(x, t) =

∫ ∞
−∞

q(t̂)gm(x− xs(t̂), t− t̂)dt̂, (7)

where the impulse response

gm(x− xs(t̂), t− t̂) =
1

4π

δ
(
t− t̂− |x−xs(t̂)|c

)
|x− xs(t̂)|

(8)

is the retarded Green’s function and t̂ denotes the emis-
sion time. In order to exploit the sifting property of
the Dirac delta in (7), a new variable t′ is introduced as

t′(t̂) = t̂+ |x−xs(t̂)|
c . The Jacobian reads as

dt′(t̂)

dt̂
= 1− 1

c

〈
∂
∂txs(t̂) · (x− xs(t̂))

〉
|x− xs(t̂)|

(9)

where vs(t̂) = ∂
∂t̂
xs(t̂) denotes the source velocity vector.

As the Dirac-delta sifts out t′(t̂) = t, the radiated field
reads as

pm(x, t) =
1

4π

q
(
t− |x−xs(t̂)|c

)
|x− xs(t̂)| − 1

c

〈
vs(t̂) · (x− xs(t̂))

〉 ,
(10)

where t̂ satisfies

t− t̂ =
|x− xs(t̂)|

c
. (11)

Conventionally the radiated field is expressed in
terms of the propagation time-delay τ(x, t) = t − t̂. In-
troducing ∆(x, t) for the attenuation factor the radiated
field is given as

pm(x, t) =
1

4π

q(t− τ(x, t))

∆(x, t− τ(x, t))
, (12)

with

∆(x, t) = |x− xs(t)| −
〈

1

c
vs(t) · (x− xs(t))

〉
= R(x, t) (1−M(t) cosϑ(x, t)) , (13)

where R(x, t) = |x−xs(t)| is the source-receiver distance,
M(t) = |vs(t)|/c is the Mach-number, ϑ(x, t) is the angle
between the velocity vector and the source-receiver vec-
tor. In equation (13) (1−M(t) cosϑ(x, t))

−1
is termed

as the Doppler-factor, describing the relative frequency-
shift in case of a harmonic source signal13. Furthermore,
the propagation time delay τ(x, t) satisfies the non-linear
quadratic equation

R(x, t− τ)− cτ = |x− xs(t− τ)| − cτ = 0. (14)

For subsonic velocities (i.e. v < c) only the positive
root of the quadratic equation (τ > 0) is taken into
consideration12. Note, that unless it is of special im-
portance the time-space dependency of the propagation
time delay τ is suppressed in the followings for the sake
of brevity. However, the evaluation of equation (12) re-
quires the solution of the non-linear equation (14) for τ
for each time instant and listener position, and its com-
putational complexity is critical in the aspect of real-time
applications.

III. WFS OF MOVING SOURCES

A. 3D driving functions

The dynamic description obtained in the previous
section can be directly used for the synthesis of moving
sources. For the sake of simplicity assume a harmonic
source time-history q(t) = ejω0t, with the oscillation fre-
quency ω0. The radiated field reads

Pm(x, t, ω0) =
1

4π

ejω0(t−τ)

∆(x, t− τ)
. (15)

The 3D WFS driving functions in the time-frequency
domain can be expressed from (3) by evaluating (−2)
times the normal derivative of the sound field on the SSD

D3D(x0, t, ω0) = −2w(x0, t)
〈
nin(x0) · ∇Pm(x, t, ω0)|x=x0

〉
.

(16)
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The gradient of the sound field is expressed as

∇Pm(x, t, ω0) = − 1

4π

(
∇ (∆(x, t− τ))

∆(x, t− τ)
+ jω0∇τ(x, t)

)
ejω0(t−τ)

∆(x, t− τ)
, (17)

where ω0∇τ(x, t) = k(x, t) is the local wavenumber
vector. For the Physical Optics approximation high-
frequency/far-field assumptions are standard prerequisi-
tions. In this case the phase changes rapidly compared

to the amplitude (jω0∇τ(x, t) � ∇(∆(x,t−τ))
∆(x,t−τ) holds for

each component of the gradient) and the gradient can be
approximated as ( c.f. (6) )

∇Pm(x, t, ω0) ≈ − jω0∇τ(x, t)

4π

ejω0(t−τ)

∆(x, t− τ)

= −jk(x, t)Pm(x, t, ω0). (18)

This high-frequency gradient approximation is a local
plane wave approximation of the moving source sound
field. The approximation can be applied for any har-
monic target sound field in the high-frequency region,
leading to a general 3D WFS driving function

D3D(x0, t, ω0) = −2w(x0, t) 〈k(x0, t) · nin(x0)〉P (x0, t, ω0).
(19)

This result is a generalization of the driving functions
given in [(20), 14].

The gradient of the propagation time delay ∇τ can
be evaluated by implicit differentiation of (14):

∇τ(x, t) =
1

c

x− xs(t− τ)

∆(x, t− τ)
, (20)

and by denoting the normal component of the source-
SSD distance by Rn(x0, t) = 〈(x0 − xs(t)) · nin(x0)〉 the
driving functions read

D3D(x0, t, ω0) = w(x0, t)
jk0

2π

Rn(x0, t− τ)

∆(x0, t− τ)

ejω0(t−τ)

∆(x0, t− τ)
,

(21)
with k0 = ω0/c being the source wavenumber, and the
window function w(x0, t) given by (4).

Note, that the high-frequency/far-field conditions
can be expressed in terms of the projection of the gra-
dient to vector x− xs(t), resulting in

jk0R(x, t)
1

1−M(t) cosϑ(x, t)
� 1, (22)

which is clearly a dynamic generalization of the well-
known high-frequency condition for static point sources,
with k0

1−M(t) cosϑ(x,t) expressing the apparent, Doppler-

shifted source wavenumber. In the following sections
these conditions are required to be fulfilled.

B. 2.5D driving functions

Practical WFS implementations apply an SSD curve
instead of a surface, located at the listening plane x0 =

[x0, y0, 0]. In order to derive the corresponding driving
functions, the geometry in Figure 1 is used. The listener
plane is assumed to be at z = 0 (i.e. x = [x, y, 0]T), and
the trajectory of the virtual source is also restricted to
zs(t) = 0.

In the following the high-frequency/asymptotic ap-
proximation of the synthesized field is derived, containing
the required 2.5D driving functions implicitly. Substitu-
ting the 3D driving functions (21) into the SFS integral
(3) and integrating with respect to time yields the synt-
hesized field inside the enclosure, with x0, y0 ∈ C

P (x, t, ω0) =
jk0

8π2

∮
C

∫ ∞
−∞

w(x0, t−
|x− x0|

c
)
Rn

(
x0, t− |x−x0|

c − τ
)

∆
(
x0, t− |x−x0|

c − τ
) ·

· e
jω0

(
t− |x−x0|

c −τ
(
x0,t− |x−x0|

c

))
∆
(
x0, t− |x−x0|

c − τ
)
|x− x0|

dz0ds, (23)

where ds is the arc length on the countour C.
The vertical integral (23) can be approximated using

the Stationary Phase Approximation (SPA), which met-
hod forms the backbone of 2.5D WFS.

The SPA is a method of asymptotic analysis, and
provides approximate formula for integrals with a rapidly
oscillating kernel15,16:∫ ∞
−∞

F (z)e−jφ(z)dz ≈

√
2π

j|φ′′zz(z∗)|
F (z∗)e−jφ(z∗). (24)

Mathematically the method relies on the approxima-
tion of the integrand with its second order Taylor
series around the stationary position z∗ defined by
∂
∂zφ(z)

∣∣
z=z∗

= φ′z(z
∗) = 0 and φ′′zz(z

∗) 6= 0, followed
by an analytical integration.

Application of the SPA to harmonic convolution
integrals like (5) and (23) was investigated in details
recently6, and the following physical interpretation was
established. Physically, the SPA states that under high
frequency assumptions the integral providing the radia-
ted field at x is dominated by those SSD elements x0

(being the SPA stationary positions), whose sound field
in x propagates into the same direction as the target
sound field in x0. As a consequence, the SPA assigns a
unique stationary position x0 to each receiver position
x. On the other hand, each point on the SSD dominates
the synthesized sound field towards the direction of local
propagation of the target sound field described by k(x0),
measured on the actual SSD element.

As in the present case both the source and recei-
ver are located at z = 0, the trivial stationary point of
integral (23) is z∗ = 0. With requiring high-frequency
conditions the phase function under consideration is

φ(z0) = −ω0

(
t− |x− x0|

c
− τ

(
x0, t−

|x− x0|
c

))
(25)
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and its second derivative wrt. z0—obtained by means of
implicit differentiation—in the stationary point z0 = 0 is
given as

∂2φ(z0)

∂z2
0

∣∣∣∣
z0=0

= k0

|x− x0|+
∣∣∣x0 − xs

(
t− |x−x0|

c − τ
)∣∣∣

|x− x0|∆
(
x0, t− |x−x0|

c − τ
)
(26)

Denoting the in-plane distances by r = |x − x0|, R(t) =
|x0 − xs(t)| and substituting back into (23), the synthe-
sized field is approximated as

P (x, t, ω0) =

∮
C

w(x0, t−
r

c
)
Rn

(
x0, t− r

c − τ
)

∆(x0, t− r
c − τ)

·

·
√

jk0

2π

√
r∆(x0, t− r

c − τ)

r +R(t− r
c − τ)

1

4π

ejω0(t− rc−τ(x0,t− rc ))

∆(x0, t− r
c − τ)r

dy0dx0.

(27)

Since the time variable is present with a constant tem-
poral shift t − r

c the integral can be reformulated as a
convolution of the form

P (x, t, ω0) =

∮
C

w(x0, t0)
Rn(x0, t0 − τ)

∆(x0, t0 − τ)√
jk0

2π

√
r∆(x0, t0 − τ)

r +R(t0 − τ)
·

· ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ)

1

4π

δ(t− t0 − r
c )

r
dt0dy0dx0. (28)

The integral is written in terms of the time-domain
Green’s function, therefore comparison with (3) yields
the final 2.5D driving functions:

D2.5D(x0, t0, ω0) = w(x0, t0)
√
dref(x0, t0)√

jk0

2π

Rn(t0 − τ)

∆(x0, t0 − τ)

ejω0(t0−τ(x0,t0))

∆(x0, t0 − τ)
, (29)

where the referencing function dref(x0, t0) is given by

dref(x0, t0) =
r ·∆(x0, t0 − τ)

r +R(t0 − τ)
. (30)

The referencing function is still dependent on the receiver
position x, indicating, that amplitude correct synthesis
may be achieved in a single receiver/reference position.
In section III.C it is presented, how the amplitude of
the synthesized field can be optimized on an arbitrary
reference curve under the validity of a further horizontal
stationary phase approximation.

In order to get an insight into the structure of the

driving function it can be rearranged as

D2.5D(x0, t0, ω0) =

√
2πr

jk0︸ ︷︷ ︸
SSD

compensation

√
∆(x0, t0 − τ)

r +R(t0 − τ)︸ ︷︷ ︸
virtual source
compensation

(−2)w(x0, t0)
∂

∂nin
Pm(x0, t0, ω0)︸ ︷︷ ︸

2D
driving function

. (31)

The driving function therefore consists of the simple 2D
WFS driving functions, adjusted by two correctional fac-
tors: the geometry under discussion theoretically would
be able to perfectly synthesize a 2D sound field with a
set of infinite line sources (described by the 2D Green’s
function) using a 2D driving function17. In the present
case, however, 3D point sources (described by the 3D
Green’s function) are applied to synthesize a 3D sound
field. This causes both a secondary source and a virtual
source dimensional mismatch.

The secondary source correction factor compensates
for the discrepancy between the frequency responses and
attenuation factors of the 2D and 3D Green’s functions.
Obviously, the amplitude factor can be optimized for a
fixed distance from each SSD element, given by r.

The virtual source compensation factor resolves the
virtual source dimensionality mismatch, correcting the
virtual source attenuation factor. The correction factor
gains physical meaning in the stationary SSD point—i.e.
where (x0 − xs(t0 − τ)) and (x − x0) point in the same
direction, thus |x0−xs(t0− τ)|+ |x−x0| = |x−xs(t0−
τ)| = r + R(t0 − τ), refer to Figure 3 for the geometry.
For the stationary SSD element the numerator corrects
the 3D driving function to an ideal 2D one17 (since the
field of a moving infinite line source would attenuate by
a factor ∼ 1/

√
∆), while the denominator adjusts the

correct attenuation factor from a 2D moving source to a
3D one using the corresponding static distances—due to
the static SSD elements.

This statement gives us an important insight into
the WFS compensation factors, also reflecting that the
vertical and horizontal SPAs are inherently related, since
the result of the vertical SPA can be physically interpre-
ted only in the horizontal stationary point.

For an arbitrary source signal, with the frequency
content being Q(ω0) =

∫∞
−∞ q(t)e−jω0tdt the driving

function is written as the weighted sum of the spectral
components

d2.5D(x0, t0) =
1

2π

∫ ∞
−∞

D2.5D(x0, t0, ω0)Q(ω0)dω0 =

= w(x0, t)
√
dref(x0, t0)

Rn(t0 − τ)

∆(x0, t0 − τ)2
·

1

2π

∫ ∞
−∞

√
jk0

2π
Q(ω0)ejω0(t0−τ(x0,t0))dω0. (32)

The integral describes an inverse Fourier-transform of the
source signal, taken at t0 − τ(x0, t0) pre-filtered with a
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filter, defined by its transfer function H(ω0) =
√

jω0

2πc .

The driving function in the time domain therefore reads

d2.5D(x0, t0) = w(x0, t)
√
dref(x0, t0)

Rn(t0 − τ)

∆(x0, t0 − τ)

h(t0) ∗t0 q(t0 − τ(x0, t0))

∆(x0, t0 − τ)
, (33)

where h(t0) = F−1
ω

{
H( jω

2π )
}

.

C. Defining the referencing function:

The correct choice of the referencing function allows
the optimization of the synthesis on an arbitrary shaped
reference curve in front of the SSD. According to the
SPA each SSD element contributes to the total synthe-
sized field in one unique direction, assigned by the local
propagation direction of the virtual sound field, taken
on that SSD element. Therefore, the shape of the curve
at which the synthesis is optimized can be controlled by
adjusting the amplitude of the corresponding stationary
SSD elements. This can be formulated mathematically
using the normalized wavenumber vector being a unit
vector towards the local propagation direction6, defined
by

k̂(x0, t) =
k(x0, t)

k(x0, t)
=
∇∠P (x, t, ω)|x=x0

1
c
∂
∂t∠P (x0, t, ω)

, (34)

where k(x, t) = ω(x, t)/c is the acoustic wavenumber,
and the instantaneous frequency is defined as ω(x, t) =
∂
∂t∠P (x, t, ω). In the present case the wavenumber is
given as

k(x0, t) =
1

c

∂

∂t0
(ω0(t0 − τ(x0, t0))) = k0

R(t0 − τ)

∆(x0, t0 − τ)
(35)

and the normalized wavenumber vector reads

k̂(x0, t) =
x0 − xs(t0 − τ)

R(t0 − τ)
. (36)

The distance at which amplitude correct synthesis
is ensured is given by the secondary source compensation
factor, in a distance r from the stationary SSD element.
The locations of amplitude correct synthesis are therefore
given as

xref = x0 + k̂(x0, t)r. (37)

and by substituting back (36) and expressing r in terms
of dref from (30)

xref = x0 + dref(x0, t0)
x0 − xs(t0 − τ)

∆(x0, t0 − τ)− dref(x0, t− τ)
.

(38)
The shape of the reference curve can be thus controlled
via the proper adjustment of dref(x0, t0). For an illustra-
tion on the local wavenumber vector and the explanation
of this referencing approach in this dynamic scenario see
Figure 3.

x

y

xs(t)
xs(t0)xs(t0 − τ)

xref

x0

r

SSD

vs(t)

source
trajectory

reference
curve

(t
−
t 0

)c
=
r

k̂
(x

0
,
t 0

)

FIG. 3. Illustration of the stationary SSD position including
moving source dynamics. The ”snapshot” is taken at t. Ac-
cording to the stationary phase approximation the SSD ele-
ment x0 determines the synthesized field along the direction,
given by the local wavenumber vector k̂(x0, t0). At the time
instant t0 the wavefront of the moving source, arriving to x0

is described by a spherical wavefront, emerging from the vir-
tual source position at xs(t0 − τ), therefore its propagation
direction at x0 is described by k(x0, t0) ∼ x0 − xs(t0 − τ).
If an other spherical wavefront is generated by the SSD ele-
ment at x0, than in any later time instant t > t0 the virtual
wavefront and the secondary wavefront coincide along the di-
rection of k̂(x0, t0). Here t = r

c
, where r is the distance of

the stationary SSD element from the reference curve at which
the amplitude correction is optimized. Obviously, by control-
ling the distance r, the shape of the reference curve can be
adjusted according to (38).

As a simple example the synthesis using a linear SSD
is considered, with referencing to a straight line parallel
with the SSD, termed as reference line.

For the given geometry x0 = [x0, y0 = const, 0],
nin = [0, 1, 0]T, and the reference curve given by xref =
[x0, yref , 0], where yref > y0. Expressing the referencing
function from (38) leads us to

dref(x0, t0) = ∆(x0, t0 − τ)
xref − x0

xref − xs(t0 − τ)
. (39)

Since in the current case the x-coordinates of the re-
ference curve are arbitrary, the referencing function is
written purely in terms of the y-coordinates. Along with
that, with Rn =

〈
(x0 − xs(t)) · [0, 1, 0]T

〉
= y0 − ys(t),

and ensured, that the virtual source does not cross the
SSD (i.e. w(x0, t) = 1) the final driving functions read

D2.5D(x0, t0, ω0) =

√
yref − y0

yref − ys(t0 − τ)√
jk0

2π
(y0 − ys(t0 − τ))

ejω0(t0−τ)

∆(x0, t0 − τ)
3
2

. (40)

This driving function is the traditional WFS driving
function as given by e.g. Verheijen and Start for a statio-
nary virtual point source2,3, with the original stationary
distances replaced with the corresponding dynamic ones.
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For the special case of a source, moving uniformly at
a straight trajectory parallel to the SSD the equation for
τ may be solved explicitly. Introducing this solution the
present driving function would yield the driving functi-
ons, given in [ 10].

IV. SIMULATION RESULTS

Two examples are presented in order to demonstrate
the validity of the driving functions. All simulations were
carried out in the time domain, by evaluating

psynth(x, t) =
∑
x0

1

4π

d
(
x0, t− |x−x0|

c

)
|x− x0|

dx0, (41)

with the sampling weighting factor defined for the actual
synthesis geometry8. The evaluation requires the solu-
tion of the non-linear equation for τ in each field point
for each SSD element, resulting in great computational
complexity.

A. Synthesis using linear SSD

First, the synthesis with a linear SSD and a reference
line is investigated. In this example consider a source, os-
cillating at ω0 = 2π · 1000 rad/s, and with the trajectory

given by xs(t) = [v0t, 0.5 sin
(

2π
λx
v0t
)
− 1, 0]T, where

v0 = 150 m/s and λx = 3 m. The source therefore moves
on a sinusoid trajectory, with the time-variant instanta-

neous speed given by v(t) = v0

√
1 +

(
π
λx

)2

cos2
(

2π
λx
v0t
)

.

The SSD is located at y0 = 0. The ideally continuous,
infinite SSD was truncated at |x0| < 15 m and sampled
at ∆x0 = 0.05 m. With these parameters the truncation
and discretization artifacts are minimal.

The result of synthesis is shown in figure 4 (b) along
with the target sound field in (a) at t = 0. Similarly
to the stationary case, phase correct synthesis can be
achieved in the whole listening plane y > y0. As figure 4
(c) confirms—depicting the error between the target and
the synthesized field—the synthesis is optimized on the
reference line, exhibiting a minimum of the amplitude
error along y = yref .

It should be noted here, that due to the equivalent
scattering interpretation of the SFS problem, the error
image gives the phase correct solution for the scattering
of the same moving source over y < y0 from an infinite
plane, located at y = y0, and being approximately am-
plitude correct along y = −yref .

B. Synthesis using circular SSD

Although giving an optimal solution within the con-
text of the SPA with the least approximations introdu-
ced, the linear geometry is capable of the reconstruction
of sources, moving only behind the SSD. Also, the re-
production of the entire motion would require an infinite

(a)

(b)

(c)

FIG. 4. Synthesis of a point source, moving on a sinusoid
trajectory: the spatial distribution of the target sound field
(a), the synthesized field (b) and the difference measured in
dB scale (c) at t = 0.

SSD. Furthermore, it has been shown recently, that spa-
tial aliasing artifacts— emerging due to the discrete na-
ture of the SSD in real-life applications–are enhanced for
the straight SSD case, resulting in unwanted frequency
components in the synthesized field18, which effects are
suppressed in case of a smooth enclosing SSD. In the as-
pect of practical applications therefore the employment
of enclosing SSDs is of interest.

The second example presents a more general sce-
nario: the synthesis of a moving source with non-linear
trajectory, applying a non-linear enclosing SSD.

WFS of moving sources 7



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Time evolution of the synthesis of a moving point source using a circular SSD. The snapshots were taken at t = −35 ms
(a-c), t = 0 ms (d-f) and t = 15 ms (g-i). The figures show the real part of the target sound field (a,d,g), the synthesized field
(b,e,h) and the absolute error of the synthesis (c,f,i).

The SSD is chosen to be a circular one, with the
center located at xc = [−1, 1, 0]T and the radius of
RSSD = 2 m. The virtual source oscillates at ω0 = 2π ·
1000 rad/m, and travels along an exponential trajectory
xs = [v0t + 1.5, ev0t/1.25 − 2.5, 0]T, where v0 = 100 m/s
(the damping factor 1.25 was chosen in order to keep
the source speed below the ultrasonic region in the time
regime of investigation).

In order to demonstrate, how the synthesis can be
optimized on an arbitrary curve, the reference curve was

chosen to be a concentric circle inside the SSD with the
radius of Rref = 1.5 m. The synthesis was performed by
the direct evaluation of (29). In this case the referen-
cing function can be expressed from (38), using that the
referencing curve must satisfy equation

|xref − xc| = Rref . (42)

From the quadratic equation dref can be expressed expli-
citly exploiting that |x0−xc| = RSSD and by taking only
the real root into consideration.
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The time evolution of synthesis is presented in figure
5 in three different time instants. As it can be seen the
phase field can be reconstructed perfectly inside the SSD,
with the amplitude correct synthesis restricted on the
prescribed reference curve: the error distribution has a
minimum on the reference circle. Obviously, synthesis is
optimized on those parts of the reference curve, for which
a stationary SSD element exist, restricting the amplitude
correct synthesis to an arc, with its position depending on
the virtual source position at the emission time, and the
length of the arc depends on the distance of the virtual
source measured from the SSD.

Since investigating the spatial characteristics of the
synthesis verified that the phase of the virtual sound field
can be resynthesized over the whole listening area per-
fectly, with optimizing the amplitude distribution on an
arbitrary receiver curve at any time instant, therefore the
examination of the temporal characteristics is negligible.
The time history of a virtual source pass-by could be
synthesized with minimal amplitude error on any point
on the reference line in the first example, while in the
second example amplitude errors rise on the reference
circle when no stationary SSD element can be found for
the given listener position due to the actual virtual source
position.

V. AN EFFICIENT IMPLEMENTATION SCHEME

The derivation of the driving functions, presented
in the foregoing, assumed that the source position at the
emission time instant—and the corresponding propaga-
tion delay τ—is known a-priori. The implementation of
the driving functions therefore requires the solution of
(14) for each SSD element at each time instant, which
makes real-time implementation infeasible.

In order to decrease the computational cost of the
implementation a simple finite difference scheme may be
applied, by approximating τ(x, t) with its first order Tay-
lor’s approximation:

τ(x, t+ dt) = τ(x, t) + dt
d

dt
τ(x, t). (43)

The temporal derivative of τ(x, t) is given by

d

dt
τ(x, t) = τ ′(x, t) =

− 1
c 〈vs(t− τ) · (x− xs(t− τ))〉

∆(x, t− τ)
.

(44)
Therefore after choosing a proper sampling frequency
fs = 1/dt the discretized form of the field radiated by
a moving point source can be calculated at t = n · dt as

p(x, n) =
1

4π

q(n · dt− τ(x, n))

∆(n · dt− τ(x, n))
, (45)

where

τ(x, n) = τ(x, n− 1) + dt · τ ′(x, n− 1). (46)

Obviously, this approximation requires the solution of
(14) for τ at one time instant, e.g. at the time origin.

FIG. 6. Comparison of the calculated propagation time delay
τ(x, t) by the direct solution of (14) (solid line), serving as
a reference solution, and by approximating with the iterative
finite difference scheme given by (46) (dotted line).

Once it is solved, the field can be calculated iteratively
using the above equations. Applying the iterative des-
cription makes the real-time implementation of the dri-
ving functions possible.

Figure 6 shows the result of the iterative approx-
imation of τ(x, t) for the case of a sinusoid trajectory,
presented in section IV.A, with all the simulation para-
meters being the same. The time evolution of τ(x, t) is
evaluated at x = [0, 0, 0]T, with the sampling frequency
set to fs = 10 kHz. Numerical tests showed a high-
stability of the presented solution, with the greatest rela-
tive error (≈ 1 %) present around the time origin, where
τ(x, t) is highly non-linear. This error can be efficiently
suppressed by increasing the sampling frequency. Obvi-
ously, since all the state-variables are updated from the
analytically known source position vector xs(t), there-
fore the perfect tracking of the prescribed trajectory is
inherently ensured.

The further investigation of the stability and accu-
racy of this iterative technique falls beyond the scope of
the present treatise.

Based on the foregoing the practical implementation
of the presented methodology would require the following
steps:

• Similarly to the static case in order to compensate
for the SSD frequency response the pre-filtering of
the source time history is required with the filter
transfer characteristics given by H(ω) ∼

√
jω.

• In the foregoing it was supposed that the source
trajectory xs(t) was known analytically, which is
an optimistic assumption in the aspect of practi-
cal applicability. Instead, more often a parametric
curve is given, which the virtual source moves al-
ong with a pre-defined velocity profile—e.g. with
constant speed—. The derivation of xs(t) from the
parametric curve and the given velocity profile is
not straightforward, it is a frequently emerging pro-
blem in the field of computer graphics and robotics.
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Analytical solutions are barely available, generally
numerical integration is involved for reparametri-
zation with respect to the arc length19. The furt-
her investigation of this topic is however out of the
scope of the present article.

• Once a representation of the source trajectory is
obtained, the initial solution for the source position
at the time origin is required. After this the source
position may be calculated for each SSD element
at each time instant by applying the presented ite-
ration scheme (46).

• By applying the corresponding time-variant propa-
gation time-delay and attenuation factor to the in-
put signal the 3D WFS driving functions may be
calculated from the time-domain form of (21) in
case of an entirely 3D scenario.

• In case of a more usual 2.5D WFS scenario a re-
ference curve has to be prescribed and the corre-
sponding referencing function has to be calculated
as a function of the virtual source position based
on (38). For simple referencing schemes and simple
SSD contours (e.g. reference circle inside a circlu-
lar SSD) the referencing function can be calculated
analytically, while in the general case the stationary
position on the reference curve xref(x0, t) has to be
found numerically for each SSD element at each
time instant depending on the virtual source posi-
tion. This makes real-time implementations unfea-
sible. Finally, the 2.5D WFS driving functions can
be calculated according to (32).

VI. CONCLUSION

The article presented the general Wave Field Synt-
hesis driving functions for the synthesis of a source, mo-
ving on an arbitrary trajectory.

The derivation utilized the unified WFS theory
for arbitrary shaped loudspeaker ensemble, stemming
from the physical optics approximation of the Kirchhoff-
Helmholtz integral. Adapting the theory to the dyna-
mic description of arbitrarily moving point sources, and
applying the stationary phase approximation to a pro-
perly chosen 3D geometry the 2.5D WFS driving functi-
ons were expressed for an arbitrary SSD contour. These
driving functions include the referencing function, that’s
appropriate choice allows to optimize the synthesis to
an arbitrary shaped receiver curvature, termed the re-
ference curve. It was shown how the SPA can be in-
terpreted physically by taking the source dynamics into
account, achieving a virtual source-stationary secondary
source wavefront matching both in the spatial and the
temporal domain.

The validity of the presented WFS driving functions
was demonstrated via pathological examples with a pres-
cribed time-dependent source position function xs(t). It
was shown, that the amplitude correct synthesis can be
controlled perfectly by applying the referencing schemes,

that were proposed for stationary virtual sound field6,
with taking the virtual field dynamics into consideration.

The driving functions, presented relied on the a-
priori knowledge of the propagation time delay, the time,
that acoustic waves need to propagate from the source
position at the emission time to the listening position,
leading to a non-linear equation. In order to obtain a
real-time implementable driving function a finite diffe-
rence solution was presented, relying on the first order
Taylor’s approximation of the propagation time delay.
By applying this approach the non-linear equation has to
be solved only at a single time instant, and the driving
functions may be calculated iteratively, making real-time
applications of the foregoing possible.

1 A. J. Berkhout. Acoustic control by wave field synthesis.
J. Acoust. Soc. Am., 93(5):2764, May 1993.

2 E.W. Start. Direct sound enhancement by wave field synt-
hesis. PhD thesis, Delft University of Technology, 1997.

3 E.N.C. Verheijen. Sound Reproduction by Wave Field
Synthesis. PhD thesis, Delft University of Technology,
1997.

4 S. Spors, R. Rabenstein, and J. Ahrens. The Theory of
Wave Field Synthesis Revisited. In Proc. of the 124th Au-
dio Eng. Soc. Convention, number 7358, Amsterdam, May
2008.

5 F. M.Fazi and P. A. Nelson. Sound field reproduction as an
equivalent acoustical scattering problem. J. Acoust. Soc.
Am., 134(5):3721–3729, 2013.

6 G. Firtha, P. Fiala, F. Schultz, and S. Spors. Improved
referencing schemes for 2.5d wave field synthesis driving
functions. IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., 25(5):1117–1127, May 2017.

7 J. Ahrens and S. Spors. Reproduction of Moving Virtual
Sound Sources with Special Attention to the Doppler Ef-
fect. In Proc. of the 124th Audio Eng. Soc. Convention,
number 7363, Amsterdam, May 2008.

8 J. Ahrens. Analytic Methods of Sound Field Synthesis.
Springer Science Business Media, Berlin, 1st edition, 2012.
Chapter 5.7.

9 G. Firtha and P. Fiala. Sound field synthesis of uniformly
moving virtual monopoles. J. Audio Eng. Soc., 63(1/2):46–
53, jan 2015.

10 G. Firtha and P. Fiala. Wave field synthesis of moving
sources with retarded stationary phase approximation. J.
Audio Eng. Soc., 63(12):958–965, jan 2016.

11 S. Spors. Extension of an analytic secondary source se-
lection criterion for wave field synthesis. In Proc. of the
123rd Audio Eng. Soc. Convention, number 7299, Oct
2007.

12 A. T. de Hoop. Fields and waves excited by impulsive point
sources in motion—the general 3D time-domain Doppler
effect. Wave Motion, 43(2):116–122, dec 2005.

13 P. M. Morse and K. U. Ingard. Theoretical Acoustics.
McGraw-Hill Book Company, New York, NY, 1st edition,
1968. Chapter 11.2.

14 F. Zotter and S. Spors. Is sound field control determined at
all frequencies? How it is related to numerical acoustics?
In Proc. of 52nd Audio Eng. Soc. Intl. Conf., number 1-3,
Guildford, September 2013.

15 N. Bleistein and R. A. Handelsman. Asymptotic Expan-
sions of Integrals. Dover Publications, 1st edition, 1975.
Chapter 6.

16 N. Bleistein. Mathematical Methods for Wave Phenomena.

WFS of moving sources 10



Academic Press, 1984. Chapter 2.
17 F. Völk and H. Fastl. Wave field synthesis with primary

source correction: Theory, simulation results, and compa-
rison to earlier approaches. In Proc. of 133rd Audio Eng.
Soc. Conv., number 8717, San Francisco, October 2012.

18 G. Firtha and P. Fiala. Investigation of spatial aliasing
artifacts of wave field synthesis for the reproduction of

moving virtual point sources. In in 42nd German An-
nual Conference on Acoustics (DAGA), pages 1008–1011,
Aachen, Germany, 2016.

19 R. Parent. Computer Animation: Algorithms and Techni-
ques. Academic Press, 2002. Chapter 3.2.

WFS of moving sources 11


