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Abstract—Wave Field Synthesis (WFS) aims at the reproduc-
tion of a desired target wavefront by driving an ideally continuous
loudspeaker distribution with properly chosen secondary source
driving signals. In practical applications, using a discrete set of
loudspeakers degrades the accuracy of reproduction heavily due
to the violation of the theoretical requirements. As a result, spatial
aliasing wavefronts emerge from the individual loudspeaker
elements in addition to the intended virtual wavefront, perceived
as strong coloration above the so-called spatial aliasing frequency.
Local Wave Field Synthesis (LWFS) approaches improve the
reproduction accuracy over a limited listening area by allow-
ing stronger artifacts outside the control region. The present
contribution discusses a novel LWFS approach, relying on the
transformation of spatially defined antialiasing filters into an
equivalent temporal filter bank. The resulting antialiased driving
functions ensure aliasing-free synthesis at a predefined listening
position at the cost of temporally bandlimited sound field at
other listening regions. The results of the proposed approach are
compared with a recent LWFS approach employing direct spatial
bandlimitation.

Index Terms—Wave Field Synthesis, LWFS, Spatial antialias-
ing

I. INTRODUCTION

The aim of sound field synthesis is to reproduce a virtual
target sound field over an extended listening area using a
densely spaced loudspeaker arrangement, known as the sec-
ondary source distribution (SSD). By feeding the loudspeakers
with specific driving functions, the superposition of sound
fields from each SSD element should ideally match the target
sound field in the intended receiving area. One prominent
sound field synthesis method is Wave Field Synthesis (WFS)
[1], [2].

As WFS obtains the necessary driving functions from a
suitable boundary integral representation of the target sound
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field, perfect phase correct field-reconstruction could be only
achieved by employing a theoretical, continuous secondary
source distribution. In practical applications the SSD consist
of discrete loudspeaker elements, resulting in secondary wave-
fronts additionally to the intended virtual wavefront, emerging
from the individual SSD elements, termed as aliasing waves.
This spatial aliasing phenomenon is perceived as coloration
of the synthesized sound field above the spatial aliasing
frequency, varying with the listening position and the virtual
wavefront direction, degrading the quality of reproduction [3],
[4].

The effect of aliasing can be mitigated by restricting the
synthesis to a smaller control region inside the listening area
at the cost of permitting stronger aliasing artifacts outside
the region of interest. These anti-aliased WFS approaches are
commonly referred to as Local Wave Field Synthesis (LWFS).
Recently introduced LWFS approaches achieve increased local
synthesis accuracy by the direct spatial bandlimitation of the
WFS driving functions [5]–[8]. However, due to the high com-
putational demand the real-time application of these LWFS
approaches is not straightforward.

The present contribution introduces a novel LWFS ap-
proach, relying merely on the temporal bandlimitation of the
SSD driving functions. The temporal filters, defined uniquely
for each SSD elements, are obtained from spatial antialiasing
filters by means of an analytical spatial-to-temporal filter
transformation, introduced by the current authors in a previous
contribution [9]. Similarly to other LWFS techniques, the pre-
sented approach ensures aliasing-free synthesis at a predefined
listening position at the cost of temporally bandlimited sound
field at other listening regions. The results of the proposed ap-
proach are compared with a recent LWFS approach employing
direct spatial bandlimitation.

The paper is organized as follows: Section II gives a
brief theoretical introduction on basic WFS theory and spatial
aliasing phenomena. Section III first discusses the spatial-to-



temporal filter transform, then introduces the novel local WFS
methodology. Section IV gives a comparison of the presented
technique with a recent LWFS approach based on direct modal
bandlimitation, followed by a short summary and outlook in
Section V.

II. THEORETICAL BASICS

A. Local propagation vector concept
Consider an arbitrary steady-state free space sound field at

an angular frequency ω. As a standard ansatz in the field of
geometrical acoustics the sound field at a spatial position x =
[x y z]T is written in the general polar from as

P (x, ω) = A(x)e−jωτ(x), (1)

where A(x) and τ(x) are real-valued functions. This formula-
tion applies to both plane waves and (3D) point sources. The
propagation dynamics of the sound field are governed by its
phase function τ(x), termed as the eikonal in the field of ray
acoustics [10]. In the temporal domain, the sound field can be
obtained by taking the inverse temporal Fourier-transform of
(1), yielding

p(x, t) = A(x) δ(t− τ(x)) . (2)

From the above formulation it is evident that the eikonal τ(x)
describes the propagation delay, the wavefront takes to arrive
at x. The eikonal equation is obtained by substituting the
ansatz (1) into the Helmholtz equation, stating that in a source
free volume

|∇τ(x)| = 1

c
(3)

is fulfilled. The gradient of the eikonal weighted by the speed
of sound is termed as the local propagation vector

c∇τ(x, ω) = k̂P (x) = [k̂Px (x), k̂Py (x), k̂Pz (x)]
T. (4)

In steady-state, the local propagation vector is perpendicular
to the wavefront (equiphase positions) at an arbitrary location
of unit length pointing towards the local propagation direction
[11]. In the temporal domain it points into the local propaga-
tion direction at the time instant of the wavefront passby.

B. 2.5D Wave Field Synthesis
Consider a smooth convex secondary source distribution

located at x0 = [x0, y0, 0]T consisting of a continuous
distribution of 3D point sources, described by the 3D freefield
Green’s function, reading in the frequency domain as

G3D(x,x0, ω) =
1

4π

e−jωc ∥x−x0∥

∥ x− x0 ∥
, (5)

where ω denotes the angular frequency. In this geometry the
target field inside the area bounded by the SSD is described
by the Kirchhoff approximation of 2.5D Kirchhoff-Helmholtz
integral, from which the 2.5D driving functions can be ex-
tracted [12]. For an arbitrary, simple target virtual sound field
P (x0, ω) the steady-state driving functions read as [11]

D(x0, ω) =

√
8π

jω

c︸ ︷︷ ︸
Hpre(ω)

w(x0)
√

dref(x0)P (x0, ω). (6)

The driving function consists of
• a frequency dependent pre-equalization filter Hpre(ω) [1],

[2], [12],
• a secondary source selection window [13], [14]

w(x0) = max
(
k̂Pn (x0), 0

)
, (7)

where k̂Pn (x0) is the normal component of the local
propagation vector (i.e. its projection to the SSD normal
vector at x0),

• a gain factor
√

dref(x0) allowing amplitude correction
along a reference curve, depending on the actual virtual
field model (cf. [2], [11]),

• and the virtual field measured on the SSD.
Assuming a simple virtual sound field as given by (1) the
driving functions can be written as

D(x0, ω) = Hpre(ω)w(x0)
√
dref(x0)A(x0)︸ ︷︷ ︸
AD(x0)

e−jωτ(x0), (8)

and in the time domain as

d(x0, t) = hpre(t) ∗t AD(x0) δ (t− τ(x0)) , (9)

with AD(x0) being the real valued overall gain factor of
the driving function, ∗t denoting temporal convolution and
hpre(t) is the temporal WFS prefilter impulse response. The
analytical, continuous pre-equalization filter impulse response
is given in [15], [16], while for an ideal, non-casual FIR filter
implementation the reader is referred to [17]. In the following
due to the associativity of convolution this prefiltering is
excluded from a more convenient discussion.

C. Aliasing artifacts in WFS

The backbone of WFS theory assumes a continuous sec-
ondary source distribution. In practical applications the SSD is
composed of evenly spaced discrete source elements. As a re-
sult, aliasing wavefronts emerge from the individual secondary
sources, following the intended virtual wavefront, leading to
spatial aliasing phenomena. Although localization does not
degrade due to the precedence effect, aliasing is perceived as
strong coloration predominantly in the high-frequency region
varying with the receiver position and the virtual source
position/direction, occurring predominantly above the aliasing
frequency.

Figure 1 illustrates spatial aliasing in the temporal domain
through the example of the synthesis of an impulsive plane
wave, arriving from ϕPW = 0◦, applying a discrete secondary
source distribution in comparison with a quasi-continuous
synthesis scenario. In the current example a circular SSD is
applied with the radius of R0 = 2 m, consisting of N0 = 90
3D point sources. The aliased synthesis in the temporal domain
is depicted in Figure 1 (b).

Mathematically, aliasing can be modeled as the discretiza-
tion of the theoretically continuous driving functions. Assume
that a suitable parametrization d(s, t) of the secondary source
is given, e.g. the arc length s = R0 cosϕ in case of a circular
SSD (where ϕ is the polar angle), or the linear position on
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Figure 1. The synthesized field (top) and the spatial spectrum (bottom) of the driving function in case of ideal, quasi-continuous SSD (a) and (c), and in
case of a discretized SSD (b) and (d). It is important to note that the spatial spectrum depicts only the non-zero Fourier components (i.e. the Fourier-series
coefficients) normalized to the sampling wavenumber.

an infinite, linear SSD. The discretization process is modeled
by sampling the driving function by a sampling function,
consisting of a series of Dirac-deltas, where the impulse
occurences match the actual SSD positions:

ds(s, t) =

N0−1∑
ν=0

d(s, t) δ(s− ν∆s)∆s, (10)

with ∆s being the sampling (arc) length.
By investigating the sampling process in the frequency-

wavenumber domain, the spectrum of the sampled driving
function is given by

D̃s(ks, ω) =

∞∑
ν=−∞

D̃

(
ks − ν

2π

∆s
, ω

)
, (11)

where t → ω and s → ks are variable pairs for the Fourier-
transform. Obviously, for a closed SSD contour (most notably
for a circular SSD) the continuous spatial Fourier-transform
yields non-zero components at discrete spatial frequencies on
the multiples of the spatial wavenumber, i.e. at

ks =
m

R0
, (12)

with m ∈ Z constituting a Fourier-series.
In the followings the spatial spectrum refers to the distribu-

tion of the non-zero wavenumber values, and the correspond-
ing wavenumber refers to the spatial frequency (multiplied by
2π) of the harmonic basis functions, measured along the closed

curve. Figure 1 (c) and (d) illustrate the quasi-continuous and
the sampled driving function’s spectra.

From (11) it can be deduced that due to spatial sampling,
the wavenumber content of the driving function is repeated on
the multiples of the sampling wavenumber

ks,s =
2π

∆s
. (13)

Since the conventional driving functions are not-bandlimited,
therefore, the repeating spectra will overlap above the Nyquist
wavenumber ks,Nyq = π

∆s , for which the corresponding an-
gular frequency is the aliasing frequency of the discretization
scheme, as depicted in Figure 1 (d).

According to the sampling theorem, spatial aliasing can
be avoided by analytically spatial-bandlimiting the driving
functions to the Nyquist wavenumber. This can be performed
by either spatially filtering the driving functions with an appro-
priate spatial low-pass filter prior to numerical evaluation, or
performing bandlimitation directly in the wavenumber (modal)
domain analytically. The latter approach is implemented by
[8], and will serve as a reference solution in the following
investigation. However, the modal bandlimitation solution is
available so far only for plane wave and point source virtual
source models—where the driving functions can be derived
analytically—, at the cost of increased computational com-
plexity.

In the following an alternative, approximate solution is
presented, allowing spatial antialiasing filtering for an arbitrary



virtual source model and arbitrary SSD contour, performed by
FIR (finite impulse response) filtering in the temporal domain.
The technique relies on an analytic transform of spatially
defined antialiasing filters to an equivalent temporal domain
filter bank.

III. TIME DOMAIN ANTIALIASING LWFS

A. Spatial to temporal filter transform

First, a general analytical approach is introduced allowing
the transform of an arbitrary spatial filter to an equivalent
temporal filter set. From herein, subscript x and t distinguishes
whether a filter is defined as a spatial or a temporal filter,
respectively.

Assume an arbitrary filter impulse response defined in the
spatial domain, denoted by hx(s). Again, s is a suitable
parametrization of the SSD contour. The spatially filtered
driving function is obtained from the convolution of the
conventional driving functions and the filter impulse response
along the SSD contour

d′x(s, t) = hx(s) ∗s d(s, t) =
∫

hx(s− s0) d(s0, t) ds0, (14)

where ∗x denotes a circular convolution for a convex SSD
contour or a linear convolution in case of an infinite, linear
SSD.

Let’s assume a temporal filter impulse response, defined
for each SSD element ht(s, t). The temporally filtered driving
functions are obtained from the temporal convolution of each
SSD elements’ driving function by the corresponding temporal
impulse response

d′t(s, t) = ht(s, t) ∗t d(s, t) =
∫ ∞

−∞
ht(s, t− t0) d(s, t0) dt0.

(15)
Our aim is to express the temporal filter bank ht(s, t) in
terms of the spatial filter, so that the result of the temporal
convolution (15) coincides with the spatial filtering result (14),
i.e.

d′x(s, t) = d′t(s, t) (16)

holds.
1) Exact transformation: The following transformation is

allowed by the spatio-temporal structures of the driving func-
tions (9), in which the spatial and temporal dimensions are in-
terconnected in the argument of a Dirac-delta, due to the wave
propagation characteristics. The main idea of the derivation is
that by exploiting the sifting property of the Dirac-delta in
the driving functions, both spatial and temporal convolutions
(14) and (15) can be evaluated, from which the temporal filter
impulse responses can be expressed as the function of the
spatial ones. Again, in the following the pre-equalization filter
is omitted from discussion, since equalization filtering can be
performed following the antialiasing process.

The temporal convolution in (15) can be evaluated by sub-
stituting the general WFS driving function (9) and exploiting
the sifting property of the Dirac-delta, yielding

d′t(s, t) = AD(s)ht(s, t− τ(s)) (17)

d′t(s, t+ τ(s)) = AD(s)ht(s, t) , (18)

with the second equation obtained by applying the time shift
of τ(s) for the sake of later simplicity.

The shifted spatially filtered driving function reads as

d′x(s, t+ τ(s)) =

∫
hx(s− s0) d(s0, t+ τ(s)) ds0 =∫

hx(s− s0)A
D(s0) δ(s0, t+ (τ(s)− τ(s0))) ds0. (19)

In order to evaluate the spatial convolution the generalized
sifting property of the Dirac-delta may be applied [16], [18],
which states that∫

f(s0)δ(g(s0))ds0 =
∑
i

f(si)

| ∂
∂s0

g(s0)|s=si

, g(si) = 0.

(20)
In the present problem the zeros of the Dirac’s argument are
found where

τ(si) = t+ τ(s) (21)

is satisfied. In the following it is assumed that a single zero
si exists, satisfying (21). This assumption means that the
wavefront arrives at each SSD element at a unique time instant,
being strictly true for a virtual plane wave and a linear SSD.
The derivative of the phase function is given by

∂

∂s0
g(s0) = − ∂

∂s0
τ(s0) = − k̂Pt (s0)

c
. (22)

Here k̂Pt (s0) is the tangential component of the local propa-
gation vector, defined as

k̂Pt (s0) = tT(s0)k̂
P (s0), (23)

with tT(s0) denoting the unity long tangential vector of the
SSD element at position s0, as illustrated in Figure 2.

With the above assumptions the integral (19) can be evalu-
ated, yielding

d′x(s, t+ τ(s)) =
c

|k̂Pt (si)|
hx(s− si)A

D(si). (24)

Finally, by combining (24) and (18) the resulting general
transformation relation between the spatial and temporal filters
is given as

ht (s, t) =
AD(si)

AD(s)

c

|k̂Pt (si)|
hx(s− si), (25)

where si satisfies (21).
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Figure 2. Illustration for the tangential component of the local propagation
vector in the exemplary case of the field of a virtual point source, located at
xPS and applying a circular SSD. On the figure t and n denote the tangential
and normal vector of the SSD respectively, k̂t denotes the tangential vector
of the sound sound field and k̂t denote the tangential component of the local
propagation vector (k̂) at the SSD position x0.

2) Local plane wave approximation: The above formu-
lation already allows one to transform an arbitrary spatial
impulse response into an equivalent temporal filter for each
SSD element, as long as the virtual field model is known and
(21) can be solved. In order to give a more general solution it
is assumed that the virtual field is locally plane, being a usual
high frequency assumption in WFS theory. As a further general
WFS assumption it is supposed that the SSD is locally plane.
These requirements inherently ensure that a single solution
exists for (21)1. With these assumptions the phase function is
given as

τ(x) =
k̂Px (x)x+ k̂Py (x) y

c
(26)

and (21) is satisfied where

si = s+
c · t
k̂Pt (s)

. (27)

Finally, as a crucial approximation it is assumed that both
the amplitude of the driving function and the propagation
vector varies slowly along the SSD, i.e AD(si) ≈ AD(s)
and k̂Pt (si) ≈ k̂Pt (s) holds. With these assumptions the
corresponding filter transform reads as

ht (s, t) =
c

|k̂Pt (s)|
hx

(
−t

c

k̂Pt (s)

)
. (28)

Equation (28) can be directly expressed in the spectral
domain by taking the Fourier-transform of both sides, relating
the frequency response of the spatial and the temporal filters.
By denoting F (hx(s)) = Hx(ks) the corresponding transform
is given by

Ht (s, ω) = Hx

(
−ω

c
k̂Pt (s)

)
= Hx

(
−kPt (s)

)
, (29)

1Except for a plane wave arriving normally to the SSD, at which case the
temporal filter is transformed into a Dirac-delta.

where kPt (s) is the tangential component of the local
wavenumber vector 2. Hence, as the main result of the present
discussion, the temporal filter transfer can be obtained from
the wavenumber (modal) content of the spatial filter by simple
rescaling in terms of the local wavenumber vector.

The validity and the error analysis of the above filter
transform was investigated in details in [9]. In the following
the direct application for local WFS is discussed.

B. Application for antialiasing filtering

Figure 1 (d) reflects that the overlapping of the sam-
pled driving function spectra, and, therefore, the presence
of aliasing waves can be avoided by spatially bandlimiting
the driving functions to the Nyquist wavenumber prior to
sampling. Spatial bandlimitation can be straightforwardly per-
formed by designing a suitable spatial antialiasing filter and
transforming it into an equivalent temporal filter bank, based
on the results of the previous section. An important advantage
of the temporal filtering approach instead of direct spatial
filtering is that analyical spatial bandlimitation can be achieved
by calculating the WFS driving functions at discrete positions,
followed by temporal filtering 3.

Spectral overlapping can be avoided by bandlimiting the
driving function to the sampling wavenumber ks,s = 2π

∆s , with
either symmetrically to ks = 0 or by choosing an arbitrary
central wavenumber ks,0. First the former case is investigated
in details.

1) Symmetrical antialiasing: As the most straightforward
antialiasing strategy, the spectral overlapping is avoided by
the spatial lowpass filtering of the driving functions to the
Nyquist wavenumber, ks,Nyq = π

∆s .
The effect of symmetrical bandlimitation is demonstrated

via the exemplary low pass filter chosen to be an N -th order
Butterworth design, defined in the wavenumber domain as

Hx(ks) =
1√

1 + (ks/ks,Nyq)
2N

. (30)

From the transform given by (29) the angular frequency
response of the equivalent temporal filter bank is given by

Ht(s, ω) =
1√

1 +
(

ω
c

k̂P
t (s)

ks,Nyq

)2N =
1√

1 +
(

ω
ωc(s)

)2N . (31)

with

ωc(s) = c
ks,Nyq

k̂Pt (s)
= c

π

∆s

1

k̂Pt (s)
. (32)

Therefore, the cut-off frequency of the equivalent low-pass
filter on a given SSD element is inversely proportional to the
tangential component of the local propagation vector.

2The local wavenumber vector can be defined for a steady state sound field,
pointing in the local propagation direction with the length being ω/c [16]

3The above statement holds as long as temporally continuous driving
functions are assumed. Once the driving functions are sampled with a
sampling frequency fs = 1/∆t, this corresponds to a spatial sampling prior
to the filtering process with ∆s = c/fs.



The result of antialiasing filtering is depicted in Figure 3
for the synthesis scenario discussed in the foregoing. In the
present case the sampling arc length is given by ∆s = 2πR0

N ,
i.e. the space-dependent cut-off frequency reads as

ωc(s) =
N

2R0

c

k̂Pt (s)
. (33)

The antialiasing filters are 4-th order Butterworth designs.
Figure 3 (a) shows the result of the synthesis, while Figure 3

(b) illustrates the spectrum of the bandlimited, sampled driving
functions. It is highlighted that the presented antialiasing

(a)

(b)

Figure 3. Symmetric antialiasing filtering. Figure (a) depicts the synthesized
wave front, and (b) illustrates the spatial spectrum of the driving functions.

strategy ensures suppressed aliasing waves in the center of
the circular source array. In other positions of the listening
area lateral aliasing wavefronts remain in the reproduced wave
field, while the target, virtual wave front is bandlimited. This
phenomenon can be understood by investigating the synthesis
scenario in a geometrical manner:

Since the cutoff frequency of the antialiasing filter (Eq. (32))
is inversely proportional to the tangential component of the
virtual field on the SSD, in a circular array a single SSD
element will have nearly fullband driving signal: that SSD
element at which the wavefront arrives perpendicularly (i.e.
where the tangential component of the local propagation vector
is zero). This fullband SSD element is marked with white
dot in Figure 3 (a). From general WFS theory it is known
that the fullband SSD element will dominate the synthesized
wavefront (i.e. will serve as a stationary SSD position) for
spatial positions along a straight line crossing the actual SSD

Figure 4. Illustration of equivalent frequency dependent window functions

element into the direction of the local propagation vector [16].
Therefore, the present antialiasing strategy ensures aliasing-
free synthesis along a straight line for which the fullband SSD
element is the stationary secondary source. The direction of the
line of aliasing-free synthesis is marked with a dashed arrow in
the figure. This is in contrast with previous LWFS approaches,
in which the synthesis is optimized in the proximity of a pre-
defined reference position over a circular area.

It should be noted that in the angular, temporal frequency
domain the filtered driving function is written as

D′
t(s, ω) = D(s, ω)Ht(s, ω) = Hx

(
−kPt (s)

)
D(s, ω), (34)

from which formulation it is apparent that in the frequency
domain the presented spatial-to-temporal filter transform strat-
egy can be also interpreted as a frequency dependent spatial
windowing approach, and the frequency dependent spatial
window is given by Hx

(
−kPt (s)

)
: in the aspect of antialiasing

filtering SSD positions where the local tangential wavenumber
is higher than the Nyquist wavenumber are highly attenuated,
with the window width decreasing with increasing angular
frequency. The actual shape of the spatial windows are given
by the wavenumber spectrum of the spatial lowpass filter
Hx(ks), rescaled in terms of the local tangential wavenumber.
The set of window functions applied in the present simulation
scenario are illustrated in Figure 4.

2) Non-symmetrical antialiasing: As an alternative an-
tialiasing strategy, the overlapping of the spectra can be
avoided by bandlimiting the driving function spectra with a
spatial band-pass filter with an arbitrary center wavenumber
ks,0 and the bandwidth of the sampling wavenumber ks,s =
2ks,Nyq.

Again, the concept is illustrated via a simple synthesis
scenario as discussed in the foregoing. In the present case the
spatial bandpass filter is derived by shifting the N -th order
low-pass Butterworth design to the a frequency dependent
center wavenumber ks,0(ω) = ω

c k̂s,0 (where k̂s,0 is a constant
normalized wavenumber value)

Hx(ks, ω) =
1√

1 +
(

ks−ks,0(ω)
ks,Nyq

)2N . (35)

Note, that in this case even the spatial filters are frequency
dependent, in order to ensure that the transformed temporal
filters remain time-invariant, as explained in the followings.



Again, an equivalent filter bank is derived by using the
transform (29), resulting in the frequency response of

Ht(s, ω) =
1√

1 +
(

ω
c
k̂P
t (s)−k̂s,0

ks,Nyq

)2N =
1√

1 +
(

ω
ωc(s)

)2N ,

(36)
with the normalized center wavenumber k̂s,0 and with

ωc(s) = c
ks,Nyq

k̂Pt (s)− k̂s,0
= c

π

∆s

1

k̂Pt (s)− k̂s,0
. (37)

(a)

(b)

Figure 5. Non-symmetric antialiasing filtering. Figure (a) depicts the syn-
thesized wave front, and (b) illustrates the spatial spectrum of the driving
functions.

The application of the above formulation with an arbitrarily
chosen center wavenumber k̂s,0 = 1/2 is depicted in Figure
5. Note that the wavenumber content of the original spatial
lowpass filter is ,,steered”, so that the center frequency varies
linearly with the angular frequency and the slope of the
variation is given by the normalized center wavenumber. This
,,steered”, frequency dependent band-pass filter theoretically
also ensures non-overlapping spectra after the discretization
process.

From (37) it is apparent that in the present case the nearly
fullband SSD element will be that, where the tangential
local propagation vector coincides with the normalized center
wavenumber, i.e. where k̂Pt (s) = k̂s,0 = 1/2. Again, the
fullband SSD element is denoted by white dot in Figure 5
(a). Similarly to the previous case, this fullband SSD element
serves as the stationary SSD position for a set of positions
located along a straight line passing through the SSD element

with the direction given by this element’s local propagation
vector. The direction along which fullband synthesis is ensured
is denoted by a dashed arrow in Figure 5 (a).

It is important to emphasize that if no actual SSD element
exists for a given plane wave direction (for which the wave
arrives perpendicularly) then all the SSD elements are ban-
dlimited, i.e. in the synthesized field no fullband synthesis
positions will be present. Therefore, for a given receiver
position the bandwidth of the reproduced field will depend
on the virtual source position/virtual plane wave direction
and the loudspeaker spacing. This phenomena will have a
clearly audible effect in case of dynamic WFS scenarios (e.g.
moving virtual sources) and the possibilities to overcome this
limitation is the topic of future research.

3) Application for Local Wave Field Synthesis: The find-
ings of the previous subsections can be straightforwardly used
in order to apply the above theory directly for LWFS. In this
case a reference position xref is prescribed inside the SSD, at
which aliasing-free, amplitude and phase correct synthesis has
to be ensured.

Amplitude correct synthesis may be achieved by a suitably
chosen reference function in (6), based on the virtual field
model. For a detailed treatise on the definition of the reference
function the reader is referred to [16].

On the other hand, aliasing components can be suppressed
by ,,steering” the direction of antialiased synthesis to cross the
prescribed reference point. This can be performed by finding
the stationary position on the SSD for the reference position
and choosing the normalized center wavenumber in (37) to
coincide with the local propagation vector of the stationary
position. Mathematically, this can be formulated as follows.
Given a reference position xref and an SSD located along x0,
the stationary SSD element x∗

0 satisfies

xref − x∗
0

|xref − x∗
0|

= k̂P (x∗
0). (38)

Once x∗
0 is found, the center wavenumber in (37) is found by

k̂s,0 = k̂Pt (x
∗
0). (39)

Obviously, symmetrical antialiasing filtering, depicted in
Figure 3 can be regarded as LWFS with choosing xref =
[0, 0]T, while Figure 5, illustrating asymmetrical filtering was
generated by choosing xref = [0, 1]T. In both cases in Figure
3 and 5 (a) the reference position is denoted by a black cross.

IV. COMPARISON WITH DIRECT MODAL BANDLIMITATION

Finally, the performance of the proposed LWFS approach is
compared with conventional a LWFS implementation, based
on direct modal bandlimitation [8]. For a direct spatial band-
limitation, the sound field is expanded in terms of cylindrical
harmonics with respect to the target position. The modal
bandwidth was limited by truncating the expansion to a finite
order. Based on the analytical expressions of the modal im-
pulse responses, the LWFS driving functions are implemented
as FIR filters in the time domain. The length of the FIR
filters depends on the distance between the secondary source
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Figure 6. Spectrum of LWFS driving functions by direct modal bandlimitation
with the reference position choosen at the center, xref = [0, 0]T (a) and on
the left side, xref = [0, 1]T (b).

and the target position, ranging between 273 and 787 taps
for the considered scenarios (excluding the WFS prefilter).
Since this approach is based on time-domain sampling, the
resulting filters exhibit temporal aliasing artifacts, degrading
the accuracy in the frequency domain. It is, therefore, crucial
to attenuate the spectral components beyond the Nyquist
limit before the modal impulse responses are sampled. An
analytical anti-aliasing filtering is performed in the continuous-
time domain by using the 15th-order Lagrange interpolation
kernel. Interested readers are referred to [8] for further detail.

The two methods are compared via the exemplary synthesis
scenario discussed in the foregoing, synthesizing an impulsive
plane wave, by bandlimiting the driving functions to the
Nyquist wavenumber. The result of synthesis is investigated
for four different reference positions:

• Center: xref = [0, 0]
T

• Left: xref = [0, 1]
T

• Front: xref = [1, 0]
T

• Back: xref = [−1, 0]
T

For the central and the left reference positions first the
spectra of the driving functions were investigated. Figure 6
already reflects the fact that the proposed temporal LWFS
approach is an approximation of the reference solution, i.e.
of the direct modal bandlimitation. It is verified that modal
bandlimitation LWFS performs the same steering strategy of
the modal spectrum into the direction of the central wavenum-
ber, realizing a frequency dependent spatial band-pass filter.

Figure 7 presents the comparison of the two approaches via
the synthesized field and the frequency response, each column
illustrating a different reference position. The first row (a-d)
shows the synthesized field at the time instant of the plane
wave pass-by through the reference position by implementing
the proposed LWFS approach, with the second row (e-h)
depicting the same result with using modal bandlimitation.

The third row illustrates the measured frequency response of
the synthesized fields at the reference positions.

The plots reflect that both methods are capable of sufficient
suppression of the aliasing wave fronts at the prescribed
reference position in a qualitatively similar manner. The fre-
quency responses show that the presented approach slightly
suffers from ripples above the spatial aliasing frequency. This
remaining aliasing artifact can be explained as the result of the
approximations, introduced in the derivation of the spatial-to-
temporal filter transform.

In the center position the modal bandlimitation approach
serves as a reference solution, with nearly perfect aliasing
suppression. For off-center positions both methods suffers
from remaining aliasing artifacts. This effect is even en-
hanced in the case of the front position, in which case the
receiver/reference position is closer to the stationary SSD
position (white SSD element). The phenomena is explained
by the spatial variation of the spatial aliasing frequency and
the aliasing intensity, which has been already investigated in
details in [4] in a geometrical manner. The incorporation of
this effect in the present antialiasing strategy is the subject
of further research. Yet, it has been already reported that
choosing a non-critical modal bandwidth below the Nyquist
wavenumber is an efficient strategy to avoid these remaining
aliasing wavefront [7].

V. CONCLUSION

The present contribution discussed a novel LWFS approach,
allowing an increased synthesis accuracy in the proximity
of a reference position when a discrete SSD is applied for
sound field reproduction. The approach relies on a filter
transformation that allows derivation of a temporal filter
bank from an arbitrary spatial filter. LWFS is achieved by
spatially bandlimiting of the SSD driving function to the
Nyquist wavenumber, achieved by suitable spatial filtering.
By transforming the spatial antialiasing filters to a temporal
filter bank, LWFS can be performed by the simple temporal
bandlimitation of the SSD driving signals.

It was demonstrated via numerical simulations that the
approach is capable of the suppression of aliasing wavefronts
along a straight line/ray, passing through a predefined refer-
ence position. The direction of antialiasing synthesis can be set
by adjusting the center wavenumber of the antialiasing spatial
band-pass filter. The performance of the presented approach
was compared with LWFS by direct modal bandlimitation
taken as reference solution. It was shown that temporal LWFS
gives a feasible approximation for the reference one, while
being a more robust approach with less computational demand,
allowing real-time implementations. Furthermore, although the
proposed approach was validated via the example of a virtual
plane wave, the technique is capable of the aliasing-free
synthesis of an arbitrary simple virtual field model.

It was demonstrated that both approaches suffer for remain-
ing aliasing artifacts in off-center reference positions. The
further mitigation of the off-center aliasing waves is the topic
of further research.
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Figure 7. Comparison of the proposed, temporal filtering-based LWFS approach with direct modal bandlimitation. First row (a-d) depicts the synthesized
field with temporal LWFS. Second row (e-h) depicts the synthesized field with modal bandlimitation and third row (i-l) compares the frequency response at
the reference position.

Finally, as an important limitation of the proposed tech-
nique it has to be pointed out, that the proposed approach
bandlimits the driving signals as the function of the local
propagation direction of the virtual field on the SSD, therefore,
the overall synthesis bandlimit varies with the virtual source
direction/position. This can result in enhanced artifacts in case
of a non-stationary virtual field, e.g. in case of the synthesis
of a moving source. The workaround for this phenomena is
also the subject of future research.
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