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ABSTRACT
Modeling of layered acoustic structures to predict the sound absorption characteristics of complex
materials is a widely used method in room acoustic practice. Commonly used modeling techniques—
such as the transfer matrix method—typically assume locally reacting surfaces of infinite lateral
dimensions and provide one-dimensional calculations only, offering limited accuracy, especially for
resonant absorbers with finite dimensions. We present the direct, analytical modeling of sound
propagation in extendedly reacting layered materials of finite dimensions allowing the estimation of
the surface impedance or admittance distribution of layered structures, from which sound absorption
properties can be calculated. The theoretical results are validated by measurements, performed on a
small-sized resonant panel absorber. We present the implementation of the method in the soundy.ai
application.

1. INTRODUCTION
The analytical and numerical modeling of sound absorber structures has been the subject of extensive
research over the last decades [8].

As most absorbers are consist of multiple layers of different materials, the basic task of modaling
can be summarized as characterizing mechanical wave propagation in the individual layers and the
coupling the layers. Once the acoustic behaviour at the top of the structure is known, the absorption
characteristics of the ensemble can be predicted when exposed to an incident wave field. Commonly
used absorber structures use air gaps, cavities, and limp, or perforated plates with various properties to
control the frequency range of absorption, while porous materials inside the structure provide energy
dissipation.

The automatition of the coupling of the layers is only possible for highly simplified problem
geometries, such as the transfer matrix method (TMM) [3], which assumes planar layers of infinite
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Figure 1: Geometry for scattering from an elastic surface (a) and the layered absorber structure under
discussion (b)

lateral size exposed to plane waves. Furthermore, it is assumed that the layers are locally reactive, i.e.
lateral wave propagation inside the layers is not considered. Although a simple radiation efficiency-
based size correction can be included in the TMM method, the potential lateral modal behavior of
finite-sized absorbers cannot be accounted for [3].

In this paper, we propose an analytical modeling method for the 3D modeling of layered
absorber structures. Our method relies on expressing the two-dimensional input impedance
function/matrix of each layer as a function of the bottom impedance, i.e., the input impedance of the
previous layer. Once the surface impedance/admittance of the top layer is expressed, the scattered
field can be calculated at the surface for an arbitrary incident wave field, allowing for the formulation
of the absorption coefficient of the total structure. We compare the results of our analytical model
with an actual plate resonator, which consists of a limp membrane, an air cavity, and a porous layer.
We verify that once the material parameters of the model are chosen in accordance with the actual
structure, our proposed model provides a qualitatively fair approximation for the involved physical
processes.

2. METHODOLOGY FOR MODELING LAYERED STRUCTURES
In order to predict the absorption characteristics of an arbitrary, finite absorbing surface the correspond
scattering problem has to be solved for an arbitrary incident sound. This section introduces how the
involved scattering problem can be solved in a planar geometry once the surface admittance function
is known over the top layer of the potentially layered absorber structure. Once the total pressure field
is known along the elastic surface the absorbtion coefficient can be evaluted, inherently including
finite-size effects (e.g. diffraction at the edge of the absorber). The derivation follows as given in [?]

2.1. Calculating scattering from baffled elastic surface
In the present paper exclusively planar geometries are investigated. Consider a two-

dimensional, bounded elastic surface with finite dimensions, baffled into a infinite rigid plane located
at z = 0. The geometry under investigation is illustrated in Figure 1 (a) through a rectangular plate as
a representative example. The region over the elastic surface is referred to as Ω, whereas the points
situated on the rigid plane are denoted by Ω̃.

The plane is loaded by the infinite half-space of fluid with the density of ρ0 and in which the
speed of sound is denoted by c. An arbitrary steady state incident wave field Pin(x, ω) is propagating
towards the elastic plate, oscillating at an angular frequency ω.

As the incident wave interacts with the surface the total pressure field can be written above and



on the surface as
Ptot(x, ω) = Pin(x, ω) + Prefl(x, ω) + Prerad(x, ω)︸                        ︷︷                        ︸

Pscat(x,ω)

. (1)

The scattered field (denoted by Pscat(x, ω)) is composed of two components: a part of the incident field
is directly reflected from the surface (denoted as Prefl(x, ω)), and a reradiated component (Prerad(x, ω)).
The latter is generated by the vibrating elastic surface, which is in motion due to the force distribution
arising from the total pressure field.

The current problem geometry has the following boundary conditions:

– The total velocity on the infinite rigid baffle is zero, which results in:

∂

∂z
Pin(x, ω) = −

∂

∂z
Pscat(x, ω) (2)

Pin(x, ω) = Pscat(x, ω), x ∈ Ω̃ (3)

– The elastic surface has an admittance function (inculding self and mutual admittances) defined
between each point, expressed as:

Ysurf(x, x0, ω) =
A(x, ω)
P(x0, ω)

, (4)

where A(x, ω) represents the normal acceleration of the surface at the receiver position x, and
P(x0) is the pressure at the source position x0. Assuming a continuous pressure distribution
along the elastic surface, the corresponding acceleration can be obtained as the convolutional
integral

A(x, ω) =
∫
Ω

Ysurf(x, x0, ω)P(x0, ω) dx0. (5)

Since the scattered field propagates merely towards the positive half space it can be written in
terms of a Rayleigh integral along z = 0 [1,2], yielding the expression for the total field at an arbitrary
receiver position x = [x, y, z ≥ 0]T

Ptot(x, ω) = Pin(x, ω) − 2
∫
Ω∪Ω̃

∂

∂z
Pscat(x0, ω)︸           ︷︷           ︸
∂
∂z Pscat(x,ω)|x=x0

G(x, x0, ω)dx0, (6)

where

G(x, x0, ω) =
1

4π
e−jωc |x−x0 |

|x − x0|
(7)

being the 3D Green’s function, describing the field of a point source located at x0, measured at x.
By substuting Pscat = Ptot − Pin the integral can be factorized as

Ptot(x, ω) = Pin(x, ω) − 2
∫
Ω

∂

∂z
Ptot(x0, ω) G(x, x0, ω)dx0−

−2
∫
Ω̃

∂

∂z
Ptot(x0, ω) G(x, x0, ω)dx0︸                                       ︷︷                                       ︸

0

+ 2
∫
Ω∪Ω̃

∂

∂z
Pin(x0, ω) G(x, x0, ω)dx0︸                                       ︷︷                                       ︸

Prigid
refl (x)

. (8)

Here it was utilized that the middle integral term vanishes over the rigid baffle, while the rightmost
integral describes the reflected field from an ideally rigid infinite plane (i.e. as the elastic surface was
not present). The pressure gradient in the air is expressed by the Euler’s relation ∂

∂z P(x, ω) = −ρ0A(x),



and the radiation problem in air can be coupled with the surface motion by the boundary condition
Equation 5, leading finally to

Ptot(x, ω) = Pin(x, ω) + Prigid
refl (x, ω) + 2ρ0

∫
Ω

(∫
Ω

Ysurf(x0, x1, ω)Ptot(x1, ω) dx1

)
G(x, x0, ω)dx0. (9)

The equation describes the total field at an arbitrary receiver position x above the horizontal plane
implicitly. Finally, restricting the receiver position to the elastic surface the above expression
simplifies to

Ptot(x, ω) = 2Pin(x, ω) + 2ρ0

∫
Ω

(∫
Ω

Ysurf(x0, x1, ω)Ptot(x1, ω) dx1

)
G(x, x0, ω)dx0, (10)

with x = [x, y, 0]T, while the total normal velocity of the surface can be calculated as

Vtot(x, ω) =
1
jω

∫
Ω

Ysurf(x, x0, ω)Ptot(x0, ω) dx0. (11)

The equation Equation 10 presents the total pressure field as an integral equation, which cannot
be solved analytically. However, it can be numerically solved by discretizing the elastic surface into
I elements, with the center of each element xi and area dΩi. The complex amplitudes of pressure
and normal velocity at xi are given by the vectors p = Pi = P(xi) and a = Ai = A(xi), and their
interconnection is described by the admittance matrix

Ysurf = Yi j =
Ai

P j
. (12)

By introducing the Green’s matrix on the surface

G = Gi j =

∫
dΩi

G(x j, x0)dx0, x j = [x, y, z = 0]T (13)

and discretizing equation Equation 10, we obtain

ptot = 2pin + 2ρ0G Ysurf ptot. (14)

The total field on the surface of the plate is obtained by solving the system of equations using

ptot = 2 (I − 2ρ0GYsurf)−1 pin. (15)

and the corresponding normal velocity distribution from the discrete form of equation Equation 11 as

vtot =
1
jω

Ysurfptot. (16)

2.2. Definition of absorption coefficient for extended reactive surfaces
Having found the total pressure field and velocity distribution on the surface of the absorber

for an arbitrary incident wave, its absorption characteristics can be predicted as follows: The incident
field is assumed to be a plane wave arriving to the elastic surface at an elevation angle of θ and azimuth
angle of ϕ, described by

Pin(x, θ, ϕ, ω) = e−jk(cos ϕ sin θx+sin ϕ sin θy+cos θz). (17)

As a straightforward estimation, the directional absorption coefficient of the elastic surface can
be defined as (see eq. (12.30) [3])

α(θ, ϕ, ω) =
Πabs(θ, ϕ, ω)
Πin(θ, ω)

= Z0

Re
(∫
Ω

Ptot(x, θ, ϕ, ω)V∗tot(x, θ, ϕ, ω) dx
)

cos θ S Ω
, (18)



with Πabs and Πin being the absorbed and incident power, S Ω being the area of the elastic surface and
Z0 = ρcc being the specific impedance of air. In the discrete case the absorbed power can be written
as

Πabs(θ, ϕ, ω) = Re
((

p∗totvtot
)∗)
= Re

((
1
jω

p∗totYptot

)∗)
= −

1
ω

Im
(
p∗inT∗YsurfTpin

)
(19)

with denoting T = 2 (I − 2ρ0GYsurf)−1.
The diffuse field absorption coefficient is calculated by averaging the absorbed and incident

power over the possible incident directions, resulting in

αdiff =

∫ 2π

0

∫ π/2
0
Πabs(θ, ϕ) sin θdθ dϕ∫ 2π

0

∫ π/2
0
Πin(θ) sin θdθ dϕ

= Z0

∫ 2π

0

∫ π/2
0
Πabs(θ, ϕ) sin θdθ dϕ

πS Ω
. (20)

2.3. Coupling the layered structure
The previous section highlighted that once the admittance function (or admittance matrix in the

discrete case) is known over a finite elastic surface the scattering problem can be solved numerically
for an arbitrary incident field. From the resulting total pressure field the and surface velocity the
absorption properties of the surface can be evaluated.

In the following it is assumed the elastic surface is the top of a layered absorber structure,
consisting of multiple fluid (air) layers, porous absorbing layers or thin plate layers. Our goal is
to express the surface admittance of the top layer, so that absorption properties can be predicted
numerically from it. In the following it is discussed how the layers can be coupled to each other by
surface impedance/admittance boundary conditions with solving the equation of motion in each layer
analytically, eventually allowing the expression of the top layer’s surface admittance. The method is,
therefore, a 3-dimensional extension of the 1-dimensional transfer matrix method, applied frequently
the prediction of the absorption proerties of layered structures with infinite lateral extension, by
coupling the individual layers through locally reactive impedances.

The geometry of the layered structure is depicted in Figure 1 (b). The layers under investigation
have a rectangular cross-section with horizontal dimensions of Lx and Ly. The lateral sides
of the layers are assumed to be completely rigid, meaning that rigid boundary conditions are
prescribed. However, other absorber shapes and lateral boundary conditions can be implemented
straightforwardly by finding a corresponding set of modal basis functions, discussed inthe following
subsection.

The methodology for coupling the layers is as follows: It is assumed that the impedance can be
expressed at the top of the n-th layer as the function of the impedance measured at the bottom of the
layered. The impedance at the top of the n. layer is defined as

Zn
top(x, x0, ω,Zn

bottom = Zn+1
top ) =

P(x, ω)
A(x0, ω)

(21)

i.e. describes the pressure field at x = [x, y]T due to a acceleration excitation at x0 = [x0, y0]T.
The impedance at the bottom of the n-th layer equals the top impedance of the (n − 1)-th layer as a
continuity condition. Starting from the lowermost layer, which is terminated by Zt(x, ω), the input
surface impedance of the top layer can be written as

Zsurf(x, x0, ω) = Z1
top(Z2

top(...ZN
top(Zterm(x, ω)))). (22)

The impedance function is evaluated numerically at the top of each layer using the discretization
scheme outlined in the previous section. Once the impedance matrix Z1

top is obtained at the top layer,
the surface admittance matrix is computed as Ysurf = (Z1

top)−1, allowing the solution of the scattering
problem from the layered structure.

The surface impedance for fluid, porous absorber, and thin panel layers is described next, under
the assumption of arbitrary impedance boundary condition at the bottom of the layers.



2.4. Calculation of transfer admittance for a fluid layer
First a rectangular fluid layer is investigated with the horizontal dimensions Lx, Ly, and the

vertical thickness of Lz. For the sake of simplicity the top of the layer is located at z = 0, thus the
bottom of the layer is at z = Lz. The equation of motion in the layer is given by the linear 3D wave
equation, written in the frequency domain as(

∇2
x +

(
ω

c

)2
)

P(x, ω) = 0, (23)

with ∇x denoting the Laplace operator. The input surface impedance is defined directly as being
equal to the pressure field at the top of the layer P(x, y, 0, ω), assuming a point like excitation in the
acceleration field, i.e.

A(x, y, 0, ω) = −ρ0
∂

∂z
P(x, y, z = 0, ω) = δ(x − x0) → Ztop(x, x0, ω) = P(x, y, 0, ω) (24)

The bottom of the layer is terminated by an abitrary impedance distribution Zbottom, written in terms
of acceleration

P(x, y, Lz) =
" Lx,Ly

0
Zbottom(x, x0, y, y0) A(x0, y0, Lz) dx0 dy0 (25)

With the present lateral boundary conditions all the involved quantites (pressure, acceleration,
impedances) can be expanded into the linear combination of horizontal modal basis functions

P(x, y, z, ω) =
∑

m

Φm(x) · Φn(y)︸          ︷︷          ︸
Φm(x)

(
p+me−jkm

z z + p−mejkm
z z

)
(26)

with using linear indexing m = [m, n]T and km
z =

√(
ω
c

)2
− (mπ

Lx
)2 − ( nπ

Ly
)2 denoting the z-component of

the wavenumber. In Equation 26 p+m and p−m denote the complex amplitude of plane waves propagating
downward and upward in the layer, for which the system of equations has to be solved numerically.

In the present geometry, the modal basis functions, forming a complete, orthonormal basis are
given by

Φm(x) =


1
√

Lx
, m = 0√

2
Lx

cos mπ
Lx

x, m > 0
Φn(y) =


1√
Ly
, n = 0√

2
Ly

cos nπ
Ly

y, n > 0
. (27)

Note, that all the following results can be extended unchangedly for non-rectangular cross-sections
and non-rigid lateral sides as long as orthonormal modal functions can be found.

In the following the actual derivation is not detailed. As a standard approach, using the modal
superposition method (discussed e.g. in [2]) the derivation involves the expansion of equations
Equation 24 and Equation 25 into the series of modal basis functions, allowing the analytical
evaluation of partial differentiation. The system of equations then can be decoupled by projection of
the series to the individual mode shapes. In the decoupled, modal domain the system of equations can
be solved for p+ and p−, and Equation 26 can be evaluated at z = 0 to obtain the surface impedance
of the layer.

Again, the problem is solved on a discrete grid of I elements on the layer surface. The modal
series are truncated up to the M-th order, i.e. n = m = 0, 1, 2, ...,M, resulting in (M + 1)2 modal basis
vectors. In a discrete matrix-vector notation the modal basis vectors are ordered into the (M + 1)2 × I
sized modal matrix Φ, each row containing a mode shape. With this notation the I × I sized spatial
surface impedance matrix is given on a single angular frequency ω by

Ztop = Φ
TZ̃topΦ, (28)



where the modal coordinate matrix of the top impedance is given by 4

Z̃top =

(
diag(cos(k̃zLz)) −

1
ρ0

Z̃bottom diag(k̃z sin(k̃zLz))
)−1 Z̃bottom diag(ejk̃zLz ) + ρ0diag(

ejk̃zLz

jk̃z
)
 − diag(

ρ0

jk̃z
), (29)

with k̃z = km
z and diag() denoting a diagonal matrix constructed from the input vector. Obviously,

Equation 29 implicitly contains the modal matrix of the bottom/termination impedance, defined by

Z̃bottom =

" Lx,Ly

0

" Lx,Ly

0
Zbottom(x, x0, ω)Φm(x0)Φp(x) dx dx0 = ΦZbottomΦ

T (30)

It should be noted that for a rigid termination, i.e. if Z̃bottom = diag(∞), the above expression
converges to

Z̃rigid
top = −ρ0diag(

cot(k̃zLz)
k̃z

). (31)

Obviously, Equation 28 and Equation 30 describe a 2-dimensional orthogonal inverse and
forward transform, with the 1D transform matrix given by the modal matrix. The linear transform
yields the modal spectrum of the involved 2D quantities. In the modal domain the surface impedance
can be expressed from the bottom impedance spectrum, followed by the corresponding inverse
transform to the spatial domain.

2.5. Calculation of transfer admittance for porous layers
Although there are more complex models available for modeling sound propagation in porous

absorbers with a rigid skeleton, such as the Biot model, the present work uses equivalent fluid
models to model porous layers. Specifically, the Delany-Bazley [4], Miki [5], Mechel-Grundman [6],
and Allard-Champoux [7] models, which provide expressions for the complex fluid density and the
complex speed of sound (including attenuation) based on simple material parameters such as flow
resistivity, tortuosity, porosity, and characteristic lengths. These models, which are mainly empirical,
enable the direct application of Equation 28 for calculating the top surface impedance of a porous
layer without any modification.

2.6. Calculation of transfer admittance for a simply supported plate
Finally, as a third possible layer the input impedance function of a thin plate is investigated,

backloaded by an arbitrary bottom impedance distribution.
From thin plate theory it is well-known that the equation of motion for an unloaded plate is

given for the normal displacement W(x, y) by(
∇4

x − k4
f

)
W(x) = 0, (32)

with k f = (ρshω2/D)1/4 being the bending wavenumber, ρs the density of the plate, h is the thickness
of the plate and D being the flexural rigidity. It is assumed that the plate is simply supported, i.e. the
plate can not move in the z-direction at its edge, but is free to rotate around its support. The plate is
again, considered to be a rectangular one with the same dimensions as the other layers, and equation
of motion is again, solved in the modal domain. The mode shapes satisfying the present boundary
conditions are given by

Φm(x) =


1
√

Lx
, m = 0√

2
Lx

sin mπ
Lx

x, m > 0
Φn(y) =


1√
Ly
, n = 0√

2
Ly

sin nπ
Ly

y, n > 0
(33)

4In the following matrices and vectors defined in the modal domain are denoted by tilde.



In our present geometry the bottom of the plate is loaded by the top impedance function of
the next layer, denoted by Zbottom(x, x0). This time, due to the nature of the equation of motion the
thin plate layer’s top admittance is calcualted directly, from which the impedance function can be
calculated straightforwardly if required. Similarly to the fluid layer case, the surface admittance of
the plate is found by calculating the acceleration at the surface at point x, due to exciting the plate with
a point like pressure distribution at x0. This approach yields the following inhomogenous equation of
motion

D
(jω)2

(
∇4

x − k4
f

)
A(x) = δ(x − x0)dS −

" Lx,Ly

0
A(x1) Zbottom(x, x1) dx1︸                                  ︷︷                                  ︸

Pbottom(x)

, (34)

where Pbottom(x) is the fluid loading, acting on the bottom side of the plate, and dS is the elementary
area, converting the point-like force excitation into pressure excitation.

As for the fluid layer, the inhomogenous equation is solved by expanding A(x) in both sides of
the equation into the series of the modal basis function, allowing the analytical evaluation of ∇4

x. This
step is followed by projection of both sides of the equation the mode shapes, leading to the decoupled,
modal formulation of the equation of motion. This equation can be rearranged to be solved for the
acceleration, directly yielding the admittance function at the angular frequency ω of the surface of the
thin plate

Ytop = Φ
T
(
diag

(ms

ω2

(
ω2 − ω̃2

))
+ Z̃bottom

)−1
dS︸                                          ︷︷                                          ︸

Ỹtop

Φ, (35)

with ms = ρsh being the mass of the plate per unit surface area, Z̃bottom = ΦZbottomΦ
T is again the

modal representation of the bottom loading impedance (see Equation 30) and ω̃ being the in-vacou
eigenfrequencies corresponding to the mode shapes.

Assuming an isotrophic plate the vector of eigenfrequencies is given by

ω̃ =
h
√

12
c
(mπ

Lx

)2

+

(
nπ
Ly

)2 , c =

√
E

ρs(1 − ν2)
(36)

where c is the traveling speed of bending waves in the plate, E is the Young’s modulus and ν is the
Poisson ratio. Considering an ortotrophic plate for which the wave traveling speed is different into x
and y dimensions the quantites are extended as

ω̃ =
h
√

12

cx

(
mπ
Lx

)2

+ cy

(
nπ
Ly

)2 , cx =

√
Ex

ρs(1 − νxνy)
, cy =

√
Ey

ρs(1 − νxνy)
. (37)

Obviously, from the surface admittance the surface impedance is defined as

Ztop = Φ
T
(
diag

(ms

ω2

(
ω2 − ω̃2

))
+ Z̃bottom

)
dS︸                                       ︷︷                                       ︸

Z̃top

Φ, (38)

i.e. in the modal domain the loading impedance is simply added to the plate’s in-vacou impedance
distribution.

3. APPLICATION EXAMPLE: MODELING A PLATE RESONATOR
From the three types of layers discussed in the previous section a simple plate absorber consiting

of a plate, and airgap and a porous absorber layer, backed with rigid termination. The lowermost layer
is the porous layer, backed with a rigid termination. The layer was modeled as an equivalent fluid
based on the Allard-Champoux model, i.e. its impedance was calculated based on Equation 31. The



(a) (b)

Figure 2: Plate absorber under investigation (a) and the result of TMM modeling (b)

air gap was terminated by the surface impedance of the porous layer, calcualted based on Equation 29.
Note that since the modal basis is the same in the two layers, therefore, the 2D inverse and forward
transform can be omitted, i.e. Equation 31 can be directly used in Equation 29, coupling the layers in
the modal domain. Finally, the top plate’s surface impedance is calculated by Equation 38 by utilizing
the surface impedance of the air gap, transformed from the fluid’s modal basis into that of the plate.

The material parameters of the analytical model was choosen based on an actual, customly built
plate resonator structure, allowing the comparison of the model’s output with measurements.

3.1. The plate absorber under investigation
Figure 2 (a) shows the customly buit plate resonator. The horizontal dimensions of the structure

are Lx = 88 cm and Ly = 62 cm, which corresponds to a total area of Ω = 0.55 m2. The absorber is
constructed using three layers:

– A 3-layered composite plywood panel with a thickness of h = 4 mm, serving as the mass of
the resonator structure. In accordance with the manufacturer’s datasheet the mass of the plate
is approximately ms = 2.7 kg/m2.

– An air gap of da = 4.3 cm, together with the air filling the porous absorber layer serving as the
spring for the damped mass-spring absorber structure.

– A layer of rock wool with a thickness of dp = 5 cm attached to the back of the structure to
ensure energy dissipation in the resonator. The porous absorbing layer’s flow resistivity was
assumed to be σs = 45000 rayl/m following the manufacturer’s datasheet.

The backing and framing of the structure are made of plywood with a thickness of 1.2 cm. In our
model the backing and framing was considered to be ideally rigid.

Based on a simple mass-spring system theory the structure was constructed to exhibit a maximal
absorption at around [8].

f0 =
c

2π

√
ρ0

ms(dp + da)
≈ 121 Hz. (39)

To obtain a more precise a priori prediction of the absorption characteristics of the absorber, the
layered structure was modeled using the 1-dimensional transfer matrix method (TMM) as described in
[3]. The prediction results are shown in Figure 2 (b), taking into account the finite size of the absorber
by using a simple radiation efficiency-based correction term while assuming a layered structure of
infinite extension.



(1, 1) f = 23.5 Hz (1, 2) f = 47 Hz (2, 1) f = 58.7 Hz

(1, 3) f = 76.7 Hz (2, 2) f = 83 Hz (2, 3) f = 120 Hz

Figure 3: Mode shapes and eigenfrequencies measured on the unbaffled, simply-supported top-plate

(a) (b)

Figure 4: Measured (a) and modeled (b) plate accelertion with blue line denoting the acceleration of
all measurement points and black line denoting the mean of the absolute accelertion vectors

3.2. Defining the propagation speed in the top plate
To estimate the speed of bending waves in the top thin plate, experimental modal analysis was

conducted on a disassembled structure with the plate still attached to the framing, allowing both
sides to radiate into the free field. The arrangement approximated a simply-supported, unbaffled
plate. The first six modes and their eigenfrequencies were analyzed as depicted in Figure 3, and
the highly ortotropic nature of the plate with higher wave speed in the x-direction was observed. The
modal frequencies were assumed to approximate in-vacuo eigenfrequencies described by Equation 37.
However, it should be noted that the actual in-vacou eigenfrequencies are slightly higher then the
measured values, since the additional mass of air, moving around the free-standing plate as an acoustic
short-circuit, decrease the modal frequencies. This effect is enhanced in case of odd modes with high
radiation efficiency.

The lateral wave propagation speed in the plate was estimated to be cx = 5800 m/s and cy =

1800 m/s, and slightly increased based on the above physical considerations, for best fit with the
analytical 3D model. Additionally, Rayleigh damping was introduced by adding an imaginary part
to the propagation speed components, chosen to achieve the best fit with the experimental model.
Precise measurement of plate parameters was not within the scope of this study.

3.3. Comparison of analytical model with measurements
In order to compare the modeled resonator with the actual structure, the modal behavior of

the top plate backed by the air gap and the porous layer, was investigated. The modal analysis
was performed on the plate’s normal acceleration. For the analytical model the plate accelartion
is calculated from the surface admittance as

A =
1

dS
(I − 2ρ0YG)−1 Y (40)



(a) (b)

Figure 5: Measured (a) and modeled (b) absorption coefficients of the plate resonator. Transparent
blue lines denote the absorbtion coefficient into different directions. Solid blue line denotes the diffuse
absorption coefficient and solid black line denotes the normal incidence absorption.

For the actual plate resonator structure the surface acceleration was measured over a grid by exciting
the surface with a PCB 086C03 impact hammer and measuring the response with PCB 353B13
accelerometers. The measurement results were interpolated to the grid of the analytical calculations.

The acceleration distribution of the measured and analytical model data is shown in Figure 4
(a) and (b), respectively, with the mean acceleration indicated by the black line. The vertical dashed
lines in both graphs represent the identified modes from the modal analysis. Although the low-order
eigenfrequencies and corresponding damping are qualitatively estimated correctly, significant errors
occur for higher modes. This is likely due to the fact that the plate parameters were estimated based
on low-frequency modes, but a more precise estimation of material properties is beyond the scope of
this study.

More importantly, the analytical model provides a qualitatively correct approximation of the
physical process inside the plate absorber, showing that the order of plate modes strongly depends on
the cavity behind the top plate. The mode shapes are categorized based on the number of positive
and negative partitions along the surface. Even modes have the same number of positive and negative
cells, while odd modes have different numbers of positive and negative cells. Due to the acoustic
short circuit above the plate, even modes have low radiation efficiency, while odd modes radiate
waves to the upper half-space with low efficiency. Similarly behind the plate, for even modes the
pressure fluctuation is locally equalized below the enclosure, and the acoustic short circuit behaves
as a concentrated mass connected to the back of the plate, slightly decreasing the in-vacuo modal
frequencies. However, for odd modes, the air inside the enclosure must be compressed by the plate,
and the cavity acts as an additional stiffness to the plate, resulting in a significant increase in the
natural frequency of odd modes (e.g. (1,1)), even above higher-order modes.

3.4. Absorption characteristics of the plate resonator
Finally, the absorption characteristics of the plate resonator were estimated based on the

analytical model and was compared with measurement results. For both the analytical model and
the measurement based estimation was performed by evaluating Equation 18 and Equation 20 for
the normal and diffuse absorption parameters. For the measurement based estimation the admittance
matrix was captured by means of impact testing of the top plate on a full grid, with the methodology
detailed in [9].

The normal incident, oblique incident and the diffuse absorption factors are illustrated in Figure
5. Comparison with Figure 2 (b) highlights that instead of the ideal absorption factor of the simple
mass-spring system the absorption characteristics of the system is mainly determined by the modal
behaviour of the top plate. Both the measured results and the analytical model verifies that significant
absorption is achieved on odd modes with high radiation efficiency, at which the plate compresses
the air inside the cavity (including the porous absorber) due to its motion. At even modes with low



radiation efficieny, the air inside the cavity acts as an acoustic short-circuit, therefore, fluid motion
barely reaches the absorber layer. As a result, only minor absorption is achieved at these modal
frequencies, enhanced for lateral waves exciting the even modes asymmetrically. It is noted that for
the measurement results at low order even modes negative absorption is estimated, which may be the
result of phase uncertainty in the measurement result.

In both cases, along with the size-corrected TTM result (see Figure 2 (b)) absorption
coefficients above unitiy are predicted. This phenomena is even enhanced for lateral incident waves,
with the incident pressure wave generating large plate vibrations at low incident intensities. This
apparent unphysical absorption factor exceeding unity reflects that on the plate’s modal frequencies
the absorber ”draws in” energy from surrounding regions due to a process of diffraction, therefore,
the actual absorption area highly exceeds the plate’s physical dimensions [10].

4. CONCLUSIONS
The present contribution discussed 3D modeling method of finite-sized layered acoustic

absorber structures. The study was focusing on rectangular, rigidly baffled absorber geometries
consisting of thin plates, air gaps and porous layers, the latter modeled as equivalent fluids. However,
the theory can be straightforwardly extended for arbitrary shapes with arbitrary lateral boundary
conditions as long a suitable set of modes can be found for the geometry.

The theoretical results were validated via comparison with an actual plate absorber of relatively
small size. The comparison showed that the proposed model can predict the absorption characteristics
of layered structures qualitatively correctly. However, to achieve a closer match with measurement
results, more precise material parameter estimation of the involved layers would be necessary, which
is out of the scope of this paper.

Furthermore, the extension of the proposed method for more general structures would require
the analytical investigation of slotted, perforated and microperforated plates, which is the subject of
further research. Overall, this study provides a useful basis for modeling and predicting the absorption
properties of layered acoustic absorber structures, which have important applications in noise control
and acoustic design.
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