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ABSTRACT
In numerical room acoustic modeling certain material properties are required as inputs for setting the
boundary conditions for the calculations. In finite element or finite difference models, locally reactive
boundaries are often represented as FIR or IIR filters. However, most building material manufacturers
provide sound absorption coefficient or equivalent absorption area data only, in accordance with the
relevant standards, so a method to convert sound absorption to admittance or impedance impulse
responses is required. Since there is a loss of information when admittance is converted to sound
absorption coefficients, the conversion in the opposite direction has multiple solutions. We derive an
iterative method of determining either the impedance or admittance impulse response from arbitrary,
frequency-dependent diffuse sound absorption coefficients and validate it with the transfer matrix
method. We present the implementation of the method in the soundy.ai application.

1. INTRODUCTION
The diffuse absorption coefficient is a well-established parameter used to describe acoustic materials
in the context of room acoustic control. It can be easily measured in a reverberation chamber by
estimating the decrease in reverberation time, as specified in ISO 354:2003 [1]. Additionally, diffuse
absorption can be incorporated as a simple wall material property in statistical-based room acoustics
simulation software.

However, numerical methods that aim to solve the wave equation in enclosures, such as
finite element and finite difference methods, require appropriate boundary conditions for the
absorbing boundary surfaces. As a simplification, boundaries are often approximated as locally
reactive, disregarding wave propagation within the bounding surface [2]. Locally reactive surfaces
can be described using impedance or admittance boundary conditions, which couple the surface
pressure and velocity at the point of interest. Nevertheless, even for locally reactive surfaces, the
angle-dependent absorption coefficient (which inherently lacks phase information of the surface
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impedance/admittance) neglects the phase information and integrates absorption from all possible
angles. Consequently, acquiring impedance/admittance properties solely from diffuse absorption
characteristics presents a highly underdetermined problem, leading to an infinite number of solutions
even with locally reactive assumptions.

Several studies have attempted impedance reconstruction from absorption functions by
assuming an underlying physical model and employing parameter fitting or considering random
incidence absorption [3–5]. However, in the context of numerical room acoustics simulations, an
impedance/admittance function that achieves the desired diffuse absorption characteristics may
suffice.

This paper presents a numerical algorithm that enables the estimation of impedance/admittance
from diffuse absorption characteristics, assuming locally reactive boundaries. The method is based
on the causality condition prescribed for the bounding surfaces, which is a physically motivated
requirement. By incorporating causality through the Discrete Hilbert Transform, the problem can be
formulated as a system of nonlinear equations that can be solved using the Newton-Raphson method.
Since the problem still has an infinite number of solutions, optimizing for impedance or admittance
functions yields different results.

The validity of the numerical method is demonstrated by examining simple absorber structures,
including a single layer of porous absorber and a simple plate absorber. The results show that the
proposed approach can yield both suitable impedance and admittance functions, ensuring the desired
diffuse absorption characteristics. However, when matching the absorption to an underlying physical
model, deriving the admittance function is a viable alternative to evaluating the surface impedance.

2. PROBLEM FORMULATION
Let’s assume an infinite, locally reactive surface. The impedance at each point of the surface is

given by Zsurf(ω) = P(ω)
V(ω) , or alternatively the surface admittance Asurf(ω) = 1/Zsurf(ω). To simplify the

subsequent discussion, we introduce the normalized surface impedance and admittance as ZA(ω) =
Zsurf(ω)/Z0, and AA(ω) = Asurf(ω) · Z0 respectively. The directional absorption coefficient is obtained
from the normalized surface impedance and admittance as

α(ω, θ) = 1 − |R(ω, θ)|2 =
4Re(ZA)/ cos θ
|ZA + 1/ cos θ|2

=
4Re(AA) cos θ
|AA + cos θ|2

. (1)

where R(ω, θ) is the reflection coefficient. From the directional absorption coefficient the diffuse field
absorption coefficient for random incidence is defined by integrating over the angle of incidence,
calculated as

αd(ω) =

∫ θ f

0
α(ω, θ) sin θ cos θ dθ∫ θ f

0
sin θ cos θ dθ

. (2)

where θ f is the final angle value of the integration range, for the sake of simplicity chose to be θ f =
π
2 .

With this limit of integration
∫ π/2

0
sin θ cos θ dθ = 0.5, and the diffuse absorption field coefficient reads

as

αd(ω) = 8
∫ π/2

0

Re(ZA(ω))
|ZA(ω) + 1/ cos θ|2

sin θ dθ = 8
∫ π/2

0

Re(AA(ω))
|AA(ω) + cos θ|2

cos2 θ sin θ dθ. (3)

In the following our aim is to express the surface impedance ZA and surface admittance
AA assuming that the diffuse absorption coefficient, αd(ω) is given. The main goal of the
derivation is to retrieve phase information merely from the real value or the absolute value of the
impedance/admittance function. In order to arrive at a solution for the underdetermined problem
the following physically-based assumptions are made (presented for the impedance, however, the
following criteria equivalently holds without change for the admittance AA(ω)):



– Causality: As in the time domain the impedance function describes the pressure response for
a point like velocity excitation over the surface, the response signal should not precede the
excitation, i.e. the temporal representation of the impedance function has to be causal. In the
temporal domain this yields

ZA(t) = 0, for t < 0. (4)

In the frequency domain this is equivalent to the statement that ZA(ω) is analytical, i.e. the
imaginary part of the complex valued impedance function is the Hilbert transform of the real
part [5, 6]

ZA(ω) = r(ω) − jH (r(ω)) = r(ω) −
j
π

∫ ∞

−∞

r(y)
ω − y

dy, (5)

where r(ω) = Re (ZA(ω)) andH () denotes the Hilbert transform [7].

– Passivity: The boundary should not generate energy additionally to the sound field.
Mathematically this requirement can be formulated as

Re (ZA(ω)) ≥ 1, for ω ∈ R (6)

– Real valued time domain description: Since describing a physical process, the casual temporal
representation of the impedance is real valued. In the frequency domain this means

Z∗A(ω) = ZA(−ω). (7)

This latter requirement can be automatically satisfied by evaluating the following numerical
method up to the half of the sampling frequency, and afterwards symmetrizing the spectrum.

With taking the causality condition into consideration the diffuse absorption coefficient Equation 3
can be written analytically as

αd(ω) = 8
∫ π/2

0

r(ω)∣∣∣r(ω) − jH (r(ω)) + 1/ cos θ
∣∣∣2 sin θ dθ =

= 8
∫ π/2

0

r(ω)
(r(ω) + 1/ cos θ)2 +H (r(ω))2 sin θ dθ. (8)

Similarly, with expressing the absorption coefficient in terms of the admittance, denoting AA(ω) =
x(ω) + jy(ω)

αd(ω) = 8
∫ π/2

0

x(ω)
(x(ω) + cos θ)2 +H (x(ω))2 cos2 θ sin θ dθ. (9)

is yielded.

3. NUMERICAL METHOD FOR EVALUATING THE IMPEDANCE/ADMITTANCE
In the previous section it was shown how the diffuse absorption coefficient can be expressed

merely in terms of the real part of the surface impedance or the admittance. Now a numerical method
is discussed in order to solve Equation 8 or Equation 9 for either the real part of the impedance or
admittance, first discussed for the impedance case.



3.1. Discretization of the involved equations
In order to solve the Equation 8 for r(ω) all the involved quantities are discretized with a simple

sampling discretization scheme.
In the derivation the following nomenclature is used:

– α = αn and r = rn are the elements of the frequency dependent target absorption coefficient
vector and the real part of the impedance to be evaluated, respectively. Both are discretized into
N elements from ω0 to π fs.

– θ = θi denotes the elements of the incidence angle-vector with I elements, spanning from 0 to
π/2.

– According to [8] it is possible to realize the discrete Hilbert transform (DHT) in a matrix form,
by multiplying the input vector with the Hilbert matrix. The elements of the NxN-sized Hilbert
matrix H = Hmn are given as

H =
1
N



0 −c1 0 −c3 . . . −cN−1

c1 0 −c1 0 . . . 0

0 c1 0 −c1 . . . −cN−3

. . . . . . . .

. . . . . . . .

cN−1 0 cN−3 0 . . . 0


. (10)

With this notation Equation 8 is discretized to

αn = 8
π

2 (I − 1)

I−1∑
i=0

rn sin θi

(rn + 1/ cos θi)2 +
(∑N−1

m=0 Hnmrm

)2 (11)

resulting in the system of N number of non-linear equations coupled by the Hilbert matrix, which has
to be solved for each rn simultaneously.

3.2. Iterative solution for the non-linear system of equations
The system of non-linear equations can be solved by the Newton-Raphson method iteratively.

Starting out from an initial impedance vector r0, in the j + 1-th iteration the solution vector, yielding
the roots of expression F(r j) is obtained as

r j+1 = r j − JF(r j)−1F(r j). (12)

The iteration is performed until convergence is achieved, i.e. while
∣∣∣r j+1 − r j

∣∣∣ = ∣∣∣JF(r j)−1F(r j)
∣∣∣ < ϵ.

In the problem under consideration the expression to be minimized is given by

F(r) = αn − 8
π

2 (I − 1)

I−1∑
i=0

rn sin θi

(rn + 1/ cos θi)2 +
(∑N−1

m=0 Hnmrm

)2 (13)

and the NxN-sized Jacobian matrix is obtained from the partial derivative as

JF(r) = Jnk =
∂

∂rk
F(r) = −8

π

2 (I − 1)

I−1∑
i=0

∂

∂rk

rn sin θi

(rn + 1/ cos θi)2 +
(∑N−1

m=0 Hnmrm

)2 . (14)



Performing the required differentiation the Jacobian reads as

Jnk = −8
π

2 (I − 1)

I−1∑
i=0

Ink

(
(rn + 1/ cos θi)2 +

(∑N−1
m=0 Hnmrm

)2)
− rn

(
2rnInk + 2 Ink

cos θi
+ 2
(∑N−1

m=0 Hnmrm

)
Hnk

)
(
(rn + 1/ cos θi)2 +

(∑N−1
m=0 Hnmrm

)2)2 sin θi. (15)

With the above iteration the real part of the impedance function can be obtained. Finally, the complex
impedance can be calculated as

ZA = r − jHr. (16)

3.3. Optimal choice of the initial vector
It is important point out that due to the lack of the phase information in the absorption

coefficient, therefore, an infinite number of complex, casual impedance functions result in the same
absorption, and Equation 8 is satisfied by infinite number of r(ω) functions. Therefore, the choice of
the initial vector in the numerical iteration is crucial for both convergence and the properties of the
obtained solution.

A suitable choice for the initial vector is r0 = 0. With this choice the initial Jacobian J0
nk and

the expression to be minimized F0(r) reads as

J0
nk = J0

F = −8Ink

I−1∑
i=0

cos2 θi sin θi
π

2 (I − 1)︸                         ︷︷                         ︸
≈1/3

≈ −
8
3

I →
(
J0

F

)−1
= −

3
8

I (17)

F0(r) = αn. (18)

As a result, at the first iteration the correction vector is given by

−
(
J0

F

)−1
F0(r) =

3
8
α. (19)

This leads to convergence towards positive solution vectors, inherently ensuring the passivity
condition. Moreover, with this choice, the iteration is likely to converge to the solution for which
|r| is minimal, resulting in the "minimal phase" solution of the problem. Physically, the minimal
phase impedance implies that the considered material reradiates energy to the fluid earlier than any
other non-minimum phase material, which is advantageous for including the material in time-domain
numerical simulations [9,10]. However, a rigorous mathematical proof that the solution with minimal
|r| is indeed a minimal phase solution is the subject of further investigation.

3.4. The iterative scheme for obtaining the surface admittance
Assuming that the iteration scheme aims to directly solve for the surface admittance in the

discretization scheme, the iteration steps and considerations regarding the initial vector remain
identical to those presented in the previous subsection. The iteration needs to be solved for the real
part of the admittance function, denoted as x = xn. In this case the expression to be minimized is
given by

F(r) = αn − 8
π

2 (I − 1)

I−1∑
i=0

xn cos2 θi sin θi

(xn + cos θi)2 +
(∑N−1

m=0 Hnmxm

)2 (20)



(a) (b)

(c)

Figure 1: Result of calculating the surface impedance from the diffuse absorption coefficient in case
of a porous absorber layer, depicting the diffuse and the normal absorption coefficient (a) the real part
of impedance (b) and the time domain representation of the impedance function (c)

with the Jacobian given as

Jnk = −8
π

2 (I − 1)

I−1∑
i=0

Ink

(
(xn + cos θi)2 +

(∑N−1
m=0 Hnmxm

)2)
− xn

(
2xnInk + 2Ink cos θi + 2

(∑N−1
m=0 Hnmxm

)
Hnk

)
(
(xn + cos θi)2 +

(∑N−1
m=0 Hnmxm

)2)2 cos2 θi sin θi.

(21)

By iterating from the initial vector x0 = 0 the real part of the admittance function can be obtained and
the normalized admittance is given as

AA = x − jHx. (22)

4. PERFORMANCE ANALYSIS OF THE PRESENTED METHOD
To validate the iteration scheme, the surface impedance and the resulting diffuse absorption

coefficient were evaluated for layered locally reactive absorber structures using the 1D transfer matrix
method (TMM) [11]. The advantage of employing an analytical model was the availability of the
surface impedance in analytical form, facilitating a direct comparison with the numerically predicted
impedance function.

The validation process encompassed two examples: a single layer of porous absorber and a plate
absorber comprising a thin top plate, a layer of porous absorber, an air gap, and a rigid termination.

4.1. Results for a single porous layer
First, the obtained impedance and admittance functions were investigated for a porous layer

with a thickness of d = 10 cm and a flow resistivity of σ = 20, 000 Rayl/m, which represents the
typical flow resistivity of a dense rockwool layer. The porous layer was modeled within the TMM
framework as an equivalent fluid using the Miki model [12]. The surface impedance of the porous



(a) (b)

(c)

Figure 2: Result of calculating the surface admittance from the diffuse absorption coefficient in case
of a porous absorber layer, depicting the diffuse and the normal absorption coefficient (a) the real part
of admittance (b) and the time domain representation of the admittance function (c)

layer, terminated by a rigid backing, was calculated using the transfer matrix method. The diffuse
absorption coefficient of the absorber was then computed from the surface impedance according to
Equation 3. This diffuse absorption coefficient served as the input for the iterative method presented
in the previous section to estimate the original surface impedance and admittance.

For both impedance and admittance estimation, the absorption function (as well as the
impedance and admittance functions) was sampled at N = 4096 points with a sampling frequency of
40 kHz. The angular domain was sampled at I = 16 points from 0 to π

2 , resulting in dθ = 6◦. The
initial vector r0 = x0 = 0 was chosen for the iterative algorithm in accordance with the considerations
outlined in the previous section. A convergence threshold of ϵ = 10−10 was selected, leading to 17
iterations.

The results of the impedance estimation are shown in Figure 1. Figure (a) displays the
input diffuse absorption coefficient αdTMM along with the absorption function calculated from the
iteratively estimated impedance function denoted as αdest . A perfect match between the two is
observed, indicating successful convergence to a valid solution vector. However, when examining the
directional absorption coefficient for normal incidence, given by

α(ω, 0) =
4Re(ZA)
|ZA + 1|2

=
4Re(AA)
|AA + 1|2

, (23)

significant discrepancies arise compared to the reference absorption. This error suggests that although
the estimated impedance vector yields the same diffuse, weighted average absorption, it does not
accurately estimate the underlying physical model. This is further confirmed in Figure (b), which
illustrates the estimated real part of the impedance vector r alongside the reference vector obtained
analytically from the transfer matrix method. The figure indicates that the iterative method converged
to a solution vector with minimal energy, but with notable deviations from the impedance of the
actual 1D physical model. As a consequence, the temporal representation of the estimated impedance
function also differs from the system’s impedance impulse response, as depicted in Figure (c), which
is calculated as the inverse Fourier transform of the estimated and reference impedances. Notably,
the estimated impulse response concentrates the total energy of the response closer to the origin,
suggesting that the numerical iteration converged towards a minimal-phase solution.



(a) (b)

(c)

Figure 3: Result of calculating the surface impedance from the diffuse absorption coefficient in case
of a plate resonator, depicting the diffuse and the normal absorption coefficient (a) the real part of
impedance (b) and the time domain representation of the impedance function with different xy-scales
(c)

The results of the iterative method for admittance estimation are shown in Figure 2. Once again,
Figure (a) displays the diffuse and normal absorption coefficients calculated from the analytical and
estimated admittance, Figure (b) shows the estimated real admittance vector, and Figure (c) illustrates
the admittance response of the reference and estimated systems. Similar to the impedance case,
the diffuse absorption coefficient calculated from the admittance estimation perfectly coincides with
the reference, indicating that the iteration converged to a correct solution. However, the estimated
admittance differs from the actual system’s admittance. Nevertheless, in this case, the estimated
admittance function, the directional absorption coefficient, and the admittance response approximate
the reference vectors qualitatively better than in the impedance case. This observation suggests that
the admittance solution provides a better approximation of the underlying physical model compared
to the impedance solution.

4.2. Results for a plate absorber
Finally, the impedance/admittance estimation of a resonant absorber structure was conducted to

investigate the case when the target absorption function exhibits a strong peak at a specific frequency.

The top limp membrane layer has a thickness of h = 4 mm and a density of 700 kg/m3,
representing a typical firwood top plate. The porous layer at the back of the top plate has a thickness
of d = 5 cm with a flow resistivity of 50, 000 Rayl/m, representing dense mineral wool. Once again,
the porous layer is modeled in the TMM framework using the Allard-Champoux model [13]. Finally,
the porous layer is backed by an air gap of 5 cm and terminated by a rigid backing.

The results of the estimation are depicted for the impedance in Figure 3 and the admittance
in Figure 4. Similarly to the simple porous absorber case, a perfect match is achieved between
the estimated impedance and admittance and the target diffuse absorption coefficient. However,
in the present example, the analytical and estimated real impedance differ significantly from the
analytical reference (see Figure 3 (b)). This indicates that the estimated impedance provides a minimal
energy solution for the target absorption, resulting in significant differences in the normal incidence



(a) (b)

(c)

Figure 4: Result of calculating the surface admittance from the diffuse absorption coefficient in case
of a plate resonator, depicting the diffuse and the normal absorption coefficient (a) the real part of
admittance (b) and the time domain representation of the admittance function (c)

absorption (Figure 3 (b)) and the temporal impedance response (Figure 3 (c)).
On the other hand, in the present example, the estimated admittance function perfectly matches

the analytical reference for both the real and imaginary parts (see Figure 4 (b)). As a result, the normal
incidence absorption (Figure 3 (a)) and the temporal admittance response (Figure 4 (c)) also coincide.
This coincidence can be explained by the fact that the analytical system is minimal-phase regarding
its admittance. However, further research is needed to investigate the aspect of when the numerical
iteration converges to the actual physical solution.

Nevertheless, these results suggest that the numerical calculation of the underlying admittance
function is more feasible in terms of approximating an actual physical absorber.

5. FINAL COMMENTS AND CONCLUSIONS
The article presented a novel numerical method for estimating locally reactive impedance or
admittance functions that ensure equivalent diffuse field absorption characteristics to an arbitrary
target absorption function.

The absorption coefficient, being an energetic quantity, disregards the phase information
of impedance and admittance characteristics. Additionally, diffuse absorption is averaged over
all possible inclination angles. To address these challenges, the causality condition was applied,
requiring all involved quantities to describe causal systems. Furthermore, locally reactive surfaces
were assumed, where the angle dependence of the reflection coefficient and absorption factor is
analytically known.

The proposed numerical method relies on the discrete Hilbert transform, enabling the
formulation of the problem as a system of coupled nonlinear equations that can be solved using the
Newton-Raphson method.

It was demonstrated that by selecting a suitable initial vector, both the surface impedance and
admittance can be numerically calculated to ensure the desired diffuse absorption. Importantly, it
was found that direct numerical solution with respect to the surface admittance provides a reasonable
approximation of the underlying acoustic system.



However, as the system of equations still has an infinite number of solutions, further research is
needed to investigate whether a priori assumptions about the underlying system can be incorporated
into the method, such as choosing a model-dependent initial vector.
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