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Introduction
The aim of sound field synthesis is to reproduce a vir-
tual target sound field over an extended listening area us-
ing a densely spaced loudspeaker arrangement, known as
the secondary source distribution (SSD). By feeding the
loudspeakers with specific driving functions, the superpo-
sition of sound fields from each SSD element should ide-
ally match the target sound field in the intended receiv-
ing area. One prominent sound field synthesis method is
Wave Field Synthesis (WFS) [1, 2].

The spatial filtering of the time-space dependent driv-
ing functions is a frequently emerging question in prac-
tical sound field synthesis applications. As an important
example: basic WFS theory assumes a continuous sec-
ondary source distribution for reproduction, while prac-
tical WFS applications use a discrete loudspeaker array,
hence spatially sampling the loudspeaker driving func-
tions. This discretization results in aliasing wavefronts
emerging from the individual loudspeaker elements and
following the intended virtual wavefront. To avoid these
aliasing waves spatial bandlimitation of the driving sig-
nals is required leading to a spatial filtering problem.
The direct spatial bandlimitation of the WFS driving
functions is, however, not straightforward in real-time
applications, being a computationally complex problem
requiring more specialized hardware architectures. Ana-
lytical approaches for the problem are usually termed as
Local Wave Field Synthesis (LWFS) techniques [3, 4].

For simple virtual sound fields, WFS driving functions
exhibit a simple space-time interconnection resulting
from the characteristics of wave propagation. This inter-
connection allows one to derive unique temporal filters
for each SSD element, so that the resulting temporal fil-
tering is equivalent to analytical spatial filtering. This
paper discusses this spatial-to-temporal filter transfor-
mation, focusing on antialiasing as a direct application
of the theory.

Theoretical basics
Local propagation vector: Consider an arbitrary
steady-state sound field at an angular frequency ω, de-
scribed by the general polar form:

P (x, ω) = AP (x)e−jωc ϕP (x), (1)

where AP (x, ω) and ϕP (x) are real-valued functions, and
c is the speed of sound. This formulation applies to both
plane waves and (3D) point sources. The propagation
dynamics of the sound field are governed by its phase
function ϕP (x), which can be used to define the local

propagation vector k̂P (x):

k̂P (x) = [k̂Px (x), k̂Py (x), k̂Pz (x)]
T = ∇xϕ

P (x, ω). (2)

The local propagation vector is a unit vector perpendic-
ular to the wavefront, pointing towards the local propa-
gation direction [5].

In the temporal domain, the sound field can be obtained
by taking the inverse Fourier transform of (1), leading to
the expression:

p(x, t) = AP (x) δ

(
t− 1

c
ϕP (x)

)
. (3)

2.5D Wave Field Synthesis: Consider a smooth con-
vex SSD located at x0 = [x0, y0, 0]

T consisting of a con-
tinuous distribution of 3D point sources, described by
the 3D Green’s function. In this geometry the synthe-
sized field at a receiver position x = [x, y, 0]T inside
the area bounded by the SSD is described by the Kirch-
hoff approximation of 2.5D Kirchhoff-Helmholtz integral,
from which the 2.5D driving functions can be extracted
as [5]

D(x0, ω) =
√

8πjk︸ ︷︷ ︸
Hpre(ω)

w(x0)
√
dref(x0)k̂

P
n (x0)︸ ︷︷ ︸

A(x0)

P (x0, ω),

(4)
where kPn (x0) is the normal component of the local
wavenumber vector. The driving function consists of
a frequency dependent prefilter Hpre(ω), a secondary
source selection window w(x0), a gain factor allowing
amplitude correction along a reference curve (c.f. [5])
and the virtual field measured on the SSD.

Assuming a simple virtual sound field as given by (1) the
driving functions can be written in the time domain as

d(x0, t) = hpre(t) ∗t AD(x0)δ

(
t− 1

c
ϕP (x0)

)
, (5)

with AD(x0) = A(x0) · AP (x0) being the real valued
gain factor of the driving function, ∗t denoting tempo-
ral convolution and hpre(t) is the temporal WFS prefilter
impulse response [6]. In the following due to the asso-
ciativity of convolution this prefiltering is excluded from
the discussion.

Spatial to temporal filter transformation
This section presents an analytical transformation to ex-
press equivalent temporal filters for arbitrary spatial fil-
ters based on formulation (5). The idea behind the trans-
formation is the following: For a given SSD position, the

DAGA 2023 Hamburg

1



spatially filtered driving function represents the spatial
average of driving functions in the neighboring SSD el-
ements, weighted by the spatial impulse response. The
driving functions are Dirac impulses in each array po-
sition, differing only in time shift and gain. Therefore,
their weighted sum is a rescaled image of the spatial fil-
ter’s impulse response, with its amplitude modulated by
the driving function gains. Our aim is to express this
weighted sum at each SSD position as the result of tem-
poral moving-averaging of the corresponding Dirac im-
pulse.

Assume an arbitrary filter impulse response defined in
the spatial domain, denoted by hx(s). By choosing a
suitable parametrization of the driving functions d(s, t)
(e.g. by polar angle in case of a circular SSD, or linear
position on a linear SSD) the spatially filtered driving
function is written as

d′x(s, t) = hx(s)∗xd(s, t) =
∫

hx(s−s0) d(s0, t) ds0, (6)

where ∗x denotes a circular convolution for a convex SSD
contour or a linear convolution in case of an infinite long
linear SSD. Our goal is to find a temporal filter impulse
response for each SSD element ht(s, t), so that the tem-
poral convolution of the driving function at each SSD
element with the corresponding temporal filter results in
the spatially filtered driving function. Mathematically
this requirement is written as

d′x(s, t) = hx(s) ∗x d(s, t) = ht(s, t) ∗t d(s, t) =

=

∫ ∞

−∞
ht(s, t− t0) d(s, t0) dt0 = d′t. (7)

The temporal convolution in (7) can be evaluated by sub-
stituting equation (5) and exploiting the sifting property
of the Dirac-delta

d′t(s, t) = AD(s)ht

(
s, t− 1

c
ϕP (s)

)
. (8)

With applying a time shift of 1
cϕ

P (s) to both sides the
temporal filter impulse response is connected with the
spatial convolution as

ht (s, t) =
1

AD(s)

∫
hx(s− s0) d

(
s0, t+

1

c
ϕP (s)

)
ds0 =

1

AD(s)

∫
hx(s− s0)A

D(s0)δ

(
t+

1

c

(
ϕP (s)− ϕP (s0)

))
ds0.

(9)

To evaluate the spatial convolution the generalized sift-
ing property of the Dirac-delta may be applied [7], which
states that∫

f(s0)δ(g(s0))ds0 =
∑
i

f(si)

| ∂
∂s0

g(s0)|s=si

, g(si) = 0.

(10)
In the present problem the zeros of the Dirac’s argument
are found where

ϕP (si)

c
= t+

ϕP (s)

c
(11)

is satisfied. In the following it is assumed that a single
zero si exists, satisfying (11). This assumption means
that the wavefront arrives at each SSD element at a
unique time instant, being strictly true for a virtual plane
wave and a linear SSD. With this assumption and by uti-
lizing that

∂

∂s0
g(s0) = −1

c

∂

∂s0
ϕP (s0) = − k̂Pt (s0)

c
, (12)

i.e. the derivative of the phase function is the tangential
component of the local propagation vector, the integral
can be evaluated. The resulting general transformation
relation between the spatial and temporal filters are given
as

ht (s, t) =
AD(si)

AD(s)

c

|k̂Pt (si)|
hx(s− si). (13)

The above formulation already allows one to transform
an arbitrary spatial impulse response into an equivalent
temporal filter for each SSD element, as long as the vir-
tual field model is known and (11) can be solved. In
order to give a more general solution it is assumed that
the virtual field is locally plane, being a usual high fre-
quency assumption in WFS theory. As a further general
WFS assumption it is supposed that the SSD is locally
plane. These requirements inherently ensure that a sin-
gle solution exists for (11)1. With these assumptions the
phase function is given as

ϕP (x) = k̂Px (x)x+ k̂Py (x)y (14)

and (11) is satisfied where

si = s+
c · t
k̂Pt (s)

(15)

Finally, as a crucial approximation it is assumed that
both the amplitude of the driving function and the prop-
agation vector varies slowly along the SSD, i.e AD(si) ≈
AD(s) and k̂Pt (si) ≈ k̂Pt (s) holds. With these assump-
tions the corresponding filter transform reads as

ht (s, t) =
c

|k̂Pt (s)|
hx

(
−t

c

k̂Pt (s)

)
. (16)

Equation (16) can be directly expressed in the spectral
domain by taking the Fourier transform of both sides,
relating the frequency response of the spatial and the
temporal filters. By denoting F (hx(s)) = Hx(ks) the
corresponding transform is given by

Ht (s, ω) = Hx

(
−ω

c
k̂Pt (s)

)
= Hx

(
−kPt (s)

)
, (17)

where kPt (s) is the tangential component of the local
wavenumber vector, being a vector in a steady state
sound field, pointing in the local propagation direction
with the length being ω/c [7]. Hence, as the main result
of the present discussion, the temporal filter transfer can
be obtained from the wavenumber content of the spatial
filter by simple rescaling in terms of the local wavenum-
ber vector.

1Except for a plane wave arriving normally to the SSD, at which
case the temporal filter is transformed into a Dirac-delta.
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(a)

(b)

Figure 1: Comparison of spatially filtered quasi-continuous WFS driving functions and the result of equivalent temporal
filtering (a) and the introduced error as the function of spatial filter impulse response length (b)

Validity of the approximations:
The presented results are valid under certain assump-
tions, requiring that the amplitude and propagation di-
rection of the virtual field must change slightly in the
proximity of each SSD element. This approximation is
strictly valid for linear SSDs with virtual plane waves.
For other geometries error is introduced, with the mag-
nitude varying as the function of the spatial impulse re-
sponse length.

The next section investigates the validity of the presented
results by examining a typical WFS application where
circular SSD synthesis is used to recreate a virtual plane
wave. The amplitude of synthesis is referenced to the
center of the array. The driving functions for the synthe-
sis scenario are given e.g. by (4.31) in [7].

In the present example the circular driving functions (be-
ing the function of the polar angle φ) are filtered with a
spatial low-pass filter. The transfer of the low pass filter
is defined in the wavenumber domain, chosen to be an
N -th order Butterworth design, given as

Hx(ks) =
1√

1 + (ks/kc)
2N

. (18)

The investigation was carried out on a single angular
frequency ω and the cut-off wavenumber was arbitrarily
chosen to be kc =

k
2 = ω

2c . With applying the transform
given by (17) the corresponding equivalent filter array is

obtained by substituting ks = −ω
c k̂

P
t (s), yielding

Ht(ω,x0) =
1√

1 +
(
2k̂Pt (x0)

)2N . (19)

Figure 1 (a) depicts the result of temporal filtering of the
driving functions in comparison with the result of direct
spatial filtering in case of a second order Butterworth
filter. It is verified that at low filter orders the equiva-
lent temporal filter bank approximates fairly the result of

spatial filtering. Figure 1 (b) illustrates the relative error
of temporal filtering. It is shown that with increasing fil-
ter order—i.e. with increasing spatial impulse response
length—the error of approximation also increases, since
local approximations discussed in the previous section do
not longer hold.

Application for antialiasing filtering:
The practical application of the theoretical results is dis-
cussed in relation to the spatial antialiasing filtering of
WFS driving functions. The physical presence of alias-
ing in the synthesis is due to non-zero loudspeaker spac-
ing, which violates theoretical requirements. This results
in the presence of aliasing wavefronts in the synthesized
field, which follow the intended virtual wavefront and
can cause perceivable coloration in the listening position.
The mathematical model of aliasing involves the spatial
sampling of the driving function distribution, sampled at
the actual loudspeaker positions, resulting in the overlap-
ping of the spatial driving function spectra. Figure 2 (a)
illustrates the result of aliasing in the case of a circular
WFS geometry.

In this circular geometry, the SSD is discretized with a
sampling arc length of ds = R

N (with R and N being
the SSD radius and the number of loudspeakers respec-
tively), leading to a sampling wavenumber of ks = 2πN

R .
To avoid aliasing, spatially bandlimited driving func-
tions must be evaluated, bandlimited to the Nyquist
wavenumber, being half of the sampling wavenumber
kNyquist = πN

R [7]. However, achieving spatial bandlim-
itation before the evaluation of the driving functions
is computationally extensive, as direct implementation
would require spatial oversampling, antialiasing filtering,
and downsampling. The presented equivalent temporal
filtering approach provides a simple solution for antialias-
ing filtering, as it inherently provides analytically spatial-
bandlimited loudspeaker signals.

Figure 2 (b) depicts the result of antialiasing filtering.
The equivalent temporal antialiasing filter is chosen to
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(a)

(b)

Figure 2: Application of the filter transform strategy to an-
tialiasing filtering.

Figure 3: Illustration of equivalent frequency dependent
window functions

be a 2nd order Butterworth design, with the cut-off fre-
quency given by

ωc(x0) = kNyquist
c

k̂Pt (x0)
=

πN

R

c

k̂Pt (x0)
. (20)

It is verified that aliasing wavefront are highly attenuated
behind the virtual wavefront at a the receiver position.
A simple strategy for changing the position of antialiased
synthesis is further discussed in [5].

It should be noted that the presented spatial-to-temporal
filter transform strategy can be also interpreted as a fre-
quency dependent spatial windowing approach: in the
aspect of antialiasing filtering SSD positions where the lo-
cal wanumber vector is higher than the Nyquist wanum-
ber are highly attenuated, with the window width de-
creasing with increasing angular frequency. The actual
shape of the spatial windows are given by the wavenum-
ber spectrum of the spatial lowpass filterHx(ks), rescaled

in terms of the local wavenumber vector. The set of win-
dow functions applied in the present simulation scenario
are illustrated in Figure 3.

Conclusion
The present paper discussed an analytical approach for
performing spatial filtering of wave field synthesis driving
signals as equivalent temporal filtering. The transforma-
tion relies on rescaling the spatial filter transfer spectrum
in terms of the local wavenumber of the target field, mea-
sured along the SSD. The proposed method offers the
advantage of easy implementation in existing hardware
architectures. The effectiveness of the method is demon-
strated by applying it to spatial antialiasing of WFS driv-
ing functions. The examples provided confirm that the
proposed transformation yields feasible results, as long
as relatively short spatial filters are applied.
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