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ABSTRACT

The Sabine and Eyring equations for predicting the re-
verberation time are widely used in room acoustic design
practice, often extending to spaces in which their applica-
bility assumptions are not met. In this paper we test these
widely used statistical equations along with the methods
and applicability criteria of the European standard EN
12354-6:2003 on data set of more than 10,000 different
rectangular room models and propose the application of
new classification methods where the Sabine and Eyring
equations can be used. Classification is performed in com-
parison with reverberation times predicted by numerical
room acoustic simulations. We present the implementa-
tion of the method in the soundy.ai application.

Keywords: reverberation time, Sabine, Eyring, machine
learning

1. INTRODUCTION

1.1 Scope and motivation

Many of the current room acoustic design practice meth-
ods and requirements in national standards in different
countries directly or indirectly rely on the Sabine for-
mula for predicting the reverberation time, the required
amount of absorption in a room, or noise levels. Despite
the widespread application and studies in the literature,
the diffuse space assumption is often difficult or ambigu-
ous to be translated to practical room features, and reli-
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able, clear empirical application limits with decision prob-
abilities have not yet been published, leading to a high
risk of false predictions, improper choice of methods, or
sub-optimal design. Without these application limits, the
acoustical consultant is left to rely on practical expertise to
decide if a quick Sabine-based calculation is appropriate
or more complex methods are needed. By more reliably
predicting the applicability limits of statistical formulae,
not only the calculations in the design phase would be-
come more reliable, but the selection of design tools and
methods, and consequently, the acoustical consultancy ef-
fort would also become more economical.

One of the main reasons for the lack of reliable empir-
ical application limits of the Sabine [1] and Eyring [2] sta-
tistical prediction formulae is the lack of adequately large
reference data sets.

This paper aims to revise the applicability limits of the
EN 12354-6:2003 standard [3] of the Sabine and Eyring
formulae in empty rectangular rooms.

We present a decision tree trained using machine
learning methods that are based on certain room features
related to geometrical and absorption characteristics to
predict the applicability of the Sabine and Eyring equa-
tion at certain error bounds.

This decision tree is based on a simulated data set of
nearly 30,000 rooms. The presented decision strategy im-
proves the probability of a correct decision of applicability
compared to the current standard by nearly 25 %.

2. METHODOLOGY

2.1 The classification model

We assume that the applicability of statistical formulae is a
binary classification problem – for example, for any given
room, the Sabine formula is either applicable or not. In
this classification problem, inputs are certain properties or
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‘features’ of the room which are compared to a reference
value, and a binary decision is made. Features and de-
cisions based on them are ordered in a hierarchy and the
output is a true or false value which, at a given probability
is predicting whether the difference obtained by the statis-
tical formulae and the reference ray tracing simulation is
within given bounds.

Classification can be achieved by various methods
such as logistic regression, k-nearest neighbors (k-NN),
support vector machines (SVM), probabilistic classifiers
(e.g., Bayes), decision trees, ensemble methods (e.g., ran-
dom forest, gradient boosting machines) and deep learn-
ing architectures (convolutional neural networks or recur-
rent neural networks).

On the one hand, we consider our case a good fit for a
supervised classification algorithm since our output is la-
beled. On the other hand, the possible large number of fea-
tures and the relatively moderate amount of training data
we have is still prone to overfitting issues.

Since we also aimed at creating a model capable of
prediction of new rooms based on their features only, we
choose to implement coarse decision trees and when an
increased complexity is allowed we use bootstrap aggre-
gating (bagged) trees.

Coarse decision trees are a type of decision tree al-
gorithm that partitions the feature space into large rectan-
gular regions, rather than recursively splitting the space
into smaller and smaller regions. The algorithm is de-
signed to be computationally efficient and suitable for
high-dimensional feature spaces, where traditional deci-
sion tree algorithms can become impractical due to their
exponential complexity. While they may not achieve the
same level of accuracy as more complex algorithms, they
can provide a good trade-off between accuracy and com-
putational complexity.

On the other hand bootstrap aggregation is an en-
semble learning method used to improve the performance
and stability of decision tree models by combining multi-
ple decision trees’ predictions by taking a majority vote.
In the bagging process bootstrapping is done by creat-
ing multiple datasets from the training data by randomly
sampling the original dataset. Each bootstrap sample has
the same size as the original dataset, but some instances
may be repeated. A decision tree is created on each boot-
strap sample and when making a prediction for a new data
point, all trained decision trees are evaluated and the class
label that receives the majority vote yields the final deci-
sion value. This bagged tree structure effectively reduces
the variance of individual decision trees, improves accu-

racy and handles noisy data better. One possible imple-
mentation of bagged trees is the random forest algorithm
which selects a random subset of features at each split dur-
ing the tree-building process reducing the correlation be-
tween individual trees and improving the model’s overall
performance.

2.2 Room data set

In order to define a feasible strategy for deciding whether
statistical formulae are applicable for a given room based
merely on the room geometry and absorption properties as
features, a reference room database is required serving as
the basis of machine learning algorithms, for which both
room parameters and reverberation parameters are known.
However, room acoustic measurements and simulations
both yield ‘noisy’ data sets in the context of accuracy.
This can be accounted to the result of measurement noise,
unknown or inaccurate material parameters, or simplifica-
tions in the modeling or simulation process, for example
by assuming locally reacting materials described by the
sound absorption coefficient instead of using extended re-
activity, or geometrical simplifications, estimated scatter-
ing coefficients, numerical errors, partially implemented
wave phenomena etc. Therefore, obtaining accurate refer-
ence data is practically not feasible. Despite this it is still
possible to derive practically applicable results.

In our current approach the reference data was ob-
tained using numerical calculations in Odeon Room
Acoustics Software (version 17), in which a data set of
almost 30,000 empty rectangular rooms of varying dimen-
sions were created and evaluated.

The T20 reverberation time was taken as the ’ground
truth’ or reference reverberation time value in each room
at each octave band.

For this study, we only considered empty rooms of
typical sizes, but the rooms did contain objects such as
doors, windows and covering materials on walls and ceil-
ings of different dimensions. These elements had insignif-
icant thickness compared to the wavelength. Both the di-
mensions of the rooms and the acoustic properties and
coverings of the walls varied over a wide range from 1 to
100 meters and the materials were assigned sound absorp-
tion values of currently available, manufactured products.
The data set contained both random size and distribution
of covering materials as well as realistic scenarios such as
a full or partial covering also considering currently avail-
able panel dimensions.

It is essential to acknowledge that the distribution of
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Figure 1. Histogram of the volume (a) and average
absorption coefficient (b) in the input room dataset
with the resulting input reverberation time versus the
room volume (c)

both the room volume and the average room absorption
parameter in the utilized room database is a recognized
limitation but the method presented in this paper can be
applied to other data sets as well. Based on the distribu-
tion of the current data set, it is expected that the reverber-
ation time will be strongly correlated to the room volume,
i.e., its geometrical properties, resulting in diminished ma-
chine learning algorithm performance. This property is
also true for the statistical equations so the problem pre-
sented in this paper is considered ’difficult’ for the ma-
chine learning approach.

Figure 1 provides an illustration of the distribution of
the room volume, average absorption coefficient, and the
corresponding T20-vs-volume relationship, as depicted in
panels (a), (b), and (c), respectively.

2.3 Target response function

We define the error function as the relative difference of
the statistical and numerical results, as follows

Erel,stat =
∑
f

|T20,reference(f)− Tstat(f)|
T20,reference(f)

. (1)

Figure 2. Scatter plot of the Sabine reverberation
time versus the reference, numerical reverberation
time for the room database. Green dots denote rooms
for which the proposed validity requirements are
met. Dotted lines denote the margin of errors, i.e.
±15 %. Approximately 15,000 rooms are meeting
the requirements (i.e. fulfilling Erel,Sabine ≤ 15%)
and the same amount is outside of the error bounds.

In the present discussion the statistical result Tstat(f) may
be obtained by applying any one of the statistical formu-
lae (e.g., Sabine, Eyring, Arau, Fitzroy). For the reference
results, an ensemble average of approximately 100 grid
points (areas) were taken and the relative error was also
averaged over the octave bands between 63 Hz and 8 kHz.
The margin of error was defined as ±15 % or a range of
30 %, that is, the statistical formulae was considered as
applicable if the error defined as above was within this
bound. This subjectively large bound was arbitrarily se-
lected to slice the data set into equal number of true and
false training sets and maximize number of data points,
but the presented method of this paper allows for setting
any other error bound, too.

The distribution of rooms, meeting the above require-
ment with the error definition applied for the Sabine for-
mulation is depicted in Figure 2, containing around 15,000
rooms fulfilling Erel,Sabine ≤ 15% and 15,000 room sam-
ples falling outside the bound.
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2.4 Room features

In the present classification problem we aim at finding
and ranking manually selected room features or properties
for which a decision tree will deliver a proper decision at
maximized probability. The inputs are manually selected
features of the room, and outputs are the error of the as-
sumption yielded by the statistical formula compared to
a reference, and when within margin, the applicability is
considered true.

Initially, 50 manually selected features of the individ-
ual input rooms were evaluated. The features (including
that of the EN 12354-6 standard) were based on:

• Geometrical properties of the room: including
the dimensions of the room, their various ratios,
moments of their distribution up to the fourth or-
der, and the mean free path; and

• Distribution of the absorbing materials: includ-
ing moments of the absorption coefficients up to
the fourth order, measures of inhomogenity of their
spatial distribution (mean absorption of distribution
in adjacent and neighbouring walls).

In the process of classification the number of possible
input features was manually decreased from the initial
50 property vectors by removing less significant features
based on feature ranking by ANOVA and Chi2 analysis,
and by manually filtering features based on partial depen-
dencies.

3. RESULTS

3.1 Evaluation of statistical formulae

As a first glance to the problem we evaluated the reverber-
ation time of our room data set based on different formu-
lae including the EN 12354-6:2003 European standard [3]
and its appendix, the Sabine formula, the Eyring formula,
the Fitzroy equation, and the Arau equation. The result-
ing reverberation time are plotted in Figure 3 as the func-
tion of the reference reverberation times. The figure high-
lights that when numerical simulation results are consid-
ered as the reference, all the aforementioned formulations
fall short in estimating the reverberation time of rooms
with widely varying parameters. This also raises the ques-
tion to what extent the room features in these equations
can be considered valid or significant descriptors for ordi-
nary spaces.

3.2 Performance evaluation of the current EN
standard

According to Section 4.6 of the EN 12354-6:2003 Euro-
pean standard, the Sabine formula can be used to predict
the reverberation time in empty rooms provided that the
following specific conditions are all met.

• regularly shaped volumes: no dimensions should
be more than 5 times any other dimensions

• evenly distributed absorption: absorption coeffi-
cient should not vary by more than a factor of 3
between pairs of opposite surfaces.

• the volume ratio is less than 0.2

This third factor is always true for empty (unfurnished)
rooms, being 0. The Sabine formula is given by:

T60 =
24 · ln 10 · V

c ·
∑

i αi · Si + 4mV
(2)

Where the speed of sound is c = 343 m/s at 20 °C and V is
the room volume. The absorption of air is defined in ISO
9613-1:1993 and is based on an empirical formula that is
a function of relative humidity, temperature, atmospheric
pressure, and frequency.

We evaluated the performance of the standard’s three
criteria by considering two aspects

• accuracy of choice of method: check how effec-
tively the applied conditions split the room data set
to Sabine-applicable and non-applicable groups

• overall accuracy: check if the non-applicable por-
tion, when evaluated as in Appendix D, will deliver
a result with less deviation than if they were evalu-
ated with the statistical formulae only.

We first evaluated the probability of a proper decision
based on the standard’s conditions whether the Sabine for-
mula is applicable or not within an approximately ±15%
of error margin compared to the reference data set. The
resulting probability was 52 % which is very close to a
random decision. On the other hand, when evaluating the
splitting capabilities of the data set based on this decision,
it also turned out that there were not only false positives
but many false negatives, too, that is, cases where the
Sabine formula was applicable but was deemed as non-
applicable. This may drive an acoustical consultant’s de-
cision to use a more expensive calculation method even
though it is not needed. This also suggests that both the
the room features and their assigned limit values are likely
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Figure 3. Result of commonly used statistical formulae for the reverberation time as the function of the refer-
ence, Odeon reverberation times. The applied statistical formulae are EN 12354-6:2003 European standard (a),
Sabine (b), Eyring (c), Fitzroy (d) and Arau (e) formulations.

mismatched to an accurate decision, and they might also
be too restrictive.

When the calculation of Appendix D of the standard is
applied, it can be seen from Figure 3 (a) that the deviation
has not decreased, so despite the complicated procedures
there seems to be little merit in using this method in a
consultant’s task.

3.3 Improvement of the limitation criteria of the EN
12354-6 standard

3.3.1 Improvement using the standardized room features

A limited yet simple method to improve the performance
of the decision in the standard is by keeping its room fea-
tures but aligning the decision to hierarchy forming a de-
cision a tree and setting up new values supporting a better
decision. The current parallel true-false decision method
based on features was can be significantly improved this
way, even if the choice of room features are not optimal.
The feature set this way includes the ratio of the longest
and shortest dimensions (EN condition 1), the absorption
coefficient ratio of opposite walls (EN condition 2 a-b-c),
and the room volume ratio (EN condition 3).

Both bagged tree ensembles and simple, coarse deci-
sion trees were trained on 90 % of the total room dataset,
with 10 % reserved for testing. The coarse decision tree
structure produced a training accuracy of 59 %, which was
surprisingly better than the more complex bagged tree en-
semble, having a training accuracy of 57 %. The resulting
coarse decision tree structure is depicted in Figure 5.

Note that the decision is based on EN condition 1 and
EN condition 2b. For EN condition 1 the decision limit
of 5 is recovered, which perfectly matches with the EN
12354-6 condition. Nevertheless, the simple decision tree
aligns with the original EN 12354-6 conditions, which
state that the Sabine formula is not applicable for rooms
where the ratio of the longest and shortest dimensions is
greater than 5.8. Yet, below this limit the ratio of dimen-
sions does not contain enough information for a unequiv-
ocal decision.

The above statement is further verified by investigat-
ing the scattering diagram of the classification results. The
room sample distribution for which the Sabine formula
is applicable based on the decision of the coarse tree is
depicted in Figure 6 (a-c). The decision tree can accu-
rately detect outlier rooms for which the Sabine formula



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

(a) (b)

(c)

Figure 4. Scatter plot of the Sabine reverberation
time versus the reference, numerical reverberation
time for the room data set. Dotted lines denote
the margin of errors, i.e. ±15 %. Green dots de-
note rooms for which the EN 12354-6:2003 standard
requirements are met to apply the Sabine formula.
These criteria will predict the ’safe’ applicability of
the Sabine formula versus numerical modeling at no
better than 52 % probability.

Figure 5. Coarse decision tree trained on the EN
12354-6 standard validity conditions

(a) (b)

(c)

Figure 6. Result of the classification problem using a
coarse decision tree, trained on the EN 12354-6 stan-
dard validity conditions. Again, dotted lines denote
the margin of errors, i.e. ±15 %.

is not valid. The improvement of accuracy is due to the
more precise detection of false-positive errors in compar-
ison with 4. Despite the improved probability of decision,
this method is still prone to false-negative errors, similar
to the original parallel decision.

3.3.2 Improvement using new features

Since the improvement of the decision based on the stan-
dardized room features seem to be rather limited, we
listed 50 geometrical and absorption-type features and
conducted an ANOVA analysis to find potentially more
relevant features. As the outcome of analysis three fea-
tures allowed achieving a training accuracy of 70 % by us-
ing a simple coarse decision tree. Neither including more
absorption-type features, nor the application of more com-
plex tree structures increased the accuracy of the training.
The new, proposed features are

• The standard deviation of the room dimensions

• The mean free path, defined as [4]

d =
4V

S
, (3)

where V is the total volume of the room, and S is
total surface area enclosing the room.
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Figure 7. Coarse decision tree trained on the new,
proposed feature set.

• The average absorbing coefficient of the room
walls

α =
A

S
, (4)

with A being the equivalent absorbing area of the
total room surface.

The simple coarse decision tree is depicted in Figure
7. It is further verified that the basis of decision mainly re-
lies on the standard deviation of the room dimensions, and
this statistical moment yields a more reliable upper limit
for the usability of the Sabine formula than dimension ra-
tios.

Again, as a further aspect the distribution of the clas-
sified rooms are investigated on a scatter plot in Fig-
ure 8. Similarly to the previous case by using the EN
standard-based feature set, the increase of classification
accuracy is due to improved false-positive error detection.
It can be seen that rooms with reverberation time less than
3 seconds can be separated more precisely into Sabine-
applicable and non-applicable classes compared to previ-
ous methods and the current feature set of the EN 12354-6
standard. We verified the usability of the proposed de-
cision tree up to about 3 seconds of reverberation time
– from this value up, the decision will always be to not-
applicable (for using the Sabine formula). Although this
is in line with current room acoustic consulting practice,
a wider range of training data will likely extended the va-
lidity range of a decision tree based on that data. In the
current data set there are few highly overdamped or under-
damped room samples, as shown in Section 2.2. This is
also verified by examining Figure 1 (c), highlighting that
the training dataset contains no small and medium-large
sized rooms with reverberation time above 3 seconds. We

(a) (b)

(c)

Figure 8. Result of the Sabine classification problem
using a coarse decision tree, trained on the proposed
geometrical feature set.

believe that introducing more training data and room fea-
tures this results can be further improved, being the sub-
ject of upcoming research.

Finally, Table 1 summarizes the results by comparing
the training and testing accuracy of the original standard
requirements along with the proposed, decision tree based
strategies. It is highlighted that even a simple coarse deci-

Table 1. Prediction accuracy of the applicability of
the Sabine formula

Training/Testing
Current EN standard 52% / -

Proposed tree (EN features) 59%/ 61%
Proposed tree (new features) 70% / 72%

sion tree with the feature set being the original EN 12354-
6 standard requirements (shown in Figure 5) may increase
the decision accuracy by about 7 % compared to the cur-
rently standardised limitations. Still, it was shown that
this decision relies merely on the ratio of the room dimen-
sions. By applying the proposed geometrical feature set,
composed of the standard deviation of the room dimen-
sions and the mean free path, a better decision tree could
be given — depicted by Figure 7 —, increasing the deci-
sion accuracy to about 72 %.
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3.3.3 Applicability to further statistical formulae

The present approach can be applied and extended to
other statistical reverberation formulae such as the Norris-
Eyring (or Eyring), Arau-Puchades [5] (or Arau) and
Fitzroy [6] formulae, and many others. This subsection
describes the application of the feature sets discussed ear-
lier to classify the suitability of the Eyring, Arau, and
Fitzroy formulations for a particular room geometry. To
accomplish this, the relative error (1) was computed be-
tween the reference reverberation time and that of the sta-
tistical formula. As before, the classification threshold
was set at an error margin of 15 %.

Table 2. Prediction accuracy of the applicability of
various statistical reverberation formulae using the
presently proposed decision tree method

EN features Proposed features
Sabine 61% 72%
Eyring 59% 72%
Arau 58% 62%

Fitzroy 56% 83%

Table 2 summarizes the results of the coarse tree clas-
sification of the other statistical formulae. It is notable that
the applicability of the Sabine and Eyring formulae for
this data set showed a very similar prediction accuracy and
a higher performance was achieved for the Fitzroy equa-
tion suggesting its more limited applicability. Apparently
these room features cannot reliably predict the applicabil-
ity of the Arau formula.

4. CONCLUSIONS AND FUTURE WORK

In conclusion, this study proposed a new method for de-
termining the applicability of statistical reverberation for-
mulae to a given room geometry using machine learning
tools.

The classification was based on the relative error be-
tween the reference reverberation time obtained from nu-
merical simulations using the Odeon Room Acoustics
Software and the reverberation time predicted by various
statistical formulae. The accuracy of the classification was
improved by training coarse decision trees on a database
of nearly 30,000 rooms. In this study, a relative predic-
tion error below 15 % was considered as the boundary of
applicability.

For the Sabine equation, three simple features were
identified, which allowed more accurate classification of
rooms with a reverberation time below 3 seconds, signif-
icantly surpassing the accuracy of the presently standard-
ised classification scheme. The 3-second threshold was
attributed to the composition of the training data set.

It was also shown that the presented new feature
set allows the investigation of applicability of other fre-
quently used statistical formulae, e.g. the Eyring or
Fitzroy formulae.

The presented method is implemented in the
soundy.ai application by providing suggestions to the
acoustical consultant highlighting whether the predicted
result using a given statistical reverberation time formula
is likely reliable or not.

In our future work we plan to extend the room
database and apply the presently proposed method to re-
fine the presently proposed decision tree, by considering
further rectangular rooms and furniture, as well as other
room shapes.
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