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Preface

Every book tells a story and there is a story behind every book. This story begins
in 1980, in the conference room of the laboratory for the structure of matter at
the Naval Research Laboratory (NRL) in Washington, DC, where Peter D’Antonio
was employed as a diffraction physicist. Knowing Peter’s interest in music, a col-
league handed him the latest issue of Physics Today with a cover photo of Manfred
Schroeder seated in an anechoic chamber. The article suggested using a number of
theoretic diffusers in concert halls. While Peter’s interest at the time was not in concert
halls, he became fascinated with the thought of using these diffusers in a renovation of
Underground Sound, a private studio he originally built in 1972 with Jerry Ressler.
The acoustic renovation utilized a new concept called Live End Dead End

TM

proposed
by Don and Carolyn Davis of Synergetic Audio Concepts (Syn-Aud-Con) and imple-
mented successfully by Chips Davis. At that time, Peter was examining the three-
dimensional (3D) structure of matter in various phases using electron and X-ray
diffraction techniques. Peter shared the article with John Konnert, a colleague at
NRL, and it became apparent that the ‘reflection phase gratings’ suggested by
Schroeder were in effect two-dimensional (2D) sonic crystals, which scatter sound in
the same way that 3D crystal lattices scatter electromagnetic waves. Since the diffraction
theory employed in X-ray crystallographic studies was applicable to reflection phase
gratings, it was straightforward to model and design the reflection phase gratings.

At this time, Peter’s only link to the field of acoustics was a love of composing,
recording and performing music. Having scientific backgrounds, John and Peter
approached acoustics as they did the field of diffraction physics, and began research-
ing and publishing findings in the scientific literature. The Audio Engineering Society
and Syn-Aud-Con offered a unique forum and community for discussing the research.
In October 1983, at the 74th AES Convention in New York, Peter met Bob Todrank
following a presentation of Peter and John’s first paper on Schroeder diffusers. Bob
was designing a new studio for the Oak Ridge Boys in Hendersonville, TN and was
interested in utilizing these new acoustical surfaces. The studio was a resounding
success and turned out to be a harbinger of many exciting things to come.

In 1983, Peter and John measured quadratic residue and primitive root diffusers
with a TEF 10 analyzer at a Syn-Aud-Con seminar in Dallas, Texas, with the
assistance of Don Eger of Techron. Here Peter and John met Russ Berger who was
a pioneer in the use of new products into his firm’s recording studios. In 1984, an
intensive measurement programme was carried out using Richard Heyser’s time delay
spectrometry implementation. Farrell Becker was very helpful in the initial evaluation
of these exciting new surfaces. Not having access to an anechoic chamber, a boundary



measurement technique was developed. These measurements were initially carried
out at full scale in large spaces like open fields and parking lots, eventually moving
indoors to a sports arena, a motion picture sound stage, and a local high school
gymnasium. The measurements enabled the theories to be validated.

The Oak Ridge Boy’s Acorn Sound Recorders project was celebrated with a Syn-Aud-
Con control room design workshop in 1984. This project led to many others and
collaborations with a growing community of new studio designers were undertaken.
Neil Grant was an early staunch proponent of the research and products. Some of his
milestone designs include Peter Gabriel’s Real World Studios, Box, UK; Reba McEntire’s
Starstruck Studios, Nashville, TN; Sony Music, New York, NY and Cinerama
Theater, Seattle, WA. In 1989, John Storyk integrated diffusive technology in many
of his designs, including Whitney Houston Studio, Mendham, NJ; Electronic Arts,
Vancouver, BC and Jazz at Lincoln Center, NY highlighting the list. Today much of
the recorded music you hear is created in music facilities utilizing RPG technology.
These fledgling years established relationships that continue to this day and produced
many acoustical landmarks.

Interest in recording facilities naturally spread to broadcast facilities, where diffuser
technology is now commonplace. Facilities include BBC, NPR, NBC, CBC and most
of the broadcast networks due to Russ Berger’s innovative designs. Being musicians
and audiophiles, led to significant involvement in residential high end audio listening
rooms as well as production studios.

In 1989, Peter was introduced to Jack Renner, President of Telarc Records, the
company that started the classical high end recording industry on a digital journey.
Jack was recording the Baltimore Symphony Orchestra at the Meyerhoff Symphony
Hall and asked if RPG could assist him. Following initial experimentation, Telarc
graciously credited RPG1 as Telarc’s exclusive acoustical system for control room
and stage use for the Berlioz Symphonie Fantastique in 1990. The somewhat acci-
dental stage use and overwhelming acceptance by musicians and conductor prompted
an objective and subjective investigation of stage acoustics and acoustical shells both
with small ensembles and with the Baltimore Symphony Orchestra. These chamber
group studies were conducted with Tom Knab at the Cleveland Institute of Music,
where Peter has been adjunct professor of acoustics since 1990, at the invitation of
Jack Renner. In 1989, RPG was privileged to provide a custom number theoretic
surface for the rear wall of Carnegie Hall, New York. This installation, along with
the new diffusive acoustical shell development, launched RPG’s involvement into
performing arts applications, which eventually included the Fritz Philips Muziekcen-
trum, Eindhoven and the Corning Glass Center, Corning, NY.

Many of the acoustical consultants involved in the design of worship spaces began
to include the use of diffusers for rear wall applications and acoustical shells. While
RPG has collaborated with many acousticians, the relationship with Mike Garrison is
noteworthy for the sheer number and size of the successful worship spaces produced
using diffusers. The crown jewel of this collaboration is the 9,000 seat South East
Christian Church in Louisville, KY.

In 1990, RPG funded the DISC Project in an attempt to devise a standard
methodology for evaluating diffuser quality. In 1991, Peter proposed a directional
diffusion coefficient and the Audio Engineering Society invited him to chair standards
committee SC-04-02 to formerly develop an information document describing these
procedures.
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In 1993, David Quirt Associate Editor of the Journal of the Acoustical Society of
America asked Peter to referee a paper by Trevor Cox entitled ‘Optimization of
profiled diffusers’. (Trevor’s research journey had started a few years earlier in 1989
when, under the direction of Raf Orlowski and Yiu Wai Lam he completed a PhD on
Schroeder diffusers at Salford University, UK.) Trevor’s paper outlined a process
that combined boundary element modelling and multi-dimensional optimization
techniques to make better diffusers. In Peter’s view, this paper represented a creative
milestone in diffuser development on par with Schroeder’s seminal contribution.
Peter and John’s review of the paper consumed many months. It required the writing
of boundary element codes and developing the first automated goniometer to
measure these optimized surfaces. During the summer of 1994, Paul Kovitz helped
to complete the measurement software. Trevor’s revised paper, accompanied by
a refereed paper of Peter and John’s review were published in 1995. Since this
was nearly three years after Trevor submitted the paper to JASA, this must have
seemed to be the peer review from hell, especially as the referees’ comments were
36 pages long.

Peter finally met Trevor in Amsterdam at an AES SC-04-02 standards committee
meeting in 1994 and again in Arup Acoustics’ office in London. Our strong mutual
interests led to an informal collaboration. In 1995, Trevor became a research con-
sultant to RPG Diffusor Systems, Inc. This relationship started with developing an
automated program to optimize loudspeaker and listening positions in a critical
listening room and blossomed to generate much of the contents of this book.

Realizing that good acoustical design results from an appropriate combination of
absorptive, reflective and diffusive surfaces, as mentioned in the Introduction, Peter
(and later with Trevor) began developing absorption technologies as well, including
hybrid abffusive (absorptive/diffusive) systems, diffsorptive (diffusing/absorbing),
concrete masonry units, low frequency absorbing arena seating risers, nestable
open-cell foam systems and dedicated absorptive low frequency membrane systems.

In 1995, Peter and Trevor became aware of the diffusion research of James Angus
on amplitude gratings and modulated phase gratings. James has made significant
contributions to the field of diffuser design and we both have great respect for his
insight and enjoy our collaborations with him. Also in 1995, we met Eckard Mommertz
and Michael Vorlander at the 15th ICA in Trondheim, Norway. It was at this
meeting that we learned of their work developing a procedure to measure the random
incidence scattering coefficient. We have maintained close collaboration to this day,
especially as members of the ISO WG 25, chaired by Jens Holger Rindel.

To further the development of the diffusion coefficient, RPG co-funded a three year
grant with the Engineering and Physical Sciences Research Council of the United
Kingdom, beginning in 1996. Trevor, Yiu Wai Lam and Peter were the investigators
and Tristan Hargreaves was the doctoral student. This research was very fruitful in
that it produced the first 3D measurement goniometer and yielded a robust diffusion
coefficient which has since been published as AES-4id-2001.

This diffusion coefficient has since been used as a metric to develop a range of new
diffusing surfaces, including optimized welled diffusers, profile diffusers, 1D and 2D
curved diffusers, baffled diffusers, genetic binary hybrid surfaces, flat and curved
binary amplitude gratings, fractal and modulated surfaces, in effect many of
the topics included in this book. These new optimized custom curved surfaces
have found application in performance spaces like Kresge Auditorium, Boston, MA;
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Hummingbird Center, Toronto, Canada; Edwina Palmer Hall, Hitchin, UK and also
recording facilities like Sony Music’s premier mastering room M1, in New York.

Things began falling into place and all of the relevant diffusion research was
collected into a special edition of Applied Acoustics, entitled ‘Surface Diffusion in
Room Acoustics’, guest edited by Yiu Wai Lam and published in June of 2000. Lam
also organized a symposium in Liverpool that year. In September of 2001, a special
structured session on scattering in room acoustics was organized by Michael
Vorlander at the 17th ICA in Rome. Having played a pioneering role in making
Schroeder’s theoretical suggestions a practical reality, it was personally very
gratifying for Peter to be part of a session dedicated to a topic which started as an
intellectual curiosity, and has now turned into a diffuser industry and a field of
research actively being studied by the leading acousticians of our time.

There have been many significant accomplishments over the past 20 years. We now
know how to design, predict, optimize, measure, characterize and standardize the
performance of scattering surfaces. While there is still much to do, there is a general
consensus in the architectural acoustics community that a solid theoretical and
experimental foundation has been laid, that diffuser performance can now be quanti-
fied and standardized and that diffusers can now be integrated into contemporary
architecture, taking their rightful place along with absorbers and reflectors in the
acoustical palette. The future holds many exciting possibilities.

It is a good time in the history of diffuser development to tell this story. This book
has allowed us to chronicle developments with sufficient scientific detail, and to
collect in one volume much of what is known about both diffusers and absorbers.

In an effort to make this book ‘timeless’, we are providing a website www.rpginc.com/
research, at which we will provide updates, polar responses of 1D and 2D diffusers,
and additional diffusion and correlation scattering coefficients for 2D diffusing
surfaces. You can contact us and tell us about technology and techniques we may
have inadvertently missed in the book. So stay tuned and ‘Listen to the Music, Not the
Room’.

Peter D’Antonio
Trevor Cox
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Glossary of frequently used symbols

Vectors are denoted in bold
a Half diffuser or reflector width (m)
a Fibre radius (m)
A Total absorption of a room (m2)
A Scaling constant
An Coefficients for grating lobes (Pa)
b Half diffuser length (m)
c Speed of sound (ms�1), in air unless otherwise stated. Subscript 0 denotes

value in air where ambiguity might arise otherwise (�343 ms�1).
cp Specific heat capacity of air at constant pressure (�1.01 JKg�1 K�1).
d Slot width for slotted Helmholtz absorbers (m)
d Diffusion coefficient
d Thickness of materials (m)
dn Depth of the nth well in a Schroeder diffuser (m)
D Cell width for Helmholtz absorbers (m)
E Perimeter of absorption samples (m)
f Frequency (Hz)
f0 Design frequency (Hz)
g Acceleration due to gravity (ms�2)
G Green’s function
H(1)

0 Hankel function of the first kind of order zero
H Transfer function
FT() Fourier Transform
j

ffiffiffiffi�p 1
k Wavenumber (m�1). Subscript 0 denotes value in air where ambiguity might

arise otherwise
kx Wavenumber component in x-direction, similar expressions for y and z (m�1).
ks Tortuosity
Ke Effective bulk modulus
l Depth of materials (m)
m Mass per area (kg m�2)
m Order of diffraction or grating lobes
m Energy attenuation coefficient for absorption in air
m Constant relating finite to infinite sample absorption coefficients
n Normal to surface, for BEM modelling this is pointing out of the surface
N Number of wells per period



N Length of pseudorandom sequence
Np Prandtl number (�0.77)
p Pressure (Pa or Nm�2). Subscript 0 denotes value in air where ambiguity

might arise otherwise
p1 Pressure from a single diffuser/reflector (Pa)
pa Pressure from an array (Pa)
pi Pressure incident direct from a source (Pa)
pm Pressure of mth order diffraction lobe (Pa)
P0 Atmospheric pressure (�101320 Pa).
ps Pressure scattered from a surface (Pa)
PRD Primitive Root Diffuser
QRD1 Quadratic Residue Diffuser
r Distance (m)
r Primitive root of N
r0 Distance from image source (m)
r Receiver position
r0 Source position
rs Point on diffuser surface
R Pressure reflection coefficient
s, sn Number sequence
s Diffuser surface
s Standing wave ratio
s Scattering coefficient
S Surface area of a room (m2)
S Area of holes in Helmholtz resonator (m2)
sinc(x) ¼ sin(x)/x
Sxxm Maximum energy in autocorrelation side lobes
Sxym Maximum energy in crosscorrelation
t Sheet thickness for Helmholtz and membrane absorbers (m)
ta Resistive layer thickness for Helmholtz and membrane absorbers (m)
T60 Reverberation time (s)
V Volume (m3)
w Well width (m)
W Repeat distance or periodicity width (m)
x Cartesian coordinate (m)
y Cartesian coordinate (m)
z Specific acoustic impedance (Pa s m�1 or MKS rayl)
z Cartesian coordinate (m)
zc Characteristic impedance of a medium (MKS rayl)
zf Flow impedance (MKS rayl)
zn Normalised specific acoustic impedance (¼ z/�c)
� Absorption coefficient
�s Random incidence absorption coefficient
�1 Random incidence absorption coefficient for an infinite sized sample
� Admittance (rayl�1)
�0 Admittance with outward pointing normal (rayl�1)
�n Normalised admittance (¼ ��c)
" Porosity or fractional open area

xx Glossary of frequently used symbols



� End correction factor (i.e. �0.85 if baffled)
� Delta function
�v Size of viscous boundary layer (m)
�h Size of thermal boundary layer (m)
� Ratio of specific heat capacities (�1.4 in air)
� Viscosity of air (1.84� 10�5 poiseuille)
� Thermal conductivity of air (�2.41� 10�2 WmK�1)
	 Wavelength (m)
	0 Design wavelength (m)

 Kinemetric viscosity of air (15� 10�6 m2 s�1)
� Angle of reflection
� Density (kgm�3)
�e Effective density in porous absorber
� Flow resistivity (MKS rayl m�1)
�s Flow resistance (MKS rayl)
! Angular frequency (s�1)
 Angle of incidence
�, �0 Characteristic dimensions for porous absorber modelling (m)

Glossary of frequently used symbols xxi





Introduction

The sound that is heard in most environments is a combination of the direct sound
straight from the source or sources and the indirect reflections from surfaces and other
objects. For instance, in room acoustics, both the direct sound and the reflections
from the walls, ceiling and floor are key in determining the quality of the acoustic.
Hence, one of the central topics in acoustics is how to manipulate these reflections
that affect the way the sound propagates, and ultimately perceived.

Sound striking a surface is transmitted, absorbed or reflected; the amount of energy
going into transmission, absorption or reflection depends on the surface’s acoustic
properties. The reflected sound can either be redirected by large flat surfaces (spec-
ularly reflected) or scattered by a diffusing surface. When a significant portion of the
reflected sound is spatially and temporally dispersed, this is a diffuse reflection, and
the surface involved is often termed a diffuser. Figure 1 illustrates temporal and
spatial characteristics of absorbing, specularly reflecting and diffusing surfaces, which
form the acoustical palette. In addition to the surface types shown in Figure 1, there
are hybrid surfaces, which can both absorb and diffuse to varying degrees.

Over the past 100 years, since the founding of architectural acoustics by Sabine,
there has been considerable effort devoted to studying surface absorption. Over this
time, a considerable library of absorption coefficients has been tabulated based on
accepted standards of measurement and a reasonable understanding of how absorbers
should be designed and applied has been achieved. This development continues, and
in recent decades many innovative absorber designs have been developed, and new
ways to predict and measure absorptive materials have been found. In contrast,
significant scientific knowledge about the role of scattering (diffusely reflecting)
surfaces has only been developed much more recently. Over the past 20–30 years,
significant research on methods to design, predict, measure and quantify diffusing
surfaces has resulted in a growing body of scientific knowledge and understanding.
All these issues, and many more, are covered in this book.

Good architectural acoustic design requires the right room volume, the right room
shape and surface treatments, utilizing an appropriate combination and placement of
absorbers, diffusers and flat surfaces. Architectural acoustic spaces can be loosely
divided into sound production, sound reproduction and noise control environments.

An example of a sound production room is the performing arts facility such as
concert halls for classical music or a theatre for speech. The room acoustic contributes
greatly to the perceived sound of the music or speech. The arrival time, direction and
temporal density, and level of the early reflections, coupled with the balance of the
early to late energy, decay time, temporal and spatial density of the late reflections,



define the quality of sound that is heard. In large sound production rooms, reflection
and diffuse reflection are the primary acoustic tools. This is schematically illustrated
in Figure 2. Absorption may be used to control reverberance, but the unavoidable
absorption due to paying customers must also be considered.

In contrast, the acoustics of sound reproduction rooms, like recording studios and
home theatres, should be neutral. All of the spectral, timbre and spatial information is
pre-recorded on the playback media, and the reproduction room is only there to allow
a listener to hear what has been recorded, as is was recorded. In a sound reproduction
room, absorption and diffuse reflection play a key role, and specular reflection is a
minor contributor. This is illustrated in Figure 3. Absorption and diffusion are used to
control the colouration that would otherwise occur in the space from early arriving
reflections and low frequency modes.

In noise control situations, like gymnasiums, swimming pools and factories, the
objective is simply to reduce the reverberance and sound level. This might be done to
reduce sound levels to prevent hearing damage or to improve the intelligibility of
speech. Uniform distribution of absorption is the primary acoustic tool, and specular
reflection and diffuse reflection have more minor roles. This is illustrated in Figure 4.

Figure 1 The temporal and spatial characteristics of absorbing, specularly reflecting and
diffusing surfaces.
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Figure 2 The relative importance of three acoustic treatments for sound production
rooms such as concert halls, recital halls, auditoria, theatres, conference halls,
courtrooms and worship spaces.
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Figure 3 The relative importance of three acoustic treatments for sound reproduction
rooms such as recording and broadcast studios, video conferencing rooms and
home theatres.
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Figure 4 The relative importance of three acoustic treatments for noise control such as for
factories, gymnasiums, swimming pools, libraries, atria and road side barriers.



(Although it has been suggested that diffusers can play a useful role in dispropor-
tionate spaces, but then Figures 2–4 are all generalizations of the true situation.)

Surface acoustic treatment also plays an important role outdoors. For instance, the
absorption of the ground can have a significant impact on sound levels from ambient
noise sources such as roads and industrial premises. The treatment of noise levels
might involve the use of noise barriers, and these might be treated with absorption, or
less commonly, diffusers to reduce the noise levels.

This introductory description has sketched out a few of the issues concerning where
and why absorbers and diffusers are applied. More detailed descriptions can be found
in Chapter 1 for absorbers and Chapter 2 for diffusers. The following section,
however, tries to give an overview of the relative merits of absorption and diffuse
reflections.

1 Absorption versus diffuse reflections

Both absorbers and diffusers can be used to prevent acoustic distortion. For example,
both can be effective in controlling echoes, colouration and image shift caused by
high level reflections. This raises the question as to which is the best treatment in
which situation.

Whether absorbers or diffusers are best depends to a considerable degree on other
acoustic factors, primarily on whether a decrease in reverberation and/or sound level
is desirable. If a wall is causing an echo or colouration problem, and the designer
wishes to conserve the reverberation time and sound energy in the space, then a
diffuser is the best solution. The diffuser is placed on the wall to disperse the reflection
and to reduce the distortion without removing sound energy from the space. For this
reason, in concert halls, where acoustic energy is at a premium, diffusers are to be
preferred. In smaller rooms, say a lecture theatre, where intelligibility is important, a
balance must be reached in which absorption is used to adjust the reverberation time
and level, and diffusers are used to ensure that early reflections which constructively
contribute to support speech do not produce distortion. When reflections cannot be
constructively used for intelligibility, then absorption would be the normal choice.

In critical listening rooms, a mixture of absorbers and diffusers is used to control
the acoustics of a space. Treatment is placed to control first-order reflections. When
absorbers are used, the sonic images forming the soundstage are points in space.
When diffusers are used, these images take on a more natural width and depth. Which
material is correct, absorbers or diffusers, is a matter of personal taste. If all the
treatment is absorption, then the room turns out to be rather dead. While some people
favour this for mixing audio, others do not, and for a listening room a very absorbent
environment is not best. Consequently, if some liveliness is to be left in the room, a
combination of absorbers and diffusers must be used. The current trend is to use
absorption at the points where first-order reflection occurs, between the listener and
the loudspeakers, to minimize interference with the source imaging. Diffusers are used
in other locations to provide a natural ambience for all of the musical playback
formats, ranging from stereo to surround, for example, by placing the diffusers on
the rear wall.

Where low frequency acoustic problems are being treated, both absorbers and
diffusers require considerable depth to work, and the depths of acoustic treatments
are often limited because of space constraints and cost. Because of this, resonant
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structures are often used to deal with the problems in a space efficient manner. For
example, a membrane or Helmholtz absorber might be used. The speed of sound in a
porous absorber is lower than in air, and consequently a given thickness of absorber
can work to a lower frequency than the same thickness of diffuser. For this reason, a
partially absorbing diffuser, such as a hybrid structure, or a full resonant absorber is
usually favoured to treat low frequencies where space is a premium. Furthermore,
most spaces naturally lack bass absorption, and so additional absorbers are useful in
dealing with low frequency reverberance.

Diffusers have the advantage of generally being more robust than absorbers. Most
absorber technologies involve fibrous materials which do not stand up well to the
effects of wind, rain and toxic environments. For example, in railway stations or on
streets a large amount of particulate pollution may be generated, which over time can
clog the pores of fibrous absorbents. There is a great risk with outdoor installations
that fibrous absorbents will wash away over time. Consequently, if it is possible to
meet the acoustic requirement using a hard diffuser, it is possible to generate a much
more robust treatment than with many absorbents.

Both absorbers and diffusers have a role to play in good acoustic design. They have
complementary functions, which means when they are used appropriately, better
acoustics can be achieved.
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1 Applications and basic principles
of absorbers

This chapter is intended to introduce the basic principles of absorption, along with
a basic explanation of the physics behind the absorption processes and some funda-
mental formulations which will be used in later chapters. Since the book is aimed at
practitioners and researchers, most chapters begin with an application-driven, quali-
tative description, followed by a quantitative description of the technology and
design. Following this type of philosophy, this introductory chapter on absorption
is written from an application or case study perspective. The style is intended to make
the more theoretical sections more palatable. Rather than start with a section labelled
‘A little light mathematics’ – which in most books is anything but light – the
mathematical explanations will be formed around application examples. The chapter
will also introduce some of the issues concerning the design, prediction and measure-
ment of absorbers that will be treated in more detail in future chapters.

This chapter naturally introduces principles of airborne acoustics related to absorbers,
such as some principles of room acoustics. Readers familiar with these principles can skip
these sections. Readers very unfamiliar with the subject should refer to the appropriate
references. The first application example concerns the control of reverberance.

1.1 Reverberation control

Readers should be familiar with excessively reverberant spaces; this might be a
restaurant or railway station where the sound echoes around the space make it noisy
and difficult to communicate. In these types of spaces, people tend to slow down their
speech, talk louder and try to pronounce words more precisely in an effort to make
the received speech intelligible.

For some reason, many restaurateurs seem to think that to create the right atmos-
phere, it is necessary to make speech communication virtually impossible. The issue
here is reverberation.

Reverberation is the decay of sound after a sound source has stopped and it is a key
feature in room acoustics [1]. Reverberation is most audible in large spaces with hard
surfaces, such as cathedrals, where the sound echoes around long after the sound was
emitted from the source. In small spaces, with plenty of soft acoustically absorbent
materials, such as living rooms, the absorbent materials quickly absorb the sound
energy, and the sound dies away rapidly. When people talk about rooms being ‘live’
or ‘dead’ this is usually a description of the perception of reverberance.

The amount of reverberation in a space depends on the size of the room and the
amount of sound absorption. The solution to the reverberant restaurant is to add



acoustic absorbent. This will reduce the reflected sound energy in the room and so
reduce the reverberance and sound level. Problems arise in dining rooms, because any
surfaces close to eating or preparation areas need to be robust and washable, and
many acoustic absorbers are soft and so are inherently unsuitable.

Consequently, the best place for absorption is the ceiling or high up on the walls.
Figure 1.1 shows such an absorbent ceiling. This room has a special absorbent plaster
ceiling which has the advantage of being flat and monolithic and so does not visually
impose on the space. The absorbent plaster is discussed in more detail in Chapter 5. A
less expensive solution would be standard absorbent ceiling tile made of materials
such as compressed mineral wool, mounted in a t-bar grid; but this is not as elegant.

Getting the correct amount of reverberation in a space is vital to the design of most
rooms, whether the aim is to make music sound beautiful, to make speech intelligible,
to reduce noise levels or simply to make a space a pleasant place to be in. The primary
technique for reverberation control is absorption. In discussing the design, application
and measurement of absorbers, it is necessary to understand a statistical model of
sound within an enclosure [1, 2]. This is discussed in the next section.

1.1.1 A statistical model of reverberation

A simple model of sound propagation in a room is of particles of energy bouncing
around the room in an analogous way to a snooker ball bouncing around a billiard

Figure 1.1 Absorbent plaster ceiling applied to a restaurant (photo courtesy of BASWA
acoustic, AG).
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table. The room can be characterized by the impulse response, an example of which is
shown in Figure 1.2. The impulse response is a pressure versus time graph showing the
response at a receiver position when somewhere else in the room a short impulse is
created. For example, a balloon burst or a starting pistol might generate the short
impulse, and the response might be measured with a microphone. First of all the direct
sound from the source to receiver is received. Soon after, a series of reflections arrive,
the level of these reflections generally decaying with time due to absorption at the
room surfaces. The effects of the boundaries dominate the behaviour of sound in
rooms, and it is at the boundaries where absorption is normally found. (Only in large
rooms does absorption by the air become important.) There is an increase in reflection
density with time, and when the reflections become very dense this is termed the
reverberant field. The energy of the reverberant reflections around the room is
roughly constant and can be readily predicted provided the sound field is diffuse [3].

The reverberation time T60 measures the time taken for the sound pressure level to
decay by 60 dB when a sound stops. From the impulse response, the Schroeder curve
must be calculated first by backwards integration before evaluating the reverberation
time [4]. Sabine showed that the reverberation time could be calculated from the
room volume and absorption by [5]:

T60 ¼ 55:3V

cA
ð1:1Þ

where V is the room volume, c the speed of sound and A the total absorption of all
room surfaces.
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Figure 1.2 The generation of an impulse response in a room, and a typical example
impulse response from a concert hall.
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The total absorption of the room can be calculated from the individual absorption
coefficients of the room surfaces using the following expression:

A ¼
XN
i¼1

Si�i

¼ S��� ð1:2Þ

where Si is the surface area of ith surface element in the room, S the total surface area
of the room, �i the absorption coefficient of the ith surface element in the room, and
��� the average absorption coefficient of the room.

The absorption coefficient of a surface is the ratio of the energy absorbed by
a surface to the energy incident. It typically lies between 0 and 1, which represent
non-absorbing and totally absorbing surfaces, respectively. Values greater than 1 are
often found in random incidence measurements, although theoretically impossible.
This usually occurs due to diffraction/edge effects – see Chapter 3 for further details.
The absorption coefficient can be defined for a specific angle of incidence or random
incidence as required.

Equations 1.1 and 1.2 form the basis for the standard method for measuring
a random incidence absorption coefficient. The reverberation time in a reverberation
chamber is measured with and without the test sample. The test sample adds absorp-
tion to the room and so reduces the reverberation time. From the change in reverber-
ation time, the absorption coefficient can be obtained. This technique is described in
detail in Chapter 3.

For large rooms, the absorption of air should also be accounted for. The total air
absorption Aair in a room of volume V is given by:

Aair ¼ 4Vm ð1:3Þ

where m is the energy attenuation coefficient. This can be calculated from [2]:

m ¼ 5:5� 10�4 50

h

f

1000

� �1:7

ð1:4Þ

where h is the relative humidity as a per cent and f the frequency. This formulation is
applicable for 20< h< 70 per cent and 1.5< f< 10kHz.

To allow for air absorption in the reverberation time predictions, the additional
absorption calculated from Equation 1.3 should be added to the denominator of
Equation 1.1 to give:

T60 ¼ 55:3V

cAþ 4mV
ð1:5Þ

Sabine’s formulation does not correctly predict the reverberation time for rooms
with a large amount of absorption. Over the years many new formulations have been
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developed, the most popular of these being the Eyring equation [6], also known as the
Eyring-Norris equation:

T60 ¼ 55:3V

�cS lnð1� ���Þ ð1:6Þ

where ln() signifies the natural logarithm. A little used formulation, but one needed in
Chapter 12 is the Millington equation [7]:

T60 ¼ 55:3V

�cP Si lnð1� �iÞ ð1:7Þ

Alternate reverberation time equations are the topic of considerable interest. Many
formulations attempt to be catch-all equations for reverberation time estimation, but
it is often difficult to know as a priori, whether a formulation will work in a particular
room. It is conceivable that better equations can be developed by analyzing rooms in
more detail (surface size and orientation statistics, absorption and diffuser distribu-
tion, etc.), but any such attempt would require a computer model of the room to be
made for the analysis. As geometric models exist (ray tracing and variants thereof),
where the impulse response of a room can be predicted, there is little need nowadays
to search for ever complex reverberation time formulations.

The relative advantages of the reverberation time formulations given in Equations
1.1, 1.6 and 1.7 will become important when discussing absorption measurement in
Chapter 3. In recent years, researchers have also been revisiting alternative reverberation
time formulations in an effort to improve the accuracy of predictions in geometric room
acoustics models; this is discussed in Chapter 12. Using geometric models for reverbera-
tion time estimation also requires diffuse reflections to be taken into account, which is
still the subject of standardization and investigation, as discussed in Chapters 4 and 12.

Despite many studies, the application of absorption coefficients in computer models
is fraught with difficulty, mainly because it is difficult to know what the absorption
coefficients are for surfaces, and this is a key input to the model. The accuracy of
absorption coefficients is particularly important when a significant portion of the
surface area of a room is very reflective, for instance if much of the room is made from
concrete, glass or wood. Furthermore, when the absorption is restricted to one plane,
as typically is the case in concert halls, swimming pools, sports halls and classrooms,
this means that the late decay is very dependent on the exact value of the absorption
coefficient selected for the reflective surfaces. Even in a room entirely made of one
material, such as a room made only of concrete, accurate absorption coefficients are
critical. Changing the absorption coefficient of the concrete from 0.02 to 0.01 in such
a room will double the reverberation time (except at higher frequencies where air
absorption will dominate in a large room). In other words, when a hard material is
dominating, a very accurate estimate of the absorption coefficient is necessary for
purely numerical reasons. Consequently, while there are tables of absorption coeffi-
cients in the literature and Appendix A of this book, these cannot be blindly applied.
The measured absorption coefficients can vary greatly from laboratory to laboratory,
even for the same sample. Furthermore, for some products the absorption can vary
greatly from manufacturer to manufacturer – an example being carpets as discussed in
Chapter 5. Consequently, there is great interest concerning in situ methods for
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measuring absorption both within rooms and for outdoor applications, and these
methods are discussed in Chapter 3.

The reverberation time formulations are statistical models of room acoustic behav-
iour, and are only applicable where there are a large number of reflections and the
sound field is diffuse. For instance, at low frequencies the modal behaviour of the
room make the sound field non-diffuse. Consequently, there is a lower frequency
bound on the applicability of statistical absorption formulations. The lower bound is
usually taken to be the Schroeder frequency [8] given by:

f � 2000

ffiffiffiffiffiffiffiffi
T60

V

r
ð1:8Þ

Although this formal limit has been known for many years, it does not prevent
many practitioners and researchers still defining and using absorption coefficients
below the Schroeder frequency as it is convenient, even if not strictly physically
correct. Geometric models are also used below this limit, although they have diffi-
culties in predicting at frequencies where there is a low modal density where correct
modelling of phase is needed.

1.2 Noise control in factories and large rooms with diffuse fields

The noise levels within working environments must be controlled to allow safe
working, as excessive levels can cause hearing loss. Consequently, noise levels in
working environments are subject to regulations to limit the exposure of workers.
There are several methods for controlling noise exposure. The most efficient of which
is usually to control the noise at the source, but this may not always be possible.
Another technique that can be employed is to reduce the reverberant sound level
within a space. This is only effective if the noise levels have a significant contribution
from the reverberant field. For instance, it is ineffective if the worker is close to a noisy
machine. The reverberant field level is reduced by the addition of absorption and
hence the noise exposure is decreased. Typically, porous or bulk absorber such as
mineral wool is used as it is inexpensive, light and effective.

The porous absorber often has to be protected from dust, and so is frequently
wrapped in plastic, but this decreases high frequency absorption. There are situations
where the absorbent needs to be washable, and there are a few types of porous
absorber that achieves this. There are also situations where the absorbent needs to
be fibreless to prevent contamination. Chapter 5 discusses the design and modelling
of porous absorbents including some innovative materials. Porous absorbers
are only effective at mid- to high frequencies, but this is where the ear is most sensitive,
and consequently where noise control is most needed in the working environment.

Factories tend to be very disproportionately dimensioned; they have very low
ceilings compared to their widths and lengths. This means that the simple diffuse
field equations, such as Equations 1.1 and 1.3, are unlikely to work. For statis-
tical room acoustics to hold, the space needs to be diffuse. A diffuse field is one
where there is uniform reflected energy density across the whole room, and all
directions of propagation are equally probable. There are many reasons why
real rooms do not have even energy density and equally probable propagation
directions.
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1 At low frequencies there are standing wave modes similar to those found in ducts –
see Section 1.3.

2 If the room’s dimensions are very dissimilar, there is a tendency to get different
reverberation times in different directions as happens with many factories. Sound
will decay faster if it is propagating perpendicular rather than parallel to the
floor, as the perpendicular propagating sound will reflect more often, and it is at
the reflections that absorption occurs.

3 The absorption in a room should ideally be evenly distributed across all surfaces.
For many cases this is not true; for example, the factory absorption might all be
on the ceiling, a swimming pool may also have all the absorption in the ceiling,
a reverberation chamber with a test sample has all of the absorption on the floor,
a classroom usually has absorption on the ceiling and floor but not on the walls, etc.

4 If the room has a distinctive shape, e.g. cylindrical, the curved surfaces can focus
sound to a point like a curved mirror does with light. The result will be an uneven
sound field – see Section 2.9.

The relevance of the diffuseness of the space to absorption technologies is as follows.
The absorption coefficient of a building element will be measured in a reverberation
chamber using Sabine’s reverberation time formulation – see Section 3.4. When the
absorption is applied, however, the acoustic conditions might be dramatically differ-
ent, for instance non-diffuse, which means that the anticipated changes in noise levels
and reverberance might not occur. The absorption might be more or less effective
than predicted; this is discussed in Chapter 12. A special example of the problem is
considered in Section 7.1 when auditorium seating is considered. Chapter 12 discusses
the application of absorption coefficients to room acoustic models where the issue of
non-diffuseness is again important.

1.3 Modal control in critical listening spaces

Small rooms, like recording/broadcast studios, home theatres and conference rooms,
usually suffer from problems due to low frequency modes. At low frequencies, the
standing wave modes of the room are separated in frequency. Figure 1.3 shows the
frequency response for a small room. The frequency response is uneven meaning that
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Figure 1.3 Low frequency response in a small room.
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some frequencies are emphasized, where mode(s) are strong, and some suppressed,
where mode(s) are weak, leading to colouration of the received sound. This is most
critical for music applications, particularly with the increasingly widespread use of
sub-woofer technology and reproduction of modern music with high bass content.
Common solutions include choosing appropriate room dimensions, loudspeaker loca-
tions and listening positions, to flatten the frequency response of the room as much as
possible and avoid degenerate modes [9]. Even when the room dimensions have been
carefully chosen, however, the frequency response of the room will still be uneven and
acoustic treatment is needed.

Particularly prominent modes are usually treated with bass absorption, often
referred to as bass traps or bins. (It is not usually possible to treat this problem with
diffusion because the sizes of the diffusers become prohibitively large.) Porous absorb-
ers are not usually used, as they would have to be extremely thick to provide
significant bass absorption. Porous absorption is most effective when it is placed at
a distance from a room boundary where the particle velocity is maximum. This is at
the quarter wavelength position. For a 100 Hz tone this would be roughly 1 m from
the boundary. Placing porous absorbers directly on a room boundary, while the most
practical, is not efficient because the particle velocity at a boundary is zero. In
practice, many people place porous absorption in corners of rooms thinking this will
absorb the modes since all modes have a ‘contribution’ in the corners. However, while
the modes have a maximum pressure in the corners, the particle velocity is very low
and so the absorption is ineffective. For these reasons, resonant absorbers are
preferred for low frequency modal treatments.

Resonant absorbers are mass spring systems with damping to provide absorption at
the resonant frequency of the system. The mass might come in the form of a membrane
made of plywood or mass-loaded vinyl. Alternatively, the vibrating air in the neck of a
hole might form the mass, as is the case for a Helmholtz resonant absorber. The spring
usually comes from an air cavity. Damping is most often provided by sound being
forced through a porous resistive material: mineral wool, fiberglass or acoustic foam.

The problem with resonant absorbers is that they usually only provide narrow band
absorption. To cover a wide bandwidth, a series of absorbers are required, each tuned
to a different frequency range. Alternatively, double-layered absorbers can be used,
but are expensive to construct. Resonant absorbers are discussed in Chapter 6. An
alternative, but expensive solution is to use active absorbers. Active absorbers have
much in common with active noise control systems, and are discussed in Chapter 13.

One problem with modal control using resonant absorption is knowing how much
resonant absorption to use. Although the theories set out in Chapter 6 allow the
absorption coefficient for Helmholtz absorbers to be estimated, the meaning of
absorption coefficient at low frequencies is problematical. (Even more problematical
is the lack of good prediction models for membrane absorbers, but that is another
story.) At low frequency the sound field is not diffuse, and consequently the effect that
the absorber has is not calculable through simple statistical laws.

1.4 Echo control in auditoria and lecture theatres – basic sound
propagation models

A late arriving reflection appears as an echo if its level is significantly above the
general reverberation level. In a large auditorium, the reflection from the rear wall is
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a common source of echo problems for audience members near the front of the stalls
(main level seating) or performers on the stage. Echoes are very likely if the rear wall
forms a concave arc which focusses the reflections at the front of the hall. The
physical and subjective processes are the same as for echoes heard in mountain ranges
or in cities with large building facades. One technique for removing the echo is to
apply absorption to the rear wall. The absorption attenuates the reflection and so
making it inaudible as a separate acoustic source. Figure 1.4 shows the Royal Festival
Hall where such a solution was used. The problem with using absorption in this case
is that it removes acoustic energy, which is at a premium in large spaces for orchestral
performance, and so diffusion is currently the preferred solution – see Section 2.1.

For small spaces, where absorption is being used anyway for reverberation control,
absorption is a possible treatment for echo problems. The absorption needs to act at
mid- to high frequencies as echoes are most notable for directional instruments.
Consequently, a layer of porous absorber can be used. Alternatively, hybrid surfaces
controlling reverberation at mid-low frequencies, but providing diffuse reflections at
mid-high frequencies might be used; these are discussed in Chapter 11.

Flutter echoes can occur in spaces with two large parallel walls. The regular pattern
of reflections caused by sound bouncing back and forth between the parallel walls
causes colouration. By colouration, it is meant that the frequency response of the
sound is detrimentally altered. If you go into many staired wells with parallel walls

Figure 1.4 The Royal Festival Hall, London (photo courtesy of Bridget Shield).
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and clap your hands, a high frequency ringing will be heard; this is the flutter echo.
Flutter echoes are common in lecture theatres. One remedial measure available is to
apply absorbent to at least one of the two parallel walls to absorb the reflections.
Again, a relatively thin layer of porous absorber can achieve this, as it is mid- to high
frequency treatment that is needed. Alternatively, diffusers may be used.

Porous absorbers are any material where sound propagation occurs in a network of
interconnected pores in such a way that viscous effects cause acoustic energy to be
dissipated as heat. Common examples are mineral wools, fibreglass, open cell foams,
acoustic tiles, carpets and curtains. To gain a proper theoretical understanding of
porous absorbers, it is necessary to understand the theories of sound propagating in a
medium. Some basic models of sound propagation, which are the basis for much of
the absorber and diffuser modelling in the book, are presented in the next section.

1.4.1 Sound propagation – a wave approach

To understand and design absorbers, it is necessary to have a basic understanding of
the terminology used and the fundamental mathematical constructs used for sound
propagation. This section introduces some basic constructs, concepts and terms.

A complex number representation of waves will be adopted throughout the book.
The pressure of a plane propagating in a direction r is:

pðt; rÞ ¼ A ejð!t�k�rÞ ¼ A ejð!t�kxx�kyy�kzzÞ ð1:9Þ
where k ¼ fkx, ky,kzg is the wavenumber (/ propagation constant) with kx being the
component in the x-direction, k2 ¼ jkj2 ¼ k2

x þ k2
y þ k2

z , A is a constant related to the
magnitude of the wave, r ¼ fx, y, zg the location of the observation point, t the time, and
! ¼ 2�f ¼ kc the angular frequency, where f is the frequency and c the speed of sound.

The same conventions as used in Reference 2 are being adopted, so this forms a
useful background reading for those who find this introduction too brief. Some texts
and papers used a propagation constant, �¼ jk, in their equations instead of the
wavenumber, but this will not be often used in this book.

Consider a plane wave propagating through an acoustic medium, this could be air
or a porous absorber. The plane wave will be taken to propagate in the x-direction for
convenience. The pressure and particle velocity are given by:

p ¼ A ejð!t�kxÞ ð1:10Þ

u ¼ A
�c

ejð!t�kxÞ ð1:11Þ

where � is the density of the medium and c the speed of sound in the acoustic medium.
The ratio of pressure to velocity gives the characteristic specific acoustic impedance of
the medium, zc:

zc ¼ �c ð1:12Þ
The characteristic acoustic impedance is a very useful property of the material when
calculating the transmission of acoustic waves within and between different acoustic
media.
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The characteristic impedance of plane waves in air is purely real with a value of
about 415 MKS rayl. In other acoustic medium it will often be complex, with a
characteristic resistance and reactance which are the real and imaginary parts of the
impedance, respectively. The characteristic impedance is analogous to the character-
istic impedance of an electronic transmission line.

Once the characteristic impedance and wavenumber within an acoustic medium are
known, it is possible to predict the sound propagation. While it is possible to
characterize a medium with the characteristic impedance and the wavenumber, it is
also possible to use two other variables, the effective density �e and bulk modulus Ke.
The term effective is used to signify that this is the density experienced by the acoustic
waves rather than the more normal definition. The bulk modulus is the ratio of the
pressure applied to a material to the resultant fractional change in volume it under-
goes. It is the reciprocal of the compressibility. For a porous absorber the effective
density and bulk modulus can be related to the characteristic impedance and wave-
number by the following formulations. The characteristic impedance is given by:

zc ¼
ffiffiffiffiffiffiffiffiffiffi
Ke�e

p
ð1:13Þ

and the propagation wavenumber by:

k ¼ !
ffiffiffiffiffiffi
�e

Ke

r
ð1:14Þ

Where possible, this book will work just with impedance and wavenumber, as multi-
ple interrelated parameters are a potential source of confusion. Some porous absorb-
ent prediction formulas, however, explicitly give values for the bulk modulus and the
effective density, so these terms will sometimes be met in the literature.

1.4.2 Impedance, admittance, reflection factor and absorption

The effect that a surface has on an acoustic wave can be characterized by four
interrelated acoustic quantities: the impedance, the admittance, the pressure reflection
factor and the absorption coefficient. The first three (impedance, admittance and
pressure reflection factor) give information about both the magnitude and phase
change on reflection. The absorption coefficient does not contain phase data, but
only gives information about the energy change on reflection.

Understanding these four acoustic quantities is fundamental to understanding the
absorption sections of this book. These will now be defined mathematically by
considering a wave propagating between two media. Consider a plane wave incident
at an angle  to a boundary between two acoustic media at x¼ 0 as illustrated in
Figure 1.5. A simple model for a porous absorber assumes that it behaves as an
acoustic medium like air, only with a different speed of sound c1 and density �1.
The incident pi, reflected pr and transmitted pt pressures are given by:

pi ¼ Ai e
j½!t�kx cosð Þ�ky sinð Þ� ð1:15Þ

pr ¼ Ar ej½!tþkx cosð�Þ�ky sinð�Þ� ð1:16Þ

pt ¼ At e
j½!t�k1x cosð�Þ�k1y sinð�Þ� ð1:17Þ
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where Ai, Ar and At are the magnitudes of the plane waves incident, reflected and
transmitted, respectively, and the angles are defined in Figure 1.5.

Applying continuity of pressure gives the following relationship:

Ar e
j½!tþkxcosð�Þ�ky sinð�Þ� þAie

j½!t�kx cosð Þ�ky sinð Þ� ¼Ate
j½!t�k1x cosð�Þ�k1y sinð�Þ� ð1:18Þ

This must be true for all times and for all values of y as this is a plane wave.
Consequently, we obtain a relationship between the angles of propagation, more
commonly known as Snell’s law:

sinð Þ ¼ sinð�Þ ð1:19Þ
sinð Þ
c
¼ sinð�Þ

c1

or

K sinð Þ ¼ K1 sinð�Þ ð1:20Þ

The behaviour of the sound wave therefore depends on the relative size of the speed of
sounds in the two media. For most absorbents, the speed of sound is much less than
that in air. Consequently, the angle of propagation in the medium is smaller than in
the air. In fact for many absorbents, the angle of propagation can be assumed to be
normal to the surface, i.e. �! 0.

The pressure reflection coefficient, R, gives the ratio of the reflected and incident
pressure, i.e.:

R ¼ pr

pi
ð1:21Þ
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Figure 1.5 Sound hitting a surface.
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The pressure reflection coefficient therefore includes both magnitude and phase
information about the reflection of sound. There is also an intensity reflection
coefficient, but this is not used in this book.

The continuity of particle velocity normal to the surface should also be considered
to enable the derivation of an expression for the specific acoustic impedance of the
surface. The relationships between pressure reflection factor and impedance will be
used repeatedly in the book. For oblique incidence, these are:

R ¼
z1
�c cosð Þ � 1
z1
�c cosð Þ þ 1

ð1:22Þ

z1
�c

cosð Þ ¼ 1þ R
1� R ð1:23Þ

The admittance is the reciprocal of the impedance:

� ¼ 1

z1
ð1:24Þ

Often the surface admittance and impedance are normalized to the characteristic
impedance of air, and these are denoted with a subscript of n.

The surface impedance is often split into the real term (resistance) and imaginary
term (reactance). In general, the real term of surface impedance is associated with
energy losses, and the imaginary term with phase changes. So a simple inspection of
the surface acoustic impedance can give more insight into the absorbing properties of
a material than the absorption coefficient.

Remembering from Section 1.1.1 that the absorption coefficient, �, is a ratio of the
absorbed and incident energy enables the following expression to be derived:

� ¼ 1� jRj2 ð1:25Þ

where |R| is the magnitude of the pressure reflection coefficient.
This section has described a number of key terms for sound propagation funda-

mental to absorber and diffuser modelling. These will be used throughout the theoret-
ical sections of this book. But for now, it is time for some light relief by returning to
some applications.

1.5 Absorption in sound insulation – transfer matrix modelling

Porous absorbent material is widely used in sound insulation. Lightweight construc-
tions are often based on double leaf partitions with an air gap in between as shown in
Figure 1.6. It is normal for the air gap to contain a porous absorber. The porous
absorber is used to prevent a resonance of the air cavity. If cavity resonances are not
removed by damping, at the resonant frequency sound will pass easier through the
partitions, and so the sound insulation will be poorer. It is important that the applied
absorber is lightly packed; otherwise it can form a vibration path bridging between
the two partitions, which could greatly reduce the performance of the system. Most
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porous absorbers will be effective in partition, this is not the most critical application
for the design of absorbents.

As the issue of transmission is being discussed, it seems appropriate to discuss the
transfer function matrix approach to modelling transmission through, and absorption
from, porous and resonant absorbers. The transfer matrix approach is the basis for
many of the prediction techniques given in this book. A similar process is used in
transducer modelling, where the method is called a two-port network.

1.5.1 Transfer matrix modelling

The transfer matrix approach to modelling sound propagation is a very powerful
technique most often applied to porous absorption with and without membrane or
perforated facings. It enables the surface impedance of single and multiple layers of
absorbent to be calculated. For instance, it enables the case of a rigidly backed porous
absorbent to be considered. This is the most important acoustic case, because it
represents an absorbent placed on a wall, floor or ceiling.

Consider the situation shown in Figure 1.7. It is assumed that only plane waves
exist within the layers. It is further assumed that the propagation is entirely contained
in the x–y plane. By considering the continuity of pressure and velocity at the
boundaries, it is possible to relate the surface pressure of one layer to the next.

purlin fibreglass

gypsum (plaster) board

Figure 1.6 Mineral wool in a partition.

ith layer
ki, zi
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Figure 1.7 Geometry for transfer matrix modelling of a multi-layer absorbent.
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¼ pxiþ1

uxiþ1

� 	
¼
(

cosðkxidiÞ j !�ikxi sinðkxidiÞ
j kxi!�i

sinðkxidiÞ cosðkxidiÞ

)
pxi
uxi

� 	
ð1:26Þ

where pxi and uxi are the pressure and particle velocity at the bottom of the ith layer,
for velocity this is defined to be in the x-direction, pxiþ1 and uxiþ1 the pressure and
particle velocity at the bottom of the (iþ 1)th layer, pli and uli the pressure and particle
velocity at the top of the ith layer, di the thickness of the ith layer, �i the density
of ith layer, and kxi the x-direction component of the complex wavenumber for the ith
layer.

The x-component of the wavenumber is calculated by considering Snell’s law
(Equation 1.20):

kxi ¼ ki
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinð�Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i � k2

iþ1 sinð Þ
q

ð1:27Þ

Many porous absorbents have a small speed of sound in comparison to air, and so
often kxi � ki as � � 0.

This is a recursive equation from which the pressure and velocity of any layer can
be determined from boundary and incident sound wave conditions. Although this
process can be used to determine absolute values for the pressure and velocity, the
technique is most powerful in determining surface impedance values. The surface
impedance is calculated for the top of the ith layer, this is then used to calculate the
impedance at the top of the (iþ 1)th layer. The process is then repeated until all layers
have been evaluated. The relationship that enables this process, relates the surface
impedance at x¼ xiþ 1 to the impedance at x¼ xi [10]:

zsiþ1 ¼
�jzsizi

ki
kxi

cotðkxidiÞ þ zi
ki
kxi

 �2

zsi � jzi
ki
kxi

cotðkxidiÞ
ð1:28Þ

where zsi is the impedance at x¼ xi, zsiþ1 the impedance at x ¼ xiþ1, ki the wave-
number in the ith layer, and xi and xiþ1 are defined in Figure 1.7.

To illustrate the application of Equation 1.28, consider the most common case
which is a rigidly backed single layer. In this case, zsi!1, and Equation 1.28 reduces
to give the surface impedance of the rigid back absorbent as:

zsiþ1 ¼ �jzi
ki
kxi

cotðkxidiÞ ð1:29Þ

1.6 Absorption for pipes and ducts – porous absorber characteristics

Air conditioning ducts and other pipelines are a common source of noise [11]. Break-
out noise radiates from the sides of the pipelines and ducts. The most effective
treatment will be to reduce the noise at the source, but where this is not possible,
application of absorbent within or external to the duct can be effective. For ventilation
ducts, internal lining of the duct with porous absorbent is most effective. Internal duct
liners are generally made of porous absorbent, the type is not that important from an
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acoustic perspective. It is often necessary to use a protective coating, which can be a
spray-on polyurethane coating, impervious lightweight plastic sheet, perforated
metal, etc. The protective coating can have a significant effect on the absorption
obtained.

For pipelines internal treatment is not often possible, and in this case external
lagging can be done. The external lagging is often a combination of mineral wool
and a heavy limp mass jacket made of metal, although the evidence is that foam
is more effective. Below 300 Hz, the lagging of pipelines is not effective, and indeed
around 300 Hz it can often result in increased noise breakout. Reference 11 gives
design charts to enable the effectiveness of pipeline and duct lagging to be calculated,
although the prediction can be inaccurate unless proper manufacturer’s data is
known.

1.6.1 Characterizing porous absorbers

To theoretically model the sound propagation through a porous absorber, it is
necessary first to have measurements characterizing the acoustic properties of the
absorber acoustic medium. So far in this chapter, the wavenumber and characteristic
impedance have been discussed, but these cannot be directly measured. There are
other parameters which are needed by absorber designers. Given a piece of porous
absorbent material to characterize, often a researcher would start by measuring the
flow resistivity � and porosity ". The flow resistivity gives a measure of the resistance
to flow that the porous absorber offers and porosity the amount of open volume in the
absorber. Chapter 3 outlines measurement methods for obtaining these values,
although for many porous absorbents it is possible to assume a porosity of 1. These
are probably the two most important determining parameters for porous absorbents.
Once the flow resistivity and porosity are known, it is then possible to get the
characteristic impedance and wavenumber via empirical laws, such as those outlined
in Chapter 5, and predict the absorption properties of the sample.

It is possible to go to a more refined model of porous absorbers, which need further
measurements of properties. There are a variety of models in the literature, but the
one outlined in Chapter 5 uses three additional parameters, two characteristic lengths
and tortuosity. These are more complete models of porous absorbents, but suffer from
the problem that the characteristic lengths have to be fitted empirically, and conse-
quently the verification of the accuracy of the theories is rather circular.

It is possible to directly measure the surface impedance, pressure reflection factor or
absorption coefficient of a sample. This is often done in the development of prediction
models for absorbents. As mentioned previously, the absorption coefficient can be
measured through a reverberation chamber method, but this is problematical as the
diffuse field absorption coefficient is often influenced by edge effects. Furthermore, it
is not possible to get phase information from the reverberation chamber, and this is
very useful in understanding how an absorber works or why a theory succeeds or fails.
To get phase information, a measurement for a particular incident angle needs to be
made. The easiest system is to measure the impedance in a tube, where only normal
incidence plane waves exist. To get oblique incidence coefficients, it is necessary to
use large samples in an anechoic chamber; the most common technique is a two-
microphone method, which is limited to homogeneous, isotropic, planar samples. All
these techniques are discussed in Chapter 3.
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1.7 Summary

This chapter has outlined some absorber applications and touched on some of the issues
that will be important in future chapters. It has also introduced some necessary
mathematical principles. The remaining chapters concerning absorption are as follows:

. Chapter 3 discusses measuring absorber properties from the microscopic to the
macroscopic.

. Chapter 5 discusses the application, design and theoretical modelling of porous
absorbers.

. Chapter 6 discusses the application, design and theoretical modelling of resonant
absorption, especially Helmholtz and membrane devices.

. Chapter 7 sets out some miscellaneous absorbers, which did not obviously fit
into Chapters 5 and 6. Seating in auditoria and absorption from diffusers are
considered.

. Chapter 11 discusses hybrid diffusers, and as these cause absorption, they are
also an interesting absorber technology.

. Chapter 12 discusses how to get from predictions of single absorbent properties
(mainly absorption coefficients) to full room predictions, especially the role of
absorption coefficients in geometric room acoustic models.

. Chapter 13 rounds off the absorption work by looking at active absorber
technologies.

The next chapter introduces surface diffusion.
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2 Applications and basic principles
of diffusers

In this chapter the basic principles of diffusers will be developed. Following the same
style of Chapter 1, the chapter will be driven by application. In many respects, the right
and wrong places to use diffusers are still being defined [1, 2]. There are places, such as
rear walls of large auditoria, where there is a general consensus that diffusers are a good
treatment to prevent echoes and better than traditional absorptive approaches. The case
for using diffusers in some other places is less clear cut, and until further research is
undertaken, some applications of diffusers are going to be based more on precedence
and intuition, rather than scientific fact. Having said this, much has been learned in
recent decades which can help to ensure that diffusers are used where they are needed.

This chapter will outline how diffusers can be applied and the effects their
application will have on the physical acoustics and the listener response. It will also
be used as an opportunity to introduce some basic physics, which will be needed to
understand the more detailed chapters on diffuser prediction, design, measurement
and characterization later in the book.

2.1 Echo control in auditoria

In Section 1.4 the problems of echoes and flutter echoes in room acoustics were
discussed. To recap, echoes are caused by late arriving reflections with a level
significantly above the general reverberance. For instance, they are often heard at
the front of badly designed auditoria, with the echo being a reflection from the rear
wall. The echo might also come from a balcony front or many other multiple reflec-
tion paths. Flutter echoes are caused by repeated reflections from parallel walls and
are often heard in lecture theatres, corridors, meeting rooms, etc.

In Chapter 1, the suggested treatment for echoes was absorption, but diffusers can
also be used. Using diffusers can be advantageous because they do not remove energy
from the sound field. This is important in large auditoria with an orchestra, because
every part of the sound power generated by the musicians should be preserved and not
lost by avoidable absorption. In other cases, the choice between diffusers and absorb-
ers will rest on whether the energy lost to absorption will detract or improve other
aspects of the acoustics, such as the reverberance, envelopment and intelligibility.

2.1.1 Example applications

Figure 2.1 shows quadratic residue diffusers (QRDs) applied to the rear wall of
Carnegie Hall in New York. QRDs are a type of Schroeder diffuser described in



Chapter 10. This form of reflection phase grating was the starting catalyst for modern
diffuser research about three decades ago. The diffusers were installed in Carnegie
Hall because a long delayed reflection from the rear wall caused an echo to be heard
on the stage making it difficult for musicians to play in time with each other. Adding
diffusers dispersed the reflection, reducing the reflection level arriving on the stage
and consequently making the reflection inaudible. The diffusers also improved spa-
ciousness on the main floor by uniformly diffusing rear wall reflections and masking
echoes from the boxes [3].

Figure 2.2 shows the application of optimized curved diffusers to side walls of the
Hummingbird Centre in Toronto (Consultant John O’Keefe, Aercoustics Engineering
Ltd). A refurbishment of the hall was going to involve adding a reverberation
enhancement system. The reverberation enhancement system added additional reflec-
tions from loudspeakers mounted in the side walls. Unfortunately, this was a shallow
splay, fan-shaped hall, and as is common with many auditoria of this shape, if sources
are on the side walls, echoes across the width of the audience area are heard. This was
not a problem while the sound was being generated from the stage, but would have
been a problem when the artificial reflections were generated from the side walls. It
made no sense to treat the echoes with absorption, since this would just remove sound
energy, which would have rather defeated the point of having the artificial enhance-
ment system installed in the first place. The solution was therefore to use diffusers,
which break up lateral propagating reflections in the audience area.

The original design for the diffusers in the Hummingbird Centre was for Schroeder
diffusers, which were to be cloth covered to hide their visual appearance. This is a
common story in diffuser design. The acoustical treatment needs to complement the
visual appearance of the room to be acceptable to architects. If the visual aesthetic is
not agreeable, the treatment will have to be hidden behind fabric, but as discussed in

Figure 2.1 Schroeder diffusers (QRDs1) applied to the rear wall of Carnegie hall to
prevent echoes (after D’Antonio and Cox [2]).
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Chapters 7 and 9, this would have turned the side wall diffusers into absorbers.
(Another solution architects often apply to acoustical treatment that does not fit with
the visual requirement of a space, is to remove the treatment completely. This not only
solves the visual aesthetic problem, but it saves money!) In the Hummingbird Centre,
the designers were encouraged to try a new method for designing optimized curved
surfaces, which will be outlined in Chapter 10. The finished design then complemented

Figure 2.2 Application of optimized curved diffusers (OptiCurveTM) in the Humming-
bird Centre, Toronto (after D’Antonio and Cox [1]).
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the appearance of the space, and so the diffusers were left exposed. By choosing
a curved shape, the diffuser could meet the visual requirements of the architect. The
concept was a basket weave that would thread in and out of the cherry wood side
walls. ‘The renovated room and, in particular, the enhancement system have been
well received by the owners and their tenants, including the National Ballet and the
Canadian Opera Company.’ [4]

2.1.2 Wavefronts and diffuse reflections

This section is an introduction to how diffusers disperse reflections. A standard
construction to explain the effects of diffraction in physics was devised by Huygen.
It is not exact for acoustic diffusers, but helps explain some of the phenomena
happening with wave scattering. Figure 2.3 shows a plane wave reflected from a
planar hard surface using Huygen’s construct, the incident wave is omitted for clarity.
The construction involves placing a set of secondary sources, shown as stars on the
surface, which are generated by the incident waves. These secondary sources hemi-
spherically radiate, forming concentric waves which interfere and thereby model the
reflected sound. Lines are drawn through points on the reflected wave which are in
phase with each other, as shown on the lower figure. These lines are the wavefronts
which show the direction and propagation of the reflected sound. Figure 2.3 shows
the effect of a plane wave incident normal to a flat surface. This produces a reflected

Figure 2.3 Huygen’s construct for a plane wave reflected from a flat surface. Normal
incidence source. The incident wavefronts are excluded for clarity. The sec-
ondary sources are shown as stars on the surface.
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plane wave in the specular reflection direction, where the angle of incidence equals the
angle of reflection.

The reflected wavefront is spatially unaltered from the incident sound. Conse-
quently, the sound from the source reflects straight back and is unchanged and not
dispersed. This could lead to the reflection being perceived as an echo, especially if the
source is a directional instrument such as a trumpet. Therefore, the role of a diffuser is
to break up or diffuse the reflection, so that the sound energy is dispersed around the
auditoria, and sound from directional instruments does not remain in narrow beams.

Figure 2.4 shows the effect of adding surface roughness to disperse the reflection. In
this case a semicylinder is used. It can be seen that the reflected wavefront is no longer
planar, but is now semicircular. The semicylinder has generated a virtual point source
at the middle of itself. Consequently, a semicylinder will generate spatial dispersion.
The wavefronts generated are still very ordered; however, so although semicylinders
are good at spatial dispersion, they are not the best diffusers because temporal
dispersion is not achieved; this will be discussed further in Chapter 10.

Figure 2.5 shows the effect of using a simplified Schroeder diffuser. A Schroeder
diffuser changes the phase of the reflected wavefronts. The waves radiated by the

Figure 2.4 Huygen’s construct for a plane wave reflected from a cylinder surface.
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secondary sources are complicated, and it is difficult to pick out clear cut wavefronts.
As well as generating spatial dispersion, reflection phase grating diffusers generate
temporal dispersion. This can be seen in Figure 2.6.

The consequences of temporal dispersion can be seen in the frequency domain. In
Figure 2.7 the temporal and frequency response of a single specular reflection from
a flat surface and a diffuse reflection from a diffuser are shown. In Figure 2.7a, the
direct sound, a specular reflection and the room interference are shown. In Figure
2.7b, the frequency response of the specular reflection alone is given. (The time
window is illustrated by the two vertical lines in Figure 2.7c.) The specular reflection
frequency response is characterized by a high pass filter response, characterized by the
size and shape of the reflecting surface (see Chapter 10 for discussions of flat
reflectors). In Figure 2.7c, where the reflection from a diffuser is given, the specular
reflection is now temporally dispersed and shown as a diffuse reflection. The diffuser
frequency response in Figure 2.7d is characterized by a random distribution of
irregularly spaced nulls and peaks. Many heuristic diffuser designs assume that any
temporal distribution will provide a satisfactory frequency spectrum, when in fact
colouration is often inadvertently introduced.

Figure 2.5 A Huygen’s construct for a plane wave reflected from a simplified Schroeder
diffuser. The top diagram shows the wavefronts from two wells only for
clarity.
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In Figure 2.8 the temporal and frequency responses of the total fields, consisting
of the direct sound and the reflection(s), are shown. When the direct sound and
a specular reflection combine, they form a comb filter. The frequency spacing of the
pattern is related to the time delay between, and the notch depth is related to the
relative amplitude of, the direct sound and specular reflection. This is an effect that
should be avoided in critical listening rooms and performance spaces. It can happen if
large flat reflectors and nearby walls are not treated with absorbers or diffusers. When
the direct sound combines with a diffuse reflection, the regularity of the comb filtering
is removed and the variation in levels reduced. The spectral content of the direct
sound can be more fully perceived. In addition to providing uniform spatial dis-
persion, reducing comb filtering is a principal reason for using diffusers in many
applications.

Another way of forming a diffuser is to combine reflection and absorption. By
putting patches of absorbent on a wall, some of the secondary sources will be absent,
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Figure 2.6 Measured spatial and temporal dispersion generated by a reflection phase
grating.
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and dispersion is generated. Figure 2.9 shows a simple wavefront construction for this
case. Traditionally, acousticians have utilized patches of absorption on wall surfaces
to obtain dispersion. But this only leads to modest dispersion below frequencies where
the dimension of the panel is roughly half a wavelength. To obtain high frequency
diffuse reflections, the dimension of the patches must be much smaller and the
distribution of the patches is important. This approach forms a hybrid surface, which
partially absorbs and diffuses reflected sound, i.e. providing diffsorption. This type of
surface is discussed in more detail in Chapter 11. These types of hybrid surfaces cause
partial absorption, therefore they need to be used where reverberation control and
dispersion are simultaneously needed.

2.1.3 Coherence and terminology

Many might describe the plane surface reflection as being coherent, and the reflec-
tions from diffusers as being incoherent, but this is actually a misleading use of
terminology. From a purely physical standpoint, coherence occurs when there is a
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Figure 2.7 Measured temporal and frequency responses for a flat surface (top) and a
diffuser (bottom). The frequency responses are for the reflected sound only
(after D’Antonio and Cox [1]).

30 Applications and principles of diffusers



fixed, time invariant phase relationship between separate parts of a wavefront. For
both plane surfaces and complex diffusers there is a fixed phase relationship. In this
linear system, there is time variance. The wavefront from a diffuser is just compli-
cated; it is not incoherent. To achieve physical incoherence, the surface would have to
move or change in a random fashion over time.

Another terminology commonly used is to say the reflection is diffuse. There is no
formal definition of this, but it refers to the case where the reflection is dispersed both
spatially and temporally. Many modern designs are designed by examining the spatial
dispersion and assuming that this will be accompanied by temporal dispersion. In
addition, many diffusers are designed simply assuming that any temporal variation
will produce uniform spatial dispersion and an acceptable frequency response; how-
ever, this is not necessarily the case.

It might be appropriate here to discuss and contrast surface diffusion and volume
diffusion. For surfaces, the diffusion being discussed here is that generated by
surface reflections in terms of the spatial and temporal dispersion. Whether these
diffuse reflections then contribute to make a sound field more diffuse, is not what is
being referred to. Indeed, diffusers might be applied simply to treat first reflection
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Figure 2.8 Measured temporal and frequency response of the total field, consisting of the
direct and reflected sound. Top case is for specular reflection, the bottom case
is for diffuse reflection (after D’Antonio and Cox [1]).
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problems, such as echoes, and the effect these have on the reverberant field in the
space might be of little concern. Both surface and volume diffusion refer to cases
where the sound field, or surface reflections, become more complex. The effect of
surface roughness and impedance changes is to generate diffraction, i.e. the breaking
up of sound wavefronts due to edges and other effects. Acousticians do not seem to
favour the term diffraction, however, but prefer diffusion, diffuse reflection or scat-
tering. To complicate matters further, the use of these terms is inconsistent between
different disciplines in acoustics. The only place where some clear differentiation has
been set is with surface scattering and diffusion coefficients. A scattering coefficient
refers to the ability of a surface to remove energy from the specular reflection
direction, the diffusion coefficient refers to a measure of quality referring to the
spatial uniformity of the reflections from a surface. Measuring and characterizing
surface reflections is discussed in Chapter 4. This is also relevant to Chapter 12, where
the application of scattering coefficients to geometric models is discussed.

Finally, it might be appropriate to discuss the spelling of diffusers. Schroeder and
D’Antonio chose to use the spelling ‘diffusor’ to distinguish between acoustic and
other diffusers such as those used for lighting and air dispersion. However, common
usage has drifted towards diffuser, and this will be employed throughout this book.

2.2 Reducing colouration in small rooms

2.2.1 Sound reproduction

It is often useful to consider the extremes of boundary conditions when attempting to
solve a room acoustic problem. In the case of a critical listening room, one extreme is

Figure 2.9 A simplified Huygen’s construct for a plane wave reflected from a hybrid
surface. The black patch is completely absorbing.
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an anechoic chamber, and the other a reverberation chamber. Anyone who has spent
any time in these rooms realizes that neither is an exciting place to listen to music. An
ideal critical listening room will usually lie somewhere between the two extremes. It is
also important to realize that since this is a sound reproduction room, the room can
only corrupt what is being reproduced by the playback system. The unwanted
artefacts added by the room are acoustic distortion.

In the early 1980s, there was an interest in improving the design of stereo listening
rooms. It is difficult to underplay the importance that modern diffuser design has had
on state-of-the-art sound reproduction facilities, whether these are listening rooms,
recording or broadcast control rooms, teleconferencing or distance learning rooms.
A major catalyst for this work was the pioneering research of D’Antonio [5] initially
utilizing diffuser designs suggested by Schroeder [6] and also room design concepts
such as live end dead end (LEDE1) [7] and reflection free zone (RFZTM) [8].

An RFZ design strives to minimize the influence of the room acoustic on the sound
reproduction and so provides a neutral two-channel critical listening room. The
design creates a spatial and temporal RFZ surrounding the primary mixing or listen-
ing position(s). The zone is spatial, because it only exists within a certain area in the
room; and it is temporal, because the interfering reflections are only controlled over
a certain time window, between the arrival of the direct sound, and prior to reflec-
tions arriving from the rest of the room.

It is well established that early reflections affect the characteristics of the sound at the
listening position [9, 10]. One solution is to use absorption to control first-order
reflections between the source and the listener and so remove early arriving high level
reflections, which produce colouration and image shift. (Image shift meaning that the
sound source appears to be coming from the wrong place.) Applying large numbers of
absorbers leads to a dead room, and so diffusers are used as a way of preserving the
energy, but providing it delayed and temporally dispersed to minimized distortion caused
by interference with the direct sound. Diffusers on the rear wall essentially provided
a passive surround sound that provides ambience in the room and envelopment.

Figure 2.10 shows the energy time curves measured before and after treatment in
a small critical listening room. At the top of Figure 2.10, the direct sound and
interfering side wall, floor, ceiling and sparse reflections from the room are identified.
The early specular reflections cause colouration, image shifting and broadening of the
image width and depth. The sparse specular reflections from the rear of the room also
interfere with the direct sound further colouring the reproduction. These problems
can be addressed by controlling the competing early reflections from the walls, floor
and ceiling by application of absorbers and diffusers. This creates an initial time delay
gap before the onset of the reflections from the rear wall forming the RFZ described
above; this extends to roughly 18 ms, see lower graph in Figure 2.10. If absorption is
used, psychoacoustic experiments indicate that the sonic images in the soundstage will
be extremely small, as if sound comes from a point in space. If diffusers are used, the
sonic images take on greater size and appear more realistic. Following the application
of diffusers on the rear wall, the effects of which are shown in the lower part of Figure
2.10, the sparse room reflections more resemble a reverberant field of a larger room,
with increased spatial and temporal reflection density. Using this technique, it is also
possible to create a reverberant sound field with a linear slope.

D’Antonio et al. [11] carried out a study on a recording control room. A drawing of
the room can be seen in Figure 2.11. In this example, an RFZ is achieved by flush
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mounting the loudspeakers (L) with the woofers close to the front trihedral corners of
the room. The massive front walls are splayed outward and treated with porous
absorption to provide broadband control of first-order reflections. The rear wall
surfaces are treated with broadband diffusers (QRD) to disperse first-order rear wall

Before

After

RFZ

Rear Wall

Direct Sound

Side Wall
Floor

Sparse Room Reflections

Ceiling
6dB

10 20 30 Time (ms)

Direct Sound

Diffuse Reflections

6dB

10 20 30 Time (ms)

Figure 2.10 The impulse response in an untreated small critical listening room before
(top) and after treatment (bottom) (after D’Antonio and Cox [1]).
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reflections away from the listeners, while providing ambience and envelopment. The
shaded area represents the spatial RFZ, 24 dB below the direct sound, with an initial
time delay gap of approximately 17 ms, where the predominant energy is from the
monitor loudspeakers. Two types of reflections are indicated in Figure 2.11.
An undesirable specular reflection from the glass doors forming the machine room
(S), and diffuse reflections which arise from 7 m2 of diffusers located on the rear
wall (D).

The rear wall diffusers reduce the level of the reflections reaching the listener
early and so colouration effects are reduced. Figure 2.8 (top row) shows the time
and frequency response for a listener close to a large plane surface with no other
surfaces present. The similarity between the incident and reflected time responses
can be seen. (Some minor differences are seen because the measured surface was
finite in extent.) The incident and reflected sounds interfere to cause the well-
known comb filtered response, shown to the right. A comb filter gives emphasis
to some frequency components, while others are absent. This will change the
relative magnitude of the harmonics in music and so lead to a coloured sound
where the timbre is not true. Figure 2.8 (bottom row) shows the case for a
listener close to a diffuser. The diffuser introduces temporal diffusion of the
reflected sound, which leads to a more complicated frequency response. The
regularity of the comb filtering is minimized, and consequently its audibility is
diminished.

Unfortunately, although the colouration will be reduced, there is no formal method
for evaluating the audibility of comb filtering. Some have suggested relating the
frequency response to critical bands [12], although a more complex model is required
to allow for masking effects which occur due to other room reflections.

QRD

S

D

RFZ

L L

Figure 2.11 A sound reproduction room, with a designed reflection free zone (RFZ)
shown shaded (after D’Antonio and Cox [1]).
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In a small critical listening room, the boundary surfaces are usually rather close to
the listener. The most efficient placement for a diffuser (or an absorber for that
matter), is at the points where the first-order specular reflections are produced – the
geometric reflection points. Consider a room in which all of the surfaces are mirrors.
The geometric reflection points would be at all of those locations on the boundary
surfaces at which a listener can see the sources.

The number of diffusers that should be used depends on what a listener’s personal
preference is. If interfering reflections are absorbed, then one experiences the highest
resolution sonic images which are essentially points in space. If diffusers are used to
control these reflections, the apparent size of the image is broadened. If done prop-
erly, some have described this as a more natural size image, similar to what might be
experienced in the presence of an actual sound source. So a balance has to be reached
in which the desired apparent source width and depth is achieved, while creating the
desired ambience. While some people favour very dead spaces for mixing audio,
others do not. Some studio designers like to create a non-environment where only
the direct sound is received by the sound engineer. Whether this is a desirable acoustic
or not seems to be a matter of taste. This personal preference aspect of critical
listening is what makes acoustics a science and an art. High levels of absorption
remove most of the room effects such as colouration, but lead to a very dead room
that some would find oppressive. It leaves the sound engineer the tricky job of
interpolating between the dead mixing room and normal listening environments such
as living rooms, but does ensure that the engineer receives a very pure sound where
detail can be easily detected.

If some liveliness is to be left in the room, a combination of absorbers and diffusers
is better than absorption and flat walls which generate specular reflections. Conse-
quently, many of the industry’s leading mastering facilities use rooms with a combin-
ation of absorbers and diffusers. To take a couple of examples, one of the industry’s
most successful mastering rooms is Gateway MasteringþDVD, Portland, ME, shown
in Figure 2.12 and one of the most successful recording studios is the Hit Factory,
New York, shown in Figure 2.13.

How far away should a listener be positioned from the diffusers? The distance from
listener to diffuser can be determined by considering the scattered and total field. First
consider the scattered field, i.e. just the reflections from the diffuser. A diffuser
requires a certain time or distance to form a wavefront. There is an analogy to
loudspeakers that can be made here. A listener would not consider sitting 30 cm from
a multi-way loudspeaker, because the listener would be in the near field of one of the
drivers. At some distance from the loudspeaker, all individual high, mid- and low
frequency waves from the individual drivers will combine to form a coherent wave-
front. The same holds true for scattering surfaces. They also can be thought of in
terms of near and far field, although the situation is a bit more complex than for
loudspeakers.

It is common to describe the scattered field by its spatial response. This is similar to
the far field polar response of a loudspeaker; however, the polar response of a diffuser
is much more difficult to measure and this has been the subject of extensive research
as reported in Chapter 4. In the far field, the polar response of an ideal diffuser is
invariant to the angle of incidence, the angle of observation and the frequency, within
its operational bandwidth. Unfortunately, in most critical listening rooms, it is usual
for sources and receivers to be in the near rather than the far field, as the far field is
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outside the room. Consequently, listeners should be positioned as far from scattering
surfaces as possible. Precedence has shown that it is best if the listener is at least three
wavelengths away from diffusers. Since diffusers used in listening room applications
have a lower frequency limit of roughly 300–500 Hz, this means a minimum distance
of 3 m is recommended. In some situations this distance may have to be compromised.

A listener positioned near a multi-way loudspeaker with their ear close to the mid-
range driver hears sonic anomalies, and the same is true when the listener gets too
close to a diffuser. Many of the phasing anomalies reported by room designers are due
to the fact that they are listening too close to the diffuser and they are hearing near
field comb filtering effects. Some listeners have even put their heads in the wells of
large low frequency diffusers, and then claim something is wrong because it sounds
odd! Furthermore, getting too close to a diffuser means that the temporal response is
overly dominated by the surface close to the ear, which means the temporal dispersion
generated by the diffuser is not heard. The direct and reflected sounds are then rather
similar and comb filtering gets worse. This naturally leads us to a consideration of the
total field.

When listening to music in a room, the total field is heard, which is a combination
of the direct sound and reflections. If the scattered sound predominates, aberrations
are heard. Just as room reflections affect the size and directionality of sonic images,
they also can introduce colouration by changing the frequency response, distorting
the spectral content or timbre of the direct sound. Studying the total field offers some
insight into why scattering surfaces may introduce colouration.

Figure 2.12 Gateway Mastering, Portland, ME showing a fractal diffusing rear wall
Diffractal1 (photo courtesy of Gateway MasteringþDVD).
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Consider a listener approximately 1 m from a scattering surface. If the reflection
comes from a flat surface, the reflected and direct sound are comparable in level and
the result is a comb filter (Figure 2.8 top). This is not very representative of the content
of the direct sound. While this looks rather bad, the comb filtering may or may not be
perceived depending on the relationship between the frequency of the nulls/peaks and
auditory critical bands. In addition, masking by other reflections affects the audibility
of the colouration. If the reflection comes from a diffuser, the scattered energy is
dispersed in time, and the frequency response consists of an irregular spacing of null
and peaks as in a diffuse sound field (Figure 2.8 bottom). The frequency response of
the total field more closely resembles the direct sound, since the diffuse reflections
have minimized the interference. Importantly, the listener no longer picks up the
regularity of the peaks and troughs that were seen for the flat surface, and so the
spectral changes introduced may be less noticeable. Figure 2.8 shows the case for a
diffuser which scatters in one plane. Diffusers which scatter hemispherically, will
direct more energy away from the listener and so will further reduce the comb filtering.

Recent research has now led to hybrid surfaces, which consist of reflective and
absorptive areas. These surfaces provide both absorption and diffuse reflection, and
may allow the listener to get even closer to the scattering surface. These surfaces are
described in Chapter 11.

Figure 2.13 Hit Factory, New York (photo courtesy of The Hit Factory, New York and
Pilchner Schoustal Associates).
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The level of the scattered sound and the resulting interference in the total field
decreases in the following order: flat surface, curved surface, 1D phase grating, 2D
phase grating, 1D amplitude grating, 2D amplitude grating, absorber. In light of these
remarks, it is important to consider the temporal, spatial and spectral response of
a sound diffusing surface. Casual or arbitrary shaping of surfaces is unwise and
designers should solicit theoretical or experimental proof of performance character-
istics for diffusers.

To conclude, the design of modern critical listening rooms is heavily dependent on
how one controls strong specular reflections between the sources and listeners. The
diffusers in RFZ spaces provided passive surround sound enhancing envelopment.
Today, with surround sound reproduction formats such as 5.1 finding acceptance, the
concepts are still valid but are employed differently. The rooms are not polarized
between live and dead zones, and tend to be more uniform, with diffusers being used
to enhance the envelopment and immersion of the surround speakers and to provide
the desired degree of ambience. Absorbers and diffusers can still control strong
specular reflections, which cause spectral and spatial distortion. One approach to
designing a surround critical listening room, suggested by D’Antonio, utilizes broad-
band absorption down to the modal frequencies in the corners (using a combination
of membrane and porous absorption). Absorbers or hybrid surfaces of 50–100 mm
deep are used on the walls between speakers and listener, to control first-order
reflections, and diffusers are used in the middle of the four walls to enhance envelop-
ment. Diffusing clouds, with broad bandwidth absorption down to the modal
frequencies placed above the listeners, provide surround reflections and additional
modal control.

2.2.2 Music practice rooms

Individual practice rooms play an essential role in music education. For all the
extensive hours students spend in them, they are usually very uninviting and unin-
spiring cubicles. They usually are small rectangular rooms, 8–25 m3, fabricated from
concrete block, with traditional compressed acoustic ceiling tile, some curtains to
allow the acoustics to be varied, concrete floors and a full length mirror, which
students use to monitor their posture and fingering. In other words, a low cost,
functional and student proof space. Since the surfaces are usually concrete and the
volume is small, the rooms typically have audible modal frequency problems. Some
designs feature non-parallel walls to minimize flutter echoes. In addition to awareness
of the unwanted buzzes and squeaks, students study articulation, tone production and
intonation, and this is hampered by poor room acoustics. Another approach used is
a prefabricated isolation cubicle. These rooms are typically small with absorptive
surface treatment making the space relatively dead. As with other small acoustically
critical rooms, these spaces can benefit from diffusers to give the musician some
reverberance while minimizing colouration.

Consider a candidate room, which was 4.5 m long, 2.1 m wide on one end, 2.4 m
wide on the other and 2.7 m high. The room had a conventional compressed acous-
tical ceiling glued to drywall, concrete floor, cinder block walls and a thin curtain to
allow the acoustics to be varied somewhat. A series of objective measurements and
subjective musician impressions before and after acoustical changes were carried out.
The study introduced three acoustical elements: (i) an acoustical concrete masonry
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block; (ii) a hemispherical ceiling diffuser, and (iii) a wall-mounted hemispherical
hybrid diffuser–absorber. The first two of these elements are shown in Figure 2.14.
The acoustical concrete masonry block [13] provided low frequency modal control
via resonant absorption, structural walls and diffuse reflections in a single plane to
promote ambience, intonation, tone production and support. In this connection the

Figure 2.14 A music practice room treated with diffusers (Skyline1 on the ceiling [14]
and DiffusorBlox1 on rear wall [13]) and absorbers (after D’Antonio and
Cox [1]).
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word ambience is used to denote a high spatial impression and envelopment. The hemi-
spherical ceiling diffuser [14] provided ambience, enhanced intonation control and a
more diffuse sound field in the room. The hemispherical hybrid diffuser provided
partial absorption, with any reflected energy being diffused. This provided the desired
amount of articulation control for critical listening. Thus, the practice room provided
detailed resolution, space or ambience, improved feedback for intonation and tone
production, support, reduced modal colouration and lessened playing fatigue.

The impulse response of the room was measured during various stages of treatment,
Figures 2.15 and 2.16. The time response shows the sound decay becoming more
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Figure 2.15 Impulse response of the music practice room shown in Figure 2.14 at early
stages of treatment (after D’Antonio and Cox [1]).
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Figure 2.16 Impulse response of the music practice room shown in Figure 2.14 at end of
treatment (after D’Antonio and Cox [1]).
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even. Low frequency modal measurements were made before and after the addition of
acoustical masonry units. The masonry units made a significant improvement in
reducing the unevenness in the frequency response produced by the modes as seen
in Figure 2.17. Figure 2.18 shows the decrease in the reverberation time in the
frequency range where the masonry units are tuned for maximum absorption.
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Figure 2.17 Frequency response of the music practice room. ————— Before bass
treatment; After bass treatment (after D’Antonio and Cox [1]).
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Figure 2.18 Change in reverberation time caused by adding absorbing/diffusing masonry
units in the music practice room. Without masonry units; With
masonry units (after D’Antonio and Cox [1]).
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The experiments verified that by utilizing limited diffsorption, hemispherical ceiling
diffusion and lateral wall diffusion, along with modal absorption, a very functional
and enjoyable practice room could be attained.

2.3 Controlling modes in reverberation chambers

Reverberation chambers are designed to produce a diffuse sound field. This is a sound field
where the reflected energy density is the same throughout the room and all directions of
propagation are equally probable. Reverberation chambers need to achieve this condition
because they are a fixed, reference, test environment providing repeatable resultswhich can
be interpreted and matched by other laboratories. Unfortunately, a completely diffuse field
is not achievable, and this is one of the reasons that round robin tests on reverberation
chamber methods usually show significant anomalies, see Chapter 3.

One of the methods used to achieve a diffuse field is surface or volume diffusers. Standing
wave modes in the reverberation chamber cause the energy density to be uneven. Placing
diffusers in thepaths ofmodal propagation creates additionalmodes,whichmake the sound
fieldmoreuniform.Surfacediffusersneed tobeof theorderofhalf awavelengthordeeper to
have a significant effect on the sound field.Thediffusersmust also be applied to at least three
of the boundaries, so that opposite surface pairs have at least one surface treated (e.g. treat
the floor or ceiling). Consequently, the size of surface diffusers needed is often prohibitively
large and expensive. A more economic solution is to hang diffusers in the volume of the
room. Surface diffusers canonly influence ahemisphere of sound, as theyonly receive sound
from 2� space. Volume diffusers, on the other hand, can influence a full sphere, and so it
is possible to get greater diffusion from this type. Figure 2.19 shows a typical application in

Figure 2.19 A small reverberation chamber (photo courtesy of RPG Diffusor Systems Inc.).
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areverberationchamber.A finaloption is touse rotatingelements,but thesewillpresumably
become less commonas test signals which require time invariance, such asmaximum length
sequences (MLS) and swept sine waves, become more popular.

There have been discussions about using diffusers to deal with modal problems in
small rooms [15, 16]. This would be an alternative solution to the absorption
treatment discussed in Section 1.3. If the walls of the rooms are hung with diffusers,
then additional sound propagation paths are creating, generating additional room
modes. These new room modes have the potential to smooth out the low frequency
room response where the number of modes is small. Unfortunately, this solution
requires very deep diffusers, and consequently, this is not a very practical solution.
A solution might be to use active diffusers as discussed in Chapter 13.

2.4 Improving speech intelligibility in underground or subway
stations

Many underground (subway) stations are non-diffuse spaces. The long and narrow
shape means that mean free paths along the length of the station are much longer than
those for transverse propagation (where the mean free path is the average time
between reflections). Consequent, the sound decays much faster for transversely
propagating sound, than for sound travelling up and down the length of the station.
This results in a double decay and two reverberations times in the space. The long
reverberation time causes problems with speech intelligibility, as the reverberance
causes words to run into each other and become difficult to distinguish. Kang [17]
showed that by applying diffusers to the side walls of the station, more transverse
propagation can be promoted to decrease the reverberance of the space and improve
speech intelligibility.

2.5 Promoting spaciousness in auditoria

One of the pioneering applications of Schroeder diffusers was by Marshall and Hyde
in the Michael Fowler Centre, New Zealand [18, 19]. Figure 2.20 illustrates the
application. Marshall and Hyde used large overhead reflectors to provide early
reflections to the audience in the balconies. This was a method whereby a hall could
have good clarity and yet maintain a large volume for reverberance. The large volume
partly comes from the space behind the diffusers.

Not many years before the design of the hall, it had been established that lateral
reflections were important in concert halls as these promote a sense of envelopment or
spatial impression in rooms [20]. Music outdoors may be popular when accompanied
with fireworks, but the quality of the sound is usually poor. Move indoors and the
sound comes alive, enveloping and involving the listener in the music-making process.
Outdoors, listeners receive sound straight from the orchestra, there are no reflections
from walls, and the sound appears distant. When music is played in a room, reflec-
tions from the walls, ceiling and floor embellish the sound, especially if there are
plenty of reflections arriving from the side. When sound reaches the listener from the
stage, the same sound signal is received at both ears, because the head is symmetrical
and the sound to both ears travels an identical path. When reflections come from the
side, the sound at each ear is different, as sound to the furthest ear has to bend around
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the head. This means the sound arrives later and is significantly altered. The brain
senses it is in a room because of the differences between the ear signals, and a feeling
of being enveloped by the music occurs.

This need for lateral reflections influenced Marshall and Hyde to apply diffusers to
the large overhead surfaces shown in Figure 2.20. The diffusers promote early arriv-
ing lateral reflections for spatial impression and clarity.

2.6 Reducing effects of early arriving reflections in large spaces

In Section 2.2 it was discussed how early arriving reflections can cause problems in
small spaces due to colouration. Problems also arise in large rooms, for example in
rooms with low ceilings. The ceiling reflection can arrive soon after the direct sound
for audience members at the rear of the room, and this can lead to colouration as comb
filtering may result. Figure 2.21 shows an application of diffusers in the Cinerama
Theatre, Seattle, WA. Mainstream cinemas tend to be very dead spaces with the room
effects added artificially through the surround sound reproduction system. The design
brief for Cinerama, by Grant of Harris-Grant Associates, was to generate an acoustic
with high envelopment and some reverberance, a first in modern commercial cinema
design, by using diffusers on the ceiling and walls. While there is an extensive use of
surface diffusion, experimental measurements showed that the cinema satisfied THX
design criteria. The curved diffusers were used to disperse reflections from the rela-
tively low ceiling to minimize comb filtering. The diffuser used on the ceiling is an
optimized curved diffuser, a design process discussed in more detail in Chapter 10.

A secondary effect of using ceiling diffusers can be to reduce the level of early arriving
non-lateral reflections from the ceiling. This can increase the spatial impression, but
whether this happens depends on the geometry of the room and the diffusers used.

Another situation where overhead reflections can cause problems is overhead stage
canopies, especially if the canopy effectively covers the whole stage area. Overhead
canopies might be used to hide the presence of a fly tower, or may simply be an

Figure 2.20 Schroeder diffusers in the Michael Fowler Centre, New Zealand (photo
courtesy of Dr Harold Marshall of Marshall Day Acoustics).

Applications and principles of diffusers 45



integral part of the stage canopy design. Figure 2.22 shows a typical case at Kresge
Auditorium, Boston, MA (Acoustician: Rein Pirn, Acentech, Boston). The canopy
provides reflections back to the stage area, which are necessary for the musicians to
hear themselves and others. Without early reflections from the stage shells, musicians
will find it difficult to create a good balance among themselves and keep in time.
Canopies with little open area provide plenty of overhead reflections back to the
musicians, but if the canopy elements are flat, there is a risk that the overhead reflec-
tions will be too strong and specular, and so cause colouration. The solution to this is to
shape the canopy, so that some breaking up of the reflected wavefronts occurs. The
diffusers spatially and temporally disperse the reflections and so reduce colouration.
The design of overhead stage canopies is discussed in more detail in Chapter 10.

2.7 Diffusers for uniform coverage with overhead stage canopies

Overhead stage canopies can have a much greater open area than that shown in
Figure 2.22. Figure 2.23 shows a typical example, where the canopy serves both the
performers and the audience at Rivercenter for the Performing Arts, Columbus,
GA (Acoustician, Jaffe, Holden Acoustics). Again the canopy is likely to be
designed to promote better communication between musicians across the
orchestral stage, leading to better ensemble among musicians and consequently

Figure 2.21 Cinerama Theatre, Seattle, WA with a diffusing ceiling (OptiCurveTM)
(photo courtesy of University of Salford).
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Figure 2.22 Overhead stage canopy at Kresge Auditorium, Boston, MA (WaveformTM)
(photo courtesy of RPG Diffusor Systems Inc.).

Figure 2.23 Rivercenter for the Performing Arts, Columbus, GA (photo Courtesy of Steve
Haas).



better quality concerts. This is achieved by ensuring an even distribution of reflected
energy from each of the musicians’ instruments on the stage to other musicians, with
the reflected energy being delayed by about 20–30 ms [21]. A canopy may also be
used to reflect sound towards audience areas lacking sound energy.

There is risk, however, that providing extra overhead reflections from the stage
canopy could lead to comb filtering and image shift. Canopies with large open areas
are usually designed so much of the sound will go through the stage canopy to the
void above, to be returned to the audience or stage from the true ceiling of the
auditoria, and so provide reverberance.

If the canopy elements are flat, then the pressure distribution will be uneven. For some
receiver positions there will be specular reflections from a canopy element, and so at mid-
high frequency a strong reflection level results. For other receiver position, the geometric
reflection point misses the canopy elements, and a low reflection level results. Figure 2.24
shows a comparative sound pressure level distribution from a canopy with open areas and
plane surfaces and a canopy with open areas and diffusing surfaces after Dalenback et al.
[22]. Consequently, canopies with spaces between the reflectors benefit from using
diffusing elements, as they enable a more uniform coverage over the stage area, by
scattering sound to receivers which would otherwise lack reflections due to the gaps
between the canopy. Chapter 10 discusses stage canopy design in more detail.

2.8 Diffusers for rear and side of stage enclosures

During musical performances there is a need for surfaces or enclosures, conventionally
called acoustical shells, that surrounds the musicians. The acoustical shell reinforces
and blends the sound that is projected toward the audience. It also heightens the
ability of the musicians to hear themselves and others. Acoustical shells typically
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Figure 2.24 Schematic of pressure distribution from fairly open canopies with different
surface treatments (adapted from Dalenback et al. [22]).
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incorporate a rear wall, flared side walls and an overhead canopy. In addition to the
orientation of the shell surfaces with respect to the performers, the nature of the
acoustical surfaces is critical to good performance. A shell can contain reflecting and
diffusing surfaces [23] and less often absorption.

Marshall et al. [24] suggested that early reflections among musicians greatly
improve their sensation of playing as a group if the reflections:

a Occur within a temporal window that is dependent on the nature of the musical
program material, typically between 17 and 35 ms after the direct sound.

b Include high frequency content roughly between 500 and 2,000 Hz, containing
the attack transients that are cues for rhythm and expression.

c Contain a balance of all the parts in the ensemble at all performance positions.

Condition (a) is easily met by spacing the shell an appropriate distance from the
performers, while (b) and (c) depend more on the surface topology. Acoustical shells
have used a wide variety of surfaces ranging from flat reflecting panels to various
forms of surface irregularity, such as curved surfaces, polycylinders and fluted col-
umns, and reflection phase gratings. The current state-of-the-art is to utilize multi-
dimensional optimization to obtain the optimal shape and orientation, a technique
discussed in Chapter 10. In Figure 2.25, the reflections from a flat and diffuse shell are
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Figure 2.25 The reflections from a flat and diffusely reflecting hall.
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compared. The diffuse reflections are spread over time and are of reduced level,
lowering the chances of colouration and harshness due to comb filtering. The diffu-
sion also satisfied the requirements (b) and (c).

D’Antonio [25] carried out a series of experiments using objective measures as well as
musician’s perceptual evaluations, to determine the appropriate combination and orien-
tation of reflecting, diffusing and absorbing surfaces to optimize performance. The study
began by looking at small groups chamber groups. An example of the test arrangement
with a string ensemble is shown in Figure 2.26. Five different microphone systems
were used for each playing environment to obtain five simultaneously recorded signals:

1 A mannequin with microphones at the entrance to the ear canal, was placed
within the group to determine ensemble blend without self masking.

2 Probe microphones, Figure 2.27, were inserted into the ear canal to determine
ensemble blend with self masking of the musician’s instrument.

3 Headband microphones, located at the entrance to the ear canal, were also used
to monitor ensemble blend with self masking.

4 An omnidirectional microphone was placed within the group as a monophonic
control.

5 Spaced omnidirectional microphones were placed at the front of the house.

The string ensemble preferred a mixed orientation shell with lower vertical wells and
upper horizontal wells, producing lateral and vertical diffusion, respectively. Some

Figure 2.26 Cavani string quartet performing in front of VAMPS1 shell [23] at the Cleveland
Institute of Music (after D’Antonio and Cox [2]).

50 Applications and principles of diffusers



musicians preferred flat surfaces on the lower surfaces for better bass coupling.
Mutual and self-hearing was unanimously improved. The general reaction was that
the diffusive shell provides warmth and intimacy and minimizes harshness. The
preferred shell distance for warmth and intimacy was approximately 0.9–1.8 m.
The preferred shell distance for projected sound quality was 2.7–3.7 m. There was
unanimous agreement that a height of 4.9 m was better than 2.4 m.

A brass quintet experienced harshness from a completely reflective shell and
preferred lower diffusers with vertical wells and upper diffusers with horizontal
wells. The preferred distance for mutual and self-hearing as well as projected sound
quality was 2.7 m. A horn duo preferred a mixture of flat surfaces and diffusers at
approximately 1.8 m.

Following the chamber group research, the requirements of a symphony orchestra
were investigated. There is an inherent imbalance in an orchestra, because the
percussion and brass are naturally louder than the strings and woodwinds. Many
traditional shells employ an average acoustic solution to satisfy a majority of the
players, using fixed acoustical elements designed for existing musical formats and
orchestral arrangements. Since each musician and musical section has a different
preference for its own local acoustical environment, and since musical formats,
orchestral arrangements, and conductor’s preferences change, the benefit of a variable
acoustical design was explored. The result was an open architecture modular frame-
work, which would allow local acoustical environments in the rear of the orchestra,
where the loudest and most problematic instruments are located. A study was done

Figure 2.27 In the ear probe microphone inserted into the ear canal of the 1st violinist.
Microphone is inserted to a point just in front of the ear drum (after
D’Antonio [22]).
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with the Baltimore Symphony Orchestra at the Meyerhoff Symphony Hall, Balti-
more, USA, using questionnaires and experimental measurements.

The shell was placed around the entire perimeter of the stage, similar to the
shell shown in Figure 2.28. The shell consisted of a lower open support that
allowed sound to reflect from the hard existing wall behind the shell. The next
0.6 m high tier consisted of horizontally diffusing single plane Schroeder diffusers
with the centre of this level at seated ear height. The next 0.6 m in height
contained all vertical diffusion, resulting from the wells being oriented horizon-
tally. A 0.6 m cantilever canopy was oriented atop the vertically diffusing dif-
fusers, at an angle of 45� with respect to the face of the diffusers. The purpose of
the experiment was to blend the outer strings into the woodwinds, decrease the
harshness of the brass, intensify the fullness and warmth of the strings and control
strong specular reflections to enhance the sense of ensemble and rhythmic perform-
ance of the musicians. Musicians reported improved ensemble playing through the
questionnaires.

2.9 Diffusers to reduce focussing effects of concave surfaces

Concave surfaces can cause focussing in a similar manner to concave mirrors. This
can lead to uneven sound levels around a room, which is usually undesirable.
Furthermore, as the concave surface concentrates energy in particular locations, there
is a risk that this reflection will be significantly above the general reverberation of the
space and so cause echo problems or colouration. A famous example of this is the
Royal Albert Hall, where the large dome caused problems with long delayed and
focussed reflections. The solution to this was to place volume scatterers, the well-
known mushrooms, to disperse sound and also to provide earlier reflections to the
audience. Assuming the concave surface cannot be removed, the only treatments

Figure 2.28 Diffusers around the stage of the Corning Glass Centre, NY (photo # Paul
Warchol Photography, www.warcholphotography.com).
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available are absorbers or diffusers. Both the treatments will work; the choice depends
on other acoustic considerations, such as reverberance.

Figure 2.29 shows the polar response near a concave wall, which was to be part of
a music rehearsal room, at the Edwina Palmer Hall, Hitchin, England. The concen-
tration of sound at the focus is clear. To overcome this problem, a diffuser was
specified by Orlowski of Arup Acoustics, UK. An optimized diffuser was developed
and applied as shown in Figure 2.30, and Figure 2.29 shows that the dispersion of
the focussed energy is quite dramatic. It would have been possible to remove the
echo with absorbers, but then the musicians would not have received reflections
from this wall. This would potentially have a detrimental effect on ensemble. In this
case, the wall reflection had to be preserved, but the focussing removed, and hence
diffusers were preferred over absorbers. Orlowski commented that ‘For architec-
tural reasons, a concave form was developed for the hall, which obviously gave rise
to concerns about focussing. Curve shape optimization was used to minimize
focussing by the concave wall using a geometrical motif based on an amplitude
modulated wave. Subjective listening tests to piano and clarinet music in the hall
indicated a very uniform sound field with no evidence of focussing. Furthermore,
both instruments produced an expansive sound with a very good balance between
clarity and reverberance. Musicians found the hall easy to play in. The success of
this project has led Arup Acoustics to consider curve optimization for providing
diffusion for other projects, including a rehearsal hall with curvature in two dimen-
sions.’ See Chapter 10 for detailed discussions of geometric diffusers and optimized
diffuser design.

2.10 Diffusion and road side barriers

Traffic noise barriers are used to reduce noise propagation from the road to neigh-
bouring houses. One problem that road side barriers suffer from is double reflections
from high sided vehicles enable some of the noise to bypass barriers, as shown in
Figure 2.31a. Another problem is reflections from barriers on one side of the road,
which then pass over barriers on the other side, as shown in Figure 2.31b. One
solution to this problem is to apply absorption. The problem with absorption is that
it tends to wear badly under the harsh conditions of high winds, salt and water, which
are common next to busy roads. Consequently, absorber performance is likely to
decrease over time unless specialized and expensive durable absorbers are used.
Diffusers may offer a solution to this problem, as shown in Figure 2.31c. By dispersing
the sound, the reflection problems are decreased. The difficulty with this solution is
that sound energy has not been removed by the diffusers, just scattered into other
directions. There is a risk that wind and other meteorological conditions could cause
the scattered noise to be blown or refracted to noise sensitive areas. Consequently,
there is a need to make this solution robust under a wide range of weather conditions.
Recent studies have indicated that trees can be used to reduce turbulence around
roadside barriers, and so natural wind breaks might enable the performance of
diffusing barriers to be more robust to changing metrology [26]. (Recently, phase
gratings have been optimized to provide absorption, utilizing a perforated metal
screen on the face acting as a resistive element. These new absorbers may offer a
durable alternative to porous absorption.)
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Figure 2.29 Scattering from a concave arc compared to an optimized curved diffuser at
3 kHz. concave arc; optimized curved diffuser.

Figure 2.30 Optimized curved surface (OptiCurveTM) in the Edwina Palmer Hall (photo
courtesy of Arup Acoustics).



2.11 Diffusion and street canyons

Street canyons are streets with high sided buildings on both sides, which form a semi-
enclosed space where sound levels can build up and noise levels can become unaccept-
able. The surface structures of the buildings forming the street canyon influence
the sound levels. For example, balcony fronts can have the unfortunate effect of
reflecting sound back down to street level and so exacerbating noise problems. On
the other hand, diffusers may have a role in breaking up the reflected sound on the
building fronts, causing it to disperse and therefore be minimized at street level. Kang
[27] used a geometric computer model to compare the influence of the building faces
on noise levels in streets. He found that diffusely reflecting surfaces reduced the sound
level from traffic by 2–4 dB provided the listener is not too close to the traffic sources.

2.12 Conclusions

In recent decades, an understanding of where and why diffusers should be used has
been created. While this knowledge is still incomplete, in many common applications
it is now well established how diffusers should be used. This chapter has detailed

Roadside barrier

Lorry
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Car

(B)

Diffusing barrier

Car
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Figure 2.31 Schematic illustrating diffusers to reduce reflection problems with noise
barriers.
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some of these applications, as well as presenting some of the key principles to be
further developed later in the book. The remaining chapters concerning diffusers are
as follows:

. Chapter 4 discusses the measurement of reflections from surfaces, and the
characterization in terms of scattering and diffusion coefficients.

. Chapter 8 deals with the methods for predicting diffuser scattering, presenting
both complex and simple methods.

. Chapters 9, 10 and 11 deal with the design of key diffuser types: Schroeder,
geometric and hybrid diffusers.

. Chapter 12 discusses the role of scattering coefficients in geometric room
acoustic models.

. Chapter 13 rounds off the diffuser chapters by looking at active diffuser technologies.
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3 Measurement of absorber
properties

This chapter covers a variety of methods used to measure and characterize acoustic
absorbers. For many practitioners, the only important measurement is to gain the
random incidence absorption coefficient in a reverberation chamber. While this may
be the absorption coefficient that is needed for performance specifications in room
design, other measurements are needed to understand and model absorptive materials.
This is particularly true, because the prediction of random incidence absorption coeffi-
cient is problematic, and consequently it is necessary to measure materials in a more
controlled environment to allow direct comparison between theory and measurements.

The more controlled environment that is often used is the impedance tube, which
allows normal incidence impedance and absorption to be determined. Less often, but
nevertheless valuable, are the free field measurements on large area samples done in
hemi-anechoic spaces. The most common free field method uses a two-microphone
approach, but this is often only applicable to isotropic, homogeneous samples.
Consequently, attention has recently turned to using more than two microphones;
however, the measurements appear to be problematic and very noise sensitive.

The next subject for this chapter is in situ measurements for obtaining acoustic
absorption and impedance. There has been recent interest in these techniques to allow
the true absorption properties of materials after construction and in their final in use
condition to be determined.

There is also a need to be able to characterize the propagation within the absorbent
material, to enable theoretical modelling of the absorption properties. For instance,
the well-known Delaney and Bazley empirical model outlined in Chapter 5 requires
the flow resistivity and porosity of the absorptive material to be known. For this
reason, methods to measure key parameters that characterize the propagation within
the absorbent are outlined.

The intention of the chapter is to provide information on the different measurement
techniques. It is not intended that each description is a comprehensive standard with a
foolproof description of how to carry out the measurements. What is intended is that
the reader should be able to make an informed decision about the different techniques
described, understand the advantages and disadvantages, and supplement the descrip-
tions given here with that available in the referenced literature.

3.1 Impedance tube or standing wave tube measurement

The standing wave tube enables both the normal incidence absorption coefficient and
surface impedance to be measured. This is a very useful test method as it enables the



absorption coefficient and impedance to be measured under well-defined and con-
trolled conditions. Consequently, it is frequently used in validating prediction models
for absorptive materials. This method has the advantage of only needing small
samples (a few centimetres in diameter); this makes it ideal for developers of absorp-
tive materials, as the alternative is construction of large samples for reverberation
chamber tests, which are more difficult and expensive. The final key advantage is that
the impedance tube method can be carried out with relatively simple apparatus in a
normal room and does not need specialist test chambers. Problems with the method
arise when the absorption from the small sample is not representative of the behav-
iour of a large sample, as would happen with many resonant absorbers. For this
reason, the method is most used with local reacting porous absorbers.

Figure 3.1 shows some typical set-ups, and the concept is as follows. A loudspeaker
generates plane wave propagation in the impedance tube, the plane wave propagates
down the tube before reflecting from the sample. A standing wave is set up within the
tube. The impedance of the sample alters the reflected wave, and by measuring the
resulting standing wave, it is possible to calculate the normal incidence absorption
coefficient and surface impedance of the sample. This is such a common technique in
acoustics, that it has been enshrined in international standards [1, 2].

The necessity for plane wave propagation imposes many limitations on the system
which are discussed as follows.

1 The losses into and through the tube should be minimized so that the plane waves
propagate without significant attenuation. Consequently, thick metal is a common
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Figure 3.1 Set-ups for impedance tube measurement. Top, probe tube for standing wave
method, bottom, two-microphone technique.
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construction material for the mid- to high frequency ranges of most concern in
building design. For impedance tubes that are to work at bass frequencies, more
extreme construction is needed to prevent significant losses from the tube. For
example, steel-lined concrete tubes can work down to the limit of human hearing
(20Hz). Whatever the size, to minimize losses the tube should be smooth on the
inside and clean.

2 The tube should have constant cross-section over the measurement region where
the sample and microphone positions are located. The actual shape is not that
important; square and circular tubes are most popular. Although circular tubes
seem to be less prone to cross-mode problems within porous absorbents, square
tubes are useful, as in some cases square samples are easier to construct.

3 The loudspeaker should be a few tube diameters (or widths) from the first microphone
position so that any cross modes generated by the loudspeaker have decayed away.

4 The microphone positions should not be too close to the sample so that any
evanescent waves generated on reflection have had time to die away. For a
homogeneous, isotropic sample that means the first measurement microphone
should be at least half a tube diameter (or width) away. For samples that are
structured and anisotropic, no microphones closer than two diameters away from
the sample surface should be used.

5 The highest frequency, fu, that can be measured in a tube is then determined by:

fu ¼ c

2d
ð3:1Þ

where d is the tube diameter or maximum width and c the speed of sound. This is
a statement that there should not be any cross modes in the tube; the first mode
appears when half a wavelength fits across the tube. The limitation imposed by
Equation 3.1 means that to cover a wide frequency range, several different
impedance tubes with different diameters or widths are required.

It is possible to measure at higher frequencies if multiple microphones are used
across the width of the tube. The sound field within the tube can be considered to
be a sum of the plane wave and higher modes, in a similar way to a room sound
field that can be decomposed into modes. In a circular tube and an isotropic
sample, one additional microphone enables the impedance of the sample for the
plane wave and first cross mode to be determined (circular symmetry can be
exploited to reduce the number of additional microphone measurements in this
case). The disadvantage of the multi-microphone method, is that for frequencies
where the first cross mode dominates the sample is not receiving plane waves, so
the absorption coefficient measured may be hard to relate to prediction models.

An experimental detail that is most critical is the requirement for the sample to
be cut and mounted correctly. It is vital that the sample fits snugly into the tube.
Any gaps around the edge must be filled and sealed, otherwise the gaps will allow
absorption by the edge of the sample and the measured absorption will be too
high. Worse still, if the small gaps open up to an air cavity behind, a Helmholtz
device could be formed, and the absorption overestimated by a large margin. The
normal way of providing proper sealing is to use petroleum jelly (Vaseline1),
Plasticene1 or mastic to fill the edges of the sample. It is also important,
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however, not to wedge porous absorbers into the tube – this changes the
mechanics of the absorber frame and so can lead to incorrect absorption being
measured due to the mass spring action of the absorber frame. It is also import-
ant that the rear of the absorber is properly terminated. Air gaps between the
absorber and the backing plate will lead to excess absorption being measured,
unless of course it is planned to mount the absorber with an air gap, in which
case the measurement would be correct.

The impedance tube is not often useable for extended reaction absorbers, unless the
impedance tube happens to coincidentally be the same size as the extended reaction
device. For instance, the performance of a membrane absorber is usually dependent
on the mounting of the membrane. It is not possible just to mount a smaller mem-
brane absorber in an impedance tube, and expect the same performance as the larger
device.

3.1.1 Standing wave method

The advantage of the standing wave method is that it is very dependable, and
relatively idiot proof. Unfortunately, it only measures one frequency at a time, so
only spot frequency information is available. The procedure for locating minima in
the standing wave, which is needed to get phase information, is rather slow, and so
measuring a large number of frequencies is tedious. It is, however, more robust and
reliable than the transfer function method discussed in Section 3.1.2 and is a useful
second check on results from that method.

If plane waves are assumed to propagate in the tube, then the theories outlined in
Chapter 1 for the reflection of sound from a plane infinite absorbent can be used. The
steady state pressure in the tube is given by:

p ¼ A ejkz þ Re�jkz
h i

ð3:2Þ

where R is the reflection factor, k is the wavenumber, the sample is assumed to be at
z¼ 0, and A is a complex constant.

The first term represents the incident wave and the second the reflected wave.
There are two methods for sampling the pressure within the tube, the first is the

standing wave ratio method, and the second is the transfer function method. For the
standing wave method, the minimum and maximum pressures are measured.
The maximum pressure pmax occurs when the first and second terms in Equation
3.2 are in phase, and the minimum pressure pmin occurs when they are out of phase. In
terms of equations:

pmax ¼ 1þ jRj
pmin ¼ 1� jRj ð3:3Þ

The standing wave ratio s is defined as the ratio of pmax to pmin and is given by:

s ¼ pmax

pmin
¼ 1þ jRj

1� jRj ð3:4Þ
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Equation 3.4 can then be rearranged to allow the magnitude of the reflection factor to
be obtained:

jRj ¼ s� 1

sþ 1
ð3:5Þ

From the reflection factor it is possible to get the absorption coefficient as
� ¼ 1� jRj2 – see Section 1.4.2.

To find the pressure maximum and minimum, it is necessary to have a probe
microphone mounted on a moving trolley. The advantage of this formulation is that
no pressure calibration is needed provided the equipment remains time invariant, as
any factors relating the acoustic pressure to the voltage monitored by the measure-
ment equipment, such as the effects of the probe tube, cancel out.

By noting the distance of the first minimum from the sample, zmin, and considering
the necessity for the incident and reflected phase to be different by exactly � at this
position, it is possible to also calculate the impedance of the sample at the test
frequency. The phase angle of the reflection factor is given by:

ffR ¼ 2kzmin � � ð3:6Þ

Using Equation 1.23, it is then possible to obtain the normal incidence surface
impedance.

Moving back from the sample, the first minimum met should be measured, and
then the next maximum. This minimizes the effect of tube losses. It is possible to add
loss factors into Equation 3.2 if the tube absorption is significant, and equations are
given in the standard [1] to do this. It is far better, however, to make sure the losses
are negligible in the first place. For samples with low absorption, this measurement
becomes rather inaccurate as the measured standing wave ratio has a large error
associated with it, as the pressure minimum becomes too small to be accurately
measured.

3.1.2 Transfer function method

Equation 3.2 has two unknowns, the magnitude and phase of the reflection factor. By
measuring the pressure at two points in the tube, it is possible to set up and solve
simultaneous equations for the reflection factor and from there get the impedance and
absorption coefficient. This is the principle of the transfer function, often called the
two-microphone method. (Although, as this is often used with one microphone which
is moved, calling this a two-microphone method is nowadays rather misleading.)

The primary advantage of using this method is that it obtains the absorption and
impedance of the surface for all frequencies (within limits) with only a couple of quick
measurements. It is therefore much more efficient than the standing wave tube
method.

The transfer function between two microphone positions in the tube is measured as
shown in Figure 3.1. Remembering that the transfer function is simply the ratio of
pressures, and applying Equation 3.2, the transfer function between microphone
positions 1 and 2 is given by:

62 Measurement of absorber properties



H ¼ ejkz2 þ Re�jkz2

ejkz1 þ Re�jkz1
ð3:7Þ

where z1 and z2 are the positions of the microphones shown in Figure 3.1. Rearrange-
ment then directly leads to the complex pressure reflection factor:

R ¼ Hejkz1 � ejkz2

e�jkz2 �He�jkz1
ð3:8Þ

Using the equations set out in Section 1.4.2, the absorption coefficient and surface
impedance are then obtained.

There are restrictions on the microphone spacing. If the microphones are too close
together, the transfer function measured will be inaccurate because the change in
pressure will be too small to be accurately measured. This leads to a lower frequency
limit, fl, for a given microphone spacing jz1 � z2j:

fl >
c

20jz1 � z2j ð3:9Þ

If the microphone spacing becomes too wide problems arise. As the spacing
approaches a wavelength, the simultaneous equations become impossible to resolve
as the pressure measured at both microphones is identical. This leads to an upper
frequency limit fu due to microphone spacing given by:

fu <
0:45c

jz1 � z2j ð3:10Þ

Consequently, there are two upper frequency limits given by Equations 3.1 and 3.10,
and the lowest figure should be taken.

The lower and upper frequency limits mean that to cover a reasonable number of
octaves it is often necessary to use more than two microphone positions in a tube;
three positions are typically used. Three positions give three possible microphone
spacings, and by appropriately setting the frequency ranges for each of the spacings, it
is possible to cover a wider frequency range.

There are a choice of methods for measuring the transfer function in Equation 3.7.
A dual channel FFT analyser can be used with a matched pair of microphones using a
white noise source. In that case it is necessary to compensate for differences in the
microphone responses by measuring once, then interchanging the microphones and
measuring again. A more efficient method is to use a deterministic signal such as a
maximum length sequence [3] or swept sine wave [4]. This means one microphone
can be used to measure the transfer function to each microphone position, and ratios
of these transfer functions taken to obtain Equation 3.7. This negates the need for
matched microphones. Using a deterministic signal rather than white noise also
removes the need for time-consuming averaging.

It is important that any unused holes are blocked, and that microphones are
mounted flush to the tube sides. Better results appear to be obtained for fixed
microphones than for a probe microphone. The likely reason is that microphone
positioning accuracy is crucial, and this is harder to obtain with a probe. This
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problem can be overcome by measuring many different microphone positions along
the impedance tube with the probe and averaging the different results, but this is
rather slow.

3.2 Two microphone free field measurement

The disadvantage of the impedance tube is that it does not readily allow oblique
incidence measurement. A method is therefore needed for oblique incident sound to
allow the angle dependence of absorption to be found. The two-microphone free-field
method allows this to be done. By its very nature, the test method needs a large
sample, which can be difficult to produce. It also needs an anechoic or hemi-anechoic
space for the measurement. This method, like the impedance tube, is of most use to
porous absorber designers or modellers.

The method can be thought of as an extension of the transfer function, impedance
tube method. Readers unfamiliar with the impedance tube method should read
Section 3.1 before proceeding here. The technique is most straightforward for homo-
geneous, isotropic materials. Consider a large sample of absorbent being irradiated by
a loudspeaker a long way from the surface as shown in Figure 3.2. The measurement
can be done in an anechoic or hemi-anechoic chamber. It can even be done in a large
room providing that time windowing is used to remove unwanted reflections from
other boundaries. It is assumed that plane waves are incident on the surface. Further-
more, for large isotropic, homogeneous samples, it can be assumed that the reflected
wave is also a plane wave. In which case the equations set out in Section 3.1.2 for the
transfer function measurement in the impedance tube can be applied directly to the
free-field case.

Some practical details need careful consideration. Although in theory the sample
should be infinite, in reality the sample will be finite in extent and so edge diffraction
becomes important. The diffraction from the edges at low frequencies causes the
reflected wave to no longer be planar, and so the simple theories no longer apply. A
rough lower frequency limit is when half a wavelength fits across the smallest sample
dimension. Consequently, samples are typically several square metres in area. When
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Figure 3.2 Experimental set-up for two or multi-microphone free-field measurement.
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large samples are not available, one solution is to bring the source close to the surface,
say 20 cm away, so the edge waves become less significant [5]. In which case, it is
necessary to use spherical wave equations rather than the plane wave equations given
above. The drawback of using spherical wave formulations is that the interpretation
of the measured impedance becomes less straightforward.

Returning to the plane wave case, the first microphone is typically 5mm from the
surface, and the second 15 mm from the surface; the lower and upper frequency limits
discussed for the impedance tube related to microphone spacing are still relevant. The
microphones must be small enough that they do not cause significant disturbance to
the acoustic sound field. While it is possible to use two microphones, one microphone
that is moved may be preferred as it disturbs the sound field less significantly than a
microphone pair. It also removes the need for calibration. A deterministic test signal
such as a maximum length sequence or swept sine must be used in this case.

The method can be extended to deal with oblique incidence in which case the
equations should be re-derived. For an incident angle of  , the transfer function
between the two microphones positions is given by:

H ¼ ejkz2 cosð Þ þ Re�jkz2 cosð Þ

ejkz1 cosð Þ þ Re�jkz1 cosð Þ ð3:11Þ

where it has been assumed that the two microphone positions have the same x and y
displacement in the coordinate system defined in Figure 3.2. A rearrangement of
Equation 3.11 leads directly to the reflection factor:

R ¼ Hejkz1 cosð Þ � ejkz2 cosð Þ

e�jkz2 cosð Þ �He�jkz1 cosð Þ ð3:12Þ

The impedance can then be calculated using Equation 1.23 and from Equation 1.25
the absorption coefficient at that particular angle of incidence can be found.

Problems arise for large angles of incidence. As the angle of incidence increases, the
effects of edge diffraction become more significant at higher frequencies. Conse-
quently, very large angles of incidence are difficult to measure due to the effects of
edge scattering unless very large sample sizes are available.

3.3 Multi-microphone techniques for non-isotropic, non-planar
surfaces

For non-isotropic or non-planar surfaces, it is still possible to carry out a free-field
measurement using a method similar to that detailed in Section 3.2, although
the system becomes more elaborate and rather sensitive to measurement error.
The formulations for the two-microphone free-field method have assumed that the
dominant reflected wave is a plane wave, which is true for isotropic, homogeneous,
infinitely large planar scatterers. As soon as the surface becomes rough, or there are
impedance variations, then there is potential for non-plane wave propagation. For
example, if a periodic impedance variation is considered, a set of grating or diffraction
lobes in non-specular directions are generated. (See for example Figure 9.3, where the
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Schroeder diffuser generates 11 lobes.) To measure the absorption in the periodic
case, it is necessary to measure the magnitude and phase of each of these reflected
waves. This requires the measurement using more than two microphone positions
because there are additional unknowns – the magnitude and phase of each of the
grating lobe waves – to be resolved. To measure the 11 propagating waves seen in
Figure 9.3, 12 microphone positions would be needed. In reality, it is unlikely that this
case could be measured, as the number of microphones increase, multi-microphone
systems become prone to measurement of noise and errors [6, 7].

The next section details a multi-microphone method for surfaces with periodic
impedance variation [6] to give an idea of how such a multi-microphone system
might work. Although it is difficult to implement and get accurate measurements, it
does enable incident angle dependent absorption to be measured.

3.3.1 Multi-microphone free field measurement for periodic surfaces

There will be multiple reflected waves, not just the plane waves considered in the two-
microphone method. By using more than two microphone positions, it is possible to
measure the amplitude and phase of these reflected waves. The pressure in front of the
absorber p(x, z), shown in Figure 3.2, is decomposed into the incident plane wave
pi(x, z) and scattered (reflected) pressure ps(x, z):

pðx; zÞ ¼ piðx; zÞ þ psðx; zÞ
piðx; zÞ ¼ Pie

jð�xkxþzkzÞ ð3:13Þ

psðx; zÞ ¼
X1
n¼�1

Ane
jð�x�n�z�nÞ

where kx¼ ksin( ), kz ¼ kcos( ),�n ¼ kxþn2�/W, �n ¼�jk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sin( )þn	/W)2�1

q
,

An are complex coefficients describing each of the reflected waves, Pi a constant,
 the incident angle, k the wavenumber in air, 	 the wavelength in air, and W the
width of one period.

The surface is periodic and (assumed) infinite so that a Fourier representation of the
reflected sound field is used. Readers are referred to Chapter 7 for more details of the
theory.

The scattered pressure is an infinite sum of waves, with complex coefficients An.
Not all of these waves will propagate into the far field. The waves which are confined
to the near field, the evanescent waves, need not be modelled, which means the sum
over n is finite. The upper and lower limits for the sum in Equation 3.13 are
determined by:

sinð Þ þ n 	
W

� �2

� 1 ð3:14Þ

Let the lower limit be denoted n1 and the upper limit n2 (they must be integers). The
number of coefficients to be determined must be small for this measurement to
work.
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The absorption coefficient is found by taking one minus the ratio of the reflected to
incident energy, which gives:

�ð Þ ¼ 1� A0

Pi

����
����
2

� 1

cosð Þ
Xn2

n¼ n1; 6¼0

An
Pi

����
����
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðsinð Þ þ n	=WÞ2
q

ð3:15Þ

When only the n¼ 0 term exists, then a two-microphone approach can be used as the
only radiating wave is the plane wave term. When more than one term is present,
jn1j _ jn2j > 0, more microphones are needed. In this case N ¼ (jn1j þ jn2j þ 2)
points need to be measured since the transfer functions between two measured
positions will be used.

At mth measurement point (xm, zm), where m runs from 1 to N, the sound pressure
can be calculated as:

pmðxm; zmÞ ¼ Pie
jð�xmkxþzmkzÞ þ

Xn2

n¼n1

Ane
jð�xm�n�zm�nÞ ð3:16Þ

In the data processing, it is convenient to use the transfer functions between
adjacent measurement positions Hm,mþ1 ¼ pm/pmþ1. Using Equation 3.16, this is
given by:

Hm; mþ1
pm
pmþ1

¼
Pie

jð�xmkxþzmkzÞ þ Pn2

n¼n1

Ane
jð�xm�n�zm�nÞ

Piejð�xmþ1kxþzmþ1kzÞ þ Pn2

n¼n1

Anejð�xmþ1�n�zmþ1�nÞ
ð3:17Þ

This means aN� 1 set of simultaneous equations can be obtained in terms of (An/Pi):

Xn2

n¼ n1

An
Pi

� �
ðejð�xm�n�zm�nÞ �Hm; mþ1e

jð�xmþ1�n�zmþ1�nÞÞ ¼ Hm; mþ1e
jð�xmþ1kxþzmþ1kzÞ

� ejð�xmkxþzmkzÞ ð3:18Þ

Once the simultaneous equations have been formed, these can be solved to give An/Pi,
which can be substituted into Equation 3.16, and gives the absorption coefficient after
a little manipulation.

The choice of measurement positions is critical. If the microphone is only allowed
to traverse the z-direction, then critical frequencies occur where there are insufficient
unique simultaneous equations to resolve the coefficients. These critical frequencies
manifest themselves as frequencies for which non-sensical absorption coefficients are
obtained. These critical frequencies can be avoided by changing the microphone
position in z and x. The typical spacings used give microphones 5–10 cm apart.

The multi-microphone method is very sensitive to evanescent (non-propagating)
waves. The microphone must be far enough from sample not to measure evanescent
waves as these have been neglected in the above theories, but if the microphone is
too far from the surface, diffraction from the sample edges will cause the measured
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pressures to be inaccurate. The multi-microphone method is much more noise sensi-
tive than the two-microphone method. Very accurate microphone positioning is
needed. Others looking at multiple microphone techniques have found similar noise
sensitivity [7].

Figure 3.3 shows an example measurement result for an incident angle of 30�. It is
compared to two prediction models. Good accuracy is achieved with the multi-
microphone measurement system in this case. At low frequencies only two micro-
phone positions are used as there is only one plane wave reflection, at mid-high frequencies
three microphone positions are needed as an additional reflected wave is present.

3.4 Reverberation chamber method

In most applications, the sound will be incident on an absorptive material from a
multitude of incident angles at once. It is not efficient to laboriously measure the
absorption coefficients for all angles of incidence in the free field and reconstruct these
into a random incidence absorption coefficient (although this can be done as discussed
in Chapter 12). Consequently a quicker method is needed, and this is afforded by the
reverberation chamber method [8]. The random incidence absorption coefficient is the
parameter used most in the design of spaces to specify the absorption performance of
materials. It is well known and defined; however, it is notoriously difficult to predict.
So while the random incidence absorption coefficient is needed to enable room design,
it is not very useful for those interested in validating prediction models.

The reverberation chamber test requires large sample sizes and a specialist test
room, and so is expensive to undertake. It also only gives absorption coefficients; the
impedance cannot be measured. Consequently, developers of absorptive material will
often use the impedance tube to build up an understanding of the material properties
on small samples, before undertaking reverberation tests.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

f (Hz)

ab
so

rp
tio

n 
co

ef
f.

Figure 3.3 Measurement and prediction of absorption for a periodic profiled absorber.
Multi-microphone measurement; Infinite sample

prediction; &:::::::::::::::::: Boundary element method (BEM) prediction (adapted
from Wu et al. [6]).
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The reverberation time of a room is dependent on the total absorption in the room –
see Equation 1.1. Consequently, by measuring the reverberation time of a room
before and after a sample of absorbent is introduced, it is possible to calculate the
random incidence absorption coefficient. It is necessary to have defined acoustic
conditions for the test, and the normal technique is to try and generate a diffuse field.
A diffuse field can be roughly defined as requiring the reflected sound energy to be the
same across the whole room and the energy to be propagating evenly in all directions.
To achieve this, reverberation chambers often use diffusers in the volume of the room,
and the chamber walls are often skewed (splayed). Furthermore, the room should be
of a certain minimum size, and room dimensions should be irrationally related to
reduce the influence of room modes. The minimum requirements are given in the
appropriate standard [8].

Despite these measures, a diffuse field is not completely achieved, and consequently
the reverberation time is position dependent. For this reason, it is normal to use
multiple source and receiver positions and to average the results to reduce the effect
of non-diffuseness. The source is normally placed in the corner of a room, pointing
into the corner, because it maximally excites the modes of the room and reduces the
amount of direct radiation from the loudspeaker to the absorbent sample. Receivers
should be at least 1 m from the room boundaries, room diffusers and the sample, and
should be chosen to obtain a diverse sampling of the room volume. Even with all these
measures, the measured absorption coefficients are often more inaccurate at low than
high frequencies due to modal effects.

The reverberation time before the sample is introduced is given by:

T0 ¼ 55:3V

c�0S
ð3:19Þ

where V is the room volume, c the speed of sound, �0 the average absorption
coefficient of the empty room and S the surface area of the room.

The reverberation time after the sample is introduced is given by:

T1 ¼ 55:3V

cð�0½S� Ss� þ �sSsÞ ð3:20Þ

where Ss is the surface area and �s the absorption coefficient of the sample. By
rearranging Equations 3.19 and 3.20 it is possible to obtain the absorption coefficient
of the sample. If ISO 354:1985 is followed, the factor [S� Ss] is approximated to S,
which simplifies the end formulation.

The current international standards are based on Sabine’s formulations as used
above. It is well known that this formula becomes inaccurate for large absorption
coefficients, in which case other formulations like the ones derived by Eyring and
Millington can be used; these were given in Equations 1.6 and 1.7. Indeed, Chapter 12
discusses how some geometric room acoustic modellers are advocating the use of
alternative reverberation time formulations to give better room predictions. While it
can be argued that using alternative reverberation time formulations produces more
correct answers, the databases of absorption coefficients available to designers have
been derived from Sabine’s formulation. Consequently, while it is known that
Sabine’s equation produces systematic (or bias) errors, it continues to be industry
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practice to use this formulation. Appendix A gives a table of typical measured
absorption coefficients for common materials.

The reverberation times can be measured by interrupted noise, MLS or swept sine
waves. MLS allow rapid measurement, but problems in getting sufficiently long
decays can arise due to non-linearities in loudspeakers [9].

To get an accurate measurement, it is necessary to have a wide difference between
T0 and T1. This necessitates a large sample of 10–12m2 to be used. Even with such a
large sample, the accuracy is compromised due to edge effects. Sound is diffracted
around the edges of the sample, which usually leads to excess absorption. It is a
normal practice to cover the edges of the sample and to use rectangular samples to
reduce edge effects. Nevertheless, even with the edges covered, absorption coefficients
greater than one can be measured. Chapter 12 discusses how these edge effects might
be compensated for in real room predictions.

In newer revisions of the standard, Equations 3.17 and 3.18 will be corrected to
allow for changing air absorption. If the air temperature and humidity change
between the empty and with sample measurement, this can produce a bias error. By
adding formulations for air absorption on the denominator of the equations, it is
possible to reduce the error introduced. The revised formula to do this can be deduced
from Equation 1.3.

It is also possible to measure discrete objects, for example persons. They are
arranged randomly around the room and a total absorption per object calculated
from the reverberation times.

Given the standard deviations of the reverberation times T0 and T1, it is possible to
calculate the random experimental error. The standard deviations are calculated from
the set of reverberation times for all source and receiver combinations. If the standard
deviation of the reverberation time measure T0 is �0, then the 95 per cent confidence
limit is given by:

�0 ¼ 2�0ffiffiffi
n
p ð3:21Þ

where n is the number of source and receiver pairs. (It is assumed that n is sufficiently
large that two standard errors is equivalent to the 95 per cent confidence limit.) A
similar relationship exists for T1. The accuracy (95 per cent confidence limit) of the
empty room average absorption coefficient is given by:

��0
¼ 55:3V

cT2
0S0

����
�����0 ð3:22Þ

and the accuracy of sample absorption is given by:

��s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55:3V

cT2
1Ss

����
����
2

�2
1 þ

c½S0 � Ss�ð��0Þ2
Ss

 !2
vuut ð3:23Þ

While good repeatability within a laboratory can be achieved, there are reprodu-
cibility problems between laboratories. The measured absorption coefficients can
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vary greatly from laboratory to laboratory. Figure 3.4 shows the average absorption
coefficient for an identical fibreglass sample measured in 24 reverberation chambers.
The error bars indicate the 95 per cent confidence limits in one of the laboratory
measurements. To explain this figure further, when the sample was sent to one
laboratory, 95 per cent of the time the absorption coefficient was found to be within
�̄0.2 of the mean value at 1 kHz. This indicates that the absorption coefficients could
vary by as much as 0.4 between two different laboratories, a huge error in the
absorption coefficient.

3.4.1 Measurement of seating absorption

The reverberation time in a concert hall is dominated by the absorption of the seating
and audience, it is essential that these can be measured or predicted accurately in the
early stages of design. The wrong estimation of seating absorption has been blamed
for acoustic problems in many halls, and consequently a measurement procedure is
given here. Davies, Orlowski and Lam [10] compared seating absorption coefficients
in a reverberation chamber and in concert halls for ten different cases, and showed
that the Kath and Kuhl method [11] is an accurate method for estimating seating
absorption in a real hall. Beranek [12] showed that it is best to calculate seating
absorption coefficients based on absorption per unit floor area rather than by absorp-
tion per seat.

The aim of measuring the random incidence absorption coefficients of a small
sample of seats in a reverberation chamber is to predict the total absorption that a
larger area of the same seats will exhibit when installed in an auditorium. There are
problems, however, in that the small sample of chairs in the reverberation chamber
(say 24), is unrepresentative of a large block of seating, because the edge effect is
overemphasized in the reverberation chamber measurements.
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Figure 3.4 Comparison of measured absorption coefficients for a single sample in 24
laboratories. The mean absorption coefficient across all laboratories is shown,
along with error bars indicating the 95 per cent confidence limit in any one
laboratory measurement.
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The Kath and Kuhl method involves placing the seating in the corner of the
reverberation chamber in rows with their intended row spacing. The exposed edges
are obscured with barriers for some of the measurements. The barriers need to be
massive and stiff to reduce low frequency absorption. The barriers should be at least
as high as the seating, and higher if any audience is present for an occupied measure-
ment. Excessive extra height (say, more than 100 mm above the top of the seating
for the unoccupied case) should be avoided. The set-up is schematically shown in
Figure 3.5. Though it seems that the array is mirrored in the adjacent walls of the
chamber, thus effectively increasing its size, it is not effectively infinite as Kath and
Kuhl thought. Diffraction effects will still be present and so the measured absorption
coefficient may still vary with sample size.

The concept is to separately measure three absorption coefficients by carrying out
measurements with and without barriers:

. for an infinite array with no edges, yields an absorption coefficient �1, with side
and front barriers in place;

. for the front edges, �f, by measuring with the side barrier only in place and
combining the result for �1; and

. for the side edges, �s, by measuring with the front barrier only in place, and
combining with the result for �1.

Then in the hall, if the areas of the front edges Sf, side edges Ss and plan area Sp are
known, the absorption coefficient of the audience block is given by:

� ¼ �1 þ �f
Sf

Sp
þ �s

Ss

Sp
ð3:24Þ

In the reverberation chamber the absorption coefficients �1, �f, and �s are deter-
mined by the following formulations. First with both the front and side barriers in
place the infinite array absorption coefficient is obtained:

w
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h
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S
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wall

wall

front
barrier

side
barrier

seating in here

Figure 3.5 Set-up for Kath and Kuhl seating absorption measurement.
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�1 ¼ A1

ðl þ 	=8Þðwþ 	=8Þ ð3:25Þ

where A1 is the total absorption of the sample with both barriers in place, and the 	/8
terms correct for pressure doubling at the chamber walls, where 	 is the wavelength of the
centre frequency in the octave band, as discussed later, l amdw are defined in Figure 3.5.

With an additional measurement of the total absorption A2 with the front barrier
missing, the absorption of the front edge is determined.

�f ¼
A2 � A1

hðwþ 	=8Þ ð3:26Þ

where h is the barrier height.
Finally, with an additional measurement of the total absorption with the side

barrier missing A3, the absorption of the side edge is determined.

�s ¼ A3 � A1

hðl þ 	=8Þ ð3:27Þ

The corner placing of the seats is advantageous because it increases the effective size of the
array. However, there is a disadvantage: the pressure in a reverberant field is increased at
the boundaries [13] so the absorption coefficients measured will be higher than those
found when the sample is in the centre of the chamber. To compensate for this, Kath and
Kuhl proposed [14] that the absorber areas used in the calculations should be increased
by strips of width 	/8. This extra absorbing area accounts for the increase in measured
total absorption due to the increase of up to 3dB in sound pressure level close to the wall.
In a corner, there is an increase of up to 6dB, and a correction of (	/8)2 is needed. This is
the reason for the extra terms in the denominators of Equations 3.25–3.27.

Figure 3.6 shows a comparison of the measured absorption coefficient in an
auditorium and a prediction from the reverberation chamber results from Davies
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Figure 3.6 Absorption coefficient measured in an auditorium compared to a prediction
based on a Kath and Kuhl reverberation chamber method. Pre-
diction for full auditorium seating based on reverberation chamber measurement;

Full auditorium measurement (data from Davies et al. [10]).
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et al. [10]. Good prediction accuracy is achieved for this case. Discrepancies found by
Davies et al. [10] for other halls were likely to be due to the non-diffuseness of the
auditoria and indefinable changes in the hall between the without and with seating
measurements.

Bradley [15] also suggested a seating absorption measurement method which
attempts to take account of the variation of seating absorption with sample size. This
involves making measurements on five or six differently sized arrays of seats and then
extrapolating to the expected absorption for large seating blocks in auditoria.
Although this is accurate, it requires more tests than the Kath and Kuhl method,
and so the Kath and Kuhl method is more efficient.

3.5 In situ measurement of absorptive properties

There is great interest in being able to measure the absorption coefficient and surface
impedance of products in situ. To take one example, in geometric room acoustic
models the absorption coefficients of surfaces are required, but how can these be
determined if the room is already built? It is for this sort of problem that in situ
techniques have been developed. Indeed, in situ techniques for absorption measurement
can be traced back as far as 1934 [16]. For those interested in the historical context
of in situ measurement, the paper by Nocke and Mellert [16] gives a comprehensive
reference list of the important literature.

One possible technique is to use the two-microphone free-field method outlined in
Section 3.2. If the surface to be tested is large, homogeneous, isotropic and planar,
and the unwanted reflections from other surfaces can be removed by time gating
(windowing), then this process has been shown to work [17]. This process will fail if
the unwanted reflections cannot be removed, or non-plane wave reflections are
significant, which might arise if the surface is too small, or if the surface to be tested
is inhomogeneous. This technique is accurate, provided the sample restrictions are
followed and the unwanted reflections can be removed.

Other techniques try to separate the incident and reflected sound from a surface by
arrival times. This is schematically shown in Figure 3.7. An impulse response is
measured and the reflected and incident sound isolated by applying rectangular time
windows. From this the reflection coefficient is calculated. To achieve this, however,
requires considerable distance between the microphone and the surface, which means
that problems often arise because of edge reflections from the test surface and
unwanted reflections from other surfaces. Very large surfaces are needed, otherwise
there is poor accuracy at low frequencies. Consequently, while this technique is
potentially accurate, its range of applicability is limited.

A more promising technique was developed by Mommertz [18, 19], as this exploits
a subtraction technique which enables the microphone to be placed close to the test
surface. This allows measurement from 250 Hz to 8 kHz for normal incidence on
plane surfaces greater than 4 m2. The low frequency accuracy is compromised for
oblique incidence or smaller samples. The test arrangement is that shown in
Figure 3.7. The sound source is connected to the microphone by an anchored tube
to ensure that the distance between the source and microphone remains constant. This
distance precision is vital if the measurement method is to be accurate. The impulse
response between the source and microphone is measured with the microphone close
to the test surface, and separately in the free field. These two impulses can be
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subtracted, which leaves the reflected sound and unwanted interfering reflections.
These parasitic reflections can be removed by time windowing. To allow the subtrac-
tion, a deterministic test signal such as MLS or swept sine must be used.

Placing the microphone very close to the surface ensures that the interfering
reflections are maximally spaced from the wanted reflections, consequently allowing
more accurate measurements. By de-convolving the loudspeaker’s free-field impulse
response from the in situ measured impulse response, the length of the direct and
reflected sound in the impulse responses can be shortened. This can help make the
gating process more accurate. Mommertz advocates doing this de-convolution by pre-
emphasizing the test signal – the inverse of the loudspeaker impulse response is used
to pre-filter the maximum length sequence signal before it is sent to the loudspeaker.
Alternatively this de-convolution could be done as part of the post-processing before
the windows are applied. If overlap still exists between the wanted and parasitic
reflections, then a window with a smooth transition should be used, like a half-
Hanning.

If the microphone is very close to the surface, a simple ratio of the reflected and
incident spectra can be taken to give the complex pressure reflection factor and from
there absorption coefficients and surface impedance. If the microphone is not close to
the surface, a correction for spherical spreading and propagation phase must be made
to the incident and reflected spectra before the ratio is taken.

Figure 3.8 shows a typical result. For normal incidence, the absorption coefficients
of the sample obtained using the in situmethod match those obtained using a standing
wave method in an impedance tube. For oblique incidence and at low frequencies
(<800 Hz), the method fails with the absorption coefficient exceeding one. This
occurs because there is an implicit assumption of plane waves in the methodology.
At low frequencies, the edges of the test sample create other types of reflected waves
which then render the technique inaccurate. One solution to this is to consider
spherical wave theories [20].

Problems arise with this in situ method if the acoustic medium changes between
the free field and sample measurement. For instance, Mommertz gives an example of
a temperature change of 1 �C leading to an error of 0.03 in absorption coefficient.

The final in situ method detailed uses an alternative approach. No attempt is
made to separate the incident and reflected sound; this removes some of the
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Figure 3.7 Measurement of in situ absorptive properties using time gating.
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geometric restrictions on the measurement system. To make it work accurately,
however, requires a good theoretical model of the sound field close to the test
surface. The idea is this, given measurements of the sound field in the vicinity of
the test surface and a theoretical model for the sound propagation, it is possible
to apply a numerical optimization to derive the unknown properties of the test
sample.

Figure 3.9 shows a typical set-up used by Nocke [21]. The transfer function
between the source and receiver is measured, and from this the angle-dependent
impedance and absorption coefficient is derived by numeric inversion.

To simplify the description, consider a plane homogeneous sample. The pressure
above the absorber is given by:

pðrÞ ¼ piðrÞ � Fðk; r; r0;RðrsÞ; piðrsÞÞ ð3:28Þ

where pi(r) is the pressure direct from the source to the receiver, r the receiver
position, ro the source position, rs the position of a point on the surface, F() a function
which gives the pressure at the microphone due to reflections from the surface, k the
wavenumber, and R the surface reflection factor.

(a) (b)

Figure 3.8 Measurements of reflection factor. Left figure: In situ method,
 ¼ 0�; --------------- In situ method,  ¼ 45�; . Standing wave tube method.
Right figure:  ¼ 81� (after Mommertz [19]).

Absorbent

Mic, r Source, r0

Point on surface, rs 

Figure 3.9 Typical set-up for in situ measurement (after Nocke [21]).
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There are various prediction theories that can be used to model the function F()
which gives the reflected energy. For instance, it would be possible to use the theories
outlined in Chapter 8. Nocke advocates using a spherical wave reflection theory. It
would also be possible (and easier) to use simple plane wave formulations, provided
the surface is large so that the edge diffraction is not significant.

Given that the incident and reflected pressures have been measured, that the
receiver and source positions given in Equation 3.28 are known, the only unknown
in the equation is the complex reflection factor R as a function of the vector on the
surface rs. This complex reflection factor can therefore be found by using iterative
procedure. For simplicity, assume that R is the same for the whole surface. If the
measured pressure is pm(r) and the predicted pressure p(r), then a numerical
optimizer can be tasked with the procedure of minimizing the mean square error
between the measured and predicted pressures, jpm(r)� p(r)j2 by finding the value
of R which gives minimal error. There are a variety of numerical methods that can
be used for this process, the most trendy at the time of writing being genetic
algorithms.

In theory this could work for samples where R varies across the surface. As a
number of different surface reflection factors have to be derived, more microphone
positions are needed. In this case, the optimization problem becomes slower to solve,
and the risk of getting incorrect solutions by the optimizer increases. The experience
with multiple microphone techniques, is that the more microphones, the more
problems with noise sensitivity and evanescent waves. Consequently, it might be
anticipated that resolving a large number of different surface reflection factors might
prove to be problematical.

Nocke [21] restricts himself to deriving an average absorption coefficient for
inhomogeneous surfaces. Figure 3.10 shows a typical result showing the in situ
method compared to impedance tube measurements. By using the spherical wave
formulation, accurate results are achieved down to 80 Hz, but this requires a very
large sample of 16m2 to prevent edge effects being significant. The upper frequency
limit he measured was 4 kHz, presumably limited by the accuracy of the microphone
positioning.

Figure 3.10 Comparison of in situ measurement by Nocke and measurements in impe-
dance tube for a fibrous absorber. The transfer function was measured at
angles  as shown in legend (after Nocke [21]).
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3.6 Internal properties of absorbents

The remaining sections of the chapter are devoted to the measurement of properties
within absorbents, characterizing the sound propagation within the absorbent either
in terms of propagation constants and characteristic impedances, or finding key
parameters such as flow resistivity and porosity. These are key measurements for
those involved in the development or modelling of porous materials.

3.6.1 Measurement of flow resistivity

The flow resistivity of a porous absorber is one of the most important defining
acoustic characteristics. Once the flow resistivity is known, simple empirical models
for porous absorbents can be used to find the characteristic impedance and wave-
number, and from there, the surface impedance and absorption coefficient can be
obtained. The importance of this parameter is discussed in more detail in Chapter 5,
for now three techniques for measurement will be considered. The measurement
techniques presented here follow directly from the definition of flow resistivity.
Consider a slice of the porous material of thickness d subject to a mean steady flow
velocity U. The pressure drop across the sample �P is measured, and from these
quantities the flow resistivity � is given by:

� ¼ �P

Ud
ð3:29Þ

The measurement of flow resistivity has been enshrined into International Standards
[22], where more details of the measurement procedure can be found. In the direct
flow method, a steady air supply pushes air through the porous material. Sensors are
used to measure the air flow and pressure drop to atmospheric pressure, and hence the
flow resistivity is obtained. This is shown in Figure 3.11.

It is important that flow rates are kept small because otherwise the relationship
between the pressure drop and velocity becomes non-linear. Flow rates between

Porous
material

Differential
pressure
measurement

Airflow in from air
supply (or out to
vacuum). Flow
meter(s) here to
measure flow

∆P

Long uniform
section to set up
laminar flow

Open to
atmosphere

Open to
atmosphere

Figure 3.11 Set-up for direct airflow method for measuring flow resistivity.
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5� 10�4 and 5� 10�2 ms�1 are recommended by Bies and Hansen [23]. Ingard [24]
produces results that show that the flow rate should not be greater than 0.1 ms�1, to
get results consistent with the velocity amplitude of typical sound waves in absorbents
(0.01 ms�1). The flow resistivity is calculated from:

� ¼ �0�PA

md
ð3:30Þ

where �0 is the density of air, A is the cross-sectional area of the specimen, m the air
mass flow rate (kgs�1), and d is the specimen thickness.

In the alternative airflow method, a piston is used to generate a low frequency
alternating airflow through the test specimen; the piston should move at a frequency
of f¼ 2 Hz. The set-up is shown in Figure 3.12. The rms airflow velocity is then:

urms ¼ �fhApffiffiffi
2
p
A

ð3:31Þ

where h is the peak–peak displacement of the piston, Ap the cross-sectional area of the
piston, and A the cross-sectional area of the porous material. The standard recom-
mends 0.5< urms< 4mms�1. A condenser microphone is used to measure the rms
pressure relative to atmospheric pressure.

The problem with these measurement techniques is that many have found a great
variation between measurements by different laboratories. Garai and Pompoli [25]
found that repeatability within a laboratory is good, with an error of about 2.5 per
cent with repeat measurements on one sample, and about 5 per cent with five samples
cut from the same material. Reproducibility between laboratories, on the other hand,
is a problem with errors around 15 per cent.

There are alternative methods for obtaining the flow resistance. Ingard [24] devised
a measurement system which does not require blowers and flow instrumentation and
so greatly simplifies the apparatus required. The set-up is shown in Figure 3.13.
A piston within a tube falls under gravity and pushes air through the porous absor-
bent. When the piston has reached terminal velocity, the pressure drop �P across the
sample is given by:

Porous
material

rms pressure
measurement
(condenser
microphone)

∆P

Piston

Open to
atmosphere

Figure 3.12 Set-up for alternating airflow method for measuring flow resistivity.
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�P ¼Mg
Ap

ð3:32Þ

where M is the mass of the piston, g is gravity and Ap the cross-sectional area of the
piston or tube. The flow velocity U is given by:

U ¼ Ap

Ss

 ð3:33Þ

where Ss is the cross-sectional area of the sample, and v is the terminal velocity of the
piston found by timing how long it takes the piston to travel a set length. Equations
3.32 and 3.33 can be combined with Equation 3.29 to give the flow resistivity. It is
first necessary, however, to include a calibration factor. There will be frictional forces
between the piston and the tube walls, and there will be leakage between the piston
and the tube wall. Consequently, it is necessary to calibrate for these. This involves
two calibration measurements, and so in total three timed falls of the piston are made
as summarized in Table 3.1.

The time taken for the piston to fall in the tube with no sample over a set length is
measured in two cases. First with the tube open, t0, and second with one end of the
tube closed (it does not matter which), t1. Then a calibration factor is found:

C ¼ 1� t0=t
1� t=t1 ð3:34Þ

Piston

L

Absorbent

Figure 3.13 Set-up for lngard’s method for measuring flow resistivity.

Table 3.1 Measurements needed for flow resistivity measurement

Time measured Condition

t Sample in tube, both ends of tube open
t0 No sample in tube, both ends of tube open
t1 No sample in tube, one end of tube closed (either end)
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where t is the time it takes the piston to drop over the same measurement distance L
with the sample present. Then the flow resistance is given by:

� ¼ CMg cosð ÞSst

LA2
p

ð3:35Þ

where  is the angle of the tube to the vertical.
Ingard [24] reports using a tube with an inner diameter of 0.08m and 1.2m long, and

L¼ 0.6m. The piston was 264g and 10 cm long. The gap between the cylinder and the
tube wall was about 0.2mm. The system does not work for materials with very small or
large flow resistivities due to problems with accurate timing and calibration.

3.6.2 Measurement of flow impedance

Strictly speaking, porous materials are not just resistive but contain some reactance as
well [24]. The reactance comes from additional mass due to viscous boundary layer
effects and constrained flow. Consequently, while Section 3.6.1 has given methods for
flow resistance, there is also interest in measuring the flow impedance to get the flow
reactance. As the resistive term dominates, this type of measurement is not that
commonly undertaken. However, it does give an alternative method for getting the
flow resistivity if apparatus presented in Section 3.6.1 is not available.

This flow impedance is measured within an impedance tube [26]. Figure 3.14
shows an arrangement that can be used, the tube is about 5 cm in diameter. A pure
tone plane wave is produced by the sound source. The frequency is adjusted so that
the distance w is an odd integer multiple of a quarter wavelengths:

w ¼ n	
4

ð3:36Þ

where n is the number of quarter wavelengths in the length w and n must be odd.
There are an infinite set of frequencies which satisfy this condition, but the frequency
should also be a low frequency (say less than 100 Hz), to get accurate results as the
sample should be thin compared to wavelength. This forces the pressure and surface
impedance at the rear of the sample to be zero. The flow impedance zf is then a ratio
of the pressures measured at microphones 1 and 2 [24]:

Source Sample

Microphone 1 Microphone 2

w

d

Rigid
termination

Figure 3.14 Apparatus for determining flow impedance using an impedance tube (after
Ingard and Dear [26]).
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zf ¼ j�0c0ð�1Þðn�1Þ=2 p1

p2
ð3:37Þ

where p1 and p2 are the complex pressures for microphones 1 and 2. This formulation
can be derived as follows. As the impedance at the rear of the sample is zero, the flow
impedance equals the impedance at the front face of the sample. This impedance can
be derived using the transfer matrix method outlined in Section 1.5.1.

The calculation yields a complex impedance, of which the real part is the flow
resistance and the imaginary part the flow reactance; the latter is generally small.

3.6.3 Direct measurement of wavenumber

The wavenumber (or propagation constant) for a porous medium can be directly
measured [27]. It is a crucial parameter describing how sound propagates in a
medium and was defined in Section 1.4.1. The direct measurement process is rather
slow, but accurate and robust. An impedance tube is filled with the material to be
tested. A loudspeaker at one end of the tube generates sound waves which propagate
through the absorbent. If it is assumed that no reflection happens from the opposite
end of the tube from the loudspeaker, the steady state pressure in the tube is given by:

p ¼ Ae�jkz ð3:38Þ

where z is the distance along the tube, and A is a constant. Remembering that the
wavenumber k is complex, this can be rewritten as:

p ¼ AeImðkÞze�jReðkÞz ð3:39Þ

By measuring the decay in the amplitude of the sound wave, and plotting the log of
the amplitude versus distance, the imaginary part of the wavenumber can be obtained.
By measuring the changing phase of the sound wave and plotting another log-linear
graph yields the real part of the wavenumber.

It is necessary to ensure there are no reflections from the tube end remote from the
loudspeaker. This necessitates a long length of absorbent to ensure full absorption –
it is not sufficient just to leave the end of the tube open. Typically 0.5 m of the
test absorbent might be used, followed by another 0.5 m of loosely packed porous
absorber such as mineral wool to give an anechoic termination.

The sensing microphone must be placed in the bulk of the absorbent in the tube, this
can be achieved by using a probe tube microphone similar to that shown in Figure 3.1.
The probe tube moves within a hole pre-drilled through the centre of the absorbent
material.

3.6.4 Indirect measurement of wavenumber and characteristic impedance

Given a theoretical model for the propagation of sound in a porous absorbent and
some measurements on a simple experimental set-up, it is possible to derive the
wavenumber and the characteristic impedance of porous absorbers [28–30]. For
example, a numerical fit can be carried out between the experimental data and the
theoretical model to find values for unknown parameters in the theoretical model.
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Such a technique is similar to that used for in situ measurements discussed at the end
of Section 3.5. There are various arrangements that can be used for this measurement.
The most convenient methods are probably those that use the impedance tube, as this
is readily available to many. The advantage of these methods over the direct measure-
ment of wavenumber described in Section 3.6.3 is that it yields the characteristic
impedance as well as the wavenumber.

Smith and Parrott [28] review two possible methods, of which the two thicknesses
method is the most convenient and so will be described here. The surface impedance is
measured for two different thicknesses of the absorbent with a rigid backing. For a
thickness of d1 the surface impedance is z1:

z1 ¼ �jzc cotðkd1Þ ð3:40Þ

where zc is the characteristic impedance of the sample. A similar relationship gives
the surface impedance z2 ¼ �jzc cot(kd2) for a depth d2. These relationships were
derived in Section 1.5.1. For simplicity, assume that d2¼ 2d1; typically d1 would be
a couple of centimetres. The equations for z1 and z2 can then be rearranged using
trigonometric identities and solved to give the characteristic impedance zc and
wavenumber k:

zc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1ð2z2 � z1Þ

p
ð3:41Þ

k ¼ �j

2d2
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffi
2z2�z1
z1

q
1�

ffiffiffiffiffiffiffiffiffiffiffi
2z2�z1
z1

q
0
B@

1
CA ð3:42Þ

It is necessary to choose depths so that z1= z2, otherwise the results become unreli-
able. This happens when kd1 ¼ kd2 � n�, where n is an integer. Unfortunately, there
is no way to test for this before measurement as the wavenumber is not known.
Consequently, this must be checked for in analyzing the measurements, and if neces-
sary another set of thicknesses measured.

3.6.5 Measurement of porosity

The porosity is a measure of the ratio of pore volume involved in sound propagation
to total volume. For specialist absorbers, such as mineral wool, the porosity is close to
one, and so the value is often assumed rather than measured. Table 5.1 gives a table of
typical porosities and Section 5.3.2 discusses the significance of this parameter in
more detail. If measurements are done, it is best if it is measured using air saturation
rather than by liquid saturation of the sample, as it cannot be guaranteed that the
liquid will fill all the available pores. Figure 3.15 shows a set-up used by Beranek [31]
which uses the isothermal compression of the air volume within and external to a
porous absorber. This summary is partly taken from Cremer and Müller [32].

There is a chamber of known volume connected to a U-shaped manometer. The
material to be tested is placed in the chamber. The valve at the top of the chamber can
be open or closed. With the valve open, the liquid in both legs will have the same
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height, h. This height is measured. The valve is then closed, and the pressure in the
vessel is increased by raising the right leg of the manometer. The surface of the liquids
is now at h1 and h2 in the two legs, and these heights are measured. The difference in
the liquid levels in the two legs (h2� h1) is the increase in pressure in the sample in
metres of water �P. This needs to be converted to SI units:

�P ¼ �wðh2 � h1Þg ð3:43Þ

where �w is the density of the liquid in the manometer and g is gravity. The height
difference multiplied by the cross-sectional area of the manometer tube Ss is the
reduction in the volume, �V, in the chamber:

�V ¼ Ssðh2 � h1Þ ð3:44Þ

Assuming this is an isothermal system, the product of the pressure and volume is
constant (PV¼ nRT). This gas law is needed in a differential form for the derivation:

�PV þ�VP ¼ 0 ð3:45Þ

By considering the volumes of air being compressed within the chamber, both
within and external to the test sample, and remembering that the porosity " gives
the ratio of the pore volume to total volume of the sample, Equation 3.45 can be
expanded to:

�PðV � Va þ "VaÞ þ�VP0 ¼ 0 ð3:46Þ

where P0 is atmospheric pressure, Va the volume of the material being tested in the
chamber and V the volume of the chamber. Rearranging then gives the porosity:

" ¼ P0

Va

�V

�p
þ 1� V

Va
ð3:47Þ

Manometer

Chamber

h h1 h2

Porous material Porous material

Figure 3.15 Apparatus for measuring porosity (after Beranek [31]).
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3.7 Summary

This chapter has reviewed the methods used to measure and thereby character-
ize absorbing materials. There are a few other parameters concerned with porous
absorber models that have not been mentioned, the characteristic lengths and the
tortuosity. Measurement of these will be covered in Chapter 5 when porous absorber
models are presented. The next chapter details the measurement of diffusion.
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4 Measurement and characterization
of diffuse reflections or scattering

While surface scattering elements have been used accidentally or by design in rooms
for centuries, it is only in recent decades that a concerted effort has been made into
developing methods for measuring and characterizing the scattering from these sur-
faces. Without measurements of the scattering produced by surfaces, it is impossible
to confidently design and apply diffusers. Consequently, this chapter starts by describ-
ing methods for measuring the scattering produced by a surface. This mainly con-
centrates on measurements in terms of polar responses, as this is the primary way that
the scattering from surfaces has been measured for diffuser design and evaluation.

The polar response of a source, like a loudspeaker, can be determined by measuring
the sound energy distribution on a polar arc or hemisphere surrounding the source.
With care, this concept can be translated from loudspeaker measurements, to be used
for backscattering from architectural surfaces. While polar responses tell designers
much about how a surface reflects sound, they contain a considerable amount of data
and a different polar response is required for each frequency band and angle of
incidence. This is one of the reasons why the focus of recent years has been on
developing single figure parameters, which condense the polar data and allow char-
acterization in terms of diffusion coefficients.

The reflection from a surface can also be characterized using a scattering coeffi-
cient, which is different from a diffusion coefficient. The differences between the
coefficients will be discussed in some depth later in this chapter, but for now, it is
opportune to give the contrasting definitions of diffusion and scattering coefficients.
Diffusion coefficient (d), is a measure of the uniformity of the reflected sound. The

purpose of this coefficient is to enable the design of diffusers, and to also allow
acousticians to compare the performance of surfaces for room design and perform-
ance specifications.
Scattering coefficient (s), is a ratio of sound energy scattered in a non-specular

manner to the total reflected sound energy. The purpose of this coefficient is to
characterize surface scattering for use in geometrical room modelling programs.

Both the coefficients are simplified representations of the true reflection behaviour.
It is necessary to come up with simple metrics, rather than trying to evaluate the
reflection characteristics for all possible source and receiver positions, because the
amount of data soon becomes too large to deal with. The coefficients attempt to
represent the reflection by a single parameter, maximizing the information carried by
that single number. The difference between diffusion and scattering coefficients is the
emphasis on which information is most important to be preserved in the data reduc-
tion. For diffuser designers, it is the uniformity of all reflected energy which is most



important; for room acoustic modelling, it is the amount of energy scattered away
from specular angles. The difference between the definitions may appear subtle, but it
is significant.

In this chapter, diffusion and scattering coefficients are described after a discussion
of the direct ways of measuring the scattered energy from surfaces. For example, given
the source and receiver positions, what are the best ways of obtaining the scattered
and total sound fields? The chapter concludes by describing some other techniques for
characterizing surfaces which have yet to find great favour, but may in the future be
useful techniques.

4.1 Measurement of scattered polar responses

In order to characterize a diffuser’s performance, it is necessary to be able to both
measure and/or predict how the diffuser scatters sound. Currently, this is most often
done by looking at how the scattered energy is spatially distributed. This spatial
distribution is conventionally described by polar responses in one-third octaves, for
a given angle of incidence. An ideal diffuser produces a polar response that is
invariant to the angle of incidence, the angle of observation and the frequency (within
its operational bandwidth). Figure 4.1 shows a measured polar response for normal
incidence, at 2 kHz, from an array of 2D number theoretic diffusers, one of which is
also shown in the figure. There are various techniques for measuring such a scattered
polar distribution which is discussed below. (Chapter 8 details some possible predic-
tion methods.)

Figure 4.1 3D polar balloon measured from a Skyline1 diffuser, which is shown below
the polar response.
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Systems for measuring the reflections from surfaces have been based on techniques
which use a source to irradiate the test surface, and measurement microphones at
radial positions in front of the surface, to record the pressure impulse response. The
microphone positions usually map out a semicircle or hemisphere, for a single plane
or hemispherical measurement, respectively. Once the pressure impulse responses are
measured, time gating is used to separate the reflections from the incident sound.

There are various ways of measuring the impulse responses. The most common uses
a maximum length sequence signal. Other signal possibilities include swept sine
waves, time delay spectroscopy and pulses. As time variance and non-linearity are
not an issue, MLS are currently the most efficient to use.

Polar response measurements can be made in a single plane using a 2D goniometer
on a semicircle [1], as shown in Figure 4.2, or over a hemisphere using a 3D
goniometer, as shown in Figure 4.3. The choice of single plane or hemispherical
measurement depends on the type of diffuser. Figure 4.4 illustrates that an extruding
diffuser (known as a single plane or 1D diffuser) produces scattering in one plane, and
consequently a single plane evaluation is appropriate [2]. If the surface produces
scattering in multiple planes, as shown in Figure 4.4 right, then a hemispherical
evaluation will be needed. Figures 4.2 and 4.3 show 1:5 scale measurement systems.
Scale model measurements are needed, because otherwise the source and receiver
radii become too large.

In the single plane measurement goniometer shown, a fixed microphone array is
used. In the hemispherical measurement goniometer, a single microphone is moved on
a lightweight scaffolding, which then traces out a hemisphere. It is also possible to use
a boom arm to rotate a microphone on a single arc as shown in Figure 4.5.

The single plane measurement can be made in an anechoic chamber [3], but it is
also possible to use a boundary layer technique [1]. This latter technique is in

Figure 4.2 A system for measuring the scattering from a surface in a plane using a
boundary plane measurement. The diffuser (a Schroeder diffuser) is shown
top middle. There are 37 microphones arranged on an arc. The source
loudspeaker is at the bottom middle of the picture (after AES [6], photo
courtesy of RPG Diffusor Systems Inc.).
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Figure 4.3 A system for measuring the scattering from a surface over a hemisphere. The
diffuser being tested is the small pyramid in the centre. The source arc is most
obvious, the receiver arc is acoustically transparent and so is difficult to see
(after AES [6], photo courtesy of University of Salford).

Figure 4.4 Scattering from a single plane (left) and hemispherical diffuser (right) (after
D’Antonio and Cox [2]).



Figure 4.2. This can be done in a large room, provided that the ceiling and walls
are sufficiently far away from the test set-up. The scattering sample is shown in the
top middle, along with 37 pressure zone microphones arranged on a semicircle 1m
from the sample. The source loudspeaker, for normal incidence, at the bottom
middle is located 2 m from the sample. The measurement geometry is shown in
plan view in Figure 4.6, and from this geometry it is possible to calculate the size
of non-anechoic room needed for the measurement. In this case, the loudspeaker
(L), microphone (M) and diffuser (D) are placed on a flat, hard surface on the

Figure 4.5 A schematic of a measurement system.
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Figure 4.6 Plan view of reflection free zone geometry for diffusion coefficient boundary
measurement technique. Loudspeaker (L), microphone (M), diffuser (D),
microphone radius (R), room boundary (B), ellipse axes (H) and (W).
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floor. The microphone radius is denoted by R and the loudspeaker radius is 2R.
Figure 4.6 illustrates the ellipsoidal area (dashed) necessary to make a reflection
free zone measurement. What is the reflection free zone? Consider the respective
sound paths of the direct sound (LM¼R), the scattered sound (LSM¼ 3R) and the
limiting reflection from the second order reflection from the speaker (LSLM¼ 5R).
Therefore, the reflection free zone, which measures only scattering from the sam-
ple, is 4R. It is possible to determine the ellipsoidal area from the measurement
geometry. If the limiting path is 5R, then the total travel path from the loudspeaker
to the room boundary, B, and back to the microphone is also equal to 5R¼LBM
(LBþBM). The minor axis of the ellipsoid, H, equals 2.45R and the major axis,
W, equals 2.5R. If R¼ 5 m, then this requires a room 12.2 m high, 24.4 m wide
and 25 m long. Since this is an unreasonably large room, measurements have been
done at 1:5 scale in which R¼ 1m.

In the boundary layer measurement, the boundary layer acts as an mirror image and
what is measured is effectively the diffuser paired with a mirror image of the diffuser,
as illustrated in Figure 4.7 where a section is shown. In Figure 4.7 (left) a diffuser
is shown in a real test condition and its image source equivalent. The diffuser is

Mic. Source

Test Sample

SourceMic.

Test Sample

Image Source Equivalent

Real Test Configuration

r1

r2
r3

SourceMic

Test sample

Distance Constraints

Real test configuration

Image source equivalent

Test sample

Test sample

SourceMic.

SourceMic.

Figure 4.7 Boundary plane measurement and equivalent configuration using images for
two types of surface.
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extruded in the vertical direction, and so it can be seen that what is actually measured
is a sample twice as high, with the source and receiver at the midpoint. In Figure 4.7
(right) a non-extruded shape (arc) is shown in the real test configuration and its image
source equivalent. For this sample, the actual sample and its mirror image are being
measured.

As the source and receivers are not located exactly on the boundary, there is an
upper frequency limit on this measurement. The longest and shortest propagation
paths must not differ by more than half a wavelength. In terms of the geometry
shown in Figure 4.7, the path difference jr1 � r2 � r3j � 	/2, where r1, r2 and r3 are
defined in Figure 4.7.

A potential problem with this measurement process is that the microphone(s) will
get in the way of the sound propagating from the source to the panel. For this reason,
the fixed microphone array or the boom arm used to move a single microphone, must
be small enough not to cause significant reflections or disturbance to the sound field.
Where possible, supports should be located not in a direct line between source and
diffuser, and be covered in absorbent material or be acoustically transparent. Fixed
microphone arrays have been constructed using small pressure zone microphones.
This potential interference by the microphones on the sound field makes diffuser
measurements more awkward than measuring the polar responses from loudspeakers,
because for loudspeakers it is possible just to rotate the loudspeaker.

The single plane measurement is quick and easy to carry out. Measurements in a
hemispherical goniometer, however, require considerably more complex engineering
to achieve the acoustically transparent microphone positioning and source position-
ing in an anechoic chamber. Hemispherical measurements are also more time-
consuming, due to the great increase in the number of measurements required. A spatial
resolution of 5� in azimuth and elevation has been used between receivers for the set-
up shown in Figure 4.3, resulting in 1,296 measurement positions for a single angle of
incidence. (Five degrees was chosen because tests have shown that this is a sufficient
resolution to gain the polar response accurately without overburdening measurements
with excessive sampling points.)

Consequently, for hemispherical evaluation, it is much easier to use validated
prediction models. Farina [4] has suggested evaluating along selected semicircles
(say two or three) rather than measuring the whole hemisphere to reduce the burden
of measurement. If symmetry in the sample exists, and the source lies in the plane of
symmetry, it is possible to reduce the number of measurements. For the hemispherical
measurement, symmetry is certainly worth exploiting.

Figure 4.8 illustrates the sequence of events to determine the scattered impulse
response at a particular observation angle, for a given angle of incidence for the set-up
shown in Figure 4.2. To obtain the impulse response of a sample under test, it is
necessary to de-convolve the loudspeaker–microphone response at each scattering
angle, h3(t). It is also necessary to minimize any room interference and reflections
from microphone supports and wires within the time window of interest. To obtain
the ‘loudspeaker/microphone response’ (top panel in Figure 4.8) at each scattering
angle, the loudspeaker is placed at the sample position and rotated, so its on-axis
response is coincident with the on-axis response of each microphone for each angle.

The loudspeaker is then placed in its normal source position, without any sample
present, and the ‘background response without sample’, h2(t), at each angle is auto-
matically measured via computer control by emitting 37 impulses and sequentially
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switching each microphone on. A vertical dotted line representing the ‘time window’
of 10 ms used to isolate the reflections is also shown. The sample under test is then
placed in position, and the scattered sound is measured obtaining the ‘background
response with sample’, h1(t), in Figure 4.8.

h2(t)

h1(t)

h1(t)-h2(t)

h4(t)

P
re

s
s
u

re

Time

Time (expanded axis)

Loudspeaker/Microphone Response
h3(t)

Background
Response
Without Sample

Background
Response
With Sample

Sample
Minus
Background

Deconvolved
Sample
Response

0

0

Sample

Time Window

Interference

Windowed Sample Response

0

0

0

0

Figure 4.8 Data reduction process to extract the scattered impulse response from a test
sample at a given observation angle.
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Data are collected at 5� intervals. Higher resolution, for example 2.5�, is possible
by combining another data set with the sample rotated by 2.5�. The measurement
system selects a microphone, emits a selected maximum length sequence stimulus,
records the data, selects the next microphone position, etc. Since the microphones are
stationary and the measurement process is rapid, the respective background response
can be subtracted from each microphone position, prior to de-convolution. This is
illustrated as ‘sample minus background’ in Figure 4.8. The direct sound is signifi-
cantly decreased and is not providing interference in the time window with the
scattered sound. The room interference is also decreased. The speaker–microphone
response can now be de-convolved as illustrated in ‘de-convolved sample response’,
h4(t), where h4(t) is calculated using:

h4ðtÞ ¼ IFT
FT½h1ðtÞ � h2ðtÞ�

FT½h3ðtÞ�
� 	

ð4:1Þ

where FT and IFT are the forward and inverse Fourier transforms. The data within
the time window is gated to isolate the ‘windowed sample response’.

The data are further post-processed to provide frequency responses, polar responses
and finally diffusion coefficients, as shown in Figure 4.9.

The top of Figure 4.9a, shows the 2D boundary measurement geometry with the
exciting loudspeaker at an angle of incidence of �60�, with respect to the normal. Also
shown are the 37 receiving microphones. A flat non-absorbing sample is being meas-
ured. Below that, Figure 4.9b, the impulse response at 0� is shown, with the scattered
data outlined in a box, corresponding to the time window in Figure 4.8. The scattered
data are windowed for all of the angles of observation, of which five are highlighted at
�60�, �30�, 0�, 30� and 60� and concatenated in Figure 4.9c in the form of a temporal
angular impulse response. A Fourier transform is then applied to each part of the impulse
response to get the frequency responses, Figure 4.9d. Five of the 37 frequency responses
are only shown for clarity. The frequency response energy is summed over one-third
octave bands, and three of the polar responses are shown in Figure 4.9d. The visible
polar response at high frequency is narrow and directed in the specular direction ofþ60�

as would be expected. The polar responses can then be further processed to give a
diffusion coefficient, which is plotted versus frequency to obtain the diffusion response,
Figure 4.9e. As the frequency increases, one can see a drop in the diffusion coefficient, as
the width of the panel becomes increasingly large compared to the wavelength.

In Figure 4.10, the same procedure is shown for a diffusing sample for �60�

incidence. The polar responses are more semicircular and the diffusion coefficient
closer to 1, the value for complete diffuse reflection.

Figure 4.11 compares the measured and predicted scattering from a surface meas-
ured both on a single plane and a hemisphere. The agreement between theory and
measurement is good – this is a measurement process that yields accurate results.

4.1.1 Near and far fields

All free field measurements suffer from the problem that the relative levels within the
polar response are dependent on the source and receiver distances from the surface,
unless the source and receivers are in the far field. (The far field being where the
scattered pressure falls by 6 dB per distance doubling for 3D geometries, and 3 dB per
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distance doubling in 2D geometries.) Unfortunately, in most room applications, it is
usual for sources and receivers to be in the near rather than the far field unless the test
surface is small. Figure 4.12 shows the scattering from a plane surface for a variety of
receiver distances. As the receiver approaches the surface, the scattered pressure is
more evenly distributed over the polar response. A plane surface appears to be a very
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Figure 4.9 Summary of data processing technique from a flat reflector at �60� incidence.
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good diffuser when measurements are made close to the surface. In fact, close enough
to the surface, the reflection is provided by an approximate image source that radiates
the same energy to all receivers except for minor effects due to spherical spreading due
to the differences in path lengths. This seemingly contradicts conventional wisdom in
room design that a plane surface is a poor diffuser.
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Figure 4.10 Summary of data processing technique from a diffuser at �60� incidence
(after AES [6]).
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To understand this contradiction it is necessary to understand why plane surfaces
can cause problems in real applications. Problems can occur with plane surfaces with
directional sources such as trumpets. The reflected energy will be concentrated over a
narrow solid angle, leading to a risk of detrimental effects such as echoes, colouration
or image shift for receivers within this solid angle. The results shown in Figure 4.12

Figure 4.11 Comparison of measured and predicted polar responses. Top:
Measurement (2D) using boundary plane; Single plane boundary
element method (BEM) prediction; (Square-based pyramid, 1 kHz, normal
incidence.) middle: 3D measurements at the University of Salford; (Square-
based pyramid, 2 kHz, normal incidence.) bottom: 3D BEM predic-
tion; (Square-based pyramid, 2 kHz, normal incidence.) (after Hargreaves
et al. [12]).
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were produced using an omnidirectional source. Furthermore, the plane surface does
not produce any temporal diffusion in the polar response, and as discussed in Chapter
10, this is another reason why it is a poor diffuser. These polar responses are
neglecting to look at the wavefront phase.

The solution usually adopted is for scattering measurements based on polar distribu-
tions to be taken in the far field, even when this is further than any real listeners would
ever be. Then some receivers will be outside the specular zone (the specular zone is
defined in Figure 4.13), and it is possible to measure the energy dispersed from receivers
in the specular zone to receivers outside the specular zone. In the spatial domain and in
the far field, the effect of a diffuser should be to move energy from the specular zone to
other positions. So unless receivers are placed both outside and within the specular
zone, measuring energy levels alone will not detect the effects of diffuse reflections.

There are standard formulations for approximately calculating the required dis-
tance for measurements to be in the far field [5]. These criteria apply to both sources
and receivers, but for now only receivers are considered to simplify explanations – the
source will be assumed to be at infinity. There are two criteria to satisfy: the receiver
radius should be large compared to wavelength, and the differences between path
lengths from points on the surface to the receiver should be small compared to
wavelength. With the geometries and frequencies used for measuring acoustic diffuser
scattering, it is the latter criterion that is most exacting.

Unfortunately, the common far field formulations are not applicable to the case of
oblique receivers where significant destructive interference occurs. Problems arise
because the amount of destructive interference is very sensitive to the relative magni-
tudes of the waves coming from the secondary sources on the scattering surface
(assuming the scattering is modelled following Huygen’s principle). Consequently,
the receiver distance required to achieve the true far field for oblique receivers is often so
large that measurements cannot be accommodated in normal test facilities. Figure 4.14
shows the scattering from a surface as a function of distance, it takes a receiver
distance of hundreds or even thousands of metres to reach a completely stable far
field polar response!

Figure 4.12 Effect of receiver arc radius on the polar response of a 1 m square plane
panel. Single plane BEM prediction, 5 kHz, normal incidence, source
distance¼ 100m. Receiver distances 0.1m; 0.5m;

1 m; 2 m; 5m; 100m (after
Hargreaves et al. [12]).
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Fortunately, a pragmatic approach may be taken, as knowing the minima in a polar
response to very exact detail is not that necessary. This is particularly true if diffusion
coefficients are going to be evaluated, as the calculation of the diffusion coefficients
involves reducing the many scattered pressure values in a polar response to a single
figure of merit.

Figure 4.13 Definition of the specular zone – the region over which a geometric reflection
occurs (Although the specular zone is strictly a high frequency construction,
practice has shown it to be a useful concept for the geometries and frequen-
cies typically used in diffuser design.) (after Hargreaves et al. [12]).
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Consequently, errors from the slight misrepresentation of notches in the polar
response will be negligible in the diffusion coefficient value. The situation is also less
critical when one-third octave bandwidths are used, as is normal practice. So, the true
far field does not have to be obtained, it is sufficient to ensure that the majority of
receivers are outside the specular zone so that the diffuser’s ability to move energy out
of the specular zone can be measured. Then a reasonable approximation to the far
field polar response can be obtained.

AES-4id-2001 [6] recommends that 80 per cent of receivers are outside the specular
zone, ideally in revisions of the standard this figure should be referenced to Fresnel
zones or panel-critical frequencies [7]. In Figure 4.15 the diffusion coefficients (the
single figure of merit derived from the polar responses) for two surfaces as a function of
receiver distance are shown. The point where 80 per cent of the receivers are outside the
specular zone is shown. The plane panel case shown is one of the worst case scenarios,
and the error introduced into the diffusion coefficient is only 0.1. Furthermore, this is
a single frequency prediction. Once summing across one-third octave bands is used, this
error approximately halves. Consequently, a reasonable approximation to the true
far field polar responses and diffusion coefficients can be obtained.

An alternative solution is to use near field acoustic holography [8] to enable near field
measurements to be projected into the far field, but this method has disadvantages such as
the problems of mounting the surface in an application-realistic manner. Another solution
is to use validated numerical models as predicting in the far field is always possible.

For some surfaces, however, it is not sufficient just to measure in the far field.
For concave surfaces, and others that might have significant aberrations closer to
the surface, it is necessary to monitor in the near field as well as the far field to
ensure that effects such as focussing are found. This is illustrated in Figure 4.16
where the scattering from a concave surface is shown as a function of distance. It can
be seen that receivers very close to the surface detect a good diffuser, but a little
further out the reflected sound is highly focussed. In the far field, some diffusion
is created. In summary, a pragmatic approach requires receivers to be both inside
and outside the specular zone, and measurements at application-realistic distances
are also needed to check whether concave surfaces focus far field aberrations
into the near field.

Figure 4.15 Effect of receiver arc radius on the diffusion coefficient. Single plane BEM
predictions, normal incidence, source distance¼ 100m. 1 m wide
plane panel, 5 kHz; 1 m wide random binary panel, 400Hz (after
Hargreaves et al. [12]).
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4.1.2 Sample considerations

It is important to test a sample as close to the entire structure to be applied in a real
application as possible. For instance, one period of a Schroeder diffuser should not be
tested alone if the intention is to apply the surface periodically. This is because the
scattering from the periodic and single diffuser will be very different. Where the whole
sample cannot be tested, because of geometric constraints on source and receiver
distance, the following techniques are suggested in AES-4id-2001 [6]: for a periodic
sample at least four complete repeat sequences should be included, so that the effects
of lobing from repetition is measured. (Although the width of the diffraction lobes
depends somewhat on the number of repeat units in the sample [9].) Figure 4.17
shows the diffusion coefficient from four different sets of semicylinders. It is shown
that one semicylinder is not representative of the scattering from an array of semi-
cylinders. For random surfaces, representative samples of the surface roughness
should be tested, large enough so that surface rather than edge effects are more
prominent in the scattering.

Some have said that the diffusion coefficient method will not work for large
surfaces with small surface roughness, and it is intended to be used for single diffusers
only. This is not true, and the evaluation method can theoretically be used on any
sized surface. The problem is that when the surface becomes large, the measurement
becomes impractical, because it is impossible to get far enough away from the surface.
In this case, the evaluation can still be done, but using prediction models.

When scale models are used, it is important that a proper scale model is con-
structed. For scale models, the absorption properties shall be the same for both the
full-scale surface at full-scale frequencies and the test surface at the equivalent model
scale frequency. When considering absorption from samples, losses due to viscous
boundary layer effects should be included. This consideration can limit the usable
model scales because viscous boundary layer effects do not scale in the same way as
physical dimensions.

Figure 4.16 Effect of receiver arc radius on the polar response of a concave prism. Single
plane BEM predictions, 2 kHz, normal incidence, source distance¼ 10 m.

Near field; Focal distance; Far field (after
Hargreaves et al. [12]).
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The method measures the diffraction effects of the edges and surface roughness
together. While it may be possible to separate edge and surface diffraction effects for
large surfaces with small roughness, for the majority of surfaces, such a separation
is problematic.

4.1.3 The total field and comb filtering

The above discussion has only investigated the sound energy scattered from the
diffuser. This has disregarded several important issues. With a single cylinder or
hemisphere, it is possible to produce good spatial dispersion, but without tem-
poral dispersion. With most diffusers, on the other hand, good spatial dispersion
also means temporal dispersion is generated. Consequently, while current diffuser
evaluation concentrates on energy dispersion, in the future it might also become
necessary to look at the phase in the polar response. Pertinent comments about
this point can be found in Chapter 10 where the scattering from cylinders is
discussed.

In reality, the listener hears a fusion of the direct sound from the source and the
reflection from the surface. This has lead some to suggest that the total field (direct
plus scattered) is an appropriate way of measuring the effect of surfaces. It certainly
gets around all the problems of having to separate the direct and reflected sound
by measuring impulse responses. The problem with the total sound field evaluation
is that it is so dependent on the geometry. The dominating feature of the total sound
field frequency response is comb filtering, examples of which can be found in
Figure 2.8. The depth and frequencies of the minima and maxima, in the comb
filtering, are strongly dependent on the delay time and relative level between the
direct and reflected sound and hence on the source and receiver distances. Consequently,
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evaluating the total sound field is problematical, but maybe sometime in the future
a robust method will be achieved.

4.2 Diffusion and scattering coefficients, a general discussion

While measuring polar responses can give much information about the scattering
from the surface, the problem is that it can yield too much detail. There is a need to
reduce the large amount of data in a polar response to a single value, to allow a more
ready comparison of diffuser quality. This then helps diffuser designers to evaluate the
worth of a product, and room designers to produce product specifications for surface
designs. Furthermore, there is a need for a scattering coefficient to evaluate the
amount of dispersion generated by a surface and so allow accurate predictions using
geometric room acoustic models.

Unfortunately, there does not appear to be one ideal coefficient which meets
the needs of all interest groups – the room modellers, diffuser manufacturers and
room designers. There are no diffusion or scattering coefficients currently in the
literature that do not have flaws in their use. While on first examination it
appears possible to produce a watertight definition of a coefficient, detailed
analysis reveals problems. For this reason, two different coefficient definitions
are, or are about to be, enshrined in international standards. While this may
appear unsatisfactory, it should be remembered that room acoustics has used an
absorption coefficient for a century which has well-defined limitations in applica-
tion. For example, there are two primary techniques for measuring absorption –
the impedance tube and reverberation chamber methods – and each measurement
method has advantages and disadvantages and is used for different reasons. In an
analogous manner, the methods for characterizing diffusion can be classified
either as free or diffuse field.

Diffuse field methods have the advantage of quickly obtaining a random incidence
coefficient, but are difficult to predict. A measurement method for obtaining a
random incidence scattering coefficient is due to be standardized by the ISO based
on the Mommertz and Vorländer technique [10, 11]. Free field measurements are
often more laborious to carry out, but can be readily predicted. A free-field method
for a diffusion coefficient, based on the Cox and D’Antonio technique has recently
been published in an Audio Engineering Society standard information document
AES-4id-2001 [6]. At the time of writing, the technique is also being considered by an
ISO working group.

The terms scattering and diffusion are used in different ways and are interchanged
in different subject fields. It would be possible to have a long argument about whether
diffusion or scattering is a better terminology for a given coefficient, but it would be
impossible to get a unanimous agreement on nomenclature. Consequently, in this
book the nomenclature that is being used in the standards development will be used,
even if some readers may disagree with the terminology. This defines the diffusion and
scattering coefficients as follows:

. A diffusion coefficient measures the quality of reflections produced by a surface,
in the case of the AES coefficient, by measuring the similarity between the
scattered polar response and a uniform distribution.
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. A scattering coefficient is a measure of the amount of sound scattered away from
a particular direction or distribution. This has the greatest similarity to the
coefficients required as inputs to geometric room acoustic models.

4.3 The need for coefficients

4.3.1 Diffuser manufacturer and application

When Schroeder introduced his revolutionary design of diffusers, which are described
in Chapter 9, he also introduced a possible measure for complete diffuse scattering.
This was different from Lambert law. Schroeder defined optimum diffuse scattering
as being when all the scattering lobes produced by periodic phase gratings have
the same energy. Since the 1970s, many other types of diffusers have been produced,
and to enable the merits of these designs to be evaluated, it is necessary to have a
better measure of the quality of the diffuse reflections than lobe energy. The idea of
measuring the similarity of the lobe energy is not a useful criterion because surfaces do
not have to be periodic, and so did not necessarily have periodicity lobes. Consequently,
new definitions to measure the diffuseness of reflections have been developed.

For a diffusion coefficient to be useful to designers, the primary characteristic of the
coefficient is that it must rank diffusers correctly according to quality. This will not
necessarily be achieved by the scattering coefficient, and this is why a separate
coefficient has been developed for quality. An ideal diffusion coefficient would [12]:

. have a solid physical basis;

. be clear in definition and concept, and related to the current and future roles of
diffuse reflections in airborne acoustics, especially in rooms;

. consistently evaluate and rank the performance of diffusers;

. apply to all the different surfaces and geometries found in rooms;

. be measurable by a simple process;

. be bounded; and

. be easy to predict.

This turns out to be like searching for the Holy Grail, but it is possible to produce
a diffusion coefficient that does satisfy most of the above criteria.

The current state of the art in diffuser design is numerical optimization as described
in Chapters 9 and 10. Using diffusion coefficients in a numerical optimization has
enabled designs to move away from the rigid geometric constructs imposed by phase
grating diffusers. This has enabled designs where both acoustic and visual require-
ments can be considered and their conflicting requirements resolved. It is now
possible to make diffusers which blend in with architectural forms rather than
appearing as add-ons, and this is important for acoustic treatments to be acceptable
to architects. This shape optimization capability allows architects to design the form
or motif and the acoustic consultant to define the acoustic performance criteria. The
result is a surface treatment or suspended element, which simultaneously satisfies the
architecture, the acoustics and the aesthetics. The process strives to provide acoustical
scattering surfaces that complement contemporary architecture in the same way that
columns, statuary, coffered ceilings and relief ornamentation complemented classic
architecture. It also offers an opportunity to create a new generation of vernacular
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scattering surfaces in contemporary architecture. Enabling this technique of optimiza-
tion has been one of the main drivers behind the development of a diffusion coeffi-
cient.

When a designer requires absorbing surfaces in a space, a performance specification
in terms of the absorption coefficient is currently used to ensure quality and compli-
ance with design requirements. One of the aims of research into diffusion coefficients
was to facilitate the use of defined scattering ability in performance specifications; this
can now be done by specifying diffusions coefficients measured or predicted accord-
ing to AES-4id-2001. Without standardization, the industry is vulnerable to published
performance data, which have no basis in fact and diffusers that do not perform as
intended. The evaluation criteria developed do not just have to be applied to espe-
cially designed surfaces, they can also be used to monitor the diffusion by accidental
diffusers. It appears that surface diffusion is often applied in a haphazard fashion
because there is not a good understanding of when to apply diffusers, and when not to
use diffusers. For instance, discussions with consultants produce examples where it is
claimed that too much or too little surface diffusion resulted in acoustic aberrations.
A priori to developing a better understanding of where diffusers are needed, is an
index to measure their quality. This measure is now provided by the uniformity
diffusion coefficient.

4.3.2 Geometric room acoustic models

Originally, geometric room acoustic models did not include the effects of scattering
due to edge effects and surface roughness. In recent decades, however, evidence has
been produced to show that incorporating scattering into the geometric models
enhances prediction accuracy. For instance, it has been shown that without surface
scattering, geometric room acoustic models tend to over predict reverberation time
[13–15]. This is especially true in spaces where absorption is unevenly distributed, as
happens in many concert halls, or where rooms are highly disproportionate, as
happens in many factories. Moreover, for acoustic parameters that are highly depend-
ent on early reflection prediction accuracy, such as early lateral energy fraction and
clarity, there can be great sensitivity to a correct diffuse modelling technique and
correct scattering coefficients [16]. In the first round robin study of room acoustic
models [15], three models were found to perform significantly better than others.
These three models produced results approximately within one subjective difference
limen, while the less successful models produced predictions inaccurate by many
difference limen. What differentiated the three best models from the others was the
inclusion of a method to model surface scattering. Scattering in geometric room
acoustic models is discussed in detail in Chapter 12.

There are many different methods for incorporating diffuse reflections into a
geometric room acoustic model [17] – see Chapter 12. This process is inevitably
approximate, because the geometric models cannot explicitly model the true wave
nature of sound. The geometric models use a scattering coefficient to determine the
proportion of the reflected energy that is reflected in a specular manner and the
proportion that is scattered. (In the computer models, these coefficients are usually
referred to as diffusion coefficients just to confuse matters further.) Problems
arise because until recently there has not been a procedure for determining the values
of the scattering coefficients except for trial and error and through precedence.
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Consequently, a key driving force behind the ISO process was to standardize a
method to enable scattering coefficients to be determined in a rigorous manner.

The scattered energy in a geometric model is usually distributed according to
Lambert’s cosine law [18]. Lambert’s law is used because it fits with the philosophy
of the geometric models which are based on high frequency modelling techniques. The
law is correct for high frequency, point, incoherent scattering. As shall be discussed
below, diffusion coefficients used by diffuser designers are based on uniform energy
distribution. Uniform energy distribution is possible because the reflected sound from
surfaces display coherent interference effects at the important acoustic frequencies.
Indeed, this coherence is explicitly exploited in many diffuser designs. Try and explain
how a Schroeder diffuser works without referring to interference. Consequently,
Lambert’s law is inapplicable for evaluating diffusers, and despite what some have
claimed, diffuser designers are not violating the second law of thermodynamics!
Conversely, using the diffusion coefficients measured according to AES-4id-2001 in
geometric room acoustic models is likely to produce incorrect results, unless the
model has been explicitly designed to use this coefficient.

4.4 The diffusion coefficient

4.4.1 Principle

The general method for evaluating diffuser quality is as follows. First the scattering
from a surface is measured or predicted in terms of a polar distribution as discussed in
Section 4.1. Then the diffusion coefficient is a frequency dependent, single figure of
merit derived from the polar distribution. This is evaluated in one-third octave
bandwidths, which has the advantage of smoothing out some of the local variations
in the polar responses, so the diffusion coefficient is based more on the overall
envelope. There have been various statistical operations suggested to calculate a
diffusion coefficient from the polar distributions: standard deviation [19–21] direct-
ivity [22, 23], specular zone levels [24, 25] and spherical harmonics [26], percentiles
and autocorrelation [12]. In any such data reduction, there is a risk of losing essential
detail. It has been shown that the autocorrelation coefficient seems to offer significant
advantages over other published statistical techniques.

The autocorrelation function is commonly used to measure the similarity between a
signal and a delay version of itself, looking for self similarity in time. It is also possible
to use the autocorrelation to measure the scattered energy’s spatial similarity, i.e. with
receiver angle. A surface which scatters sound uniformly to all receivers, will produce
high values in the spatial autocorrelation function, conversely surface which concen-
trates scattered energy in one direction will give low values. To form a single figure
diffusion coefficient, the circular autocorrelation function is first calculated, and then
an average taken. This is a rather laborious process, but fortunately the whole
calculation can be simplified to a single equation. For a fixed source position, the
autocorrelation diffusion coefficient, d , can be calculated from:

d ¼
Pn
i¼1

10Li=10

� �2

�Pn
i¼1

ð10Li=10Þ2

ðn� 1ÞPn
i¼1

ð10Li=10Þ2
ð4:2Þ
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where Li are a set of sound pressure levels in decibels, n is the number of receivers in
the polar response, and  is the angle of incidence. This equation is only valid when
each receiver position samples the same measurement area. This is automatically
achieved for single plane measurements on a semicircle with an even angular spacing
between receivers. (The fact that receiver positions at¯�90� actually sample half the
area of the other receivers can be ignored, as applying a correction makes an insig-
nificant difference to the diffusion coefficient.)

For some measurements, the area sampled by a receiver will vary with position. In
that case, the following formulation should be used:

d ¼
Pn
i¼1

10Li=10Ni

� �2

�Pn
i¼1

Nið10Li=10Þ2

Pn
i¼1

Ni � 1

� �Pn
i¼1

Nið10Li=10Þ2
ð4:3Þ

where Ni is proportional to the area sampled by receiver point i and should be
calculated from the following equations:

Ai ¼ 4�

��
sin2ð��=4Þ � ¼ 0�

Ai ¼ 2 sinð�Þ sinð��=2Þ � 6¼ 0�; j�j 6¼ 90�

Ai ¼ sinð��=2Þ j�j ¼ 90�
ð4:4Þ

Ni ¼ Ai
Amin

ð4:5Þ

where � is the azimuth angle and � elevation angle for the receiver. �� and �� are the
angular spacing in azimuth and elevation between adjacent receivers, usually 5�.Amin is the
smallest value of Ai for i¼ 1 . . . n. The equations assume a single measurement at �¼ 0�.

This uneven sampling will arise for hemispherical measurements using an even
angular spacing in azimuth and elevation. An uneven sampling of the hemisphere with
respect to area results, with more receiver points nearer the normal to the surface.
Equation 4.3 adds additional dummy samples into the calculation to make the
sampling linear with respect to area. This usually makes a relatively small difference
to the diffusion coefficient values.

The concern with diffusion measurement is to measure the ability of diffusers to
uniformly scatter in all directions, rather than with just the ability of a surface to move
energy away from the specular angles. This restriction is placed because of experiences
of diffuser designers. From the standpoint of the diffuser designer, it is important that
a diffusion coefficient differentiates between redirection and dispersion. Figure 4.18
shows the scattering from a plane surface, and a plane surface which has been rotated
by 20� to redirect the specular reflection in another direction. The diffusion coefficient
measures the dispersion capabilities to be the same in both cases. The scattering
coefficient, however, sees the redirection of energy from the specular reflection angles
as scattering, and there gives a high coefficient for the rotated plane surface, even
though this is only achieving redirection, not dispersion. Diffusers are often applied
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to treat first-order reflections, for example to prevent echoes from the rear wall of
concert halls. If all the diffuser achieves is redirection, there is a risk that the echo
problem will simply move to another place in the hall. On the other hand, if the diffuser
achieves spatial dispersion, this has the potential to reduce the echo problem without
creating new difficulties elsewhere. This is the reason why the Mommertz and
Vorländer [10, 11] free-field method has not found favour with diffuser designers.

4.4.2 Obtaining polar responses

Section 4.1 already discussed how measurements might be made to obtain the polar
responses. Predictions can also be used. AES-4id-2001 [6] recommends a receiver
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Figure 4.18 Top, the polar responses for a plane surface and a
rotated plane surface. Bottom, the diffusion and scattering

coefficient frequency responses. Correlation scattering coefficient;
Diffusion coefficient, plane surface; Diffusion coeffi-

cient, rotated plane surface (adapted from Cox and D’Antonio [32]).
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every 5�, with the source at 10 m and receiver arc radii 5m (equivalent full scale). It
recommends that to obtain a random incidence diffusion coefficient, source positions
should be measured with a maximum angular separation of 10�, covering a semicircle
or hemisphere measured about the reference normal. Random incidence is achievable
for single plane measurements, but the number of measurements in the hemispherical
case is unrealistically large (0.5 million source and receiver combinations). To over-
come this, the standard suggests that when time is limited, the directional diffusion
coefficients can be obtained for normal and 55� angles of incidence only.

In many applications the source position is well known. In performance spaces, for
example, this is the location of the stage. In that case, it makes most sense to evaluate
the diffusion coefficient for this specific angle of incidence, as the first-order effects of
a diffuser are of primary importance, especially if the concern is to remove echoes or
colouration.

AES-4id-2001 stipulates that different radii polar responses might be used to check
for focussing effects. If measurements are made at different radial distances from the
surface, it is necessary to apply a correction to allow for the normal drop in level due
to spherical or cylindrical spreading. Otherwise the diffusion coefficient is overly
biased by drops in levels that naturally occur due to effects that are not related to
a surface’s ability to diffuse.

4.4.3 Discussion

In Figure 4.19 the autocorrelation diffusion coefficient for different surfaces is illus-
trated as a function of frequency. It can be seen to be ranking the diffusers correctly
and separating the different surfaces along the diffusion axis. The coefficient has
a clear physical basis in the autocorrelation function, but has the drawback that only
the extreme values of uniform diffusion and specular reflection are truly defined. The
meaning of intermediate values cannot be easily found, but over time, an under-
standing for what intermediate values mean should naturally develop. It is also
unknown how exactly the diffusion coefficient values relate to subjective response,
which would be useful in evaluating the merits of diffusers.

The experimentally measured and theoretically predicted diffusion coefficient
values tend to be small. This can be seen by glancing at the coefficient values given
in Appendix C. Values for the autocorrelation coefficient can in theory spread over
the entire range from 0 to 1. A value of close to 0 has been measured for a concave
surface designed to focus sound on a single receiver. A value of 1 can be measured for
a small single hemisphere or semicylinder, but a single semicylinder on its own is not
of much use because it cannot cover a wide area. As soon as more complex surfaces
are introduced, such as a set of semicylinders, the diffusion coefficient is reduced
because of the lobing introduced. This lobing is unavoidable in extended structures,
and so the diffusion coefficient is rarely close to 1 for usable and realistic diffusers.
A single semicylinder may produce complete diffusion, but to cover a wall a set of
semicylinders are needed. This is why it is important to measure application-realistic
samples as the scattering from a single object is not representative of the response
from a periodic or modulated array.

It would be possible to distribute the diffusion coefficient values differently along
the axis to obtain larger values for common surfaces. For instance, this could be done
by calculating the autocorrelation based on levels rather than energies. Calculating
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the autocorrelation from energies, greatly penalises uneven responses, maybe it over
penalises uneven responses, as the ear response is better matched to a decibel scale
than linear energy.

4.4.4 Diffusion coefficient table

Appendix C gives values for diffusion coefficients for various surfaces by calculation
following the procedure in AES-4id-2001. The predictions were carried out using a
2D boundary element model as described in Chapter 8. All surfaces were modelled as
thin panel extrusions, the rear of the surfaces was not enclosed in a box or similar.
These therefore represent the diffusion coefficient for single plane devices such as
semicylinders. The source and receiver were 100 and 50 m, respectively from the
surface. Each one-third octave band polar response was found by averaging seven
single frequency responses. The random incidence diffusion coefficient values were
found by an arithmetic average of the diffusion coefficient values for ten different
angles of incidence (Paris’ formulation was not applied). The table reports three
incident angles, normal, 57� and random incidence.

The first part of the table shows the effect of changing the number of diffusers in an
array, illustrating that the diffusion coefficients for single and multiple devices are
very different. The results for planar surfaces of different width show how the
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Figure 4.19 Variation of diffusion coefficient with frequency for a selection of samples.
Measurements using boundary plane system, normal incidence (after
Hargreaves et al. [12]).
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diffusion coefficient is dependent on the test sample size. The rest of the table keeps all
the test sample widths the same at about 3.6 m to allow ready comparison. When
comparing other diffusers in the table, it is important to compare like with like, for
example to ensure that the diffusers being compared have the same maximum depth.

The second section shows the effect of diffuser depth on the diffusion coefficient.
To do this a set of semi-ellipses are used. As might be expected, as the semi-ellipses
get deeper, they start diffusing at a lower frequency – although period width becomes
a limiting factor for deeper devices as discussed in Chapter 10. The third section
shows the diffusion coefficients for different triangles – the scattering from triangles is
discussed in detail in Chapter 10. The fourth section gives examples of what happens
when ellipses are mounted on a flat baffle with spaces between, as might be expected
this reduces the dispersion generated at high frequencies.

The fifth part shows the performance that can be obtained from optimized curved
surfaces, the design of which is discussed in detail in Chapter 10. The table values
illustrate that the optimization design process is very effective. The sixth part gives
results for flat and planar hybrid surfaces, where absorptive patches are used to
generate dispersion; these diffusers are discussed in detail in Chapter 11. The seventh
and last part gives data for a variety of reflection phase gratings: simple Schroeder
diffusers, fractal designs and optimized surfaces. These designs are discussed in
Chapter 9. The Schroeder surfaces were modelled by meshing the entire surface, so
the predictions are valid above (and below) the limit where plane wave propagation
becomes less dominant in the wells.

4.5 The scattering coefficient

4.5.1 Principle

The principle of a scattering coefficient is to separate the reflected sound into specular and
scattered components. The specular component is the proportion of energy which is
reflected in the same way as would happen for a plane surface, large compared to
wavelength. The scattered components give the energy reflected in a non-specular manner.
This is illustrated in Figure 4.20. The coefficient has a clear physical meaning, and the
definition is very useful for geometric room acoustic models because these tend to have
separate algorithms dealingwith specular and scattered components, and so the separation
of terms mimics the modelling methods. With this definition it is then possible to define
a scattering coefficient, s, as the proportion of energy not reflected in a specular manner.

(1–αs) (1–s) 

(1–αs) s 
scattered 

specularly 
reflected 
energy 

incident 

1 

rough surface 

Figure 4.20 Definitions used for scattering coefficient (after Vorländer and Mommertz
[11]).
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This definition takes no account of how the scattered energy is distributed, but
assumes that in most room acoustic applications there is a large amount of mixing of
different reflections, and so any inaccuracies that arise from this simplification will
average out. This is probably a reasonable assumption for the reverberant field, where
there are many reflections, but could well be troublesome for the early sound field,
where the impulse response is dominated by a few isolated reflections, and the correct
modelling of these is essential to gaining accurate predictions. Section 4.4.1 has
already illustrated how scattering coefficients can give misleading results for redirect-
ing surfaces.

The scattering coefficient, like the diffusion coefficient, generally depends on
frequency and angle of incidence. Similar to the random incidence absorption coeffi-
cient obtained in reverberation rooms, an angular average of the scattering coefficient –
the random incidence scattering coefficient – can be defined as well. As a general
assumption, the surface under test is assumed to be large and not too rough.
The method will not work for isolated items and deep surfaces as it is trying to
measure the scattering from the surface roughness and not the edges. It also has
problems when the surface absorption is high as the coefficient estimation becomes
inaccurate.

4.5.2 Rationale and procedure

The energies of reflections (normalized with respect to a reflection from a non-
absorbing flat surface) are expressed as follows [10]:

Espec ¼ ð1� �sÞð1� sÞ � ð1� �specÞ; Etotal ¼ 1� �s ð4:6Þ

where Espec is the specular reflected energy, Etotal the total reflected energy, s the
scattering coefficient, �s the absorption coefficient, and �spec is the apparent specular
absorption coefficient.

The apparent specular absorption coefficient warrants further description. It is the
energy dispersed from specular reflection directions. This energy is not dissipated to
heat, it is reflected into non-specular directions. From these equations the scattering
coefficient can be determined from:

s ¼ �spec � �s
1� �s ¼ 1� Espec

Etotal

ð4:7Þ

The measurement of this quantity is easiest to explain in the free field, although it is in
the diffuse field measurement where this process is useful and powerful. The set-up is
shown in Figure 4.21. The specular absorption coefficient is found by rotating the test
sample while phase lock averaging the reflected pulses. Figure 4.22 shows three band
pass filtered pulses for different orientations of a corrugated surface. The initial parts
of the reflections are highly correlated; these are the specular components of the
reflection and remain unaltered as the sample is rotated. In contrast, the later parts
of the three reflected pulses are not in phase and depend strongly on the specific
orientation; this is the scattered component. By averaging the reflected pulse pressure
while rotating the sample, the scattered components are averaged to zero and only the
specular energy remains.
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Transferring this procedure to the reverberation chamber, the measurement tech-
nique is as follows. A circular test sample is placed on a turntable and rotated. While
the turntable is rotated the impulse response is repeatedly measured. The latter parts
of the impulse response, which are due to the scattering from the surface, will cancel
out, and the averaged impulse response only contains the specular reflection compon-
ent. This impulse response is then backward integrated to give the reverberation time
due to the specular reflection component. The reverberation time with the sample
stationary (not-rotating) can also be obtained, and this decay is due to the total
scattering – specular plus diffuse. By manipulating these reverberation times, it is
possible to derive the specular and total reflected energy, and from Equation 4.7 the
scattering coefficient.

Loudspeaker

Turntable

Axis of
rotation

Sample

microphone

Figure 4.21 Set-up used for measuring scattering coefficient (after Vorländer and Mommertz
[11]).
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Figure 4.22 Band limited reflected pulses for different sample orientations (after
Vorländer and Mommertz [11]).
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In reality, four reverberation times are needed. It is difficult to get a perfectly flat
and circular turntable; this is especially true for full scale measurements [27, 28].
Consequently, the imperfections in the turntable must be compensated for by add-
itional measurements. The four reverberation times that must be measured are shown
in Table 4.1.

Once these reverberation times are measured, the following formulations are used
to get the scattering coefficient. The random incidence absorption coefficient �s of the
sample is calculated using:

�s ¼ 55:3
V

S

1

c2T2
� 1

c1T1

� �
� 4V

S
ðm2 �m1Þ ð4:8Þ

where V is the volume of the reverberation room, S the area of the test sample, c1 the
speed of sound in air during the measurement of T1, c2 the speed of sound in air
during the measurement of T2, m1 the energy attenuation coefficient of air in m�1

during the measurement of T1, see Section 1.1.2, and m2 the energy attenuation
coefficient of air during the measurement of T2.

The specular absorption coefficient�spec is calculated using the following formulation:

�spec ¼ 55:3
V

S

1

c4T4
� 1

c3T3

� �
� 4V

S
ðm4 �m3Þ ð4:9Þ

where c3 is the speed of sound in air during the measurement of T3, c4 the speed of
sound in air during the measurement of T4, m3 the energy attenuation coefficient of
air during the measurement of T3, and m4 the energy attenuation coefficient of air
during the measurement of T4. Finally, the random incidence scattering coefficient s is
calculated using Equation 4.7.

These reverberation times are measured using the standard procedures in ISO 354
[29], so multiple source receiver pairs are needed to average out spatial variation within
the reverberation chamber. The measurement must use a deterministic source signal to
allow the phase locked pressure averaging. In the original work, MLS were favoured.
The problem with maximum length sequences is that they are rather sensitive to time
variance, which means the measurement of the reverberation times with the turntable
rotating must be done quickly. This is not a problem at model scale, but at full scale the
turntable must move slowly. The signal periodicity must be longer than the reverber-
ation time in the room, which means full scale measurements take a long time, as typically
72 measurements in a single rotation are needed. For this reason, some have favoured
the use of swept sine waves which are less prone to time variance problems [27].

Table 4.1 The measurement conditions for the four different
reverberation times

Reverberation time Test sample Turntable

T1 Not present Not rotating
T2 Present Not rotating
T3 Not present Rotating
T4 Present Rotating
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At full scale, the measurement is rather slow and laborious. There are some
considerable logistical problems in fabricating a 3.6 m diameter flat turntable. For
instance, the doors of the reverberation chamber are probably too small for the
turntable to go through in one piece and so it needs to be dismantled, yet a completely
flat and strong turntable when assembled must be made. Furthermore, a powerful, yet
quiet motor is required [27]. For these reasons, model scale measurements are to be
preferred for speed and efficiency.

4.5.3 Sample considerations

Since the measurement method is intended to measure surface roughness, the results
are only reliable when the structural depth of the sample is small compared to the size
of the specimen (approximately h� d/16, where d is the diameter of the turntable, and
h the structural depth). Examination of the reliability of measurements of different
sample depths has enabled the empirical derivation of this depth limit. If variations of
the structural depth along the edges of the samples are too large, excess scattering
from the edge is measured. Even with shallow surfaces, the edge effects cause meas-
ured scattering coefficients to be larger than 1 at high frequencies.

The measured scattering coefficients are very sensitive to edge conditions [30]. If a
square sample is placed on top of a round base plate, the scattering from the square
edges results in excessive scattering and misleading results. The solution is to recess
square samples within the circular base plate as shown in Figure 4.23. Figure 4.24
shows example scattering for the different mounting conditions, indicating that the
recessed sample mounting gives the best results.

4.5.4 Anisotropic surfaces

The scattering coefficients give potentially misleading values when a surface is aniso-
tropic. This is illustrated by Figure 4.25 where the scattering coefficients for a single
plane and hemispherical diffusers are compared. The single plane diffuser produces
a high value for the scattering coefficient, even though it is plane and extruded in one
direction. To use a simplistic analysis, even if the scattering coefficient in the plane of

turntable

sample sample 

Incorrect Correct

Plan

Section

Figure 4.23 Mounting condition for non-circular samples.
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Figure 4.24 Scattering from a sinusoidal shaped sample with different mounting condi-
tions and sample shapes. Square sample, proud edges;

Square sample, recessed edges; Circular sample
(modified from Gomes et al. [30]).
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maximum dispersion was 1, the scattering coefficient in the extruded direction must
be close to 0, and so it might be expected that the hemispherical coefficient would be
somewhere around 0.5. Yet a value of 1 is obtained. This happens because the
topology changes dramatically when the surface is rotated, and consequently the
surface is seen as being very good at scattering.

The ISO method often (if not always) produces high scattering coefficients for
anisotropic surfaces. A more strict measure of diffusion ability would be two coeffi-
cients in two orthogonal directions as is done for the AES diffusion coefficient. But
then current room acoustic models can only deal with hemispherical scattering
coefficients, so this more strict evaluation is incompatible with current geometric
models. Some geometric models are planning to introduce several distribution func-
tions to be used in conjunction with the scattering coefficient, and this may help in
more accurately distributing the randomly directed diffuse rays.

4.5.5 Predicting the scattering coefficient

It is awkward to predict the random incidence scattering coefficient. The necessity to
carry out the predictions for a large number of sample orientations makes the predic-
tion tedious with a boundary element model. Furthermore, it would be anticipated that
the reverberation chamber would introduce inaccuracies due to non-diffuse and other
effects commonly seen in absorption measurement. Nevertheless, it is possible to carry
out predictions for the free-field scattering coefficient as a function of incidence angle,
and use Paris’ formula (Equation 12.1) to get approximate random incidence value.

The free field scattering coefficient follows a similar principle to the random
incidence coefficient. The measurement is done in an anechoic chamber, and the
receiver is placed in the specular reflection direction as was shown in Figure 4.21.
The surface is again rotated and the reflected pulses phase locked averaged. The
energy remaining after the averaging is the specular energy. From this the scattering
coefficient is obtained.

This measurement process can be mimicked in a boundary element method (BEM),
although as noted above it is rather tedious to do. Hargreaves [31] did this for
a sample of rectangular battens and obtained accurate predictions, but this was only
done for a few spot frequencies.

If a simpler numerical model is used, the prediction time can be greatly decreased.
Indeed, for Schroeder diffusers, it is possible to draw up a very simple formulation for
the scattering coefficient. The far field scattering from a Schroeder diffuser can be
predicted using a simple Fourier model as described in Chapters 8 and 9. The Fourier
model is not exact, but it does give reasonably accurate predictions of the scattering
from the surfaces except at low frequencies and large angles of incidence or reflection.
Under this approximate model, the pressure scattered from the surface, ps, is given by:

psð ; �Þ � A
XNp

np¼1

XN
n¼1

e�2jkdnejknw½sinð�Þþsinð Þ� ð4:10Þ

where  is the angle of incidence, � the angle of reflection, Np the number of periods,
N the number of wells in a period, w the well width, k the wavenumber, dn the depth
of the nth well, and A is a constant.
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This approximate theory enables a simple formulation for the scattering coefficient
to be derived. In addition, the polar response can also be calculated from Equation
4.10 and so the diffusion coefficient can be found. Hence, a comparison of the
diffusion and scattering coefficients can be made [32]. The scattering coefficient is
not the ISO coefficient, however. Instead, it is a free-field version of the Mommertz
and Vorländer coefficient [10, 11] derived following a similar philosophy.

The free-field scattering coefficient is evaluated by finding the invariant energy, Espec,
in the specular direction ( ¼��), when the surface is moved. Equation 4.10 is a single
plane formulation, so it is natural to translate the surface. The surface has been assumed
infinitely large so that edge effects are not significant. In this case, the averaging is done
by translation over a complete period as this then gives the population statistics for
the problem. In this ideal case, the scattering does not change with translation because
the receiver is in the specular reflection direction and all the terms which vary when the
surfaces moves cancel out. The specular or invariant energy can be shown to be:

Espec �
�����A0

XNp

np¼1

XN
n¼1

e�2jkdn

�����
2

ð4:11Þ

where A0 is a constant.
The invariant energy is put in a ratio with the energy from a flat plane surface for

normalization purposes [10]. This then gives a specular reflection coefficient, Rspec:

Rspec ¼

�����A0 P
Np

np¼1

PN
n¼1

e�2jkdn

��������A0NpN
���2

2

ð4:12Þ

This then represents the proportion of energy that is reflected in a specular manner by
the surface, and so the scattering coefficient can be readily evaluated:

s ¼ 1�
�����1N
XN
n¼1

e�2jkdn

�����
2

ð4:13Þ

The scattering coefficient is independent of angle of incidence, and so averaging over
multiple angles of incidence is not needed. Consequently, applying Paris’ formulation
to Equation 4.13 would yield a random incidence coefficient numerically identical to
the free-field case. This is similar to the prediction model produced for Gaussian
rough surfaces by Embrechts et al. [33].

Equation 4.13 shows that to get the greatest scattering, the sum of the reflection
coefficients (e�2jkdn) must be evenly spaced around the unit circle. This is achieved
for the modified versions of the primitive root diffuser [34, 35] at integer multiples
of a design frequency as discussed in Chapter 9. This is illustrated in Figure 4.26 (the
line labelled correlation scattering coefficient can be ignored for now). At multiples
of the design frequency, the scattering coefficient using Equation 4.13 is one. (Except at
the flat plate or critical frequency of (N�1)f0¼ 3 kHz.) This complete scattering at
the design frequency and multiples thereof, simply means no energy is in the specular
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direction, it does not necessarily say how good the dispersion produced is. This is why
diffusion coefficients are numerically less than the free field scattering coefficient.

The free field scattering coefficient is given by the sum of the reflection coefficients
squared – there is no dependence on the order of the wells in the diffuser. Although
the distribution of polar response energy changes with the order of the wells, the
energy actually moved from the specular reflection direction does not. Consequently,
while the diffusion coefficient will vary if the order of the wells is changed, the
scattering coefficient will not. This is another illustration of why the diffusion coeffi-
cient is a more strict test of diffuser quality.

4.6 From polar responses to scattering coefficients, the correlation
scattering coefficient

Mommertz presented a method for evaluating a scattering coefficient from polar
responses. This correlates the scattered pressure polar responses from the test surface
and a reference flat surface [36] to give a scattering coefficient. This will be called the
correlation scattering coefficient �c. The coefficient is given by:

�c ¼ 1�

���Pn
i¼1

p1ð�iÞp*
0ð�iÞ

���2
Pn
i¼1

��p1ð�iÞ
��2Pn
i¼1

��p0ð�iÞ
��2 ð4:14Þ

where p1 is the pressure scattered from the test surface, p0 the pressure scattered from
the flat surface, *denotes complex conjugate, �i the receiver angle of the ith measure-
ment position, and n the number of measurements in the polar response.

An alternative description of this coefficient was given by Embrechts et al. [33] who
described it in terms of an LMS problem, which might be a more familiar description
to anyone with a signal processing background.
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Figure 4.26 Various scattering and diffusion coefficients for a primitive root diffuser with a
design frequency of 500Hz. – – – – – – – – Scattering coefficient using Equation
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cient, plane surface; Correlation scattering coefficient (modified
from Cox and D’Antonio [32]).
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This is not the same as the ISO coefficient or the free field scattering coefficient.
This is illustrated in Figure 4.26 where the scattering coefficient from Equation 4.13
is compared to the correlation scattering coefficient for a primitive root diffuser. This
difference arises because the coefficient definition is different. The free field Mom-
mertz and Vorländer method measures the amount of energy moved from the specular
direction when the surface is moved, the correlation scattering coefficient measures
the dissimilarity between the test and flat surface scattering over a polar response. In
the case of randomly rough surfaces, the two coefficients probably are similar, but for
diffusers with distinct polar responses, this is not the case.

Although the correlation scattering coefficient is not identical to the ISO scattering
coefficient, it does illustrate and help contrast the performance of diffusion and scatter-
ing coefficients [32]. One useful property of the correlation scattering coefficient is that
it is readily predicted. Consequently, it is possible to compare prediction and measure-
ment in a 2D polar response for a single cylinder and a set of cylinders. Predictions were
carried out using a BEM (Chapter 8), and measurements in a 2D goniometer (Section
4.1). Figure 4.27 compares the predicted and measured correlation scattering coeffi-
cients and a good match is achieved. This provides evidence that the coefficient can be
predicted and that the measurement system used is robust. It was feared that the
measurement system might have difficulties as accurate magnitude and phase is needed,
but this did not occur. Problems might occur, however, in measurements where exact
microphone position replication is not achieved, for example if a moving boom arm is
used, or where time variance cannot be maintained between the reference surface and
diffuser measurements.

A sample of a single plane QRD1 has also been tested at 1:5 scale. One period of the
sample is shown as an insert in Figure 4.25. About four periods were used in the final
sample. The sample was measured in the 2D goniometer first with the QRD wells
perpendicular to the measurement arc, and then with the wells parallel to the measure-
ment arc. For each sample orientation, three incidence angles (0�, 30� and 60�) were
measured. These measurement results were then averaged to give an approximate random
incidence coefficient. A similar sample was measured using the ISO method in a model
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reverberation chamber. The results are compared in Figure 4.28. There is reasonable
correspondence between the two measured results, though in two frequency bands the
results are significantly different. For example, for the 3.2kHz octave band the random
incidence measurements exceeds 1, something that cannot happen with the correlation
scattering coefficient (The frequency of the octave band is non-standard because of scaling
from model scale measurements.). Considering one measurement is done in a diffuse field
and the other in the free field; however, the match is actually quite good, better than many
have obtained when diffuse and free field absorption coefficients are compared.

Also shown in Figure 4.28 is the scattering coefficient predicted using the simplest
Fourier model, Equation 4.13. The prediction accuracy is surprisingly good consider-
ing that the Fourier theory makes many assumptions which are not entirely correct for
this type of surface.

Figure 4.28 also shows the diffusion coefficient for the diffuser and a plane surface.
This is a single plane measurement in the plane of maximum diffusion. In this case the
scattering and diffusion coefficients agree as to the frequency at which significant
scattering/diffusion begins (�500 Hz). Again, the diffusion coefficient is numerically
less than the scattering coefficients as discussed earlier.

The polar response measurement system can also be used to illustrate some other
key differences between scattering and diffusion coefficients. For example, in Section
4.4.1 the case of redirection was discussed. Another example is shown in Figure 4.29;
this illustrates the effects of a focussing surface. The surface is designed to focus the
sound on one microphone in the receiver arc. The diffusion coefficient interprets
the focussing surface as being worse at diffusing sound than the plane surface. The
correlation scattering coefficient, however, interprets the focussed polar response as
being different from the plane surface and interprets this as being increased scattering.
This illustrates that scattering coefficients should not be used to interpret single surface
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items, but should only be used for large surfaces with roughness. Furthermore, it shows
that when evaluating diffusion coefficients it is necessary not only to test the far field
but also to test at receiver positions where aberrations such as focussing may occur.

4.6.1 Scattering coefficient table

Appendix C gives a table of scattering coefficients for single plane diffusers. Some
details of the geometry were given in Section 4.4.4, along with the rationale behind the
choice of surfaces used in the prediction. The table includes all the surfaces included in
the diffusion coefficient table, except hybrid surfaces. The formulation for the correl-
ation scattering coefficient needs to be revised for surfaces which partially absorb,
because the current formulation interprets any absorption as being scattering.

The random incidence values tend to have raised values at low frequencies, espe-
cially for deep surfaces; values of up to 0.2 at 100 Hz are measured for many surfaces.
At oblique incidence, edge scattering becomes important, and the edges of the test
samples are very different from the reference flat surface. Furthermore, because the
rear of the test surfaces was not enclosed in a box, the scattering from the rear of the
surface may also be having some effect.

0

0.2

0.4

0.6

0.8

1

100 160 250 400 630 1000 1600 2500 4000

f (Hz)

S
ca

tte
rin

g/
di

ffu
si

on

60

30
0

30

60

90 90
0 20 40dB

Figure 4.29 Top, polar responses for: Flat surface; Concave
sample; Bottom, diffusion and scattering coefficients for these two
samples: –– – –– – – Correlation scattering coefficient, concave sample;

Diffusion coefficient, plane surface; - - - - - - - - Diffusion coef-
ficient, concave sample.

Diffuse reflections or scattering 123



The scattering coefficient does not discriminate between different diffusers in a
consistent manner – see the values for the optimized curved surfaces compared to the
semi-ellipses, for example. The coefficient also interprets redirection as scattering. For
instance, a 45� triangle returns a strong reflection back to a normal source as
discussed in Chapter 10, yet the scattering coefficient interprets this as dispersion.
Nevertheless, this is the first published table of scattering coefficients and can be used
by geometric room acoustic modellers as discussed in Chapter 12.

4.7 Contrasting diffusion and scattering coefficient: a summary

The scattering coefficient method gives a quick and rough estimate of the scattering
process. It should not be used to evaluate the worth of surfaces when designing or
specifying diffusers. The scattering coefficient is only concerned with how much
energy is moved from the specular direction, it does not measure the quality of
dispersion. For this reason, diffusing surfaces need to be evaluated using the diffusion
coefficient when the quality of scattering is important. The diffusion coefficient
should not, however, be blindly used in geometric room acoustic models as its
definition is not compatible with the surface scattering models used in current geo-
metric algorithms.

There are many issues surrounding these coefficients that remain to be resolved.
One common question is whether there is a direct link between the coefficients and a
physical property of the space. This arises because practitioners are used to a direct
link between the absorption coefficient and the reverberation time. For diffusion and
scattering there is no simple relationship, but maybe future research should include
investigating what relationships, if any, exist between these coefficients and the room
acoustic quality.

4.8 Other methods for characterizing diffuse reflections

There have been other methods developed to characterize the scattering from sur-
faces. They are noted here because they may yet develop into practical and used
processes. The first method is a pragmatic approach, which has similarities to in situ
absorption method – maybe it will be developed into an in situ measurement method
for diffusion coefficients. The second method tries to characterize the effect of diffuse
reflections by investigating the change in diffuseness of a space.

4.8.1 Measuring scattering coefficients by solving the inverse problem

This method was developed and published by Farina [37]. In the description below,
the general principle is discussed so that readers can get a sense of the process used.
What is presented here is a variation on Farina’s approach rather than a slavish
following of his exact methods.

The sound field in the vicinity of a diffuser is measured using a deterministic signal
to gain the impulse response. It is necessary to make the measurements over many
different spatial positions, these could be on an arc, as was done for the diffusion
coefficient measurement, or if more convenient these can be done on a straight line
parallel to the diffuser surface. The reflected impulse response is isolated by time
windowing, as was done in Section 4.1, and then the frequency response found by
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using a Fourier transform. The frequency response is then normalized to a measure-
ment of the incident sound field without the diffuser present to make the measure-
ment independent of the source frequency response and sound power level.

The process is to predict the measured scattering from the surface using a geometric
model and compare the predicted and measured polar response. The scattering and
absorption coefficients within the geometric model are varied until the error between
the predicted and measured polar responses is minimized. This is a trial and error
process that can be automated using a numerical optimization technique similar to
that used to design diffusers in Chapters 9 and 10. A computer is tasked to search for
the scattering and absorption coefficients which gives the least mean square error
between the measurement and prediction. Actually, the number of combinations to be
tried is small if we assume the absorption and scattering coefficients only need to be
varied in increments of say 0.01, and consequently, it is possible to just do an
exhaustive check of every possible combination.

This is a pragmatic approach to finding scattering coefficients. This process will
probably give the scattering coefficient most appropriate within the geometric model
for randomly rough surfaces. Problems may arise because the scattering coefficient
will be dependent on the geometric model used, so this does not give a robust
parameter for all models. The method lacks a fundamental theoretical basis, but is
a possible engineering solution to obtaining the coefficients. The coefficient will only
be as useful as the quality of the geometric model’s diffuse reflection algorithm.

The problem arises when the scattered polar response does not match well any of
the possible polar responses generated by the geometric model. Although Farina’s
paper shows good matches being achieved, many other diffusers have responses
which do not match geometric models well. For instance, polar responses with a
small number of distinct lobes, like Figure 10.11, are polar responses unlike anything
that a geometric model will produce. In this case, the best matched scattering coeffi-
cient will turn out to be nonsensical. This will happen with periodic devices at low- to
mid-frequencies, as well as triangles and pyramids. This could be cured, however, by
using a more accurate dispersion patterns in the geometric model.

A further problem is there may be ambiguity between the effects of scattering and
absorption. There may be several good fits to the polar response, resulting from
different combinations of absorption and scattering coefficients. Within experimental
error, there will be a range of possible coefficients which could be used.

4.8.2 Room diffuseness

When surface diffusers are applied to a non-diffuse space, the volume diffuseness of
the room will alter. Consequently, by measuring acoustic characteristics of a room
before and after diffusers are introduced, it is possible to try and infer the scattering
coefficient of the diffusers by the effect they have on the volume acoustic [31].

Consider the room shown in Figure 4.30a. It is a reverberation chamber with one
wall covered in highly absorbent material. This is a highly non-diffuse space, for
example the sound decay will be non-linear. If a diffuser is placed on another surface,
Figure 4.30b, then the diffuser will scatter sound onto the absorbent, the reverber-
ation times in the room will decrease, and the sound decays will become more linear.
The issue here, is what is the appropriate volume characteristic of the space to
measure to monitor the change in diffuseness.
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A pragmatic approach, very similar in philosophy to Farina’s method from the
previous section, would be to use a geometric model to predict the sound field in the
space. The geometric model is used to predict the acoustic in Figure 4.30a without
diffusers, and this then enables the absorption of the walls of the reverberation chamber
to be set by adjusting the values in the model until measurement and prediction match.
Reverberation time would be an appropriate parameter to monitor. Then the diffusers
are introduced. Again the model is tuned, this time changing the absorption and scatter-
ing coefficients on the floor, until the best match between measurement and predic-
tion is obtained. This process has the same disadvantages as that outlined for Farina’s
method in the previous section. The ambiguity between scattering and absorption
is greater as both affect the reverberation time. But most troublesome is the reliability
and robustness of the geometric model used. These models are most problematical
in non-diffuse spaces, which is exactly the test space deliberately created.

Is it possible to do the measurement without a geometric model by just monitoring
the reverberation time? The largest reverberation time obtained is for the test room
before diffusers are applied, Figure 4.30a. This is the case where the floor has a
scattering coefficient of zero. If it was possible to obtain a lower limit for the reverber-
ation time with diffusers present, the lowest achievable reverberation time when the
maximally diffusing diffuser is applied, then this could be equated to a scattering coeffi-
cient of 1 for the floor. It would be straightforward to obtain a scattering coefficient
from the actual measured reverberation time with a test sample by simple scaling. The
problem, however, is obtaining this lower bounding limit. In theory, this limit would be
the reverberation time predicted by Eyring’s equation, but this can only be achieved if
diffusers are applied to at least three surfaces, so that no surface and its opposite pair
are untreated. For this reason, to carry out such a test method would involve large
quantities of surface diffusion, far more than would be practical.

4.9 Summary

This chapter has mapped out some of the measurement techniques used for diffuse
reflections. It might be anticipated that the use of scattering and diffusion coefficients
might increase in the future as practitioners want quantifiable evidence of how
surfaces scatter and better predictions from geometric models. Having two coefficients

(a) (b)

Figure 4.30 (a) A reverberation chamber with one wall made of absorbent (shown
shaded) (b) Chamber with test sample on floor.
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gives potential for much confusion, and it is important that practitioners and
researchers are educated as to the difference, as using the wrong coefficient could
lead to poor predictions or bad design.
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5 Porous absorption

Typical porous absorbers are carpets, acoustic tiles, acoustic (open cell) foams,
curtains, cushions, cotton and mineral wool. They are materials where sound
propagation occurs in a network of interconnected pores in such a way that
viscous and thermal effects cause acoustic energy to be dissipated. As discussed
in Chapter 1, they are used widely to treat acoustic problems, from reducing
resonances in double partition cavities to improve sound insulation, to their appli-
cation to absorb noise and reduce sound levels in factories. This chapter will detail
the physical processes producing the absorption and theoretical models for predict-
ing absorption properties.

The first section gives a qualitative description of the use of porous absorbers; this
will be followed by some example materials in Section 5.2. These materials range
from standard well-known materials, such as mineral wool, to more recent develop-
ments, such as absorbent plaster systems. Section 5.3 and onwards then outlines the
methods needed to predict the absorption from this type of absorber. The theoretical
sections start by outlining how the sound propagation within a porous absorbent
might be modelled in terms of characteristic acoustic parameters of the material.
There are empirical and semi-empirical approaches, and both are detailed. The
chapter then proceeds to show how these acoustic parameters are combined with
mounting conditions, to enable the absorption coefficient and surface impedance to
be predicted, which is ultimately what is required in design.

5.1 Absorption mechanisms and characteristics

When sound propagates in small spaces, such as the interconnected pores of a porous
absorber, energy is lost. This is primarily due to viscous boundary layer effects. Air is
a viscous fluid, and consequently sound energy is dissipated via friction with the pore
walls. The boundary layer in air is sub-millimetre in size, and consequently viscous
losses occur in a sub-millimetre-sized air layer adjacent to the pore walls. As well as
viscous effects, there will be losses due to thermal conduction. For the absorption
mechanisms to be effective there must be interconnected air paths through the surface,
so an open pore structure is needed. The difference in construction between an open
and closed pore system is shown schematically in Figure 5.1 [1].

Figures 5.2 and 5.3 show the absorption coefficients for two porous absorbers
illustrating the effect of material thickness. The porous absorber is mounted on a rigid
backing. These curves follow the characteristic shape of porous absorption coeffi-
cients, a high pass filter response, although the curves can shift in frequency and move



up and down in absorption depending on the characteristics of the particular material
and mounting.

As the porous absorber thickness increases, the absorption at low frequency usually
increases. For the porous absorber to create significant absorption, it needs to be
placed somewhere where the particle velocity is high. The particle velocity close to
a room boundary is usually small, and so the parts of the absorbent close to the
boundary are not generating much absorption. It is the parts of the absorbent furthest
from the backing surface which are often most effective, and this is why thick layers of
absorbent are needed to absorb low frequencies.

For low frequencies, where the wavelength is large, one has to go a considerable
distance from the wall to reach a point where the particle velocity is significant.

Figure 5.1 Illustration of the difference between closed (top) and open (bottom) pore
structures (adapted from Cremer and Müller [1].
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A rough figure sometimes quoted is that the absorbent needs to be at least a tenth of a
wavelength thick to cause significant absorption [2], and a quarter of a wavelength to
absorb all the incident sound. Consequently, substantial absorption cannot be
achieved by simply applying some thin layer of paint. As the absorbent very close to
the boundary is absorbing relatively little, it is possible to simply space porous
absorbers away from a wall and get good performance. Figure 5.3 shows a simple
way of achieving this by shaping acoustic foam into a rough sinusoidal shape [3]. The
acoustic absorption achieved is also given.

The need for significant thickness compared to wavelength makes porous absorbers
inefficient and not particularly useful at low frequency. At low frequencies, resonant
absorption will produce greater absorption from a given depth as discussed in Chapter
6, or maybe this can be achieved through active absorbers as discussed in Chapter 13.
To get broadband passive absorption across the frequencies of most interest to human
acoustic design, usually requires a combination of resonant and porous absorption.

5.1.1 Covers

Often porous absorbers are covered by a thin membrane; this might be achieved by
wrapping the material in thin plastic or similar. This is done to prevent the absorber
being damaged or to stop fibres from the absorber being lost. The effect of the
membrane will be to reduce the high frequency absorption. At low frequencies, the
membrane’s acoustic mass is small and the sound passes through the membrane
largely unaltered – although a small increase in absorption due to the added mass
of the membrane may occur. At high frequencies, however, the membrane’s acoustic
mass is high and it will prevent some or all of the acoustic energy entering the porous
absorber. This membrane effect is why porous absorbers should not be painted except
with a non-bridging paint. Most paints will block the pores, prevent sound energy
entering the structure and so reduce the absorption. Consequently, porous absorbent
is often finished by cloth wrapping.

Another surface treatment used for protection is to place the porous material
behind perforated panels. If the perforated sheet does not have a very open structure,
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with a large per cent open area, the mass effect of the holes will mean that the
absorption increases at low frequency, but decreases at high frequency. Although it
is commonly quoted that a greater than 20 per cent open area means that the perforated
sheet has no effect [4], the results for hybrid diffuser-absorbers given in Chapter 11
illustrate that even a 50 per cent open area perforated sheet can have a significant effect
on absorption. The transfer matrix techniques outlined in Chapter 6 can be used to
predict the effects of perforated sheets on absorption. For membrane-wrapped porous
material behind a perforated sheet, it is important that the membrane and perforated
sheets are not in contact, otherwise the absorption is decreased [4].

5.2 Material types

5.2.1 Mineral wool and foam

There is a bewildering array of materials available for porous absorption. Mineral
wool is made from sand, basaltic rock, recycled glass, etc. The raw materials are
melted at high temperature and then spun or pulled into woolly filaments. These are
then bonded together to give the product its physical shape, with roughly 1–5 per cent
of the final product weight being binder [5]. Glass fibre is made up of the same raw
ingredients as normal glass: sand, limestone, soda ash, etc.; and the manufacturing
process is similar to rock or basalt wool, although rock and basalt wool products tend
to be heavier. The acoustic absorption achieved is determined by the fibre compos-
ition, fibre orientation, fibre dimensions, product density, and the quantity and nature
of the binder used. The mineral wool can be in the form of semi-rigid boards or loose
blanket. Compressed mineral fibreboard is the basis of the ubiquitous absorbing
ceiling tiles mounted in t-bar grids.

The acoustic performance of mineral wool can vary with density, and for low
densities the high frequency absorption performance can be reduced. Man made
mineral wools are cheap to manufacture and can be partially recycled. Mineral wool
is often laid down in layers and so is anisotropic. For this reason, the acoustic proper-
ties vary depending on whether sound is incident parallel or perpendicular to the fibres.

There have been some concerns about the long-term health effects of man-made
mineral fibres (MMMFs), concerns which have helped develop a market for non-
MMMF and fibreless absorbers. MMMFs are known to be irritants, causing skin, eye
and upper respiratory tract irritation; the irritation is usually caused by mechanical
action rather than an allergic reaction. Small diameter fibres have been shown to be
carcinogenic in animals, but these results cannot be directly extrapolated to human
exposure [6]. The USA National Institute of Occupational Safety and Health
(NIOSH) recommends precautionary measures in light of the uncertainty concerning
the scientific evidence. Member States of the European Community have agreed that
some forms of MMMFs (<6mm diameter) should be classified as category 3 carcino-
gens under the terms of the Dangerous Substances Directive [7]. Although potentially
a carcinogen, it is currently believed that the risk when exposure is taken into account
is small. The UK Department of Health’s Committee on the Carcinogenicity in Food,
Consumer Products and the Environment [8] reviewed epidemiological data from a
study involving workers at several factories producing MMMFs and experimental
data from animal studies designed to assess the carcinogenic potential of some types
of MMMFs. Overall, they concluded that there was no clear evidence to indicate the
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carcinogenicity of MMMFs but, in view of some uncertainties, recommended that it
would be prudent to assume high exposures might pose a risk of lung cancer in
workers. Europe wide epidemiological studies of workers involved in the production
of MMMFs are ongoing. To date, these have not provided any clear evidence for the
carcinogenicity of MMMFs in the workplace. A great deal of research effort world-
wide is being directed to designing laboratory tests predictive of potential toxicity and
carcinogenicity of MMMFs.

Foams can have open or closed cell structures. With open cell structures the pores
are interconnected and significant acoustic absorption can result. Closed cell struc-
tures, on the other hand, do not permit the passage of sound and so the absorption is
rather low. It is possible, however, to perforate closed foam structures at the end of
manufacture and so provide moderate absorption by interconnecting the pores. Con-
sequently, it is important to check that acoustic foam is used where absorption is
needed. The fire rating of acoustic foams needs to be checked, especially when they
are used in buildings.

5.2.2 Recycled materials

There is great interest in trying to make acoustic absorbers from recycled materials,
whether that be recycled cloth, metal, foams, wood, plastics or rubber. To take one
example, researchers have been investigating recycling tyres as acoustic absorbers [9].
The hope is that the elastic properties of the material will also enable the rubber to
cushion the effects of crashes if these are used in roadside barriers. The other
advantages that tyres offer are that they can be painted, and will survive the harsh
environment around roads better than standard fibrous materials. The rubber is
broken up into small granules, and these are then bonded together with a binder.
The key is to use enough binder to hold the granules together without blocking the air
pores, which are crucial to absorption, and to get the right grain size and shape. To
take another example, Swift and Horoshenkov [10] showed that loose granulated
mixes of waste foam with particles sizing <5 mm, can be pressed into consolidated,
elastic, porous media with a high proportion of open and interconnected pores and
good absorption properties. Pfretzschner [9] tested rubber granular diameters ranging
from 1.4 to 7 mm. An example of the typical absorption coefficients is shown in
Figure 5.4, mostly measured in an impedance tube. They found that for a given
sample thickness, the absorption coefficient increases when the diameter of the grains
decreases.

The behaviour of granular materials is different from fibrous ones such as mineral
wool. Differences arise because grains pack together differently from fibres, usually
resulting in a lower porosity for granular materials in comparison to fibrous ones. In
terms of absorption, the absorption is much more uneven in frequency for granular
materials than for fibrous materials as shown in Figure 5.4 in comparison to Figures
5.1 and 5.2. There is a critical thickness for the granular material, beyond which
additional thickness does not increase absorption. The broadband absorption for
thick samples of the granular material shown in Figure 5.4 is limited to around 0.8,
whereas with fibrous absorbent, the value would tend to unity. Consequently, mineral
wool will often give better acoustic absorption, but the recycled granular materials
might be favoured for other reasons such as sustainability. The performance of the
recycled absorber can be improved by forming wedges rather than flat boards.
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Also included in Figure 5.4 is a prediction of the absorption coefficient using a
complicated porous absorber model. This shows that good results from such theories
can be obtained, and a similar theory is outlined later in this chapter.

5.2.3 Curtains (drapes)

Curtains or drapes are essentially porous absorbers. Most of the time, the deeper the
folds, the greater the absorption [11], as this means there is more resistive material,
and the resistive material is further from the rigid backing where the particle velocity
is greater. This is illustrated in Figure 5.5 where the same curtain is hung to different
fullness. It is also possible to increase the absorption by hanging the curtain away

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

f (Hz)

ab
s.

 c
oe

ff

5cm

5cm predicted

30cm

60cm

Figure 5.4 Absorption from granulated rubber 1–3mm in size for different thicknesses.
Measured in the impedance tube unless otherwise indicated in legend (modi-
fied from Pfretzschner [9]).
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Figure 5.5 Curtain (drape) absorption with different fullness of draping (data from
Harris [11]).
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from the rigid surface and so placing the resistive material where the particle velocity
is higher, and hence producing more absorption. Increasing the density of the material
generally increases the absorption produced [12] as shown in Figure 5.6. Appendix A
gives further typical absorption coefficients for curtains, showing that the absorption
coefficient varies greatly depending on the type of curtain and mounting.

5.2.4 Carpets

If present, carpet usually contributes a large proportion of the high frequency absorp-
tion present in a room. The amount of absorption created depends on the type of
carpet and also the underlay used [11, 13]. Essentially, the carpet is a porous absorber,
and so it has little absorption at low frequencies, but significant absorption at high
frequencies. If the underlay is open celled, then its presence increases the thickness of
the absorbent layer, and so increases the absorption generated. Some underlay types
are open celled, such as old-fashioned felt hair and foam rubber. Sponge rubber,
however, can be open or closed cell. The absorption generated is also very dependent
on the type of carpet, for instance the way the pile is constructed. Appendix A gives a
large number of absorption coefficients for different carpet types taken from litera-
ture. Everest notes [13] that the absorption coefficients reported for carpet vary quite
considerably between different publications. This is illustrated in Figure 5.7, where the
variation in absorption coefficients in the literature is shown as the minimum, mean
and maximum found. This emphasizes the need for measurement of the carpet to be
used, rather than assuming that an average value from the literature will be accurate.

5.2.5 Absorbent plaster

Acousticians have long sought an absorptive, smooth, seamless and durable plastered
finish to satisfy the aesthetic requirements of architects and interior designers. Archi-
tects more often than not prefer their acoustic treatment to be hidden and certainly
not defining the visual aesthetic. A system which achieves this is BASWA1phon. A
photo showing BASWA1phon applied to a ceiling was given in Figure 1.1.
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Figure 5.6 Curtain (drape) absorption for different weight material (data from Beranek [12]).

Porous absorbers 135



The key ingredient of the system is a proprietary emulsion of spherical mineral
particles, which form a micro-porous membrane to be used on top of mineral wool.
The trick is formulating and applying the plaster in such a way that the structure has
open pores to allow sound energy to reach the mineral wool. This is achieved using
spherical granules which will naturally form an open structure, and a binder that does
not clog the pores. A succession of layers is applied, with the granule size decreasing
with each layer. Figure 5.8 shows the construction. The top layer granules are so small
that they provide the appearance of a smooth, seamless conventional gypsum-
plastered surface. In fact, the top layer does seal the surface a little and acts as a thin
membrane. As might be expected this produces additional low frequency absorption,
but at the cost of a little loss of absorption at high frequencies, in comparison to the
mineral wool alone. The absorption coefficient for the plaster system is shown in
Figure 5.9 for two different thicknesses. The main disadvantage of this system is that
it is slow to apply, and has to be applied on site, which can be a problem on building
projects when completion times can be very short.
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Figure 5.7 The minimum, mean and maximum values for carpet absorption from literature.

Figure 5.8 A proprietary system for achieving a flat porous plaster. The right sample
shows the different layers of plaster which are used (photo courtesy of
BASW Aacoustic, AG).
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5.2.6 Coustone or quietstone

Porous absorbers tend to be soft and prone to damage, for instance most do not survive
repeated soakings. There is a need for a material which provides absorption and allows
washing. Such an absorbent is coustone (also sold as quietstone). The ability to be
washed means that coustone can be used in places such as swimming centres, police
interview rooms and firing ranges. The absorbent is a rigid hard wearing material with
a granulated surface. It is constructed from bonded flint in such a way as to keep the
structure open and so allow absorption. It is heavy so it can also provide good sound
insulation, but the weight also means that it can be expensive to use.

Coustone is formed by bonding flint aggregate together with a resin. Flint aggregate
around a millimetre in size has a particular shape that means when bonded together
with the right resin, it forms an open pore structure. The cavities formed are of the
order of millimetres in size. Furthermore, the pores are very irregularly shaped and
joined; consequently the tortuosity is high. (Tortuosity, as the name suggests, is a measure
of how tortuous the air paths are within the absorbent, and this influences the amount of
absorption produced.) The high tortuosity is key to the high absorption; other aggregates
form different pore shapes absorb less efficiently. The resin must have the right proper-
ties. It must not fill the cavities, yet be strong enough to hold the absorber together. The
resin is also elastic, and so coustone can offer a degree of vibration isolation.

Figure 5.10 shows typical absorption coefficients under different conditions. The
material behaves like a porous absorber. Consequently, it can be spaced from walls to
produce additional absorption by moving it away from where the particle velocity is
low. It can also be backed by mineral wool to provide additional absorption at a lower
cost and with less weight.

5.3 Basic material properties

The rest of this chapter is devoted to the mathematical modelling of porous absorbents;
given a particular material, how can the surface impedance and absorption coefficient be
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Figure 5.9 Absorption coefficient for an absorbent plaster system for two different
thicknesses (data courtesy of BASWAacoustic, AG).
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estimated? The mathematical models also give insight into how absorption is produced,
and enable better designs to be produced. But first it is necessary to set down the
two most important and fundamental quantities that determine the acoustic behaviour
of sound within porous absorbents, namely flow resistivity and porosity.

5.3.1 Flow resistivity

The flow resistivity is a measure of how easily air can enter a porous absorber and the
resistance that air flow meets through a structure. It therefore gives some sense of how
much sound energy may be lost due to boundary layer effects within the material.
A slice of the porous material of thickness d is subject to a mean steady flow velocity
U. It is assumed that the flow velocity is small. The pressure drop �P is measured.
From these quantities the flow resistivity � is defined as:

� ¼ �P

Ud
ð5:1Þ

The flow resistance �s is defined as:

�s ¼ �P

U
¼ �d ð5:2Þ

The flow resistivity is effectively the resistance per unit material thickness. If the flow
velocity is not small, then non-linear factors must be considered.

It is important to check the units used with flow resistance and resistivity as two
systems have been in use. The unit of flow resistance in MKS units is Nm�3 s, often
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Figure 5.10 Random incidence absorption coefficient from a bonded flint absorbent.
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courtesy of Sound Absorption UK Ltd).
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referred to as one rayl, and should nowadays be used. Older texts may use CGS rayls.
To convert a CGS rayl to MKS rayl multiply by ten.

The flow resistivity is one of the most important parameters determining the
absorption properties of a porous absorber – if not the most important. It is the
parameter that varies most between common porous absorbent materials, and so is
the most important to determine. Chapter 3 details how this is measured.

There are several empirical and semi-empirical formulations in the literature that
can be used to estimate the flow resistivity. For fibreglass, the following empirical
relationship derived by Bies and Hansen can be used [4, 14]:

� ¼ 27:3ð1� "Þ1:53 �

4a2

 �
ð5:3Þ

where a is the fibre radius, � the viscosity of air (1:84� 10�5 poiseuille) and " the
porosity, which is defined in the next section. For mineral and glass fibre, diameters
are typically 1–10mm. Bies and Hansen showed that fibrous materials have an
approximately linear relationship between flow resistivity and density, but this is
not necessarily true for foam. For fibrous materials, Bies and Hansen measured
samples with resistivity values ranging from 2,000 to 200,000 rayl m�1, and for
one type of foam with flow resistivity between 2,000 and 40,000 rayl m�1.

Mechel [5] reports findings attributed to Sullivan, unfortunately reference
unknown, giving an empirical relationship for flow resistivity. First consider parallel
fibre materials with all fibres having the same radii. The flow resistivity parallel to the
fibres is given by:

� ¼
3:94�ð1� "Þ1:413 1þ 27ð1� "Þ3

h i
a2"

ð5:4Þ

The flow resistivity perpendicular to the fibres is given by:

� ¼ 10:56�ð1� "Þ1:531

a2"3
6 � a � 10 mm

¼ 6:8�ð1� "Þ1:296

a2"3
20 � a � 30 mm ð5:5Þ

Semi-empirical results for materials made with a single fibre radius, but with random
fibre orientation give the flow resistivity as:

� ¼ 4�

a2

0:55ð1� "Þ4=3
"

þ
ffiffiffi
2
p ð1� "Þ2

"3

" #
ð5:6Þ

For random fibre radius distribution with a mean radius of a, and random fibre orienta-
tion, empirical data gives the flow resistivity as:

� ¼ 3:2�ð1� "Þ1:42

a2
fibreglass

� ¼ 4:4�ð1� "Þ1:59

a2
mineral fibre ð5:7Þ
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Unfortunately, the range of applicability of the models is unknown, but it is probably
safe to assume that the fibre diameters and types were typical of commercial materials
made from man-made mineral fibres.

The above models are mostly empirical, and so will not necessarily work for
materials with different construction. For instance, Garai and Pompoli [15] examined
polyester fibrous materials and found the formulation of Bies and Hansen inaccurate
as the diameters of their polyester fibres (33 mm) were considerably larger than the
samples tested by Bies and Hansen. For Garai and Pompoli samples, the following
empirical relationship was derived:

� ¼ 28:3� 10�9

ð2aÞ2 ��1:404
ð5:8Þ

where � is the density.

5.3.2 Porosity

Porosity gives the fractional amount of air volume within the absorbent. It is a ratio
of the total pore volume to the total volume of the absorbent. Good absorbers tend
to have high porosity, for example most mineral wools have a porosity of about
0.98, but in designing an absorber, it is possible to trade off porosity against flow
resistivity (and to a lesser degree the structural factors outlined later). When
determining the porosity, closed pores should not be included in the total pore
volume as these are relatively inaccessible to sound waves (closed pores are most
commonly found in foams, even ones designed to be open celled). The porosity is a
key parameter, but for commonly used bulk absorbing materials, the value of
porosity does not vary greatly being close to unity. Table 5.1 gives some typical
porosity values.

Table 5.1 Typical porosity values for some
materials from References 5 and 1

Material Typical porosities

Mineral wool 0.92–0.99
Open cell acoustic foams 0.95–0.995
Felts 0.83–0.95
Wood fibre board 0.65–0.80
Wood wool board 0.50–0.65
Porous render 0.60–0.65
Pumice concrete 0.25–0.50
Gravel and stone chip fill 0.25–0.45
Ceramic filters 0.33–0.42
Brick 0.25–0.30
Sinter metal 0.10–0.25
Firebrick 0.15–0.35
Sandstone 0.02–0.06
Marble �0.005
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5.4 Modelling propagation within porous absorbents

The modelling of the propagationwithin a porous absorbent is difficult. Two approaches
are found to be most useful. The first is a completely empirical approach as exemplified
by Delany and Bazley. They measured a large number of samples of porous material
and used curve fitting to arrive at relationships describing how the characteristic
impedance and propagation wavenumber vary with flow resistivity. When applied to
an existing material, this type of empirical technique is the simplest to apply and can be
most effective. It is detailed in Section 5.4.1.

A second approach to modelling porous absorbent is to formulate the problem
using a semi-analytical approach. For instance, the propagation within the pores can
be modelled in a semi-analytical way by working on a microscopic scale. This
approach results in complicated theoretical models, of which there are several vari-
ants in the literature. This approach is not for the faint hearted, and runs into
difficulty because it is not possible to analytically derive all the necessary parameters
within the models for most porous absorbents. In particular, factors related to the
pore shapes are difficult to obtain except empirically. Consequently, the verification
of the accuracy of the model is rather circular as measurements are needed to tune the
model, and then the same measurements are sometimes used to show that the theory
worked! This is not very satisfactory. Nevertheless, it is this type of modelling which
holds the best chance of enabling the development of new porous absorbers to be
undertaken without resorting to a completely experimental approach. Section 5.4.2
details some of the additional material properties that are needed in this approach,
and Section 5.4.3 gives details of some of the models for rigid-framed materials.

Readers looking for a simple solution to porous absorber modelling are advised to read
Section 5.4.1 and to use an empirical approach, before skipping to Section 5.5 to see how
these empirical models can be applied to predict the absorption of finite absorbent layers.

5.4.1 Macroscopic empirical models such as Delany and Bazley

When predicting the absorption of porous absorbents, it is necessary to know the
characteristics of the material in terms of the characteristic impedance and (complex)
wavenumber. These empirical models take a macroscopic view of the propagation, as
the details of propagation through every pore are not considered, and the impedance
and wavenumber are found empirically. For fibrous absorbent materials, Delany and
Bazley [16] undertook a large number of impedance tube measurements and derived
empirical relationships relating the impedance and wavenumber to the flow resistiv-
ity. These relationships are widely used as they give reasonable estimations across
quite a wide frequency range.

The characteristic impedance, zc, is given by:

zc ¼ �0c0 1þ 0:0571X�0:754 � j0:087X�0:732
! " ð5:9Þ

and the wavenumber, k, by:

k ¼ !

c0
1þ 0:0978X�0:700 � j0:189X�0:595
! " ð5:10Þ
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where �0 and c0 are the density and speed of sound in air and ! angular frequency.
X is given by:

X ¼ �0f

�
ð5:11Þ

where f is the frequency and � the flow resistivity of the fibrous material.
A good empirical match was achieved, but there are restrictions on the applicability

of these formulations. These are only applicable where:

. The porosity, ", is close to 1, which most purpose built fibrous absorbers achieve.

. 0:01 < X < 1:0, which means the formulations only work over a defined fre-
quency range.

. The limits of the flow resistivity in the measurements were 1,000��
�50,000MKS rayl m�1.

Figure 5.11 shows a large number of measurements undertaken by Mechel and Grund-
mann and reported in English in Reference 5 which give a visual indication of the
accuracy of the empirical fit. These graphs show the normalized propagation constant
k/k0 and normalized characteristic impedance (zn ¼ zc/�0c0) for the measurements,
alongside a thin dashed line giving the Delany and Bazley empirical values. The results
shown are for glass fibre, and similar accuracy is obtained for basalt and rock wool.

Figure 5.11 Normalized propagation constant and characteristic impedance (zn ¼ zc/�0c0)
for fibreglass. Points show measured data, dashed line the Delany Bazley
approximation and the solid line a running mean (after Mechel [5]).
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It is known that the Delany and Bazley model gives erroneous low frequency
behaviour [17] as this is outside its range of applicability. For this reason, several
authors have attempted to produce improved relationships. For instance, Mechel and
Grundmann produced a more complex set of empirical relationships [5]. They derive
separate empirical relationships for mineral fibre and glass fibre, and this enables
some improvement over the Delany and Bazley model. For many cases, however, the
difference in the predicted quantities is relatively small. Figure 5.11 showed the
floating average for the Mechel and Grundmann measurements, which is presumably
close to their empirical predictions, compared to the measurements and the Delany
and Bazley predictions.

The Mechel and Grundmann empirical can be most simply given as:

�jk=k0

zn

	
¼ ��1��1 þ ��1=2��1=2 þ �0 þ �1=2�1=2 þ ��1 þ �3=2�3=2 ð5:12Þ

The coefficients are given in Table 5.2. The range of applicability is 0:003 < X < 0:4.
Other authors have also produced their own empirical models to update and improve
on the Delany and Bazley model [18, 19].

Section 5.5 details how these empirical formulations can be used to get the surface
impedance and absorption coefficient of a material.

The problem with these macroscopic empirical models is they do not readily give
information about how the microscopic properties of the porous absorber, such as the
pore size, orientation of the pores, etc. affect the absorption produced. This means
that it is difficult to use this empirical approach to inform design, beyond finding the
optimum flow resistivity required. To improve designs, more detailed models of the
propagation are required. In the next section some of the key parameters needed for
more physically based porous absorber models are discussed. Following on from this,
some of these models are presented in Section 5.5.3.

Table 5.2 Coefficients for Mechel and Grundmann empirical model of porous absorbers,
from Reference 5

Coefficients �jk/k0 zn

Mineral fibre (basalt or rockwool)

��1 �0:003 557 57� j 0:000 016 489 7 0:0026786þ j 0:003 857 61
��1/2 0:421 329þ j 0:342 011 0:135 298� j 0:394 160
�0 �0:507 733þ j 0:086 655 0:946 702þ j 1:476 53
�1/2 �0:142 339þ j 1:259 86 �1:452 02� j 4:562 33
�1 1:290 48� j 0:082 0811 4:031 71þ j 7:560 31
�3/2 �0:771 857� j 0:668 050 �2:869 93� j 4:904 37

Glass fibre
��1 �0:004 518 36þ j 0:000 541 333 �0:001 713 87þ j 0:001 194 89
��1/2 0:421 987þ j 0:376 270 0:283 876� j 0:292 168
�0 �0:383809� j 0:353 780 �0:463 860þ j 0:188 081
�1/2 �0:610 867þ j 2:599 22 3:127 36þ j 0:941 600
�1 1:133 41� j 1:74819 �2:109 2 0� j 1:323 98
�3/2 0 0
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5.4.2 Further material properties

The simplest theoretical models of porous absorbers assume that the material (or
frame) of the absorbent is rigid. Then it is possible to apply some classical theories of
sound propagation in small pores. It is only possible to gain analytical solutions for
simple geometries such as bundles of cylindrical pores. Unfortunately, cylindrical
pores are far removed from the complex geometry of the vast majority of porous
absorbers. Consequently, a semi-empirical approach is often adopted, where a mix-
ture of experiment and theory determines key properties of the material. The neces-
sary parameters are detailed below; they are not independent.

5.4.2.1 Pore shape factor and characteristic dimensions

While the porosity and the flow resistivity are usually the most important parameters
in determining the sound absorption, other secondary parameters such as the shape
factor and the tortuosity (see next section) can have an important effect. The shape of
the pores influences the sound propagation and hence the absorbent varies with pore
shape. Different pore shapes have different surface areas and hence have different
thermal and viscous effects. Analytically obtaining the shape factor for most porous
absorbents is impossible as they do not usually conform to simple geometric shapes.
Consequently, the pore shape factors are usually empirically found by best fitting the
acoustic measurements of the effective density and bulk modulus of the material. The
shape factors are therefore dependent on the model being used to predict the propa-
gation within the absorbent. Later in this chapter, formulations for the effective
density and bulk modulus are found, from which the characteristic impedance and
wavenumber can be obtained, for now, the important shape factors (� and �0) used in
those formulations are defined. These factors are sometimes prefixed with the term
‘dynamic’ to emphasis that they apply to the dynamic not static case.

The characteristic dimension � is a weighted ratio of the volume to surface area of
the pores. It is weighted according to the squared modulus of the microscopic velocity
evaluated, including the effects of viscosity. It can be found for simple pore shapes
using the following formulation:

� ¼ 1

s

ffiffiffiffiffiffiffiffiffiffi
8�ks

"�

r
ð5:13Þ

where s is a constant. For most porous absorbers, s lies between 0.3 and 3, s is 1, 1.07,
1.14 for circular, square and triangular pores respectively and 0.78 for slits. ks is the
tortuosity as defined in the following section, and � is the viscosity of air.

For materials with non-cylindrical pores and complicated internal structures, it is
necessary to use another characteristic dimension [20]. The effective density of real
porous absorbers tends to be determined by parts of the pores with smaller cross
sections, whereas the bulk modulus is more determined by larger cross-sectional areas
[21]. For this reason, a second characteristic dimension to supplement � is needed.
The second characteristic dimension �0 is given by:

�0 ¼ 2Vp

Sp
ð5:14Þ
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where Sp and Vp are the surface area and volume of the pores respectively. This is the
same ratio as used for � but without the weighting for microscopic velocity. Cylin-
drical pores are a special case where � ¼ �0. In general �0 � �, and to a first
approximation �0 ¼ 2� and s¼ 1 can be used in Equations 5.13 and 5.14 to derive
simpler formulations for the sound propagation in rigid-framed fibrous materials [17].

The determination of these characteristic dimensions poses one of the biggest
problems in the use of the theoretical models. For most absorbers, the pore shape is
so complex that the characteristic dimensions must be fitted from empirical measure-
ments on samples – which in a sense defeats the point of theoretical modelling, because
it is impossible to accurately predict the absorption from a material before it is built.
Further complications arise when the material is anisotropic, which is common in
many materials. For instance, mineral wool is often laid down in layers, in these cases
the characteristic dimensions depend on the incident angle of the sound wave.

5.4.2.2 Tortuosity

The orientation of the pores relative to the incident sound field has an effect on the
sound propagation. This effect [22] is represented by the parameter tortuosity denoted
ks. Some authors use the term structural form factor for this property, and there are
some differences in definition in the literature. Using tortuosity has the advantage that
the term is almost self-explanatory. The more complex the propagation path through
the absorbent, the higher is the absorption, and the complexity of the path is partly
represented by the tortuosity. Furthermore, the tortuosity affects how easily sound can
penetrate the absorbent. For simple cylindrical pores, all aligned in the same direction,
the tortuosity is simply related to the angle between the pores and the incident sound
(ks ¼ 1/cos2 ( )). Real absorbents, however, are not normally that well ordered.
Consequently, tortuosity needs to be measured. For a non-conducting material (non-
conducting mineral wool and foams) the material can be saturated with a conducting
fluid and the electrical resistivity measured [23]. From the electrical resistance, the
tortuosity can be found. The electrical resistance of the conducting fluid, rf, is meas-
ured alone and then the electrical resistance of the porous material impregnated with
the conducting fluid, ra. Then the tortuosity can be found from:

ks ¼ "ra
rf

ð5:15Þ

Typically ks is approximately unity for fibrous materials; for granular materials, such
as soil, ks� 2.

5.4.3 Theoretical models

Given the material properties (flow resistivity, porosity, tortuosity and characteristic
lengths), it is possible to calculate the characteristic impedance and propagation
wavenumber by considering the microscopic propagation within the pores. Attenbor-
ough [24] produced a useful review of early methods, but these techniques have been
much refined in recent years. Many people have been involved in the development of
the models; the description below draws on the work by Johnson et al. [25] and
summarized by Allard [26] and Allard and Champoux [17]. This is a simple phenom-
enological model. The absorber frame is assumed to be rigid.
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The effective density of the porous material is given by:

�e ¼ ks�0 1þ �"

j!�0ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jk2

s ��0!

�2�2"2

s2
4

3
5 ð5:16Þ

The effective or dynamic bulk modulus of the air in the material is given by:

Ke ¼ �P0

� � ð� � 1Þ 1þ 8�

j�02Np!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�!Np�

02

16�

s0
@

1
A, ð5:17Þ

where � is the ratio of the specific heat capacities (�1.4), P0 is atmospheric pressure
101,320 Nm�2; Np is the Prandtl number given by:

Np ¼ �v
�h

� �2

ð5:18Þ

where �v and �h are the sizes of the viscous and thermal boundary layers. At 1 atmos-
phere and 20 �C the Prandtl number is about 0.77; this can be found from the
following formulations. The thickness of the viscous boundary layer is given by:

�v ¼
ffiffiffiffiffiffi
2�

�!

s
ð5:19Þ

Typically the viscous boundary layer is sub-millimetre in size, for example at 100 Hz
it is �0.2 mm. The thickness of thermal boundary layer is given by:

�h ¼
ffiffiffiffiffiffiffiffiffiffi
2�

�cp!

s
ð5:20Þ

where � � 2:41� 10�2 Wm K�1 is the thermal conductivity of air and cp �
1:01 J kg�1 K�1 is the specific heat capacity of air at constant pressure.

Once the effective density and bulk modulus have been determined from Equations
5.16 and5.17, it is thenpossible to calculate the characteristic impedance and propagation
wavenumber for the porous absorber, which are what are more often used in calcu-
lating acoustic properties.

The characteristic impedance zc is given by:

zc ¼
ffiffiffiffiffiffiffiffiffiffi
Ke�e

p
ð5:21Þ

and the propagation wavenumber by:

k ¼ !
ffiffiffiffiffiffi
�e

Ke

r
ð5:22Þ
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The formulations in Equations 5.16 and 5.17 give correct high and low frequency
asymptotic behaviour, but is only approximately correct at mid-frequencies for
complicated pore geometries.

Figures 5.12–5.14 show the normalized characteristic impedance, propagation
constant and absorption coefficient for the model from Equations 5.16 to 5.17; these
lines are labelled phenomenological. These values are compared to the Delany and
Bazley formulations of Equations 5.9–5.10. The following assumptions were made to
implement the phenomenological model: ks¼1, �0 ¼� and s¼ 1. Both models give
very similar results. As stated previously, the Delany and Bazley predictions are known
to give inaccurate results at low frequency (the real part of the impedance of the
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surface of the porous absorber actually goes negative), but these are frequencies at
which the absorption from the porous absorber is pretty small anyway.

The comparison in Figure 5.14 showed the absorption coefficient for a given
absorber thickness on a rigid backing, rather than the characteristic impedance or
wavenumber. How the absorption coefficient and surface impedance are calculated
from the characteristic impedance and wavenumber is detailed in the next section.

5.5 Predicting the impedance and absorption of porous absorbers

Once the characteristic impedance and wavenumber for the porous material are known,
it is necessary to convert these to the surface impedance and absorption coefficient
for a particular thickness of porous absorbent with known boundary conditions.
In this case, the most flexible way of predicting the absorption coefficient for porous
absorbers is to use the transfer matrix method. Consequently, this section starts by
discussing the general case of propagation in one layer of porous absorber in a multi-
layered system. Then the specific case of a single layer with a rigid backing will be
presented. The prediction model can be extended to multiple layers of absorbent,
but the most common situation is the single layer on a rigid backing.

Figure 5.15 shows the system being considered. Only plane wave propagation in
the absorbent will be considered, and for now normal incidence only is considered.
Section 1.5.1 has already shown how sound behaves when propagating from one
medium to another. At each interface between the layers, continuity of pressure and
particle velocity is assumed. This allows a relationship between the pressure and
particle velocity at the top and bottom of a layer to be produced which is compactly
given in matrix format:

pli
uli

� 	
¼ pxiþ1

uxiþ1

� 	
¼
( cosðkxidiÞ j

!�i
kxi

sinðkxidiÞ

j
kxi
!�i

sinðkxidiÞ cosðkxidiÞ

)
pxi
uxi

� 	
ð5:23Þ
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where pxi and uxi are the pressure and particle velocity at the bottom of the ith layer,
pxiþ1 and uxiþ1 the pressure and particle velocity at the bottom of the (iþ 1)th layer,
pli and uli the pressure and particle velocity at the top of the ith layer, di the thickness
of the layer, �i the density of ith layer and kxi the wavenumber for the ith layer.

This formulation can be applied recursively to successive layers, and it is particu-
larly powerful in allowing the calculation of the surface impedance of absorbers,
rather than simply a way of gaining specific values for pressure and velocity at the
layer boundaries. If the bottom of layer i has an impedance of zsi, and the layer i has
a characteristic impedance zi, then the impedance at the bottom of the iþ 1 layer is:

zsiþ1 ¼ �jzsizi cotðkxidiÞ þ z2i
zsi � jzi cotðkxidiÞ ð5:24Þ

Equation 5.24 can be applied repeatedly to calculate the surface impedance of a multi-
layered absorbent. Next a simple case is considered.

5.5.1 Single layer porous absorber with rigid backing

Consider a single layer of absorbent with a rigid backing. The impedance at the
surface of layer zero, zs0, which is the backing, is taken to be infinite. Then Equation
5.24 simplifies and gives the impedance on the surface of the absorbent as:

zsiþ1 ¼ �jzi cotðkxidiÞ ð5:25Þ

This can then be turned into absorption coefficients using Equations 1.22 and 1.25.
Figure 5.16 shows the behaviour of Equation 5.25 as the thickness of the layer
increases, using the Delany and Bazley empirical formulations for the porous material
properties. As discussed previously, as the porous layer increases in thickness, the
absorption increases at lower frequency as expected. Scripts 5.1–5.3 in Appendix B
demonstrate the use of these equations.

It is also possible to demonstrate the usefulness of air gaps in increasing absorption.
Consider two cases, 2.5 cm of porous absorber mounted on a rigid backing, and 1.25 cm
of the same porous absorber mounted 1.25 cm in front of a rigid backing with a
1.25 cm air gap. In the former case Equation 5.25 can be used as before. In the latter
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Figure 5.15 Geometry for propagation of sound through a layer of an acoustic medium.

Porous absorbers 149



case, Equation 5.24 is applied first to the air layer, and second to the porous absorber
layer. For the air layer (layer 1):

zs1 ¼ �j�0c0 cotðkd1Þ ð5:26Þ

And for the porous absorbent layer (layer 2):

zs2 ¼ �jzs1z2 cotðkx2d2Þ þ z22
zs1 � jz2 cotðkx2d2Þ ð5:27Þ

Figure 5.17 compares the absorption coefficients. It shows that the absorber with the
air gap has very similar performance to the thicker absorber alone. This confirms the
usefulness of air gaps as discussed in Section 5.1 and elsewhere.

5.6 Local and extended reaction

The propagation direction within many porous absorbers is normal to the surface
even for oblique incidence sound because of refraction – see next section. This means
that the reaction of the material at any point is independent of the reaction at other
points. In this case, the surface is termed locally reacting, as the surface impedance is
independent of the nature of the incident wave. This is an extremely useful first order
approximation. It means that in multi-layered absorbents the propagation can be
assumed normal to the surface and are therefore much easier to evaluate. These
assumptions will break down for large sound pressure levels when non-linear propa-
gation is significant. Other common examples of locally reacting materials include
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resonant absorbers whose cavities are partitioned, and for massive walls made of
materials like concrete, where the stiffness effect is small enough to be ignored in
comparison with the mass effect.

Unfortunately, man-made fibrous materials such as mineral wool often behave as
an extended reacting surface because it is anisotropic with the material laid down in
layers. The impedance produced is dependent on the incident wave type and angle of
incidence. This is one reason why predictions of absorption from the Delany and
Bazley model, which are based on normal incidence impedance tube measurements,
are difficult to accurately translate into random incidence values measured in the
reverberation chamber. A proper model of an extended reacting surface needs to deal
with the entire wave field inside the medium. While there are formulations that allow
for the anisotropic behaviour of mineral wool [26] – see next section – these formula-
tions produce similar results to the isotropic models because they do not account for
the extended reaction.

5.7 Oblique incidence

Consider a sound wave in air incident at an angle  to a finite layer of porous material
with a rigid backing. The geometry is shown in Figure 5.18. The wavenumber in air
is k0, and the wavenumber in the material is k. In vector form these are k0 ¼
fk0, x,k0, y, k0, zg, k ¼ fkx, ky, kzg. For simplicity it is assumed that kz, 0 ¼ kz ¼ 0.
Snell’s law relates the angles of propagation to the speed of sound in the material as
discussed in Chapter 1. In terms of wavenumber this gives:

ky ¼ k0;y ¼ k0 sinð Þ ¼ k sinð�Þ ð5:28Þ

For many porous absorbents, the differences in wavenumber in air and the absorbent
are so large that � ! 0, and the previous derived normal incident formulae are
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accurate. For cases where � > 0, a different formulation can be derived. As
k2 ¼ k2

x þ k2
y þ k2

z , this can be combined with Equation 5.28 to give:

kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

y

q
ð5:29Þ

The square root with the positive real part should be chosen. This can then be used
to form an alternative form of the surface impedance for a rigidly backed absorbent
for oblique incident sound.

zs1 ¼ �jzc
k

kx
cotðkxdÞ ð5:30Þ

where zc is the characteristic impedance of the porous absorbent. This is derived using
Equation 5.23.

Figure 5.19 shows how the absorption coefficient varies with angle of incidence
using the Delany and Bazley formulations. The surface impedance does not vary much
with angle of incidence (so these graphs are not shown), but the reflection factor and
absorption coefficient vary greatly as the pressure component perpendicular to absorb-
ent drops off with a 1/cos( ) relationship, where  is the angle of incidence. This was
discussed in Chapter 1.

Fibrous porous absorbents can be anisotropic, in other words their acoustic properties
vary depending on the angle of the wave to the fibre orientation. In this case, alternative
forms for the surface impedance can be deduced. If the effective densities and bulk
moduli are measured separately for propagation parallel and perpendicular to the
fibres, Equation 5.22 can be applied to obtain the wavenumber parallel and perpen-
dicular to the fibres. The wavenumber perpendicular to the fibres will be denoted kN

and parallel to the fibres kp. The porous absorbent is placed so that the fibres are
parallel to the rigid backing, as is most common, then the component of the wave-
number in the x-direction perpendicular to the backing and fibres is given by [26]:

kx ¼ kN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

2
y

k2
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s
ð5:31Þ
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Figure 5.18 Geometry for propagation of sound through a finite layer of a rigid-backed
porous absorber.
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k0 sinð Þ ¼ ky ð5:32Þ

zs1 ¼ �jzN
kN

kx
cotðkxdÞ ð5:33Þ

where zN is the characteristic impedance for propagation perpendicular to the fibres.
A method for obtaining the parallel and perpendicular propagation wavenumber

and characteristic impedance, is to use different flow resistivities in the Delany and
Bazley formulations. Typically, the flow resistivities perpendicular (�N) and parallel
(�p) to the fibres are related by [27]:

�N � 0:6�p ð5:34Þ

When this formulation is used, it makes some difference to the absorption coefficient
and surface impedance, but the change is not that great.

5.8 Biot theory for elastic-framed materials

In the above theories, the frame of the porous absorber was assumed to be rigid and
waves only propagated in the air pores. In reality, porous absorbers have elastic
frames which can support wave propagation. The consequence of this to the absorp-
tion properties of the absorbing material is not as great as might be supposed. For
instance, if the porous absorber is anchored to a rigid surface, for example attached to
the wall or resting on a floor, this will constrain the motion of the absorber frame. For
this reason, the rigid frame models discussed above are used the most, and models that
allow for elastic motion of the frame are less commonly used.

Furthermore, as most of the previous models involve some form of empirical fitting,
in many cases this fitting can partially compensate for some of the inaccuracies
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introduced by not properly modelling the additional wave types which propagate due
to the frame being elastic, although strong frame and frame-air resonances cannot be
well modelled. If the frame of the porous absorber is not constrained, for example if it
is hanging in free air, then resonances of the frame material can be seen in the
characteristic impedance of the surface. In this case, a more complete model may be
required, and most authors favour using Biot theory [28, 29]. Other models of note
are presented by Ingard [2] and Zwikker and Kosten [30].

Biot theory is summarized in more detail in References 5 and 26, where the
necessary formulations are given. In this book, only the general principles and con-
cepts will be discussed along with some indications of the relative accuracy of Biot
theory and the rigid-framed models discussed earlier in the chapter.

The equations of motion for the displacement and strain tensors of the air in
the pores and the frame are defined. These equations of motions include a set of
coefficients which detail the coupling between the air and frame. These coefficients
can be identified with physical properties such as the bulk modulus of the air in the
pores and the elastic frame. The former, the bulk modulus of air in the pores, is
taken from the rigid-framed theories detailed earlier. Once these coefficients are
determined, the equations of motion can be solved to give the surface impedance of
porous layers.

There are now three waves to consider in the structure. There are two compres-
sional waves. In most air-saturated porous materials, the coupling between the frame
and air is negligible and these waves can be identified as the frame-borne and airborne
waves. Where there is weak coupling, the airborne wave remains mostly within the
pores, but the frame-borne wave actually propagates through both the frame and
pores. The third wave, the shear wave is also frame-borne, and in most porous
absorbents, it is unaffected by the fluid air. (For normal incidence this is not excited
and can be ignored.)

Figure 5.20 shows a comparison of theory and experiment from Allard [26]. For
many frequencies the rigid-framed model is accurate, but deviations occur around
500 Hz. These inaccuracies are due to the resonances of the frame material which by
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definition cannot be predicted by the rigid-framed model. This is a dense fibreglass
material, and so only the quarter wave resonance of the frame is seen. For these
frequencies, Biot theory offers better predictions, although it should be noted that
some fitting of prediction parameters had to be undertaken to gain this match. So
even with Biot theory, the rather circular nature of model verification is still a
problem.

5.9 Summary

This chapter has described porous absorbers both qualitatively and quantitatively.
There are a large number of possible porous absorbers, and they form an important
part of the acoustic palette for acoustic designers both indoors and outdoors. Being
able to predict the absorption caused by porous materials, and understanding what
causes the absorption, is important to enable materials to be designed with maximum
absorption. In the next chapter, resonant absorbers will be discussed, and as many of
these use porous absorbers within them, the understanding gained about porous
absorber modelling from this chapter will be invaluable in the next.
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6 Resonant absorbers

By using the phenomenon of resonance, it is possible to gain absorption at low to mid-
frequencies, where absorption is difficult to achieve with porous absorbers because
the thickness and size of the material would be too large. Furthermore, absorbers are
often placed at room boundaries where porous absorbers are inefficient as the particle
velocity is low. For many resonant absorbers, placing the device at the boundaries will
improve their effectiveness. The absorption characteristics of resonant absorbers are a
peak of absorption as shown in the dashed line in Figure 6.1. Unlike porous absor-
bers, wide band absorption is difficult to achieve in one device, and so one of the
frequent challenges in the design of resonant structures is to extend the bandwidth.

There are two common forms of the device: the first is the Helmholtz absorber
which is named after the German physician and physicist Hermmann von Helmholtz
(1821–1894) and the second is a membrane or panel absorber. The ideas and concepts
of resonant absorption have been known for many decades. In recent years some more
specialist devices have been produced, for instance clear absorbers, but these are still based
on the same basic physics. While some devices, such as many basic Helmholtz absorb-
ers, can be predicted with reasonable accuracy, others, such as membrane devices,
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are still designed by trial and error. Resonant absorbers are commonly employed
to treat low frequency room modes and as parts of silencers within ventilation systems.

6.1 Mechanisms

Resonant absorbers involve a mass vibrating against a spring. The two common types
of resonant absorber are illustrated in Figure 6.2. In the case of a Helmholtz absorber,
the mass is a plug of air in the opening in the perforated sheet. The resonance is
produced by the same mechanism which generates a note when you blow across a
beer bottle. To make this into an absorber, losses are provided by a damping
mechanism to remove acoustic energy, such as a layer of mineral wool. For a
membrane (or panel) absorber, the mass is a sheet of material such as rubber or
plywood which then vibrates. The spring in both cases is provided by air enclosed in
the cavity. By changing the vibrating mass and the stiffness of the air spring, the
resonant frequency of the device can be tuned, and it is at the resonant frequency that
absorption is a maximum.

To achieve losses, damping is required. This can be achieved by placing porous
absorbent where the particle velocity is large – in the neck of the Helmholtz resonator
or behind the membrane in the panel absorber. In the latter case, the absorbent should
not be so close as to inhibit movement of the membrane. Alternatively, for Helmholtz
devices with small openings, viscous losses within the neck can be used to gain
absorption; this is a technique which allows devices without porous absorbent, such
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Figure 6.2 Typical constructions for (a) Helmholtz absorber and (b) membrane absorber.
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as microperforated absorbers, to be produced. For membrane devices there are also
internal losses within the vibrating membrane, but these are usually too small to give
high absorption. More significant are the losses that come from the mounting between
the membrane and the absorber side walls. Problems arise in predicting performance of
membrane absorbers, as the absorption from the boundaries is hard to characterize.

Before discussing the relevant design equations, some example constructions are
given to provide a sense of what commercial devices are like. After the design
equations, more complex and unusual constructions will be considered.

6.2 Example constructions

6.2.1 Bass trap membrane absorber

Small rooms often exhibit a poor low frequency response with significant emphasis at
modal resonances and de-emphasis where modal excitation is small. There is also
limited space within which to make acoustic improvements. Porous surface absorption
is ineffective at these modal frequencies, because the particle velocity near walls and in
corners is essentially zero for these long wavelengths, and also the porous surface
would have to be made so deep that significant space within the room would be lost to
acoustic treatment. This problem can be solved using a resonant absorber, such as a
membrane design. A membrane absorber converts the high sound pressure fluctua-
tions typically found at wall surfaces and in corners into selective absorption in the
modal frequency range. As the use of sub-woofers has become more popular in small
sound reproduction rooms in recent years, there is a growing need for modal fre-
quency management.

Figure 6.2b shows a membrane absorber using an internally damped membrane.
The membrane converts pressure fluctuations into air motion. As the membrane
sympathetically vibrates over a selective low frequency range, determined by its mass
and the air spring stiffness, it pushes air through an internal porous layer producing
low frequency absorption. Simple relationships exist between the design frequency of
these resonant systems and the membrane mass, stiffness and cavity depth, and these
will be outlined below. Figure 6.3 illustrates the absorption coefficient of this type of
device and also shows an example application where the absorbent is placed in the
corner where the pressure is a maximum for all room modes. There is also a predic-
tion of the performance using a transfer matrix approach as discussed below. This
prediction illustrates, however, that for membrane absorbers the design equations are
often inexact in predicting the resonant frequency. There are many reasons for this.
For instance the physical mass of the membrane is often different from the vibrating
acoustic mass due to mounting conditions.

If the absorber has a sharp resonant peak with a high Q factor, there is a risk of
creating a notch at the wrong frequency, thus aggravating rather than ameliorating
the modal problems. Consequently, experimental verification of the absorption is
necessary, although at these low frequencies this is not easy. The results shown in
Figure 6.3 were measured in an unusually large impedance tube.

Specific modal problem frequencies can be addressed with individually tuned
absorbers, and while bass membrane absorbers can be designed for a specific
frequency and offer a high absorption efficiency, their bandwidth over which they
are effectively absorbing is rather limited. One can broaden the absorption by
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introducing additional damping in the air cavity, but this often lowers the maximum
absorption efficiency. An alternative solution is to use a range of modules, each tuned
to work in a different one-third octave band for more general broadband absorption.
But a considerable amount of the room boundary must be covered with absorbent to
get broadband low frequency absorption.

6.2.2 Helmholtz absorption

Currently, wood is more often than not, the preferred surface treatment in general
architectural spaces, as well as in critical listening and performance spaces.
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However, one of the problems is that flat wooden panels may generate problematic
reflections compromising speech intelligibility and music quality. To treat offending
reflections, upholstered fibreglass or stretch fabric systems are often used. But it is
also possible to use flat attractive wooden panels and also provide absorbers at
specified frequencies. Figure 6.4 illustrates such a system and an example applica-
tion. The grooves are essentially a visual trick to hide the holes if these are not
visually desirable. At the base of the grooves there is a single or double diameter
hole, providing a sound path through the panel. By varying the groove (i.e. hole)
spacing, the hole diameter, and the rear air cavity depth and content, it is possible to
obtain absorption over a wide variety of frequencies. The design equations are given
later in this chapter and are much more successful than when applied to membrane
absorbers.

These Helmholtz absorbers are constructed from class A medium density fibre-
board (MDF) cores either painted or surfaced with wood veneers or simulated wood
grain melamine. The rear of the panel is covered with a black non-woven glass matt to
provide a resistive layer and also to conceal the contents behind the panel. In addition,
a fibreglass panel is attached to the back of the glass matt to provide further resistance
and losses.

Figure 6.5 shows typical absorption coefficients for different cavity depths and hole
sizes. As the holes enlarge, the open area increases leading to greater absorption at
higher frequencies; there is also a slight increase in resonant frequency. These trends
can be predicted by the design equations given later, but they will not predict the
absorption coefficient values greater than 1, shown in Figure 6.5. Predictions give less
absorption because the vagaries of reverberation chamber measurements such as edge
diffraction are not included in the prediction models – see Chapter 12 for further
discussions of this. Increasing the cavity depth causes the stiffness of the spring to
decrease, and consequently the peak absorption decreases in frequency. Again this is
predictable.

The absorbers shown here are not particularly unusual in terms of the acoustics
they exploit. The physics behind the mechanisms has been known for more than a
century. The problem with this type of construction is getting the perforated sheet

Figure 6.4 A commercial Helmholtz resonator and its application in a cafeteria to reduce
reverberance (photo courtesy of n’H AkustikþDesign AG).
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with the correct hole size and open area. Standard perforated board, such as peg
board, has too small an open area; most perforated metals have too large an open
area. Consequently, the perforated sheet often has to be specifically constructed
for acoustic purposes, which makes it more expensive than if stock items could be
used.

6.2.3 Absorption and diffusion

Figure 6.6 shows a Schroeder style diffuser, which has square holes to provide mid-
frequency absorption via a Helmholtz mechanism. These are relatively shallow
diffusers and so are only efficient diffusers above �3 kHz, unless modulation is used
to extend the bandwidth as discussed in Chapter 9. Below 3 kHz, absorption is
provided by resonant mechanism via the square holes. The diffuser is mounted over
porous absorbent with a cavity behind, similar to Figure 6.2a. Consequently, this is
a hybrid device providing absorption and diffusion in different frequency ranges. As
the frequency ranges are different, it is assumed that the absorption mechanism
should not have too much effect on the diffusion performance and vice versa. The
frequency of absorption can be varied by choosing the hole size, open area and
cavity depth. Although in this case, the amount of variation in these design variables
achievable is rather limited because of restrictions imposed by the diffuser surface
profile.

This surface is also provided without holes. In Figure 6.7, the absorption for two
mounting types is shown. The panel can be mounted with a 1.6 mm gap between the
laths (planks) – this is labelled Helmholtz mounts. This gives a small slit opening to
the back cavity, which as this contains a porous absorbent generates additional bass
absorption via a Helmholtz mechanism. This additional bass absorption can be useful
in treating spaces with excess bass reverberation. Similar bass absorption can also be
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Figure 6.5 Random incidence absorption coefficient for different Helmholtz absorbers.
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of n’H AkustikþDesign AG).
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achieved by using tuned membrane absorbers, but a Helmholtz mechanism is gen-
erally easier to achieve in a device.

The square holes shown in Figure 6.6 are responsible for the peaks in absorption
around 500–600 Hz. The Helmholtz slits provide absorption at a few hundred Hertz
or less. Again, the resonant frequency can be easily tuned by choosing an appropriate
cavity depth and lath spacing.

6.2.4 Clear absorption

Acousticians have long sought a fully transparent absorptive finish to control rever-
beration in a room, while maintaining the view through glazing. Glazing is a popular
building material, and there are considerable advantages in combining lighting and
acoustic function into one device to save on materials and cost. One solution to

Figure 6.6 A small scale Schroeder diffuser, FlutterFree1 (left) and a perforated version
with square holes (right) forming a Helmholtz resonator.
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Figure 6.7 Random incidence absorption coefficient for a hybrid absorbing–diffusing
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getting a clear absorber is to use microperforation. These are Helmholtz devices, but
without the normal resistive material. The device is rather like a double glazing unit,
with the first pane being a 5 mm thick panel with sub-millimetre diameter holes
spaced 5 mm apart. The holes are drilled mechanically. The device provides absorp-
tion through high viscous losses as air passes through the small holes, which are only
a bit larger than the boundary layer. This inherent damping eliminates the need for
fibreglass or other porous materials in the air cavity between the perforated sheet
and the reflective surface behind it. Thus it is possible to provide fibreless, clear
absorption. To augment the mid- to low frequency absorption, the device can be
curved, tilted or shaped to provide redirection or diffusion in the mid- to high
frequency region. The surface is transparent when looked at from straight on, but
at oblique angles the holes become more apparent, although the surface is still
translucent.

Figure 6.8 shows typical absorption coefficients. The absorption is not as con-
trollable as with Helmholtz devices with resistive material. The requirement for
small holes restricts the frequency range over which the resonant absorption can
be achieved within manufacturing constraints. So these are useful devices for
treating troublesome low to mid-frequency noise and reverberance in spaces such
as atria.

Later in this chapter, the design equations for microperforated devices will be out-
lined and shown to be accurate. Other example constructions will also be discussed, for
example the use of elongated orifices and microperforation of membranes.

6.2.5 Masonry devices

In 1917, Straub patented the CinderBlox, the first concrete masonry unit (CMU). In
1965, slotted blocks were introduced to provide low frequency absorption. The slots
produce a Helmholtz device to provide bass absorption. Figure 6.9 shows a modern
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Figure 6.8 Measured random incidence absorption coefficient for three microperforated
devices for varying cavity depths as indicated by legend (data courtesy of n’H
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equivalent. While the old blocks were useful for noise control, the flat or split face of
these blocks can create reflection problems which degrade acoustics. Consequently, a
phase grating diffuser is used to break up the reflected sound wavefronts. The design
shown in Figure 6.9 utilizes two slotted Helmholtz resonator chambers, as well as the
phase-grating pressure gradient absorption mechanism (see Chapter 7). Typical
absorption coefficients are shown in Figure 6.10. Painting reduces the high frequency
absorption as it seals the porous concrete surface, but does not affect low frequency
absorption as would be expected. Good insulation against sound transmission is
achieved because of the heavy construction.

Figure 6.9 A CMU (concrete masonry unit) which uses two slotted Helmholtz absorbers
to provide bass absorption, DiffusorBlox1 (one slot is difficult to see).
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Figure 6.10 Random incidence absorption coefficient for a masonry unit. The slots
provide absorption via a Helmholtz mechanism producing low frequency
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6.3 Design equations: resonant frequency

Having outlined some example designs, this section outlines the most simple design
equations. Consider a simple absorber formed by a cavity with a covering sheet. The
sheet could either be perforated to form a Helmholtz design, or solid but flexible to
form a membrane absorber (Figure 6.2). It could even be a flexible perforated
membrane, which is a combination of the two. In the first two cases, the impedance
of the cavity given in Equation 5.25 will simply be altered by the addition of mass
(j!m) and resistance (rm) terms. These are the acoustic mass and resistance respect-
ively, arising due to the perforated sheet or membrane. The surface impedance of the
resonant system is:

z1 ¼ rm þ j½!m� �c cotðkdÞ� ð6:1Þ

where k¼ 2�/	 is the wavenumber in air, d the cavity depth, m the acoustic mass per
unit area of the panel, ! the angular frequency, � the density of air and c the speed of
sound in air.

For now, the presence of porous absorbent within the cavity is ignored for simpli-
city. Systems resonate when the imaginary part of the impedance is zero; so to find the
resonant frequencies the imaginary terms in Equation 6.1 are set equal to zero.
Consider a case where the cavity size is much smaller than the acoustic wavelength,
i.e. kd� 1, so that cot(kd)! 1/kd, then the resonant frequency f is:

f ¼ c

2�

ffiffiffiffiffiffiffi
�

md

r
ð6:2Þ

This is a general formulation; now the specific instance of the Helmholtz resonator
will be considered, followed by the case of the membrane absorber.

6.3.1 Helmholtz resonator

The perforated surface is divided into individual cells which are assumed to behave
independently with a repeat distance D. D is defined in Figure 6.2, which shows a
cross section through the absorber. The absorber is assumed to be perforated in two
directions, with the repeat length being the same in both directions. The individual
cells will not be entirely independent at low frequency, and consequently physical sub-
dividing of the volume may be required as the wavelength becomes large. This is
especially true if good oblique incidence absorption is required, as would be needed
for good random incidence absorption, and lateral propagation within the cavity
must be suppressed to maximize absorption. When a porous absorbent is placed in
the cavity, sound propagation is generally normal to the surface as discussed in
Chapter 5, and so the need for subdividing is less critical, except at very low
frequencies.

The hole spacing should be large compared to the hole diameter. The acoustic mass
per unit area is then m ¼ �D2t0/�a2 where t 0 is the thickness of the perforated sheet
with the end corrections (end corrections allow for the radiation impedance of the
orifices and are discussed later) and other variables are as defined in Figure 6.2. The
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sheet thickness, t, and hole radius, a, are assumed to be much smaller than the
wavelength of sound in air. Under these assumptions, the resonant frequency is:

f ¼ c

2�

ffiffiffiffiffiffiffi
S

t0V

r
ð6:3Þ

where S¼ �a2 is the area of the holes and V¼D2d the volume of each unit cell.
This is the same formulation as derived by other methods, such as lumped para-

meter equivalent electrical circuit models [1]. The transfer function approach is used
here because it can more easily generalize to non-lumped parameter cases, for example
when the cavity size is no longer shallow compared to wavelength. It is also consistent
with the theories used elsewhere in this book.

An alternative, but entirely equivalent formulation for the Helmholtz resonator,
uses the porosity or fraction of open area, ". This is often more convenient to work
with when using perforated sheets and can be derived by considering the geometry in
Figure 6.2 to revise Equation 6.3:

f ¼ c

2�

ffiffiffiffiffiffi
"

t0d

r
ð6:4Þ

" ¼ �a
2

D2
ð6:5Þ

The vibrating plug of air within the perforations provides the mass of the device. The
length of the plug of air is not just the perforated plate thickness. The effect of
radiation impedance must be considered, including the mutual interaction between
neighbouring vibrating air plugs. Consequently, the vibrating plug of air has a length
given by the thickness of the panel plus end corrections to allow for the radiation
impedance of the orifice. A full expression for the mass in Equation 6.2 is therefore [2]:

m ¼ �
"
t þ 2�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8


!
1þ t

2a

 �r" #
ð6:6Þ

The last term in the equation is due to the boundary layer effect, and

¼ 15� 10�6 m2 s�1 is the kinemetric viscosity of air. This last term is often not
significant unless the hole size is small, say sub-millimetre in diameter. � is the end correc-
tion factor which to a first approximation is usually taken as 0.85 and derived by con-
sidering the radiation impedance of a baffled piston. A value of 0.85 does not, however,
allow for mutual interactions between neighbouring orifices because it is based on
a calculation for a single piston. Consequently, other more accurate formulations
exist. For a porosity of "< 0.16, Ingard gives the correction factor as [3]:

� ¼ 0:8ð1� 1:4"1=2Þ ð6:7Þ

In the limit of only one hole in an infinite plane, this is roughly 0.85 as given earlier.
An alternative formulation which works for more open structures was developed by

Resonant absorbers 167



Rschevkin and reported by Cremer and Müller [4]. This reportedly includes the
limiting case of "¼ 1:

� ¼ 0:8ð1� 1:47"1=2 þ 0:47"3=2Þ ð6:8Þ

For a square aperture, the formulation for "< 0.16, Equation 6.7, changes slightly
to [3]:

� ¼ 0:85ð1� 1:25"1=2Þ ð6:9Þ

For unusual shapes, the radiation impedance of the plug of air can be numerically
evaluated using boundary or finite element models, but the changes this makes to the
final resonant frequency are likely to be small. Furthermore, the radiation impedance
calculated this way might not allow for mutual interaction.

An added complication with end corrections is that imperfections in constructions,
such as burrs, may have an effect which will be ill-defined. For high amplitude sound,
turbulence will reduce the acoustic mass and so the resonant frequency will increase.

Figures 6.11 and 6.12 illustrate the effect of changing the open area on the resonant
frequency. Figure 6.11 shows the absorption coefficient, with the frequency of peak
absorption decreasing as the open area reduces. Figure 6.12 shows the change of
resonant frequency in terms of impedance where the frequency of the zero crossing of
the imaginary part decreases as the open area reduces. Script 6.1 in Appendix B gives
the code to generate the results. As the open area decreases, additional low frequency
absorption is generated mainly due to the increased stiffness of the spring in the unit
cell as the volume reduces. The high frequency absorption decreases because the
proportion of solid parts of the perforated sheet increases, and these parts reflect
high frequency sound. Similar results are seen in measurements [5].
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Figure 6.11 Absorption coefficient of a Helmholtz absorber showing the effect of open
area. Hole radius 2.5mm, porous absorbent flow resistivity 20,000 rayl m�1,
thickness 2.5 cm, air layer thickness 2.5 cm, perforated sheet thickness
6.3mm. Open areas: 6%; – – – – – – – – 12.5%;

25%; - - - - - - - - 50%; 100%.
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The maximum absorption decreases somewhat as the resonant frequency decreases.
If these absorbers were tuned to a lower frequency, this decrease would be more
marked. The reason for this is that the impedance of the porous material moves further
from the characteristic impedance of air at low frequencies, making the absorption less
efficient. The peak absorption can be altered by changing the porous material flow
resistivity as illustrated in Figure 6.13. In the case shown in Figure 6.11, the flow
resistivity of 25,000Nm�4s is such that the resistance is close to the characteristic
impedance of air leading to high absorption. An additional effect of changing the flow
resistivity is to change the bandwidth over which absorption is effective by altering
the Q of the resonance. In this case, a higher flow resistivity would achieve a greater
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Figure 6.12 Impedance of some Helmholtz absorbers showing effect of open area. Geo-
metry same as Figure 6.11. Only one real impedance is shown, because the
variation with open area is negligible. Open areas: Re, 6%;

Im, 6%; – – – – – – – – Im, 12.5%; Im, 25%;
- - - - - - - - Im, 50%; Im, 100%.
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Figure 6.13 Effect of flow resistivity (shown in legend in rayl m�1) on absorption of a
Helmholtz resonator.
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bandwidth, but will reduce the maximum absorption, as the resistance exceeds
the characteristic value. A lower flow resistivity leads to an impedance less than
characteristic, which results in a reduction in bandwidth and maximum absorption.

Figure 6.14 shows the trade-off between cavity depth and perforated sheet thick-
ness. The perforated sheet thickness has been varied while keeping the total thickness
of the device, cavity plus perforated sheet, constant. Making the covering sheet
thicker can generate additional base absorption. But this is at the expense of reduced
bandwidth including decreased high frequency absorption.

Another common geometry is a Helmholtz device where slots are used instead of
holes, see for example the CMU shown in Figure 6.9. This can have a considerable
advantage in some cases, as slots can be easier to make than holes. The orifices can
be formed by sawing slots in board or by leaving spaces between parallel planks in
wood claddings. For a lath or plank cladding, manufacturers can offer different
mounting conditions, with and without spaces between the planks, which enable
designers to choose the desired absorption characteristics; see Figures 6.6 and 6.7
for example. The difficulty with slotted Helmholtz devices is deriving the appro-
priate end correction. Kristiansen and Viglen [6] use a formulation originally
derived by Smits and Kosten [7]:

� ¼ � 1

�
ln

�
sin

�
1

2
�"

��
ð6:10Þ

This then gives a mass term of

m ¼ �

"
ðt þ 2�wÞ ð6:11Þ

where w is the width of the slots. As shall be shown later, this appears to give accurate
results.
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Figure 6.14 Effect of facing thickness (shown in legend in mm) on absorption of a
Helmholtz resonator. The total thickness of the device (cavity plus facing)
is kept constant.
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6.3.1.1 Membrane absorber

For a membrane absorber,m in Equation 6.2 is simply the mass per area of the panel.
A common simplification of Equation 6.2 is derived after straightforward algebraic
manipulation. This gives the resonant frequency as:

f ¼ 60ffiffiffiffiffiffiffi
md
p ð6:12Þ

This is correct when the cavity is filled with air. If the cavity is filled with porous
absorbent, then the system is no longer adiabatic, and an isothermal case must be
considered below about 500Hz. In addition, the porosity of the porous absorber should
be included although this is a minor effect for more commonly used materials as their
porosity is close to unity. Under an adiabatic assumption, Equation 6.12 becomes [8]:

f ¼ 50ffiffiffiffiffiffiffi
md
p ð6:13Þ

This formulation holds for oblique incidence when a porous absorbent is in the cavity,
because the porous absorbent enforces propagation normal to the front face. For an
air cavity without partitions, a new formulation is required for oblique incidence:

f ¼ 60

cosð Þ
ffiffiffiffiffiffiffi
md
p ð6:14Þ

where  is the angle of incidence.
Unfortunately, these simple formulations for membrane absorbers are often inaccur-

ate. The membrane system is not as simple to model as the perforated absorber. For
example, all these assume that the membrane does not support higher order modes at
the frequencies of interest. The mass of the membrane is being treated as a single lump
mass, and therefore the membrane should move as one like a piston. The effect of
bending stiffness is to increase the resonant frequency, but usually Equation 6.2
is dominant. Problems can occur if the membrane is small, because the whole mass
may not be able to vibrate freely because it must be secured at the edges. In this case,
the actual vibrating mass may be less than expected, and additional losses at the
fixings may occur. One solution to this is to attach the edges of the membrane using
resilient foam so that the whole membrane can vibrate including the edges. If such a
fixing is used, it is important that the cavity remains air tight.

As the angle of incidence increases, there is an increasing chance of bending waves
being excited. Consequently, the simple formulations above can breakdown. Unfor-
tunately, the modelling of such bending wave problems is complex as it is very
dependent on the construction used.

More complex modelling of panel absorbers does exist [8, 9, 10] but the prediction
models presented are not that useful in designing practical surfaces. It is possible to
model the plate vibration, and then use a mode matching approach to derive the power
absorbed. This is complex, and many parameters concerning real surfaces, such as the
mounting conditions of the panel, will not conform to simple conditions that
the prediction models use. Consequently, predictions are unlikely to match measure-
ments well. This has already been illustrated in Figure 6.3. For the prediction shown in
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Figure 6.3, a transfer function matrix method was used as detailed later. There is a
10 per cent error in the prediction of the peak frequency. In this case, the peak absorp-
tion frequency is somewhere between the values given by Equations 6.12 and 6.13.

6.3.2 Losses

So far, the above formulations have only allowed a calculation of the resonant
frequency. A proper design method must also allow the absorption coefficient and
surface impedance to be determined for all frequencies. To do this, the losses within
the device must be modelled. Losses are determined by the resistance term, rm, in
Equation 6.1. For a Helmholtz device with no additional porous absorbent this can be
calculated using [2]:

rm ¼ �
"

ffiffiffiffiffiffiffiffi
8
!
p

1þ t

2a

 �
ð6:15Þ

This formulation assumes that the hole radius is not sub-millimetre in size, to ensure
it is larger than the boundary layer thickness. An alternative formulation for this
resistive term derived by Ingard is often used [3]:

rm ¼
ffiffiffiffiffiffiffiffiffiffiffi
2��!
p

2"
ð6:16Þ

where � is the viscosity of the air, with a value of 1.84� 10�5 poiseuille. These
theoretical equations do not allow for increased resistance that happens if burrs are
present. Indeed, Ingard carried out empirical work to show that Equation 6.16 was
approximately correct, but taking a value twice as large matches experimental results
better. Equation 6.16 is more commonly quoted than Equation 6.15, but for most
practical absorbers both are negligible, as is the difference between them! The excep-
tion is with devices such as microperforated absorbers where the size of the resistance
is critical. For most designs, the losses contributed by Equation 6.15 are very small,
and in order to get good absorption it is necessary to add porous material.

Microperforation is rather specialized, so first attention will be focussed on devices
with additional porous material and more normal sized holes. The effect of the
porous absorbent depends on where it is placed. Ideally, it should be placed where
the particle velocity is a maximum. Porous absorption works primarily by viscous
losses as sound penetrates the small pores. For this to be maximized, the air motion
must be at its greatest, and this is achieved where the particle velocity is largest. For a
Helmholtz resonator this means the absorbent being as close to the openings as
possible or even in the openings. A balance must be struck, however, as too much
absorption in the neck might prevent resonance. The effect of placing an air gap
between the perforated sheet and the porous absorbent is to reduce the resistance, and
in most cases this will result in a decrease in absorption [5].

For a membrane absorber, the porous absorbent should be just behind the mem-
brane, but it must not touch the membrane. Without the porous absorbent, the
primary losses are most likely to come from within the membrane or friction at the
fixings between the membrane and the supporting structure. If the porous absorbent
behind the membrane is not providing sufficient absorption, perforating the mem-
brane to allow easier access to the porous absorber behind can be done. This then
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creates a hybrid Helmholtz-membrane design. Then the design equations should be
altered somewhat. The impedance of the membrane alone, zmem, will be a combin-
ation of resistance and mass:

zmem ¼ rmem þ j!mmem ð6:17Þ

where rmem and mmem are the acoustic resistance and mass of the membrane. Simi-
larly, the impedance of the perforated sheet forming the Helmholtz device, zhelm, will
be formed from acoustic resistance and mass:

zhelm ¼ rhelm þ j!mhelm ð6:18Þ

where rhelm and mhelm are the acoustic resistance and mass of the perforated sheet. It is
necessary to make some assumption about how these impedances interact. The most
obvious model is that the impedances act independently and in parallel, then a combined
impedance can be derived. The impedance of the device with an air cavity is given by:

z ¼ �j�c cotðkdÞ þ zmem þ zhelm

zmemzhelm

ð6:19Þ

where d is the cavity depth. To find the resonant frequency of Equation 6.19, the
easiest technique is to plot z versus frequency using a numerical tool such as a
spreadsheet and inspect for the zero crossing of the imaginary part. Later on, this
type of formulation will be discussed in more detail for a microperforated thin
membrane. The problem with applying the above formulation is in properly defining
the impedance of the membrane.

For a Helmholtz device, the design equations for the case with porous absorbent
depend on where the porous layer is located. First some relatively simple formulations
are considered, then a more complex treatment using transfer matrixes will be con-
sidered. The accuracy of these formulations will be demonstrated later in the chapter.

6.3.2.1 Porous layer right behind perforations

When the porous layer is right in front or behind the perforated plate, then the
resistance behaves as though it is actually in the openings. This comes from a
consideration of the flow through the device. As sound is squeezed through the holes,
the particle velocity is increased. On the other side of the perforated sheet, the flux
lines return to a free-field case somewhat gradually; this is shown schematically in
Figure 6.15. If the porous layer is within a hole diameter of the perforated sheet, it is
assumed that the flux has not yet had time to return to a free field state. Consequently,
the resistance added by the porous material, rm, is altered by fractional open area of
the perforated plate (porosity), ". The resistance is:

rm ¼ �ta
"

ð6:20Þ

where ta is the thickness and � the flow resistivity of the resistive layer. This form is
assumed because the volume velocity is reduced by the open area (or porosity) ", and
has not yet had time to recover to a free space value. The key in absorber design is to
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make this resistance in Equation 6.20 as close to the characteristic impedance of air as
possible, as this maximizes absorption. If characteristic impedance is achieved at
resonance, absorption will be complete. Consequently, a balance between the open
area, flow resistivity and absorbent thickness must be struck, while remembering that
the resonant frequency of the device is also dependent on the open area of the
perforated sheet.

6.3.2.2 Porous layer in the middle of cavity with a perforated covering

It is assumed that the porous material is at least a hole diameter away from the
perforated sheet; the materials are not too thick and are also away from the rigid
backing. This is not a common situation as it is awkward to construct. As the bulk of
the porous layer is away from the perforations, it is assumed that the velocity through
the surface is the same as in free space. Consequently, the resistance term is given by:

rm ¼ �ta ð6:21Þ

A more exact formulation would use a full transfer matrix approach as detailed in
the following section.

6.3.2.3 More complete solution using transfer matrixes

A full multi-layer solution first calculates the impedance just below the perforated
sheet or membrane, and then the effect of the sheet is considered by adding on this
impedance. This is a very flexible solution method as it can allow for many different
combinations in design. The solution discussed here is split into two forms: the first is
when air is immediately behind the perforated sheet and the second when porous
absorber backs the perforated sheet.

The first case is shown in Figure 6.16. First, the impedance just behind the perfor-
ated sheet is calculated; this can be done to a first approximation using the equations

Figure 6.15 Flow through a perforated sheet.
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set out in Section 5.5.1. Consider a simple case of a layer of absorbent of thickness d1

and an air layer of thickness d2. The impedance at the top of the absorbent is z1:

z1 ¼ �jzi cotðkid1Þ ð6:22Þ

where zi is the characteristic impedance and ki the wavenumber of the porous
absorbent. The impedance at the top of the air layer and just below the perforation,
z2, can be found by using a transfer matrix as discussed in Chapter 5.

z2 ¼ �z1j�c cotðkd2Þ þ �2c2

z1 � j�c cotðkd2Þ ð6:23Þ

The impedance of the Helmholtz absorber, z3, is given by using Equations 6.6 and
6.15 [11]:

z3 ¼ �
"

t

2a
þ 1

 � ffiffiffiffiffiffiffiffi
8
!
p

þ ð2�aþ tÞ j!�
"
þ z2 ð6:24Þ

where the additional viscous term in Equation 6.6 is ignored as it is generally small.
The second case, with the porous layer next to the perforated sheet was shown in

Figure 6.2a. For simplicity, it is assumed that the entire cavity is filled with porous
absorbent, and the cavity depth is d. This is a common construction because it is
simple to make. Two solution methods can be attempted. The most simple is to
consider that only plane waves propagating normal to the perforated sheet are present
in the porous layer. Then the impedance immediately below the perforated sheet is
given by:

z1 ¼ �jzi cotðkidÞ ð6:25Þ

where zi is the characteristic impedance and ki the wavenumber of the porous
absorbent. Then the mass effect of the perforations can be added, and the effect of
open area taken into account to give the surface impedance of the absorber, z2, as:

z2 ¼ 1

"
ð2�aþ tÞj!�þ z1 ð6:26Þ
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Porous absorbent

Perforated sheet

D
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Figure 6.16 Construction for predictions around Equation 6.22.
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The mass and resistance terms due to viscous forces in and around the perforated
plate are ignored because they will usually be negligible compared to the term in z1.

A more complex solution to this problem allows for the multiple waves propagating
in the porous media. The surface is considered in a series of elementary cells of sizeD by
D, each containing one hole. The velocity at the cell boundaries parallel to the
perforated sheet is assumed zero. Unless the cavity is actually partitioned, this is only
an approximation. This enables the pressure within the cells to be decomposed into a
sum of modes within the cell in an analogous way to solving the modes in a room. The
impedance below the perforated sheet, z1, is then given as a sum over modal terms [11]:

z1 ¼ z0;0 "
�
þ 4

�

X
m

X
n;ðn 6¼0&m 6¼0Þ


m;nzm;n J
2
1

2�a
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2
p �

�ðm2 þ n2Þ ð6:27Þ

zm;n ¼ �jzi
ki
km;n

cotðkm;ndÞ ð6:28Þ

km;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i �

4m2�2

D2
� 4n2�2

D2

r
ð6:29Þ


m;n ¼ 0:5 m ¼ 0 or n ¼ 0 ð6:30Þ
1 otherwise

where ki and zi are the wavenumber and characteristic impedance of the porous
absorber. � is the porosity of the porous absorber, say 0.98 for mineral wool. J1 is
the Bessel function of the first kind and first order. The sum is carried out over all
combinations of n and m when both are not equal to zero.

The sum converges as the contributions from higher modes reduce. In fact, in many
cases only the plane wave term (n¼ 0 andm¼ 1) need be considered, as the dominant
propagation mode in a porous medium will be perpendicular to the perforations due
to refraction. This is especially true when high flow resistivity porous materials are
used. When only the first term is considered, Equations 6.27–6.30 give similar results
to the more simple formulation given in Equation 6.25. Once the impedance, z1,
immediately below the perforated sheet is known Equation 6.26 can be applied to get
the surface impedance of the whole system including the perforated sheet.

6.3.2.4 Oblique incidence

For oblique incidence, it can be assumed to a first approximation that the impedance
of the Helmholtz absorber will be very similar to the normal incidence value, provided
there is a significant amount of porous absorbent in the cavity and/or the cavity is
partitioned. With porous material in the cavity, the predominant propagation direction
will be normal to the front face due to refraction, and lateral propagation is therefore
inhibited. It is the lateral propagation that could change the impedance of the device
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at oblique incidences, but this is not normally significant. Figure 6.17 shows the
measured impedance for a sample at normal and 60� incidence [12] confirming this
assertion. At low frequencies, without partitions, this may become less true as lateral
propagation modes become more significant. Any lateral propagation would be
expected to decrease the absorption achieved for most angles of incidence.

There is a more complex and complete prediction model for oblique incidence [11].
As the surface is periodic, it is possible to solve the problem with a Fourier decomposi-
tion. This method can only produce a solution when the wavelength in air projected
onto the surface is an integer multiple of the spacing between the perforations, i.e:

ND ¼ 	

sinð Þ ð6:31Þ

where N is a positive integer and  the angle of incidence. With this principle, it is
possible to carry out a Fourier decomposition into a series of modes within the porous
material. Consider the case of a Helmholtz resonator where there the cavity is filled with
porous material. The impedance just below the perforated sheet is given by [11, 12]:

z1 ¼ 2

��

X1
m¼0

X
n¼�1;�1�N;�1�2N...


m;n zmn
J21 2�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D2 þ n2

N2D2

qn o
m2 þ n2

N2

ð6:32Þ

zmn ¼ �j�c
ki
kmni

cotðkmnidÞ ð6:33Þ

kmni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
i � �

q
ð6:34Þ
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Figure 6.17 Measured impedance for two angles of incidence for a Helmholtz absorber.
Angles indicated in legend in degrees (data from Guignouard et al. [12]).
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�2 ¼ 2�m

D

� �2

þ 2�n

ND

� �2

ð6:35Þ

where the subscript i indicates that the wavenumber and impedance apply to the
porous layer. The porous material has a depth d; � is the porosity of the porous
absorber and 
m,n was defined in Equation 6.30. Once z1 has been evaluated,
Equation 6.26 can be applied to get the impedance of the surface above the perfor-
ated sheet at the front face of the absorber.

6.4 Example calculations

6.4.1 Slotted Helmholtz absorber

Kristiansen and Viglen [6] carried out impedance tube measurements on a slotted
absorber which allows the accuracy of the above formulations to be partially tested.
The absorber had an open area of about 24 per cent; the slots were 15 mm deep and
10 mm wide; the cavity depth was 150 mm and a material with an air flow resistance
of 86 Pa s m�1 was attached to the bottom of the slotted plate. Script 6.2 predicts the
scattering from the slotted absorber, and it is compared with the experimental data in
Figure 6.18. Using the transfer matrix method with Equations 6.10, 6.11, 6.20 and
6.1 gives accurate results as shown. Adding the resistance term, Equation 6.15 or 6.16
makes negligible effect to the predictions, changing the absorption coefficient by less
than a hundredth.

A simple calculation of the peak of absorption using Equations 6.4 and 6.10 yields
a predicted resonant frequency about 100 Hz greater than measured. This shows the
power and usefulness of the transfer function matrix procedure for Helmholtz
devices. Similar accurate results were also found by Ingard when he examined circular
perforations [3] with a thin resistive layer behind the perforated sheet.
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Figure 6.18 Predicted and measured normal incidence absorption coefficient for a slotted
Helmholtz absorber (measured data from Kristiansen and Viglen [6]).
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6.4.2 Porous absorbent filling the cavity

Figure 6.19 compares the predicted and measured normal incidence impedance for a
Helmholtz absorber. These use measurements by Guignouard et al. [12] using a two-
microphone free field method to obtain both normal incidence and 60� incidence
results. The two microphone technique is described in Chapter 3. Figure 6.20 shows
the predicted absorption coefficients for three arrangements: a porous absorber, a
porous absorbent faced with a porous sheet with and without an air gap between the
porous absorber and the rigid backing. In addition, a measurement for one of the
configurations is given. The predictions are for normal incidence, and used a transfer
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Figure 6.19 Impedance predicted and measured for a Helmholtz absorber (measurements
from Guignouard et al. [12]).
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Figure 6.20 Absorption coefficient predicted for three absorbers, plus measurement for
one case from Guignouard et al. [12] (some interpolation of the measured
impedance data was used to obtain the measured absorption coefficient):
——— Porous absorbent only, predicted; Porous absorbent with
perforated facing, predicted; � � � � � � Porous absorbent with perforated facing
and air gap, predicted; Porous absorbent with perforated sheet, measured.

Resonant absorbers 179



function matrix technique given in Equations 6.22–6.24. The more complex modal
decomposition model is unnecessary because the simple model gives satisfactory results.
The porous absorber had a flow resistivity of 70,000 raylm�1 and was 3 cm thick. For
the perforated sheet, the holes had a radius of 2.5mm, the open area was 17.5 per cent
and the thickness was 0.75mm. The prediction model gives reasonable accuracy.

6.5 More complicated constructions

Having set out the design methodology for the most common designs, more complex
designs and recent innovations will now be discussed. Much can be gained from
application of the simple resonator design as discussed previously, but more compli-
cated designs do exist. In trying to decide whether to use the complex designs, the
trade-off lies mainly between acoustic performance and cost of construction. After all,
a piece of porous material covered with a perforated sheet is relatively cheap to
produce. Once more complex designs are considered, like large-scale microperfor-
ation or complex neck plates, the cost of the device will naturally increase. Conse-
quently, the designs discussed in the following sections are only really needed where
space is a particular premium, or where special requirements such as transparency
need to be achieved.

6.5.1 Double resonators

The problem with resonant absorbers is that they have a relatively limited bandwidth.
It is common to have to cover a greater frequency range than can be achieved by a
single resonator alone. One possibility is to stack a high frequency Helmholtz device
in front of a low frequency device. The disadvantage of this is that the surfaces
become very deep, and depth is often restricted by non-acoustic constraints. This
double system can be most easily modelled as a transfer function matrix. Such a
double design was a standard construction used by the British Broadcasting Corpor-
ation for many decades in their studios.

6.5.2 Microperforation

If the perforations of a Helmholtz resonator are made small enough, then losses will
occur due to viscous boundary layer effects in the perforations. To achieve this the
perforations must be sub-millimetre in diameter so that they are comparable to the
boundary layer thickness. Then it is possible to achieve absorption without using a
porous material. This becomes a useful technique because the perforated sheet and the
back of the cavity can be made from transparent acrylic or glass and so forming a
clear absorber. A commercial realization of this was discussed in Section 6.2.4. From
an academic viewpoint, this is a neat device because the physics of the system is very
simple and so accurate predictions are readily achieved. A microperforated device was
reported by Cremer and Müller [13], where a multi-layer system originally devised by
Rschevkin is briefly outlined. It was Maa, however, who appears to have carried out
the significant recent development of the concept [14].

The theoretical formulations begin by considering the sound propagation within a
cylindrical hole. This problem is well established and is the theoretical foundation of
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much work on microscopic propagation in porous absorbents. In fact, the earliest
work was probably done by Lord Rayleigh. For a tube which is short compared to
wavelength, it can be shown that the specific acoustic impedance of the tube is given
by [15]:

z1 ¼ j!�t 1� 2J1ðk0
ffiffiffiffiffiffi�jp Þ

k0
ffiffiffiffiffiffi�jp
J0ðk

ffiffiffiffiffiffi�jp Þ
� ��1

ð6:36Þ

k0 ¼ a
ffiffiffiffiffiffi
�!

�

r
ð6:37Þ

where J0 and J1 are the Bessel functions of the first kind, of zero and first order
respectively, t the tube length and a the tube diameter.

To get the specific acoustic impedance of the perforated sheet, Equation 6.36 must
be divided by the plate open area ". Maa details approximate solutions to the above
equation, but with the advent of modern numerical tools on computers, it is as easy to
deal with Equation 6.36 directly as to use an asymptotic solution. To deal with the
Helmholtz resonator configuration, a transfer matrix must be used to get the surface
impedance, zh:

zh ¼
z1
"
� j�c cotðkdÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2!��
p

2"
þ j1:7!�a

"
ð6:38Þ

The second term is the impedance of the cavity which is assumed to be d deep and to
be filled with air. The final term is the end correction to allow for the radiation
reactance of the tube. The penultimate term is the radiation resistance for an orifice.
Maa uses the formulation from Ingard [3] given in Equation 6.16 for the radiation
impedance. Once the impedance is known, the normal incidence absorption coeffi-
cient can be readily obtained. These equations are most applicable for common sound
intensities; for large intensities the impedance will change due to non-linear effects.

Figure 6.21 compares the prediction according to Equation 6.38 to measurements
presented by Maa [15]. The hole separation is 2.5 mm, the hole radius 0.1 mm, the
plate thickness 0.2 mm and the cavity depth 6 cm. Reasonable agreement between
measurement and prediction is achieved, although not as good as given in the paper.
Script 6.3 in Appendix B gives the code for the predictions. The predictions show
sharp peaks due to second order resonances. These resonances are relatively narrow in
frequency, and so if the results are summed in one-third octave bands, the second
order peaks appear less significant.

The problem with these systems is getting broadband absorption. As it relies on
resonance, the absorption will be limited to low to mid-frequencies, whereas an ideal
clear absorber would probably be one that covered the entire speech frequency range.
While in theory the speech frequencies could be covered, in reality the size of holes
required is so small as to make the production difficult. To extend the bandwidth,
Maa and others have shown that multiple layers can be used. Each layer is then tuned
to a different frequency range. This can then be solved by a transfer matrix solution
taking each layer in turn. The problem with double layer devices is they increase the
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depth and cost of the device, both of which are usually under strict restrictions by
non-acousticians.

For oblique incidence, the sound in the cavity travels at an angle to the normal, in
fact the same angle as the angle of incidence. Consequently, Equation 6.38 should be
altered to:

zh ¼
z1
"
� j�c cotðkdÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2!��
p

2"
þ j1:7!�a

"

� �
cosð Þ ð6:39Þ

where  is the angle of incidence. The effect of this is to increase the resonant
frequency, and so raise the frequency at which absorption is significant. For large
angles of incidence, however, the lateral coupling between adjacent holes within the
cavity will become significant. This might be expected to lower the absorption for
most if not all frequencies. Consequently, in a diffuse field, the absorption would be
expected to be broader, but the maximum absorption would be lowered.

As discussed previously, it is possible to combine membrane and Helmholtz
mechanisms in a single device. Kang and Fuchs [16] discussed the construction of
such a device which was a microperforated plastic membrane; the theory was also
applied to glass fibre textiles. This treats the membrane and Helmholtz effects in
parallel as discussed previously around Equation 6.19. Good agreement was found
between impedance tube and reverberation chamber measurement, and the transfer
matrix theory. An example result is shown in Figure 6.22 where random and normal
incidence absorption coefficients are compared. The device had a mass per unit
area, m¼ 0.14 kg m�2; thickness t¼ 0.11 mm; hole radius a¼ 0.1 mm; hole spacing
D¼ 2 mm and a cavity depth of 10 cm. As with the previous microperforated systems,
the random incidence absorption is less than the normal incidence absorption, and a
shift in frequency is also seen. Using a double layer construction can increase the
bandwidth of the device.
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Figure 6.21 Predicted and measured absorption coefficient for a microperforated Helmholtz
absorber (measurement data from Maa [15]).
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6.5.3 Lateral orifices

An alternative method to gaining clear absorption is to elongate the neck of the
absorber laterally. Again the principle is to exploit viscous boundary layer losses in
narrow openings and so remove the need for resistive material. Randeberg developed
such a technique [17], and Figure 6.23 shows the device. The front and rear plates are
perforated with reasonably large perforations (1–3 mm in diameter), the viscous
losses occur in the propagation parallel to and between the plates. Strict control of
the plate spacing is required, which must be of the order of the boundary layer
thickness, about 0.2 mm. This spacing must be achieved to a high precision, as the
results by Randeberg demonstrate that a change in spacing of 0.05 mm makes sig-
nificant difference to the absorption obtained. Predicting the absorption of the system
is complicated and requires a finite difference solution of the Navier–Stokes equation.
A simple solution using a calculation of vibrating mass based on the volume of the
openings and the elongated orifice does not work.
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Figure 6.22 Measured and predicted absorption coefficient for a microperforated mem-
brane for different incident sound conditions as shown in legend. Measured,
random incidence; Predicted, random incidence; – – – – – – – Pre-
dicted, normal incidence (after Kang and Fuchs [16]).

Figure 6.23 A Helmholtz absorber which uses lateral space between two perforated sheets as
part of the neck of the device.
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The device gives very similar performance to the microperforated systems discussed
previously, and as such offers a different construction rather than improved acoustic
performance. Again the absorption is limited to low to mid-frequencies.

Mechel [18] has also suggested the use of lateral orifices, but in a different
construction. The type of construction suggested is shown in Figure 6.24. The lateral
orifices are narrow enough to have significant viscous and thermal losses, while also
creating additional resonances where absorption can be high. The two side branches
are made unequal to facilitate a broadening of the absorption bandwidth for normal
incidence by generating multiple resonant frequencies. For the orifices to have a
significant effect on the system, however, it is necessary to increase the impedance
in the neck. Mechel suggests the use of a limp resistive foil. This has the advantage
that the perforated sheets do not have to be held very precisely sub-millimetre
distances apart, as was the case for Randeberg’s design. Disadvantages of the system
lie in the complexity of the construction. Measurements are needed to confirm the
performance of this type of device.

6.6 Summary

This chapter has outlined the design principles, typical applications and theoretical
models for resonant absorbers. Resonant absorbers play a crucial role in improving
acoustic conditions exploited for controlling modes, reverberation and noise levels.
The next chapter details a couple of absorbers that did not fit neatly into other
chapters: seating and absorption from Schroeder diffusers.
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7 Miscellaneous absorbers

This chapter deals with some absorbers that do not easily fit into categories, but are
nevertheless important to airborne acoustics. The first subject is seating and audience
absorption. In many auditoria, the seating and audience form the main absorption in
the room, and consequently being able to correctly measure and predict the absorp-
tion coefficient of the seating and audience is very important. The second subject is
how to make efficient absorbers from Schroeder diffusers. Researchers started by
looking into why the absorption from Schroeder diffusers could be large, and ended
up inventing a new style of absorber.

7.1 Seating and audience

The reverberation time in a hall is dominated by the absorption of the seating and
audience; it is essential that these can be measured or predicted accurately in the early
stages of design. Section 3.4.1 discussed how the absorption of seating should be
measured, and so this discussion concerns the actual values of absorption coefficients
that are available in literature and what they mean.

Beranek [1] and Kosten [2] have both produced data for the average absorption
coefficients of occupied and unoccupied seating. The data was averaged from meas-
urements in many halls and is useful for estimating reverberation time in the early
design stages. The use of average data is not reliable for later design work, however,
as there is too much variation in the construction for modern seating and conse-
quently, seating absorption coefficients can vary greatly. Figure 7.1 shows the spread
and mean of the absorption coefficients measured by Davies et al. [3] for nine seating
types. Also shown are the average values from Beranek [1] which are in common use.
Considering the range of the current data, the agreement between the mean measured
by Davies et al. and Beranek’s values is quite good up to 1 kHz. At higher frequencies,
as Bradley [4] explains, Beranek’s absorption data is quite possibly affected by
differences in air absorption between the many halls measured. Discrepancies may
also arise, because modern theatre seating has slightly more padding than the older
ones forming the bulk of Beranek’s data.

For occupied seating, measurements by different authors are much more similar [5].
It appears that the absorption of occupied upholstered seats is dominated by the
absorption of the occupants and does not vary much over different seat types.
Whether occupied or not, the absorption coefficients have the characteristic curve
shape of a porous absorber.



Figure 7.2 shows the effect of varying the row spacing, over the small range
commonly found in auditoria, on the absorption coefficient. Increasing the row
spacing decreases the absorption coefficient. Figure 7.3 shows the effect of carpet
on the absorption coefficient. The addition of carpet even below seating significantly
increases the absorption and so is generally avoided in large concert venues.

Figure 7.4 compares occupied and unoccupied absorption coefficients for two seating
types. Although it is normal practice to try and make the absorption of seating the
same whether occupied or not, this is not entirely successful as shown in Figure 7.4.
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Figure 7.1 The variation in absorption coefficient for audience seating from Davies et al.
[3] shown as minimum, maximum and mean. Also shown the mean values
from Beranek [1].
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On a related issue, recently Hidaka et al. [6] have suggested that draping the seats with
felt is a method by which occupied conditions can be simulated during the testing of halls.
This appears to be successful at mid-frequencies, but at low frequencies (100–200Hz)
it does not always work because it interferes with the seat dip effect [7, 8].

7.2 Absorbers from Schroeder diffusers

Numerous pictures and sketches of Schroeder diffusers can be found in Chapter 9, for
example Figure 9.1. The Schroeder diffuser was designed to diffuse rather than absorb
sound, although for sometime there has been anecdotal evidence of absorption. In
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Figure 7.3 Variation of absorption coefficient for seating with and without carpet (data
from Davies [5]).
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recent years, some concerted scientific studies have been able to determine the source
of the absorption, and even to show how to turn these diffusers into good absorbers.
By changes in geometry and design, it is possible to change a Schroeder surface from a
low absorption diffuser to a high absorbing surface. This is of great concern for
diffuser installation, as it is very easy to make a high absorbing surface through bad
workmanship. Section 9.8 discusses some general principles to achieve low absorp-
tion from Schroeder diffusers. What is discussed below, is the mechanism of the
absorption, and how this can be exploited to form a good absorber.

When Marshall and Hyde [9] implemented their revolutionary use of Schroeder
diffusers in the Michael Fowler Centre, they used rather shallow and wide wells. This
was born out of a desire to achieve moderate diffusion, but also because of concern
about the diffusers causing excess absorption. Dramatic levels of absorption from
Schroeder diffusers were measured by Fujiwara and Miyajima [10] in 1992, the
absorption coefficient ranging from 0.3 to 1, and at that time this absorption could
not be explained. Fujiwara and Miyajima [11] later reported that the quality of
construction was to blame for some of the excess absorption, to achieve low absorp-
tion requires good workmanship. Commins et al. [12] experimentally investigated the
absorption characteristics of a Schroeder diffuser and found values peaking at 0.5.
They showed that by slopping the bottom of the diffuser wells, the absorption could
be reduced. In 1983, D’Antonio made the first absorption measurements of a com-
mercial QRD1 with seven 86.4 mm wide wells, with a maximum depth of 196.9mm.
The average absorption coefficient was 0.24 between 125 and 4000 Hz, with a
maximum value of 0.35 at 500Hz.

Although workmanship can explain the excess absorption in many cases, even
diffusers constructed to a high standard can have absorption coefficients higher than
expected. It was to be anticipated that resonant absorption would occur at the 1/4 wave
resonances in the wells, but the absorption measured is too high to be explained by 1/4
1
4 wave resonance alone. It was Kuttruff [13] who first postulated energy flow between
the wells as a probable cause for this excess absorption, although his theoretical
model could not predict the high absorption measured by others. Mechel [14] thor-
oughly discussed the theoretical basis for the absorption effect, and although his
studies lacked direct experimental verification, the prediction model developed was
shown by others to be accurate. Wu et al. [15] brought together measurement and
Mechel’s prediction model to provide evidence that the energy flow or strong coup-
ling between the wells was indeed responsible for the high absorption. This mechan-
ism is described in the following section.

7.2.1 Energy flow mechanism

Consider a pure tone wave incident onto a Schroeder diffuser. For simplicity consider
just two neighbouring wells. Furthermore, consider this to be a frequency where one
well is in resonance, and the neighbouring well is not, as illustrated in Figure 7.5. The
energy at the mouth of the resonating well will be much greater than that of the non-
resonating well. This means that there will be energy flow from the resonating well to
the well that is not resonating. Consequently, around the entrances to the wells there
is high particle velocity. Indeed, Fujiwara et al. [16] showed that the particle velocity
is up to 14 times greater at the mouth of Schroeder diffuser wells compared to the
incident field. As sound moves around the front of the fins, from one well to the next,
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excess absorption occurs. This is the source of the additional absorption in Schroeder
diffusers and occurs even in properly constructed structures.

Knowing that the front face of the diffuser is a region of high particle velocity, it
makes sense to place resistive material at the well entrance if the desire is to make an
absorber. Mechel [14] demonstrated that resistive layers at the well entrances turn
these diffuser structures into potentially useful and practical absorbers. Figures 7.6
and 7.7 show the absorption coefficient and surface impedance for a profiled struc-
ture with and without a resistive layer. Two different resistive layers of different flow
resistance are illustrated. The effect of the resistive layer is to broaden the resonant
peaks, and therefore generating absorption over a greater bandwidth. It also increases
the impedance closer to the characteristic impedance for air, and thereby gains more
absorption. The resistive layer can be made from wire mesh, cloth or any material
with an appropriate acoustic resistance. The advantage of using wire mesh is that the
absorber is then washable and durable, which can be useful in some applications.

The resistance of the covering must be such that the total resistance of the wells are
close to the characteristic impedance. Too large a resistance leads to an overly
damped system and the peaks of absorption are significantly lowered. This is illus-
trated in Figures 7.6 and 7.7. Too little resistance (no covering) leads to an uneven
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Figure 7.5 Two wells of a Schroeder diffuser.
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Figure 7.6 Normal incidence absorption coefficient for a quadratic residue diffuser with
narrow wells, showing dependence on whether there is a covering at well
entrance and what the flow resistance of the covering is. No
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performance, too much resistance (550 rayls) leads to over damping, whereas 65 rayls
gives the highest peak absorption.

7.2.2 Boundary layer absorption

When the wells of a Schroeder surface become narrow, then the losses at the well
walls, due to viscous boundary layer effects can become significant. This absorption
can be exploited to produce greater absorption, but the role of the resistive layer must
be considered. The key to obtaining a high absorption is that the combination of the
resistance of the covering material and the resistance due to losses at the well walls
should approach the characteristic impedance of air. If the wells are wide, a high
resistance will be needed from the covering material to compensate for the lack of
boundary layer absorption. Similarly, if the walls of the wells are rough, then there
will be more boundary layer absorption than with a smooth material, and this must be
allowed for in the design.

7.2.3 Absorption or diffusion

It is possible to construct Schroeder surfaces to maximize the absorption or maximize
the diffusion. Although the surface used to produce high absorption has the same
ancestry as those used to disperse sound, crucial design differences result in radically
different absorption properties. The two different design remits are contrasted in
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Figure 7.7 Normal incidence surface impedance for a quadratic residue diffuser with
narrow wells showing dependence on whether there is a covering at the well
entrance and what the flow resistance of the covering is. No
covering; ��������������������� Covering of 65 rayls; Covering of 550 rayls.
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Table 7.1. As indicated in Table 7.1, measurements show that 2D surfaces usually
absorb more than 1D surfaces as shown in Figure 9.37. The reason for this is probably
twofold:

1 There are often a greater number of well depths in a 2D diffuser compared to a 1D
surface. This means that there are more quarter wave resonances in the 2D surface,
leading to more frequencies at which resonance is occurring. This means that the
absorption due to quarter wave resonance is significant for more frequencies, and
the energy flow between the wells is also greater leading to more losses.

2 There is a greater surface area of well boundaries in the 2D diffuser compared to
the 1D surface. It is at these boundaries that viscous boundary layer losses occur.
Consequently, it is expected that the greater the boundary area, the greater the
absorption (unless a high flow resistivity covering is used).

Some of the other features summarized in Table 7.1 are discussed in the following
sections.

Table 7.1 Construction differences between Schroeder diffusers and absorbers

Schroeder surface for absorption Schroeder surface
for diffusion
(minimal absorption)

Well width Usually narrow to exploit viscous
boundary layer losses

Usually >2.5 cm to minimize
boundary layer losses

Covering Key to good absorption. Covering
should be chosen so surface
resistance is ��0c when added to
well resistance to maximize
absorption

Should not be covered. If
covering unavoidable, use
low flow resistivity material
away from well entrances

1D versus 2D 2D surface often gives more
absorption

2D surface gives
hemispherical dispersion,
1D surface diffuses in a
single plane

Number of different
depth wells, N

Determined by the need to have a
sufficient number of quarter wave
resonances in absorption
bandwidth

A larger N usually makes a
better diffuser

Depth sequence Well depths should be chosen to
evenly distribute well resonances
across absorption bandwidth, best
done using numerical
optimization

Chosen to maximize
dispersion, best done using
numerical optimization
Narrow period widths
should be avoided

Deepest well depth Determines low frequency limit of
absorption

Determines low frequency
limit of diffusion, except
when period width is small

Construction Well sealed, no slits Well sealed, no slits
Mass elements
(addition of perforated
sheets or membranes)

Can be used to lower bandwidth
of absorption

Can be used to lower
bandwidth of diffusion

Well sides Can be rough Should be smooth

192 Miscellaneous absorbers



7.2.4 Depth sequence

An optimum depth sequence for diffuse reflections does not necessarily produce the
best absorption. It is possible to produce a set of depths that produces a better
absorber, than one based on the quadratic residue sequence (see Chapter 9 for
definitions of different number sequences). This is done by using a set of well depths
which produce more resonance frequencies, distributed more evenly in frequency, and
optimally arranging to maximize energy flow between the wells. Mechel [14] was the
first to suggest this; he discussed how using a primitive root sequence to determine the
well depths of the structure could result in a better absorber than the more common
quadratic residue sequence. This is because the primitive root sequence generates
more different well depths than a quadratic residue sequence. The simple procedure
outlined below works even better, as the primitive root sequence does not evenly
space resonant modes in frequency. Another possibility is to use a numerical optimi-
zation to find the best well depth sequence. This can follow the principles outlined for
diffuse reflection optimization outlined in Chapters 9 and 10. The optimization can
be tasked with maximizing the average absorption coefficient across the bandwidth
of interest. As with diffuse reflection optimization, this is a slow and moderately
complex procedure.

The simple procedure for determining the well depths works by examining the
resonant frequencies of the wells. To a first approximation, neglecting viscous bound-
ary layer losses in the well, each well is a quarter wave resonator with resonant
frequencies f given by:

f ¼ð2m� 1Þc
4dn

m ¼ 1; 2; 3 . . . ð7:1Þ

where dn is the depth of the nth well and c the speed of sound.
To maximize the absorption it is necessary to evenly space these resonant frequen-

cies over the design bandwidth avoiding degenerate modes – modes with similar
resonant frequencies. This can be simply achieved by a trial and error process using
a calculation tool such as a spreadsheet. Once the depths are determined, it is
necessary to order them to maximize the losses due to energy flow between the wells.
To achieve this, wells causing adjacent in-frequency resonances should not be phys-
ically next to each other. This can be done quickly by hand.

Figure 7.8 compares the performance of an absorber made following this
simple design method to an absorber produced using a numerical optimization
[15]. The performance of the absorber using the simpler design procedure is
good. As might be expected the optimization gives slightly better results, but that
design involves considerably more computation and encoding effort. The reson-
ant frequencies used during the simple design are also marked as vertical dashed
lines. The drop at high frequencies >2.5 kHz occurs due to lack of resonances in
the region above 3 kHz (beyond the frequency range shown in the figure). To
illustrate that the ordering of the wells is important, Figure 7.8 also shows the
results when the absorber is designed using the simple design method, but has the
wells stacked in ascending order. There is considerably less absorption at some
frequencies, demonstrating the importance of exploiting the scattering by ordering
wells properly.
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7.2.5 Use of mass elements

High absorption at low frequencies is the most difficult to achieve. Consequently, an
important challenge is to get more absorption bandwidth from a given profiled
absorber depth. Interestingly, in the paper by Fujiwara and Miyajima [11], it was
reported that poorly constructed structures could provide high absorption below the
lowest resonant frequency. It is speculated that this additional absorption came
from cracks in the well bottoms forming Helmholtz resonators with air cavities
behind. This inspired the idea that using perforated plates in some wells could
significantly extend the absorption range towards the lower frequencies by adding
mass to the system and so lowering the resonant frequency. Another possibility
would be to use membranes to act as limp mass elements. A typical construction is
shown in Figure 7.9.

Fujiwara et al. [16] were the first to publish measurement results on a structure
with Helmholtz resonators in the wells, adding mass and so getting better absorption
at low frequencies. Wu et al. [17] took this work further by producing a prediction
model validated against measurement and some basic design methodologies. The
simple concept of spacing resonant frequencies, as discussed in Section 7.2.4, can be
used again, although predicting the resonant frequencies is more awkward with
mass elements. In addition, multiple resonances from each of the wells need to be
considered.

Wu et al. [17] found that wells with perforations and variable depth wells without
perforations are needed to get a wide enough range of resonant frequencies. Both
well types are shown in Figure 7.9. The holes of the perforations must be carefully
chosen. If they offer significant resistance, it maybe necessary to lower the resistance
of the resistive material to achieve good absorption. Furthermore, the added mass
within the perforations makes it difficult to keep the reactance of the impedance
small at high frequencies and so too many wells with perforations make it difficult
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Figure 7.8 Profiled absorbers using different methods to determine the depth sequence.
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to achieve high frequency absorption. These devices can produce greater absorption
than a set of standard Helmholtz resonators stacked next to each other, because of
the multiple resonances within some of the wells, but they are more expensive to
construct.

Figure 7.10 shows a typical result for two optimized designs: one with perforated
sheets and one without. Measurements from the impedance tube and predictions are
shown. This demonstrates that adding mass elements can extend the low frequency
performance of these devices.
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Figure 7.9 One period of a profiled sound absorber with perforated plates (adapted from
Wu et al. [15]).
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Figure 7.10 Measured and predicted absorption coefficient for two different profiled
structures. With perforated sheets, predicted; With
perforated sheets, measured; - - - - - - - - No perforated sheets, predicted;

No perforated sheets, measured (after Wu et al. [17]).

Miscellaneous absorbers 195



7.2.6 Number of wells

For a narrow bandwidth, only a few different depth wells are needed. Reducing the
number of wells would be useful as it simplifies the design and so reduces manu-
facturing costs. Wu et al. [17] designed a diffuser to work to 3 kHz that only needed
three different depth wells. With this small number of wells, however, the density of
resonances is insignificant above 3 kHz, and so the absorption becomes less efficient
at higher frequencies. Incidentally, the choice of the correct value of the flow
resistance for the resistive layer is even more important for absorbers with not many
wells.

7.2.7 Theoretical model

Having considered qualitatively the mechanisms behind the absorption of the Schroe-
der diffusers, a theoretical model for the absorber will be presented. Boundary
element methods could be used, but it is also possible to construct a theoretical model
using a Fourier decomposition of the infinite periodic surface. This later model could
also be used for profiled diffuser scattering. It is applicable to periodic structures and
is almost as accurate as a boundary element model, but requires considerably less
computation time. Both theoretical approaches divide into two parts: first the admit-
tance of the individual wells must be calculated, then the absorption should be
calculated from these well admittances.

7.2.7.1 Admittance of wells

The approach follows similar lines to the transfer matrix approaches used for porous
and resonant absorbers in Chapters 5 and 6 and also described in Chapter 1.
Consequently, the following is given in brief, and readers are referred to other
chapters for more details. The admittance (or impedance) is needed at the entrance
of the wells. The well width of a profiled absorber is often narrow compared with
diffusers to provide more absorption; therefore the energy losses caused by viscous
and thermal conduction in the wells cannot be neglected. Consider the case where
the well width, w�	/2, where 	 is the wavelength of the sound, so that only
fundamental modes are considered to propagate in each well. The wavenumber in
the wells, kt, is [18]:

kt � kþ k

2w
ð1� jÞ½dv þ ð� � 1Þdh� ð7:2Þ

where k is the wavenumber in air, � the ratio of the specific heat �7/5 for air and dv,
dh the thickness of the viscous and thermal boundary layers respectively.

The thickness of the viscous and thermal boundary layers can be found from:

dv ¼
ffiffiffiffiffiffi
2�

�!

s
� 0:0021ffiffiffi

f
p ð7:3Þ

where � is the coefficient of viscosity for air, ! the angular frequency, � the density of
air and f the frequency.
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dh ¼
ffiffiffiffiffiffiffiffiffiffi
2K

�!cp

s
� 0:0025ffiffiffi

f
p ð7:4Þ

where K is the thermal conductivity and cp the heat capacity per unit mass of air at
constant pressure.

For a slit with no perforated sheet present of depth ln, the impedance at the top of
the well is given by:

z1 ¼ rm � �ec
k

kt
cotðktlnÞ ð7:5Þ

where rm is the resistance of the covering material and �e the effective density of air in
the slit [19]. The effective density can be calculated using:

�e ¼ � 1þ ð1� jÞ dv

w

� �
ð7:6Þ

For a slit with a perforated sheet present at a height dn from the well bottom, the
impedance at the top of the perforated plate is given by:

zp ¼ rp þ jð!mp � �ec
k

kt
cotðktdnÞÞ ð7:7Þ

where rp and mp are the added resistance and mass due to the perforated sheet. These
can be calculated from Equations 6.6 and 6.15 or 6.16. The impedance at the top of
the well is:

z1 ¼ �j�czp cotðktlnÞ þ ð�cÞ2
zp � j�c cotðktlnÞ þ rm ð7:8Þ

where ln is the distance from the perforated plate to the top of the well.

7.2.7.2 From well impedance to absorption: BEM

Once the well impedances are known, a method for gaining the absorption coefficient
is needed. One possibility is to apply boundary element methods, which are described
in relation to diffuser predictions in Chapter 8. The absorber is treated as a box with
an impedance distribution on the front face. A source is placed in the far field and
irradiates the absorber. An array of receivers on a sphere measures the far field
scattered energy, which is integrated to give the sound power reflected, Pa. A box
with an infinite impedance on the front face of the same dimensions is placed in the
same set-up. The sound power reflected is calculated, and Pi in this case gives the
incident power. From these two powers, the absorption coefficient of the surface can
be calculated:

� ¼ 1� Pa

Pi
ð7:9Þ
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Figure 3.3 compares a prediction of the absorption using a boundary element model
compared to a multi-microphone free field measurement. Reasonable agreement is
achieved. The low frequency discrepancies are as likely to be due to measurement
inaccuracies as the BEM model. The BEM is rather laborious, and consequently, a
different method can be used exploiting periodicity. This is detailed in the next
section.

7.2.7.3 From well impedance to absorption: wave decomposition

Knowing that the surface is periodic, it is possible to decompose the scattered wave
according to the periodicity of the surface. This greatly reduces the computation
burden compared to a BEM model. There is an assumption that the surface is
infinitely wide, and consequently, the prediction accuracy may be compromised at
low frequencies for finite samples. The analysis below closely follows the method
used by Mechel [14] and Wu et al. [15]. The sound field in front of the absorber,
shown in Figure 7.9, is decomposed into the incident plane wave pi(x, z) and scattered
field ps(x, z), which is made up of propagating and non-propagating evanescent
waves:

pðx; zÞ ¼ piðx; zÞ þ psðx; zÞ
piðx; zÞ ¼ Pie

jð�xkxþzkzÞ ð7:10Þ
psðx; zÞ ¼

X
Ane

jð�x�n�z�nÞ

where kx ¼ k sin ( ), kz ¼ k cos ( ), �n ¼ kx þ n 2�
W, �n ¼ �jk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ( )þ n 	

W

! "2�1

q
and W ¼ Nw the width of one period.

To use the above set of equations, the coefficients An needs to be obtained for the
non-evanescent (propagating) waves. These coefficients represent the magnitude of the
grating lobes, and consequently one coefficient needs to be obtained for every grating
lobe. The number of grating lobes is usually rather small, and consequently this
solution will be much faster than a BEM, where hundreds or thousands of simultan-
eous equations are common. The corresponding radiating harmonics indices n,
which can propagate to the far field must satisfy the following relationship:

sinð Þ þ n 	
W

� �2

� 1 ð7:11Þ

The outward particle velocity along the positive z-direction and the pressure can be
related to the surface impedance as discussed in Sections 1.4.1 and 1.4.2. For this
theory, it is more convenient to work with admittance. The relationship between
particle velocity uz and pressure p is thus:

�cuzðx; 0Þ ¼ ��ðxÞpðx; 0Þ ð7:12Þ

where � is the surface admittance, which can be calculated from the well impedance
using the transfer matrix approach outlined in Section 7.2.7.1. The relations in Equa-
tion 7.10 are differentiated to give the particle velocity, and these are then related to
the pressure relations in Equation 7.10 using the admittance relationship in Equation 7.12.
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This is imposing the boundary condition of the surface admittance onto the system of
equations. This gives:

cosð Þpi �
X1
n¼�1

�n
k
Ane

�j2�xn=W ¼ �ðxÞ pi þ
X1
n¼�1

Ane
�j2�xn=W

" #
ð7:13Þ

As the surface is periodic, the surface admittance is also periodic. This enables the
surface admittance to be represented by a Fourier analysis. Since the period isW, this
gives the admittance as:

�ðxÞ ¼
X1
n¼�1

Bne
�j2�xn=W ð7:14Þ

Bn ¼ 1

W

Z W

0

�ðxÞej2�nx=Wdx ð7:15Þ

Equations 7.13–7.15 are combined to impose the periodicity of the boundary condi-
tions. After multiplication by ej2�mx/W and integration over W this gives:

X1
n¼�1

An Bm�n þ �m;n �n
k

 �h i
¼ Pi �m;0 cosð Þ � Bm

! "
m ¼ �1; . . . ;þ1 ð7:16Þ

�m;n ¼ 1 m ¼ n
0 m 6¼ n

�
ð7:17Þ

The infinite sum inm can be terminated by monitoring convergence as more terms are
added into the sum. On the samples tested so far, the index limits maybe taken as
jmj<¼�2N, where N is the number of wells in one period.

Equation 7.16 gives a set of simultaneous equations relating the coefficients of the
non-evanescent waves An to the surface admittance and other known factors of
geometry, such as incident angle. These simultaneous equations can be solved using
standard solution techniques to get the unknown coefficients.

By considering the energy in the scattered and incident waves shown in Equation
7.10, it is possible to derive an equation for the absorption coefficient. This is given by

� ¼ 1� A0

Pi

����
����
2

� 1

cosð Þ
X An

Pi

����
����
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðsinð Þ þ n	=WÞ2
q

ð7:18Þ

where the summation runs over radiating spatial harmonics only. The middle term is the
specularly reflected energy and the right most term the scattered energy. For a small
period widthW, the specular reflection is the only non-evanescent reflection. In this case
a normalized impedance on the surface of the structure, zn, can be derived from:

zn ¼ 1þ A0=Pi

1� A0=Pi
ð7:19Þ
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Figure 3.3 compares predictions from this Fourier model with the BEM modelling
described in the previous section. Free field measurements are also shown. Good
agreement is obtained between the prediction models and measurements. Some dis-
crepancies at low frequencies occur between the Fourier and BEM models; this
probably occurs because the Fourier model assumes an infinite sample, and the
BEM model does not.

Figure 7.10 compared the Fourier theory and impedance tube measurements for
two different samples. Again good accuracy is obtained. One of the keys to getting
good comparisons between theory and measurement is to get good quality samples.
Even apparently small imperfections in the samples can lead to large measurement
errors.

This Fourier model can also be applied to periodic diffusers designed for scattering
rather than absorption. Although this approach has not been verified, it is assumed
that the predictions would be accurate. The advantage in using this method over a
BEM model is the reduction in computation time and storage requirements.

7.3 Summary

This chapter has discussed the absorption of seating and Schroeder diffusers/absorb-
ers. Accurate estimations of seating and audience absorption are vital to good room
design, especially large concert halls for orchestral music. The absorption of Schroeder
surfaces is a more esoteric subject. While the concept of a Schroeder absorber is
interesting, and good absorption can be obtained, the cost of constructing such
surfaces is rather high, and this limits the commercial exploitation of these concepts.
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8 Prediction of scattering

To enable the design and characterization of a diffusing surface, it is necessary to be
able to predict the reflected pressure from the surface. Currently, this is usually done
by considering the scattering from the surface in isolation of other objects and
boundaries. The prediction techniques could also be used as part of a whole space
prediction algorithm, where all surfaces in a room are simultaneously modelled. At
the moment, however, long computation times and storage limitations mean that
whole space prediction algorithms are forced to use relatively crude representations of
the actual scattering processes. Consequently, when predicting the responses in rooms
and semi-enclosed spaces such as street canyons or pavilions, it is more common to
use geometric models. The issue of modelling scattering in geometric models is
discussed in Chapter 12.

Therefore, the issue for this chapter is predicting the scattering from isolated
surfaces. There is a range of choices of models, from the numerically exact but
computationally slow, to the approximate but fast models. The prediction methods
can also be differentiated as either time or frequency domain models. In diffuser
design, frequency domain methods have dominated the development of the modern
diffuser. For this reason, this chapter will concentrate on these methods. Table 8.1
summarizes the prediction models which will be considered in this chapter, along with
their key characteristics.

The next section will start with the most accurate model, a boundary element
method (BEM) based on the Helmholtz–Kirchhoff integral equation. It will then be
demonstrated how the more approximate models can be derived from this integral
equation, and the relative merits and limitations of the techniques will be discussed.
To round off the chapter, an overview of less commonly used techniques will be given.

8.1 Boundary element methods

When BEMs are applied to diffusers, remarkable accuracy is achieved. The accuracy
is much better than most acousticians are used to achieving from an acoustics theory.
Acousticians are used to using empirical fixes to make measurement match predic-
tion, but that is not often needed when BEMs are used to predict diffuser scattering.
The only real disadvantages of BEMs are that the method is prone to human error in
meshing the surface, and most importantly, it is slow for high frequencies and large
surfaces. Some have attempted to apply the prediction methods to whole rooms for
low frequencies, but this is very computationally intense, requiring super computing
facilities or a considerable amount of patience while waiting for results.
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8.1.1 The Helmholtz–Kirchhoff integral equation

This integral equation forms the core of many of the prediction models used including
BEMs. It is defined below and the following section will then discuss how it is solved.
The Helmholtz–Kirchhoff integral equation formulates the pressure at a point, as a
combination of the pressure direct from the sources, and a surface integral of the
pressure and its derivative over the reflecting surfaces. The single frequency form of
the integral equation gives the pressure p(r) at a position r as [1]:

r 2 E pðrÞ
r 2 s 1

2pðrÞ
r 2 D 0

9=
; ¼ piðr; r0Þ þ

Z
s

pðrsÞ @Gðr; rsÞ
@nðrsÞ �Gðr; rsÞ

@pðrsÞ
@nðrsÞ ds ð8:1Þ

where r ¼ fx, y, zg is the vector describing the receiver location, r0 ¼ fx0, y0, z0g the
vector describing the source location, rs ¼ fxs, ys, zsg the vector for a point on the
surface, p(rs) the pressure at rs, pi(r, r0) the direct pressure radiated from the source at
r0 to the receiver at r,G the Green’s function, n the normal to the surface pointing out
the surface, E the external region, s the surface and D the interior of the surface.

The geometry is illustrated in Figure 8.1. pi(r, r0) is the pressure direct from the source
at r0 to the receiver point at r, and so the first term on the right-hand side represents the
direct pressure. The integral is carried out over the surface, with rs being a point on the
surface and n(rs) a normal to the surface pointing out of the surface; so the integral gives
the contribution of the reflected energy to the pressure at r. By single frequency, it is
meant that the system is in steady state conditions so that the time variation, exp(j!t),
can be neglected. G is the Green’s function which gives how the pressure and its
derivative propagates from one point in space to another point. Consequently, in 3D
the Green’s function is simply a point source radiation equation:

GðrÞ ¼ e�jkr

4�r
ð8:2Þ

n

source (x0,y0,z0)
receiver (x,y,z)

r

originpoint on
surface
(xs,ys,zs)

rs

r0

E

D

s
x

y

z

Figure 8.1 Geometry for prediction models.
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where r ¼ jr� r0j and k is the wavenumber. Carrying out the solution in two dimen-
sions is extremely useful for diffusers as it can greatly decrease the computational
burden in terms of storage and calculation time. In that case the Green’s function is
given by the Hankel function:

GðrÞ ¼ �j
4
H
ð2Þ
0 ðkrÞ ð8:3Þ

where H(2)
0 is the Hankel function of the second kind of order zero. The asymptotic

version of the Hankel function when kr is large is:

GðrÞ
kr 1

¼ Ae
�jkrffiffiffiffiffi
kr
p ð8:4Þ

where A is a constant. So this is a line source radiation equation as would be expected
in a 2D world. The Hankel function is most efficiently evaluated using polynomial
expansions [2] when kr is small, and using the asymptotic form in Equation 8.4 when
kr is large.

There are three possible equations shown in Equation 8.1. The top case is when the
point r is external to the scattering surface (r 2 E), the middle case when r is on a
surface (r 2 s) and the bottom case when r is internal to the scattering surface (r 2 D).
The derivation of Equation 8.1 is well known [1], and so will not be discussed here.

The integral has two terms, one involving the surface pressure p(rs) and one
involving the surface pressure derivative @p(rs)/@n(rs). If the surface is taken to be
local reacting, the derivative of the surface pressure will be related to the surface
pressure by the surface admittance. In terms of equations:

jkpðrsÞ�0ðrsÞ ¼ @pðrsÞ
@nðrsÞ ð8:5Þ

where �0 is the surface admittance. In BEM modelling, it is normal to define quantities
in terms of an outward pointing normal. Surface admittances would normally be
defined with an inward pointing normal. The prime is used to signify this difference,
where �0 ¼ ��, where � is the more usual surface admittance. This definition of an
outward pointing normal also affects the interrelations between admittance and
surface reflection factor, and is relevant when implementing the Kirchhoff solution.
The assumption of local reaction means that the surface admittance is independent of
the incident and reflected pressure waves. For low absorption surfaces, where
�0 ! 0, the integral equation term using the pressure derivative can be neglected.

8.1.2 General solution method

Having defined the terms and the nomenclature for the integral equation, the general
solution technique for a BEM will be presented. The BEM involves the application of
Equation 8.1 twice.
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1 The surface pressures, p(rs), on the scattering surfaces are found.
2 A numerical integral is carried out over the surface pressures to determine the

pressures at the desired external points.

8.1.2.1 Determining surface pressures

The determination of the surface pressures is the rate-determining step of a BEM
model and so will be described now in detail. The surface pressures depend not only
on the incident sound field, but also on each other. This is a statement that there are
mutual interactions across the surface, as might be expected. To model the mutual
interactions, the usual solution method is to discretize the surface into a number of
surface (boundary) elements across which it is approximated that the pressure is
constant. The elements must have sufficiently small dimensions to prevent errors in
representing the continuous pressure variation by a set of discrete values. This is
usually achieved by making elements smaller than a quarter of a wavelength in size
for very simple surfaces. As surfaces become more complex, it is safer to use
element sizes of 	=8 or even smaller to ensure proper representation of the pressure
variation, where 	 is the wavelength of the highest frequency being modelled. Break-
ing the surface geometry into a series of elements – meshing the surface – can be a
difficult process for complicated diffusers, but can be greatly simplified by using
specialist meshing programs. This is where human error is most likely to occur.
Two-dimensional BEMs not only have computational speed advantages, they are also
useful because it is far simpler to mesh a 2D shape.

Once the surface has been discretized, a set of simultaneous equations can be set up
with one equation for each boundary element. The equations will be for the surface
pressures with r being taken for positions on the surface in the middle of each of the
elements. In matrix form, Equation 8.1 can be rewritten as:

1

2
� þ A

� �
P ¼ Pi ð8:6Þ

�nm ¼ 1 m ¼ n
�nm ¼ 0 m 6¼ n ð8:7Þ

Amn ¼
Z
Sm

@Gðrn; rsÞ
@nmðrsÞ �Gðrn; rsÞjk�

0
mdsm ð8:8Þ

where P is a (1�N) matrix of surface pressures, Pi a (1�N) matrix of incident
pressures direct from the source(s) to the surface, N the number of elements, the
subscripts n and m refer to the (n, m) element of the matrix or the contribution from
the mth element to the nth element surface pressure and sm is the surface of the mth
element.

The calculation of the matrix A is an important rate-determining step in the BEM.
It is roughly an N2 process, where N is the number of elements. It is relatively slower
for 2D processes when compared to 3D models. This is because the Hankel function is
slower to evaluate unless it is in-built and optimized for speed by the computing
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language used to code the BEM. But then there are great time savings to be had in a
2D model, as Equation 8.8 is only a line integral rather than a surface integration.

The integration of Equation 8.8 can use various algorithms and efficient numerical
techniques [3] that can make significant time savings. It is also possible to use more
approximate integration for elements that are far away from each other when the
mutual interactions are less strong. This has to be done with care, however, because it
risks compromising the accuracy of the solution. Evaluating Equation 8.8 when
m ¼ n, in other words evaluating the influence of an element on itself, requires special
consideration. The reason for this is that the integral includes a singularity. The
singularity is relatively weak in this case, and so provided care is taken not to consider
the case where rn ¼ rs, then the numerical integration will converge to a correct value.

Once the simultaneous equations are constructed, then they can be solved using
standard matrix solution techniques which are now commonly available. The BEM
method forms full matrixes, so sparse matrix solvers used in techniques such as finite
element analysis (FEA) are not directly applicable.

If the set of simultaneous equations were solved alone, it would be possible to get
non-unique solutions at certain frequencies. These equate to eigensolutions of the
physical body dimensions. There are various methods for overcoming this problem.
One solution is to form an overdetermined set of equations, this is the CHIEF method
[4]. By placing some receivers in the body of the diffuser, where the pressure must be
zero, it is possible to add additional simultaneous equations which help to ensure the
correct solution is found. In choosing the receivers inside the body of the surface,
often referred to as internal points, it must be remembered that if these internal points
are at a node of an incorrect eigensolution, then they do not help force the correct
solution. Consequently, several internal points should be used, avoiding lines of
symmetry and simple integer relationships between internal point locations. Another
remedy to the non-unique solutions problem is to combine Equation 8.1 with its
derivative; this is the Burton Miller approach [1]. In reality, most diffuser geometries
are such that non-unique solutions are not usually found. Non-unique solutions are
most common when the wavelength is small compared to the geometry, but cases
with such small wavelength to structural size are not often attempted in diffuser
calculations because the computational burden becomes too large. Consequently, at
the moment it appears that non-unique solutions are more of a worry for mathemat-
icians than acousticians.

A significant reduction in computation burden can be achieved if there are planes of
symmetry in the surface and the source lies on the planes of symmetry. In this case, a
simple image source construction can be used to take the place of identical parts of the
surface and so greatly reduce the computational burden. This is shown in Figure 8.2.
The pressure on identical parts of the surface will be the same; consequently, it is
possible to construct a solution using about half the number of elements that would be
required to mesh the whole surface. This does not reduce time in setting up the
simultaneous equations, but greatly reduces the time required to solve the equations
and decreases the memory requirements. The easiest method to exploit the image
source construct is to modify the Green’s function by an additional term:

GðrÞ ¼ e�jkr

4�r
þ e�jkr 0

4�r0
ð8:9Þ
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where r0 is the distance from an image source which is reflected in the plane of
symmetry. In 3D cases, multiple symmetry planes may exist, and so multiple image
sources may need to be considered. A similar process can also be applied to the 2D
Green’s function.

It is also possible to assume non-uniform pressure variation across the elem-
ents. For instance, it is possible to define the matrixes in terms of the pressures at
the element boundaries and assume a linear relationship between these. This
reduces the number of elements needed to correctly represent the pressure
variation on the surface compared to constant pressure elements. This has
potential to make a faster prediction model, but at the cost of a more complex
implementation.

Line of symmetry

point
on surface

r

Original Layout
G = exp(jkr)/r

point
on surface

r

Layout exploiting symmetry
G = exp(jkr)/r + exp(jkr ′)/r ′

image point
on surface

r′ 

Test surface

source

receiver

source

receiver

Figure 8.2 Illustration showing the use of an image source for a diffuser made of two
arcs. The top illustration shows the original configuration where the source
lies on a plane of symmetry. The bottom shows the exploitation of mirror
symmetry to half the number of elements required in the BEM model.
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8.1.2.2 Determining external point pressures

Once the surface pressures are known, Equation 8.1 becomes a straightforward
numerical integration that must be solved. This process is relatively quick and simple
as it is just a numerical integration. The use of efficient numerical integration algo-
rithms and asymptotic solutions for the 2D Green’s function, when the receivers are
far from the surface, can greatly speed up this process.

8.1.2.3 2D versus 3D

Cox [5] examined whether it is possible to predict the scattering from 3D diffusers
using a 2D BEM model. The surfaces he tested were single plane surfaces which were
extruded in one direction, like 1D Schroeder diffusers and cylinders. This meant that
the scattering was roughly orthogonal across the width and along the extruded length.
In this case, Cox was able to show that 2D prediction models provided accurate
predictions except at low frequencies (for the surfaces Cox tested, this meant below
500 Hz). Cox derived expressions to correct the 2D scattered polar response, so that
results matched the real (3D) diffuser scattering. These corrections affect the overall
scattered sound power level and not the shape of the polar response.

8.1.3 Thin panel solution

When a surface becomes very thin, then the above solution method will not work. The
front and back of surface would have elements which would become rather too close
together, and the solution method often becomes inaccurate. It is possible, however,
to provide a formulation in terms of the pressure difference and sum across the panel.
Not only does this regularize the equations to make them solvable, it approximately
halves the number of elements required and so speeds solution times and reduces
storage requirements.

The solution method requires both Equation 8.1 and its derivative. Terai [6]
showed that with correct regard for the jump relations, the integral equation and its
derivative can be given by:

1

2
fpðr1Þ þ pðr2Þg ¼piðr0; r1Þ þ

Z Z
s

fpðrs;1Þ � pðrs;2Þg
@Gðr; rs;1Þ
@nðrs;1Þ

� @pðrs;1Þ
@nðrs;1Þ �

@pðrs;2Þ
@nðrs;1Þ

� 	
Gðr; rs;1Þds

ð8:10Þ

1

2

@pðr1Þ
@nðr1Þ þ

@pðr2Þ
@nðr1Þ

� 	
¼ @piðr0; rs;1Þ

@nðrs;1Þ þ
ZZ

s

fpðrs;1Þ � pðrs;2Þg
@2Gðr; rs;1Þ
@nðr1Þ@nðrs;1Þ

� @pðrs;1Þ
@nðrs;1Þ �

@pðrs;2Þ
@nðrs;1Þ

� 	
@Gðr; rs;1Þ
@nðr1Þ ds ð8:11Þ

Prediction of scattering 209



where the 1 and 2 in the subscripts refer to the front and the back of an infinite-
simally thick panel respectively. These are the equations for points on the surface
(r1, r22s) and should be used to set up the simultaneous equations which then yield the
surface pressures. If the desire is to achieve a reduction in computational burden,
further simplifications can be obtained if more assumptions are made. Otherwise, all
that these equations achieve is regularization of the thin panel case with no reduction
in number of elements. Two simplifications will be considered: first the case of a non-
absorbing surface and second the situation of a planar surface with non-zero surface
admittance.

8.1.3.1 Non-absorbing surface

The surface is assumed to be non-absorbing and thin, then the differentials in the
pressures on the front and rear surface are zero as the surface admittance is zero.
Under this assumption, Equation 8.10 can be simplified to yield a single equation in
terms of the pressure difference across the panel:

0 ¼ @piðr0; rs;1Þ
@nðrs;1Þ þ

ZZ
s

fpðrs;1Þ � pðrs;2Þg
@2Gðr; rs;1Þ
@nðr1Þ@nðrs;1Þ ds ð8:12Þ

Using this equation, it is possible to discretize the front surface into a set of elements
across which the pressure is assumed constant, and set up simultaneous equations
in the pressure difference between the front and rear of the panel fp(rs, 1)� p(rs, 2)g.
These simultaneous equations can then be solved to give the pressure difference for
each element.

Once the pressure difference for each element is known, then the following
equation is used to calculate the pressure at external points:

pðrÞ ¼ piðr0; r1Þ þ
ZZ

s

fpðrs;1Þ � pðrs;2Þg
@Gðr; rs;1Þ
@nðrs;1Þ ds ð8:13Þ

Incidentally, for a planar surface, it is simple to get the pressures on the front and the
rear of the panel if these are wanted (they are not explicitly needed to get the external
point pressures). The sum of the pressures on either side of the surface is equal to
twice the incident pressure fp(rs, 1)þ p(rs, 2)g ¼ 2pi(rs, 1). This fact can be used with
the values for the pressure difference between the front and rear of the panel
fp(rs, 1)� p(rs, 2)g to give the actual surface pressures on either side of the panel.

The matrix form of the integral Equation 8.12 is highly singular when the inter-
action of an element with itself is considered. To overcome this difficulty, Terai
suggested using an asymptotic solution for calculating the contribution of an ele-
ment’s radiation to its own surface pressure. For the 3D case this yields a line integral
around the perimeter of the element:

lim
r!rs

ZZ
s

@2Gðr; rsÞ
@n2

ds ¼ �1

4�

I
e�jkrð�Þ

rð�Þ d�þ 2�jk

� 	
ð8:14Þ
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where � is defined in Figure 8.3.
For the 2D case the corresponding equation is:

lim
a!0

Z a

0

@2Gðr; rsÞ
@n2

ds ¼ 1

2�a
ð8:15Þ

In many cases, it is possible to set the distance a as being the length of the element, and
so the factor above can be used to directly calculate the contribution of the element to
itself. For some problems with complex geometries, however, more accurate results
are obtained if a smaller value of a is used and the rest of the element is integrated
using normal numerical integration procedures.

Apart from this detail, the solution method proceeds in exactly the same way as for
the standard BEM model. The thin panel is a particularly useful formulation as it can
be used for many scattering surfaces. An overhead canopy above a stage can be
treated as a thin rigid surface, and this formulation allows a faster solution than the
standard BEM. The accuracy is compromised close to grazing angles, as it does not
model the scattering from the finite edges which exist with real surfaces. More details
on the accuracy are given later.

The method can also be applied to Schroeder diffusers, which have thin fins as part
of the construction. Schroeder diffusers are discussed in Chapter 9, a picture is shown
in Figure 9.1. The thin panel solution method allows the Schroeder geometry to be
exactly modelled and the scattering predicted for any frequency. This is not true of
most prediction methods, which are generally frequency limited as they assume plane
wave propagation in the wells.

This method provides unique solutions, provided no enclosed volumes are created
out of the elements. Consequently, there is no need to use an overdetermined system
in many cases.

8.1.3.2 Planar thin surface with non-zero admittance

By assuming the surface is planar, some of the terms in Equations 8.10 and 8.11
simplify. The aim is to reduce the number of elements involved in the calculation, as
unless this is achieved, no improvement in computing effort is achieved. One way of
achieving a reduction in the number of elements is to assume that the admittances on

r(θ)

r(0)

element perimeter

θ

Figure 8.3 Definition � used for asymptotic form of 3D thin panel BEM.
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the front and rear of the panel at any point are the same, i.e. �(rs, 1) ¼ �(rs, 2). In room
diffuser calculations, this is not going to introduce large errors into the calculation,
because it is the bright side scattering which is of primary importance. For all but low
frequencies, the pressure is low on the rear of the panel, and consequently what
admittance is assumed on the rear is not terribly important. This admittance assump-
tion might not be accurate in all cases. For example if a diffusing roadside barrier is
being considered, the scattering in the shadow zone at low frequencies is of interest.

Assuming that �(rs, 1) ¼ �(rs, 2) is a reasonable approximation, and the surface is
planar, then for receiver points r1 and r2 on the front and rear surface, Equations 8.10
and 8.11 can be rewritten as:

1

2
fpðr1Þ þ pðr2Þg ¼ piðr0; r1Þ � jk

Z Z
s

�0ðrs;1Þ½pðrs;1Þ þ pðrs;2Þ�Gðr; rs;1Þds ð8:16Þ

jk
1

2
�0ðr1Þfpðr1Þ � pðr2Þg ¼ @piðr0; rs;1Þ

@nðr1Þ þ
ZZ

s

fpðrs;1Þ � pðrs;2Þg
@2Gðr; rs;1Þ
@nðr1Þ@nðrs;1Þ ds

ð8:17Þ

The surface is again discretized into elements small compared to the wavelength.
Then two sets of simultaneous equations can be constructed from Equations 8.16 and
8.17. The first set of equations is in the sum of the pressures, using Equation 8.16, and
the second is in the difference pressure across the panel, using Equation 8.17. These
simultaneous equations are then separately solved. As two sets of simultaneous
equations are being used, with half the number of elements when compared to a
standard BEM, then the solution will be quicker by a factor of 4–8 times, depending
on the implementation.

The propagation to external receivers is carried out using the following equation:

pðrÞ ¼ piðr0; r1Þ þ
ZZ

s

fpðrs;1Þ � pðrs;2Þg
@Gðr; rs;1Þ
@nðrs;1Þ

� jk�0ðrs;1Þ½ pðrs;1)þ pðrs;2Þ�Gðr; rs;1Þds
ð8:18Þ

The accuracy of this technique will be presented later in this chapter.

8.1.4 Periodic formulation

When large areas of diffusers are used, BEM models can become too slow to be
practical. Consequently, one avenue for research is to find faster methods. For example,
fast multipole methods (FMM) are currently attracting considerable attention, although
an FMM implementation is extremely complex, and the improvement in computational
speed yet to be proven. Another approach to improving BEM predictions is to use
information concerning the physical nature of the surface boundary conditions to
reduce computational burden. In the case of periodic surfaces, considerable improve-
ments in prediction times can be achieved by exploiting the periodicity.
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Diffusers are often applied in a periodic formulation, and this periodicity can be
exploited to form a more computationally efficient formulation. Lam [7] developed
formulations for periodic 2D hard surfaces. For free waves in a periodic structure,
Bloch’s theorem [8] states that all field quantities at two points exactly one period
apart are related by the same factor. For diffusers and a far field source, the incident
pressure for identical parts of the structure will be related by a simple constant phase
factor. The relationship between the total pressure at periodic points will be modified
by the scattered wave. If the scattering is relatively weak, then it can be assumed that
the constant phase factor relating the incident sound pressures between identical parts
of the surface will also give the relationship for the total sound pressures. This may
appear to be a large leap of faith as diffusers are designed to achieve strong scattering
in the far field. Notwithstanding this design remit, it will be shown later in this
chapter that the Kirchhoff boundary conditions form the basis of many reasonably
good prediction methods, and there is an explicit assumption of weak scattering in
applying the Kirchhoff boundary conditions. So this provides some hope that the
weak scattering assumption may be fine.

Figure 8.4 illustrates a periodic structure and geometry used. The pressure between
identical points on adjacent periods is therefore:

�ðrs; i¼0; rs; i¼jÞ ¼ piðrs; i¼0Þ
piðrs; i¼jÞ ð8:19Þ

where ri¼0 and ri¼j are vectors for identical points on the surface, where j is an integer
and i an index referring to the appropriate period number. This formulation can deal
with non-plane wave incidence and so can be used for near field sources and receivers.
Given that Equation 8.19 gives the relationship between the pressures on identical
parts of the diffuser, it is now possible to produce a new version of Equation 8.1 for
periodic surfaces:

r 2 E pðrÞ
r 2 s 1

2 pðrÞ
r 2 D 0

9>=
>; ¼ piðr; r0Þ þ

Z
S0

pðrs;0Þ
X1
i¼�1

�ðrs;i; rs;iþjÞ
@Gðr; rs; 0Þ
@nðrs; 0Þ

�

� jk�0ðrs; 0ÞGðr; rs;0Þ
�
ds ð8:20Þ
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Figure 8.4 Geometry for periodic predictions illustrated for a set of arcs.
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where the vector rs,0 is the surface vector for the middle period only. The integration
is only carried out over the middle period, surface s0, since once the pressure
is known on the middle period, it is known for the whole surface (Bloch). Effect-
ively, the Green’s function has been modified in a way similar to the image source
case discussed previously when symmetry was being exploited. The limits of the
infinite sum can be taken as the physical number of periods present in the diffuser.
Figure 8.5 shows the scattering from a periodic arrangement of six semicylinders.
Measurements are compared to a complete BEM solution (modelling all six semi-
cylinders explicitly), as well as the periodic formulation. Good agreement is obtained
between the periodic formulation and the complete BEM solution. Some differences
remain. One likely cause is that the number of periods used is relatively small and
so edge diffraction effects may have a significant effect on the surface pressures of
the outer periods. Alternatively, it may be the weak scattering assumption
that is not entirely true.

This technique can also be applied to other structures and in 3D. For example,
Figure 8.6 shows the scattering from a planar hybrid surface. This is a flat surface
with a complex array of hard and soft patches and is discussed in detail in Chapter 11,
and a picture is shown in Figure 11.1. In Figure 8.6, a complete solution where all
periods are meshed is compared to a periodic formulation. The case is an array of
4� 1 periods at 2 kHz. The two prediction methods produce very similar results,
validating the periodic formulation.

The reliance on the weak scattering theory for explaining the relationship between
different periods of the device means that it is best to assume that this process works
best where the Kirchhoff boundary conditions are accurate. Consequently, it might be
expected that the periodic formulations would work less well at low frequencies, and
for oblique sources and receivers, especially as these approach grazing angles.
It would also be interesting to see how this formulation works for periodic arrange-
ment of strong scattering surfaces, such as pyramids or triangles.
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Figure 8.5 Scattering from six semicylinders. Two BEM models compared to measure-
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8.1.5 Accuracy of BEM modelling: thin rigid reflectors

Having presented some different BEMs, the next two sections will look at the accuracy
these methods achieve. Consider first thin rigid planar and curved surfaces. These
commonly occur in indoor and outdoor spaces and are relatively straightforward to
mesh and predict using BEMs. It is also relatively easy to construct and measure the
scattering from such surfaces, and so enable the accuracy of the prediction methods to
be directly compared to scale model measurements (see Chapter 4 for the measurement
techniques used).

The full BEM solution based on Equation 8.1 produces accurate predictions of
the scattering over a wide range of frequencies [9, 10] for plane and curved
surfaces. Figures 8.7 and 8.8 compare predicted and measured results for the total
and scattered pressure for a plane thin panel. Good prediction accuracy is achieved
for both models. The thin panel model is based on Equations 8.12 and 8.13 and
gives very similar results to the full BEM solution (for many angles the lines
overlay each other) with a quicker prediction time. The thin panel and full
BEM model only deviate for grazing angles and high frequencies. The deviations
occur because the thin panel model does not properly represent the finite thickness
of the panel, which becomes more critical at grazing angles when the wavelength is
not large compared to the panel thickness. Inaccuracies arise because there are no
edge elements in the thin panel case and so edge scattering is not properly
modelled.

Figure 8.6 Comparison of predictions from complete BEM model (top) and a periodic
formulation (bottom) for a planar hybrid surface.
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8.1.6 Accuracy of BEM modelling: Schroeder diffusers

Figure 9.1 left shows a picture of a Schroeder diffuser, and Chapter 9 discusses this
design in great detail. The diffuser consists of a series of wells of the same width but
different depths. There are two approaches to modelling this surface. The first uses
the thin panel solution and allows the diffuser shape to be exactly modelled; the
second uses an approximate model of the surface as a box with a variable front face
admittance (impedance). These will now be discussed.

The thin panel solution allows explicit representation of the diffuser shape. The
complete diffuser can be covered with thin panel elements. Figure 8.9 shows a typical
example. The complete enclosure of the diffuser by thin panel elements forces the
interior to have zero pressure provided no critical frequencies are found. Two prob-
lems could arise from this representation: (1) A large number of thin panel elements
with different sizes have to be sealed together, and the technique is therefore prone to
human modelling errors. (2) The thin panel limit solutions for a plane panel showed
small inaccuracies for scattering at grazing angles, particularly at high frequencies.
This could be a problem for Schroeder diffusers with fins, as these are presented edge
on to normal incident sources. The main drawback of this method is that it uses a very
large number of elements and therefore predictions can exceed available computer
power.

The approximate model, using a variable admittance on the front face of a box,
is what most authors investigating Schroeder diffusers have used. The admittance

Figure 8.7 Comparison of total field (incident plus scattered) for a plane surface meas-
ured and predicted by two boundary element models. Normalized to incident
sound at receiver (after Cox [10]).
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on the front face at the entrance of each well is derived from the phase change of
plane waves propagating up and down the wells. This representation is expected
to work under certain conditions: (1) The frequency must be below the cut-off
frequency of the well so plane wave propagation in the wells predominates. (2)
The impedance at the opening of the wells must be local reacting. There are two
conditions necessary for assumption (2). First, the radiation coupling between the
wells has to be small. Second, the radiation impedance of each well must also
be small. Fortunately, these conditions seem to hold for practical Schroeder
diffusers.

Comparisons with measurement show that the thin panel predictions of Schroeder
diffuser scattering are accurate. Figure 8.10 shows an example for the scattered
pressure. Similar accuracy is also achieved for the total field. The BEM model based
on Equation 8.1 using the box representation with a variable front face admittance is
also successful. This demonstrates that the simple phase change local reacting admit-
tance assumption is reasonable – this assumption is discussed in more detail in
Chapter 9.

So far, the discussions have been concerned with normal incidence. For oblique
incidence sources, there is greater interaction across the front face of the diffuser and
the simple phase change model will begin to break down. Figure 8.11 shows an
example for a source at 60�, where the thin panel model which is assumed to be
correct is compared to the standard BEM model using the variable admittance box.
The standard BEM model is most accurate close to the specular reflection angle and

Figure 8.8 Comparison of scattered pressure from a plane surface measured and pre-
dicted by two boundary element models. Normalized to incident sound at
receiver (after Cox [10]).
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Figure 8.9 An example of a Schroeder diffuser meshed for prediction using a thin panel
model.

Figure 8.10 Pressure scattering from a Schroeder diffuser measured compared to two
prediction models. Normalized to incident pressure at receiver (after Cox [10]).



becomes more inaccurate the further from the specular reflection angle that the
predictions are carried out at.

8.2 Kirchhoff

The rate-determining step in carrying out BEM predictions is the time taken to set
up and solve the simultaneous equations to determine the surface pressures. Con-
sequently, faster methods for estimating the surface pressures have been derived, as
then the solution time can be vastly reduced. For an appropriate approximation, it
is possible to turn to optics. Optics uses the Kirchhoff approximation to determine
the propagation of light through an aperture. The Kirchhoff approximation gives
the wave function and its derivative across the aperture as unaltered from the
incident wave. On the surround defining the aperture, both the wave function and
its derivative are assumed zero. Adapted for scattering in acoustics, this approxima-
tion can be used to obtain the surface pressures and their derivatives for surfaces,
and yield reasonably accurate results for far field scattering. There are cases,
however, where the method is not accurate, and so the method should be applied
with care.

Consider a large planar surface, with constant surface impedance across the whole
surface. By considering the definition of pressure reflection factor given in Chapter 1,
it would be anticipated that the pressure on the surface p(rs) would be given by:

Figure 8.11 Comparison of two prediction models for the scattered pressure for oblique
sound incident on a Schroeder diffuser. Normalized to incident pressure at
receiver (after Cox [10]).
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pðrsÞ ¼ ½1þ RðrsÞ�piðrs; r0Þ ð8:21Þ

where R is the pressure reflection factor of the surface. Equation 8.21 is sometimes
referred to as the Kirchhoff boundary condition. If the surface is completely non-
absorbing, R ¼ 1, then the surface pressure is simply double the incident pressure.
When the surface is completely absorbing, R ¼ 0, then the surface pressure is just the
incident pressure. It is necessary to assume that the diffuser is thin, so that the pressure
from the sides of the surface can be neglected. It is also assumed that the surface is
large compared to wavelength so that the pressure on the rear of the panel can be
assumed to be zero. Then substitution of Equation 8.21 into Equation 8.1 leaves a
straightforward numerical integration over the front face which can be rapidly and
readily evaluated.

Problems arise when applying the Kirchhoff boundary condition when the actual
surface has significant thickness, is small compared to wavelength, or has a rapidly
varying surface impedance. Problems also arise for oblique sources and receivers. In
the following paragraphs, these problems are highlighted and discussed.

When a surface becomes very deep, then it is possible for second order reflections to
occur. These second order reflections are not modelled by the Kirchhoff approxima-
tion. This is illustrated in Figure 8.12 for a set of triangles. A simple Kirchhoff model
would predict significant grazing energy reflected from this triangular diffuser array,
because it only models the first order reflections which result in grazing angle
propagation. In reality, however, second order reflections mean that the scattered
energy in fact returns back to the source. To prevent this problem, the Kirchhoff
boundary conditions should only be applied to surfaces whose surface gradients are
not too steep. It is generally assumed that when the surface is steeper than about
30–40�, then the prediction method is likely to become inaccurate.

When the surface becomes small compared to wavelength, the surface pressures on
the rear of the panel become significant, and the assumption of zero pressure on the
rear can be inaccurate. It is the problem of assuming zero pressure on the rear of the
panel that can cause the predictions to become inaccurate if the angle of incidence or
reflection becomes too large for finite sized surfaces. Furthermore, inaccuracies also
appear in some cases because the scattering from the edges is not modelled, as the
pressure on the edges is also assumed to be zero. Neglecting edge diffraction will also
be more problematical for oblique sources and receivers.

Figure 8.12 Example of a second order reflection from a set of triangles. This reflection
will not be properly modelled by the Kirchhoff boundary conditions.
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A surface which has a non-uniform surface impedance, where the impedance
variation is rapid, can also cause problems. Consider the hybrid diffuser shown as
an insert in Figure 8.13. The dark patches are absorbent (R ¼ 0) and the light patches
reflective (R ¼ 1). Figure 8.13 shows the surface pressure distribution predicted by
a BEM model for this surface, and these are compared to the Kirchhoff boundary
conditions. The Kirchhoff boundary conditions predict a rapidly fluctuating pressure
distribution due to the arrangement of hard and soft patches. The more accurate BEM
model shows that mutual interactions across the surface significantly alter the pres-
sure distribution, smoothing out the variation across the surface. This inaccuracy is
not only a concern for the surface pressure calculation. If the far field polar response is
considered, the Kirchhoff model in this case is most inaccurate.

The surface pressures are inaccurate, because there is an assumption in Equation
8.21 that the surface is large in extent. Consequently, it is necessary to have a surface
where the surface impedance variation is large compared to wavelength, i.e. the
patches of different impedance should be larger than half a wavelength. This is why
the Kirchhoff boundary conditions fail for the case shown in Figure 8.13. This would
also appear to rule out the use of the Kirchhoff boundary conditions for Schroeder
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Figure 8.13 Surface pressure distribution for a boundary element model compared to
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diffusers, but fortunately the case of most Schroeder diffusers is less severe than that
shown in Figure 8.13, for example the well width is wider for commercial implemen-
tations, and good prediction accuracy can be achieved.

Given all the above reservations, the Kirchhoff solution is surprisingly good and
useful for many acoustic diffusers. For a plane flat surface, accurate results are
achieved because the surface pressures are close to those given by the Kirchhoff
boundary conditions. Figure 8.14 shows a typical example. Close to the specular
reflection direction, the accuracy of the Kirchhoff solution increases as the frequency
increases. As the frequency increases the pressure on the rear of the panel decreases, as
does edge diffraction and mutual interactions across the surface. For single curved
surfaces, better accuracy is obtained, although there is a tendency for the Kirchhoff
solution to incorrectly smooth out local minima in the polar distribution.

To use the Kirchhoff solution for Schroeder diffusers, the model of a box with a
variable front face admittance must be used as described in Section 8.1.6. As the
Kirchhoff boundary conditions do not allow for mutual interactions across the
surface, it is not completely successful in predicting the sound field. This is most
obvious at low frequencies. Figures 8.15 and 8.16 contrast the prediction accuracy
achieved at low and mid-high frequencies. Again the accuracy is best near the
specular reflection angle. The Schroeder diffuser tends to scatter more sound energy
to the side than a plane surface, and this tends to mask the decreasing accuracy with
an angle that is normally found with the Kirchhoff model. For oblique receivers, the
predictions become less accurate as the simple phase change admittance model
breaks down.

Figure 8.14 Pressure scattering from a plane surface comparing the accuracy of the
Kirchhoff solution to BEM and experiment. Normalized to incident pressure
at receiver (after Cox [10]).
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Figure 8.15 Predicted scattering from a Schroeder diffuser at a low frequency using two
different prediction models (after Cox [10]).

Figure 8.16 Predicted scattering from a Schroeder diffuser at a mid-high frequency using
two different prediction models (after Cox [10]).



8.3 Fresnel

Once the Kirchhoff boundary conditions have been assumed, the resulting numerical
integration can be simplified further. This can be done either to facilitate faster compu-
tation or to enable the derivation and understanding of simpler design principles. The
Kirchhoff boundary conditions (Equation 8.21) are substituted into the Helmholtz–
Kirchhoff integral equation (Equation 8.1). The usual relationship between surface
admittance and pressure reflection factor as given in Chapter 1 is also used. (Remem-
bering that in this case the normal to the surface is pointing outwards, as is usually the
case with BEM models, whereas surface admittance is normally defined with an
inwardly pointing normal.) Combining these equations gives the following formulation:

pðrÞ¼ piðr; r0Þ þ
Z
s

piðrs; r0Þ½1þ RðrsÞ� @Gðr; rsÞ
@nðrsÞ

�

�Gðr; rsÞjk cosð Þ ðRðrsÞ � 1Þ
ðRðrsÞ þ 1Þ

�
ds ð8:22Þ

where  is the angle of incidence. It is assumed that the receiver is sufficiently far from the
surface so that the differential of the Green’s function can be approximately given by:

@Gðr; rsÞ
@nðrsÞ � �jkGðr; rsÞ cosð�Þ ð8:23Þ

where � is the angle of reflection. This relation is true for both the 2D and 3D Green’s
function. Combining Equations 8.22 and 8.23 gives:

pðrÞ ¼ piðr; r0Þ � jk

Z
s

piðrs; r0Þ½1þ RðrsÞ�Gðr; rsÞ cosð�Þ þ cosð Þ ðRðrsÞ � 1Þ
ðRðrsÞ þ 1Þ

� �
ds

ð8:24Þ

Fresnel diffraction is a method normally designed to work with non-absorbing
panels, i.e. R ¼ 1. In that case Equation 8.24 simplifies further.

pðrÞ ¼ piðr; r0Þ � 2jk

Z
s

piðrs; r0ÞGðr; rsÞ cosð�Þds ð8:25Þ

For simplicity, just the 3D case will be considered, although the findings below are
readily translated into a 2D representation. Consider a point source which is not
too close to a planar diffuser, then the incident pressure pi is given by the Green’s
function. It is necessary to come up with approximations for the distances jrs � r0j
and jr� rsj. By considering the geometry shown in Figure 8.1 with the diffuser in the
y ¼ 0 plane, and a simple binomial expansion, it is possible to show that these distances
are given by:

jrs � r0j � jr0j � x0xs þ z0zs
jr0j þ x

2
s þ z2s
jr0j ð8:26Þ
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jr� rsj � jrj � xxs þ zzs
jrj þ x

2
s þ z2s
jrj ð8:27Þ

If Equations 8.26 and 8.27 are substituted into Equation 8.25, the following expres-
sion is obtained for the scattered pressure:

psðrÞ � � jk

8�2

e�jkðr0þrÞ

rr0
cosð�Þ

ZZ
ejkðxxsþzzsþx2

sþz2s Þ=r ejkðx0xsþz0zsþx2
sþz2s Þ=r0dxsdzs ð8:28Þ

It has been assumed that the variation in jrs � r0j and jr� rsj in the denominator of the
Green’s function is negligible compared to the variation in the phase of the complex
exponential – an assumption often applied in optics. This enables the denominator of
the Green’s function to be moved outside the integral. Similar arguments allow the
cos(�) to also be moved outside the integration.

The phase terms of the complex exponentials are quadratic in xs and zs and so it is
not possible to provide an analytical solution to this integration. In the past, this was
overcome by using the Fresnel integrals, which were numerical solutions of the above
functional form which were readily available in tables. Nowadays, however, there is
little point in using Fresnel integrals as computer power has increased to such an
extent that the Kirchhoff approximation might as well be used. There are, however,
some neat and simple short cuts to calculating the above integration suggested by
Rindel [11], which could be used if speed is at a premium. The Fresnel solution
does, however, lead the discussion to far field prediction models, which are key to
understand Schroeder surfaces and other diffusers. Consequently, the discussion now
continues with a far field solution.

8.4 Fraunhofer or Fourier solution

This solution is only valid in the far field, when both source and receiver are some
distance from the surface. Then it is possible to neglect the quadratic terms in the
integration in Equation 8.28 to obtain:

psðrÞ � � jk

8�2

e�jkðr0þrÞ

rr0
cosð�Þ

ZZ
ejkðxxsþzzsÞ=rejkðx0xsþz0zsÞ=r0dxsdzs ð8:29Þ

For a planar surface, this then gives an analytical equation that can be solved.
Assuming the panel is 2a long in the x-direction and 2b long in the z-direction, the
scattering is given by two sinc functions:

psðrÞ � � jkab

2�2

e�jkðr0þrÞ

rr0
cosð�Þsinc k

x

r
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� �
a

� �
sinc k

z

r
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� �
b

� �
ð8:30Þ

sinc(x) ¼ sin(x)=x

This is a result familiar from optics and signal processing. The Fourier transform of a
rectangular or top hat function gives a sinc() response. (Note that in some numerical

Prediction of scattering 225



packages and texts sinc() is defined with a � multiplying x.) Equation 8.30 enables
quick estimations of the far field scattering from a rigid flat surface and is very fast.

While the above case is interesting, the Fraunhofer solution is arguably going to be
most useful in analyzing surfaces which do not have unity reflection coefficient. The
most obvious example being the Schroeder diffuser which can be modelled as having
a variable phase impedance on the front surface of a box. To carry out this analysis, it
is necessary to return to Equation 8.24 and to apply the distance approximations
outlined above. For conciseness, consider just the scattered pressure:

psðrÞ ¼ � jk

16�2
e�jkðrþr0Þ

ZZ
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ð8:31Þ

To simplify the analysis, just normal incidence sound will be considered; further-
more, it will be assumed that the surface admittance variation is only in the
x-direction. It is possible to keep all the terms included, but the equations become
rather long and the key points of the analysis lost in a forest of symbols. With these
simplifications, it can be shown that the scattering is given by:

psðrÞ ¼ � jk
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The term in [ cos (�)� 1] is usually less than the term in [ cos (�)þ 1], especially away
from grazing angles. Consequently, it can be ignored. This leads to a scattered pressure of:

psðrÞ ¼ � jk

8�2
e�jkðrþr0Þsinc
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Z a
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This is essentially the equation used by Schroeder in the design of phase grating
diffusers, although he derived his equations following a different philosophy. Further-
more, there are some additional factors outside the integral. Several authors neglect
the [ cos (�)þ 1], and this simplified form is often called a Fourier theory because the
integration is essentially a Fourier transform.

8.4.1 Near and far field

As the analysis is now considering a far field prediction model, it is expedient to define
what the near and far field mean. Unfortunately, with diffusers the location of the
near and far field is not as clear cut as for simple pistonic radiators, which is the case
most often cited in acoustic texts. The far field is defined as the region where the differ-
ence between minimum and maximum path lengths from the panel to the receiver
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is small compared to wavelength. In this region, all points on the panel are effectively
at the same distance from the receiver [12]. This is illustrated in Figure 8.17. For
diffusers, there is an added complication that both the source and receiver need to be
considered, but to simplify discussions, it will be assumed that the source is always at
infinity. There is also a second requirement for the far field, which is that the receiver
distance should be large compared to wavelength. This is, however, not usually the
critical requirement for the geometries that occur with diffusers. Frequencies, where the
wavelength is long enough for this to be a consideration, are usually below the lower
frequency limit at which surface roughness effects are important. When this can be
important is when receivers are close to diffusers, as might happen in poorly designed
small rooms as discussed in Chapter 2.

In the far field, the polar response is independent of the receiver distance from the
surface. This makes it a useful place to test diffusers. By considering the geometry in
Figure 8.17 for a planar surface, it is possible to show that the far field is for an on
axis receiver radii given by:

r >
a2

	
ð8:34Þ

Unfortunately, this far field formulation is not applicable to the case of oblique
sources and receivers. As Figure 4.14 demonstrated, the true far field is only achieved
for many diffusers when the receiver radius is many hundreds of metres! For further
discussion of this issue, see Section 4.1.1.

8.4.2 Fraunhofer theory accuracy

Provided sources and receivers are in the far field, for plane and Schroeder sur-
faces, the accuracy of the Fraunhofer theory is similar to the Kirchhoff solution.
So if the results in Figure 8.14 were predicted with the Fraunhofer solution, similar
results to the Kirchhoff solution would be obtained. Consequently, in the far field
the limiting factor for accuracy is the Kirchhoff boundary conditions, so where the
Kirchhoff model fails, so does the Fraunhofer method. Consequently, low frequency
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Figure 8.17 Standard construction for determining near field extent.
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predictions, and oblique sources and receivers can cause problems for the Fraunhofer
method.

Differences between Kirchhoff and Fraunhofer solutions occur when the receiver is in
the near field; this is true for all diffusers. Consequently, high frequency predictions can
become inaccurate as the near field extends further at higher frequency – a fact that can
often surprise the unwary. Figure 8.18 shows the scattering from anN ¼ 11 Schroeder
diffuser in the near field. It is assumed the BEM model is accurate, and consequently
this shows that the inaccuracies in the Fraunhofer model are significant at this distance.
Figure 8.19 shows the same situation, but now the receiver is 50m from the diffuser,
which is safely in the far field. At these distances, the Fraunhofer solution is as accurate
as the Kirchhoff model. It is not often, however, that application realistic sources and
receivers are this far from the panel. In diffuser design, however, the usual assumption is
that a good far field diffuser will also work in the near field, as discussed in Chapter 4.

8.5 Other methods

8.5.1 Transient model

It is possible to use the full time dependent form of the Helmholtz–Kirchhoff integral
equation, instead of the constant frequency version, to derive the surface pressures. To
solve the time dependent form the surface is again discretized. It can be shown from the
time dependent integral equation [13] that the velocity potential and its derivative on the
surface can then be represented by the incident velocity potential from the source plus
contributions from the other elements at previous times. This is an exact solution and not
an iterative method. Problems arise because the convergence of the surface velocity

Figure 8.18 Scattered pressure from a surface. Comparison between Fraunhofer solution
and BEM model in near field (after Cox [10]).
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potentials can be very slow.When choosing the elements it is necessary to use elements an
eighth of a wavelength or smaller so that the pressure variation is well represented. It is
also necessary that any variation within any time step is restricted to be contained within
one element. This leads to a very small time step and hence slow convergence. The
method has advantages over the constant frequency methods in that once the impulse
response has been calculated, the full frequency response can easily be obtained by a
Fourier transform. However, the model needs further development, particularly for non-
rigid bodies, as the formulation of surface admittance in the time domain is ill defined.

8.5.2 FEA

FEA uses volumetric rather than surface meshes [14]. This makes the technique much
slower than boundary element modelling when dealing with exterior domain acoustic
problems such as the scattering from diffusers. Where it does have advantages is
where there is fluid and structural motion. For example, it can model the behaviour of
a non-rigid diffuser which exhibits structural vibration. As this sort of diffuser is
currently rare, and structural motion is usually deliberately avoided in diffuser design,
the use of FEA for scattering is not the most efficient method.

8.5.3 Edge diffraction models

Edge diffraction models can be used to produce the scattering from wedges and simple
shapes. For a plane rigid surface, the total field can be seen as a sum of the direct

Figure 8.19 Scattered pressure from a surface. Comparison between Fraunhofer and
Kirchhoff solutions in the far field (after Cox [10]).
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sound, specular reflections and edge diffraction components [15]. Consequently, it is
possible to solve the scattering problem by integrating over the edges present in a
diffuser. This type of method becomes rather slow if high orders of edge diffraction
need be considered, as would be the case for complex surfaces. It does, however,
directly lead to a sampled impulse response, and consequently is particularly useful
where broadband time domain scattering is needed to be calculated or if the results
are to be integrated into geometric room acoustic models.

8.5.4 Wave decomposition and mode-matching approaches

It is possible to carry out a wave decomposition of the acoustic wave knowing the
spatial distribution of the diffuser. Strube [16–18] used this approach to solve the
scattering from Schroeder diffusers. In Chapter 7, an example of this type of theory
will be used to explain the absorption from Schroeder diffusers. For that reason, this
type of theory is only briefly described here. In this theory, it is normal to assume that
the diffuser structure is periodic, and then it is possible to decompose the scattered
wave into the different diffraction lobes using a Fourier decomposition. It is then
possible to set up and solve simultaneous equations into the diffraction lobe scattered
amplitudes. These methods offer an alternative approach to boundary element models,
but BEMs are considerably more useful as they can be applied to arbitrary surfaces.
The modal decomposition models are particularly powerful when predicting the effects
of large arrays of periodic structures, as the size of the problem to be solved is con-
siderably smaller under this formulation than with a BEM model.

8.5.5 Random roughness

In the theories used so far, a deterministic approach has been taken, with the surface
geometry and impedance properties being modelled exactly. For large-scale surfaces
with small roughness, this can turn out to be a very inefficient method for carrying out
predictions. In that case, it may be advantageous to use a statistical approach,
whereby the surface is only determined by some shape statistics (the rms surface
height, the slope probability function, etc.) [19]. In diffuser design, these theories
are not often useful because the size of the surface roughness is large and the sample of
roughness that might be used is small in width, and so a few shape statistics are not
sufficient to accurately predict the scattering from the surface. This is illustrated in
Figure 8.20. The top shape is meant to generically represent deliberately designed

Figure 8.20 Two different randomly generated surfaces.
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diffusers, where the scale of the roughness is deep and relatively slow varying. In this
case, the small number of bumps on the surface will dominate the scattering in such a
way that a statistical approach is not applicable. The bottom line in Figure 8.20,
however, represents a more randomly rough surface, for which the theories based on a
few shape statistics may be more applicable. To put it another way, there needs to be a
sufficient wide sample of the surface roughness for the shape statistics to be properly
representative of the surface.

For accidental surface roughness, this statistical approach is more useful, especially
as it may be impossible to get the exact geometry of all shapes in existing structures.
Random rough theories are probably most commonly used in underwater acoustics,
although both Cox and D’Antonio [20] and Embrechts et al. [21] have used statistical
approaches to diffuser scattering. In the case of Cox and D’Antonio, this was inves-
tigated with respect to the design of fractal diffusers. For Embrechts et al. a statistical
approach was taken to investigate scattering coefficients from surfaces. These
approaches usually assume the Kirchhoff boundary conditions, and so an additional
limitation is that the surface gradients must not be too steep, otherwise second and
high order reflections become important, and the statistical approach breaks down.

8.5.6 Boss models

Boss models are hybrid approaches [19]. They use a deterministic solution for the
scattering from a single element – examples include cylinders and hemispheres – and
then model the distribution of the elements in a statistical manner. Twersky developed
the best known approach [22]. This theory allows high order scattering, across all
frequencies, both in 2 or 3D to be considered. Up to date versions of the theory also
enable scattering from different sized bosses. One of the problems with applying this
model is to represent complex surfaces by a series of regular-sized bosses. In some cases
this might be easy; in the case shown at the bottom of Figure 8.20, on the other hand,
this would be rather tricky. Rendell et al. [23] has applied a boss model to predict
scattering by hemispherical surface elements in auditoria.

8.6 Summary

In this chapter, some commonly used prediction models for scattering have been
outlined and the necessary equations developed. These theories will be drawn upon
in the design of diffusers, which is the subject of next three chapters.
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9 Schroeder diffusers

One of the most significant occurrences in the design of diffusers, if not the most
important event, was the invention of the phase grating diffuser by Schroeder [1, 2].
Apart from very simple constructions, previous diffusers had not dispersed sound
in a predictable manner. The Schroeder diffuser offered the possibility of producing
so-called optimum diffusion and also required only a small number of simple to use
design equations. D’Antonio and Konnert [3] presented one of the most readable
reviews of the far field diffraction theory of Schroeder’s number theoretic surfaces,
experimentally measured their performance and described their application in critical
listening environments. Most crucially, they commercialized Schroeder diffusers and
so made them widely available. Since the publication of Reference 3, there have been
many new developments which have not been brought together and documented in
one place. Therefore the intention of this chapter is to tell the whole story of
Schroeder diffusers. Much of this chapter featured as a review article in the journal
Building Acoustics [4].

The chapter will start by outlining a largely qualitative view of the diffuser, how it
works and the basic design principles. Following this, a more detailed quantitative
and theoretical analysis of the diffuser will be given. In these descriptions, the
ingenuity of the original design concept will hopefully become apparent. In addition,
more recent developments will be presented, illustrating weaknesses in the original
design which can be overcome by modifying the design procedure, sometimes using
one of Schroeder’s favourite subject area of number theory. Finally, it will be shown
that better phase gratings can be made using an optimization procedure.

9.1 Basic principles

Figure 9.1 shows a single plane or 1D Schroeder diffuser. It consists of a series of wells
of the same width and different depths. The wells are separated by thin fins. The depths
of the wells are determined by a mathematical sequence, such as the quadratic residue
sequence. Single plane diffusers cause scattering in one plane, in the other direction,
the extruded nature of the surface makes it behave like a plane surface. Because of
this it is normal to just consider a cross section through the diffuser (Figure 9.2) which
contains the plane of maximum dispersion. Multi-plane diffusers are possible as
shown in Figure 9.1 and are discussed later in Section 9.7.

Consider a mid-frequency plane wave incident onto the diffuser. Plane wave propa-
gation within the wells in the y-direction occurs. The plane waves are reflected from the
bottom of the wells and eventually re-radiate into the space. For now, it will be assumed



that there is no loss of energy. The pressure at a point external to the diffuser is therefore
determined by the interference between the radiating waves from each well. All these
waves have the same magnitude but a different phase because of the phase change due to
the time it takes the acoustic wave to go down and up each well. Consequently, the polar
distribution of the scattering is determined by the choice of well depths. Schroeder
showed that by choosing a quadratic residue sequence, the energy scattered into each
diffraction lobe direction is the same. In Figure 9.3, an example of the scattering from
the surface is given, as calculated by the simplest and most approximate theory at a
frequency where optimum diffusion is achieved. Eleven lobes of the same energy are
found in this case. These lobes are generated because the surface is periodic.

9.2 Design equations

For the design theory to be correct, plane wave propagation within the wells must
dominate. Consequently, an upper frequency for the diffusion to follow the simple
design principles can be found from:

w ¼ 	min=2 ð9:1Þ

Figure 9.1 Schroeder diffusers: single plane or 1D (left) and 2D (right).
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Figure 9.2 A cross section through an N¼ 7 quadratic residue diffuser (QRD1).
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where 	min is the minimum wavelength before cross modes in the wells appear and w
the well width. Above this limit scattering will continue to occur because these are
complicated structures. Consequently, this is just a limit of applicability of a theory,
and not an upper limit on the diffusion quality.

This need for plane wave propagation explains the need for fins to separate the
different depth wells. Even for normal incidence, the lack of wells will cause the
scattering not to follow these simple design principles. The fins should be as narrow as
possible, but not so narrow that they vibrate and cause significant resonant losses.

A quadratic residue sequence is the most popular mathematical sequence used to
form the well depths. The sequence number for the nth well, sn, is given by:

sn ¼ n2 modulo N ð9:2Þ

where modulo indicates the least non-negative remainder and is often written as
mod for short. N is the prime number generator which in this case is also the
number of wells per period. For example, one period of an N¼ 7 QRD has
sn ¼ f0, 1, 4, 2, 2, 4, 1g.

Schroeder diffusers work at integer multiples of a design frequency, f0. The design
frequency is normally set as the lower frequency limit. It is more convenient to present
formulations in terms of the corresponding design wavelength, 	0, and so that will be
done here. The depth of the nth well in the diffuser dn is determined from the sequence
via the following equation:

dn ¼ sn	0

2N
ð9:3Þ
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Figure 9.3 Scattered level from a Schroeder diffuser (left) and a plane surface (right) of
the same size.
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The well depths consequently vary between 0 and approximately 	0/2. The design
frequency is not the lowest frequency at which the surface produces more scattering
than a plane surface, it is just the first frequency at which the scattering can have even
energy diffraction lobes. It has been shown that Schroeder diffusers scatter differently
from a plane hard surface an octave or two below the design frequency [5, 6].

9.3 Some limitations and other considerations

Given the above equations, it is possible to design a diffuser to a desired bandwidth.
There are some subtle details in the design that must be heeded to achieve the best
possible diffusion.

If the period width (Nw) is too narrow, then at the first design frequency there
is only one major lobe, and so this principle of even lobes is rather irrelevant. The
period or repeat width is often significant in determining performance, especially
when the repeat width is small. This is illustrated in Figure 9.4 where the scattering
from diffusers of different period widths is shown. These are both N¼ 7 QRDs
with a design frequency of 500Hz. The well widths are 3 and 9 cm, which means that
the period widths are 21 and 70 cm respectively. The number of periods for each
diffuser is set so that the overall widths of the devices are the same for a fair compar-
ison. For the narrow wells and period width, shown right, the low frequency
limit of diffusion is determined by the period width and not by the maximum
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Figure 9.4 The pressure scattered from two quadratic residue diffusers at 1,000 Hz. Left
figure QRD well width 9 cm; Plane surface. Right
figure QRD well width 3 cm; Plane surface. Overall
width kept the same by changing number of periods.
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depth. This is illustrated in Figure 9.5 where the diffusion coefficient versus frequency
is shown. The narrow well width diffuser only starts causing significant diffusion
over and above the plane surface at 1.5 kHz, three times the design frequency.
This is roughly the frequency at which the first grating lobe appears for the narrow
diffuser and so is the first frequency where significant scattering in oblique directions
is achieved. For the wide well width, the first grating lobe appears below the design
frequency and so significant diffusion is caused at 500 Hz and above.

For the diffuser to behave optimally, the device must be periodic. The lobes are
generated by the periodicity of the surface. Without periodicity, all that the
design equations portray is the fact that in certain directions the scattering will
have a similar level. This is illustrated in Figure 9.6 where the scattering from one
and multiple periods of a diffuser is compared. The directions of similar level are
marked. For the periodic cases, the directions of similar level align with the lobes.
For the single period case, they are just points of identical level in the polar
response; the points do not align with the lobes. Saying the levels are identical in
this case is almost a meaningless statement, because in most polar responses there
will be angles where the scattering is identical to other angles. Consequently,
using one period of the device spoils the point of using the quadratic residue
sequence. So using one period causes problems with the mathematical make-up
and definition of optimum diffusion for a Schroeder diffuser. However, the
scattering from a single period diffuser is often more uniform than a periodic
device, as Figure 9.6 shows. This contradiction will be returned to later when
modulation is discussed.

If too many periods are included then the grating lobes become rather narrow; this
leads to uneven scattering because there are large nulls present, see Figure 9.6. It must
be remembered, however, that manufacturing costs are likely to mean that a narrow
base shape with a large number of repeats is going to be the cheapest build. Periodicity
might also be preferred visually.
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Figure 9.5 Diffusion coefficient spectrum for two QRDs and a plane surface showing the
low frequency diffusion limit being determined by period width rather than
diffuser depth. The design frequency for the QRDs was 500 Hz.
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The points made in the last three paragraphs mean that the best design is one with a
small number of periods, say five, to ensure periodicity, but with the diffraction lobes
not too narrow. The period width must be kept large to ensure a large number of
grating lobes, which then implies a reasonably large N number. Making the well
width wide does not work as it can cause problems with specular-like reflections at
high frequencies. Alternatively, modulation schemes can be used as discussed later in
the chapter.

From the maximum frequency given in Equation 9.1, it might appear as though
a Schroeder diffuser should have the narrowest wells possible to get the widest
frequency range, but other considerations limit the width: (1) difficulty and cost of manu-
facture and (2) absorption. As the diffuser becomes more narrow, then the viscous
boundary layer becomes significant compared to the well width and the absorption
increases – see Section 9.8. Consequently, practical well widths are at least 2.5 cm,
and usually around 5 cm.

The choice of prime number is limited by manufacturing cost, low frequency
performance and critical frequencies. For a given maximum depth, dmax, the design
frequency achieved is:

f0 ¼ smax

N

c

2dmax
ð9:4Þ

where smax is the largest number in the quadratic residue sequence. The ratio of the
largest sequence number to the prime number determines the low frequency efficiency
of the device [7]. Take two examples: N¼ 7, smax/N¼ 4/7; N¼ 13, smax/N¼ 12/13.
Consequently, an N¼ 7 diffuser will have a design frequency nearly an octave below
that of an N¼ 13 diffuser. It is possible, however, to manipulate some sequences and
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Figure 9.6 The scattering from N¼ 7 quadratic residue diffusers at 3,000 Hz for a
different number of periods. Left 1 period, middle 6 periods, right 50 periods.
Locations of lobes and directions of similar level marked by radial lines at
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increase the bass response. A constant phase shift can be introduced to yield a better
bass response:

sn ¼ ðn2 þmÞmodulo N ð9:5Þ

where m is an integer constant. Consider two N¼ 13 diffusers:

m ¼ 0; sn ¼ f0; 1; 4; 9; 3; 12; 10; 10; 12; 3; 9; 4;1g; smax=N ¼ 12=13

m ¼ 4; sn ¼ f4; 5; 8; 0; 7; 3; 1; 1; 3; 7; 0;8; 5g; smax=N ¼ 8=13

Consequently, the design frequency has been lowered by two-thirds by this simple
manipulation. It must be remembered, however, that this increased performance may
not be realized if the repeat width is too narrow.

For a QRD, critical frequencies occur at mNf0 where m¼ 1, 2, 3 . . . . These are
frequencies where the diffuser behaves as a plane surface because all the wells re-radiate
in phase. This occurs when all the depths are integer multiples of half a wavelength.
Figure 9.5 illustrates such a critical frequency happening at 3.5 kHz in the diffusion
spectrum for the narrow diffuser. Figure 9.7 shows the scattering at this frequency. To
avoid these critical frequencies, it is necessary to place the first critical frequency above
the maximum frequency of the device defined by Equation 9.1, i.e.:

N  c

2wf0
ð9:6Þ

9.4 Sequences

9.4.1 Maximum length sequence diffuser

Schroeder began his work by investigating the scattering from MLS [1]. Figure 9.8
shows one period of such a surface based on the sequence {0,0,1,0,1,1,1}. Schroeder
chose an MLS because it has a flat power spectrum at all frequencies (except DC).
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Figure 9.7 The scattering from a quadratic residue diffuser at a critical frequency com-
pared to a plane surface. Plane surface; þ Quadratic residue
diffuser. The two lines overlay each other.
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There is a close relationship between the power spectrum and the surface scattering,
indeed it is well established in optics that the far field scattering can be found from the
Fourier transform of the surface. Equation 8.33 gave the scattering in terms of the
pressure magnitude |p| from a surface when the Fraunhofer far field approximations
are made:

jpð�;  Þj ¼
���A½cosð�Þ þ 1�

Z
s

RðxÞejkx½sinð�Þþsinð Þ�dx
��� ð9:7Þ

where R(x) is the reflection factor, � the angle of reflection, A a constant,  the angle
of incidence and k the wavenumber.

This theory is based around representing the complex diffuser shape by a simple
box with a variable admittance on the front face – the admittance being determined
by considering the plane wave propagation in the wells. This is essentially the same
theory used originally by Schroeder, except for the term in [ cos (�)þ 1]. This extra
term is an extension that makes the optical Fraunhofer theory more applicable for
oblique incidence and reflection. For convenience and compatibility with Schroeder,
this term will be ignored:

jpð�; �Þj �
���A Z

s

RðxÞejkx½sinð�Þþsinð�Þ�dx
��� ð9:8Þ

Equation 9.8 can be interpreted as a Fourier transform, but the transform is in the
variable kx and transforms into [sin (�)þ sin ( )] space (rather than the more famil-
iar time to frequency transformation). If the reflection factors R(x) are chosen to
have a flat power spectrum with respect to kx, then the amplitude is constant with
respect to the transform variable [sin (�)þ sin ( )]. This does not relate to a constant
scattering in all directions, as the transform variable is not a simple function of �
and  , but it can be shown that this in fact relates to identical energy lobes, as
detailed below.

The device is assumed periodic and then there will be scattering directions where
spatial aliasing produces grating (diffraction) lobes. These are directions, where the
path length difference from the source to receiver via parts of the panel exactly one
period apart is an exact multiple of a wavelength. This is illustrated in Figure 9.9
where periodicity lobes are generated when jr1 þ r2 � r3 � r4j ¼ m	, where m is an

y

x

Figure 9.8 A cross section through one period of an N¼ 7 maximum length sequence
diffuser.
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integer. By considering the geometry of Figure 9.9 further, it is possible to show that
these grating lobes appear in the far field at the following angles:

sinð�Þ ¼ m	
Nw
� sinð Þ m ¼ 0;�1;�2; . . . ð9:9Þ

where m is the order of the lobes. If Equation 9.9 is substituted into Equation 9.7 the
following results at the design frequency:

jpmj �
�����A
Z
s

RðxÞej2�xm=Nwdx

�����
¼
�����A
XN
n¼1

Rne
j2�nm=N

�����
ð9:10Þ

where it is assumed that each well radiates as a point source. Strictly speaking
a sinc function should be introduced to allow for the pistonic radiation, but for
now the wells will be considered to be relatively narrow compared to wavelength,
w � 	/4. Consider a 7-well design. A length 7 MLS is {1,1,0,1,0,0,0}, so Rn are
{1,1,�1,1,�1,�1,�1}. In this case, it can be shown that:

jpmj ¼ A m ¼ 0;�N;�2N

¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

otherwise
ð9:11Þ

In other words, the radiating grating lobes (jmj > 0& jmj < N) have the same level,
whereas the main zeroth order lobe (m¼ 0) is lower by 10 log10(Nþ 1). Figure 9.10
shows the scattering from the MLS diffuser where the depth is one-fourth times the
wavelength, compared to a hard plane surface of the same size. At this frequency there
are five lobes, with the central lobe being suppressed by 10 log10(8) as expected from
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Figure 9.9 Geometry for generation of periodicity lobes.
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Equation 9.11. An octave higher, however, at half times the wavelength, the surface
behaves like a plane surface because all waves re-radiate with the same phase – this is
a critical frequency – the scattering will be rather like that shown in Figure 9.7.
Consequently, the MLS diffuser is only useful over an octave. This problem can be
overcome, however, by using different number sequences.

9.4.2 Quadratic residue sequence

When a quadratic residue sequence is used, the lobe pressure amplitudes are given by:

jpmj /
ffiffiffiffiffi
N
p

m ¼ 0;�1;�2; . . . ð9:12Þ

Consequently, all lobes will have the same energy as has been shown in previous polar
responses.

9.4.3 Primitive root sequence

A primitive root sequence is generated using the function:

sn ¼ rn mod N n ¼ 1; 2; . . .N � 1 ð9:13Þ

where N is an odd prime, r the primitive root of N and the diffuser will have N�1
wells per period. A primitive root is one where sn for n ¼ 1, 2, . . .N � 1 are all unique
[8]. For exampleN¼ 7 has a primitive root of 3, so sn¼ {3,2,6,4,5,1}, which generates
every integer from 1 to N�1. Primitive roots can be found by a process of trial and
error, alternatively, tables can be found in texts such as Reference 8. Equation 9.13
can be rewritten as a recursive relationship:

sn ¼ ðr � sn�1Þmod N ð9:14Þ

This form is useful because Equation 9.13 can cause overflow problems when being
computed for large N.
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Figure 9.10 The scattering from 5 periods of an N¼ 7 MLS sequence at its design
frequency. N¼ 7 MLS diffuser plane surface.
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The primitive root diffuser (PRD) is meant to reduce the energy reflected in the
specular reflection direction and so produce a notch diffuser. In addition it should have
even energy in the other diffraction lobe directions. As with the QRD, the PRD achieves
these performance criteria at integer multiples of the design frequency. At these frequen-
cies, the specular direction amplitudes from the PRD are attenuated by 20 log10(N�1) in
comparison with a plane surface. It is noted, however, that virtually any welled surface
will achieve a reduced specular energy provided well depths are significant compared to
wavelength. Equation 9.10 is a maximum when all radiating waves are in phase, as is the
case for a flat surface. As soon as a depth sequence is introduced, partial destructive
interference occurs between the waves, leading to a suppressed specular reflection.

The performance of the PRD in suppressing the specular reflection improves as the
design prime number, N, increases. This is shown in Figure 9.11 where the pressures
scattered from two PRDs are compared to a plane surface. A large number of wells,
say greater than 20–30, are needed before a pressure minimum appears at the specular
reflection angle.

The levels of the lobes can mathematically be expressed as:

jpmj ¼ A m ¼ 0;�N;�2N

¼ A
ffiffiffiffiffi
N
p

otherwise
ð9:15Þ

Although there is an implication of a series of suppressed lobes for
m ¼ �N, �2N, . . . these are not seen in the far field. The frequencies at which the
high order suppressed modes occur will always be greater than the cut-off frequency
for plane wave propagation in the wells and so can be ignored.

The specular reflection is attenuated, but it is not a pressure null at integer multiples
of the design frequency. Feldman [9] developed a modified primitive root sequence
to overcome the problem. The Feldman modified PRD (FMPRD) contains an extra
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Figure 9.11 Scattering from two primitive root diffusers and a plane surface for normal
incidence, showing that a large N number is required to get a significant
specular direction notch (0�). From left to right, N¼ 7 PRD, plane surface,
N¼ 37 PRD.
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zero depth well so the sequence contains all integers from 0 to N�1 (instead of from
1 to N�1). This spaces the reflection factors evenly around the unit circle for multiples
of the design frequency, leading to an exact null in the specular reflection direction.
This modification will, however, alter the evenness of the non-zero order lobes.

A PRD does achieve nulls, but not at integer multiples of the design frequency. The
nulls appear at frequencies given by mNf0/(N�1) where m ¼ 1, 2, 3, . . . ; but it is at
the integer multiples that the non-zero order lobes have the same energy. This
realization led to Cox and D’Antonio [10] devising a revised formulation for notch
diffusers. The technique is to introduce an effective frequency shift to align the
reflection factors appropriately around the unit circle at multiples of the design
frequency to achieve nulls. This is done by rewriting Equation 9.3 as:

dn ¼ sn	0

2ðN � 1Þ ð9:16Þ

This will be referred to as the Cox and D’Antonio modified PRD (CDMPRD). Figure
9.12 illustrates the two modified PRD compared to a PRD and a plane surface. This
demonstrates the introduced nulls that the modified schemes achieve. Also shown is a
notch filter designed through optimization, a subject that will be returned to later in
this chapter.

It is important to reiterate that these notches are only produced at discrete frequen-
cies. Figure 9.13 shows the scattering from a modified PRD, but not at an integer
multiple of the design frequency. No notch is found. While not achieving optimum
scattering from a QRD at all frequencies is disappointing, it can be expected that
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Figure 9.12 Scattering from a primitive root diffuser (PRD), Feldman modified primitive
root diffuser (FMPRD), Cox D’Antonio modified primitive root diffuser
(CDMPRD), plane surface and optimized surface. N¼ 11. One period,
w¼ 5 cm, normal incidence source, at the design frequency of 500 Hz
(data from Cox and D’Antonio [10]). Left figure Optimized;

Plane. Middle figure PRD; FMPRD.
Right figure CDMPRD.
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between the frequencies of optimum diffusion, the dispersion from a QRD will still be
reasonable. The fact that PRDs only work at discrete frequencies, however, renders
the PRDs impractical notch diffusers. This problem can be overcome to a certain
extent by optimization [10], to form a broader notch over a wider frequency range.
Alternatively, triangles or pyramids may be used to get a more broadband notch as
discussed in Chapter 10, but then there are restrictions on the angle of incidence.

9.4.4 Index sequences

Schroeder [11] formed a complex Legendre sequence based on the index function.
This has the following reflection factors:

Rn ¼ 0 for n � 0 mod N
e2�isn=ðN�1Þ

�
ð9:17Þ

where sn is the number theoretic logarithm or index function defined by:

rsn ¼ n mod N n ¼ 1; 2; . . . ;N � 1 ð9:18Þ

where r is a primitive root of N. For example, the N¼ 7, r¼ 3 sequence is
{6,2,1,4,5,3} as 36¼ 1 mod 7, 32¼ 2 mod 7, etc. To find a sequence for a given value
of N requires a certain amount of trial and error. As the reflection factor for the n¼ 0
well is zero, this well should be filled with absorbent. Consequently, the diffuser
absorbs a nominal 20 log10(N�1) amount of power. The other wells are fixed depth
entities as already seen for other number sequences. Apart from the absorption, the
performance of the sequences should be very similar to the PRD.

9.4.5 Huffman and beyond

According to the Wiener–Khinchine theorem, the Fourier transform of an autocorrel-
ation function gives the auto power spectrum. This can be related to diffusers and
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Figure 9.13 Scattering from a modified primitive root diffuser and a plane surface. Design
parameters given in Figure 9.12. At 750Hz, not an integer multiple of the
design frequency. Modified PRD; Plane surface.
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enable the use of other sequences to be understood. The Fourier transform of the
surface reflection factors approximates to the scattered pressure distribution, although
strictly speaking this is in [ sin (�)þ sin ( )] space. Applying the Wiener–Khinchine
theorem to this, if a Fourier transform is applied to the autocorrelation of the surface
reflection factors, the scattered energy distribution should result. Consequently,
a good diffuser is one which has a delta function autocorrelation function for the
reflection factors, as this will lead to an even scattered energy distribution. (Although
constant with sin (�)þ sin ( ), which is not the same as being constant with � and  .)

To demonstrate this, a familiar diffuser sequence can be considered. In Figure 9.14,
the autocorrelation function for an N¼ 13 quadratic residue sequence is compared to
that for a plane surface. It can be seen that the quadratic residue sequence has good
autocorrelation properties with small side lobe energy, in other words the autocorrel-
ation for index =0 is small. This is one reason that a quadratic residue sequence
makes a good diffuser.

Another way of viewing this is as follows. Peaks in an autocorrelation function
away from zero indicate a sequence which has some similarity at some displacement.
In terms of scattering, there will be angles at which this similarity will lead to lobes
due to constructive interference. If all similarities can be removed, then in all direc-
tions no complete constructive interference can take place, and so the scattering in all
directions will be the same.

Given the above, one approach to finding an appropriate sequence is to look for
sequences with good autocorrelation properties. This is not difficult as sequences with
optimal autocorrelation properties are a keystone of digital communication systems,
whether that is error checking systems for digital audio, code division multiple access
(CDMA) systems used in mobile telecommunications or modulating waveforms for
radar and sonar. Angus exploited this fact to develop the concept of diffusers based on
Huffman sequences [12]. Angus chose Huffman sequences because they are not integer
based, and therefore will not suffer from critical frequencies where the surface appears

Figure 9.14 The autocorrelation for three different sequences. Quadratic
residue; Chu (perfect); Constant (plane surface).
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to be a flat plate. A further possible advantage is that Huffman sequences have good
aperiodic autocorrelation properties [13] and consequently single periods of the device
can be used, and there is no need for periodicity which will generate grating lobes.

Another approach to obtaining a sequence with good autocorrelation properties is
to use an optimization algorithm to find sequences with the best autocorrelation
properties [8]. The principle of optimization will be discussed in more detail later,
but the basic principle is to get the computer to search for a sequence with minimum
side lobe energy. This works well for a small number of wells, but when the number of
wells becomes large, the number of degrees of freedom in the optimization becomes
too large for this to be an efficient process.

A different sequence not considered before will be used to test the principle of
choosing sequences with good autocorrelation properties. The Chu sequence is a
perfect polyphase sequence, in other words the periodic autocorrelation function is
a perfect delta function. Figure 9.14 shows the autocorrelation function for anN¼ 13
case showing that there is no side lobe energy. The elements of a Chu sequence can be
generated by [14].

sn ¼ ej’n

’n ¼
2�
N ½12 ðnþ 1Þn mod N� N odd

2�
N

1
2 n

2 mod N
1 2

N even

(

0 � n � N

ð9:19Þ

The phase terms jn are converted to depths by equating the deepest depth to the
design wavelength and maximum phase term, ’max, i.e.:

dn ¼ 	0’n

2’max
ð9:20Þ

Figure 9.15 compares the diffusion from an N¼ 13 Chu sequence, with a QRD and a
plane surface. The performance from the QRD and the Chu sequence is overall very
similar. Consequently, this presents an alternative design method, but not a better one.
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Figure 9.15 Diffusion coefficient spectra for two diffusers and a plane surface.
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9.5 The curse of periodicity

The scattered polar responses seen in Figure 9.6 are dominated by grating lobes
generated by the fact that the diffusers are periodic. The lobe energy may be constant,
but there are large minima between the lobes except at high frequencies when the
number of lobes becomes very large. The scattering energy is not even in all directions.
For this reason, significantly better performance can be obtained if the periodicity
lobes can be removed by making the diffuser aperiodic or increasing the repeat
distance. A phase grating diffuser which exploits number theory, such as a QRD, is
in many ways cursed by periodicity. A QRD needs periodicity to form its optimum
diffusion of even energy lobes, yet the periodicity lobes cause uneven scattering.

One possibility is to use a number sequence with good aperiodic autocorrelation
properties. This means that a single period of the number sequence can be generated
and used without repetition. There are two problems with this solution, first there are
not many large N number aperiodic polyphase sequences known, and second it will
usually be cheaper to manufacture a small number of base shapes and use each base
shape many times.

Angus [15–20] presented a series of papers outlining methods for using two phase
grating base shapes in a modulation scheme to deal with the problems of periodicity.
Figure 9.16 shows such a modulation arrangement for two QRDs, one based on
N¼ 7, the other on N¼ 5. The idea is to use two or more base shapes and arrange
them according to a pseudorandom arrangement so that there is no repetition.

As discussed previously, the far field scattering distribution is roughly related to the
Fourier transformation of the surface reflection factors. For a periodic device, the
distribution of surface reflection factors can be expressed as the surface reflection
factors over one period, convolved with a series of delta functions.

RðxÞ ¼ R1ðxÞ*
Xn¼1
n¼�1

�ðx� nWÞ ð9:21Þ

where R1(x) is the distribution of reflection factors over one period, n an integer,

* denotes convolution, W ¼ Nw is the width of one period of the device and � the
delta function.

Equation 9.21 and the following process are illustrated in Figure 9.17. When
a Fourier transform is applied to Equation 9.21 to obtain the scattering in
[sin(�)þ sin( )] space, then the convolution becomes multiplication.

FTfRðxÞg ¼ FTfR1ðxÞg � FT
Xn¼1
n¼�1

�ðx� nWÞ
( )

ð9:22Þ

Figure 9.16 A cross section through a modulation scheme using N¼ 5 and N¼ 7
quadratic residue diffusers and the modulation sequence {1,0,0,1,0,1}.
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where FT denotes Fourier transform. The Fourier transform of a delta function
train is another delta function train, and it is the spikes in this train for
[sin(�)þ sin( )] > 0 that cause the grating lobes. Consequently, rather than use a
delta function chain to form a periodic device, another function should be used
which has better Fourier transform properties. Again, what is needed is a sequence
with good autocorrelation properties. A good choice is a Barker sequence. This is a
binary sequence whose Fourier transform is flattest possible for a binary sequence.
Consequently, the response of the whole array of diffusers is closer to the single
diffuser alone than if a periodic arrangement is used. If a perfect binary sequence
could be found then the single diffuser response would be recovered, but there are
no such 1D sequences.

Consider forming a QRD with five periods. The Barker sequence for N¼ 5 is
{1,�1,1,1,1}. Consequently, where a 1 appears in the Barker sequence, the normal
N¼ 7 QRD should appear. Where a �1 appears, an N¼ 7 QRD is needed which
produces the same scattering except it is 180� out of phase. This can be done by using
the rear of the normalN¼ 7 diffuser (provided the fins are extended far enough). This
is illustrated in Figure 9.17. Consequently, one QRD has a number sequence of
{0,1,4,2,2,4,1} and the other QRD has a number sequence of {7,6,3,5,5,3,6}. This
second sequence is found by subtracting the first sequence from N. This is equivalent
to changing the phase change due to the well depths from ’ to 2��’, i.e. obtaining
a 180� out of phase surface.

*
FT

≈θ ≈θ ≈θ

FT(R)

×

=

Rn

n

=

FT
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FT

FT(R)

=

Rn

n

=

FT

×

*

(A)

(B)

Figure 9.17 A modulation scheme illustrated. In the top case (A), a periodic arrangement
is used, and spatial aliasing causes grating lobes even though one period of
the diffuser has a flat power spectrum. In the bottom case (B), the inverse of
the diffuser is used in a modulation scheme to reduce periodicity effects.
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Figures 9.18 and 9.19 show the scattering from the periodic arrangement of N¼ 7
QRDs compared to an arrangement according to the Barker sequence and a single
diffuser for two frequencies. One of the frequencies where the diffusion improvement
is most dramatic is 2,000 Hz; at other frequencies the improvement is less marked.
Figure 9.20 shows the diffusion coefficient versus frequency. A clear improvement is
seen in the diffusion, and periodicity lobes are much reduced. As Figure 9.20 shows,
the diffusion from the simple periodic array only becomes significant compared to
a plane surface at 1–1.5 kHz, an octave or so above the design frequency (500 Hz).
This is a case of the diffuser width limiting the low frequency response rather than
the diffuser depth. At the design frequency, only one lobe appears in the scattered
polar distribution, as shown in Figure 9.19. The Barker sequence means that there
is reduced periodicity in the arrangement, and so the low frequency limit of the
Barker modulated array is determined by the depth and not the repeat length similar
to the periodic case. This is an important result, as it means the low frequency
performance of some diffusers can be improved by modulation.

The polar responses show that the scattering from the Barker modulated array is
more similar to the single diffuser response, which is as expected from the theory
outlined above. A single diffuser response is not recovered because the Barker
sequence has good but not perfect autocorrelation properties. Figure 9.21 shows the
autocorrelation properties for the diffuser arrangements at the design frequency.
The spikes in the side lobes show the repeat distance of 7 for the N¼ 7 diffusers. The
Barker modulation has lower side lobe energy meaning that the periodicity is reduced.
Although the Barker sequence has reduced the periodicity spikes in the autocorrelation
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Figure 9.18 Scattered polar distribution from a single QRD, a periodic arrangement and
a Barker modulation using the QRD and its inverse. 2,000 Hz¼ 4f0. Left
figure: Modulated; Periodic. Right figure:

Modulated (same as left figure); One period.
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function they are not completely eliminated. This is why the single diffuser response is
not completely recovered.

There are a variety of number sequences that can be used for the modulation. The
Barker sequence is a good choice as it has good aperiodic autocorrelation properties,
and it might be expected that the modulation sequence will be used once in a diffuser
arrangement. As the modulation sequence does not repeat, a sequence with good
periodic autocorrelation coefficient would not be optimal. Barker sequences only
analytically exist for certain N numbers {2,3,4,5,7,11,13}, but computer-based search
algorithms have been used to generate number sequences up to length 48 [8]. For larger
diffuser arrays, it may be necessary to use other number sequences, such as MLS
which strictly speaking are only good with periodic use of the modulation sequence.

The modulation works best at multiples of the design frequency. Only at these
frequencies do the diffuser and its inverse create exactly opposite pressures. At other
frequencies, the modulation is likely to help with the scattering as it breaks up
periodicity lobes, but in a more uncontrolled manner.

At high frequencies, say greater than 5 kHz for the typical geometries used in
practical diffusers, the dispersion by a modulated array summed over a one-third
octave band is often worse than for a periodic arrangement. This happens because
the number of grating lobes in the periodic case saturates, so when the polar
responses are summed over a one-third octave band the grating lobes average
out. Having said this, the improvements generated by modulation in the more
important low-mid frequency ranges far outweigh any slight decrease in perform-
ance at higher frequencies.
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Figure 9.19 Same diffusers as Figure 9.18 but at 500Hz, the design frequency. Left
figure: Modulated; Periodic. Right figure:

Modulated (same as left figure); One period.
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One other feature of note is that the critical frequency at Nf0 where the diffusers
behave as a flat plate still remains even with the modulation. The flat plate frequency
of 3,500 Hz can be seen in the diffusion spectra of Figure 9.20. Both the QRD and its
inverse used in the modulation suffer the same critical frequency, and consequently
this problem persists. While it is possible to reduce this problem by choosing a larger
value for N, it is also possible to use modulation to reduce the effects. To do this, the
two diffusers to be modulated must have different critical frequencies. There are
further advantages to using two different diffusers. The QRD works at line frequen-
cies based on integer multiples of the design frequency. By using diffusers with two
different design frequencies, it is possible to achieve more frequencies with better
diffusion [19].

Cox and D’Antonio [10] used a combination of N¼ 11 and N¼ 7 primitive root
diffusers. Figure 9.22 shows the scattering from this arrangement. Not only does the
modulated array still achieve a notch at the specular reflection direction, but the two
dominant first order lobes are broadened. The notch remains because each period
of both diffuser types produces a null in the specular directions, and summing over
all periods still leads to nothing scattered in the specular direction.

Angus [20] used a combination of N¼ 5 and N¼ 7 QRDs in an orthogonal
modulation. Figure 9.23 shows the autocorrelation of the reflection coefficients at
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the design frequency for a modulation of an N¼ 5 and an N¼ 7 QRD. It shows that
the original periodicity lobes are reduced, but other smaller peaks are produced
elsewhere. The locations of the N¼ 5 and N¼ 7 diffusers can be determined by
flipping a coin, or better still by using a pseudorandom sequence with good aperiodic
autocorrelation properties such as a Barker sequence. Figure 9.24 shows the diffusion
spectrum. The flat plate frequency at 3.5 kHz is removed by the orthogonal modula-
tion, although there is still a decrease in performance around the flat place frequency
because at that frequency only theN¼ 5 diffusers are creating any dispersion and so a
strong specular component still remains. Overall, the performance is not as good as
the original Barker modulation using the QRD and its inverse described previously.
Consequently, the best choice for modulation is to use a diffuser and its inverse, but
choosing a diffuser where the critical frequency is well above the high frequency limit
where cross-modes in the wells appear.

The modulation techniques developed by Angus require two or more base shapes. It
is possible to achieve modulation using a single asymmetrical base shape. Instead of
inverting the diffuser to use the rear, an asymmetrical diffuser can be flipped about its
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Figure 9.21 Autocorrelation function for two arrangement of quadratic residue diffusers.
Top graph, periodic array; bottom graph, Barker modulated array.
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Figure 9.22 Comparison of periodic arrangement of a modified primitive root diffuser
(CDMPRD), a modulated sequence of the CDMPRD and a flat plane surface.
The periodic surface had 10 periods of N¼ 11 diffusers. w¼ 0.05m,
frequency is 1,000 Hz, design frequency 500Hz. The modulated surface was
formed from 12 periods of N¼ 11 and N¼ 7 placed in a random order (data
from Cox and D’ Antonio [10]). Left figure: Periodic;

Plane. Right figure: Periodic (same as left figure);
Modulated.
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mid-point. For example, an N¼ 7 PRD is {1,3,2,6,4,5} and this can be simply flipped
to form a new sequence {5,4,6,2,3,1}. The advantage of this type of modulation is it is
cheaper. This modulation will not be successful with quadratic residue sequences or
Chu sequences, however, because these are symmetrical. Instead asymmetrical
sequences are needed such as primitive root sequences. Figure 9.25 shows the scatter-
ing from such a modulation using N¼ 7 primitive root sequences. The modulation
reduces the non-zero order grating lobes, while still preserving the null in the specular
reflection direction.

There is another approach to modulation to reduce periodicity effects and also
to improve the base frequency response. The bandwidth of a Schroeder diffuser is
limited at high frequencies by the well width and at low frequencies by the maximum
depth. Additionally, wide area coverage with periodic arrays focusses energy into
certain diffraction directions. To provide full spectrum sound diffusion in a single
integrated diffuser, the self-similarity property of fractals can be combined with the
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orthogonal modulation using N¼ 5 and N¼ 7 QRDs and a plane surface.
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uniform scattering property of reflection phase gratings to produce a fractal diffuser.
The surface consists of nested self-similar diffusers, each of which covers a specific
frequency range and offers wide area coverage, see Figure 9.26. Each diffuser provides
uniform scattering over a specific range of frequencies so that the effective bandwidth
is extended.

There are numerous natural phenomena exhibiting a macroscopic shape which is
repeated microscopically at progressively smaller and smaller scales. At each level of
magnification we find a scaled replica of the original. These scaled replications are
self-similar, that is they differ only in scale, they are invariant to scaling. The term
fractal was first coined by Mandelbrot [21] to describe these structures, and hence
these diffusing fractals have been termed Diffractals. It is possible to carry out the
scaling many times; typical commercial implementations use two magnifications of
self-similarity. Another way of viewing this is as a two or three way loudspeaker. The
construction avoids using narrow deep wells to cover a wide bandwidth, and so
decreases the absorption of the device. Figure 2.12 showed an application of this
device at the rear of a studio.

At low frequency, the small diffusers at the bottom of the wells will have negligible
depth compared to wavelength, and so only the bass diffuser needs to be considered at
low frequencies. At high frequencies, the small diffusers will act as a modulated array
with phase modulation due to the depth of the deep diffuser. This is illustrated in
Figure 9.26. The phases introduced by the large diffuser on the small diffuser are
conveniently also quadratic residues, and hence when they sum with the small diffuser
phases, the result is still a quadratic residue whose Fourier transform of the expo-
nentiated sequence is still constant. This is a very useful outcome, because it is
possible therefore to nest diffusers with overlapping frequency bandwidths. The two
layers of magnification appear to operate orthogonally. In reality, however, at mid-
frequencies the situation is likely to become very much more complex. The cross-
modes of the large wells will affect the scattering from the smaller diffusers. These
difficulties make this surface impossible to model with a simple Fraunhofer approach;
to properly model this surface requires a full BEM solution or similar.

9.6 Improving base response

The depth of a diffuser usable in design is often limited by non-acoustic factors.
Ultimately, the designer or architect will limit the depth available for acoustic treat-
ment. Furthermore, with the wavelength of sound extending to 17m, it is impossible
to construct a practical diffuser which will cover the full audible bandwidth and is
also usable in most rooms. Consequently, there is always a need for extending the
bandwidth of diffusing devices to a lower frequency.

By using well folding, it is possible to gain a greater bandwidth from a given well
depth. Jrvinen et al. [22] and Mechel [23] and others have suggested such a modifica-
tion. The standard Schroeder diffuser, Figure 9.2, has much wasted space at the rear
which can be better utilized. Figure 9.27 shows the use of well folding to reduce the
depth of an N¼ 7 QRD. The depth of the folded well should be calculated from the
mid-line through the well, then predictions can proceed with the simple Fraunhofer
theory. For this, an assumption is made that higher order modes in the structure are
negligible; a full BEM solution would be needed to account for these effects. Mechel
also suggested reordering the wells of the primitive root sequence in ascending order
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to make the packing more efficient. It should be remembered, however, that this will
have a detrimental effect on diffuser performance as the spatial relationship between
the different depth wells will have been changed.

An alternative regime is to use perforated sheets to add mass to the impedance of
the wells, and so lower the resonant frequency of the wells, and hence the frequency at
which the scattering is first optimal. An example of such a device is shown in Figure 9.28,
where the use of perforated sheets has enabled the longest wells to be shortened.
Such an approach was tried for diffusion by Hunecke [24] using microperforation and
for absorption by Fujiwara et al. [25] and Wu et al. [26] using larger diameter
perforations. For a diffuser, it is also important that the perforation size is not made
too small otherwise significant losses may result. The principle of the design is that for
the first mode, the well reflection factor of a Helmholtz resonator and of a 1/4
wavelength tube is similar. Consequently, the 1/4 wave resonator tubes of the Schroeder
diffuser can be replaced by Helmholtz devices. This is illustrated in Figure 9.29 where
two well reflection factors are compared, one a 1/4 wave resonator, the other is half
the depth with a perforated sheet to create the correct resonant frequency. This
reflection factor can be calculated using the transfer function matrix method outlined
in Chapter 6. Unfortunately, for higher order modes, the Helmholtz resonator and 1/4
wavelength tube reflection factor will be dissimilar. Consequently, this design meth-
odology can only work around the design frequency.

Figure 9.30 shows the scattering at the design frequency, showing that the two
diffusers behave similarly. The Schroeder diffuser with perforations is about half the
depth of the original diffuser, so considerable space savings have been made. A point
to note is when carrying out this calculation, it is necessary to include the radiation
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x

Figure 9.27 A cross section through an N¼ 7 quadratic residue diffuser using well
folding to reduce depth.

y

x

Figure 9.28 A cross section through a Schroeder diffuser using perforated sheets to add
mass to the surface impedance of the longest wells and therefore enabling the
longest wells to be shortened.
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impedance of the 1/4 wave tube. This has been ignored for other Schroeder diffusers
because it is a constant term for all wells and therefore does not affect the diffusion.
With a mixture of Helmholtz and 1/4 wave devices, however, the correct radiation
impedance must be included. Figure 9.31 shows the diffusion coefficient, showing
that for many frequencies similar performance is obtained from the perforated device
and the normal Schroeder diffuser. At higher frequencies than shown, the scattering
from the perforated sheet will become rather specular and so care in design and
application is needed. As the principle is to add mass using perforations, mass can
also be applied using limp membranes, probably to similar effect, but it may be
difficult to reproduce mounting conditions consistently in manufacture.
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Figure 9.30 Scattering from an N¼ 7 QRD at the design frequency and a similar QRD
where the longest wells have been shortened and a perforated sheet used to
add mass. QRD; QRD using perforated wells.
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To get a true broadband diffuser using this approach, another design approach
must be tried. Later in Section 9.9 an optimization approach will be discussed.
This could equally be applied to a diffuser formed from a series of Helmholtz
resonators.

9.7 Multi-dimensional devices

So far, the diffusers discussed have been single plane devices. They cause scattering
into a hemi-disc, acting as a planar surface in the other directions. While this is
probably the most common type of diffuser, there is a need for a diffuser that scatters
into a hemisphere. For a Schroeder type diffuser this can be best achieved by forming
a two plane device, one that scatters optimally in the x- and z-direction, and there-
fore gives even lobes on a hemisphere. An example of such a surface was shown in
Figure 9.1 right.

As 2D diffusers scatter in multiple planes, for a receiver in the bright zone, the
surfaces will cause the scattered energy to be reduced more than a 1D diffuser,
provided multiple grating lobes are present. The number of grating lobes is squared
if a 1D of width Nw and 2D diffuser of size Nw�Nw are compared. Therefore the
energy in each lobe will reduce by 10 log10(m), wherem is the number of grating lobes
present for the 1D diffuser.

There are two known processes for forming 2D diffusers. The first, involves form-
ing two sequences, one for the x-direction, one for the z-direction and amplitude
modulating the x sequence with the z sequence. For a quadratic residue sequence, this
can be expressed as [2]:

sn;m ¼ ðn2 þm2Þ modulo N ð9:23Þ

where n and m are integers and give the sequence for the nth and mth wells in the
x- and z-directions respectively. A similar procedure can be used for PRDs.
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Figure 9.31 Diffusion from a QRD and a QRD using a perforated sheet to enable the
deepest well depth to be decreased.
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sn;m ¼ ðrn þ rmÞ modulo N ð9:24Þ

It is even possible to have a quadratic residue sequence in one direction, and a
primitive root sequence in the other provided they are based on the same prime
number, although it is hard to see why you would chose to do this.

Consider a quadratic diffuser based on N¼ 7, a 2D version would be as shown in
Figure 9.32. In this case the indexes n and m were started from 4 to place the zero in
the middle of the diffuser. As the surface is periodic, it is possible to start the
indexes n and m from any integer. 2D number theoretic diffusers will often have
less bass diffusion efficiency than a 1D device, as the ratio smax/N tends to 1 for 2D
devices.

Figure 9.32 also illustrates other sequences that can be used. On the diagonal of the
diffuser the following sequence appears {4,1,2,0,2,1,4}. This is the original sequence
{0,1,4,2,2,4,1} but with every fourth element used. This new sequence has the same
Fourier properties as the original sequence due to the shift properties of quadratic
residue sequences. This indicates that as well as producing good diffusion in the
orthogonal directions x and z, good scattering in the directions along the diagonals
should also be obtained.

The second method for making multi-dimensional diffusers is to use the Chinese
remainder theorem [27]. This folds a 1D sequence into a 2D array while preserving
the Fourier properties of the 1D sequence. The process is described in detail in
Chapter 11 where it is applied to hybrid surfaces, but it can equally be applied to
polyphase sequences.

The requirement for co-prime factors means that this folding technique cannot be
applied to single periods of QRDs, because there is a prime number of wells. This can
be overcome by using an odd-number generator N for the quadratic residue sequence
which is not prime. For example, a quadratic residue sequence based on N¼ 15 will

4 6 3 2 3 6 4 4 6 3 2 3 6 4

6 1 5 4 5 1 6 6 1 5 4 5 1 6

3 5 2 1 2 5 3 3 5 2 1 2 5 3

2 4 1 0 1 4 2 2 4 1 0 1 4 2

3 5 2 1 2 5 3 3 5 2 1 2 5 3

6 1 5 4 5 1 6 6 6 1 5 4 5 1

4 6 3 2 3 6 4 4 4 6 3 2 3 6

4 6 3 2 3 6 4 4 6 3 2 3 6 4

6 1 5 4 5 1 6 6 1 5 4 5 1 6

3 5 2 1 2 5 3 3 5 2 1 2 5 3

2 4 1 0 1 4 2 2 4 1 0 1 4 2

3 5 2 1 2 5 3 3 5 2 1 2 5 3

6 1 5 4 5 1 6 6 6 1 5 4 5 1

Figure 9.32 A sequence array for a 7� 7 quadratic residue diffuser, one period is high-
lighted.
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work perfectly well at the design frequency and can be wrapped into a 3� 5 array.
The problem is that the surface will have flat plate frequencies at three and five times
the design frequency (as well as 6,10,9,15 . . . times). Consequently, to use a non-
prime N, it is necessary to make sure the factors of N are sufficiently large, that the
flat plate frequency is above the frequency of interest. For example N ¼ 143 has
factors of 11 and 13 and so would be a good choice as the flat plate frequencies will be
beyond the upper limit of most diffusers. It is also possible to apply the Chinese
remainder theorem to some primitive root sequences, or some other mathematical
sequences such as the Chu sequence outlined previously.

It has also been suggested by Pollack and Dodds [28] that the wrapping can be
carried out in a hexagonal configuration.

sn;m ¼ ðn2 þm2 þ nmÞ modulo N ð9:25Þ

Figure 9.33 illustrates a hexagonal QRD based onN ¼ 7 generated using Equation 9.25.
Figures 9.34 illustrates the scattering from a 2DN ¼ 7� 7 QRD and a plane surface

as a 3D polar balloon, sometimes nicknamed a polar banana [7]. There is a regular set of
grating lobes, but these are difficult to see unless the polar response can be animated and
rotated. Figure 9.35 shows the data as a contour plot, where the grating lobes become
more obvious. These grating lobes form a regular grid, the middle 9 in a 3� 3 grid is
most obvious in the case shown. These contour plots are effectively the contour on the
surface of the hemisphere, looking down onto the hemisphere. Consequently, the x- and
z-axis shown are non-linear.

Figure 9.36 illustrates the scattering from a diffuser formed using the Chinese
remainder theorem. A Cox D’Antonio modified primitive root sequence based on
the prime number N ¼ 43 was generated, and so the sequence is 42 elements long. It
was folded into a 6� 7 array using the Chinese remainder theorem. Figure 9.36
shows the response at four times the design frequency, and the specular lobe which
should be present pointing straight up the page is missing. This demonstrates that the
folding technique succeeds in preserving the modified primitive root properties. When
amplitude modulation is used to form primitive root sequence arrays (Equation 9.24)
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Figure 9.33 One period of a hexagonal quadratic residue diffuser based on N¼ 7.

262 Schroeder diffusers



planes of reduced scattering are produced. All the scattering in the directions given by
� ¼ 0,90,180,270� will be suppressed.

In general, little measurement or prediction work on multi-dimensional devices has
been carried out. It appears, however, that the results learnt from a 1D analysis can be
extended to multiple dimensions. The issues of lobes, periodicity, frequency limits,
etc. are all similar.

9.8 Absorption

Section 7.2 has discussed in some detail how and why Schroeder diffusers absorber, and
how to make a phase grating into an efficient absorber. To recap, Schroeder diffusers
primarily absorb because of: (1) energy flows from wells in resonance to wells out of
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Figure 9.34 Scattering from an N¼ 7 QRD at four times the design frequency (top) and a
plane surface (bottom).
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Figure 9.35 Contour plot of polar response shown in Figure 9.34 seen from above. QRD
(top) shows 13 grating lobes, where a 3� 3 grid of lobes shown in the centre is
most clear. Plane (bottom) just has a lobe in the specular reflection direction.

Figure 9.36 Scattering from a modified primitive root diffuser based on the prime 43,
and wrapped into a 6� 7 array using the Chinese remainder theorem.



resonance, and (2) 1/4 wave resonant absorption in the wells, especially if the wells
are rather narrow. Figure 9.37 shows the random incidence absorption coefficient for
1D and 2D commercial Schroeder diffusers like those shown in Figure 9.1.

The first result of note from Figure 9.37 is to notice how important it is not to cloth
cover Schroeder diffusers as this greatly increases the absorption. There is energy flow
between wells of the absorber promoted by pressure gradients caused by wells being
in resonance and having high energy adjacent to wells not being in resonance and
having low energy. Consequently, there is high particle velocity around the front face
of a Schroeder diffuser, and any cloth covering will cause excess absorption as might
be expected if resistive material is placed in a region of high particle energy flow. Any
cloth covering should be placed at least a well width away from the front face. The
cloth should have the highest possible flow resistivity; indeed it is better if the cloth is
not present at all.

Figure 9.37 also shows the absorption for a 1D Schroeder diffuser compared to a
2D device. The absorption is greater for the 2D diffuser. It is assumed that this is
caused because there are a greater number of different depths for the 2D device,
leading to more energy flow between the wells as well as a greater density of 1/4 wave
resonances. Furthermore, because there are more well walls present than in a 1D
device, more losses due to viscous boundary layer effects can occur.

It is important that the Schroeder diffuser is constructed to a high precision. A little
data has been published for Schroeder diffusers showing very high absorption coeffi-
cients, but this is generally due to poor construction. Small cracks in the bottom of the
wells, between the well sides and bottoms, are difficult to avoid unless care is taken. If
any cracks open up to cavities behind, these can cause excess absorption as a
Helmholtz absorber/resonator has been formed. Proper sealing with varnish or paint
is vital. Construction materials are generally not that important unless rough surfaces
are used. Figure 9.38 shows the absorption of a concrete Schroeder diffuser before
and after it is sealed with paint. Before being fully sealed, the rough surfaces cause
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dimensional Schroeder diffusers based on N¼ 7 with and without cloth
covering.
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excess losses at the boundary layers and due to the energy flow between wells around
the rough edges of the fins. Absorption is greatly reduced by sealing properly.

Commins et al. [29] experimentally investigated the absorption characteristics of a
Schroeder diffuser. They showed that by slopping the bottom of the diffuser wells, the
absorption could be reduced. The effect of the slope is to broaden the resonances of
the wells. This will decrease the energy flow within and between wells at resonance.
Some early concert hall designs used very wide wells (�30 cm), presumably to avoid
the problems of absorption. The problem with such wide well widths is that at high
frequencies specular reflections from the bottom of the wells can cause problems [30].
Furthermore, the bandwidth of the device will be greatly reduced. Consequently, if
the fear of absorption cannot be overcome, it might be better to use a fractal
construction or a surface topology which does not generate strong resonances; the
designs described in Chapter 10 could be used.

9.9 But . . .

The above analysis has all relied on a simplified model of acoustic scattering, the
Fraunhofer type theory. The performance of the Fraunhofer theory can be divided
into three frequency ranges, as discussed in Chapter 8. At low frequencies the theory
is inaccurate as the mutual interactions across the surface are not correctly modelled
by the Kirchhoff boundary conditions. At mid-frequencies, the Fraunhofer theory is
most accurate. At high frequencies, the theory becomes inaccurate again because
application realistic sources and receivers are not in the far field. Berkhout et al.
[31] pointed out that the theory used by Schroeder was approximate and concluded
that the development of the diffuser should be based on a more complex model. While
it is possible to use a more complex theory, it is only with the simplified Fraunhofer
theory that the problem can be reduced to the point that the design can be carried
out by simple design equations and using basic Fourier concepts. A more complex
prediction model can be used in an optimization design solution, and this will be
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Figure 9.38 Random incidence absorption coefficient measured for a concrete Schroeder
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discussed later. Optimization is, however, a brute force technique which often means
the designer learns little about the basic principles of good diffuser design. The
optimization produces a set of well depths, but why this is a good set of well depths
can often remain a mystery.

Schroeder et al.’s [32] reply to Berkhout et al. pointed out that measurements and
accurate theory were not too different from the approximate theory. It should also be
argued that by understanding the Fourier properties one is in a better position to
understand and exploit brute force techniques such as optimization, or the inverse
problem alluded to by Berkhout et al. One probable advantage of working with disper-
sing surfaces, such as the quadratic residue sequences, is that the laws of physics and the
tendency to disorder are going to aid diffusion. The difference between approximate and
accurate theories is probably more crucial when exacting results such as notches formed
from PRDs are required. Even if the optimum diffusion as defined by Schroeder is not
achieved, these are pretty complex surfaces which will create dispersion anyway.

There are other limitations that apply to the Schroeder design, some of which have
been touched on before. For instance:

1 The design methodology is based on an approximate model.
2 Losses are ignored.
3 The design is carried out for the far field, whereas most listeners are in the near

field.
4 The wells are assumed to be local reacting.

Assumption 3 may not be that limiting. There is some evidence that a diffuser that
creates good energy dispersion in the far field works well in the near field. In the near
field, the path length differences from different points on the surface dominate and
cause the scattering to have a large number of minima and maxima. Indeed, the polar
plots for different diffusers have similar statistical features in the near field. Some
studies have compared periodic and aperiodic arrangements of diffusers either sub-
jectively or objectively [33] using application realistic near field listener positions. In
these cases, the aperiodic arrangements, which will create more dispersion in the far
field than the periodic cases, are found to be more efficient diffusers in the near field.
Consequently, it is assumed that the Schroeder diffuser, which will create good far
field dispersion, will also be effective in the near field. A near field polar response
normally neglects to show phase, and it is assumed that the phase of the wavefront
must contain the information which enables listeners to distinguish between the
periodic and aperiodic arrangements.

Schroeder gave an alternative solution to the near and far field problem. He
suggested that by bending the diffuser, the far field scattering pattern could be
focussed at near field receivers. This means bending the diffuser to follow a parabolic
concave mirror. This is not a very useful design because it is rather expensive to
execute. A similar effect can be achieved by modulating the well depth phases by the
locus of a parabolic mirror. In this case, the varying phases cause the far field beam to
be focussed into the near field. It is rather like the use of phase changes in beam
steering of transducer arrays. This process has been tested with a boundary element
model and shown to work [5].

Assumption 4 concerns whether the well admittances change due to the presence
of the neighbouring wells. This assumption has undergone some limited tests. Cox
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and Lam [5] compared the admittance predicted by a boundary element model
which models the surface shape precisely against the simple phase change admittance
values derived from a reflection factor of exp(�2jkdn). Figure 9.39 shows that
reasonable agreement is found, indicating that the surface admittances are indeed
local reacting to a reasonable accuracy. Some real parts are seen indicating losses
or maybe mathematical inaccuracies in the BEM model. If these are true losses, they
are due to evanescent waves as the BEM model did not include any absorption
and indicates the small inherent absorption present in these devices. Cox and Lam
also looked at the admittance variation along the elongated dimension of a 1D
Schroeder diffuser. They again showed that the BEM admittance approximately
matched the simple phase change admittance, except for positions close to the ends
of the wells.

The most significant limitations of the above number theoretic designs are, however:

1 They only work at discrete frequencies.
2 Optimum diffusion means the same energy in the diffraction lobes; this is not the

same as even energy in all directions.

As the number theoretic Schroeder diffusers are not truly broadband and do not
completely disperse to all directions, it is possible to improve on the design. To do
this, optimization can be used.

9.10 Optimization

9.10.1 Process

de Jong and van den Berg [34] developed the idea of using an iterative solution
method to produce Schroeder style diffusers. It was not until Cox [35] rediscovered
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this idea in the early 1990s, however, and D’Antonio [36] provided experimental
evidence for the improved performance over traditional number theoretic Schroeder
diffusers, that this concept was exploited. de Jong and van den Berg used an approxi-
mate prediction model, and narrow deep wells which were rather unrealistic of
practical diffuser as the narrow wells would have caused excess absorption. Cox
was able to use greater computing power to use more accurate boundary element
models, and also used more application realistic geometries.

The concept of optimization is illustrated in Figure 9.40. The idea is to get a
computer to go through a trial-and-error process searching for the best well depth
sequence possible. First, a starting well depth sequence is randomly chosen. Then
the computer predicts the scattering from the surface and evaluates the quality of the
scattering in a single figure of merit or error parameter. The computer then adjusts the
well depth sequence in an effort to improve the error parameter. When a minimum in
the error parameter is achieved the iteration process has completed, and an optimum
diffuser has been found. This optimization process is a common technique and has
been exploited in a wide range of engineering applications.

To achieve an optimization of diffusers, several key ingredients need to be in place.

1 A validated prediction model.
2 A figure of merit or error parameter.
3 An optimization algorithm to change the well depth sequences.

A validated prediction model is needed and for this a boundary element model can be
used. The disadvantage of using a BEM model is that it can be very slow to compute,
but as computing power is constantly increasing, this is becoming less of a limitation.
For computing power reasons, the diffusers that Cox originally optimized were rather
narrow, now it would be possible to carry this out with wider diffusers in periodic
arrangements over a wider bandwidth. It is also possible to use the simpler Fraunhofer
models, which means the optimization is very fast, but then the accuracy may be
compromised. One possibility is to use simple models to carry out a course optimiza-
tion, and then use the more accurate models to focus on solutions.
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Figure 9.40 Flow diagram for optimizing the well depth sequence of a Schroeder diffuser.
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The diffusion coefficient can be used to evaluate the quality of the scattering
produced by the surface in a single figure of merit. The diffusion coefficient is
evaluated at each frequency band of interest, say each one-third octave band. The
diffusion coefficients are then averaged across frequency to obtain a single figure of
merit. The risk with this simple averaging process is that the diffusion may be very
uneven versus frequency. Frequencies with very good diffusion may compensate for
frequencies with very poor diffusion, where a better solution might be moderate
diffusion consistent across the whole frequency range. This problem is most easily
solved by subtracting a standard deviation of the diffusion coefficients from the mean
value across frequencies. This then penalizes cases with very uneven diffusion coeffi-
cient spectra.

An optimization algorithm is used to adjust the well depth sequence during the
search. It is needed so that the different well depth sequences can be tried and tested in
a logical manner rather by a completely random trial-and-error basis. A usual analogy
for a 2D optimization is finding the lowest point on a hilly landscape (while blind-
folded). If a human was to carry out such a search, they would start by going downhill
on the presumption that this will lead them to a lower point. The optimization
algorithm must make similar decisions. It is vital that the solution is found in the
fewest steps as otherwise the optimization process becomes rather tedious. The land-
scape is a 2D optimization, in other words only two well depths. Practical optimiza-
tion involves many more degrees of freedom, and as the number of degrees of freedom
increases, finding the minima becomes more difficult.

There are a variety of algorithms available for optimization [37]. The key decision
is whether the optimization is to take place with only the figure of merit known, or
with the figure of merit and its derivative. Knowledge of the derivative greatly speeds
optimization processes and the derivative should always be used if available. To
continue with the landscape analogy, it is much quicker if the person is told the
downhill direction, rather than they having to stagger around for a while trying to
decide which way is downhill. The problem with diffuser optimization is that the
derivative is not often known. With the Fraunhofer theory and a simple figure of
merit, such as minimizing the specular zone energy, it is possible to derive the
derivative of the figure of merit [10]. This greatly speeds the optimization.

For most work on diffuser optimization, only function values are known. A down-
hill simple algorithm has been often used, which is rather slow. It is, however,
extremely robust to non-linear constraints, something which will become important
for the non-welled constructions discussed in Chapter 10. There are other techniques
like genetic algorithms or quasi-Newton gradient descent methods. The disadvantage
of a genetic algorithm is that it requires tuning by appropriately choosing population
sizes, mutation rate, etc. Methods which calculate gradients with finite differences
such as quasi-Newton methods can cause problems with solution techniques such as
BEM models which often have small numerical inaccuracies which can greatly affect
the estimated gradient. A downhill simplex method may not be trendy, but it just
needs plugging in and it works.

When carrying out the optimization for a Schroeder diffuser, it is most efficient to
use a BEM model where the diffuser is modelled as a box with a variable admittance on
the surface. Then all that changes during the optimization is the surface admittance and
not the surface profile. This means that the time consuming processes of carrying out
the Green’s function integrations can be done once at the start of the optimization.
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This greatly reduces optimization time. In fact, it should be possible to get the deriva-
tives of the figure of merit in this case [38]. Time spent speeding up the prediction
algorithm is time well spent; in a typical optimization process the scattering is typic-
ally evaluated a thousand times, so unless each individual case takes a matter of
seconds, the optimization process will become very slow.

In any optimization problem there will be a large number of local minimum, but
somewhere there will be the numerically lowest point called the global minimum. To
return to the landscape analogy. The blindfolded person might find a valley bottom
and think the best point has been found, not realizing that over the next mountain
ridge there is a lower valley. The key to a good optimization algorithm is not to be
trapped in poor local minima, but to continue to find deep local minima. Provided a
good optimization algorithm is chosen, this should not be a problem. Especially if the
optimization is tried many times from different starting points as is customary good
practice.

When there are a large number of degrees of freedom in an optimization prob-
lem, i.e. a large number of well depths to be optimized, the surface describing the vari-
ation of the figure of merit with the well depths becomes very complex. There will be
a very large number of minima. It is virtually impossible to find the global minimum
unless a large amount of time is used with the optimization algorithm being started
over and over again from a wide variety of places on the error surface. Fortunately,
as the number of degrees of freedom increases, the need to find the numerical
global minimum becomes less important. Experience has shown that there are a
large number of good local minima solutions available, and although the scattering
will be different in each case, there is often negligible difference in performance
between the good local minima. There is usually no magical global minimum where
the quality of scattering produced is significantly better than good local minima.

9.10.2 Results

When testing the results of an optimization, it is important to look at frequencies,
source and receiver positions different to that used during the optimization. This
checks to see whether the optimization process has found a robust solution. There is
always a risk that the optimizer will overfit a poor solution; this is where the solution
is good only for the geometries and frequencies used during the optimization.

Figure 9.41 shows the scattering from two optimized diffusers compared to an
N ¼ 7 QRD. One of the optimized diffusers had fins; the other had a stepped profile,
essentially a Schroeder diffuser with the fins removed. Both the optimized diffusers
produce more even scattering than the QRD at this and other frequencies.

Cox [35] found that the optimized N¼ 7 diffuser with fins outperforms the QRD
over a wide variety of frequencies. When the number of wells was increased to about
36 and compared to two periods of an N¼ 17 QRD, however, the gains were less
marked. The scattering from the QRD was already fairly uniform at the low frequen-
cies, and so the room for improvement was relatively small. This was not, however,
particularly due to the use of a quadratic residue sequence, even a diffuser with
randomly determined well depths gave reasonable diffusion.

Removing the constraints on geometry imposed by a Schroeder style diffuser and
forming a stepped diffuser produce better diffusion. The magic in the Schroeder
diffuser geometry is not that it produces diffusion, but that it enables simple design
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methods to be brought to bear on the problem. Removing the fins enables a simpler
geometry, which is cheaper to make. It has also removed the resonant wells and so
will have lower absorption. The improved performance was seen for both the N¼ 7
and N¼ 36 cases. Interestingly, the N¼ 7 optimized stepped diffuser looked rather
like a faceted semicylinder.

D’Antonio [36] carried out a thorough experimental evaluation of the work of Cox.
The measurements confirmed that optimization produced better diffusers than num-
ber theory sequences. D’Antonio also looked at the performance of the diffusers
outside the domain of optimization; at higher frequencies, at oblique angles of
incidence, for different receiver radii and for a periodic arrangement. Outside the
domain of optimization, the optimized diffusers were found to give roughly the same
diffusion as the Schroeder diffusers – sometimes worse, sometimes better. The solu-
tion to this problem is to carry out the optimization including all frequencies, angles
of incidence and source and receiver radii of interest. With modern computing power,
this is not a problem.

The original optimization work was limited to narrow single diffusers because of
computing power. Now, this optimization process can be applied to larger area
diffusers. Figure 9.42 compares the diffusion from an N¼ 7 QRD to an optimized
modulated arrangement of phase grating diffusers. The improvement in diffusion is
quite marked.

It is also possible to optimize for a non-even scattering distribution. For example,
Cox and D’Antonio [10] tried to minimize the energy in a particular direction, to
produce a notch in the specular reflection direction to create an improved PRD. In
Figure 9.43 the results from trying to optimize a diffuser to work from 500 to
3,000 Hz for an angular range of ¯�5� about the specular reflection direction are
shown. The diffuser is labelled optimized and is compared to a plane surface and a
modified PRD. Across the optimization range, the specular reflection is reduced by
about 25 dB compared to a plane surface and 10 dB when compared to the PRD. This
was for a single period of the diffuser. When multiple periods were attempted, the
results were far less dramatic. Over the bandwidth 500–3,000 Hz, the best-optimized
diffusers could achieve was an extra 4 dB attenuation of the specular and near
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Figure 9.41 The scattering from an N¼ 7 Schroeder diffuser, an
optimized Schroeder diffuser, an optimized stepped diffuser at
1,050 Hz (data from Cox [35]).
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specular energy when compared to the modified primitive root. Although the reduc-
tion would probably be audible in certain applications, the improvement could hardly
be termed dramatic. It is impossible to prove a negative with optimization techniques,
but experience has shown that using optimization to shape polar responses or creating
notches is fraught with difficulty. Optimization is most successful when trying to
create uniform dispersion.

9.11 Summary

Schroeder diffusers have been hugely successful thanks to their simple concept and
design, and their commercial exploitation. There has always been a certain reticence

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
f (Hz)

D
iff

us
io

n 
co

ef
f.

Plane
Optimised
QRD

Figure 9.42 Diffusion coefficient for multiple periods of a Schroeder diffuser and an
optimized phase grating diffuser.

-10

0

10

20

0 500 1000 1500 2000 2500 3000 3500

Frequency (Hz)

A
ve

. L
ev

el
 in

 s
pe

c.
 z

on
e 

(d
B

)

Figure 9.43 The average energy in the specular zone for three surfaces as indicated in the
legend. - - - - - - - Plane; Optimized; Modified PRD
(after Cox and D’Antonio [10]).

Schroeder diffusers 273



among designers to use this type of diffusers. The rumours of absorption have continued
since their inception, with high absorption coefficients being published for poorly
constructed surfaces. But now with a proper understanding of the absorption mechan-
isms, this should no longer be a problem. A few people have claimed to hear strange
artefacts from Schroeder diffusers, but the designs they have been listening to have not
followed some of the important design principles discussed in this chapter. Following
proper design principles, applying all the current knowledge, results in high quality
sound from Schroeder diffusers. One of the main stumbling blocks to their use is,
however, their visual appearance which is either loved or loathed. Consequently, new
diffusers were needed which had defined acoustical properties but with different visual
aesthetics. This will be addressed in the next chapter.
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10 Geometric reflectors and diffusers

Cylinders, pyramids and plane surfaces are common items in rooms, in this chapter
the performance and design of these geometric surfaces will be considered as well as
fractal and optimized curved surfaces. While most diffuser design is about breaking
up wavefronts by surface roughness or impedance changes, it must be remembered
that even a plane surface can cause diffraction from its edges, provided the surface has
a similar size to the acoustic wavelength or smaller.

Triangles or pyramids can produce dispersion, redirection and specular reflection
depending on the geometry used. Applied correctly, triangles and pyramids can form
notch diffusers, where the energy in certain directions is much reduced. Curved
surfaces are more obviously diffusers and more universally used; indeed a simple
sphere or cylinder is very effective at spatially spreading reflections in a hemisphere or
a single plane respectively, but this is not the only ingredient to a good diffuser.
Furthermore, a single sphere or cylinder on its own is not very useful, and so many
spheres or cylinders next to each other are needed. Then the scattering is as much
about how the objects are arranged, periodically or randomly, as about the scattering
characteristic of a single item. Well-designed curved surfaces can be a less obvious
acoustical treatment, and so will often blend into modern architectural designs.

This chapter will first consider the role of plane surfaces, as an understanding of
scattering from finite-sized plane surfaces is fundamental to an understanding of
diffraction and diffuse reflection.

10.1 Plane surfaces

Understanding the reflection effects of finite-sized plane surfaces is important. With
no surface roughness, any scattering generated is by edge scattering. Consequently,
understanding plane surfaces enables finite size effects from more complex surfaces to
be partly or fully explained. Whether by accident or design, plane surfaces are
probably the most common architectural surface.

10.1.1 Single panel response

Consider the geometry shown in Figure 10.1, where a source and receiver are near a
finite-sized plane surface. The surface is assumed rigid, hard and non-absorbing. If the
source and receiver are chosen so that the geometric reflection point, the point at
which the angle of incidence equals the angle of reflection, lies on the panel, then the
scattered pressure as a function of frequency, as shown in the top line in Figure 10.2,



resembles an approximate high pass filter. At very low frequencies, when the wave-
length is very large compared to panel size, little or no sound is scattered from the
surface. At very high frequencies, when the wavelength is small compared to the
surface size, strong specular reflection results.

It is useful to define the cut-off frequency for the plane reflector and the transition
frequency between specular reflection and significant diffraction. To continue with
the filter analogy, the transition frequency can be taken as the �3dB point of the high
pass filter [1–4]. This gives acousticians an approximate frequency below which the
panel most effectively scatters sound in all directions and above which the panel
produces more specular-like reflections. Rindel has derived a simple and useful
formulation for the cut-off frequency. Rindel [4] used a simplified Fresnel solution
method for the scattering from a plane surface, with the Fresnel integrals approxi-
mated by simple mathematical functions. Using this solution method, Rindel found
a transition frequency above which the Fresnel integrals remain roughly constant.
He defined this point as the cut-off frequency. For a plane panel it is given as:

f�3dB ¼
cr!

8a2 cos2ð Þ ð10:1Þ
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Figure 10.1 Geometry for sound reflecting from a plane surface.
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Figure 10.2 Scattered pressure from a plane surface for normal incidence sound, for three
different receiver angles as shown in legend.
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where r* is given by:

r! ¼ 2rr0
rþ r0 ð10:2Þ

where r0 is the distance from the source to the panel centre, r the distance from the
receiver to the panel centre, 2a the panel width, c the speed of sound, and  the angle
of incidence.

The use of a cut-off frequency is most valid for receivers close to the specular
reflection direction. Figure 10.2 also shows predictions for the scattering at two
oblique reflection angles. This shows that representing the scattered pressure by a
simple high pass filter does not work for every direction. In this case, there is often a
complicated pattern of minima and maxima. When the geometric point of reflection
lies on the surface of the panel, it is reasonable to assume that the scattered pressure at
high frequencies is going to be dominated by specular type reflection. When the
geometric reflection point does not lie on the panel, however, the scattered pressure
is entirely due to diffraction. In this case, the diffracted energy reaching the receiver
will decrease as the frequency increases. Consequently, the frequency response for
these receivers is more likely to follow something closer to a band pass filter response.
This is illustrated by the 43� receiver in Figure 10.2. This is not always true, however,
as shown at the grazing reflection angle case. A rough guide to the region over which
the cut-off frequency representation works is therefore the region over which the
geometric reflection point lies on the panel. Incidentally, to simplify the calculation of
these angles, an image source construction is a good idea as it greatly reduces the
complexity of the trigonometry – this is shown in Figure 10.1.

For a plane panel, the case of scattering close to the specular reflection direction is
usually of most interest, as this will have the largest amount of the scattered energy at
high frequencies. Nevertheless, with significant energy scattered into other angles at
low frequencies, the use of a cut-off frequency should be done with caution. Equation
10.1 has either assumed a square panel where the azimuth and elevation incident
angles are the same or a 2D world. For rectangular panels, and arbitrary incidence
angles with square panels, there will be two different cut-off frequencies to consider.
For circular or odd-shaped panels, the transition will be more complicated, but
similar general principles to that shown in Figure 10.2 apply.

Figure 10.3 shows the total sound field impulse response – incident plus reflection
sound – for plane wave scattering. The direct and reflected sound are clearly distin-
guishable, as is the edge scattering wave which has a negative magnitude. Figure 10.4
shows the frequency response of the total sound field in Figure 10.3. The reflected
sound from a plane panel is very similar to the incident sound field unless the panel is
small. This means that the frequency response shows distinct comb filtering. Comb
filtering is characterized by minima and maxima at a regular spacing in frequency. The
ear is particularly sensitive to this emphasis and de-emphasis of frequency components,
and when audible, listeners will complain of harshness or glare from these reflections.

In diffuser design, the ability of a surface to disperse the sound spatially is often
monitored. Figure 10.5 shows the scattering from a plane thin rigid surface as a
polar response. The scattering is shown for several frequencies and is in the far
field. For the largest wavelengths (lowest frequencies), the scattered response is
exactly the same as that produced by a dipole, following a |cos( )| function typical
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of a low frequency dipole approximation. At grazing angles there is zero pressure.
This only happens for the infinitesimally thin surface, since surfaces with finite
thickness produce finite pressure. In fact, the pressure for all angles is relatively low
for large wavelengths, as destructive interference is the dominant phenomenon, as
is true of dipoles. To put this in a less technical language, when the wavelength is
much larger than the panel size, the wave does not ‘see’ the panel and propagates
largely undisturbed.

As the frequency increases and the wavelength becomes comparable and then
smaller than the panel size; eventually a specular reflection becomes apparent. Energy
is concentrated in the specular reflection direction obeying Snell’s law, where the
angle of incidence equals the angle of reflection. This is a special case of Fermant’s
principle, where the specular reflection direction is the shortest possible path length
and so is preferred.
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Figure 10.5 presents the far field response. In real spaces, however, listeners and
sources can be quite close to surfaces. Figure 10.6 shows how the scattered pressure
distribution varies for a high frequency, as the receiver approaches the panel. At 0.8 m
from the panel, the receiver arc diameter is actually smaller than the panel width. For
all receivers on the 0.8 m arc, the scattered pressure is high, because for every receiver
there is a geometric reflection point on the panel giving a strong specular reflection.
As the receiver arc moves further from the panel, fewer receivers get a strong reflec-
tion, eventually the far field response is achieved.

Figure 10.6 implies that, close to the panel, the flat surface is good at dispersing
sound. In particular, good coverage is achieved because all receivers get similar energy
in the reflection. Does this imply that a plane surface is a good diffuser as it is
dispersing scattered energy evenly to all receivers? In reality, the plots in Figure 10.6
are only telling a part of the story. The polar plots of scattered energy do not
show how the direct and reflected sounds interfere, or the effect this has on the sound
heard by the listener. In fact, a comb filter response would result, and this is likely to
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Figure 10.5 Polar response for scattered pressure from a plane panel for three different
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colour the sound due to changes in emphasis of different frequency components as
discussed in Chapter 2.

10.1.2 Panel array response: far field arc

When multiple plane panels in an array are used, then the response is a combination
of both the response of a single panel and the periodic arrangement of the array.
Figure 10.7 shows a sketch of an array which will be used to demonstrate the
response. For simplicity, scattering in one plane predicted using a 2D model will be
used. The findings can be generalized to a 3D array, as the general principles are the
same. Using the simple Fourier theory detailed in Chapter 8, it is possible to represent
the array response, pa, as a multiplication of the single panel response and a set of
delta functions:

pað�Þ ¼ p1ð�Þ
Xn¼1
n¼�1

� � �ml
W

� �
ð10:3Þ

� ¼ sinð Þ þ sinð�Þ ð10:4Þ

where � is the transform variable, as discussed in Chapter 9,  and � are the incidence
and reflection angles, respectively, pa the pressure from the array, p1 the pressure from
a single panel,m an integer, l the wavelength, 2a the single panel width,W the repeat
distance, and � the delta function.

This formulation is for the far field. It is an approximate representation, and so the
graphs which are being shown are actually generated by an accurate BEM model
described in Chapter 8. Equation 10.3 is being used purely to aid understanding of the
physical processes. This formulation is using similar arguments as was used for
modulated forms of Schroeder diffusers in Chapter 9, where the concept is given in
a little more detail.
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Figure 10.7 Sketch of an array of plane tested (source and receiver position not to scale).
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Figure 10.8 shows the scattering for three contrasting frequencies. The last term in
Equation 10.3 means that it would be expected that whenever:

� ¼ sinð Þ þ sinð�Þ ¼ ml
W

ð10:5Þ

there should be a reflection similar to the single panel alone. For the middle frequency
in Figure 10.8, Equation 10.5 predicts lobes at 0,¯�53� and this is borne out by the
prediction of the grating lobes. Consequently, at mid-frequencies, periodicity effects
will often dominate, and Equation 10.5 will predict their location.

At low frequencies, the scattering from a single panel is rather small (20 dB less in
the specular reflection direction) and follows a dipole response as the wavelength is
large compared to panel size. In this case, the single panel response p1(�) dominates
the scattered level. The array produces a polar response which is very similar to a
single panel, albeit with an increased power due to the greater surface area of the array
of panels compared to a single panel. There are no periodicity lobes, because the
wavelength is so large, that only the zeroth order mode (m¼ 0) can exist in the far
field.

At the highest frequencies, the scattering is dominated by a strong specular reflec-
tion. Equation 10.5 predicts a large number of side lobes (�70), but these are not seen.
The reason for this is that the response of the single panel, p1 is highly directional as
was shown in Figure 10.5. Consequently, most of the side lobes are of very low level.
In fact, the scattering from the array of panels is not too dissimilar to that of a single
panel, except for a change in radiated power due to the greater surface area in the array.

10.1.3 Panel array response: near field

One of the commonest occurrences of simple reflector arrays is above stages and
audiences in auditoria. In this case, it is not just the response on a far field arc that
should be considered, but also the response at application-realistic source and receiver
positions. In many cases, this will be along a straight line 5–12 m below the reflector
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array. This produces a scattered response that is quite different in characteristic to
the far field arc. Figure 10.9 shows the scattering from the same array as shown in
Figure 10.7, with a far field source and a line of receivers 8 m below the array
running parallel to the array. (A far field source is used to simplify matters, but in reality
both sources and receivers would probably be 5–12 m below the array.) Figure 10.9
also indicates the panel locations.

At high frequencies, the specular reflection from each panel is apparent. The
scattered pressure is uneven with minima where the geometric reflection point for
a receiver is between panels, and maxima where the geometric reflection point lies
on the panels. For most designs of overhead canopies, this uneven response is
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Figure 10.9 Near field scattering from an array of plane panels along a straight line for
various frequencies. The panel positions in the x-direction are shown at the
bottom of the picture.
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undesirable. Due to these absences between reflectors at high frequency, and the
strong specular reflections between, it would be normal to use shaped elements, such
as arcs, instead of plane panels to scatter energy more evenly to all receivers. This will
be discussed in more detail later in this chapter.

For the middle two frequencies (340 and 3,400 Hz), the response is a complex mix
of minima and maxima. These are near field effects (the 10 kHz case was also in the
near field, but the high directivity of the individual panel response weakened the near
field effects). The rapidly changing path length differences from the array to the
receiver, as the receiver location is moved along the x-axis, cause a multitude of
minima and maxima. The lowest frequency is in the far field, so something like the
dipole response seen previously for the far field arc is obtained.

Rindel [5] used Fresnel theory to investigate arrays of ceiling reflectors. He used
square reflectors and investigated the effect of reflector density on the frequency
response. He found that if the geometric reflection point lay on a panel, a high pass
characteristic with some similarity to the single panel response was obtained. Due to
the fact that the reflections come from multiple panels, the actual frequency response
had many more local minima and maxima than was the case for the single panel alone.

If the geometric reflection point was between panels, however, the scattering had
a low pass filter response. In the latter case, the energy is greatest when the scattering
is greatest, and this occurs at the low frequencies. At high frequencies, the energy is
concentrated in specular directions and so the scattered energy for these receivers is
small. Rindel showed that using smaller panels was advantageous, as it reduced the
roll-off at high frequencies for receivers away from the geometric reflection point.

Either the size of the reflectors or the panel density determines the low frequency
performance of an array. It is possible to imagine cases where it is a combination of
these effects which is important. The mid- and high frequency performance is domin-
ated by strong local variations, due to the size of the reflectors and the repeat distance
between them. The solution to this is to use non-plane surfaces, as shall be discussed
later in this chapter. Alternatively, maybe a pseudorandom arrangement of different
panel sizes and spacings could be used.

10.2 Triangles and pyramids

Moving on from plane surfaces, a variety of geometric shapes will be considered in the
following sections. Triangles and pyramids can display a wide variety of scattering
behaviour from a good diffuser, to a surface that generates specular reflections,
depending on the geometry. Indeed, the scattering performance from an array of
triangles or pyramids is very much determined by the steepness of the side slopes.
For simplicity, the analysis below only considers a 2D case with triangles, but the
arguments can easily extend to 3D surfaces such as pyramids.

A simple ray tracing yields much information about how a triangle reflects sound.
Figure 10.10 shows some simple ray tracing examples. As the angle (�) of the triangle
varies, the reflection characteristic shifts between a notch response, diffuse reflection
and a specular response. To understand a triangular arrangement, very simple
prediction theories based on the Kirchhoff method will not always work because they
do not model the second and high order reflections (see Chapter 8). Consequently, it is
safer to use a BEM model or similar. Initially, only high frequencies will be considered
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at normal incidence. This makes the pattern of scattering clear. A further simplification
is that the response for only the centre portion of two triangles will be considered, as
this is more representative of what happens when an array of triangles is used.

For shallow angles, �< 30�, only a single reflection occurs from each side in the ray
tracing shown in Figure 10.10. This results in two distinct lobes being generated at
angles of¯�2�. An example of the far field scattering is shown in Figure 10.11. This
then forms a notch response, with the energy returned to the specular direction being
minimized. This is effectively a redirecting surface, which generates two strong
reflections in different distinct directions. Unlike primitive root diffusers discussed in
Chapter 9, this surface forms a notch over a relatively wide frequency range, although the
performance will be compromised at low to mid-frequencies, when finite-sized panel
effects become important. Equation 10.1 could be used as a guide as to when each side
will produce specular like reflections and so produce a notch response, and when the
scattering will be more dominated by edge diffraction. This finite panel effect is true for
all the discussion below, but these comments will not be repeated again. With a
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Figure 10.10 Ray tracing of the sound reflecting from the centre of a pair of triangles.
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Figure 10.11 Scattering from the centre of two triangles for three side angles, from left to
right: �¼ 30�, 40�, 45�.
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�< 30� triangle, there is only a notch for certain incident angles, whereas a primitive
root diffuser worked for any angle of incidence but only at a few distinct frequencies.

For 30� < � < 45� a mixture of single and double reflections is seen in Figure 10.10.
The single reflections will again form lobes in the directions of ¯�2�, the double
reflection directions will be in the directions of �(180� 4�). Figure 10.11 shows
the scattered polar response, with four distinct lobes. By choosing an appropriate
triangle angle, it is possible to have a notch in the specular reflection direction, but now
the scattered energy is spread over four lobes which is probably more desirable.
� ¼ 45� is a special case because the energy is returned back into the specular

reflection direction, as shown in Figures 10.10 and 10.11. This is sometimes termed a
corner reflector. The ability of a corner reflector to return energy back to sources is
relatively well known and has been exploited in some auditoria as a way of returning
energy back onto a stage to give reflections which help musicians and actors hear
themselves and others.

For 45� < � < 54� double reflections occur, but these only generate two lobes. An
example is shown in Figure 10.12 for � ¼ 50�. As � increases beyond 54� the number
of reflections a ray undertakes before escaping the surface increases. A varying
number of clear distinct lobes are still generated, and simple ray tracing techniques
can still be used to locate the directions of the most significant lobes. The relative level
of the lobes varies, however, depending on the reflection paths. When the angle
becomes very large � > 85�, then a single fairly broad lobe appears. The surface is
in many ways acting like a horn loudspeaker in that a highly directional response is
obtained. This occurs because the escape angles for the rays are limited to �(90� �).
This then returns the energy back to the source, but in a more diffuse manner than
occurs with a �¼ 45� surface. The simplistic analysis used here needs to be read with
a little caution. Once these devices become very narrow and a great number of
reflections occur, then a resonant structure has been formed. Consequently, there is
a risk of resonant absorption as is seen for Schroeder diffusers.
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Figure 10.12 Scattering from the centre of two triangles for three side angles, from left to
right: �¼ 50�, 80�, 85�.
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10.2.1 Arrays of triangles

The single triangle response is not that useful because usually large areas are needed to
be covered, and then the surface will become too deep, unless this is incorporated into
the overall room shape in some way. Consequently, arrays of triangles need to be
considered. Figure 10.13 shows the scattering from an array of �¼ 15� triangles
compared to a single triangle of the same size. Also shown is the response of two
plane panels. An impressively large notch of almost 30 dB is generated for the array
case compared to the plane surface. Additional lobes are also seen and these are the
effects of periodicity. The location of these can be predicted from Equation 10.5,
however, not all the lobes appear. The m¼ 0 and m¼ 3 lobes are attenuated because
the single triangle response is weak in those directions. These periodicity lobes can be
reduced by using modulation, similar to that used for Schroeder diffusers and dis-
cussed in Chapter 9. For example, two different triangle sizes could be chosen and
arranged according to a pseudorandom number sequence.

Figure 10.13 actually represents a frequency where the notch diffuser is working
well. Figure 10.14 plots the drop in the specular direction level as a function of
frequency for the single triangle and the array. This shows that at other frequencies
the attenuation is not as good, for example at 1,500 Hz the attenuation is only 13 dB.
While this is a drop in level which is likely to be audible, it would be better if the
performance could be improved. For example, the reflection free zone concept for
small room design [6] would typically be trying to achieve a 20 dB drop in the first
order specular reflection level.

A brief parametric study looking at different triangle sizes shows that the peaks and
dips in Figure 10.14 relate to the triangle depth. The maximum attenuation occurs when
the depth is a multiple of l/2. Unfortunately, if the � is increased further, say to 30�, this
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Figure 10.13 Scattering from triangles and plane surfaces. Left figure: Plane
surfaces same size as one triangle; One triangle. Right figure:

Plane surfaces same size as five triangles; Five
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neat story relating the depth of the triangle to the wavelength of the minima and maxima
is no longer true. Nevertheless, these results again lead to the thought that orthogonal
modulation could solve the problem, following the ideas developed by Angus for
Schroeder diffusers and outlined in Chapter 9. By using two or more different depth
triangles, so that their frequency bands of higher specular reflection energy are different,
it should be possible to improve the notch generated. By using two different depth
triangles, it might be expected that the improvement would be of the order of 3 dB, so a
large number of different triangles would need to be used. Another solution to the
problem is just to make the triangles much deeper, although overly deep surfaces are
often not possible for non-acoustic reasons such as cost, weight and visual appearance.

10.3 Concave arcs

Concave surfaces such as domes are often an acoustician’s nightmare. Used wrongly
they lead to focussing effects that generate strong reflected energy in certain places.
This can lead to uneven energy distribution across the room, and also echoes and
colouration of timbre.

Whether an arc causes problems depends on the positions of the sources and
receivers, and the radius of the arc. Figure 10.15 shows the scattering from a concave
arc at a mid-high frequency for different receiver radii. Figure 10.16 schematically
shows a ray tracing of the surface scattering. Figures 10.15 and 10.16 show that the
focussing effect of the curved surface is only a problem for some receiver distances,
close to the focal length of the arc. Consequently, it is possible to use a curved surface
provided the focus of the surface is away from the listeners. For example, a concave
ceiling in an auditorium is not a problem provided the curved surface focusses the
sound well above or below the audience. If the focus is well above the audience, then
the concave surface can paradoxically cause dispersion, but not as well as many other
surface shapes. On the other hand, if the focus is below the audience, although the
focussing may not be heard, the concentration of non-lateral sound from above may
not be desirable for other acoustic reasons.
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Figure 10.14 Drop in specular zone level when a triangle diffuser replaces a plane surface
for different number of triangles (note y-axis plotted in reverse order).
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If a concave arc with a focus on listeners is inevitable, there are two possible solutions,
absorbers or diffusers. Absorbers can be placed in front of the surface to remove the
reflection, although this must be considered alongside reverberation time requirements
in the room. There might also be a desire to produce some reflected energy from the
concave surface for reasons of ensemble reflections to musicians, or early reflections to
audiences to improve spaciousness or clarity. Diffusers can be used to break up the
reflected wavefront and so disperse the focus, while still maintaining the acoustic energy
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Figure 10.15 Scattering from a concave arc for various receiver radii, r. rf is the focal
length of the concave surface. Left figure: r < rf ;

r ¼ rf. Right figure: r > rf; r >> rf.

Figure 10.16 Ray tracing for scattering from a concave arc. The region marked with a
dashed line will receive higher reflection levels than elsewhere.
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and avoiding absorption. Figure 2.29 showed a scattered polar distribution for a
concave arc before and after treatment with an optimized curved diffuser. Figure 2.30
showed the curved surface used. The reduction in focussing is dramatic.

10.4 Convex arcs

A single cylinder is an efficient disperser of sound in one plane, and a single sphere is
efficient at dispersing hemispherically. They generate responses that mimic the behav-
iour of radiating line and point sources, respectively. Figure 10.17 shows the scattering
from a semicylinder as a function of frequency. The radial axis range of this graph
is only 20 dB, so at all frequencies, the response from the semicylinder is fairly
omnidirectional. The 400Hz line is where the wavelength is roughly the width of the
semicylinder, and so some finite width diffraction lobing effects are seen. The lowest
frequency, 40Hz, is not omnidirectional because the rear of the semicylinder becomes
important – it would be omnidirectional if a cylinder had been modelled. At the two
highest frequencies, the scattered level only varies by 2–3 dB over the receiver arc.

It might appear that the cylinder is the ideal diffuser – the Holy Grail of diffuser
designs – but this unfortunately is not the case. A single cylinder on its own is rarely of
much use. The example given in Figure 10.17 was 0.5m deep, already deeper than many
architects allow, and it was only 1m wide, not wide enough for most applications. One
solution is to use multiple cylinders in an array. Then the response of the cylinder array
is dominated by how the cylinders are arranged, and the perfect response from a single
cylinder becomes a secondary and less important issue. Another solution is to flatten the
cylinder, but then the perfect angular dispersion will be lost for oblique sources.

There are also issues with cylinders and the total sound field response. Figure 10.18
shows the pressure impulse response for a direct sound and a reflection from a large
semicylinder. The semicylinder has the same width as the plane panel used for Figure
10.3 to allow direct comparison between the surface types. The reflected sound is
attenuated because of spatial dispersion, but the time signature is still very similar to the
reflection from the plane surface. Consequently, large cylinders and semicylinders
produce comb filtering similar to that from plane surface, as shown in Figure 10.19,
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Figure 10.17 Scattering from a 1 m diameter semicylinder for various frequencies. (The
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400Hz (l¼ 0.85d); 4000 Hz (l¼ 0.085d).
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albeit that the comb filtering variation is now over a slightly smaller magnitude range.
The comb filtering is thought to give rise to the harsh sound that large semicylinders
generate, although a more detailed set of subjective tests would be interesting and could
clarify the situation. Certainly, semicylinders are an enigma, they appear to be a near
perfect diffuser from dispersion graphs, but they do not sound like a perfect diffuser.

10.4.1 Geometric scattering theory and cut-off frequencies

One method that has been proposed to predict the scattering from a curved surface is
geometric theory [3, 7]. The scattering processes are split into two, first the diffraction
from the finite-sized panel is considered and then the effect of curvature added. The
finite size effect is predicted using Fraunhofer or Fresnel theory. The effects of
curvature are accounted for by a simple beam tracing method. If a curved surface is
illuminated by a beam with parallel sides, the reflected beam will diverge due to the
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Figure 10.18 Incident and reflected time response for a semicylinder the same width as
the plane surface case of Figure 10.3.
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Figure 10.19 Total field frequency response for large semicylinder scattering.
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curvature of the surface as shown in Figure 10.20. If the wavelength is assumed to be
small compared to panel size, then simple geometric constructions can be used to
calculate the attenuation due to curvature. For plane waves, this is given by [3]:

Attenuation ¼ 1þ r!

Rc cosð Þ
����

���� ð10:6Þ

where the composite radius r* is defined in Equation 10.2, Rc is the radius of
curvature of the panel and  the angle of incidence and reflection. It is also possible
to produce a formulation for spherical waves [7]. Figure 10.21 shows the scattered
pressure versus frequency for the specular reflection direction for the two theories and
the 3D BEM model. It is assumed that the 3D BEM gives accurate results and so this
indicates that the geometric model works to a certain degree – the magnitude is
approximately right but the ripples are not predicted. Figure 10.22 shows a scattered
polar response. The geometric theory of scattering is not successful for receivers
where the geometric reflection point is not on the panel. For these receivers, the effect
of adding curvature should be to increase the scattered pressure, as energy is moved

Figure 10.20 Effect of curvature on a sound beam.
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Figure 10.21 Prediction of scattering froma curved surface using three theories (afterCox [9]).
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away from specular reflection angles to others. The geometric formulation incorrectly
applies an attenuation whatever the angle of reflection.

The cut-off frequency for plane panels was a simple concept that readily allows
some rough and ready design principles to be applied. Can this concept also apply to
curved surfaces? Investigations have shown [8, 9] that Equation 10.1 also works for
curved surfaces, provided the receivers are close to the specular reflection direction,
which was a necessary stipulation for plane surfaces also.

10.4.2 Performance of simple curved diffusers

For normal incidence, diffusers based on part of an arc of a circle have good disper-
sion performance. Figure 10.23 compares the predicted scattering from a semicylinder
and a flattened semicylinder (ellipse) for normal and oblique incidence. For normal
incidence the semicylinder disperses the sound well, as it generates a virtual line
source. For oblique incidence, however, the performance is poorer for the flattened
semicylinder. The flattened semicylinder has poorer performance for both oblique
and normal incidence. Incidentally, the trends are similar if a section of a circle is used
instead of a flattened circle, only a complete semicylinder at normal incidence pro-
duces the very good dispersion. Consequently, if a whole semicylinder cannot be used
in an application, a better solution than flattening the semicylinder or taking part of a
circle is needed. There are two possibilities, first to use an array of semicylinders, and
second to use optimization to construct a more complicated curved shape. Arrays are
considered below, and complicated curved shapes later in this chapter.

10.4.2.1 Arrays of semicylinders

Once cylinders are arranged in an array, the performance is dominated by a combin-
ation of the single cylinder response and the periodicity. If the simple analysis
surrounding Equation 10.3 is considered, then the key to gaining good diffusion from
a set of cylinders is mainly down to how they are arranged. The scattered pressure
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Figure 10.22 Prediction of polar response from curved surface using three theories (data
from Cox [9]). BEM; Geometric, plane wave;
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distribution from one cylinder, p1(�) is constant if second-order reflections are not
considered. Consequently, the sum of the delta functions in Equation 10.3 dominates
the scattered pressure distribution. Once again a modulation technique, where the
cylinders are not arranged periodically, is needed to change the functional form of the
last term in the Equation 10.3 to give more even scattering.

The simplest method to follow is the modulation techniques described for Schroeder
diffusers outlined in Chapter 9. For cylinders, this means using two or more semi-
cylinders and arranging them randomly or pseudorandomly on the wall. This will
reduce periodicity and so improve dispersion. Figure 10.24 shows this by comparing
an array of semicylinders to a random array of semicylinders. At mid-frequencies, where
there are some grating lobes, but not too many, the aperiodic arrangement helps to
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Figure 10.23 Scattering from two surfaces for normal (left graph) and oblique (right
graph) incidence. In the latter case the incidence angle is 60�.
Semicylinder; Flattened semicylinder.
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Figure 10.24 Scattered pressure distribution for a periodic and aperiodic arrangement of
semicylinders. For the periodic set, 4l � d, where d is the diameter (chord)
of the semicylinder. Periodic; Aperiodic.
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create extra lobes, so improving dispersion. In this case, it is surprising how dominated
the scattering is by lobing. A simple diffraction grating with one point source in the
middle of each diffuser can produce reasonably accurate predictions of the scattering. At
mid-frequencies, simple geometric base shapes very much mimic point sources.

The overall envelope shows some reduction for reflection angles far from the
specular reflection direction. This tailing off is presumed to occur due to second and
higher order reflections from the array – neighbouring semicylinders get in the way and
prevent near grazing scattering. Similar results are seen for oblique incidence.

At high frequency, however, the modulation of the cylinders does not affect disper-
sion significantly for normal incidence. An example is shown in Figure 10.25. At high
frequencies the grating lobes are so close together spatially, that the local variation
in minima and maxima is similar for periodic, modulated and random arrangements.
Again, as in the mid-frequency range, there is a gradual tailing off at the edges of
the overall envelopes of the polar responses. In the example shown in Figure 10.25
there is roughly a 15dB drop from normal to grazing receivers. At oblique
incidence (result not shown), the modulated arrangement is better at controlling the
overall envelope, and a clear improvement on a periodic arrangement is achieved.

As previously discussed, dispersion is only one aspect of diffuser performance,
although possibly the most important one. The total field response, incidence plus
reflection, should also be considered. Figure 10.26 shows the total field for a periodic set
of four cylinders. Only two arrivals are shown because the array was set up symme-
trically and so there are only two unique arrival times. Figure 10.27 shows the frequency
response for the total sound field. This can be compared to previous graphs in
this chapter for plane and single curve surface scattering. Using an array of cylinders
has not destroyed the comb filtering, but has somewhat reduced it. It might be expected
that comb filtering aberrations such as colouration may well still be present, but
may not be so noticeable. Figures 10.28 and 10.29 show the total field time and
frequency responses for a complicated arrangement ofmanydifferent-sized semicylinders.
The use of a random arrangement of cylinder sizes and shapes has further broken
up the frequency response, making it much less likely that colouration will be heard.
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Figure 10.25 Scattered pressure distribution for a periodic and aperiodic (modulated)
arrangement of semicylinders. For the periodic set, 15l � d, where d is
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Figure 10.26 Scattering from an array of four cylinders symmetrically arranged about source.
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Figure 10.27 Frequency response for four periodic cylinders.
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In conclusion, several key features will determine the performance of semicylinder
arrays. The low frequency limit of the diffuser will either be determined by the repeat
distance or the diffuser depth. Multiple grating lobes need to be present for dispersion
and hence repeat distance is important (see also Chapter 9). The issue of depth has not
been discussed before for semicylinders, and unfortunately is as likely as not to be set
by non-acoustic requirements. If the depth is the determining feature, then empirical
results have shown that curvature produces significantly more scattering than a plane
panel when the depth is greater than �l/10. The mid-frequency performance is
dominated by the semicylinder arrangement. The key to good performance is to avoid
periodicity, or to ensure that the repeat distance is as large as possible. The high
frequency performance, when the number of grating lobes is very large, seems difficult
if not impossible to control.

10.5 Optimized curved surfaces

10.5.1 Example application

When designing a diffuser, the requirements of visual aesthetics and acoustics must be
considered, and these are often in conflict. Schroeder diffusers may have well-defined
acoustic performance, but they do that with a very specific visual appearance which it
seems is either loved or loathed. Unless diffusers are visually acceptable to the
architect, they are unlikely to be used. Curved surfaces are common in modern
architecture. Spurred on by the availability of new materials and computer aided
design, architects are increasingly designing prestigious buildings where large flat
surfaces appear to be outlawed in principle.

Curved diffusers are therefore appealing because they can complement
modern architectural trends. They can have a form which blends with other structures
in a modern building and they do not have to look like an obvious add-on. The
Hummingbird Centre in Toronto is an interesting example [10] shown in Figure 2.2.
Diffuserswere required on the sidewalls of the auditoriumbecause a sound enhancement
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Figure 10.29 Frequency response of total sound field for a complicated random array of
many different sized semicylinders.
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system was being installed which would generate echoes across the room, unless some
surface treatment was applied. The original design specification was for Schroeder
diffusers, which were to be cloth wrapped to hide their visual appearance. After much
persuasion, a curved surface designed by optimization was accepted instead, and
because this fitted the visual appearance of the room, there was no need to hide the
diffusers. The curved diffusers blended with the room design while having good
acoustic performance. Other examples of optimized curved surface were previously
shown in Figures 2.30 and 2.21.

10.5.2 Design process

Section 9.10 described how it is possible to get a computer to search for the best
possible depth sequence for a Schroeder diffuser. It is also possible to get a computer to
search for the best curved shape to generate dispersion [11]. For those unfamiliar with
optimization, it may be necessary to read Section 9.10 before the description below,
because the background details of how optimization works will not be repeated.

As with any diffuser optimization process, it is necessary to have a set of numbers
that describe the surface shape. These shape parameters can then be changed by the
optimizer to allow the computer to search through possible surface shapes. In the case
of Schroeder diffusers this was straightforward – the shape parameters were the well
depths. For a curved surface, a different regime is needed. Any surface shape can
be represented by a Fourier series and so the surface displacement, y, can be repre-
sented by:

yðxÞ ¼
XN
n¼1

an cosðkxxÞ þ bn sinðkxxÞ ð10:7Þ

where an and bn are the shape parameters which are altered to change the surface
shape. kx is usually set so that the harmonic for n¼ 1 corresponds to half a wave-
length across the panel in the x-direction. N is the number of harmonics used. This
gives a single plane diffuser which has modulation in the y-direction only. It is also
possible to use 2D Fourier transforms to form the shape in multiple dimensions, the
only cost is computation time as the number of shape parameters to be optimized
increases.

From Fourier theory, if an infinite series was used, any diffuser shape can be pro-
duced. In reality it is necessary to truncate the series at some point as every extra element
in the series gave a new dimension to the optimization process. Too many dimensions
and the minimization became too slow. Furthermore, one advantage of curved diffusers
over more complex surfaces, is their simpler construction leading to potentially lower
costs and lower absorption. An increase in the number of harmonics in the series
increases the complexity of the diffuser shape, which may cause excess absorption and
increased cost. For these reasons, 4–6 harmonics are typically used. Once a surface
shape is formed, it is necessary then to scale the shape to fit the maximum displacement
in the y-direction required (i.e. fixing the maximum diffuser depth).

There are other mathematical representations of curved surfaces which can be used.
For example, it is possible to define a number of variable points on the surface shape

298 Geometric reflectors and diffusers



and use a cubic spline algorithm in one plane or a bicubic spline algorithm [12] in two
planes to form a smooth curved surface between the variable points. It is possible to
construct a harmonic series not based on sinusoidal basis functions. Frequency and
amplitude modulation processes can also be used to generate many different shapes.
Although there are many possibilities, the essential principle that one needs param-
eters that define the shape remains.

Problems sometimes arise when the best surface found by the computer does not
meet the visual requirements of the architect. A curve was wanted, but the solutions
produced were not quite what the designer originally envisaged. In addition, it is often
necessary to ensure that the surface avoids other objects in the room, or has appro-
priate breaks to allow for lighting. In this case, non-acoustic constraints must be used
in the optimization process to force the shape to meet visual and physical constraints.
This can be done via a set of fuzzy coordinates through which the surface must pass.
Figure 10.30 illustrates how such a system can be used to force a surface to pass
through particular points. The error parameter in the optimization becomes a combin-
ation of the diffusion coefficient that measures the scattering quality and a penalty
value that measures how close the surface is to the constraint points (this can be an
additive or multiplicative penalty). This is often used to ensure that edges of diffusers
meet walls as illustrated in Figure 10.30c. In addition, this technique can be used to
ensure that:

. cusps are not formed between adjacent periods of periodic diffusers;

. the left and right edges of diffusers are at the same displacement so that periodic
diffuser edges will meet without a discontinuity;

. obstructions, such as pillars, are avoided.

Fuzzy constraint point
A. Surface passes
through fuzzy constraint
point, no penalty applied

B. Surface misses fuzzy
constraint point, penalty
applied proportional to dd

C. Use of fuzzy constraints
to ensure diffuser meets a
wall at edges

D. Use of fuzzy
constraints to ensure an
s-shape

Figure 10.30 Use of fuzzy constraints to ensure that optimized curved diffuser meets
visual and physical constraints (after Cox and D’Antonio [13]).
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While using such a constraint system is straightforward for physical problems, such as
avoiding cusps, it is more problematic when trying to force the shape of the curve into
the visual aesthetic demanded by the designer. Often during room design the interior
designer has a definite idea about the general shape required for the diffuser – ‘we
would like an s-shaped diffuser’. Trying to come up with a suitable set of constraint
points for this is possible, but involves some trial and error. For example, the points
shown in Figure 10.30d will work for sometime, but not all of the time. In addition,
the constraint point system lacks elegance and will slow down the optimization
process, by increasing the complexity of the error function surface to be searched.
One partial solution is to use the spline construction, as then the constraints can often
be linear constraints on the shape parameters.

A superior system is one where the surface is designed from shape variables in such
a way that the only surfaces generated are ones that satisfy the visual constraints. One
way to do this is distortion [13]. The architect supplies a base shape, and distortion is
used to change the acoustical performance of the shape, while retaining the visual
integrity. Such a process is familiar in image processing as a technique for adding
effects to photographs. This is illustrated in Figure 10.31. In the distorted pictures, it
is still possible to recognize the picture as being a person; the rough visual appearance

Figure 10.31 Distortion in image processing (after Cox and D’Antonio [13]).
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is maintained, yet radically different pictures are obtained. The idea behind diffuser
distortion is to alter the surface shape using image processing and other techniques in
such a way that the general visual appearance is maintained, and yet a different
acoustic performance is obtained. To achieve this compression, modulation and
warping techniques are used.

10.5.3 Performance for unbaffled single optimized diffusers

Initial work on curved diffusers examined whether they could perform better than
arcs of a circle [11]. It was found that for all depths and widths tested that optimized
diffusers were as good or better than the arc of a circle. An interesting trend in the
solutions from the optimization process was that when the maximum allowable depth
and width of the surface were similar, so allowing a rough semicircular surface to be
formed, this was the surface shape found by the optimization process. This near
semicircle was similar to the arc of a circle and so for these geometries the optimiza-
tion process could only produce diffusers which matched the performance of the circle
arc. When the geometric constraints meant that a semicircle was not a possible solu-
tion, then the optimized surface found different more complex shapes that were better
at generating spatial dispersion than the standard curved surface.

The failure to improve on the simple arc does not show a fundamental weakness in
the optimization process, it can be argued that it illustrates how well it works! What
has been shown is that for the geometries tested here, approximately semicircular
diffusers have near optimal spatial dispersion and there is little room for improvement.
(Remembering that spatial dispersion is not the only consideration for diffusers, time
dispersion should also be considered.) This is illustrated in Figure 10.32 where the
scattered pressures from two arcs and one optimized surface are shown. For the wide
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Figure 10.32 Scattering from three surfaces at 2.8 kHz, 30� incident source. Left figure:
Standard curved diffuser (same as optimized diffuser) 1� 0.4 m. Right
figure: Standard curved diffuser, dimensions 4� 0.4 m;

Optimized diffuser 4� 0.4m (data from Cox [11]).
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arc (right graph), the scattered pressure shows a noticeable fall off at large angles of
incidence. The optimized diffuser provides more uniform scattering and does not suffer
from such a fall off in pressure. For the narrower surface (left graph), the arc is nearly
semicircular; the diffusion is fairly uniform, and it would be difficult for any surface to
improve on the scattering produced in terms of spatial redistribution. The optimized
diffuser shape is also a rough semicircle, indicating that this is almost certainly the best
shape possible within the geometric constraints. Note that this assumes the philoso-
phical limitation that the best diffuser is determined by spatial dispersion only.

Typical examples of a standard deviation diffusion parameter as a function of
incident angle for an arc and optimized surfaces are shown in Figure 10.33. The
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figure is using an old diffusion evaluation technique, and the lower the value of
diffusion the greater the spatial dispersion. In this case, the optimized diffuser has
sacrificed a little performance for normal incidence sound, to improve the scattering
for oblique sources. This shows the ability of the new surface to produce more
uniform scattering for random incident sound.

10.5.4 Periodicity and modulation

When placed in a periodic arrangement, the quality of scattering at low to mid-
frequencies is dominated as much by the periodicity effects (primarily grating lobes),
as by the actual surface shape. One solution to grating lobes (spatial aliasing) is to
remove the periodicity completely by using a very large surface. Unfortunately, this is
likely to be an expensive solution, and consequently a modulation scheme like that
devised for Schroeder diffusers and discussed in Chapter 9 can be used.

Consider a single asymmetrical diffuser base shape shown in Figure 10.34 in bold.
If this base shape was arranged in a periodic fashion, grating lobes will arise. If,
however, some of the periods are rotated, then the periodicity can be removed. In the
case shown in Figure 10.34, the repeat distance has been doubled by this modulation.
In general this will improve the diffusion. A key to this type of modulation is to form
a shape which is sufficiently asymmetrical, so that flipping the shape produces
completely different scattering. A further complication is ensuring that neighbouring

Figure 10.34 A curved diffuser (not optimized for acoustics). The base shape is shown in
bold. By changing the orientation between periods, it is possible to increase
the repeat length of the diffuser.

Figure 10.35 An asymmetric single base shape used in modulation (after D’Antonio and
Cox [14]).
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diffusers tile together without discontinuity in surface displacement or gradient. By
forming surfaces with zero end gradients and with the same surface displacement on
both ends, it is possible to form a surface that will tile in any orientation. Then the
architect can decide what pattern to form. More importantly, pseudorandom arrays
enable diffusers of considerable extent to be created from small base shapes.

Figure 10.36 Modulated 4� 4 array of base shape shown in Figure 10.35 (after D’Antonio
and Cox [14]).

Figure 10.37 Modulated array inspired by log cabin quilt pattern (after D’Antonio and
Cox [14]).
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In its extreme, this modulation can result in a surface where the individual base shape
is not clearly distinguishable [14]. Figure 10.35 shows a single period of a curved
surface, and Figure 10.36 shows the same shape in a modulated array. The single
period device has the same symmetrical shape on each edge, and the gradient around
the perimeter is zero. This allows the surface to be tiled in any orientation. When placed
in a modulated array, the base shape disappears in a complex pattern of minima and
maxima. This allows the use of one base shape and reduces manufacturing costs.

Unfortunately, a periodic look is often favoured, whereas a modulation forms
a random appearance. It seems that a periodic object enables the eye to more easily
decode the design. A completely random surface can be too difficult to interpret and
hence not pleasing to the eye. This is, of course, a bland generalization, there
are successful architectural designs where randomness is embraced, but it is more
common for a periodic entity to be specified. Using this asymmetrical base shape gives
designers control over the appearance, it can be made to look random or periodic, but
the designers have to remember that short repeat distances will result in worse
dispersion. For example, Figure 10.37 shows a modulated array where a distinct
pattern has been formed which follows the well-known log cabin quilt pattern. Again
only a single base shape is being used.

10.5.5 Stage canopies

Overhead stage canopies are often designed with arrays of curved panels. The primary
role of a stage canopy is usually to provide reflections back to the musicians or actors
to allow them to hear themselves and others. Canopies may also be used to distribute
some energy to the audience. The delay times between the direct sound and the
overhead canopy reflection can be short in the audience area, however, and care
should be taken to avoid colouration due to comb filtering. If a completely flat large
surface is used above the stage, plenty of energy will return to the musicians. Unfor-
tunately, the energy will be too strong and likely to cause colouration. Consequently,
a canopy often needs to be shaped to create temporal diffusion to reduce colouration.
This is often done with curved surfaces. Figure 2.22 showed an example of a curved
canopy designed using optimization.

Canopies appear to fall into two rough categories, the categories being determined
by the amount of open area in the canopy. Sometimes canopies completely cover the
stage (virtually no open area). For instance, these are common where the canopy is
being used to block sound entering a fly tower. Other canopies use elements sparsely
with plenty of open area between the canopy diffusers or reflectors.

A diagram of the front to back section of a stage canopy used in an optimization study
[15] is shown in Figure 10.38. The stage occupies 0:5 < x < �9m, and the audience
to the right of the section is shown in the positive x-direction. The canopy is such that
there is a little open space between each of the reflectors to allow some energy into
the void above. The canopy is about 7m above the stage so that the reflections
are delayed by an amount known to give a good chance of reflections aiding ensemble
and support [16]. The five diffusers are arranged on the arc of a large circle. The design
criterion in the study was that for any source position on the stage, as even as possible
energy distribution would be created to all positions on the stage. In other words, each
musician has an equally good chance of hearing each other as far as the stage canopy
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reflections are concerned. This is a criterion that can be used in an optimization process
described previously.

The optimized design was compared to several other reflector shapes, such as
a plane surface and arcs of circles. The optimized surface outperformed the other
diffuser shapes in producing the most even energy distribution across the stage area.
Figure 10.39 shows the scattering coverage plot from the plane reflector canopy at
2 kHz for a source in the middle of the stage. The variation in pressures across the
width is small because this was modelled as a large flat surface; any variation is due to
spherical spreading and path length differences. There is a large reflection level
directly below the source – much of the energy is being reflected straight back to
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Figure 10.38 Cross-section of canopy used in optimization study (after Cox and
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the musician who is playing the instrument. Dips in the reflected pressures occur
where there is no geometric reflection point on one of the reflectors due to the spaces
in the canopy design. As discussed previously, shaping the reflectors can reduce the
effects of pressure minima; this is often done by forming convex arcs [5].

The effect of using a more complex optimized curved surface is shown in Figure 10.40.
The effect of the surface diffusers is to mask the lack of energy for certain receivers
where pure specular energy is lacking. It also greatly reduces the strong specular
energy being directed straight back to the musician. The reflected energy is more
evenly distributed across the stage – all pressure levels along the front to back axis
lie within 3dB of each other.

A couple of details concerning the optimization are worthy of note. First, during the
optimization it is possible to also get the optimizer to look at the best locations and
angles of the canopy elements. Second, the criterion given of even energy across the
stage is now considered not to be the best for all cases. Consider a canopy with a small
open area, in other words a large surface with the same width and depth as the stage. A
flat surface will give very good coverage on the stage, as noted before. The desire here
is to promote temporal diffusion to minimize the effects of harsh overhead reflections,
which are strong and similar to the direct sound. Consequently, it is better in this case
to design a stage canopy to promote maximum dispersion across a complete arc from
�90 to þ90�, in other words asking for maximum dispersion not just on the stage. If
simple arcs are avoided, this maximizes the temporal dispersion from the overhead
canopy, and it is presumed this will minimize colouration effects.

10.6 Fractals

Fractal construction techniques are used to create natural objects in computer-
generated graphics, for example to generate landscapes for animated films. Fractals
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Figure 10.40 Scattering from stage canopy with optimized curved diffusers (after Cox
and D’Antonio [15]).
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are surfaces with a different visual aesthetic to common sound diffusers and so offer
the possibility of expanding the pallet of surfaces available to designers [17].

There is reason tobelieve that fractal surfacesmayhavegoodacoustic properties. Fractals
are self-similar or self-affine; as a surface is magnified a similar looking surface is found.
Consequently, the different surfaces at different magnifications can be used to scatter
different frequency ranges, in an analogous way to the use of different sized drivers to
radiate different frequency ranges from multi-way loudspeakers. This is the principle of the
Diffractal [18] as discussed in Chapter 9 and shown in Figure 9.26, which imbeds small-
scaled copies of an N¼ 7 QRD at the bottom of a larger N¼ 7 QRD. The small QRDs
scatter mid-high frequencies, and the large QRDs the bass frequencies. The construction is
precisely self-similar; the exact shape is found upon magnification. This will not be true for
surfaces consideredhere,where the surfaces are simply statistically self-similar or self-affine.

There are many established techniques for generating finite sample approximations
to mathematically pure fractal shapes [19, 20]. Single plane diffusers are described
and are made from extruded 1D fractals. Construction methods for higher dimen-
sioned surfaces are also available, but are ignored for conciseness.

10.6.1 Fourier synthesis

Fractal surfaces can be constructed from spectral shaping of a Gaussian white noise
source. Figure 10.41 is a schematic showing how the surfaces can be generated, such a
scheme is more familiar in digital signal processing as a time signal filtering process.
The Gaussian white noise is passed through a filter which is implemented using simple
Fourier techniques. The shaping of the spectrum is a linear roll-off with a defined
number of dB per octave. The decrease in spectral content per octave is characterized
by the gain of the filter at each spatial frequency. The filter gain A(X) is given by:

AðXÞ ¼ 1

X�=2
ð10:8Þ

IFFT 
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Figure 10.41 Schematic diagram showing Fourier synthesis construction technique (after
Cox and D’Antonio [17]).
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where X is the spatial frequency and � the spectral density exponent which takes
values between 1 and 3. This then insures that the dimension lies between 1 and 2 as
might be expected for a 1D fractal shape. Figure 10.42 illustrates some typical surface
shapes that are generated by such a scheme. The bottom line is the input Gaussian
white noise. The middle line was generated with a roll-off of 3 dB/octave (�¼ 1) and
gives 1/f noise, which in acoustics is termed pink noise. It is also a commonly
occurring spectrum in other natural phenomena, for example in the pitch variations
found in music. The top line is formed by a steeper roll-off of 6 dB/octave (�¼ 2) and
is characteristic of Brownian motion, random walk or brown noise.

The shapes given in Figure 10.42 can be made into diffusers by extrusion, and will
be termed fractional Brownian diffusers (FBD), as the functions represent fractional
Brownian motion. By varying the spectral density exponent, the spikiness of the
surface shape can be altered. In the most general terms, to get the best low frequency
scattering performance, the spectral density exponent should be large leading to a
smooth shape. To get the best high frequency performance, however, a low spectral
density exponent is needed as this makes a spiky shape. The story is, however, more
complicated. It has been found that although the spectral density exponent
does determine the scattering quality at low and high frequencies to a certain
degree, the correct choice of white noise sequence is most important. Unfortunately,
it is not possible to optimize these surfaces, as there are too many governing shape
parameters.

10.6.2 Step function addition

Brownian motion can also be simulated by a series of randomly displaced step
functions. Although this is not always as mathematically pure as a Fourier synthesis
technique, it facilitates a reduction in the number of parameters required to represent
the surface shape.

To get proper Brownian motion requires the addition of an infinite number of step
functions. Each step function has a random amplitude, and the position of the step
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Figure 10.42 Different fractal surfaces generated by Fourier synthesis. Bottom line, input
white noise; middle line, pink noise; top line, brown noise (after Cox and
D’Antonio [17]).
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is a random position somewhere along the width of the diffuser. The displacement of
the diffuser from a flat surface y at a distance x along the diffuser is given by:

yðxÞ ¼
X1
i¼1

Aifðx� xiÞ where fð�Þ ¼ 0; � < 0
1; � � 0

�
ð10:9Þ

where Ai are a set of Gaussian distributed random amplitudes and xi a uniformly dis-
tributed random set of positions on the diffuser with�a � xi � a, where 2a is the diffuser
width. Figure 10.43 illustrates the random addition of step functions for a few terms.

To utilize this generation method efficiently the infinite sum in Equation 10.9 needs
to be truncated. In acoustics the difference in wavelength from the highest to the
lowest frequency of interest is not so great that a sound diffuser requires self-similarity
over a large range of magnifications. Instead of an infinite sum of terms, a finite
number, N, has been used, with each successive term having a decaying amplitude.

yðxÞ ¼
X1
i¼1

Bifðx� xiÞ where Bi ¼ 1

i�
0 � � � 1 ð10:10Þ

The decaying amplitude function produces a similar probability distribution of values
as the original Gaussian random values Ai, except at the most extreme values of Ai.
The other difference is that the amplitudes can now only be regularly spaced values,
rather than being truly random. This reduces the number of independent parameters
to Nþ 1, the set of displacements xi and the amplitude decay rate �, and enables
optimization to be used.

Using only a few step functions can lead to flat areas which might be prone to
producing specular reflections at high frequencies, or sharp spikes which are
undesirable. This can be seen in the 20 step function surface shown in Figure
10.43. Consequently, rather than step functions, f(x) can be replaced with func-
tions with more graceful transitions. For example, a hyperbolic tangent function
can be used for this:

fðxÞ ¼ tanhð�ixÞ ð10:11Þ
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Figure 10.43 Fractal generation by step function addition. Bottom line, 1 step function;
middle line, 10 step functions; top line, 20 step functions (after Cox and
D’Antonio [17]).

310 Geometric reflectors and diffusers



The effect of using a hyperbolic tangent function is to round the top and the bottom
of the step functions. The �i value changes the rate of transition from the top to the
bottom of the step and the amount of rounding. �i may either be a constant for all
terms in Equation 10.10, or alternatively may be allowed to decay or increase:

�i ¼ 1

i�
0 � � � 1 ð10:12Þ

The ‘fractal’ shape is now determined by Nþ 2 parameters. These are known as
random addition diffusers (RAD).

When optimizing and testing these surfaces, it was surprising to find that this
generation technique can make semicylinders when the depth was roughly half the
width. As discussed previously in connection with curved surface optimization, the
semicylinder is very good at dispersing sound provided it is not in an array. This
demonstrates that the optimization is working, but does raise the question as to
whether the optimized shape can really be called a fractal.

When a more application realistic wide diffuser is optimized, the arc of a circle is no
longer optimal, and better fractal diffusers are found. Figure 10.33 compared different
diffusers using a standard deviation diffusion parameter (small is best). The fractal is
better than the arc of a circle for random incidence sound. It seems that optimized
fractal surfaces do produce reasonable diffusers; however, optimized curved surfaces
often have better dispersion. Consequently, fractal construction techniques may pro-
duce different visual aesthetics to an optimized curved surfaces, but not better diffusers.

10.7 Summary

This chapter has covered a wide range of different diffuser types. Starting with plane
surfaces, it looked at the effects of edge diffraction. The performance of arcs, triangles,
pyramids, fractals and curved surfaces was then considered. Current state of the art is
to use numerical optimization to allow the surface shape to meet both the acoustic and
visual requirements. With good design, there are many shapes that can make good
diffusers, but only a few of these will ever be visually acceptable in a particular project.
The next chapter looks at the use of absorption to promote diffuse reflections.
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11 Hybrid surfaces

A diffuser needs to break up the reflected wavefront. While this can be achieved by
shaping a surface, it can also be achieved by changing the impedance of the surface.
Indeed, the Schroeder diffuser is often interpreted as a variable impedance surface. In
this chapter, variable impedance is achieved by patches of absorption and reflection.
Unlike the Schroeder diffuser, these cannot be designed for minimum absorption. These
surfaces are hybrids somewhere between pure absorbers and non-absorbing diffusers.
Partial absorption is inherent in the design, and any reflected sound is dispersed.

Using patches of absorption to generate dispersion is not particularly new. In studio
spaces people have been arranging absorption in patches rather than solid blocks for
many years. In recent times, however, a new breed of surface has been produced, where
the absorbent patches are much smaller, and the arrangement of these patches is deter-
mined by a pseudorandom sequence to maximize the dispersion generated. This chapter
will start by discussing some implementations of these surfaces to give a sense of how they
can be constructed. Then a more detailed theoretical basis for their design will follow.

11.1 Planar hybrid surface

The binary amplitude diffsorber, also known as a BADTM panel [1], is a flat hybrid
surface having both absorbing and diffusing abilities. The panel simultaneously provides
sound diffusion at high and mid-band frequencies, and crosses over to absorption below
some cut-off frequency. Figure 11.1 shows a typical construction. Mineral wool is faced
with a complex perforated mask, and the panel is fabric wrapped for appearance. The
white patches on the mask are holes, and the black patches hard reflecting surfaces.

Figure 11.2 shows the random incidence absorption coefficient for a hybrid surface
compared to the mineral wool alone, the effect of changing the backing depth is also
shown. The additional vibrating mass within the holes of the mask causes the absorption
curve to shift down in frequency generating additional low to mid-frequency absorp-
tion. At high frequency, the hard parts of the mask reflect some of the sound, preventing
absorption happening in some parts of the mineral wool, and so causing the absorption
coefficient to reduce. It is at these high frequencies, where the absorption is reduced, that
the surface should start to generate significant amounts of diffuse reflections.

To accomplish mid- to high frequency dispersion, a 31� 33 2D array of absorptive and
reflective areas is used. The reflective areas map to the 1 bit and the absorptive areas map
to the 0 bit in a binary pseudorandom number sequence. The distribution of these binary
elements is based on an optimal binary sequence with a flat power spectrum as this
maximizes dispersion. For example, this could be based on an maximum length sequences.



Hybrid surfaces extend the acoustical performance of traditional fabric wrapped
absorbers, and allows wide area coverage without excessive deadening at mid- to high
frequencies. The surface is used in facilities that need reflection control, and provides
it from a simple inexpensive construction. Furthermore, the acoustic function can be
hidden which can lessen the conflict between visual aesthetics and acoustic require-
ments. Alternatively, many architects have expressed interest in seeing the mask, due
to its unique appearance and the fact that it offers an alternative to the traditional
periodic perforated metal patterns. Figure 11.3 shows a home theatre installation in
which a black anodized aluminium mask was used.

11.2 Curved hybrid surface

Flat hybrid surfaces such as the BAD panel still generate a coherent specular reflec-
tion, albeit attenuated, because it is partially absorbed. The hard parts of the mask

Figure 11.1 Construction of a hybrid surface, left porous absorber, middle the mask and
right fabric.
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Figure 11.2 Random incidence absorption coefficient for a hybrid surface (BAD� panel)
compared to mineral wool. Four different backing depths for BAD panel shown.
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still generate reflected waves that arrive in phase in the specular direction. The
solution to this is to shape the surface as then the specular scattering can be signifi-
cantly reduced to offer even more uniform diffuse reflections. Figure 11.4 illustrates
such a construction. In the case shown, the surface is upholstered in fabric to hide the
mask. The absorption performance of curved hybrid surfaces will be similar to the
planar surfaces, but as shall be shown later in this chapter, the dispersion will be

Figure 11.3 Example application of planar hybrid surface (BAD panel) in a home theatre
(left). The BAD panels are to the left of the seating and are also shown
magnified in the right picture.

Figure 11.4 Construction of a curved hybrid surface (DigiWave�).
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greatly increased. This curved construction has found favour in recording studios as it
allows treatment away from the extremes of complete absorption, specular reflection
or diffuse reflection. This enables the sweet spot, the place where the room acoustics
are best, to be spatially expanded. Figure 11.5 shows an application of a curved
hybrid surface [2] on the ceiling of a post production studio.

As mineral wool has a lower speed of sound than air, hybrid surfaces also have the
ability to perturb the sound field more when compared to hard diffuser of the same
depth. In theory, these can produce diffuse reflections at a lower frequency, although
at low frequency the effect of these surfaces can be dominated by absorption. Never-
theless, it appears that hybrid surfaces can make efficient use of a limited depth. As
absorption is inevitable in these devices, they are not useful in spaces, such as large
auditoria for symphonic music, where absorption must be minimized.

11.3 Simplest theory

In this section, a discussion of the design of hybrid surfaces using the simplest Fourier
theory will be given. As with Schroeder diffusers, much can be learned by considering the
simplest construct, but ultimately, more exact theories will be necessary to match
the experiment. Consider a simple Fourier theory as discussed in Chapter 8, and for

Figure 11.5 A curved hybrid diffuser (Digiwave), applied to the ceiling and side walls of
SonyM1, New York (photo by Paul Ellis of The M Network Ltd courtesy of
Harris Grant Associates).
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simplicity consider a 2D world so that predictions in one plane only are considered. The
pressure amplitude, |ps|, reflected from a planar, variable impedance surface is given by:

jpsðy;  Þj �
����A
Z
s

RðxÞ ejkx½sinðyÞþsinð Þ�dx
���� ð11:1Þ

where  and y are the angles of incidence and reflection, R(x) the surface reflection
factor a distance x along the surface, k the wavenumber, A a constant, and s the
diffuser surface.

This is an approximate far field theory, which forms the basis of the hybrid surface
design. This simple prediction theory and the subsequent design process are only
applicable at mid- to high frequencies. At low frequencies, the mutual interactions
across the surface make the prediction model inaccurate, as shall be discussed later.
Equation 11.1 is a Fourier transform in kx and transforms the reflection factors into
[sin(y)þ sin( )] space. To a first approximation, the absorptive parts of the hybrid
surface will have a reflection factor of R(x)¼ 0 and the reflective parts have R(x)¼ 1.
A pseudorandom number sequence with good autocorrelation properties is used
to determine the spatial distribution of the hard and soft patches. For example, the
number sequence might be {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0}, and
where there is a 1 in the sequence a patch of absorption is used, where this is a 0 in the
sequence the surface is reflective. Figure 11.6 illustrates a surface where the impe-
dance variation is in one plane only, and the strips of absorption or reflection are
extruded in one direction. Surfaces which scatter hemispherically, such as those shown
in Figure 11.1, are formed from number sequence arrays. The number sequence
arrays are formed by applying a folding technique to a 1D sequence. Schroeder named
the folding technique the Chinese remainder theorem [3] after a famous mathematical
problem involving modular arithmetic. This is discussed in Section 11.4.2.

A number sequence with good autocorrelation properties will have a flat power
spectrum with respect to kx. This means the pressure amplitude scattered is constant
with respect to the transform variable [sin(y)þ sin( )], which means good dispersion
is generated in a polar response. If the surface is periodic, this will relate to grating
lobes all having the same level except for the zeroth order lobe, in many ways similar
to the theories behind Schroeder diffusers and discussed in Chapter 9.

Consequently, the choice of number sequence is crucial to obtaining diffuse reflections.
The initial development of this diffuser was carried out by Angus [4] who began by
looking at MLS. Maximum length sequences are a good starting point as they have
desirable Fourier properties. There are many other bipolar sequences which have flat
Fourier transforms, butMLS are the best documented and known.The issue of sequences
is discussed in more detail in the next section.

Figure 11.6 A 1D hybrid surface. The cross-hatched patches are absorptive and the clear
patches reflective (or vice versa).
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11.4 Number sequences

To gauge the quality of a number sequence for a hybrid surface, the autocorrelation
function can be examined. This is because the autocorrelation function directly relates
to the scattering performance of the surface, see Section 9.4.

11.4.1 One-dimensional sequences

The reflection factors for the hybrid surface are 0 (absorption) and 1 (reflection),
consequently the number sequence used should have optimal autocorrelation properties
for 0s and 1s, which means a good unipolar sequence is needed. Most pseudorandom
binary sequences, on the other hand, have autocorrelation properties designed with a
bipolar sequence composed ofþ1s and�1s. The autocorrelation side lobe performance
of a unipolar and bipolar sequence can be very different. Figure 11.7 demonstrates this
for a maximum length sequence of length 15. When a sequence can be bipolar (positive
and negative), the autocorrelation function side lobes, on either side of zero delay,
include cancelling effects, which enable a low side lobe energy to be created as desired.
When the sequence is unipolar, no cancellation can occur, and the autocorrelation side
lobe levels are higher. Consequently, it would be anticipated that the scattering perform-
ance would be worse for a unipolar sequence. The consequence of no cancellation is that
the d.c. component in the power spectrum is large, as shown in Figure 11.8. This means
that the energy in the specular reflection direction, when sin(y)þ sin( ) ¼ 0, will be
attenuated less for a unipolar surface in comparison to a bipolar surface.

In a bipolar maximum length sequence, the mean value of the reflection factors is
close to zero, and consequently, the d.c. value of its power spectrum is close to zero
(Figure 11.8). This means that suppression of the zeroth order lobe in the polar
response, when [sin(y)þ sin(�)] ¼ 0 occurs – see Figure 11.7. The construction of
diffusers based on bipolar MLS was discussed in Section 9.4.1; these are a type of
Schroeder diffuser.

-4

0

4

8

12

16

-8 -4 0 4 8

delay

A
ut

oc
or

re
la

tio
n

Bipolar mls

Unipolar mls

Figure 11.7 Autocorrelation function for a bipolar (þ1s and�1s) and unipolar (þ1s and 0s)
MLS. The former is like a phase grating diffuser, the latter is like a hybrid
surface.

318 Hybrid surfaces



With a unipolar maximum length sequence, a hybrid diffuser is being constructed.
The mean value of the reflection factors is no longer close to zero. Indeed the d.c.
value is actually higher than the other spectrum values, and consequently the zeroth order
lobe is significantly greater than other lobes. Figure 11.8 illustrates this by comparing
the power spectra of a unipolar and bipolar maximum length sequence. Figure 11.9
shows the polar response for a diffuser constructed from bipolar and unipolar max-
imum length sequences. This is evidence that the planar hybrid surfaces will have a
significant specular energy lobe, with the zeroth order lobe being about 10 log10(N)
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Figure 11.8 Comparison of power spectra for the reflection coefficients of surfaces
formed from bipolar and unipolar MLS.
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times larger than the other lobe energies, where N is the size of the maximum length
sequence. The specular reflection lobe will be attenuated by about 6 dB compared to a
plane hard surface (as expected for a surface which is 50 per cent absorptive by
surface area). The scattering lobes are not even for the hybrid surface, but the
scattering in the specular energy is reduced.

When the open area of the panel is about 50 per cent then the maximum length
sequence is a good choice. The performance of the maximum length sequence when
composed of unipolar elements is worse than when it is bipolar as shown above,
but the maximum length sequence will still be the best possible sequence achievable;
there are no better unipolar sequences, although there are some which are just as
good. Problems arise if the open area of the panel needs to be reduced, as common
optimal binary number sequences usually have a similar number of 0s and 1s.

There are a set of sequences, called optical sequences [5], which are unipolar and
have a different number of 1s and 0s. Angus [6] suggested that these could be used to
overcome some of the problems associated with MLS. For instance, they can be used
to form a surface with a non-50 per cent open area. Optical sequences were developed
for use in fibre optical code division multiple access (CDMA) processes. CDMA
systems enable multiple users to use a single digital transmission line efficiently. Fibre
optic CDMA sequences, where the light intensity is either on or off cannot have
cancellation, and hence unipolar sequences are needed. They use an optimal sequence
defined as one where the maximum of the side lobes of the autocorrelation function
has the smallest possible value.

The problem with optical sequences is that the typical construction methods avail-
able result in a very low number of 1s in a long sequence. For example, a typical
length 20 sequence is {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0} which only
contains five 1s and so would give a nominal open area of 25 per cent. This occurs
because of the application the optical sequences were devised for. Optical fibre
systems require very low side lobe performance which necessitates a low occupancy
of 1s, as this is the only way to achieve low side lobe energy in the autocorrelation
function when no cancellation can occur. Unfortunately, from a diffuser designer’s
point of view, this makes the sequences, especially the very long sequences, not that
useful. The surface will either be very reflective (if the 1s are associated with absorp-
tion) or very absorptive (if the 1s are associated with reflection). Incidentally, the
above sequence can also be written as (2, 4, 6, 11, 13) where the index number gives
the location of the 1s. For low occupancy cases, this is a much more compact
representation of the sequences and so will be used below.

Optical sequences are usually generated in families. These are a set of sequences
which not only have good autocorrelation properties, but have low energies for the
cross correlation between family members. In an optical sequence, five parameters are
used to specify their performance. � is the number of 1s in the sequence, N the length,
M the family size (the number of sequences in the family), Sxxm the maximum side
lobe value in the autocorrelation function, and Sxym the maximum value in the
cross correlation function between sequences in the same family. These parameters
can be stated in an abbreviated form (�,N,M, Sxxm, Sxym). For the length 20 sequence
given above this would be expressed as (5, 20, M, 3, Sxym).

There are some sequences with a reasonable occupancy, for example (3, 7, 1, 1, 1),
but the length of these sequences is too short to be of much use for diffusers. As with
phase grating diffusers, a designer should always look to maximize the repeat length
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to minimize periodicity effects. This means that large N sequences are required, and
then the number of 1s becomes too small using the normal optical sequence gener-
ation technique. Consequently, when N is large, three construction techniques are
suggested, as outlined below. In reality, a combination of techniques might be needed.

1 This technique involves starting with a sequence with too few 1s and increasing
the number of 1s. Given a (�, N, M, Sxxm, Sxym) family of sequences, it is possible to
increase the number of 1s, but at the penalty of increasing the maximum value of the
autocorrelation and cross correlation. This is best illustrated with an example:

A set of optical sequences (3, 25, 4, 1, 1) are: (1, 2, 7), (1, 3, 10), (1, 4, 12), (1, 5, 14).
The sequences are taken in pairs, and a bit-wise OR taken between the pairs to form
new sequences. So if both sequences have a zero bit, then the new sequence has a zero
bit, otherwise the new sequence has the bit set to one. In the above case there are six
unique combinations, as sequences are not combined with themselves. The new
sequences are: (1, 2, 3, 7, 10), (1, 2, 4, 7, 12), (1, 2, 5, 7, 13), (1, 3, 4, 10, 12),
(1, 3, 5, 10, 13), (1, 4, 5, 12, 13). These form a new family of sequences with the
property (�0 ¼ 5,N0 ¼ 25,M0 ¼ 6, S0xxm ¼ 2, S0xym ¼ 3), where the prime is used to
denote the new sequence. The number of 1s has increased from three to five, but
both the autocorrelation and cross correlation properties have degraded. The max-
imum side lobe value in the autocorrelation has increased from 1 to 2.

The above process in general produces new sequences where the number of 1s is
�0 � 2*� � Sxym, where �, Sxym are the values for the original sequences. If too many 1s
are generated after the OR operations, some 1s are randomly chosen to be changed to
0s. This was not necessary in the above example. The autocorrelation and the cross-
correlation of the new sequences will be S0xxm � 2Sxxm þ 2Sxym and S0xym � � þ 3Sxym

respectively. In the construction example above, the new sequences are considerably
better than the worst case given by these upper bounds. For diffuser design, repeated
application of this process is likely to be needed.

2 Avery similar approach to (1)would be to take a sequencewith toomany1s and reduce
the number of 1s. For example, it should be possible to start from a family of MLS, and via
logical operations reduce the number of 1s to the desired value.

3 The last technique involves constructing a family of optical sequences and then
concatenating these together. As the family will have mutual low correlation, they
should work well in a concatenated longer sequence.

For short sequences, it is possible to use a computer search to find the best
sequence. For a small sequence length, say N� 20, it is possible to do an exhaustive
search of every possible combination to find the best sequences. Every possible
combination of bits with the correct number of 1s is tested by first constructing the
autocorrelation function for each case, and then finding the sequence or sequences
which have the smallest maximum value for the autocorrelation sidelobes. This is
simple to encode, but as N increases it rapidly becomes very time consuming process
to carry out. The number of unique combinations to search is given by:

NCr ¼
N!

�!ðN � �!Þ ð11:2Þ
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where � is the number of 1s in the sequence and ! indicates factorial. Consequently,
for N¼ 20, �¼ 10 there are nearly 200 thousand combinations, and this roughly
doubles for every additional bit.

For say 20<N< 48 a numerical optimization [7] can be used to search for the best
sequence. In this case optimization algorithms are used to avoid the need to test every
possible combination, but even so this is still going to be a slow process. As computing
power increases, this will be applicable to larger sequence lengths. Even with increas-
ing computing power, the length of sequence over which optimization can be carried
out is not going to rapidly expand. For an N¼ 48 sequence with 24 1s and 24 0s,
there are about 1013 unique sequence combinations to search.

Unlike the numerical optimization of Schroeder well depths discussed in Chapter 9,
this is a discrete function optimization. In other words, the values of the optimization
parameters, which are the locations of the 1s in a binary sequence can only take
discrete values. This means the best algorithm for tackling this problem is a genetic
algorithm as it can explicitly represent the discrete sequences as genes.

A genetic algorithm is a technique for searching for optimum configurations in
engineering problems. Figure 11.10 illustrates how a typical genetic algorithm works.
It essentially mimics the process of evolution that occurs in biology. A population of
individuals is randomly formed. Each individual is determined by their genes, in this
case the genes are simply the binary sequence indicating where hard and soft patches
should be placed on the surface. Each individual has a fitness value that indicates how
good they are. In this case, it is the largest energy in the autocorrelation side lobes.

Start

Randommly form population
of N binary sequences

Calculate the fitness of each
sequence in the population

Select M sequences of the population
to breed and M sequences to die

Are all sequences in the
population equally fit?

No

Yes “Optimum”
sequence found

Form new population with M new
siblings and N-M sequences from the
previous generation

M siblings generated using crossover
and mutation to create new sequences

Figure 11.10 Optimization of numerical sequences using a genetic algorithm.
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Over time, new populations are produced by breeding and the old populations die.
Offspring are produced by pairs of parents breeding. An offspring has a gene sequence
that is a composite of the sequences from the parents. A common method for doing
this is multiple point cross over. For each bit in the sequence, there is a 50 per cent
chance of the child’s bit coming from parent A and a 50 per cent chance of the bit
being from parent B. Mutation is also used. This is a random procedure whereby there
is a small probability of any bit in the child sequence flipping during breeding.
Mutation allows sequences outside the parent population to be searched.

Selecting sequences to breed and die can be done randomly. As with conventional
evolution theory, the fittest are most likely to breed and pass on their genes, and the
least fit the most likely to die. By these principles, the fitness of successive populations
should improve. This process is continued until the population becomes sufficiently
fit, so that the sequence produced can be classified as optimum.

An additional advantage of using a numerical optimization is that it gives complete
control over the reflectivity of the diffuser. This can be specified as a desirable
characteristic; any individual not having the desired reflectivity will be scored as less
fit. Consequently, the trait of undesired reflectivity will die off.

Figure 11.11 shows the diffusion coefficient for a hybrid surface formed from an
optimized sequence, compared to a hybrid surface formed from a random sequence.
An improvement in performance is seen for most frequencies, although the improve-
ment is not vast. The main problem with this technique is that it is impossible to find
long optimal sequences because the number of possible sequences to search becomes
too large. One solution to this problem is to generate a family of good sequences of
relatively low N with low mutual cross correlation, and to concatenate them together
to get a longer sequence. This is possible because during the optimization both the
autocorrelation and cross correlation properties can be considered at the same time.
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11.4.2 Two-dimensional sequences

Obtaining a 2D sequence to apply to a hemispherical scatterer such as that shown in
Figure 11.1 can be achieved by two methods. The first method is the so-called
perfect array construction method [5], which could be applied as they have roughly
50 per cent absorptive and 50 per cent reflective surfaces. These are called perfect
because they have zero side lobe energy in the bipolar autocorrelation. These
generate rectangular grids of holes, but it is also possible to construct optimal binary
sequences on a hexagonal array pattern as well. The second method for forming an
array is to apply the Chinese remainder theorem to a 1D sequence with good
autocorrelation properties. The Chinese remainder theorem is a process that wraps
a 1D sequence into a 2D array and yet preserves the good autocorrelation and
Fourier properties.

Consider a length 15 sequence which will be wrapped into a 3� 5 array. The
elements are sequentially labelled a1, a2, a3 . . . a15. The sequence has two co-prime
numbers, 3 and 5. By co-prime, it is meant that for the two numbers the only common
factor is 1. The 1D sequence is written down the diagonal of the array, and as it is
periodic, every time the edge of the array is reached the position is folded back into
the base period. The process is illustrated in Figure 11.12.

Figure 11.13 shows another way of viewing this process. The coordinates (column,
row) of the elements a1 . . . a15 are determined by modulo indexing. The subscript is
called the index, n. The column for element an is determined by n modulo 5 and the
row is determined by n modulo 3.

This folding technique still maintains the good autocorrelation properties of the
sequence. For example, Figure 11.7 shows the autocorrelation for a length 15 uni-
polar maximum length sequence. Figure 11.14 shows the autocorrelation for the same
sequence wrapped into a 3� 5 array using the Chinese remainder theorem. The same
autocorrelation properties are achieved in terms of the side lobe energy values. The
Chinese remainder theorem can be applied before or after the Fourier transform as
illustrated in Figure 11.15. Consequently, the folding technique preserves the ideal
Fourier properties. Once the array is formed, any periodic section can be chosen. For
example, it is possible to start filling anywhere in the array and so move the pattern
around. This will not change the acoustic performance, but may change the visual
aesthetic. The mask shown in Figure 11.1 was formed doing this.

11.5 Designing curved hybrid surfaces

The principles of optimization used to design rigid curved surfaces in Chapter 10 can
also be applied to hybrid curved surfaces. A binary sequence with good autocorrelation
properties is chosen, then the computer is tasked to find the best shape. Figure 11.4
showed part of a typical surface produced. The advantage of curving the surface is that it
will break up the coherent wavefront reflected from the rigid parts of the planar mask.
Consequently, the curved surface will have improved spatial and temporal dispersion.

11.6 Absorption

Figure 11.2 above showed the random incidence absorption coefficient for a planar
surface with and without the perforated mask. This shows that the hybrid surface is
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behaving like the Helmholtz absorbers discussed in Chapter 6. It is possible to
predict the absorption characteristics using the transfer function matrix method.
Problems arise, however, because the hole spacing is not regular and many holes
are too close together for the normal assumptions of sound propagation through a
perforated sheet. Nevertheless, it seems possible to at least predict the trends of the
absorption.

The amount of added mass in the holes determines the increase in absorption at
bass frequencies. For the BAD panel, if additional bass absorption is required, it is
possible to reduce the open area (this will not be true for all geometries), as shown in
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Figure 11.12 Folding a length 15 sequence, a1 . . . a15 into a 2D array using the Chinese
remainder theorem. The last table shows the wrapping of the MLS
sequence {1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0}.

index, n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Column coordinate = n modulo 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Row coordinate = n modulo 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 11.13 The Chinese remainder theorem expressed as modulo indexing.
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Figure 11.16. Alternatively, thicker mineral wool layers can be used, or the panel can
be spaced from the backing wall to effectively increase the backing depth and so lower
the resonant frequency of the system. The effect of changing the backing depth is
shown in Figure 11.2 giving the expected trends.

The drop-off in high frequency absorption is due to the per cent open area of the
panel. In a simplistic analysis, a 50 per cent open area panel would be expected to
have an absorption coefficient of 0.5 at high frequency. Figure 11.16 shows the
effect of reducing the open area, on the absorption coefficient. Similar absorption
results would be expected for curved hybrid surfaces, but these have not been
measured.
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Figure 11.14 The autocorrelation function for a unipolar N¼ 15 maximum length
sequence folded using the Chinese remainder theorem.
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Figure 11.15 The Chinese remainder theorem can be applied before or after the Fourier
transform, and consequently, it preserves good autocorrelation properties
when used to fold 1D sequences into 2D arrays.
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11.7 Accuracy of simple theories

The absorption coefficient measurements also give information about the likely accur-
acy of the design principles based on the simple Fourier theory of Equation 11.1.
Some of the key assumptions behind the theory are:

1 The absorption coefficient of the soft patches is 1 and there is no phase change on
reflection.

2 The Kirchhoff boundary conditions are true.

The absorption coefficient of the soft patches is not 1 at low frequency because there is
insufficient depth of mineral wool to cause complete absorption. At mid- and low
frequencies mutual interactions across the panel render the Kirchhoff boundary condi-
tions inaccurate. The Kirchhoff boundary conditions assume that the pressure on the
hard patches is twice the incident pressure and on the soft patches is just the incident
pressure. This is only true,when the soft and hard patches are large in extent compared to
wavelength. It is only at high frequency, when the wavelength becomes millimetre in
magnitude, that it might be expected that the Kirchhoff boundary conditions will be
accurate. Consequently, the discussions above are really only true for the highest fre-
quencies of interest. Toput this anotherway, for a 50per cent openarea sample predicted
with the simple Fourier theory, the absorption should be 0.5. Figure 11.2 shows that this
is not achieved, for instance at mid-frequencies the absorption is around 1.

Despite these problems, it is still possible to learn something by considering the simple
Fourier theories. For instance the Fourier theory shows that as with all diffusers,
periodicity is a problem as energy gets concentrated in the lobe directions. Consequently,
the repeat distance of the diffuser should be made as large as possible. This can be done
using a modulation scheme, as discussed for Schroeder diffusers in Chapter 9 and curved
surfaces in Chapter 10, or by designing the diffuser based on a larger number sequences.
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Figure 11.16 Random incidence absorption coefficients for various planar hybrid sur-
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Consider using a modulation scheme where two different hybrid surfaces are used.
One of these is denoted A, the other B. A wall is filled by arranging the hybrid surfaces
according to a pseudorandom sequence, for example if a length 5 Barker sequence is
used, the arrangement of the surfaces would be: A A A B A. This is a method for
reducing periodicity effects.

Modulation schemes pose problems for diffusers based on unipolar sequences. The
most successful modulation scheme for Schroeder diffusers was to modulate a surface with
a phase inverted version of the diffuser. In a unipolar environment, it is difficult to see how
exact broadband phase inversion can be achieved. It is possible to go some way to achieve
the inversion and therefore good performance. Consider a unipolar maximum length
sequence a, an approximate inverse sequence can be found by adding 1 modulo 2, so the
inverse sequence is given by aþ 1 modulo 2. These two base shapes can then be arranged
in a pseudorandom order to form a modulated array to reduce periodicity effects.

For example, consider the top three graphs in Figure 11.17. The top graph shows
the autocorrelation properties for a periodic sequence of 13 N¼ 127 unipolar MLS.
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Figure 11.17 Autocorrelation properties for four sequences: (a) Periodic (b) Modulated
using inverse (c) Random length 1651 and (d) One base shape modulation.
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As expected, there are periodicity lobes every 127 units. This is compared in the
third graph down to a random sequence of length 1651 (¼ 13� 127) showing no
periodicity lobes. A modulated arrangement is shown in the second graph using a
hybrid surface and its inverse. The ordering of the two surfaces was determined by
the length 13 pseudorandom sequence with the best unipolar aperiodic autocorrela-
tion properties. The effects of periodicity have been greatly reduced. Figure 11.18
shows the effects of the modulation in terms of a scattered polar distribution. The
modulation has removed the periodicity effects for the non-zero order lobes. In that
respect the modulation has been successful, but the dominant characteristic of the
polar response is still the zero order specular lobe. The only way to deal with this
is to introduce some possibility of phase cancellation, for example by curving the
surface.

Another technique would be to use two sequences from the same family with
mutually good crosscorrelation properties. Although this does not appear to work
as well as the inverse process described above. It would also be possible to modulate
using number sequences of different lengths – a similar process was described for
Schroeder diffusers in Chapter 9 where it was called orthogonal modulation.

As with Schroeder diffusers, it is possible to modulate a single asymmetrical base
shape. The mask shown in Figure 11.1 could be rotated by 90� and arranged with the ori-
ginal mask in a random arrangement. Brief tests on 1D sequences show this to be less
successful than using two or more different base shapes. The bottom graph in Figure
11.17 shows the autocorrelation coefficient for a 1D asymmetric single base shape
modulation. In this case the sequence order is just reversed to give the second base
shape. While not as good as the modulation using two base shapes discussed
previously, one base shape modulation still gives a better result than the periodic
arrangement. The advantage of this technique is that it only needs one type of mask to
be made.
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Figure 11.18 Scattering from three surfaces showing how modulation can improve the
performance of hybrid surfaces: (left) maximum length sequence hybrid
surface using modulation, (middle) planar non-absorbing reflector, and
(right) maximum length sequence hybrid surface periodic.
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11.8 Diffuse reflections

Measuring these surfaces to get the scattering performance is awkward. The normal
measurement techniques described in Chapter 3 have used scale models of diffusers
because of the problems of getting far enough away from full scale surfaces. For hybrid
surfaces, accurate scale models of these surfaces cannot be easily produced because the
impedance properties of porous materials do not scale in the same way as the wave-
length in air. It would be possible to empirically find a substitute material to use in the
scale models which has the appropriate impedance properties, but this is a rather
tedious process. Nevertheless, diffusion measurements have been carried out on full
scale samples, even though the receivers and source are rather too close to the panel.
For example, Figure 11.19 shows the scattered polar response from a BAD panel and
the porous material for the 1.25 kHz one-third octave band. The energy in the specular
zone is attenuated by 6 dB. This is exactly as would be expected for a 50 per cent open
area panel. Additional side lobe energy is produced compared to the flat hard surface.

Consider an analysis now based on the simple Fourier model. (There is a need for
analyses based on a more accurate model, but these are not yet completed.) The
diffusion coefficient is shown in Figure 11.20 and the polar distribution for one
example frequency in Figure 11.21. For this comparison, five surfaces were predicted:
a curved hybrid surface with a binary sequence of hard and soft patches, a plane
hybrid surface based on the length 31 maximum length sequence, a plane hard surface,
anN¼ 7 QRD, and an optimized rigid curved surface. This last surface was 30 cm deep
which is typical of the non-absorbing diffusers used in performance spaces and so is
useful for comparison. The hybrid curved surface is much shallower, about 7 cm deep.

The diffusion coefficient spectra shows that moving from a flat hard surface to a
hybrid plane surface increases the dispersion, as was also found in the measurements
reported in Figure 11.19. Curving the hybrid surface produces more dramatic
improvement in the diffusion coefficient. There appears to be much to be gained
from curving hybrid surfaces. Interestingly, the quality of diffusion for the curved
hybrid surface is only a little worse than the rigid optimized curved surface, which is
four times as deep. This seems to indicate that a hybrid curved surface is a good
method for generating more diffuse reflections from a restricted depth. Although, this
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Figure 11.19 Measured scattering from a binary amplitude diffuser compared to a hard
surface and a piece of absorbent. BAD; Non-
absorbing flat reflector; 25 mm fibreglass (data from Angus
and D’Antonio [6]).
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is only useful where absorption is also wanted. Indeed, the problem with this analysis
is that Fourier theory assumes an absorption coefficient of 0.5 across all frequencies,
whereas practical surfaces appear to be mainly absorbing up to about 2 kHz. Conse-
quently, for practical surfaces, it is only the right side of the diffusion coefficient graph
which is most accurate.

11.9 Boundary element modelling

The above analysis has only considered a single plane device, but the findings should
extend to surfaces designed to scatter hemispherically. In the case of the measurement,
it was only possible to measure a hemispherical diffuser in a single plane and then the
sources and receivers were rather too close. Furthermore, it is known that the Kirchhoff
boundary conditions are not accurate at low to mid-frequencies and so simple models
are rather unreliable. Using boundary element modelling (BEM) it is possible to
calculate the scattering over a hemisphere including interactions across the surface,
provided the absorbent patches remain locally reacting. The only other limitation is
that a periodic arrangement of the surfaces must be tested, and the BEM model
becomes rapidly too slow. Consequently, a thin panel, periodic formulation must be
used as outlined in Chapter 8.

Figure 11.22 top left shows the scattering from a 4� 4 array of the BAD panel
at 3 kHz which is an MLS-based hybrid planar surface shown in Figure 11.1. This is

Figure 11.22 Scattering from arrays of surfaces at 3 kHz. Top left: BAD panel; Top right:
plane surface. Bottom left: A perforated mask with regular hole spacing.
Bottom right: A random perforated mask. 3D polar balloons viewed from
side.
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compared to a planar hard surface top right. The polar balloon is shown side on and it
illustrates the drop in specular reflection energy as was found with the simpler
theories. It also shows that a strong specular component still exists from the hybrid
surface. The bottom left graph is for a perforated mask where the holes are regularly
spaced. This shows that the side lobe performance is better for the BAD panel,
confirming the usefulness of a pseudorandom hole arrangement for getting more
diffuse reflections. The bottom right graph is for a perforated mask where the hole
locations are determined randomly. The performance is similar but slightly worse
than the BAD panel. This shows the superiority of using pseudorandom number
sequences rather than a random hole arrangement.

Figure 11.23 compares the scattering from the BAD panel to a plane surface at two
contrasting frequencies. At the low frequency shown at the bottom of the chart, the
mineral wool is not providing much absorption and so the BAD panel behaves similar
to the planar hard surface, although a little additional dispersion is achieved. At the
higher frequency shown in the top charts, the difference between the surfaces is
marked, as would be expected.

11.10 Summary

Hybrid surfaces offer a new solution to room designers who want both reverber-
ation control and diffuse reflections in a single surface. Flat hybrid surfaces have a

Figure 11.23 Hemispherical polar balloons, top 3Hz, bottom 400Hz. Left: BAD hybrid
surface. Right: Plane hard surface.
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considerable advantage in being cheap and the treatment being hidden. More work is
needed, however, to look at how this technology can be exploited further both in
making better designs and in understanding where they are best applied.
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12 Absorbers and diffusers in rooms
and geometric models

So far, this book has discussed how to design diffusers and absorbers, but mostly in
isolation of where and how they are applied. The chapter starts by presenting some of
the issues arising from the application of absorbers in rooms, especially the issue of
the translation of absorption coefficients from free field measurements to reverber-
ation chamber measurements or to full room application. The chapter then proceeds to
discuss how absorption and diffuse reflection properties are represented in geometric
room acoustic models and the problems this presents to obtaining accurate room
predictions.

12.1 Absorption coefficients: from free field to random incidence

In Chapter 3, various methods for measuring absorption were outlined. These
included free field and random incidence techniques. Unfortunately, it is not easy to
translate between free field and random incidence values for a variety of reasons
which will be discussed in the following paragraphs. Being able to translate from the
free field measurements to random incidence values is extremely useful, because the
free field measurements are done in a controlled environment which is ideal for
validating prediction models, but to make these measured coefficients useful to
practitioners they need converting into random incidence values.

The translation from a set of angle dependent free field absorption coefficients to
a random incidence value is normally carried out using Paris’ formula [1]:

�s ¼
Z �=2

0

�ð Þ sinð2 Þd ð12:1Þ

where �s is the random incidence absorption coefficient and �( ) the absorption
coefficient in the free field at an incident angle  .

This formula is derived by considering the sound incidence on a surface in a diffuse
space, the sin(2 ) term arising because of solid angle considerations. If the surface is
locally reacting, then it is possible to just measure the normal incidence impedance,
apply the formulations given in Equations 1.22 and 1.25 to get the angle-dependent
absorption coefficient and from Equation 12.1 the random incidence value. For a
locally reacting surface a single measurement at 55� will suffice as this is the same as
the random incidence value. Many surfaces, however, are not locally reacting as
discussed in Section 5.6.



Makita and Hidaka [2] examined the problem of translating from free field to
random incidence coefficients for homogeneous and isotropic sound absorbing por-
ous materials. They measured different polyurethane foams in the impedance tube
and the reverberation chamber and compared the random incidence absorption
coefficients derived from the impedance tube measurement using Paris’ formulation
and the reverberation chamber measurements. Discrepancies arise because:

. The reverberation chamber is not completely diffuse leading to the Paris’ formula
being inaccurate and some angles of incidence being emphasized over others.

. Diffraction at the edges of the sample creates excess absorption in the reverberation
chamber measurements. The impedance discontinuity at the edges of the sample
causes additional sound to bend into the sample as this has a lower speed of sound.

. The mounting conditions are different which may affect how the frame of the
absorbent vibrates.

. The assumption of local reaction, so that small sample measurements in the
impedance tube can be translated to the large sample measurement in the rever-
beration chamber, may not be correct.

Makita and Hidaka carried out a series of reverberation chamber measurements on
the foams with different sizes to get the absorption coefficient of an infinite size array
using extrapolation. Figure 12.1 shows the inferred absorption coefficient for an
infinite sample, compared to the finite-sized 12 m2 sample, which is the recommended
size in ISO 354 [3]. These absorption coefficients are shown for one typical sample of
the six different foams tested. The average difference in the absorption coefficient
between the finite and infinite samples for all six foams is also shown. Figure 12.1
illustrates that great differences in the absorption due to edge effects can be obtained,
even if the edges of the samples are covered with a reflective frame as is normal
practice and required by the ISO 354.
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Figure 12.1 Comparison of measured random incidence absorption coefficients for finite
and infinite samples for one material. Also shown is the average error
between the finite and infinite sample absorption coefficients for six materials
(data from Makita and Hidaka [2]).
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Bartel [4] examined the extrapolation from finite to infinite area absorption. The
paper also contains a useful and comprehensive literature review of previous work in
this area. The simplest model for the absorption coefficient extrapolation assumes
a linear relationship. This can be represented by:

�1 ¼ �s þmE ð12:2Þ
where �1 is the absorption coefficient for an infinite sized sample, �s the absorption
coefficient for a finite sized sample, for example a 12 m2 sample in a reverberation
chamber measurement, m a constant, and E the perimeter of the finite sized sample.

The sensitivity of the absorption coefficient to the perimeter varies with material type
and frequency. Figure 12.2 shows a plot of the absorption coefficient for different
perimeter sizes measured in the reverberation chamber, showing that the edge diffraction
effects can be very significant. This is with the edges of the sample covered with a
reflective strip as required by the standard. Figure 12.3 shows how the value of the
constantm varies with frequency and material type. Bartel also investigated the effect of
sample shape. Sample shape only affected the absorption coefficient by at most 3 per cent,
so the size of the perimeter is much more important than the shape of the sample edge.

To derive the constant m requires a series of measurements on different sample sizes
in the reverberation chamber. Consequently, Equation 12.2 does not help derive ran-
dom incidence absorption coefficients from impedance tube measurements, because
impedance tube measurements do not give values for m. Bartel [4] reports, however, a
formulation attributed to Norwood [5] to allow the perimeter effect to be predicted, and
so allow the translation from impedance tube to random incidence values. The normal-
ized admittance � of the sample is measured in the impedance tube and is given by:

� ¼ �c
z
¼ g� jb ð12:3Þ
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Figure 12.2 Random incidence absorption coefficient as a function of perimeter divided
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from Bartel [4]).
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where z is the surface impedance, � the density and c the speed of sound in air.
The average absorption coefficient for a finite rectangular sample is then given by:

� ¼ 16g

�

Z �=2

0

Z �=2

0

sin3ð�Þ d�d�

j�j2ðA2 þ B2Þ þ 2ðgAþ bBÞ sinð�Þ þ sin2 �
ð12:4Þ

where

A¼
Z ka sin�

0

cosðx sinð�ÞÞJ0ðxÞdx�
1

ka sin�

Z ka sin�

0

x cosðx sinð�ÞÞJ0ðxÞdx ð12:5Þ

B¼
Z ka sin�

0

cosðx sinð�ÞÞN0ðxÞdx� 1

ka sin�

Z ka sin�

0

x cosðx sinð�ÞÞN0ðxÞdx ð12:6Þ

where a¼ 2/E, and J0 and N0 are the Bessel functions of the first and second kind,
respectively. These formulations can also be used to gain random incidence predic-
tions of absorbers based on the formulations derived in Chapters 5–7.

Makita et al. [6] presented a revised Paris’ formula which accounts for inaccuracies
in the cosine law formulation. The formulations derived are rather complex, but
enable the effects of the boundary layer on the absorption to be accounted for. The
boundary layer effect is not normally as big as the perimeter effect, but can still be
significant.

12.2 From the reverberation chamber absorption coefficients
to room predictions

The problem of projecting from reverberation chamber measurements to whole room
design has already been discussed in Chapter 3 with respect to seating. While seating
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is a rather specialized case, it is generally true that there are often problems making
whole room predictions of objective parameters based on reverberation chamber
measurements of absorption. Even when the inaccuracies in the absorption coefficient
are numerically small, the inaccuracy in the resulting reverberation time in a space can
be quite significant, if large areas of the absorbent are used, as the inaccuracy in the
total absorption will be large. The problems centre on two issues, edge diffraction and
non-diffuseness.

1 Edge diffraction: The sample size tested in the reverberation chamber is often
smaller than that applied in the real space. Consequently, there is greater edge diffraction
effects in the reverberation chamber than in the real space. This can lead to significantly
different absorption coefficients between the two spaces. The solution to the edge effect
problem could be to determine the absorption of the edges, as was done for seating in
Chapter 3. Alternatively, it is possible to test different sample sizes in the reverberation
chamber, and from there extrapolate to the sample size used in the real room. The
formulations given in the previous section for the influence of sample perimeter can also
be used to extrapolate the absorption of large sample sizes from the smaller reverber-
ation chamber samples.

2 Non-diffuseness: The acoustic conditions in the reverberation chamber and the
real room may be very different. The reverberation chamber may be diffuse, while
the real room is not diffuse. This could lead to the random incidence absorption
coefficient measured in the reverberation chamber not matching the absorption
coefficient in application. Actually, a more common scenario is that both the
reverberation chamber and real room are non-diffuse, but they are non-diffuse in
different ways.

The effect of the diffuseness of the space is difficult to account for. If the non-diffuseness
is generated in a simple manner, for instance all the absorption on one surface of the
room, then there are reverberation time formulae that can deal with these cases.
(Gomperts carried out a comprehensive review of reverberation time formulations
[7].) A modern solution would be to use a geometric room acoustic model, to properly
model the sound distribution in both spaces rather than assume a diffuse field. This is an
appealing solution, but as shall be discussed in the next section, the application
of absorption coefficients in computer models is not necessarily straightforward. For
instance, what should be done with absorption coefficients greater than one which com-
monly occur with reverberation chamber measurements? If a geometric model is used,
it is best if both the reverberation chamber and the real room are modelled, rather than
making the assumption that the reverberation chamber is diffuse. This requires the
modeller to have access to the reverberation times with and without the sample in the
reverberation chamber, and these are not usually available.

12.3 Absorption in geometric room acoustic models

Geometric models are becoming a core tool for practitioners and researchers designing
or investigating the propagation of sound within a space. To gain accurate predictions
from these models, it is necessary for the geometric models to correctly model absorp-
tion effects, but this is not as straightforward as might first have been thought.
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Geometric room acoustic models calculate the sound propagation within a space
using a ray tracing [8], beam or cone tracing [9], image source [10, 11] or hybrid
approaches [12]. (A hybrid approach meaning a combination of some of the other
three methods [13].) They are high frequency approximations to the true sound propa-
gation and do not properly deal with the wave nature of sound.

For readers unfamiliar with geometric models, it is necessary to describe how the
sound might be modelled, but for brevity only one type of modelling will be described,
and readers are directed to the literature for further reading. Here ray tracing will
be considered, as this is the easiest to describe. In ray tracing, the sound energy is
modelled as rays that propagate around the room like rays of light. When the ray
hits a surface in the room, it is reflected from the surface, and if no scattering
is considered, the angle of reflection equals the angle of incidence. There is a receiver
in a room, usually a sphere, and every time a ray passes through the sphere, the
reflection contributes to the energy impulse response. This process is illustrated in
Figure 12.4.

Every time a ray reflects from the surface, the energy of the ray is decreased by a
factor of 1��, where � is the absorption coefficient of the surface. One problem is
that absorption coefficient tables published in the literature often contain values
greater than 1. How should these be translated into use in the geometric model,
where values greater than 1 are meaningless? Furthermore, many geometric models
are now producing auralizations of the sound field within the space to allow designers
to hear the effect of design changes. To get a natural rendition of the sound field, a
wide audio bandwidth is required, yet absorption coefficient data is normally only
available for a restricted bandwidth of 100 Hz–5 kHz [14]. These and other issues are
discussed below.

Although a geometric room acoustic model has knowledge of the angle of incidence
that a ray strikes a surface, it is usual for a random incidence absorption coefficient to
be applied to every reflection. If local reaction is assumed, and the normal incidence
impedance of surfaces is known, it would be possible to predict the absorption coeffi-
cient as a function of incident angle and use these in computer models instead. Nijs et al.
[15] examined this and found that for simple room geometries, in their case a rever-
beration chamber, angular-dependent absorption coefficients made little difference to
calculated levels and reverberation times. For a coupled room, however, Nijs et al.
found that using an angular-dependent absorption coefficient enhanced prediction
accuracy. Using just random incidence absorption coefficients, inaccuracies of 15–
20dB in predicted level were found between prediction and measurement in the
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reflection

diffuse
reflection

Figure 12.4 Picture of ray tracing in a room.
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coupled space; using angular-dependent absorption coefficients, this error dropped to
4–7dB. It would be interesting to know how sensitive the parameters which are highly
dependent on correct modelling of early reflections, like early lateral energy fraction
[16], are to angular dependent absorption, even in rooms with simple geometries.

One cause for the absorption coefficients to be greater than 1 in reverberation
chamber measurements is that Sabine’s formulation [17] becomes inaccurate when
the absorption is high (�> 0.2–0.4). According to Sabine’s formula, a room con-
structed from completely absorbing walls still has a reverberation time greater than
zero. A couple of authors have suggested that alternative reverberation time formula-
tions should be used to calculate the absorption coefficients from the reverberation
time measurements, as these absorption coefficients then give more accurate predic-
tions in real spaces with geometric models. Nijs et al. [15] used the Eyring [18]
equation to deal with some of the problems of excess absorption that occurs when
using Sabine’s formula. Dance and Shield [19] favoured the use of the Millington [20]
reverberation time formulation. These formulations can be found in Chapter 1.

The problem with using alternative reverberation time formulations to get absorp-
tion coefficients from reverberation chamber measurements is that the geometric room
acoustic modellers need access to the reverberation times measured in the reverberation
chambers to re-derive the absorption coefficients. The data that is generally available in
literature is just the calculated absorption coefficients using Sabine’s formulation.
Consequently, using other reverberation time formulations can be rather awkward to
implement. Dance and Shield overcame this to a certain extent, however, by publishing
a conversion chart to get from the Sabine absorption coefficients to the Millington
values by carrying out some geometric room predictions which simulated typical
reverberation chamber measurements. This chart is shown in Figure 12.5.

Figure 12.6 shows the reverberation times predicted for a concert hall from Dance
and Shield. The top graph shows that classical reverberation time formulations are
inaccurate in non-diffuse spaces, and using a geometric model can improve prediction
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accuracy – a finding by Antonio et al. [21] and many others. The bottom graph shows
that using absorption coefficients derived using a Millington formulation in geometric
models gives more accurate results. However, in some cases not shown here, the
findings are less clear cut.

Using more exacting reverberation time equations may help predictions, but it does
not prevent measured absorption coefficients often exceeding 1 due to edge effects
and the non-diffuse nature of the reverberation chamber. Nijs et al. [15] state that in
the reverberation chamber the absorption is overestimated as the sound field is non-
diffuse with the sample present; furthermore the overestimation is greater if volume
diffusers are present; They therefore recommend a 20 per cent reduction of the
measured values from the reverberation chamber as a good first guess for the input
into a ray tracing program and hard limiting coefficients, so they do not exceed 1.
Summers [22] points out, however, that there is a great variation in measured
absorption coefficients between different reverberation chambers, a point borne out
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by the results shown in Figure 3.4. Consequently, the 20 per cent rule suggested by
Nijs et al. is unlikely to generalize.

The work could be extended to include the effects of edge diffraction, which pre-
viously in this chapter have been shown to cause significant estimation errors in the
absorption coefficients. The work also needs to consider inter-laboratory variation in
random incidence absorption coefficient measurement. An alternative solution to the
problem of mapping from the reverberation chamber to the real room is empirical
fitting. As a surface treatment is used over time, an understanding of how the absorp-
tion coefficient varies between the reverberation chamber and real rooms is developed.
If the reverberation time was underestimated this time, next time the modeller might
put in a smaller absorption coefficient. This is obviously not very satisfactory, but is the
reality of applying many scientific models to engineering problems. This is why experi-
enced geometric modellers usually produce better predictions than novices. This also
creates problems in verification of computer models. Too often, the absorption coeffi-
cients for surfaces are found by fitting predictions to match measurements, and then the
same measurements are used to show that the numerical method works!

So far, the issue of phase change on reflection has not been discussed. The true
reflection from a surface should include changes in magnitude and phase, and conse-
quently the pressure reflection factor or impedance is needed. This is problematical
for many reasons. Impedance data for surfaces is not available as the random
incidence absorption coefficient only gives information on energy. Furthermore,
many building surfaces have non-local reacting behaviour which creates problems
in measuring and implementing the phenomena in geometric models. For many
predictions it is probably unnecessary to go into this detail, which is fortunate as it
would pose some difficult or impossible problems to overcome.

In recent years, there have been round robin trials of geometric room acoustic
models comparing the accuracy of the different techniques [23]. One of the key
findings from this process has been that the accuracy of the prediction models is
highly dependent on the quality of the input data, including the absorption coefficient
of surfaces. So to summarize, defining absorption coefficients (and impedance) for
geometric room acoustic models appears to be a tricky problem. Fortunately, experi-
enced practitioners can usually produce estimations of absorption coefficients that are
good enough using previous knowledge. This is not an entirely satisfactory situation
as subjectivity should not be part of a prediction model.

12.4 Diffuse reflections in geometric room acoustic models

Early work on geometric models concentrated on the issue of modelling absorption.
In recent years much attention has been focussed on the modelling of scattering or
dispersion from surfaces, often referred to as diffuse reflections. Geometric models
inherently cannot precisely model the wave nature of sound. They approximate the
sound to have a short wavelength, much shorter than any dimension within the room;
this enables sound to be modelled as particles, rays, beams or as coming from
image sources. Unfortunately, the wavelength of sound is relatively large at low to
mid-frequencies, and consequently geometric models that do not attempt to predict
the effects of surface and edge scattering are liable to produce inaccurate results. In
real life, an incident sound will inevitably be scattered into angles other than the
specular reflection direction upon reflection from most surfaces.
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The problems of diffuse reflection modelling in geometric models are well estab-
lished. For example, Hodgson [24] used a ray tracing model that took diffuse reflec-
tions into account by redistributing diffuse energy according to Lambert’s law [1]. He
concluded that in simple empty rooms, the effects of diffuse surface reflections are
negligible in small or proportionate rooms, while in large disproportionate rooms
the effects can be considerable. To take another example, in the first round robin study
of room acoustic models [25], three prediction models were found to perform
significantly better than others. These three prediction models produced results
approximately within one subjective difference limen, while the less successful
computer models produced predictions inaccurate by many difference limen. What
differentiated the three best models from the others was the inclusion of a method
to model surface scattering.

If the overall room shape and sizes and orientations of surfaces are such that they
will cause reflections to be well mixed for purely geometrical reasons, a diffuse field
may be created even if no rough or scattering surfaces are used. In this context, mixing
means that the reflection paths involve all the surfaces of the room. For mixing room
shapes the reverberation time can be well predicted even without diffuse reflection
modelling, even if predictions of finer parameters such as clarity may suffer [26].
However, as it is difficult to know in advance if a room shape is mixing, it is best to
always include diffuse reflection modelling in a geometric model, as otherwise unne-
cessary uncertainty is generated and potentially inaccurate estimations of acoustic
parameters result.

The most obvious error created by a lack of diffuse reflection modelling is an over
prediction of reverberation time [27, 24]. This is especially true in enclosed spaces
where absorption is concentrated on one surface, such as in concert halls, or when the
room shape is highly disproportionate, such as in large factories. In some halls, the
choice of scattering coefficients has a greater impact on the estimated reverberation
times than the uncertainty in the absorption coefficients [28]. Torres and Kleiner [29]
found that changes in the scattering coefficient in geometric models are audible in
auralizations, and that the diffuse reflections should be modelled with frequency
dependence. Gomes and Gerges [30] also found that using correct scattering coeffi-
cient values in a diffuse reflection model was important for gaining accurate predic-
tions for an auditorium. The most recent round robin on geometric models [23] found
that the biggest errors with geometric models were consistently at low frequencies,
presumably because of their inability to model diffraction effects correctly as these are
most prominent at low frequencies.

There are many different methods for incorporating diffuse reflections into a
geometric room acoustic model. Dalenbäck et al. [28] give a comprehensive survey
of the techniques. Many of the techniques are similar or just variants. Consequently,
only a few of the most important and commonly used techniques are outlined here,
and readers are referred to Dalenback et al. for a more comprehensive review. While
there are many possible methods, there is a problem that it is not known which
modelling technique, if any, is intrinsically more accurate. It is known that a diffuse
reflection model is needed for accurate predictions, but it is not known if one model is
better than any of the others. One key determining factor is, however, the computing
time. Accurate diffuse reflection models are relatively simple for low orders of
reflections, but often become increasingly computationally expensive as the reflection
order increases.

344 Rooms and geometric models



12.4.1 Ray re-direction

This method is a ray scattering process as suggested by Kuttruff [1]. A wall is
considered to reflect a proportion of all the incident sound energy diffusely. The
proportion of diffusely reflected energy is given by the scattering coefficient s, and
this is distributed according to Lambert’s law. The remaining energy (1� s) is reflec-
ted in a specular manner. The direction of the diffuse reflection is determined by two
random numbers. The angle of azimuth is chosen by a random number in the interval
{��, �}, and the elevation angle is given by the inverse cosine of the square root of a
random number that is chosen from the interval {0, 1}.

Concentrating all the diffusely reflecting energy into one direction is not true
to reality, but this method is fine for the reverberant sound field, as there are a large
number of reflections to average out the response. For the early sound field where
there are fewer reflections, however, the method is not so good. Instead of giving
many weak reflections from a diffusing surface spread over time, a receiver gets a few
stronger reflections. This can, to a certain effect, be solved by generating multiple rays
from the diffuser in multiple directions, but this then becomes very computationally
expensive.

12.4.2 Transition order using particle tracing

The reflection calculation method is separated by a user-defined transition order [31].
Reflections with orders lower than the transition order are purely specular. After the
transition order, sound rays are treated as energy packets similar to a normal ray
tracing method. At each subsequent wall reflection after the transition order, a
secondary impulse source is created at the reflection point, which radiates into the
room as an elemental area source. The energy is then re-grouped into a ray and traced
forward in a direction given by a random process in which either a purely specular or
a diffuse direction will be chosen depending on whether the value of a random
number generated by the program is greater or smaller than the wall’s scattering
coefficient. If the reflection is diffuse, then its direction is determined by a second
random process based on Lambert’s diffusion law.

The choice of transition order is dependent on the hall shape rather than size [32].
In rectangular rooms, a transition order of 0 in low frequency bands, and 1–3 in the
high frequency bands was found to be appropriate. In the fan shaped halls, where
correct modelling of the specular reflections is important to account for the influence
of the hall geometry, a higher transition order was also required in the low frequency
bands. Generally, the choice of transition order should be based on the importance of
the specular components in the early reflections in defining the acoustic characters of
the hall. An order of 1 or higher should be used only when the sound field is
significantly affected by the specular components, such as at high frequencies or with
strong reflecting surfaces. In real halls where the sound field is expected to be more
diffuse, lower transition orders should be used.

The main problem with this method of diffuse reflection modelling is that the
concept of a transition order is not physically satisfactory, since diffuse reflections
should occur even at the very first reflection rather than suddenly being switched on at
the transition order.
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12.4.3 Diffuse energy decays with the reverberation time of the hall

Upon each reflection, the scattering coefficient is used to define the fraction of energy
diffusely scattered into non-specular angles, while the remaining energy is reflected
specularly in the usual way. The diffuse energy is ambient energy spread throughout
the room volume. This energy is assumed to decay exponentially, the decay constant
being determined by Eyring’s formulation. A visibility check is used to ensure that the
right surfaces contribute to the received sound [33].

The problem with this is that it assumes that the Eyring’s formulation is correct,
which is not necessarily true, especially if the space is non-diffuse. Some have used an
iterative procedure to gradually improve the estimated reverberation time, but this
slows computation as it requires multiple passes through the algorithm.

12.4.4 Radiosity and radiant exchange

The diffuse part of a reflection is stored and the specular ray tracing continued. When
the stored diffuse energy is emitted, all subsequent surface reflections are assumed to be
diffuse. These methods use a stochastic radiative exchange process to propagate sound
from surface to surface. This radiosity can be modelled by integral equations, but more
commonly uses simple heat exchange formulations. The radiant exchange takes place at
time intervals given by multiples of the mean free time between reflections.

12.4.5 Early sound field wave model

Another suggestion is to use wave based models, such as a time domain Fourier
approach, to model the early sound field, before resorting to a ray tracing with
randomized ray redirection for the later sound field. This has the advantage of
potentially being more accurate in modelling the early sound field which is more
important from a psychoacoustic standpoint, while allowing ray tracing to take over
where it is computationally more efficient and sufficiently accurate.

12.4.6 Distributing the diffuse energy

Having described some of the models used, it is apparent that they have many
common features. One of these is that the diffusely reflected energy from a surface
is modelled as radiating from the surface with a particular spatial distribution, and
in most current models, Lambert’s law is used to determine this distribution.

Another possibility is to base the dispersion function for a surface on the polar
response measured or predicted in the free field. Problems would arise because the
polar response would be from a surface of significant finite extent, whereas many
geometric models would require the correct dispersion from a point on the surface.
This needs consideration in designing the model, and a method to reverse engineer
the point reflectivity function from the finite-sized polar response is needed. This can be
done using Farina’s method for characterizing diffusers, which was discussed in
Chapter 4. The situation is more complex with beam tracing, as the beam may interact
with part of a surface, and so the reflectivity function would neither be the point reflec-
tivity function or the finite-sized polar response. There is a further problem in dealing
with situations where only part of the surface is illuminated, as might happen when
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objects cast shadows on surfaces, or with directional sources. Polar responses are
usually measured or predicted using complete illumination by omnidirectional sources.

The most common dispersion law for computer models is Lambert’s law, also
referred to as the cosine law. It states that the intensity scattered by a surface follows
a cosine distribution with respect to the incident and reflected sound angle to the wall.
This is illustrated in Figure 12.7 for a normal incident source. Stated in terms of
equations for a ray tracing case [1]:

Ir ¼ I0dS cosð Þ cosð�Þ
�r2

ð12:7Þ

where Ir is the reflected intensity at the surface, I0 the incident intensity at the
surface, � the angle of the receiver to the surface normal,  the angle of the source
to the surface normal, dS the area of the surface being considered, and r the
receiver radius.

This formulation is a simple statement of solid angle projections. For instance, the
solid angle is zero for sources and receivers close to grazing. If the surface is partly
absorbing, then the intensity should be attenuated by the corresponding intensity
reflection factor, but to simplify discussions the surface will be assumed non-absorbing
in this discussion.

True rooms are not purely specular and neither purely diffuse following Lambert’s
law. They are somewhere between. For the reverberant field, however, the evidence is
that the sound field more closely matches a diffuse case than a specular one [1].

Figure 12.8 shows the scattering distributions for a surface with 1, 50 and 99 per cent
diffuseness, where the diffuse reflection is modelled using Lambert’s law. Also included
for comparison in Figure 12.9 are the polar distributions for a periodic diffuser,
a single cylinder, a plane surface and a randomly rough surface with small roughness.
Each surface is 2m wide and the source and receiver are in the far field. The scattered
distribution using the Lambert model does not match many of the real surfaces very
well for many cases. The closest is the random rough surface, which approximately

ψθ

dS

Figure 12.7 Two views of the Lambert distribution of intensity, left 3D view, right cross-
section.
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matches the s¼ 0.99 case. Consequently, room acoustic models are not producing
scattering distributions close to real diffuser scattering. However, this is probably not
that important for the reverberant field where there are a large number of reflections
over which the errors in any one diffuse reflection tend to average out, or at least mask
the problem. It is more of a problem, however, for the early sound field where precise
modelling of first order reflections is needed.

Lambert’s law is a natural choice for room acoustic modellers, because it is the
asymptotic high frequency case, which is intrinsically the frequency range where the
geometric models are most correct. Furthermore, it deals with scattering from a point,
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Figure 12.8 Typical far field energy distributions in a geometric model for different
values of scattering coefficient s and a normal incident source. Left to right
s¼ 0.01, 0.5, 0.99.
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Figure 12.9 Some typical far field one-third octave polar response patterns for different
surfaces. Left figure: Plane surface; Single semi-circle.
Right figure: Random rough surface; Periodic diffuser.
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which fits with the philosophy of most models. Lambert’s law deals with high
frequency incoherent scattering, but in acoustics the wavelength is often comparable
to surface roughness. Indeed, diffusers such as Schroeder diffusers would not function
as designed if the scattering was incoherent. In rooms, incoherence is not achieved,
just complication. It is true to say, however, that at very high frequencies, the
scattering from surfaces will approximate Lambert’s law. At the key frequencies
for room design, and for first order reflections, some believe that it is better to
approximate the scattering from specialist diffusers according to a uniform energy
distribution rather than Lambert’s law in geometric room acoustic models.

There is a further problem with Lambert’s law with single plane diffusers. Single
plane diffusers produce dispersion in one plane and are very common in spaces: pipe
work, balcony fronts, 1D Schroeder diffusers, columns, etc. Yet most current com-
puter models disperse reflections according to Lambert’s law, scattering the sound in
all directions over a hemisphere. This has the potential to cause prediction errors,
again particularly acute for the early sound field. It might be thought that this
prediction inaccuracy is less important for the later sound field, and indeed the
averaging effect of multiple numerous reflections probably makes the model less
sensitive to incorrect modelling of the reflections. In recent years, however, attention
has been drawn to the importance of late lateral energy in auditoria [34] and the role
of spatial impression. Consequently for a correct auralization of large music spaces, it
may be important to correctly model the spatial distribution of late sound, and correct
modelling of anisotropic scatterers is probably needed to achieve this.

12.4.7 Scattering coefficients

In Chapter 4, methods for measuring and characterizing the scattering from surfaces
were given, including characterization in terms of a scattering coefficient. It is
intended that this coefficient should be used as an input to geometric room acoustic
models. At the time of writing, the success of the new scattering coefficient appears to
be mixed, with some suggesting that it works well within geometric room acoustic
models, and others reporting problems. Hopefully, over the next few years, as the
scattering coefficient becomes more established, the position will be clarified.

Gomes and Gerges [30] found that errors greater than 20 per cent in early decay
time can occur if the scattering coefficients are incorrect, and 30 per cent if the
absorption coefficients are incorrect. In contrast, Nijs et al. [15] found that varying
scattering coefficients had relatively small effect on predicted levels (3–4 dB) in a
complex coupled set of rooms, although Summers [22] has questioned whether
diffraction can be so insignificant in the coupled rooms modelled.

In the past, there has not been a defined way to gain scattering coefficients for
surfaces, so researchers have adopted an empirical approach to investigations. They
have examined what scattering coefficients are needed to gain accurate predictions in
rooms by a trial-and-error process. The results from these investigations are presented
below, as they give some guidelines as to what scattering coefficients might be used.
One problem with getting the correct scattering coefficient this way, however, is the
interrelationship between the absorption and scattering coefficients used in the geo-
metric model, and the predicted acoustic parameters. The reverberation time pre-
dicted in a space will depend on both the absorption and scattering coefficients. The
effect is most marked for disproportionate spaces or ones where the absorption is
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unevenly distributed. It is not correct, therefore to determine the scattering coefficient
by simply adjusting the reverberation time prediction until it matches measurement,
as there is usually considerable uncertainty as to what the absorption coefficient of
surfaces should be and this also affects reverberation time.

As the theoretical basis of different methods of modelling diffuse reflections is not
the same, it is likely that different prediction models will require different values of
the scattering coefficient even for the same wall under the same room conditions.
Lam [33] investigated the scattering coefficients required for three different diffuse
modelling algorithms, using scale models with largely smooth walls. In simple propor-
tionate rooms, where the room dimensions are comparable, the predictions were similar
whatever the method of modelling diffuse reflections and the scattering coefficient
used. In a highly disproportionate room, however, the scattering coefficient required
to gain accurate results varied with the diffuse reflection modelling algorithm. The
required scattering coefficient varied between 0.25 and 1 for the three geometric
models considered. It was also found that different scattering coefficients were
required to give accurate predictions of different acoustic parameters within the
same prediction model. Out of the three models tested, the models presented
in Sections 12.4.2 and 12.4.3 were most robust and so were favoured by Lam.

Lam further investigated the effect of scattering coefficients in a concert hall. The
trend with scattering coefficients is that going from a zero coefficient to a low value,
say s¼ 0.1 or 0.2, can make a large difference to predicted acoustic parameters.
Increases in the scattering coefficient from these low values create a much smaller
effect [33]. Consequently, the sensitivity of the scattering coefficient to affect volu-
metric acoustic parameters is not linear. Figure 12.10 shows the early lateral energy
fraction (ELEF) for different scattering coefficients in a real concert hall. Measure-
ments are compared with various predictions. The difference limen for ELEF is about
0.075 [35], so differences bigger than this value are significant. ELEF is chosen
because it is probably the parameter most affected by the diffuse reflection modelling
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Figure 12.10 Variation of early lateral energy fraction (ELEF) with different scattering
coefficients. The horizontal grid lines are spaced at the subjective difference
limen. � Measured; s¼ 0; s¼ 0.1 for walls, 0.7
for seats; s¼ 1 (after Lam [32]).
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algorithm, as it depends purely on the early sound field. This shows that the predic-
tions are sensitive to getting the correct scattering coefficients.

There will be cases, however, where accurate predictions cannot be achieved
whatever the values of the scattering coefficients. This will be particularly noticeable
for acoustic parameters which are very sensitive to the early sound field, such as
clarity and early lateral energy fraction [16]. The early sound field contains only a few
reflections, and consequently inaccuracies in the modelling of sound field are most
apparent. These cases show that the diffraction effects present in real life reflections
are far more complicated than the simple scattering assumed in geometric models – as
already indicated by Figures 12.8 and 12.9. It is only by summing over a large number
of reflections that the simple scattering assumptions can be regarded as valid approx-
imations. Fortunately, in many situations there are enough reflections that inaccura-
cies tend to average out, but in some cases such as coupled rooms and under deep
balconies this will not be true. Certainly, a geometric room acoustic model should not
be used to evaluate first-order reflection paths, unless surfaces are simple large and
planar or generate diffuse hemispherical dispersion.

Lam recommends that a good starting point for scattering coefficients at mid-
frequencies is to set the value to 0.1 for planar walls, as the value remains largely con-
stant at around 0.1 in rooms of sizes ranging from 5,000 to 30,000 m3 and shapes
ranging from rectangular to hexagonal [32]. Certainly, the scattering coefficient should
never be set to zero, because even with smooth walls edge diffraction is important.
Nijs et al. [15] recommend lower scattering coefficients for plane walls of at most
0.02, although Summers [22] could not get accurate predictions using such a low value
with a different geometric model. Dalenbäck [36] recommends 0.1–0.2 as a minimum
value on all surfaces, except in very large planar surfaces where 0.08–0.1 is recom-
mended.

Gomes and Gerges [30] found that in cases where early reflections are few, a higher
scattering coefficient (as high as 1) can be used to improve the accuracy of the
predictions of early decay time. In the lower frequency bands the correct scattering
coefficient can change from 0.1 in smaller auditoria (volumes less than 10,000 m3) to
over 0.4 in larger concert halls (volumes about 30,000 m3). A slight increase was also
observed in models with more complicated shapes, but this is not great.

Lam set the scattering coefficient to 0.7 for seating [33], whereas Dalenbäck [36]
recommends 0.4–0.7 for 125–4 kHz on audience areas. For generally rough surfaces,
Dalenbäck suggests high values of 0.8 where the roughness is of the order of, or higher
than the wavelength, and gradually lower below. For example, if the roughness scale
is 0.3 m, set 0.8 for 1–4 kHz, 0.6 at 500 Hz, 0.3 at 250 Hz and 0.15 at 125 Hz. He
notes that generally, there is greater risk associated with underestimating scattering
coefficients than with overestimating them.

As an additional approach to estimating scattering coefficients, Dalenbäck suggests
testing for the sensitivity to diffusion settings. This is done by calculating acoustic
parameters with an initial reasonable guess of scattering coefficients, and with diffuse
modelling switched off. The modeller can then examine if the resulting acoustic
parameters differ substantially. If the parameters vary, then scattering coefficient
has to be more carefully estimated, and it can be wise to include in the room design
some options for final fine tuning of the reverberation time.

Appendix C gives a table of scattering coefficients for a variety of surfaces. These are
correlation scattering coefficients calculated using a method outlined in Chapter 4.
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These were calculated using a 2D boundary element model and so represent single plane
surfaces such as cylinders. The use of the table values within a geometric model will take
a little interpretation. It has already been shown that the scattering coefficient required
in geometric models varies between different diffuse reflection modelling algorithms.
One deficiency in the table data is the raised values for random incidence scattering
coefficients at low frequencies. This arises because the scattering from the edge and the
rear of the test sample is different from a flat surface; an empirical fix might be required
to gain lower values at low frequencies. Furthermore, the predictions are for the plane of
maximum scattering, whereas most diffuse reflection algorithms will interpret these
values as being for hemispherically scattering devices and distribute the scattered energy
according to Lambert’s law. So, although the predictions were produced using single
plane scatterers, they will probably be better matched to hemispherical scatter values in
many geometric models. The values in the table for semicylinders will probably better
match the required values for hemispheres; the table values for 1D Schroeder diffusers
will probably better match the required values for 2D Schroeder diffusers. When
modelling a single plane device (cylinder, 1D Schroeder diffuser), it may be necessary
to reduce the scattering coefficient table values, if the geometric model distributes energy
according to Lambert’s law using a single scattering coefficient.

This section has summarized the current state of knowledge on using scattering
coefficients in geometric models. There are many gaps in understanding and knowl-
edge, and many problems still remain and need further research.

12.5 Summary

This chapter has presented some of the problems associated with going from isolated
predictions or measurements of acoustic surface properties, to whole room predic-
tions. It has considered the problems associated with the use of absorption coefficients
in simple statistical models, as well as the role of absorption and scattering coeffi-
cients in geometric room acoustic models. The next and final chapter will look at how
active technology can provide absorption and diffuse reflections.
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13 Active absorption and diffusion

The absorber and diffuser technologies discussed in previous chapters have difficulty
with low frequency sound. Low frequency waves have long wavelengths, which means
the absorbers and diffusers have to be large to perturb or absorb the wavefronts.
This can be overcome to a certain extent by the use of resonant structures, most often
used in bass absorber design, but in the recent years there has been growing interest
in the use of active control technologies to absorb or diffuse low frequency sound.

Active control offers the possibility of bass absorption or diffuse reflections from
relatively shallow surfaces, as well as the possibility of variable acoustics. An example
application for active absorption is the control of modes in small rooms. The cost and
difficulties of implementation are, however, considerable, and this is the major reason
why this technology has not been more widely applied.

Active absorption has much in common with active noise control, indeed in many
ways it is the same concept just re-organized behind a slightly different philosophy.
Olson and May carried out pioneering active control experiments and they suggested
an active noise control method based on interference [1]. In their method, an electro-
acoustic feedback loop was used to drive the acoustic pressure to zero near an error
microphone placed close to a secondary loudspeaker. This is illustrated in Figure 13.1.

primary source(s) e.g. stereo
loudspeakers in sound reproduction

controller

secondary or control
loudspeaker

Figure 13.1 Schematic of active absorption in a small room. In this case, a microphone
close to the secondary loudspeaker is used to provide an error signal for the
controller to minimize.



This was the first active absorber. More sophisticated active absorption systems
specifically alter the surface impedance of the control loudspeaker, towards a user-
specified target value. They may be configured as feedforward or feedback devices
and often constructed around single channel filtered-x LMS adaptive filter algor-
ithms. Recent developments have moved away from the use of superposition (inter-
ference), and resistive material is used in combination with active controllers to gain
actual dissipation. For instance, by using the active controller to maximize the particle
velocity through the resistive material and so maximize absorption, this concept was
also first suggested by Olsen and May [1].

13.1 Some principles of active control

In writing about this subject, it is necessary to go through some basic principles of
active control, as it is assumed that many readers will not be familiar with concepts of
adaptive filtering and active control.

The particular form of a control system is dictated by the physics of the environ-
ment in which it operates and the control task to which it is set. However, broad
classifications of control systems exist which are useful in differentiating between
certain very different approaches to the control problem. These classifications distin-
guish feedforward from feedback control systems, which may or may not be adaptive
to changes in their operating environment.

Consider the system in Figure 13.2. The signal s is corrupted by the addition of the
noise signal n at the first summing node, generating the observable signal d. At the
second summing node, a signal y is subtracted from d. The result of this subtraction is
the error signal, e.

. If y ¼ n, then the noise corruption on the signal s is removed, e¼ s; this is the
ideal.

. If y is a reasonable approximation of n, then some of the noise contamination is
removed, e � s; this is more realistic of what happens with active control systems.

. If y is largely uncorrelated with n, then the second summing node represents an
additional source of noise, further corrupting the signal s in e; this is to be
avoided.

The cancelling signal y is derived by filtering operations – through the filter block W
which is an adaptive filter, i.e. a filter that can change its coefficients to achieve the
required control – on the reference signal x. The optimal configuration of the adaptive
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Figure 13.2 A basic active noise control system to remove noise n from signal s.
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cancelling filter, W, is the inverse of the filter relating n to x. This case is illustrated in
Figure 13.3 in which the transfer function e/s is seen by inspection to be 1. The
noise added at the first summing node is perfectly cancelled at the second summing
node. Such perfect performance is never achieved in practice for several reasons, most
important among which are the imperfect implementation of the cancelling filter and
the imperfect correlation between the noise n and the reference x.

Consider the problem of imperfect correlation. The attenuation of the noise com-
ponent in d is a function of the coherence between noise and reference signal. The
attenuation increases as the coherence increases, and useful levels of noise attenuation
can only be achieved with high coherence between the reference and the noise signal;
this can pose problems in electroacoustic applications.

Ideally, an analytical solution for the necessary filter W would be derived; however,
computing the coefficients of the filter W is usually a non-trivial problem. Fortu-
nately, a computationally efficient iterative approach to the identification of neces-
sary filter coefficient exists; this is an adaptive filter running under the least mean
square (LMS) algorithm.

The technique uses an iterative search process to find the filter W that minimizes the
error e. The LMS algorithm discovered by Widrow and Hoff [2] has been found to be
robustly stable in many practical applications. It is also a clear, simple and computa-
tionally efficient approach to identifying W. There are other techniques for solving
minimization problems, but the LMS approach forms the basis of most contemporary
adaptive noise cancelling systems.

The weights of the filter W are updated using the following equation. The coeffi-
cients of the adaptive filter at the kþ 1 iteration is given by:

Wkþ1 ¼Wk þ 2�ekxk ð13:1Þ

where subscript k refers to iteration number, Wk is the vector of adaptive filter
coefficients at iteration k, ek the error at iteration k, � the update rate and xk is input
to the adaptive filter at iteration k.

The performance of the LMS algorithm is illustrated below by an example which is
also supplied in the MATLAB script simple_lms.m. A simulation of a discrete time
implementation of Figure 13.2 was coded, in which:

nk ¼ 0:5xk þ 0:2xk�1 ð13:2Þ
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Figure 13.3 A basic active noise control system to remove noise n from signal s.
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A length 2 adaptive filter W was updated using the LMS algorithm (Equation 13.1) in
a signal environment in which s was a simple sinusoid and x a random process.

The error signal is shown in Figure 13.4. The initial noise is seen to be quickly
cancelled leaving a pure sinusoidal wave, the signal s. The decay of the noise follows a
roughly exponential form, which is due to the convergence behaviour of the LMS
algorithm approximating the first-order convergence of a steepest descent algorithm.

The convergence of the two coefficients of the adaptive filter W is shown in Figure
13.5. The weights are seen to approach the optimal values implied by Equation 13.2.
This is very similar to the system shown in Figure 13.2, except that the white noise
signal is fed direct to x and then filtered to get the signal n.
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Figure 13.4 Removing noise from a sine wave using active control.
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Figure 13.5 Filter coefficients for filter W during training.

358 Active absorption and diffusion



Having studied some fundamentals of noise cancelling, it is now possible to con-
sider the practicalities of active impedance systems.

13.2 An example active impedance system and a general overview

Figure 13.6 shows a possible feedforward controller for an active impedance system
[3–6]. While there are other possible set-ups, this system allows some of the general
principles to be explained. A signal generator is driving the primary source in the top
left of the diagram. The role of the primary source is to generate acoustic waves for the
controller to operate on. In the diagram shown, this is constrained within a pipe (shown
dotted), but it could be within other spaces. The sound from the primary source then
propagates to the control surface (secondary loudspeaker) shown top right.

The control surface is instrumented to sense pressure and velocity. Consequently,
the impedance at the surface of the controller is known. Using an LMS algorithm, it
is possible to alter how the control loudspeaker moves so that the surface impedance
is some desired value.

The velocity vk at the control surface is sensed by integrating the output from a
miniature accelerometer mounted on the cone surface. An alternative technique would
use two closely spaced microphones [7, 8]. The pressure is measured using a surface
microphone. This pressure is then passed through the filter Fd. Fd is the desired admit-
tance, and consequently, the signal dk is the desired velocity. The desired and actual
velocities are subtracted to give an error signal, ek. If this error was zero, then the surface
admittance is as desired. If the error is non-zero, then the LMS algorithm is used to
change the weights of the adaptive filter W, to reduce the error. Consequently, there is an
adaptation time over which the error gradually converges to a small value, preferably
zero. Setting the correct value for the update rate given in Equation 13.1 is crucial to
achieving training, too large a value and the system never converges, too small a value,
and the convergence is very slow. There can be problems with instability during training.

The input to the adaptive filter is a signal xk which must correlate with the primary
source signal. The correlation is required otherwise all that the control surface will do
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Figure 13.6 A feedforward active impedance control system.
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is add additional noise. This signal can be derived from two places, forming either a
feedback or feedforward system. In a feedforward case, the signal xk is an electronic
feed from the primary signal source. This is the case shown in Figure 13.6. The great
advantage of feedforward is that it forms a stable system and no unstable feedback
can occur. The disadvantage is that an electronic feed of the source signals is required,
which means the active surface could be used with electroacoustic sound reproduction
systems such as stereo systems but not sound production systems such as acoustic
musical instruments or speech.

In the feedback case, a microphone picks up the signal from the primary source
(Figure 13.7). This can actually be the miniature microphone on the surface of the
control loudspeaker. With this system, however, there is potential for instability, as a
loop is formed which will become unstable if the gain of the loop exceeds 1. The
solution to this problem is to insert a feedback compensation filter F1 which is
designed to cancel the feedback path. The feedback cancellation is awkward; how-
ever, and if not entirely successful the system will go unstable. Alternatively, highly
directional loudspeakers and microphones can be used to steer energy from the
control source away from the microphone connected to the reference input, but
performance is frequency dependent.

The usual system is to train the coefficients of the adaptive filter, and once the error
is sufficiently low, to fix the coefficients. In this example, adaptation is used purely as
an efficient method for obtaining the filter coefficients W which may not be analyti-
cally derivable.

In order that the impedance converges to the correct value, the measurements on
which the control signal derivation is based must provide a true and accurate measure-
ment of the actual ratio of pressure and particle velocity. Any error in these measure-
ments will result in convergence to a value other than that desired by the user.
Transduction will introduce non-flat frequency responses onto the signals; these compon-
ents in the circuits will filter and change the signal response. The role of the plant model,
C1, is to compensate for the frequency responses of the transducers and other compon-
ents. The filter which models the plant is that referred to in the phrase ‘filtered-x’.
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Figure 13.7 A feedback active impedance control system.
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The design of the plant model presents significant problems. It may be sufficient to
measure the frequency response of the plant off-line with a noise or impulsive test
signal, and fit this with a finite impulse response (FIR) filter providing a reasonable
estimate of the actual plant response. The accuracy of the plant model appears to
determine whether or not convergence of the filter will be achieved, and over what
timescale adaptation may take place without the risk of instability [9].

There is some tolerance of plant model errors, which is fortunate since the object of
employing an adaptive active control system is to enable a controller to track changes
in its environment during operation. Any such changes will introduce errors between
the assumed and the current plant response. Where gross run-time alteration of the plant
res- ponse is anticipated, a run-time measurement of the plant which continually updates
filter C1 may be employed. This has been attempted using maximum length sequence
(MLS) signals at very low levels presented simultaneously with program material
[10]. Eriksson also reports techniques for on-line modelling [10].

In fact, while people may refer to the active absorption systems as adaptive, this is a
rather misleading name in many cases. The system might be adaptive during the training
of the system, but are most often used with the adaptation turned off, to do otherwise
risks instability in operation. But without adaptation ability, the system is vulnerable to
changes in the physical acoustics such as temperature changes and room occupancy.

A theoretical analysis of the significance of transduction errors for active impe-
dance control in a 1D waveguide is presented by Darlington et al. [11], along with
measured results derived from the intentional perturbation of pressure and velocity
control signals. It is concluded that the transducers and associated signal-conditioning
circuits should be calibrated to within 1 dB magnitude error and 5� phase error in
order to achieve better than 95 per cent acoustic absorption. This analysis is helpful
in that it identifies the significance of transduction errors, but a discussion of
the measurement method itself and its relation to a theoretically modelled ratio of
pressure and velocity at the surface of a loudspeaker cone is not attempted. This
relationship is important in two ways.

Physical measurements of the impedance at the loudspeaker cone depend on two
factors – the correct transduction of cone velocity and a suitable measurement of the
pressure at the cone surface. Velocity measurement can be done via a two-microphone
method or an accelerometer, but the position of the accelerometer is shown to be
crucial. Nicholson reports [3] that at frequencies as low as 150 Hz, significant
differences appear in the magnitude and phase of velocity between accelerometers
mounted at different points on the cone, as the local mass load encourages the onset of
non-pistonic motion. Accelerometer locations where the dust cap meets the cone are
most suitable. Nicholson also investigated microphone locations immediately adja-
cent to the control source cone and found that a frame mounting 5mm from the dust
cap was best. It is important that the microphone does not pick up the effects of the
cone vibration (the velocity) as otherwise the system becomes unstable.

Having given some sense of how an adaptive system might work in principle, the
following sections detail the application of these types of controllers.

13.3 Active absorption in ducts

When the system described in Section 13.2 is constrained to one-dimensional plane
waves, the controller is very successful. This would be the case for low frequency
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control within ducts. Figure 13.8 shows the modes in a duct with the controller turned
off (so the termination is the control loudspeaker, which is not being driven, the
termination impedance being dictated by the mechanical characteristics of the loud-
speaker). The plot shows the steady state response (t ¼ 0) and the resulting decay
when the primary source is turned off. Figure 13.9 shows the same situation but with
the controller in operation. The ability of the controller to add damping to the modes
and therefore make them decay faster is evident. The active absorber in this case had
been trained to achieve an impedance equal to the characteristic impedance of air for
plane waves.

13.4 Active absorption in three dimensions

It is possible to train the active absorber in a duct to a characteristic impedance, turn
the adaptation off, and then use the system within a room. Unfortunately, in this case
only small reductions in pressure are obtained. The controller surface does achieve
high absorption coefficients. Furstoss et al. [12] report absorption coefficients of
about 0.9, but the area over which this absorption is achieved is only in the region
of the loudspeaker cone. Consequently, while a high absorption coefficient is
achieved, the total absorption added to the room is small and so the effect on the
room is small.

In a 3D environment, the relationship between the control source surface impe-
dance and the modal behaviour of the room is not simple. The sound field in the room
is not plane, although it can be considered to result from the sum of a number of

Figure 13.8 Waterfall plot of decay of modes in a 4m duct, controller off (after Avis [5]).
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normal modes which individually are plane waves [13]. There exist three orthogonal
coordinate axes for particle velocity rather than the single axis within the duct, and
the velocity of the controlling driver may lie in the plane of one coordinate or perhaps
none of the three. The meaning of a characteristic impedance is therefore no longer
clear, and hence it follows that the characteristic impedance solution for the duct is
unlikely to result in optimal control of the modal behaviour of the room. Conse-
quently, a different target function is required. For instance, it might be possible to
train the system to minimize the pressure at one or more points in a room. This is then
a traditional active control system, and more on these can be found in Nelson and
Elliot [14].

Alternatively, it is possible to consider the relationship between surface pressure
and velocity in terms of the power radiated by the source. It can be shown that in
certain circumstances the power radiated becomes negative, corresponding to absorp-
tion of energy by the source. When a pistonic sound source radiates acoustic power at
low frequency, the power radiated is proportional to pv*, where v is the velocity,
p the total pressure and * indicates a complex conjugate. If the velocity of the source
can be controlled to minimize the power radiated, which is equivalent to maximizing
the ingoing intensity, the source is then absorbing acoustic power. This has, however,
rather simplified the situation, as the pressure across the cone is not constant, and the
total pressure at the cone will contain direct and reflected components from primary
and secondary sources. The risk with maximizing the ingoing intensity is that the
controller will achieve this by maximizing the pressure, and so the sound pressure
levels within the room will increase. For this reason, this control target is rather
problematical.

Figure 13.9 Waterfall plot of decay of modes in a 4 m duct, controller on (after Avis [5]).
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Another problem with this system is that there is no energy dissipation. The active
absorption is generated by superposition or interference. In effect, the active control
system works by changing the radiation impedance of the primary and secondary
sources in the room rather than by absorbing energy from waves radiated by the
primary source. Consequently, what these active absorption systems achieve is a
reduction in radiated power [15]. To really achieve, absorption requires a proper
dissipation mechanism – this can be achieved through hybrid designs discussed in
Section 13.5. In the following two sections, however, some experimental results from
modal control using adaptive and non-adaptive techniques are presented.

13.4.1 Low frequency modal control – example results

Consider the system described in the previous section. This system will be used to try
and deal with low frequency modes that are present in a room. Figures 13.10 and
13.11 compare the pressure distribution of the primary axial mode in a room with the
controller on and off. In this example, the controller reduces the steady state pressure
in the mode by about 6 dB. In this case, a single 8 inch loudspeaker is capable of
almost halving the decay time of the first axial mode, which is at �44Hz.

These systems work for single modes well isolated in frequency. As soon as modes
become degenerate, the active controller has problems. If many modes need to be
controlled, many control loudspeakers need to be used. There is probably a need for
one control loudspeaker per mode. Consequently, a full control system is going to be
expensive to implement.
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Figure 13.10 Distribution of pressures in a small room for the main axial mode (about
44 Hz). Controller off (after Avis [5]).
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13.4.2 Low frequency modal control – alternative control regime

Adaptive systems incur significant cost, both in terms of hardware and in terms of
constraints on operation due to stability and convergence issues. This has motivated
several authors to look for other non-adaptive control regimes for modal control
[16–19]. Below is a short description of one of these. Avis [17] examined an analytical
modal decomposition to derive a control filter which acts to reduce the modal quality
factor by the user-defined relocation of system poles. The aim was to go further than
conventional steady state equalization, since the psychoacoustic cues for the detection
of resonance have been shown to be related to time domain rather than frequency
domain modal artefacts [20]. Additionally, this has potential for controlled equaliza-
tion across the whole sound field.

A standard expression for the sound field in a room is in terms of a modal
decomposition [21]. The modal decomposition implies that the sound field may be
considered as the sum of a large number of second-order functions; these functions
can be implemented as infinite impulse response (IIR) biquad filters. The coefficients
of these filters are determined by fitting responses to measurements in the physical
sound field. Figures 13.12 and 13.13 show an example of the fitting of magnitude and
phase for two modes in a small room.

A secondary source is used to radiate pressures, which combine with the natural
sound field of the room to generate modes with smaller Q factors, i.e. ones that decay
faster. Figures 13.14 and 13.15 show a typical result. The controller is formulated
such that the poles of the controlled sound field are relocated further away from the
unit circle than the uncontrolled case. The controller works well at the measurement
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Figure 13.11 Distribution of pressures in a small room for the main axial mode (about
44 Hz). Controller on (after Avis [5]).
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point used to fit the IIR filters, but operates less effectively at locations remote from
that point.

This system can be used to control multiple modes simultaneously. Because the control
technique mimics the action of the addition of damping, the time, frequency and spatial
aspects of the modal nature of the sound field are all addressed simultaneously and in

Figure 13.12 Example fitting of measured magnitude of modal response ( ) to
biquad model ( ) (after Avis [17]).

Figure 13.13 Example fitting of measured phase of modal response ( ) to
biquad model ( ) (after Avis [17]).

366 Active absorption and diffusion



sympathy. The effectiveness of control is again limited to situations where the modes are
widely spaced and not degenerate. The sensitivity of this control regime to changes in
room conditions is unknown. Presumably it would be necessary to regularly recalibrate
the system for the damping to remain efficient.
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Figure 13.14 Effect of biquad controller designed for a single mode at 44 kHz (after Avis
[17]).
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Figure 13.15 Effect of biquad controller designed for a single mode at 44 kHz (after Avis
[17]). Controller off; Controller on.
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13.5 Hybrid active–passive absorption

The above adaptive systems have not had explicit dissipation mechanisms included;
they have worked by a process of interference or superposition. It makes sense to try
to include some form of real resistance as better performance can be achieved.
Consequently, this is a hybrid approach involving the combination of absorbent
material with an active controller. Indeed, Olson and May [1] considered the possib-
ility of using their secondary loudspeaker to absorb sound by placing it behind
acoustically resistant cloth and to use the active controller to maximize the dissipation
of energy in the cloth. A concise summary of the development of the hybrid approach
is given by Smith et al. [22].

Furstoss et al. [12] picked up the hybrid concept in the 1990s and made it into a
useable device. It is mostly their work which is reported below. A piece of resistive
material is placed in front of the active element, and the absorber is made efficient by
creating a virtual quarter wavelength resonator behind (as though the resisistive
material is a quarter of a wavelength from a rigid wall). A typical set-up is shown
in Figure 13.16. In the example shown, the surface of the control loudspeaker is
instrumented to measure velocity and pressure, and this is used as inputs to an active
controller, which drives the control loudspeaker. The controller is tasked with setting
the appropriate backing impedance condition. The active control system avoids the
need for a large air gap as would be required for a passive resonant absorber at low
frequency. Furthermore, it can produce broadband efficiency rather than the limited
bandwidth achieved by the passive quarter wave resonant absorbers.

At low frequency the pressure drop across the resistive material can be given by the
flow resistivity and particle velocity:

p2 � p1



¼ �d ð13:3Þ

where p2 and p1 are the pressures at the front and the rear of the resistive material,

 the particle velocity, � the flow resistivity, and d the material thickness.

If the active element renders the backing pressure to be zero (like a quarter
wavelength tube), the impedance of the layer is:

z ¼ p2



¼ �d ð13:4Þ

controller
resistive material

incident sound

Figure 13.16 A hybrid active–passive absorber.
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This is the flow resistance of the resistive material, which should be set to the
characteristic impedance to maximize absorption.

Therefore, an alternative set-up to Figure 13.16 is to place a microphone at the rear
of the porous material, and a controller is then tasked with minimizing the pressure at
microphone. Figure 13.17 shows the results from such an arrangement. High absorp-
tion across a relatively wide frequency range is achieved. Absorption is not as high for
oblique incident sound, averaging around 0.6–0.7 for an angle of incidence,  ¼ 60�,
because for that case the optimal backing pressure for maximum absorption is no
longer zero – see below. When used in an array of active absorbers, good performance
is achieved although transduction problems currently limit the useful frequency range
to 1 octave around 280 Hz.

While this above regime works for low frequencies, this anechoic termination
becomes less successful as the frequency increases. Furstoss et al. [12] showed that a
better termination criteria is obtained by considering the optimal backing impedance
more completely. Consider a porous layer between two fluids as shown in Figure 3.18.
The impedance at the front face can be found using the transfer matrix approach
described in Chapters 1 and 5. The impedance at the back face is:

zb ¼
zck

kx
� �jzf cotðkxdÞ þ zck=kx
zf � jzck=kx cotðkxdÞ ð13:5Þ

where zf is the impedance on the front face and kx is the component of the wave-
number in the porous layer in the x-direction (which can be found from Equations 5.9
and 5.10). The wavenumber k and characteristic impedance zc in the porous medium
can be found using the porous absorber models given in Chapter 5. By considering
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Figure 13.17 Absorption coefficient for a resistive material with and without an active
controller backing minimizing the pressure at the rear of the material. The
distance r refers to the distance of the microphone from the centre of the
control loudspeaker. ����������������� Material with rigid backing;
Hybrid absorber, r¼10 cm; Hybrid absorber, r¼ 0 cm (after
Furstoss et al. [12]).
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Equation 13.5, the optimal backing impedance for maximum absorption can be
found for a particular angle of incidence by setting zf ¼ p0c0/cos ( ).

Figure 13.19 shows the optimal backing impedance for a particular situation, where
the porous material is offering a resistance close to p0c0. At low frequency, the optimal
backing impedance is zero similar to a zero pressure condition, as indicated before, but as
the frequency increases, the optimal backing impedance also changes. It will also change
with the porous material’s resistance and the angle of incidence. Consequently, minimiz-
ing the backing pressure does not necessarily produce optimal absorption, although in
the case shown it will be fairly effective below 1kHz. This impedance matching
approach requires pressure and velocity transducers on the active control surface.

Smith et al. [22] compared the impedance matching exemplified by Equation 13.5
and pressure release control conditions. They found that the impedance matching
approach was superior, requiring less control effort and achieving higher absorption
coefficients. Absorption coefficients ranged from 0.8 to 1 from 100 to 1 kHz.
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Figure 13.18 Geometry under consideration when determining optimal backing imped-
ance for hybrid active–passive absorption.
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Figure 13.19 Optimal normalized backing impedance for a hybrid active–passive
absorber.
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An alternative approach to hybrid absorption was developed by Guigou and Fuller
[23]. They used a smart foam design which integrated a lightweight distributed
piezoelectric PDVF actuator – the active component – between individual layers of
sound absorbing foam – the passive component – such that the control can efficiently
operate over a broad range of frequencies. The foam providing absorption passively at
high frequencies, and the active element in collaboration with the foam providing
absorption at low frequencies. In this case, the active surface is being used to reduce
the radiated power from a vibrating surface.

13.6 Active diffusers

Although passive diffusers have found a wide range of applications, difficulties
arise due to non-acoustic constraints. For example, the space available for diffu-
sers is usually limited. To achieve diffuse reflections, a passive diffuser must be
significantly deep compared to the wavelength of sound, and at low frequencies
building space costs generally limit the depth of the diffuser and the performance is
compromised. An active device offers the possibility of producing a diffuser that
works at a lower frequency from a given available depth when compared to a
passive device.

Another limitation in diffuser design comes from the visual requirements set by
interior designers or architects [24]. A good diffuser must be a unified part of the
architectural design, rather than an obvious add-on. While it is possible to achieve
rough surfaces that are pleasing to many, there is an appeal in having a flat surface
that creates diffuse reflections. Potentially, active surfaces could form surfaces that
appear to be visually flat and uniform, but are actually dispersing sound. A final
advantage that an active surface has over a passive device is that variability can be
easily achieved. Many rooms have to be multi-purpose, and active elements have the
potential to enable the acoustics of a space to be changed.

The structures and control regimes described for active absorbers can be adapted to
make active diffusers. Instead of absorption, the surface will aim to break up wave-
fronts and so create dispersion without adding damping. This work is currently in its
early stages [25], so only concepts are presented here.

Figure 13.20 shows a possible structure for actively diffusing surfaces. A Schroeder
diffuser profile is used with active elements substituting for one or more of the wells.

Figure 13.20 Artist’s impression of an active diffuser (after Cox et al. [25]).
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Passive Schroeder diffusers break up the reflected wavefront using phase changes.
These phase changes are introduced by the wells of differing length on which the
sound is incident – plane waves propagate within the wells and take different times to
propagate up and down the wells because of the different depths. Consequently, the
simplest model for an active diffuser uses the active elements to produce additional
low frequency dispersion by controlling the well termination impedance to simulate a
deeper well.

A Schroeder style device is appealing for many reasons as the active element is
constrained within a pipe, simplifying the modelling and measurement of termination
impedance. Only plane wave radiation and propagation needs to be considered at the
frequencies of interest. The disadvantage is that the surface is always going to look
like a diffuser.

The high frequency diffusion is provided by the passive elements in the Schroeder
diffuser, and the active elements deal with the low frequencies. There is a comple-
mentary relationship between the passive and active elements, as there was with
hybrid active absorbers, which is again exploited.

Initial simulations of the active diffuser using the control structures shown in
Figures 13.6 and 13.7 have investigated the use of an active diffuser to replace the
longest wells within a Schroeder diffuser. The task of the active elements is to make
the wells look longer than they physically are. Consequently, the desired admittance
will be a j tan(kd) function, where k is the wavenumber and d the additional depth
required for the active well. As this function has a series of singularities within it, it is
necessary to introduce a small amount of resistance to make the filter Fd in Figure
13.6 or 13.7 stable.

Figure 13.21 shows a simulation of the diffusion coefficient for a passive diffuser,
and an active diffuser where the deepest wells have been replaced by shorter active
wells, very similar performance is achieved. Many practical problems associated with
the active diffuser still remain to be overcome.
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Figure 13.21 The diffusion coefficient from an active and passive diffuser, and a plane
surface. For most frequencies, the passive and active diffuser results are the
same and the lines overlay each other (after Cox et al. [25]).
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13.7 Summary

This chapter has discussed the use of active elements to achieve improved absorption
or greater dispersion. The main advantage of active control is that it overcomes the
need for large passive surfaces which are needed at low frequencies where sound
wavelengths are long. Unfortunately, the cost and practical difficulties associated with
this technology have meant that its use is not widespread. Some believe, however, that
active systems are the future of low frequency absorber and diffuser technology.
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Appendix A

A.1 Table of absorption coefficients

Material Frequency (Hz)

125 250 500 1000 2000 4000

Curtains or drapes
Light velour 0.338 kg/m2 hung straight in contact

with wall [1]
0.04 0.05 0.11 0.18 0.30 0.35

Medium velour 0.475 kg/m2, hung straight [1] 0.05 0.07 0.13 0.22 0.32 0.35
Medium velour 0.475 kg/m2, draped to half

area [1]
0.07 0.31 0.49 0.75 0.70 0.60

Heavy velour 0.61 kg/m2, hung straight [1] 0.05 0.12 0.35 0.48 0.38 0.36
Heavy velour 0.61 kg/m2, draped to half area [1] 0.14 0.35 0.55 0.77 0.70 0.60

Variation with draping
Hung straight [2] 0.04 0.16 0.19 0.17 0.20 0.25
Draped to half area [2] 0.15 0.25 0.30 0.28 0.35 0.40
Draped to 40% of area [2] 0.19 0.31 0.35 0.34 0.44 0.50
Curtains in folds against wall [3] 0.05 0.15 0.35 0.40 0.50 0.50

Cotton curtains, 0.475 kg/m2

Draped to 7/8 area [4, 5] 0.03 0.12 0.15 0.27 0.37 0.42
Draped to 3/4 area [4, 5] 0.04 0.23 0.40 0.57 0.53 0.40
Draped to 1/2 area [4, 5] 0.07 0.37 0.49 0.81 0.65 0.54

Carpet
Carpet heavy, on concrete [2] 0.02 0.06 0.14 0.37 0.60 0.65
Heavy carpet (same as line above) on foam

rubber or 1.35 kg/m2 hair felt [2]
0.08 0.24 0.57 0.69 0.71 0.73

Heavy carpet (same as two lines above) with
latex backing on foam rubber or 1.35 kg/m2

hair felt [2]

0.08 0.27 0.39 0.34 0.48 0.63

Haircord on felt [6] 0.10 0.15 0.25 0.30 0.30 0.30
Pile and thick felt [6] 0.07 0.25 0.50 0.50 0.60 0.65
No underlay (pad), woven wool loop, 1.2 kg/m2

2.4mm pile height [2]
0.10 0.16 0.11 0.30 0.50 0.47

No underlay (pad), woven wool loop, 1.4 kg/m2

6.4mm pile height [2]
0.15 0.17 0.12 0.32 0.52 0.57

No underlay (pad) woven wool loop, 2.3 kg/m2

9.5mm pile height [2]
0.17 0.18 0.21 0.50 0.63 0.83

Loop pile tufted carpet, 1.4 kg/m2, hair underlay
1.4 kg/m2 [2]

0.03 0.25 0.55 0.70 0.62 0.84



A.1 Table of absorption coefficients (Continued)

Material Frequency (Hz)

125 250 500 1000 2000 4000

Loop pile tufted carpet, 1.4 kg/m2, hair underlay
3.0 kg/m2 [2]

0.10 0.40 0.62 0.70 0.63 0.88

Loop pile tufted carpet, 1.4 kg/m2, hair and jute
underlay 3 kg/m2 [2]

0.20 0.50 0.68 0.72 0.65 0.90

Loop pile tufted carpet, 1.4 kg/m2, no underlay [2] 0.04 0.08 0.17 0.33 0.59 0.75
Loop pile tufted carpet, 0.7 kg/m2, 1.4 kg/m2

hair underlay pad [2]
0.10 0.19 0.35 0.79 0.69 0.79

16 mm wool pile with underlay [1] 0.20 0.25 0.35 0.40 0.50 0.75
9.5mm wool pile no underlay on concrete [1] 0.09 0.08 0.21 0.26 0.27 0.37
Cord carpet [3] 0.05 0.05 0.10 0.20 0.45 0.65
Thin (6mm) carpet on underlay [7] 0.03 0.09 0.20 0.54 0.70 0.72
6mm pile carpet bonded to closed-cell foam

underlay [7]
0.03 0.09 0.25 0.31 0.33 0.44

Thick (9mm) carpet on underlay [2] 0.08 0.08 0.30 0.60 0.75 0.80
Needle felt 5 mm stuck to concrete [8, 9] 0.01 0.02 0.05 0.15 0.30 0.40
Thin carpet cemented to concrete [11] 0.02 0.04 0.08 0.2 0.35 0.4

Other floors
Wood block/lino/rubber flooring [6] 0.02 0.04 0.05 0.05 0.1 0.05
Parquet fixed with asphalt, on concrete [1] 0.04 0.04 0.07 0.06 0.06 0.07
Wood on solid floor [1] 0.04 0.04 0.03 0.03 0.03 0.02
Floors, wood [2] 0.15 0.11 0.10 0.07 0.06 0.07
Wood platform, large airspace below [1] 0.40 0.30 0.20 0.17 0.15 0.10
Floor boards on joist floor [6] 0.15 0.20 0.10 0.10 0.10 0.10
Floors, concrete or terrazzo [2, 10] 0.01 0.01 0.015 0.02 0.02 0.02
Concrete floor [11] 0.01 0.02 0.02 0.02 0.02 0.02
Linoleum or vinyl stuck to concrete [12, 9] 0.02 0.02 0.03 0.04 0.04 0.05
Linoleum, asphalt tile or cork tile on

concrete [2, 5, 13]
0.02 0.03 0.03 0.03 0.03 0.02

Layer of rubber, cork, linoleum and underlay
or vinyl and underlay, stuck to concrete [18, 9]

0.02 0.02 0.04 0.05 0.05 0.10

Cork, lino or rubber tile on solid floor [1] 0.04 0.03 0.04 0.04 0.03 0.02
25 mm cork on solid backing 0.05 0.1 0.2 0.55 0.6 0.55
Slate [1] 0.01 0.01 0.01 0.02 0.02 0.02

Theatre seating, unoccupied
Beranek’s values [14] 0.19 0.37 0.56 0.67 0.61 0.59
Average of nine modern seating designs, 0.9m

row spacing [15]
0.34 0.46 0.64 0.71 0.77 0.85

One seat type, 0.8m row spacing [15] 0.29 0.39 0.61 0.74 0.83 0.88
Same seat as line above, 0.9m row spacing [15] 0.25 0.35 0.58 0.70 0.78 0.84
Same seat as two lines above, 1 m row

spacing [15]
0.23 0.34 0.52 0.65 0.73 0.75

Upholstered seating [6] 0.45 0.60 0.73 0.80 0.75 0.64
Upholstered seating, well upholstered [16] 0.44 0.60 0.77 0.89 0.82 0.70
Upholstered seating, leather covered [16] 0.40 0.50 0.58 0.61 0.58 0.50

Seating, occupied
Occupied theatre seating average from

References 1 and 15
0.41 0.58 0.80 0.90 0.92 0.89

Audience on timber seats (1/m2) [2] 0.16 0.24 0.56 0.69 0.81 0.78
Audience on timber seats (2/m2) [2] 0.24 0.4 0.78 0.98 0.96 0.87



Material Frequency (Hz)

125 250 500 1000 2000 4000

Orchestra with instruments (1.5m2/person) [2] 0.27 0.53 0.67 0.93 0.87 0.8
Wooden pews (100% occupancy) [16] 0.57 0.61 0.75 0.86 0.91 0.86
Wooden chairs (100% occupancy) [16] 0.60 0.74 0.88 0.96 0.93 0.85
Wooden pews (75% occupancy) [16] 0.46 0.56 0.65 0.75 0.72 0.65

Miscellaneous
Water surface in swimming pool [17] 0.01 0.01 0.01 0.01 0.02 0.02
Water surface in swimming pool [2] 0.008 0.008 0.013 0.015 0.02 0.025
Marble or glazed tile [2] 0.01 0.01 0.01 0.01 0.02 0.02
Solid wooden door [18, 9] 0.14 0.10 0.06 0.08 0.10 0.10
Ventilation grille [8, 9] 0.60 0.60 0.60 0.60 0.60 0.60

Wood
Plywood panelling, 1 cm thick [2, 10] 0.28 0.22 0.17 0.09 0.1 0.11
22 mm chipboard, 50 mm cavity filled with mineral

wool [18, 9]
0.12 0.04 0.06 0.05 0.05 0.05

3–4mm plywood sheets, >75 mm cavity with
25–50mm mineral wool [8, 9]

0.50 0.30 0.10 0.05 0.05 0.05

Plywood/hardwood, air space [6] 0.32 0.43 0.12 0.07 0.07 0.11
6 mm wood fibreboard on laths, cavity >100mm

deep [18, 9]
0.30 0.20 0.20 0.10 0.05 0.05

Fibreboard, solid backing [6] 0.05 0.1 0.15 0.25 0.3 0.3
Fibreboard, 25 mm air space [6] 0.3 0.3 0.3 0.3 0.3 0.3
9.5–12.7 mm wood panelling, 5–10 cm air space

behind [1]
0.30 0.25 0.20 0.17 0.15 0.10

Wood, 50 mm thick 0.01 0.05 0.05 0.04 0.04 0.04

Concrete
Rough concrete [19] 0.02 0.03 0.03 0.03 0.04 0.07
Smooth unpainted concrete [18, 9] 0.01 0.01 0.02 0.02 0.02 0.05
Smooth concrete, painted or glazed [18, 9] 0.01 0.01 0.01 0.02 0.02 0.02
Concrete block, coarse [2] 0.36 0.44 0.31 0.29 0.39 0.25
Concrete block, painted [2, 5, 13] 0.10 0.05 0.06 0.07 0.09 0.08
Porous concrete blocks without surface finish,

400–800 kg/m3 [9]
0.05 0.05 0.05 0.08 0.14 0.20

Clinker concrete, no surface finish, 800 kg/m3 [8, 9] 0.10 0.20 0.40 0.60 0.50 0.60

Bricks and blocks
Brick, unglazed [2] 0.03 0.03 0.03 0.04 0.05 0.07
Brickwork, plain painted [6] 0.05 0.04 0.02 0.04 0.05 0.05
Smooth brickwork with flush pointing, painted [17] 0.01 0.01 0.02 0.02 0.02 0.02
Brick, unglazed, painted [2] 0.01 0.01 0.02 0.02 0.02 0.03
Smooth brickwork with flush pointing [18, 9] 0.02 0.03 0.03 0.04 0.05 0.07
Smooth brickwork, 10 mm deep pointing, pit sand

mortar [8, 9]
0.08 0.09 0.12 0.16 0.22 0.24

Breeze block [6] 0.2 0.3 0.6 0.6 0.5 0.5

Plaster
Lime cement plaster [18] 0.02 0.02 0.03 0.04 0.05 0.05
Glaze plaster [18, 9] 0.01 0.01 0.01 0.02 0.02 0.02
Painted plaster surface [8, 9] 0.02 0.02 0.02 0.02 0.02 0.02
Plaster with wallpaper on backing paper [18, 9] 0.02 0.03 0.04 0.05 0.07 0.08
Plaster, gypsum or lime, rough finish on

lath [20, 10]
0.02 0.03 0.04 0.05 0.04 0.03



A.1 Table of absorption coefficients (Continued)

Material Frequency (Hz)

125 250 500 1000 2000 4000

Plaster, gypsum or lime, smooth finish on lath [2] 0.14 0.1 0.06 0.04 0.04 0.03
Plaster, gypsum or lime, smooth finish on

lath [20, 10]
0.02 0.02 0.03 0.04 0.04 0.03

Plaster, on laths/studs, air space [6] 0.3 0.1 0.1 0.05 0.04 0.05
Plaster, gypsum or lime, smooth finish on tile

or brick [2]
0.013 0.015 0.02 0.03 0.04 0.05

Plaster, lime of gypsum on solid backing [6] 0.03 0.03 0.02 0.03 0.04 0.05
Acoustic plaster [6] 0.30 0.35 0.5 0.7 0.7 0.7
Acoustic plaster, 40 mm thick [21] 0.31 0.55 0.84 0.78 0.71 0.54
Acoustic plaster, 68 mm thick [21] 0.47 0.74 0.76 0.65 0.62 0.49

Plasterboard
Gypsum board, 1.27 cm nailed to studs

with 4.1m c-t-c [2]
0.29 0.1 0.05 0.04 0.07 0.09

Plasterboard on frame, 9.5mm boards, 10 cm
empty cavity [22, 9]

0.11 0.13 0.05 0.03 0.02 0.03

Plasterboard on frame, 9.5mm boards, 10 cm
cavity filled with mineral wool [22, 9]

0.28 0.14 0.09 0.06 0.05 0.05

Plasterboard on frame, 13mm boards, 10 cm
empty cavity [22, 9]

0.08 0.11 0.05 0.03 0.02 0.03

Plasterboard on frame, 13mm boards, 10 cm
cavity filled with mineral wool [22, 9]

0.30 0.12 0.08 0.06 0.06 0.05

2*13mm plasterboard on steel frame, 5 cm
mineral wool in cavity, surface painted [12, 9]

0.15 0.10 0.06 0.04 0.04 0.05

Glazing
Glass, ordinary window glass [2, 10] 0.35 0.25 0.18 0.12 0.07 0.04
Single pane of glass, 3–4mm [6] 0.2 0.15 0.1 0.07 0.05 0.05
Single pane of glass, >4 mm [6] 0.1 0.07 0.04 0.03 0.02 0.02
Single pane of glass, 3 mm [22, 9] 0.08 0.04 0.03 0.03 0.02 0.02
Double glazing, 2–3mm glass, 1 cm gap [8, 9] 0.10 0.07 0.05 0.03 0.02 0.02
Double glazing, 2–3mm glass, >3 cm gap [22, 9] 0.15 0.05 0.03 0.03 0.02 0.02
Glass, large panes, heavy glass [2, 5, 13] 0.18 0.06 0.04 0.03 0.02 0.02

Mineral wools and foam
25 mm fibreglass, rigid backing [23] 0.08 0.25 0.45 0.75 0.75 0.65
2.54 cm fibreglass, 24–48kg/m3 [2] 0.08 0.25 0.65 0.85 0.8 0.75
2.5 cm fibreglass, 2.5 cm airspace [2] 0.15 0.55 0.8 0.9 0.85 0.8
5 cm fibreglass, rigid backing [23] 0.21 0.50 0.75 0.90 0.85 0.80
7.5 cm fibreglass, rigid backing [23] 0.35 0.65 0.80 0.90 0.85 0.80
10 cm fibreglass, rigid backing [23] 0.45 0.90 0.95 1.00 0.95 0.85
5 cm mineral wool (40 kg/m3), glued to wall,

untreated surface [8, 9]
0.15 0.70 0.60 0.60 0.85 0.90

5 cm mineral wool (40 kg/m3), glued to wall,
surface sprayed with thin plastic solution [8, 9]

0.15 0.70 0.60 0.60 0.75 0.75

5 cm mineral wool (70 kg/m3), 30 cm in front of
wall [8, 9]

0.70 0.45 0.65 0.60 0.75 0.65

5 cm wood-wool set in mortar [8, 9] 0.08 0.17 0.35 0.45 0.65 0.65
5.1 cm fibreglass, panels with plastic sheet

wrapping and perforated metal facing [2]
0.33 0.79 0.99 0.91 0.76 0.64

5.1 cm fibreglass, 24–48 kg/m3 [2] 0.17 0.55 0.8 0.9 0.85 0.8
Acoustic tile, 1.27 cm thick [5] 0.07 0.21 0.66 0.75 0.62 0.49
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Ballast or other crushed stone, 3.18 cm,
30.5 cm deep [2]

0.27 0.58 0.48 0.54 0.73 0.63

Ballast or other crushed stone, 3.18 cm,
45.7 cm deep [2]

0.41 0.53 0.64 0.84 0.91 0.63

Ballast or other crushed stone, 0.64 cm,
15.2 cm deep [2, 10]

0.22 0.64 0.7 0.79 0.88 0.72

Microperforated absorber
4 cm cavity [21] 0.08 0.27 0.70 0.35 0.11 0.04
40 cm cavity [21] 0.64 0.56 0.41 0.28 0.13 0.06

Diffusers
Hybrid absorber–diffuser (BAD

TM

panel
mounted on 2.5 cm fibreglass) [21]

0.17 0.40 0.86 1.00 0.84 0.61

2D N¼ 7 QRD
TM

, design freq. ¼ 500Hz [21] 0.14 0.12 0.14 0.20 0.09 0.12
2D N¼ 7 QRD as line above, with cloth

covering [21]
0.16 0.17 0.28 0.41 0.26 0.3

1D N¼ 7 QRD, design freq. ¼ 500 Hz [21] 0.11 0.1 0.07 0.08 0.06 0.06
1D N¼ 7 QRD as line above, with cloth

covering [21]
0.13 0.14 0.2 0.24 0.20 0.23

Appendix A 379



15 W. J. Davies, R. J. Orlowski and Y. W. Lam, ‘‘Measuring auditorium seat absorption’’,
J. Acoust. Soc. Am., 96, 879–888 (1994).

16 D. A. Bies and C. H. Hansen, Engineering Noise Control: Theory and Practice, E&FN
Spon, 2nd edn (1996).

17 V. O. Knudsen and C. M. Harris, Acoustical Designing in Architecture, John Wiley
(1953).

18 H. W. Bobran, Handbuch Der Bauphysik, Verlag Ulstein, Berlin (1973).
19 ISO/TR 11690-3, ‘‘Acoustics – recommended practice for design of low-noise workplaces

containing machinery – Part 3: Sound propagation and noise predictions in workrooms’’
(1997).

20 D. Davis and C. Davis, Sound System Engineering, Focal Press (1997).
21 RPG Diffusor Systems Inc., www.rpginc.com
22 W. Fasold and H. Winkler, ‘‘Bauphysikalische entwurfslehre, band 4: bauakustik’’, VEB

Verlag für Bauwesen, Berlin (1976).
23 L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders, Fundamentals of Acoustics,

4th edn, John Wiley & Sons (2000).

380 Appendix A



Appendix B

MATLAB scripts

B.1 Chapter 5: script_5_1

%Absorption of a rigid backed porous absorber
%Using Delany and Bazley formulations
%Normal incidence absorption coefficients

close all
clear all

c¼ 340; %speed of sound
rho¼ 1.21; %density of air
Z0¼ c*rho; %characteristic impedance of air

sigma¼ 50000; %flow resistivity
l¼ 0.0254; %thickness
f¼ [100:50:10000]; %frequency
nf¼ length(f);

%Delany and Bazley
X¼ rho*f/sigma; %dimensionless quantity for Delany and Bazley
zc ¼ rho*c*(1þ 0:0571*(X:^ � 0:754)� j*0:087*(X:^ � 0:732)); %characteristic

impedance
k ¼ (2*pi/c):*f:*(1þ 0:0978*(X:^ � 0:700)� j*0:189*(X:^ � 0:595)); %complex

wave number

gamma¼ j*k; %propagation constant
z¼ zc.*coth (gamma*l) %surface impedance

figure
semilogx(f, real(z), ‘b’, f, imag (z), ‘g’);
title(‘Impedance of rigid backed porous absorber’)
xlabel(‘Frequency(Hz)’)
ylabel(‘Impedance’)
legend(‘Real’,‘Imaginary’)
R ¼ (z� Z0):/(zþ Z0); %reflection factor
figure
semilogx(f, abs(R),‘b’, f, angle(R), ‘g’);
title(‘Reflection factor of rigid backed porous absorber’)
xlabel(‘Frequency(Hz)’)



ylabel(‘Reflection factor’)
legend(‘Magnitude’,‘Phase’)
anormal¼ 1�abs(R).^2; %absorption coefficient

figure
semilogx(f, anormal);
title(‘Normal incidence abs. coeff. of rigid backed porous absorber’)
xlabel(‘Frequency(Hz)’)
ylabel(‘alpha’)

B.2 Chapter 5: script_5_2

%Absorption of a rigid backed porous absorber
%Using Delany and Bazley formulations
%Normal incidence absorption coefficients
%Demonstrating effects of thickness

close all
clear all

c¼ 340; %speed of sound
rho¼ 1.21; %density of air
Z0¼ c*rho; %characteristic impedance of air
sigma¼ 20000; %flow resistivity

f¼ [100:50:10000]; %frequency
nf¼ length(f);

%Delany and Bazley
X¼ rho*f/sigma; %dimensionless quantity for Delany and Bazley
zc ¼ rho*c*(1þ 0:0571*(X:^ � 0:754)� j*0:087*(X:^ � 0:732)); %characteristic

impedance
k ¼ (2*pi/c):*f:*(1þ 0:0978*(X:^ � 0:700)� j*0:189*(X:^ � 0:595)); %complex

wave number
figure(1)
hold on
for il¼ 1:4 %thickness loop

l ¼ (il� 0:5)*0:0254; %thickness
z ¼ �j*zc:*cot(k*l) %surface impedance
R ¼ (z� Z0):/(zþ Z0); %reflection factor
anormal¼ 1� abs(R).^2; %absorption coefficient
str¼ dec2bin(il, 3)
semilogx(f, anormal, ‘color’, [str2num(str(1)) str2num(str(2)) . . . str2num(str(3))]);
title(‘Abs. coeff., rigid backed porous absorber’)
xlabel(‘Frequency(Hz)’)
ylabel(‘alpha’)
strlegend(il, 1:6)¼ char(num2str(l,4));

end

legend(strlegend)
axis([100, 10000, 0, 1])
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B.3 Chapter 5: script_5_3

%Absorption of a rigid backed porous absorber
%Using Delany and Bazley formulations
%Normal incidence absorption coefficients

close all
clear all
c¼ 340; %speed of sound
rho¼ 1.21; %density of air
z0¼ c*rho; %characteristic impedance of air

%Frequency
f¼ [100:50:10000];
nf¼ length(f);

%Consider absorbent layer alone

%Delany and Bazley
sigma¼ 20000; %flow resistivity
X¼ rho*f/sigma; %dimensionless quantity for Delany and Bazley
zc ¼ rho*c*(1þ 0:0571*(X:^ � 0:754)� j*0:087*(X:^ � 0:732)); %characteristic

impedance
k ¼ (2*pi/c):*f:*(1þ 0:0978*(X:^ � 0:700)� j*0:189*(X:^ � 0:595)); %complex

wave number
l¼ 0.0254; %thickness
z ¼ �j*zc:*cot(k*l) %surface impedance

figure(1)
semilogx(f, real(z), ‘b’, f, imag(z), ‘g’);
title(‘Effect of air gap’)
xlabel(‘Frequency(Hz)’)
ylabel(‘Impedance’)
legend(‘Real’, ‘Imaginary’)

R ¼ (z� z0):/(zþ z0); %reflection factor
anormal¼ 1� abs(R).^2; %absorption coefficient

figure(2)
semilogx(f, anormal);
title(‘Effect of air gap’)
xlabel(‘Frequency(Hz)’)
ylabel(‘alpha’)

%Consider absorbent with air layer behind
l¼ l/2; %depth of air layer
kair¼ 2*pi*f/c;
zs1 ¼ �j*z0*cot (kair*l); %impedance at top of air layer
zs2 ¼ (�j*zs1:*zc:*coth(k*l)þ zc:^2):/(zs1þ zc:*coth(gamma*l)); %impedance

at surface of absorber

figure(1)
hold on
semilogx(f, real(zs2), ‘c’, f, imag(zs2), ‘m’);
title(‘Effect of air gap’)
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xlabel(‘Frequency(Hz)’)
ylabel(‘Impedance’)
legend(‘Real 25mm’, ‘Imaginary 25mm’, . . .

‘Real 12.5mm air gap’, ‘Imaginary 12.5mm air gap’)
R ¼ (zs2� z0):/(zs2þ z0); %reflection factor
anormal¼ 1� abs(R).^2; %absorption coefficient

figure(2)
hold on
semilogx(f, anormal, ‘r’);
title(‘Effect of air gap’)
xlabel(‘Frequency(Hz)’)
ylabel(‘alpha’)
legend(‘25mm absorbent’, ‘12.5mm absorbent and air gap’)

B.4 Chapter 6: script_6_1.m

%Absorption of a perforated absorber
%Normal incidence

close all
clear all

c¼ 340; %speed of sound
rho¼ 1.21; %density of air
Z0¼ c*rho;
viscosity¼ 15e� 6; %kinemetric viscosity of air
sigma¼ 20000; %flow resistivity of mineral wool
l1¼ 0.025; %backing thickness air
l2¼ 0.025; %backing thickness porous absorber
f¼ [100:50:2500]; %frequency
nf¼ length(f);

kair¼ 2*pi*f/c;
w¼ 2*pi*f;

%Impedance at top of air layer
z1¼�j*Z0.*cot(kair*l1);

%Calculate impedance of porous material (Delany and Bazley)
X¼ rho*f/sigma; %dimensionless quantity for Delany and Bazley
zc ¼ rho*c*(1þ 0:0571*(X:^ � 0:754)� j*0:087*(X:^ � 0:732)); %characteristic

impedance
k¼ (2*pi/c):*f:*(1þ0:0978*(X:^�0:700)� j*0:189*(X:^�0:595)); %wavenumber

%Impedance at top of porous absorbent
z2 ¼ (�j*z1:*zc:*cot(k*l2)þ zc:^2):/(z1� j*zc:*cot(k*l2));

%Loop over different open areas
eta¼ [0.0625, 0.125, 0.25, 0.50, 1.00]
ne¼ length(eta);
for m¼ 1: ne

a¼ 2.5e� 3; %hole radius
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D¼ sqrt(pi/eta(m))*a; %hole spacing
delta ¼ 1:6* (1� 1:47*eta (m)^0:5þ 0:47*eta (m)^3/2); %end correction
t¼ 6.3e� 3; %plate thickness
rm ¼ (rho/eta (m))*sqrt (8*viscosity*w) * (1þ t/(2*a)); %surface resistance
z3 ¼ (j/eta (m)) * (2*delta*aþ t)*w*rhoþ z2þ rm; %impedance of resonant

absorber
R ¼ (z3� rho*c):/(z3þ rho*c); %reflection factor
alpha¼ 1� abs(R).^2; %absorption coefficient

figure(1)
hold on
str¼ dec2bin(m, 3)
plot(f, real(z3), ‘color’, . . .
[str2num(str(1)) str2num(str(2)) str2num(str(3))] . . . , ‘LineStyle’, ‘�’);
plot(f, imag(z3), ‘color’, . . . [str2num(str(1)) str2num(str(2)) str2num(str(3))] . . . ,

‘LineStyle’, ‘:’);

figure(2)
hold on
plot(f, alpha, ‘color’, . . . [str2num(str(1)) str2num(str(2)) str2num(str(3))]);

end

B.5 Chapter 6: script 6_2.m

%Absorption of a slotted absorber
%Normal incidence

close all
clear all

c¼ 340; %speed of sound
rho¼ 1.21; %density of air
r0¼ 32; %air flow resistance of porous material¼

%flow resisitvity*thickness
l¼ 0.1; %backing thickness
f¼ [100 : 10 : 1100]; %frequency
nf¼ length(f); %number of frequency terms
k¼ 2*pi*f/c; %wavenumber
w¼ 2*pi*f; %angular frequency
z1¼ rho*c*coth(j*k*l); %impedance at top of air cavity
t¼ 15e� 3; %plate thickness
d¼ 0.01; %slot width
eta ¼ (0:0465*4*d)/(pi*0:05^2); %open area
delta ¼ �(d/pi)*log (sin(pi*eta/2)); %end correction
z2 ¼ (j/eta)*(2*deltaþ t)*w*rhoþ z1þ r0/eta; %impedance of resonant absorber

figure %plot impedance
plot(f, real(z2), ‘b’, f, imag(z2), ‘g’);
title(‘Impedance’)
xlabel(‘Frequency(Hz)’)
ylabel(‘Impedance’)
legend(‘Real’, ‘Imaginary’)
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R ¼ (z2� rho*c):/(z2þ rho*c); %reflection factor
anormal¼ 1� abs(R).^2; %absorption coefficient
figure %plot absorption coefficient
plot(f, anormal);
title(‘Normal incidence absorption coefficient’)
xlabel(‘Frequency(Hz)’)
ylabel(‘alpha’)

B.6 Chapter 6: script 6_3

%Microperforated
%Helmholtz absorber

close all
clear all

D¼ 2.5e� 3; %hole separation
d¼ 0.2e� 3; %hole diameter
a¼ d/2; %hole radius
t¼ 0.2e� 3; %sheet thickness
l¼ 0.06; %cavity depth

f¼ linspace(50, 8000, 100);
nf¼ length(f);
w¼ 2*pi*f;
c¼ 340;
k¼w/c;
rho¼ 1.21;
viscosity¼ 1.85e� 5;
eta¼ pi*a^2/(D^2); %open area
z1¼�j*rho*c*cot(k*l); %impedance, top of cavity;

%Impedance of covering sheet
kd¼ a*sqrt(rho*w/viscosity);
s¼ kd*sqrt(�j);
z2¼ j*w*rho*t./(1� 2*besselj(1, s)./(s.*besselj(0, s)));
z2¼ z2/etaþ j*w*0.85*2*rho*a/etaþ sqrt(2)*kd*viscosity/(2*a*eta);
z¼ z1þ z2;

R¼ (z� rho*c)./(zþ rho*c); %reflection factor
anormal¼ 1� abs(R).^2; %absorption coefficient

hold on
plot(f, anormal, ‘g’)
xlabel(‘f (Hz)’)
ylabel(‘abs. coeff’)

B.7 Chapter 13: simple_lms.m

%LMS demo

close all
clear all
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N¼ 10000; %number of time iterations
k¼ [1:N]; %this is inefficient for storage, but allows graphs to be plotted

s¼ sin(2*pi*k*10/N)’; %input signal

figure
plot(k, s)
title(‘Input signal s’)
xlabel(‘Time k’)
ylabel(‘(linear)’)

x¼ (rand(N,1)� 0.5)*2; %noise signal
figure
plot(k, x)
title(‘Noise signal x’)
xlabel(‘Time k’)
ylabel(‘(linear)’)

W_1¼ ([0.5,0.2]); %this is W^ � 1 in Figure 13.2
W¼ rand(1,2); %starting adaptive filter weights (assigned randomly)
alpha¼ 0.001; %update rate

e¼ zeros(N,1);
Wstore¼ zeros(N, 2);
n(1,1)¼ 0;
for j¼ 2 : N

n(j, 1) ¼W_1*x(j� 1 : j); %this is convolution in matrix format
%Note that W_1(2) is actually the first coefficient
%and W_1(1) is actually the second coefficient

d ¼ s(j)þ n(j);
y ¼W*x(j� 1 : j); %output from adaptive filter
e(j� 1) ¼ d� y; %error
W ¼Wþ 2*alpha*e(j� 1)*rot90(x(j� 1 : j), 1); %update weights
Wstore(j� 1, :)¼W; %store weights for future plotting

end

figure
plot(e)
title(‘Error’)
xlabel(‘Time k’)
ylabel(‘(linear)’)

figure
plot(Wstore(:, 1))
hold on
plot(Wstore(:, 2), ‘r’)
title(‘Adaptive filter coefficients’)
xlabel(‘Time k’)
ylabel(‘(linear)’)
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Index

1D diffuser 89–90

absorbers and absorbent materials:
bass traps/bins 13
granulated rubber 134
ground 4
measurement of 58–85

impedance tube 58–64
in situ 74–7
multi-microphone, free field 65–8
reverberation chamber method 68–71
two microphone, free field 64–5
see also flow resistance or resistivity;

impedance, characteristic; pore:
shape factor and characteristic
dimensions; porosity; tortuosity;
wavenumber

phase grating absorber 188–200
optimized 193–4

properties:
basic principles 6–22
characteristics of 1–2
hybrid absorber-diffuser 163
internal 78–84

seating and audience 71–4, 186–8
see also active absorbers; carpet,

absorption from; curtain absorption;
foam; Helmholtz absorber; hybrid
absorber–diffuser; membrane
absorber; microperforated absorber;
mineral wool; plaster, acoustic;
porous absorber; resonant absorbers;
seating absorption

absorbers and diffusers 33–6
comparison of 4–5
in rooms and geometric models 335–52

absorption coefficient 1
active absorber 369
carpet 135
concrete masonry unit 164
coustone/quietstone 137
curtains 134–5
definition 9–12, 18

different angles of incidence 153
foam 131
geometric room acoustic models 339–43,

349
granulated rubber 134
Helmholtz absorber 157, 160, 168–70,

178–9
hybrid absorber-diffusers 163, 313–14,

324, 327
measurement of 58–77
membrane absorber 159
microperforated absorber 164–5, 180–3
mineral wool 130
periodic profiled absorber 68
plaster 135
porous absorbent using transfer matrix

methodology 148–51
profiled absorber 190, 194–5
random incidence 9, 58, 68–71

finite and infinite sample 336–8
from free field 335–40, 343

reverberation chamber 338–9
scattering coefficient measurement 113,

115, 122, 125
Schroeder diffuser 265–6
seating 186–8

absorption versus diffusion reflection 4–5
active absorbers 13, 131, 369, 371, 372
active absorption:

in a small room 355
control system 359–60
control, principles of 356–9
in ducts 361–2
energy dissipation in 364
feedback/feedforward 360
hybrid with passive absorption 368–71
LMS 357
overview 359–61
in three dimensions 362–4

alternative control regime 365–8
example results 364–5
modal control 364–8
using biquad filters 365–8



active diffusers 44, 371–3
active impedance see active absorption;

active diffusers
active noise control 356
admittance 16–18, 196–7, 205, 267–8,

359
AES-4id-2001 see diffusion coefficient
air absorption 9
apparent specular absorption coefficient 113
audience absorption 186–8
audience canopy 47
auralisation 340, 344, 349
autocorrelation:

diffusion coefficient 106–7
hybrid absorber-diffusers 317–18, 320–1,

323–4, 327, 328–9
modulation/periodicity 248–51, 253
Schroeder diffusers 245–47

Barker sequence 249, 328
modulated diffuser array 250–4

bass traps/bins 13
beam tracing see geometric room acoustic

models
BEM see boundary element method
Bessel function 176, 181, 338
Biot theory 153
Bloch theorem 213
boss models 231
boundary element method (BEM) 202–30,

257
2D versus 3D 209
example predictions 68, 98–102, 280–4,

292–3, 332
external point pressures 209
Fast Multipole Method (FMM) 212
general solution method 205–19
Helmholtz–Kirchhoff integral

equation 204–5
non-unique solutions 207

Burton Miller method 207
CHIEF method 207

periodic formulation 212–15
scattering and diffusion coefficients 118,

121
Schroeder diffusers/absorbers 196–200,

216–19, 268–70
surface pressures 206–9
thin panel solution 209–12

accuracy 215–16
non-absorbing surface 210–11
planar thin surface with non-zero

admittance 211–12
transient 228–30

boundary plane measurement 89, 91–2,
98, 111

bulk modulus 16, 144–6, 154

canopy design see audience canopy; stage
canopy

carpet, absorption from 129, 135–6, 187–8
CDMPRD see Cox and D’Antonio modified

PRD
ceiling tile, acoustic 7
characteristic impedance see impedance,

characteristic
characteristic lengths 21, 144–5
Chinese remainder theorem 317

method 324–6
Schroeder diffusers 261–2, 264

Chu sequence 247, 255, 262
Cinerama Theatre 45–6
clear absorber 164
Cleveland Institute of Music 50
coherence 30–1
colouration, reducing 45–6

music practice rooms 39–43
sound reproduction 32–9

comb filtering 29, 35, 37–8, 103–4, 279,
291, 295, 305

compressibility 16
concave arc 288–90

focusing effects 52–3
polar responses 53, 102, 123, 289

concrete masonry unit (CMU) 164–5, 170
convex arcs 290–7
see also semicylinders

corner reflector 286
Corning Glass Centre 52
correlation scattering coefficient 109, 119,

120–4, 351
coustone/quietstone 137, 138
Cox and D’Antonio modified PRD

(CDMPRD) 244, 254, 272–3
curtain absorption 134–6

for different weight material 135
with different fullness of draping 134

curved diffuser 293
application of 24, 25, 45–7, 53–4, 297–8
cut-off frequencies 291–3
hybrid absorber-diffuser 324, 330–1
modulation 303–5
optimized 297–307

design process 298–301
results 301–3

polar responses 290, 293–5, 301
stage canopy 305–7
see also concave arc; convex arc;

semicylinders
cylinders see semicylinders

damping 13, 158, 160, 164, 191, 362, 366
Delany and Bazley empirical model 58,

141–3, 147, 150–3
density, effective 16, 146, 152

Index 397



Diffractal 256
diffraction 32

grating 294
diffsorption see hybrid absorber-diffuser
diffuse reflections:

from absorbers see hybrid
absorber-diffusers

geometric room acoustic models 104–7,
112, 124, 230, 340–1, 343–52

measurement and characterization
of 87–126

other methods for characterizing 124–6
in situ measurement of 124

diffuse sound field 11–12, 43, 69, 74, 118,
125, 336, 339, 341–2, 346

diffusers:
application, compared to absorption 4–5
applications and basic principles of 23–56
colouration, reducing 32–9, 45–6
echo control 23–32
focusing effects of concave surfaces 52–3
music practice room with 39–56
noise barriers 55
position of a listener from 36–7
reverberation chambers 43–4
road side barriers 53–5
sound reproduction 32–9
spaciousness 44–5
speech intelligibility in underground

(subway) stations 44
stage and audience canopies/shell 46–52
street canyons 55
surface/volume diffusers 43
visual appearance 25
wavefronts reflected from 26–8, 32
see also active diffusers; convex arcs;

curved diffuser; fractal diffusers;
geometric reflectors and diffusers;
hybrid absorber–diffuser; optimized,
diffusers; primitive root diffuser;
quadratic residue diffuser; Schroeder
diffuser; semicylinders; triangular
diffusers

‘diffusor’ 32
diffusion coefficient 87, 91, 98, 100–13,

118–20, 122–4, 270, 299
compared to scattering coefficient 32,

104–5, 120–2, 124
diffuser manufacturer and

application 105–6
geometric room acoustic models 106–7
obtaining polar responses 109–10
principle 107–9
Schroeder diffuser 87–8, 102
spectra 120–3, 247, 250, 302

active and passive diffusers 372
arrays of semicylinders 103

hybrid absorber-diffusers 323, 330–3
Schroeder diffusers 237, 252, 255, 260,

273
various diffusers 111

table 111–12
diffusorBlox 165
drapes see curtain absorption

early lateral energy fraction (ELEF) 106,
341, 350–1

echo 13–15, 23–32, 109
absorption verses diffuse reflection 4

edge diffraction 214, 221, 222, 229–30,
285, 343, 351

absorbers 64, 65, 77, 161, 337, 339
models 230

Edwina Palmer Hall 53
ellipses 112
end correction 167–8, 170
energy attenuation coefficient 9
envelopment see spatial impression
extended reaction 61, 150
Eyring formulation 10, 69, 126, 341, 346

Eyring–Norris equation 10

far field 99–102, 240, 267, 280–2, 317
see also near field

Fast Multipole Methods (FMM) 212
Feldman modified primitive root diffuser

(FMPRD) 243, 244
Fermant’s principle 279
fibreglass see mineral wool
fibrous absorbers see porous absorber
finite element analysis (FEA) 207, 229
flow impedance measurement 81–2
flow resistance or resistivity 21

active absorbers 368–9
defined 138–40
empirical formulations 139–40
measurement 78–81

alternating airflow method 79
direct airflow method 78
flow impedance 81–2
Ingard’s method 80

in models of porous absorbents 141–3,
146, 153

resonant absorption 169–70, 173–4
Schroeder diffusers/absorbers 190, 192,

196
units 138

flow through a perforated sheet 174
flutter echoes 14–15, 23, 39
FlutterFree 117, 163
FMPRD see Feldman modified primitive root

diffuser
foam 21, 129–33, 140–1, 336, 371

flow resistivity 139–40
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focussing see concave arc
Fourier synthesis see fractal diffusers
Fourier theory 122, 200, 226, 298

array, response of 281
hybrid absorber-diffusers 316, 327, 332
Schroeder diffuser 226, 228

fractal diffusers 231, 302, 308–11
Fourier synthesis 308–9
Fractional Brownian Diffusers (FBD) 309
random addition diffusers (RAD) 311
Schroeder diffuser (Diffractal) 255–7
step function addition 309–11

Fraunhofer prediction model 203, 225–9,
291

BEM model, comparison between 228–9
Kirchhoff solutions, comparison

between 229
Schroeder diffusers 240, 257, 266,

269–70
frequency response 97, 124–5, 159, 229,

284, 360–1
comb filtering 35, 37–8, 103
curved surfaces 291, 297
flat surface and a diffuser 28–31
music practice room 42
plane surface 277–9
room, low frequency 12–14
see also total sound field

Fresnel prediction model 203, 224–5, 277,
284, 291

genetic algorithm 77, 270, 322–3
geometric reflection point 36, 48, 278, 280,

283–4, 307
geometric reflectors and diffusers 276–311
see also convex arcs; curved diffuser;

optimized, diffusers; semicylinders;
triangular diffusers

geometric room acoustics models:
diffusion coefficients 106–7
modelling of scattering:

diffuse energy decays with reverberation
time of the hall 346

distributing the diffuse energy 346–8
early sound field wave model 346
radiosity and radiant exchange 346
ray re-direction 345
scattering coefficients 349–52
transition order using particle

tracing 345
user-defined transition order 345

polar responses 348
scattering coefficients 106–7, 344–52

glass fibre see mineral wool
glazing 163–4
global minimum 271
goniometer 89, 121

grating lobes 237–8, 241, 247–9, 251, 255,
260, 262, 282, 294, 297, 303, 317

Green’s function 204–5, 208–9, 214, 224–5,
270, 290

Hankel function 205–6
Helmholtz absorber 157–8, 194–5

absorption verses diffuse reflection 5
application 13, 161–5
clear absorber 164
design equations 166–70, 172–8
double resonators 180
end correction 167–8, 170
example calculations 178–80
example constructions 164
facing thickness, effect of 170
flow resistivity, effect of 169–70
hybrid absorber-diffuser 162–3
lateral orifices 183
measured impedance for 177–9
open area, effect of 168–9
random incidence absorption

coefficient 162
slotted 170, 178
slotted neck pate and a resistive

foil 184
see also microperforated absorber;

resonant absorber
Helmholtz mount 162
Helmholtz resonator 258, 260
Helmholtz–Kirchhoff integral equation 202,

204–5, 224, 228
Hemispherical diffuser 90
Hit Factory 36, 38
Huffman sequence 245–7
Hummingbird Centre 24–5, 297
Huygen’s construct for reflection from:

cylinder 27
flat surface 26
hybrid surface 30, 32
Schroeder diffuser 28

hybrid absorber-diffuser 38, 112, 163, 221,
313–34

1D 317
absorption 324–6
accuracy of simple theories 327–9
boundary element modelling 214–15,

332–3
construction of a 314–15
curved hybrid surface 314–16
designing curved hybrid surfaces 324
diffuse reflections 330–2
diffusion coefficient spectra 323, 330–3
number sequences 318–24
optimized 322–4
planar 313–14
polar responses 221, 319, 329–33
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hybrid absorber-diffuser (Continued )
random incidence absorption

coefficient 314
simplest theory 316–17
wavefronts (Huygen’s construct) 30, 32

hybrid active-passive absorber 368
hybrid curved diffuser (Digiwave) 316
see also hybrid absorber-diffuser

hybrid room models see geometric room
acoustic models

image processing, distortion in 300
image shift 4, 33, 48
image source modelling see geometric room

acoustic models
impedance:

active 359–61, 368–70
characteristic:

definition 15–16
empirical models for 141–3
measurement 82–3
phenomenological model 147

normalized 18
propagation constant and

characteristic 142
radiation 258–9
surface impedance 335–7, 340

admittance, reflection and absorption
coefficient 17–18

anisotropic materials 152–3
in situ measurement 74–7
measurement 60–8
measurement and prediction

compared 143, 151, 154, 179
resonant absorber 166, 173, 175–8,

181
rigid backed porous absorbent 20, 152
transfer matrix modelling 20, 148–53

impedance tube measurement 68, 76–7,
141, 151, 159, 178, 182, 200, 336–7

flow impedance 81
overview 60–1
standing wave method 61–2
transfer function method 62–4
wavenumber 82

impulse response 89, 93–4, 103, 113–14,
124, 229–30, 340

in a room 8, 10, 34
flat surface and a diffuser 28–31
music practice room before and after

treatment 41
scattered 92, 94
in situ measurement of absorption 74–5
see also total sound field

index sequences 245
infinite impulse response (IIR) 365–6
intelligibility see speech intelligibility

Kath and Kuhl method 71–4
Kirchhoff:

boundary conditions 213–14, 220–24
Fraunhofer solution, difference between,

228
predicted polar responses 221–3
prediction model 203, 208, 219–24, 225,

228–9, 284, 327, 332
Kresge Auditorium 46–7

Lambert’s cosine law 105, 107, 344–9, 352
lateral reflections 44–5
Live End Dead End (LEDE) 33
local reaction 151, 267–8

Man Made Mineral Fibres (MMMFs)
132–3, 140

Masonry units 42, 164–5
maximum length sequences (MLS) 44, 70,

89, 115, 251, 313, 317–19, 320–1, 324,
329, 332, 361

sequence diffuser 239–42
polar responses 242, 319

measurement of:
absorbent materials 58–86, 78–84
polar responses 88–103
scattering/diffusion 87–128

membrane absorber 13, 61, 163
design equations 166, 171–2

losses 172–78
example construction 158–61
isothermal 171
mechanisms 158–9
microperforation 182

microperforated absorber 164, 180–3
Millington equation 10, 69, 341, 342
mineral wool 129

in a partition 19
absorption mechanism 15
application 7, 11, 136, 140, 176
characteristic lengths 145
flow resistivity 140
in hybrid absorber-diffusers 313–14, 316,

326–7
local and extended reaction 151
manufacture 132–3
modelling 21
porosity 140
in resonant absorbers 13, 158
see also porous absorbent; porous

absorber
MLS see maximum length sequence
modal control 12–13, 40

active 364–7
mode matching prediction of scattering 230
modulation 162, 237–8, 262, 287–8, 294–5,

298–9, 301, 327–9
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curved surfaces 303–5
polar responses showing effects of 250–1,

254–5, 294–5, 329
Schroeder diffusers 248–55

modulo 235
Mommertz and Vorländer method see

scattering coefficient
multi-microphone measurement of

impedance and absorption:
free-field 64, 66, 198
for non-isotropic, non-planar surfaces 65–6
for periodic surfaces 66–8

music practice rooms 39–43

Navier–Strokes equation 183
near field:

acoustic holography 101
diffusers 36–7, 267

measurement 98–102
multi-microphone measurement 66
prediction models, and 213, 226
scattering 283
see also far field

noise control 2–3, 11, 13, 165
barriers 55
factories 11
porous absorbers 11

non-diffuse sound field 11–12, 43, 69, 74,
118, 125, 336, 339, 341–2, 346

non-environment 36
notch diffuser 244–5
number sequences:

optimized 247, 322–3
perfect array construction method 324
see also Barker sequence; Chu sequence;

Huffman sequence; index sequences;
maximum length sequences (MLS);
primitive root sequence; quadratic
residue sequence

optimized:
curved surface 276

application of 24–5, 46–7, 53–4, 297–8
design process 298–301
modulation 303–5
results 301–3
stage canopy 305–7

diffuser 112, 124, 330–1
diffusion coefficient 105
fractals 311
hybrid absorber-diffuser 322–4
notch diffuser 244–5
number sequences 247, 322–3
phase grating absorber 193–4
Schroeder diffusers 267, 268–73

procedure 268–71
results 271–3

optimizing to obtain absorber
properties 76–7

optimum diffusion 233–4, 237, 245, 248,
267–8

panel absorbers see membrane absorbers
Paris’ formula 118, 335–6, 338
particle velocity of plane wave 15
periodicity of diffusers 248–9
see also modulation

phenomenological model of porous
absorbents 147–8

pipes and ducts, absorption in 20
planar hybrid absorber-diffuser 112, 221,

313–34
BEM model 214–15
polar responses 221, 319, 329, 330–1,

332–3
see also hybrid absorber-diffuser

plane surface 276–85
cut-off frequencies 291–3
far field arc 281–2
frequency response 277
Huygen’s construct 26
near field 282–4
polar responses 99, 280, 282
single panel response 276–84

plaster, acoustic 7, 129, 135, 137
polar banana 262
polar responses:

calculating scattering coefficients
from 120–4

concave arc or prism 53, 102, 123, 289
curved diffusers 290, 294–5, 301
for diffusion coefficients 109–10
fibreglass 330
geometric models 348
hybrid surfaces 215, 319, 329–33
Lambert distribution 347
measurement 88–104
MLS diffuser 242, 319
modulation, showing effects of 250–1,

254–5, 294–5, 329
near and far fields 95–103
plane surfaces 99, 280, 282
plane, random rough, semi-circle and

periodic surfaces 348
prediction accuracy, demonstrating 97,

214–18, 221, 222–3, 227–9, 293
primitive root diffuser 243–5, 250
quadratic residue diffuser 235–6,

238–9
redirecting surface 109
sample considerations 102–3
Schroeder diffusers 250–1, 254–5, 259,

262–3, 272
triangles 284–8
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pore:
shape factor and characteristic

dimensions 144–5
structures, differences 130

porosity 21, 58, 78, 83–4, 133, 138–9,
140–2, 144, 167, 171, 173, 176, 178

definition 140
measurement of 83–4
table of typical values 141

porous absorber 5, 11–21, 59, 61, 64, 78,
82–3, 129–41, 143–5, 157, 171–2, 174,
176, 178–80, 186, 369

comparison of models 154
porous absorption 129–55

anisotropic materials 152–3
backing distance, effect of 130–1
basic material properties 137–40

characteristic dimensions 144–5
flow resistivity 138–40
porosity 140
tortuosity 21, 137, 145–6

Biot theory for elastic-framed
material 153

characterizing 21
covers 131–2
external lagging 21
impedance and absorption of 148–51

single layer with rigid backing
149–51

local and extended reaction 150
material types 132–38

absorbent plaster 135–6
carpets 135
coustone 137
curtains (drapes) 134–5
mineral wool and foam 132–3
recycled materials 133–4

mechanisms and characteristics 129–32
models 21
oblique incidence 151–3
open and closed pore 129–30
porous absorbents:

macroscopic empirical models 141–3
material properties 144
modelling propagation within 141–6
theoretical models 145–8

treatment to reduce break out noise 20
see also foam; Man Made Mineral Fibres

(MMMFs); mineral wool
prediction of scattering 202–32

mode matching 230
polar responses demonstrating

accuracy 98, 214–18, 220, 222–3,
228–9, 293

random roughness 203–31
transient BEM 229–30
wave decomposition 198–200, 230

see also boundary element method;
Fourier; Fraunhofer; Fresnel; Kirchoff

pressure:
of a plane wave 15
pressure reflection coefficient see reflection

coefficient
primitive root:

diffuser (PRD) 119, 120–1, 243–5, 254–5,
264, 285–6

polar responses 243–5, 250
sequence 242–5

profiled absorbers 188–200
different methods to determine the depth

sequence 194
propagation constant 15, 82, 142
pyramids 284

quadratic residue:
diffuser (QRD) 23, 253, 258, 261–2

1D and 2D 234
absorption 263, 265–6
admittance at well entrance 268
critical frequencies 239
cross section 234
design equations 234–6, 238–9
diffusion coefficient spectra 237, 247,

252, 255, 260, 273
improving bass response 257–60
multi-dimensional devices 260–3
periodicity and modulation 248–55
polar responses 235–6, 238–9, 250–1,

259, 262–4, 272
see also Schroeder diffusers

sequence 193, 235, 242

random addition diffusers (RAD) 311
random incidence absorption coefficient see

absorption coefficient
random rough surfaces:

polar response 348
prediction models 230–1

ray tracing 10, 284–9, 340–7
in a room 340
scattering from a concave arc 289
sound reflecting from a pair of

triangles 285
see also geometric room acoustic models

reactance 16
receiver arc radius, effect of:

diffusion coefficient 101
diffusion coefficient boundary

measurement technique 91
recycled materials 133–4
redirecting surface 109
reflection:

coefficient (factor) 219, 224, 240, 244–6,
248, 258–9, 268, 317–18, 343, 347
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absorber measurements 61–3, 65, 76–7
angle of incidence 152
definition 16–18,

free zone (RFZ) 91–2, 287
sound reproduction room 2–3, 33, 35,

159
from a flat and diffusely reflecting hall 49
from a plane surface 277
in large spaces 45–6
phase grating 24, 28–9, 49, 112, 257

polar response 99, 102
spatial and temporal dispersion 31, 324
see also Schroeder diffusers

resistance 16
resonant absorbers 157–84

calculations 178–80
porous absorbent filling the cavity

179–80
slotted Helmholtz absorber 178

construction examples 159–65
absorption and diffusion 162–3
bass trap membrane absorber 159–60
clear absorption 163–4
Helmholtz absorption 160–2
masonry devices 164–5

damping 13
design equations 166–78
double resonators 180
Helmholtz-membrane absorber,

combined 173
lateral orifices 183
slotted neck plate 184
see also Helmholtz absorber; membrane

absorber; microperforated absorber
reverberation:

in a music practice room 42
chamber:

controlling modes in 43–4
measuring absorption coefficients 21,

43, 68, 73, 104
control 6–11

statistical model of 7–11
enhancement system 24
time 4, 44, 106, 186, 289

absorption measurement 69–71,
339–44

definition and formulations 8–12
geometric room acoustic models 340–4,

346, 349–51
scattering coefficient

measurement 114–15, 124, 126
Rivercenter for the Performing Arts 46–7
road side barriers 53–5
room acoustic models see geometric room

acoustic models
room diffuseness, measuring scattering

coefficients 125–6

Royal Albert Hall 52
Royal Festival Hall 14

Sabine’s formulation 1, 8–9, 12, 69, 341
conversion to Millington values 341

scattering:
centre of two triangles 285
plane surface scattering, frequency

response for 279–80
prediction of 202–31

other methods 228–30
semicylinder 291
surface 37
theory 214, 291–3

cut-off frequencies 291–3
see also polar response; specific diffuser

types
scattering coefficients 87–8, 112–20, 231

anisotropic surfaces 116–18
compared to diffusion coefficient 32,

104–5, 120–2, 124
correlation scattering coefficient 109,

119, 120–4, 351
definitions 112
free field 119
from polar responses to scattering

coefficients 120–4
from room diffuseness 125–6
in geometric room acoustic models 106–7,

344–52
inverse problem 124–5
measurement set-up 114
non-circular samples 116
prediction of 118–20
principle 112–13
rationale and procedure 113–16
sample considerations 116
Schroeder diffuser 87–8, 107, 118–20,

122
table 123–4

Schroeder diffuser 102, 107, 112, 233–74,
286–8, 297–8, 313, 316–18, 327–9,
349, 352

1D 89, 233–4, 265, 349, 352
2D 260–3
absorption coefficient 265–6
active diffusers 371–2
admittance of narrow wells 196–7
applications 44, 52
basic principles 233–4
bass response, improving 257–60
critical (flat plate) frequencies 239, 242,

252–3, 262
depths 194
design equations 234–6
design for diffusion and absorption

compared 192
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Schroeder diffuser (Continued )
Diffractal 256
diffusion coefficient 87–8, 104

spectra 237, 252, 255, 260, 273
folded wells 257–8
fractal 255–7
hexagonal 262
Huygen’s construct 28
hybrid absorber-diffuser 163
limitations and other considerations

236–9
modulation 248–55
multi-dimensional devices 260–3
optimization 268–73
perforated sheets 258
periodicity, curse of 248–9
polar responses 238–9, 250–1, 254–5,

259, 262–3, 272
predicted scattering 218, 223

oblique sound incident on 220
predicting scattering from 209, 211

boundary element model 216–19
Fraunhofer or Fourier model 226, 229
Kirchhoff boundary conditions 222–4
wave decomposition models 230

profiled absorbers 188–200
absorption or diffusion 191
boundary layer absorption 191
depth sequence 193
energy flow mechanism 189–91
number of wells 196
theoretical model 196–9
use of mass elements 194–5

scattering coefficient 87, 88, 104, 118–20,
122

sequences 239–7
Chu 247
Huffman 245–7
index 245
maximum length 239–42
primitive root 242–5
quadratic residue 233, 239, 242

single plane see Schroeder diffusers, 1D
see also primitive root diffuser; quadratic

residue diffuser
Schroeder frequency 11
seating absorption 186–8

measurement 71–4
semicylinders 102–3, 110, 290–1, 297, 311,

352
arrays of 293–7

diffusion coefficient spectra 103
frequency response 291, 297
Huygen’s construct 27
incident and reflected time response 291
polar response 214, 348
total sound field 296

sequences see number sequence; Schroeder
diffusers: sequences

in situ measurement of:
absorption 74–7
diffuse reflections 124

Skyline diffuser 40, 88
Snell’s law 17, 20, 151, 279
sound beam, effect of curvature 292
sound insulation and porous absorbents

18–19
sound production rooms 1–3
sound propagation:

mathematical constructs 15–16
through a finite layer of a rigid-backed

porous absorber 152
transmission and reflection at a

surface 16–18
transmission through an acoustic

medium 149
sound reproduction rooms 2, 32–9
spatial dispersion 27, 109
see also diffuse reflections

spatial impression 44–5, 349
specular reflection 2–3, 27–30, 33, 36, 39,

48, 52, 310
bottom of wells 265–6
diffuse reflection evaluation 108, 110
flat surface and plane panel arrays 277,

279–80, 282–4
geometric room acoustic models 345
hybrid absorber-diffuser 314–15, 318,

320, 333
primitive root diffusers 243–4, 252,

255, 272
scattering coefficient 113, 118–20
triangles and pyramids 276, 284,

287–8
specular zone 101–2, 107

definition 100
hybrid absorber-diffuser 330
level for notch diffusers 272–3
level for triangles 288

speech intelligibility 2, 4, 23, 161
underground (subway) stations 44

stage canopy 47–8, 305–7
stage shells (enclosures) 48–52
standing wave:

ratio 61
tube method 58–64
see also impedance tube measurement

stepped diffuser 271
street canyons 55
structural form factor see tortuosity
subway stations see underground stations
surface impedance see impedance, surface
surface pressures 206–9
surround sound and diffusers 33, 39
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temporal dispersion 27–9, 36, 103, 307, 324
thermal boundary layer 146
tortuosity 21, 137, 145–6

effect on sound propagation 145
measurement 144

total sound field 36–9, 103–4, 279, 291, 295
for periodic and random cylinders 296
see also frequency response; impulse

response
transfer function measurement of absorbers

free field 64
impedance tube 62–4
see also multi-microphone method;

two-microphone method
transfer matrix modelling:

active absorbers 369
basic formulations 19–20
Helmholtz absorbers 173–5, 178
membrane absorbers 159, 173–5
microperforated absorbers 181
multi-layer absorbent 18–20
for pipes and ducts 19–21
porous absorbents 148–53
Schroeder diffuser wells 196, 198
techniques 132
theory 182

transient BEM 229–30
triangular diffusers 276

arrays of 287–8
polar responses 286–7

ray tracing of reflection 285
triangles and pyramids 284–8

two microphone measurement methods
62–5

two port model see transfer matrix
modelling

underground stations 44

velocity of a plane wave 15
viscous boundary layer 146
visual aesthetics 105, 297, 311, 314
volumetric diffusers 43

wave decomposition prediction of
scattering 198–200, 230

wavefronts reflected from diffusers and
reflectors 26–8, 32

wavenumber 20, 61, 66, 76, 78, 175
definition 15–16
measurement:

direct 82
indirect 82–3

in narrow wells 196
within porous absorbents 141–2, 146–8,

152–3
anisotropic materials 152–3
Delany and Bazley model 141–2
other empirical models 142–4

Wiener–Khinchine theorem 245–6
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