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The question of detecting a chirp in the time–frequency plane is addressed.
Strategies based on line integration are discussed with respect to optimality and
adequacy of a representation to a given chirp. Linear and power-law chirps are
considered in some detail and a possible application of affine distributions to the
detection of gravitational waves is proposed, together with an effective implemen-
tation by means of reassigned spectrograms.© 1999 Academic Press

1. INTRODUCTION

Roughly speaking, “chirp” signals (or “chirps,” for short) correspond to waveforms
whose expression can be written in the time domain as

x~t! 5 a~t!eiw~t!, (1)

with a(t) some positive, low-pass, and smooth amplitude function whose evolution is
slow as compared to the oscillations of the phasew(t). Defined this way, chirps are
intended to serve as models for monocomponent signals modulated in both amplitude and
frequency, their “instantaneous” frequency being assumed to be related to the “local”
oscillations of the phase.

Chirps are ubiquitous in nature. They can be observed in animal communication (birds,
frogs, whales, etc.) and echolocation (bats), geophysics (whistling atmospherics), astro-
physics (gravitational waves radiated by coalescing binaries), acoustics (propagation of
impulses in dispersive media), or biology (epileptic seizure activity in EEG data, uterine
contractions in EMG, etc.). They are also extensively used in manmade systems, such as
radar and sonar, or in the nondestructive evaluation of materials and seismic exploration.

1 This work has been supported in part by CNRS (GdR-PRC ISIS and GREX). It was presented in part at the
4th World Congress of the Bernoulli Society, Vienna (Austria), August 1996.
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Intuitively, chirpsx(t) call for a time–frequency description in which a properly defined
joint representationrx(t, f ) should mainly exist—in the time–frequency plane—in a
narrow neighborhood of a characteristic time–frequency curve+, interpreted either as an
“instantaneous frequency” (frequency as a function of time) or—from a dual
perspective—as a “group delay” (time as a function of frequency). Assuming this holds,
it therefore becomes very natural to propose heuristic schemes aimed at chirp detection by
searching for such a time–frequency localization in a time–frequency distribution of an
observationr (t), e.g., by using as test statistics

L~r ! 5 E
+

rr~t, f !

and comparing it to some threshold based on noise-only assumptions.
Moreover, in the case where the curve+ also depends on some unknown vector of

parametersu, introducing the parameterized quantity

L~r ; u ! 5 E
+~u !

rr~t, f !

and looking for its maximum overu should allow not only for the detection ofx(t) but
also for the estimation ofu, such a strategy being reminiscent of a generalized Radon or
Hough transform.

Beyond heuristic considerations, however, the rationale for using test statistics as above
must be questioned and justified. In this respect, and for a given chirp to detect, three main
questions have to be addressed:

1. Which time–frequency representation should be used to make sense of the idea of
time-frequency localization?

2. How can a heuristic strategy based on some path integration in the time–frequency
plane be made optimal in some precise statistical sense?

3. What can be gained from a time–frequency formulation of optimal chirp detec-
tion?

The two first questions are thoroughly addressed in this paper and, although the third
one will not be considered in detail, the results reported here will provide the necessary
hints for justifying the usefulness of a time–frequency reformulation of chirp detection,
especially in terms of versatility and robustness. Special emphasis will be placed on the
specific case of “power-law” chirps, because of their importance in the context of
gravitational wave detection, but before proceeding to the power-law case, we will first
introduce some definitions (Section 2) and begin the discussion with the more simple case
of linear chirps, for which results have been known for a long time (Section 4). This will
offer the guidelines for considering later desired generalizations to nonlinear situations
such as power-law chirps (Section 5). Finally, a specific example related to the detection
of gravitational waves expected to be radiated by coalescing binaries will be discussed and
illustrated (Section 6).

It must be emphasized that the idea of using a time–frequency strategy for detecting
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chirps is an old story and that various examples of application of such an approach have
already been proposed in the literature, e.g., in [4, 5, 12, 13, 15, 25, 28] or, more recently,
in [20, 21]. Moreover, many results which are needed for addressing the time–frequency
detection problem have also been treated,per se,in the individual contexts of detection
theory or time–frequency analysis (surveys can be found, e.g., in [8, 9, 14]). Most of them,
however, will be recalled (or even restated) in the following, the main objective of the
paper being to put together various ingredients and to combine them in a coherent fashion.

2. CHIRPS

Because of their great importance, chirps deserve, of course, a more precise and more
rigorous definition than the one given above. A sophisticated mathematical treatment of
chirps can be found in [22], whereas a discussion on the possibility of interpreting
representations such as (1) in terms of instantaneous amplitude and frequency is given in
[29]. We will not enter here, however, into the subtleties of both approaches and, when
necessary, we will only make use of the following definitions:

DEFINITION 1. A signalx(t) is said to be a chirp if it admits a representation as in (1),
with a(t) andw(t) such that

U ȧ~t!

a~t!ẇ~t!
U ! 1

and

U ẅ~t!

ẇ2~t!
U ! 1,

where “ ˙ ” and “ ¨ ” stand for the first and second derivatives, respectively.

The two conditions above aim at formalizing the idea of having fast oscillations under
a slowly varying envelope. The first condition guarantees that, over a (local) pseudo-
period T(t) 5 2p/ẇ(t), the amplitudea(t) experiences almost no relative change,
whereas the second condition imposes thatT(t) itself is slowly varying, thus giving
meaning to the notion of pseudo-period.

DEFINITION 2. A chirp x(t) is said to be analytic if it is such that Re{x(t)} and
Im{ x(t)} form a Hilbert transform pair.

An equivalent characterization of analytic chirps amounts to saying that their spectrum
is nonzero for positive frequencies only.

DEFINITION 3. Given an analytic chirpx(t), the instantaneous amplitude ax(t) and
instantaneous frequency fx(t) of Re{ x(t)} are given, respectively, byax(t) 5 ux(t)u and

fx~t! 5
1

2p
ẇ~t!.
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DEFINITION 4. Given an analytic chirpx(t), the spectral envelope BX( f ) and group
delay tX( f ) of Re{ x(t)} are given, respectively, byBX( f ) 5 uX( f )u and tX~ f !

5 2
1

2p
Ċ~ f !, with X( f ) the Fourier transform ofx(t) andC( f ) the phase ofX( f ).2

Moreover, we will only considerstrictly monotonic chirps,i.e., chirps such that the
instantaneous frequencyfx(t) and the group delaytX( f ) are invertible functions.

Different types of chirps can be considered, depending on the form ofa(t) and/orw(t).
We will adopt the following conventions:

DEFINITION 5. A chirp is said to be alinear chirp if it admits the representation (1) with
w(t) a quadratic polynomial int,

w~t! 5 2pSa

2
t2 1 bt 1 gD ,

with a, b, andg [ R, anda Þ 0.

It should be noted that, by construction, a linear chirpx(t) defined this way has no

reason to be analytic, with the consequence that the quantity
1

2p
ẇ~t! 5 at 1 b does not,

in general, identify to the actual instantaneous frequency of the real-valued signal
Re{ x(t)}. The actual conditions under which a linear chirp is almost analytic can be made
precise in some cases, when an explicit model is given for the amplitudea(t). In
particular, in the important case of a Gaussian amplitude, we can easily prove that a linear
chirp with a Gaussian amplitudee2pdt2

becomes almost analytic (i.e., almost vanishes for
negative frequencies) in the narrow-band limit where (a2 1 d2)/db2 3 0. This follows
from a direct calculation according to which

uX~ f !u 5 Ce2p~d/~a21d2!!~ f2b!2
.

We get from this result that the central frequency of a chirp with a Gaussian amplitude is
b, whereas its bandwidth is proportional to (d 1 a2/d)1/2, whence the narrow-band
condition.

The situation of quasi-analyticity of linear chirps contrasts with that ofpower-law
chirps, which are analytic by construction and whose definition is the following:

DEFINITION 6. A chirp is said to be a power-law chirp (of indicesr { R andk # 0)
if its spectrum is nonzero for positive frequencies only and if it admits the frequency
representation

Xr,k~ f ! 5 Cf2~r11!ei Ck~ f !U~ f !, (2)

2 Throughout the paper, we will adopt the convention of using a lower case symbol for representing a quantity
in the time domain and the corresponding upper case symbol for denoting its Fourier transform, in the frequency
domain.
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with Ck( f ) 5 22p(cfk 1 t0f 1 g) if k , 0, C0( f ) 5 22p(c log f 1 t0 f 1 g), C,
c, t0, g { R and whereU( z ) stands for the unit step function.

A power-law chirp therefore is characterized by a group delay of the formtX( f ) 5 t0
1 ckfk21. Although the definition could be extended to positivek’s, we will restrict
ourselves in the following to the casek # 0, for which the group delay corresponds to
some generalized hyperbola in the time-frequency plane.

3. DETECTION

3.1. Optimum Detection

Signal detection is usually considered from the point of view of the binary hypothesis
testing problem (see, e.g., [37])

H0: r ~t! 5 n~t!

H1: r ~t! 5 n~t! 1 s~t!,

with 2T/ 2 # t # T/ 2, and wheres(t) is the reference signal to detect (supposed to be
known and of finite energy over [2T/ 2, T/ 2]), n(t) is some additive noise, andr (t) is
the available observation upon which the decision has to be taken.

Given this framework, designing an “optimal” detector depends not only on thea priori
knowledge one may have on the signal and on the noise, but also on the choice of a
criterion for optimality. A relevant concept in such a search for optimality is that of the
“likelihood ratio test” (LRT), which essentially consists in evaluating the test statistics

l~r ! 5
p1~r !

p0~r !
,

where p0(r ) and p1(r ) stand for the conditional probability density functions of the
observation underH0 and H1, respectively. Once the LRT is computed, the detection
itself amounts to comparing it with a threshold and to deciding that the expected signal is
indeed present when the threshold is exceeded.

We are interested here in the case where the expected signal expresses as

s~t! 5 x~t; u !eig,

whereu is a vector of unknown parameters that we may wish to estimate, andg some
unknown random phase, uniformly distributed over [0, 2p], that we would like to
eliminate. In such a situation, the notion of LRT must be extended to that of generalized
LRT (GLRT), defined as

l̃~r ; u ! 5
1

2p

*0
2p p1~r ug!dg

p0~r !
.
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Given this modified test statistics, detection is still based on a comparison with a
threshold, and (maximum likelihood) estimation can be simultaneously achieved accord-
ing to

û 5 arg max
u

l̃~r ; u !.

In order to get an explicit form for the GLRT, some further assumptions are necessary
about the statistics of the additive noise. For the sake of simplicity,n(t) will be assumed
to be zero-mean, Gaussian, and white, i.e., such that

E$n~t!n~s!% 5 N0d~t 2 s!

for any t ands in R, with E{ z } the expectation operator. Such an assumption allows for
simplifications in the writing of the GLRT, since we have [37]

p1~r ug!

p0~r !
5 expH2

1

N0
E

2T/ 2

T/ 2
~ur ~t! 2 x~t; u !eigu2 2 ur ~t!u2!dtJ .

After some manipulations, the GLRT follows as

l̃~r ; u ! 5 e2Ex~u !/ 2N0
1

2p E
0

2p

expH 1

N0
~F~u !e2ig 1 F~u !eig!Jdg,

with Ex(u ) the signal energy and

F~u ! 5 E
2T/ 2

T/ 2
r ~t!x~t; u !dt.

Expressing the above quantity in polar form asF(u ) 5 uF(u )ueiwF(u ) and reorganizing
terms, we are led to

l̃~r ; u ! 5 e2Ex~u !/ 2N0
1

2p E
0

2p

expH2uF~u !u
N0

cos~wF~u ! 2 g!Jdg,

a result which can be rewritten as

l̃~r ; u ! 5 e2Ex~u !/ 2N0I 0S2uF~u !u
N0

D ,

whereI0( z ) is the modified Bessel function of first kind [1].
The remarkable point is that,I0( z ) being a monotonic increasing function, the test

statistics reduces to compareuF(u )u (or any monotonic increasing function ofuF(u )u) with
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a threshold. It follows therefore that the basic ingredient for the considered GLRT
detection may simply reduce to

L~r ; u ! 5 U E
2T/ 2

T/ 2
r ~t!x~t; u !dtU 2

.

Concerning estimation, however, some care must be taken since maximizing overu the
simplified statisticsL(r ; u ) in place of the exact onel̃(r ; u ) implicitly assumes that the
signal energyEx(u ) does not depend uponu.

The strategy invoked here is exceedingly simple, since it only amounts to correlating
the observation with a replica of the expected waveform, but one should not forget that
this is so because of the many assumptions which have been made, especially that of
Gaussianity. As far as interpretation is concerned, one can note that the GLRT detector
admits a companion interpretation in terms of “matched filtering,” a concept based on the
idea of filtering the observation in such a way that the signal-to-noise ratio (i.e., the
contrast between the two competing hypotheses) is maximized at the output of the filter.
Because of the corrupting random phase, the optimum GLRT detector turns out to
coincide with a matched filter followed by an envelope detector, a structure referred to as
“quadrature matched filtering [37].”

Until now, the additive noise has been assumed to be white. In the more realistic
situation where the noise, while stationary and zero-mean, is colored, the same strategy
can still be applied,mutatis mutandis,under the assumption of Gaussianity, provided that
the observation must first be whitened. More precisely, and provided that the time support
of the signal to detect is entirely contained in the observation interval [2T/ 2, T/ 2],
Parseval’s relation guarantees that

U E
2T/ 2

T/ 2
r ~t!x~t; u !dtU 2

5 U E
0

1`

R~ f !X~ f; u !dfU 2

for analytic signals. Therefore, if we introduce the whitening operation

x~t!3 xw~t! 5 E
0

1` X~ f !

ÎGn~ f !
ei 2pftdf,

and if we apply this to the observation, the problem of detecting a given signal in colored
noise is (at least formally) transformed into a new problem of detecting a prefiltered
version of the original signal in white noise, thus leading to the following strategy:

Lw~r ; u ! 5 UE
0

1` R~ f !X~ f; u !

Gn~ f !
dfU

2

. (3)

It is basically this quantity which has to be given an equivalent time–frequency
formulation.
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3.2. Time–Frequency Detection

As shown by the structure of the GLRT, optimum detection relies on a correlation
measure—in terms of the squared inner product—between the observation and a refer-
ence. This correlation can be expressed equivalently in the time domain or in the
frequency domain, and this naturally suggests that a third equivalent approach should be
feasible, in which the inner product would be directly written in time and frequency (i.e.,
jointly) by means of a suitable time–frequency distribution which can be thought of as a
“signature” well adapted to nonstationary signals.

The idea, therefore, is to introduce such a time–frequency distributionrx(t, f ) (which
necessarily must be at least quadratic inx) so that we may have, for any signalsx1(t) and
x2(t), a relation of the type

u^x1, x2&tu2 5 u^X1, X2&f u2 5 ^^rx1, rx2&&tf,

where^ z , z &t, ^ z , z &f , and^^ z , z &&tf stand for suitably chosen inner products in the
time domain, the frequency domain, and the time–frequency domain, respectively (ex-
plicit definitions of such inner products will be detailed in the following for giving a
precise meaning to the above equalities).

Such an equivalence obviously has no reason to hold for any quadratic time–frequency
distribution. For instance, it is not verified by the simplest distributions we may think of,
namely thespectrogram(squared short-time Fourier transform) and thescalogram
(squared wavelet transform). This can be checked by direct inspection, but this claim (and,
with it, the way to find suitable distributions which overcome the limitations of spectro-
grams and scalograms) can be justified in a more interesting manner by considering
general classes of distributions to which spectrograms and scalograms belong. We can
introduce, for instance, the following definition [9, 14]:

DEFINITION 7. The class of all quadratic time–frequency distributions which are
covariant with respect to shifts in time and frequency is referred to asCohen’s classand
reads

Cx
~w!~t, f ! 5 E E

2`

1`

w~j, t! Ax~j, t!e2i 2p~j t1t f !djdt,

with

Ax~j, t! 5 E
2`

1`

xS t 1
t

2DxS t 2
t

2Dei 2pj tdt

and wherew(j, t) is some arbitrary parameterization function such thatw(0, 0) 5 1.

With this definition, it is easy to establish the following result [23]:

PROPOSITION 1. A time–frequency distribution belonging to Cohen’s class isunitary,
i .e., satisfies
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U E
2`

1`

x1~t!x2~t!dtU 2

5 E E
2`

1`

Cx1

~w!~t, f !Cx2

~w!~t, f !dtdf,

if and only if the arbitrary parameterization functionw(j, t) is of modulus unity.

The consequence of this result is that a spectrogram with windowh cannot be unitary
since it is well known [9, 14] that it belongs to Cohen’s class withw(j, t) 5 Ah(j, t),
a quantity which cannot be of modulus unity over the entire (j, t) plane. A similar result
can be established for scalograms, which are known to be members of the so-calledaffine
class [14]. It appears, therefore, that those distributions (spectrogram and scalograms) are
a priori not qualified for serving as the basis of anoptimumtime–frequency detector,
although they may have been put forward for this purpose and may have proven useful as
suboptimum detectors [2, 20, 21]. Other distributions can be found, however, which are
optimal with respect to detection. Whereas the interested reader is referred, e.g., to [13,
31] for a general discussion about optimum time–frequency detection, we will focus here
on the specific case of chirp detection.

4. DETECTING LINEAR CHIRPS

The optimum time–frequency detection of linear chirps was first considered in [25].
From a time–frequency perspective, it turns out that linear chirps are intimately related to
a special member of Cohen’s class, the so-called Wigner–Ville distribution, defined as
follows [9, 14]:

DEFINITION 8. The Wigner–Ville distributionof a signalx(t) is the special case of
Cohen’s class attached to the parameterizationw(j, t) 5 1, and its (real-valued) expres-
sion reads explicitly

Wx~t, f ! 5 E
2`

1`

xS t 1
t

2DxS t 2
t

2De2i 2p f tdt. (4)

The reason that linear chirps and the Wigner–Ville distribution are closely linked
together is given by the following

PROPOSITION 2. When applied to the linear chirp of Definition5, with a(t) 5 1, the
Wigner–Ville distribution(4) is perfectly localized and reads

Wx~t, f ! 5 dS f 2
1

2p
ẇ~t!D .

Since the parameterization function of the Wigner–Ville distribution isw(j, t) 5 1, it
is of course of modulus unity, thus guaranteeing unitarity. It follows, therefore, that we
have
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U E
2`

1`

x1~t!x2~t!dtU 2

5 E E
2`

1`

Wx1~t, f !Wx2~t, f !dtdf

for any two signalsx1(t) andx2(t). In the case wherex1(t) 5 r (t)1[2T/ 2,T/ 2] (with 1I(t)
the indicator function of the intervalI ) and wherex2(t) is the linear chirpx2(t) 5
a(t)ei (w(t)22pg), we get (thanks to the support-preserving property of the Wigner–Ville
distribution and its compatibility with modulations [9, 14])

U E
2T/ 2

T/ 2
r ~t!a~t!ei~w~t!22pg!dtU 2

5 E
2T/ 2

T/ 2 E
2`

1`

Wr,a~t, f !dS f 2
1

2p
ẇ~t!Ddtdf

5 E
2T/ 2

T/ 2 SE
2`

1`

WaS t,
1

2p
ẇ~t! 2 jDWr~t, j!djDdt.

It follows, therefore, that the GLRT optimum detection (in zero-mean white Gaussian
noise) of a linear chirp with unknown parametersu 5 (a, b) can be achieved by using as
test statistics the time–frequency-based quantity

L~r ; a, b! 5 E
2T/ 2

T/ 2
rr~t, at 1 b!dt,

with

rr~t, f ! 5 E
2`

1`

Wa~t, f 2 j!Wr~t, j!dj.

Given the linear chirp model (5), the energy of the signal to detect does not depend upon
the unknown parametersa andb, thus allowing for their maximum likelihood estimation
via L(r ; a, b).

5. DETECTING POWER-LAW CHIRPS

In the case of power-law chirps, the Wigner–Ville distributions is no longer a good
candidate since, although unitary, it lacks the localization property which permits us to
come up with a solution in terms of a path integral. In the specific case of hyperbolic
chirps (i.e.,k 5 0), a well-adapted solution has been proposed in [28] on the basis of a
variant of the Wigner–Ville distribution (the so-called Altes–Marinovic distribution),
obtained from it by means of a warping operation. We will not follow this approach here
because of two different shortcominings, namely the fact that the resulting strategy is not
shift invariant in time (which may be a problem if the time origin of the chirp is unknown
and has to be estimated) and also that the technique developed for the casek 5 0 cannot
be directly extended to arbitrary (negative)k’s.

The framework we rather propose to use is that ofaffine time–frequency distributions,
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as developed by J. and P. Bertrand [6]. Those distributions form a whole class of
time–frequency distributions but, as compared to the previously introduced Cohen’s class,
their introduction is motivated by a covariance requirement with respect to each solvable
three-parameter extension of the affine group. The effective construction results in a
parameterized family of distributions for which we will adopt the following definition [6]:

DEFINITION 9. TheBertrand distribution(of index k { R) of an analytic signalX( f )
is given by

PX
~k!~t, f ! 5 f 2~r11!2q E

2`

1`

mk~u! X~ flk~u!!X~ flk~2u!!ei 2p t f z k ~u!du, (5)

with

zk~u! 5 lk~u! 2 lk~2u!.

In this definition,r and q are free real-valued parameters andmk(u) is some arbitrary
function, whereas the explicit form of the parameterization functionlk(u) is fixed by

lk~u! 5 Sk
e2u 2 1

e2ku 2 1D
1/~k21!

if k Þ 0, 1, the special cases attached tok 5 0 andk 5 1 being defined by continuity
as

l0~u! 5
u

1 2 e2u

and

l1~u! 5 expS1 1
ue2u

e2u 2 1D .

One can note that a Bertrand distribution is real valued if we have the hermitian
symmetry conditionmk(u) 5 mk(2u), a condition we will assume to be satisfied in the
following.

In order to derive the time–frequency formulation of the power-law chirp detector, we
will need a few results about Bertrand distributions. We will summarize this material in
the following Propositions 3 to 6, whose proofs can be found in [6, 7].

Localization—Whereas the Wigner–Ville distribution was naturally adapted to
linear chirps, the adequacy between Bertrand distributions and power-law chirps is shown
by the following proposition [6]:

PROPOSITION3. When applied to the power-law chirp(2), the Bertrand distribution of
index k(5) is perfectly localizedon the group delay curve tX( f ) 5 t0 1 ck fk21 and reads
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PXr,k

~k! ~t, f ! 5 C2f 2~q11!d~t 2 tX~ f !!, (6)

if and only if the arbitrary weighting functionmk(u) is given by

mk~u! 5 żk~u!~lk~u!lk~2u!!r11.

This proves that, in terms of time–frequency localization, the structure of Bertrand
distributions is matched to that of power-law chirps, which constitutes the first ingredient
for time–frequency detectionvia path integration.

Filtering—When leaving the class of power law chirps, the Bertrand distribution is
no longer perfectly localized. For example, when a signal is filtered, the following
proposition evidences that its Bertrand distribution filtered accordingly. More precisely
[7]:

PROPOSITION 4. When applied to a product signal X( f ) 5 M( f )Y( f ), the Bertrand
distribution PX

(k)(t, f ) reads

PX
~k!~t, f ! 5 f q11 E

2`

1`

PMr

~k!~t 2 u, f ! PY
~k!~u, f !du,

where

Mr~ f ! 5 f 2~r11!M~ f !.

Unitarity—The third ingredient we will need is unitarity, for which—introducing
suitable inner products on the half-line of positive frequencies and on the associated
time–frequency half-plane—we have the following result [6]:

PROPOSITION5. A Bertrand distribution isunitary, i.e., satisfies

U E
0

1`

X~ f !Y~ f !f 2 r11dfU 2

5 E
2`

1` E
0

1`

PX
~k!~t, f ! PY

~k!~t, f ! f 2qdtdf

for any two signals X( f ) and Y(f ), if and only if the arbitrary weighting functionmk(u)
is given by

mk~u! 5 żk
1/ 2~u!~lk~u!lk~2u!!r11.

Extended unitarity—As a corollary to Propositions 3 and 5, the requirements of
localization and unitarity can be simultaneously fulfilled only ifżk(u) 5 1, an equation
whose only solution ink is k 5 0 (this can readily be established by noting that we have
the relationlk(u) 5 eulk(2u), for anyk [6]). Unless we want to consider only the case
of hyperbolic chirps, it seems, therefore, that the two properties of localization and
unitarity cannot be combined directly, so as to mimic what had been done previously in
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the case of linear chirps. A way out, however, is possible, which relies on the following
proposition [6]:

PROPOSITION 6. Given a localized Bertrand distribution PX
(k)(t, f ) with k , 0, there

exists an auxiliary distribution P˜
X
(k)(t, f ) characterized by

m̃k~u! 5 ~lk~u!lk~2u!!r11

and such that

U E
0

1`

X~ f !Y~ f !f 2 r11dfU 2

5 E
2`

1` E
0

1`

P̃X
~k!~t, f ! PY

~k!~t, f ! f 2qdtdf

for any two signals X( f ) and Y(f ).
This offers some additional freedom in the manipulation of Bertrand distributions, by

softening the strict constraint of unitarity attached to one given distributionvia the
introduction of a pair of distributions and a duality relation between them. In the specific
casek 5 21, this duality identifies to a situation considered by Unterberger (see [36]),
who coined the terms “active” and “passive” for distinguishing the corresponding distri-
butions. As a generalization, we will therefore adopt the following definiton:

DEFINITION 10. The auxiliary distributionP̃X
(k)(t, f ) is called thepassivedistribution

associated withPX
(k)(t, f ), the latter being referred to asactive.

Although, by construction, the passive form of a distribution lacks the localization
property of its associated active form, the former can be explicitly related to the latter, as
shown by the following proposition:

PROPOSITION 7. The passive form P˜
X
(k)(t, f ) of a localized Bertrand distribution is

related to the corresponding active form PX
(k)(t, f ) by

P̃X
~k!~t, f ! 5 f E

2`

1`

Gk~ f~t 2 u !! PX
~k!~u, f !du,

where

Gk~s! 5 E
2`

1`

ei 2pszk ~u!du.

Proof. Starting from the definition of the passive distribution, based on the weighting
function m̃k(u), we can write
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P̃X
~k!~t, f ! 5 f 2~r11!2q E

2`

1`

m̃k~u! X~ flk~u!!X~ flk~2u!!ei 2p t f zk ~u!du

5 f 2~r11!2q E
2`

1` m̃k~u!

mk~u!
@mk~u! X~ flk~u!!X~ flk~2u!!#ei 2p t f zk ~u!du

5 E
2`

1` f 2~r11!2q

żk~u!
@mk~u! X~ flk~u!!X~ flk~2u!!#ei 2p t f zk ~u!du,

so as to make appear explicitly the weighting functionmk(u) of the associated active
distribution. Using then the fact that, fork # 0, the functionzk(u) 5 lk(u) 2 lk(2u)
is one-to-one fromR to R, one can make the change of variableu 5 zk

21(v) in order to
expressP̃X

(k)(t, f ) as an ordinary Fourier transform. We get, therefore,

P̃X
~k!~t, f ! 5 E

2`

1` f 2~r11!2q

żk~zk
21~v!! Fmk~zk

21~v!!

żk~zk
21~v!!

X~ flk~zk
21~v!!!X~ flk~2zk

21~v!!!Gei 2p t fvdv

5 E
2`

1`

Gk~s! PX
~k!S t 2

s

f
, fDds5 f E

2`

1`

Gk~ f~t 2 u !! PX
~k!~u, f !du,

with

Gk~s! 5 E
2`

1` 1

żk~zk
21~v!!

ei 2psvdv

5 E
2`

1` d

dv
~zk

21~v!!ei 2psvdv

5 E
2`

1`

ei 2pszk ~u!du,

whence the result follows.

Given an active distribution, its passive counterpart appears, therefore, as a filtered
version of it in time, the impulse responseGk of the filter being frequency dependent (the
equivalent “width,” in time, ofGk varies as the inverse of frequency). In the general case
(arbitraryk), no closed form expression exists forGk. Let us note, however, that in the
case wherek 5 21 (l21(u) 5 eu/ 2, Unterberger distribution [6]), we get explicitly

G21~s! 5 E
2`

1` 1

Î1 1 v2/4
ei 2psvdv 5 4K0~4pusu!,

whereK0( z ) is the modified Bessel function of second kind [1], in accordance with the
results given in [36].
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All the different results derived so far can now be combined together and lead to the
following central result:

PROPOSITION8. Given the detection problem where the signal x(t; u0) to detect is the
power-law chirp(2) of group delay tX( f ) 5 t0 1 c0kf k21 with unknown parametersu0 5
(t0, c0), and where the additive noise n(t) is Gaussian, zero-mean, and stationary with
power spectral densityGn( f ), the optimum test statistics admits the equivalent time–
frequency formulation

Lw~r ; t, c! 5 E
0

1`

rR~t 1 ckfk21, f !df, (7)

with

rR~t, f ! 5 C2f 2q E
2`

1`

P̃A
~k!~t 2 s, f ! PR

~k!~s, f !ds (8)

and

A~ f ! 5
f2~3r12!

Gn~ f !
U~ f !. (9)

Proof. Let us first assume thatu0 5 (t0, c0) is known. In this case, starting from the
results of Propositions 3 (localization) and 6 (extended unitarity), we readily obtain [6],
for any signalZ( f )

U E
0

1`

Z~ f !Xr,k~ f !f 2r11dfU 2

5 E
2`

1` E
0

1`

P̃Z
~k!~t, f ! PXr,k

~k! ~t, f ! f 2qdtdf

5 C2 E
0

1`

P̃Z
~k!~tX~ f !, f ! f q21df.

It follows, therefore, that the left-hand side of the above equation exactly identifies with
the test statistics (3) ifZ( f ) 5 R( f ) f2(2r11)/Gn( f ) and X( f; u0) 5 Xr ,k( f ). As a
consequence, the right-hand side of the same equation provides an alternate time–
frequency formulation for the power-law chirp detection problem and, making use of the
results established in Proposition 4 (filtering), we end up with the claimed result, withu

5 u0, i.e.,t 5 t0 andc 5 c0. In the actual case where the parameter vectoru0 is unknown,
the same statistics must be used by replacingu0 with a set of test valuesu 5 (t, c).
Detection is then achieved when

max
~t,c!

Lw~r ; t, c! . h,
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whereh is some prescribed threshold, while estimation ofu0 can be carried out according
to

û0 5 ~ t̂0, ĉ0! 5 arg max
~t,c!

Lw~r ; t, c!.

According to this result, power-law chirps embedded in Gaussian noise can be opti-
mally detectedvia a path integration strategy in the time–frequency plane, and their
parameters can be estimated by means of a generalized Radon or Hough transform applied
to a well-defined distribution. A potential application of this result will now be discussed.

6. THE EXAMPLE OF GRAVITATIONAL WAVES

Whereas the existence of gravitational waves was predicted long ago by general
relativity theory, no direct experimental evidence has yet been obtained. Detecting
gravitational waves on earth is very challenging because of the extremely tiny effects they
induce on physical systems, and it is only in the very recent past that projects at the front
end of current technologies may have been launched. In both VIRGO and LIGO
projects—the main projects, which are still under construction—the detector is basically
a giant laser interferometer, expected to convert the impinging of a gravitational wave into
a detectable motion of interference fringes. Because gravitational waves are so weak, and
although the interferometers have arms more than 3 km long, detectability requires a
relative sensitivity of the order of 10222. Given the noise limitations of the detectors, this,
however, should be possible in a frequency “window” between a few tenths and a few
hundreds of Hertz.

As far as detection itself is concerned (from a signal processing point of view), a key
question is to get somea priori information about possible structures for the expected
waveforms. In fact, a wide variety of situations can be considered [32], each correspond-
ing to different types of signals, more or less well characterized. Nevertheless, it is
somewhat universally accepted that the most promising source of detectable gravitational
waves should be produced by the coalescence of very massive binary systems, the only
situation we will consider here.

6.1. A Model for Coalescing Binaries

A “coalescing binary” is a system of two very massive astrophysical objects (e.g.,
neutron stars or black holes), rotating around each other. In the process of this rotation,
some gravitational energy is radiated in the form of gravitational waves, with the
consequence that the objects become closer and closer, thus speeding up the rotation, up
to coalescence. It intuitively follows that coalescing binaries should naturally give rise to
gravitational waves which behave as chirps.

In a first (Newtonian) approximation, an explicit form can be given for the expected
waveform. Up to some unknown phase, it can be expressed as the real part of the
complex-valued signal [30, 34]

x~t; t0, d! 5 A~t0 2 t!2ae2i2pd~t02t!b

U~t0 2 t!, (10)
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with a 5 1
4

and b 5 5
8
. In this expression,t0 is the coalescence time, andd and A are

constants which mainly depend on the individual masses of the objects and, of course, of
other geometrical quantities such as the distance of the binary from earth or the relative
orientation between the wavefronts and the detector. More precisely, given two objects of
individual massesm1 andm2, one can introduce the “total mass”M 5 m1 1 m2 and the
“reduced mass”m such thatm21 5 m1

21 1 m2
21. Using these two quantities, one can then

define [34] the “chirp mass”} 5 m3/5M2/5 and, following [30], we have

d 5 1603 33/8}J
25/8 < 241}J

25/8,

with }J 5 }/MJ and whereMJ stands for the solar mass. For an optimal relative
orientation between the detector and the binary, we have furthermore [26]

A 5 S 4

33/4D1.923 10221
}J

5/4

r
< 3.373 10221

}J
5/4

r
,

wherer is the earth–binary distance, expressed in Mpc.
According to Definition 1, the waveform (10) can thus be interpreted as a chirp if the

amplitudea(t) 5 (t0 2 t)2a and the phasew(t) 5 2pd(t0 2 t)b are such that

U ȧ~t!

a~t!ẇ~t!
U 5

a

2pdb
~t0 2 t!2b ! 1

and

U ẅ~t!

ẇ2~t!
U 5

ub 2 1u
2pdb

~t0 2 t!2b ! 1.

As mentioned in [11], these two conditions lead to one single condition according to
which the model (10) can be given a chirp interpretation over the time interval charac-
terized by

t0 2 t @ tc 5 Smax$a, ub 2 1u%
2pdb

D 1/b

. (11)

In the specific case of gravitational waves, it follows from the values of the different
constants that we have

tc 5 3 3 ~1600p!28/5}J < 3.63 1026}J.

Assuming that the chirp interpretation is valid, the waveform (10) has (approximately)
for instantaneous frequency

fx~t! 5
5d

8
~t0 2 t!23/8
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and the condition (11) defines, in turn, a frequency interval characterized by

f ! fc 5 fx~tc! 5 1003 ~1600p!3/5}J
21 < 1.663 104}J

21. (12)

Figure 1 illustrates the validity of this condition whenm1 varies between 1MJ and
10MJ, and whenm2 5 km1, with 1 # k # 10. It follows from this diagram that, in the
case where the high-frequency cutoff of the detector is supposed to be about 500 Hz, the
chirp interpretation can be considered as valid for a wide range of scenarios which are
likely to be observed.

Considering (10) as a chirp, its frequency spectrum can be obtained by means of a
stationary phase approximation, leading to the following result:

PROPOSITION9. In the domain where it can be considered as a chirp, the waveform(10)
corresponds approximately to apower-law chirpin the sense of Definition6, with an
envelope index r5 (a 2 b/2)/(b 2 1), a phase index k5 b/(b 2 1), a phase shiftg 5
p/4, a chirp rate

FIG. 1. Qualitative validity of the chirp interpretation for gravitational waves. Gravitational waves radiated
by coalescing binaries can be considered as chirps as long as their maximum frequency in much smaller than a
critical frequency which depends on the massesm1 andm2 of the binary. This diagram plots (solid lines) this
critical frequency whenm1 varies between 1MJ and 10MJ, and whenm2 5 km1, with 1 # k # 10. The dotted
line (plotted here arbitrarily at 500 Hz) stands for the high-frequency cutoff of the detector, which allows one
to get a rough bound for the validity of the approximation.
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c 5 2
b 2 1

b
~db!21/~b21!, (13)

and an amplitude

C 5
A

Îub 2 1u
~db!~a21/ 2!/~b21!. (14)

The relative error in this approximation is frequency dependent and is bounded by

Q~ f ! 5
5

4 S a2

b 2 1
1 a 1

~b 2 2!~b 2 1/ 2!

6 DSd

b
D 1/~b21!

f 2b/~b21!. (15)

Proof. Computing the Fourier spectrum of (10) amounts to evaluating the integral

X~ f; t0, d! 5 e2i 2p f t0 E
0

1`

a~t!eic~t!dt, (16)

with a(t) 5 At2a and c(t) 5 22p(dtb 2 ft).
It is clear thatc(t) has no stationary point whenf , 0 and, following the result of

Appendix A, we can first conclude that (10) is almost analytic, as long as the chirp
condition (11) is satisfied.

For positive frequencies,c(t) has one and only one nondegenerate stationary point,
namely

ts 5 S f

dD
1/~b21!

,

with the conditionc̈(ts) . 0.
When specializing to the model (10) the general result (23), it turns out that (16) exactly

coincides with a power-law chirp in the sense of Definition 6, with the constants given in
(13) and (14). For each frequency, the stationary phase evaluation of the spectrum
amounts to considering the signal contribution att 5 ts, and thus the remainder (24) at
this point. After a careful removal of all indeterminancies associated with the evaluation
of Q(ts), we finally get the frequency-dependent result given in (15), which allows one to
bound the frequency domain over which the stationary phase approximation can be
considered as valid, given a maximum relative error.

Two remarks can be made at this point. First, whereas “chirp conditions” of Definition
1 are usually advocated for validating stationary phase approximations (see, e.g., [11, 30]
or [10]), the validity of the approximation is in fact controlled by (24) and this happens
to be much more intricate. Second, if we apply the above result (15) to the case of
gravitational waves, we get that, for the relative error in the stationary phase approxima-
tion to be at mostx percent, frequency must be bounded by
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f # 7.183 104x3/5}J
21. (17)

in agreement with the qualitative chirp condition given in (12). Therefore, both the
heuristic and the exact criteria turn out to be of the same nature, but the results of
Proposition 9 allow for a quantitative control of the approximation.

Figure 2 presents a typical example of a waveform and illustrates the effectiveness of
the stationary phase approximation.

6.2. A Simplified Time-Frequency Detector

Strictly speaking, the optimum time–frequency detector (7) requires one to compute a
filtered version (in time) of the Bertrand distribution of the observation. This involves,
unfortunately, a very heavy computational burden and, in order to end up with a feasible
solution, it is mandatory to consider simpler, yet accurate, time–frequency descriptions
instead of the exact functionrR(t, f ) given in (8). Whereas such a simplification may not
be possible in the general case, it turns out that it can be effectively achieved in the specific
case of gravitational waves, thanks to the specific values of the physical parameters which
are involved.

In fact, if we come back to (8), we can write in an equivalent way

E
2`

1`

rR~t, f !e2i 2p j tdt 5 C2f 2r112qh~u! E
2`

1`

PR
~k!~t, f !e2i 2p j tdt (18)

FIG. 2. Stationary phase approximation for the spectrum of a gravitational wave. The waveform, expected
to be radiated by a coalescing binary composed of two objects of 1MJ and 10MJ at a distance of 200 Mpc,
is plotted in (a), with the corresponding instantaneous frequency in (b). The energy spectral density is given in
(c) (solid line), along with the stationary phase approximation (dashed line). The validity of this approximation
is controlled by the frequency-dependent relative error plotted in (d).
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with

h~u! 5
~lk~u!lk~2u!!r11

żk~u!
A~ flk~u!! A~ flk~2u!! (19)

and

u 5 zk
21Sj

fD .

Due to low-frequency (seismic noise) and high-frequency (photon noise) limitations,
the effective observation bandwidth is necessarily restricted to some bandpass frequency
interval f2 # f # f1 (with typical values that we can choose to bef2 ' 50 Hz andf1
' 500 Hz). This has for consequence that the Fourier spectrum

E
2`

1`

PR
~k!~t, f !e2i 2p j tdt 5 f 2r112q~lk~u!lk~2u!!r11R~ flk~u!!R~ flk~2u!!

is nonzero only in the range

uuu # u1 5 log
f1

f2
,

and it follows that theu-dependent prefactorh(u) of the Fourier transform ofPR
(k)(t, f )

can be ignored in (18) as long as it is almost equal to 1 foruuu # u1.
Within the above-mentioned frequency band, we can consider (see, e.g., [20, 21]) that

the power spectrum densityGn( f ) of the observation noisen(t) has essentially a
continuous background which behaves asGn( f ) 5 s2f 2e, with e ' 1.3 Assuming
therefore that

A~ f ! 5 s22f e2~3r12!

for f2 # f # f1, we get from (19) that

h~u! 5 s24
~lk~u!lk~2u!!e2~2r11!

żk~u!

for uuu # u1. In the case of coalescing binaries (k 5 25
3
, r 5 1

6
) and “1/f ” noise (e 5

1), this reduces to

s4h~u! 5
~l25/3~u!l25/3~2u!!21/3

ż25/3~u!
, (20)

3 Let us notice that this is a first approximation and that, in the case of actual detectors, it will certainly have
to be refined on the basis of more realistic noise models.
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a quantity which, in the considered space ofu-limited functions, can be considered as a
convolution unit, as illustrated in Fig. 3.

When the above approximation is valid, it leads therefore to a detector as in (7), but
with the simplification

rR~t, f ! <
C2

s4 f q12e2~4r13!PR
~k!~t, f !.

Given this simplified structure, the final problem reduces to finding some accurate and
easy-to-compute approximation to the Bertrand distributionPR

(k)(t, f ). Since the key
feature of this distribution is to satisfy the perfect localization (6) on “matched” chirps, the
solution that we propose is to replace it with areassigned spectrogram[3, 5] ŠX

h(t, f )
which, when applied to the same power-law chirps, is known to behave approximately as

ŠXr,k

h ~t, f ! < C2f 22~r11!d~t 2 tX~ f !!. (21)

The principle of reassignment is briefly recalled in Appendix B and the effectiveness of
this approximation is illustrated in Fig. 4.

Comparing (6) and (21), we are led to choosingq 5 2r 1 1, with the final form of the
approximated optimum detector given by

Lw~r ; t, c! <
C2

s4 E
0

1`

ŠR
h~t 1 ckfk21, f ! f 2~e2~r11!!df.

FIG. 3. When the frequency band of the detector is limited, the time–frequency function to be used can be
well approximated by a Bertrand distribution provided that the functions4h(u), defined in (20), acts as a
convolution unit in the space ofu-limited functions. The validity of this approximation is illustrated here by
plotting in the upper diagrams4h(u) (solid line) and the indicator function of theu-interval associated with the
frequency range 50–450 Hz (dotted line), and by comparing in the lower diagram their Fourier transforms.
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In the specific case of coalescing binaries, we can prefer to parameterize the signal to
detect by means of its coalescence timet and reduced chirp mass}J. Together with the
right constants, we finally get (up to an amplitude factor)

Lw~r ; t, }J! } E
+~t,}J!

ŠR
h~t, f ! f 22/3,

with

+~t, }J! 5 $~t, f !ut 2 t 5 3 3 1008/3}J
25/3f 28/3%.

6.3. An Illustration

In order to illustrate the effectiveness of the proposed approach, we present in Fig. 5
two different examples based upon one of the typical situations discussed in [20, 21]. Both

FIG. 4. Time–frequency distributions for gravitational waves. Given a gravitational wave radiated by a
coalescing binary, a “matched” time–frequency distribution is expected to be as localized as possible along the
instantaneous frequency curve. The “ideal” representation (a) is compared with a number of candidate distri-
butions (coalescence time is fixed tot0 5 0). From a theoretical point of view, it is known that the desired
localization is guaranteed by using a matched Bertrand distribution (k 5 25

3
): this is illustrated in (b), where

the algorithm described in [17] has been used. An effective and easy-to-compute approximation is given by the
reassigned spectrogram (c). These two situations contrast with the more classical solutions provided by the
Wigner–Ville distribution (d), the spectrogram (e), and the scalogram (f).
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examples will assume that the binary consists of two objects of 1MJ and 10MJ

(coalescence time set tot 5 0). The binary is located at a distance of 200 Mpc from Earth
in the first example, and 1 Gpc in the second one. The simulation was run by corrupting
the data with Gaussian additive noise, withe 5 1 and s2 5 0.7 3 10242/Hz over a
frequency range of 50–500 Hz. The proposed strategy, based on the reassigned spectro-
gram, does not reach the ideal performance predicted by the matched filter theory, because
of the limited accuracy of the different approximations which have been involved in its
derivation (in particular, the band-limited nature of the signal implies that the Bertrand
distribution cannot be perfectly localized along the group delay curve). However, the
figure shows that this strategy clearly allows for the detection of the chirp and that it also
overperforms a crude path integration based on a standard spectrogram.

In the examples of Fig. 5, the chirp mass}J was implicitly assumed to be known,
which is by no means the case in practice. Assuming that}J is unknown, a refined
strategy amounts to applying the previous one in parallel by performing as many line
integrations as is necessary for sampling values of}J over some expected range. Figures
6 and 7 exhibit the application of this strategy on the reassigned spectrogram and standard
spectrogram, respectively. This joint detection–estimation problem allows also for an
estimate of}J to be obtained. It should be noted that, when scanning test values for}J,
the reference signal energy is modified. The output of each detector therefore must be
divided by a factor proportional to the squared amplitude of the reference signal (which
varies as}J

5/3) in order to compare coherent results.

FIG. 5. Detection of a gravitational wave. This figure illustrates the efficiency of an optimum time–
frequency-based detection for a gravitational wave with coalescence timet 5 0 of a binary composed of two
objects of 1MJ and 10MJ at a distance of 200 Mpc in case (a) and 1 Gpc in case (b). Since the distance between
the binary and Earth changes the only signal amplitude, the signal-to-noise ratio is the only parameter that has
been modified between these two examples. Each plot compares the squared envelope of the output of the
matched filter (dashed–dotted line) with a time–frequency strategy based on a line integration over either a
classical spectrogram (dashed line) or its reassigned version (solid line). In order to make appear more clearly
what is gained in terms of contrast, the maximum of each of these curves has been arbitrarily normalized to unity.
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7. CONCLUSION

The purpose of this paper was to combine elements from optimum detection theory and
time–frequency analysis so as to provide a coherent framework for intuitive strategies
aimed at detecting chirplike signals by some line integration in the time–frequency plane.
The example of gravitational waves (expected to be radiated by coalescing binaries) is
particularly important in this respect, and the possibility of their time–frequency detection
was discussed in some detail. Once the conditions for such an alternative quasi-optimum
strategy have been established, the question now is to discuss further what can be really
gained from such a new approach, especially in terms of versatility and robustness.

APPENDIX A: THE STATIONARY PHASE METHOD

Let I be an integral of the form

I 5 E
V

a~t!eic~t!dt, (22)

where botha(t) . 0 andc(t) areC1, whereas supp{a(t)} is restricted to some interval
V of the real line over whicha(t) is integrable.

FIG. 6. Joint detection–estimation for gravitational waves based on the reassigned spectrogram. In the case
where the chirp mass parameter}J is unknown, different line integrations (similar to those of Fig. 5, but over
a number of different time–frequency curves) have to be performed, here on the reassigned spectrogram. This
results in a surface whose maximum allows for the detection of the gravitational wave (when it exceeds some
prescribed threshold) and for the estimation of both the time of coalescence and the chirp mass (actual values
are indicated with dashed lines).
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Assuming that the amplitudea(t) is slowly varying as compared to the oscillations of
the phasec(t), (22) corresponds to an oscillatory integral. Using standard arguments, we
can therefore heuristically consider that, when integrated, positive and negative contribu-
tions of fast oscillations tend to cancel each other, with the consequence that the main
contribution to (22) only comes from the vicinity of those points where oscillations are
significantly slowed down, i.e., where the derivative of the phase is zero. This is the
essence of the stationary phase principle.

In the specific case of the model (22), classical results from stationary phase theory (as
presented, e.g., in [33]) cannot be directly applied, because phase oscillations are not
controlled by a multiplicative parameter becoming arbitrarily large. Nevertheless, if we
assume thatc(t) has one and only one nondegenerate stationary pointts (i.e., thatċ(ts)
5 0 andc̈(ts) Þ 0), we can (following, e.g., [19, 35]) make the change of variables

u2 5
c~t! 2 c~ts!

c̈~ts!/ 2

so as to rewrite (22) in the form

I 5 eic~ts! E
V9

g~u!eibu2
du,

FIG. 7. Joint detection–estimation for gravitational waves based on the spectrogram. The surface shown
here is the response of the detector–estimator based on path integrations of the standard spectrogram. This
should be compared with the one in Fig. 6. The smoothness of the detection peak and the poor contrast between
its maximum and the noise level make the detection procedure more difficult. Dashed lines indicated actual
values of the time of coalescence and the chirp mass.

277TIME–FREQUENCY CHIRP DETECTION



with g(u) 5 a( x(u))(du/dx)21 and b 5 c̈(ts)/ 2. Following [19], we get for such an
expression a decomposition of the typeI 5 I a 1 R, where the first term corresponds to
the stationary phase approximation

I a 5 Î 2p

uc̈~ts!u
a~ts!e

ic~ts!ei~sgnc̈~ts!!p/4, (23)

whereas the remainderR is such that

Q 5 UR

Ia
U # Qm 5

5

4

supu{V9 ug̈u
ubug~ts!

.

The stationary phase approximation is therefore valid if we haveQm ! 1. An explicit
evaluation of this quantity leads toQm 5 supt{V Q~t!, with

Q~t! 5 5Î2uc̈~ts!u U a

a~ts!

c1/ 2

ċ
U U ä

a

c

ċ2 1
3

2

ȧ

aċ
S1 2

cc̈

ċ2D
1 S3cS c̈

ċ2D 2

2
3

2

c̈

ċ2 2
cc-

ċ3 DU , (24)

wherec denotes the functionc(t) 2 c(ts) for short.
The above closed form expression for the remainder allows one both to make explicit

the conditions under which (23) is a valid approximation for (22) and to bound the
corresponding error.

In the case where there is no stationary point, it is intuitive that the integral (22) should
tend to zero as oscillations become faster. To make this point more precise, let us assume
that ċ(t) Þ 0 for any t { V, so that we can rewrite (22) as

I 5 E
V

a~t!

i ċ~t!
i ċ~t!eic~t!dt.

An integration by parts leads to

I 5
a~t!

i ċ~t!
eic~t!U

­V

1 i E
V

a~t!F ȧ~t!

a~t!ċ~t!
2

c̈~t!

ċ2~t!Geic~t!dt,

from which it follows that

uI u # U a~t!

ċ~t!
U

­V

1 SI ȧ~t!

a~t!ċ~t!I
`

1 I c̈~t!

ċ2~t!I
`

D E
V

ua~t!udt.

Assuming that the amplitude may be regularized so as to make negligible the first term,
we get that
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uI u
iai1

# I ȧ~t!

a~t!ċ~t!I
`

1 I c̈~t!

ċ2~t!I
`

.

This result can be interpreted the following way: as compared to the situation where the
oscillations of the phase would be infinitely slowed down, the absolute value of the
oscillatory integral (22) with no stationary point is bounded by a quantity whose decay to
zero is controlled by chirplike conditions.

In the case we are here mainly interested in (i.e., the evaluation of a Fourier transform),
we havec(t) 5 w(t) 2 2pft, wherew(t) is the phase of a chirp. Since we haveẇ(t) .
0 for anyt { V, we can conclude that the frequency domain for which no stationary point
exists is the half-line of negative frequencies. Since we have futhermorec̈(t) 5 ẅ(t) and
ċ(t) $ ẇ(t) when f , 0, we get that

I ȧ~t!

a~t!ċ~t!I`

# I ȧ~t!

a~t!ẇ~t!I`

and

I c̈~t!

ċ2~t!
I

`
# I ẅ~t!

ẇ2~t!
I

`
.

This proves that the chirp conditions of Definition 1 are sufficient to guarantee the
quasi-analyticity of the exponential model (1), in the sense that spectral contributions at
negative frequencies are negligible.

APPENDIX B: THE REASSIGNMENT METHOD

The spectrogramSX
h(t, f ) 5 uFX

h(t, f )u2, i.e., the squared modulus of the short-time
Fourier transformFX

h(t, f ) 5 *2`
1` X(j) H*( j 2 f )ei2p(j2f )tdj, can also be viewed as

a smoothed version of the Wigner–Ville distribution of the signal

SX
h~t, f ! 5 E E

2`

1`

Wx~s, j!Wh~s 2 t, j 2 f !dsdj.

The purpose of reassignment [24] is to refocus the spectrogram on the time–frequency
energy content given by the Wigner–Ville distribution. It basically consists in moving the
values of the spectrogram from their initial computation point to a time–frequency
location (t̂(t, f ), f̂(t, f )) given by a local center of mass computed over the Wigner–Ville
distribution of the signal

ŠX
h~t, f ! 5 E E

2`

1`

SX
h~s, j!d~t 2 t̂~s, j!, f 2 f̂~s, j!!dsdj.
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This results in a squeezing of each signal component along its associated group delay
and/or instantaneous frequency path. For example, the reassigned spectrogram is perfectly
localized on linear chirps with a constant envelope,

x~t! 5 expH i2pSa

2
t2 1 bt 1 gDJ f ŠX

h~t, f ! 5 d~ f 2 ~at 1 b!!.

In the case of nonlinear chirps, a similar squeezing effect will be obtained provided that
the instantaneous frequency or the group delay of the signal is almost linearlocally, i.e.,
in a time–frequency domain whose effective support is defined by the time and frequency
widths of the analysis window. One can mention that reassignment has been proved not
to be restricted to the spectrogram and its application has been extended [3] to all
smoothed distributions within Cohen and affine classes.

From a computational viewpoint, reassignment is supported by efficient algorithms. In
the case of the spectrogram, we get explicitly [3]

t̂~t, f ! 5 t 1 Re $FX
u~t, f !/FX

h~t, f !%

f̂~t, f ! 5 f 2 Im $FX
v~t, f !/FX

h~t, f !%, (25)

whereu(t) 5 th(t) andv(t) 5 dh/dt. Therefore, the resulting algorithm combines, in a
proper way, three STFTs of the signal based on three distinct windows (and even two only
if the window is a Gaussian).
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15. P. Flandrin and P. Gonçalvès, From wavelets to time-scale energy distributions,in “Recent Advances in
Wavelet Analysis” (L. L. Schumaker and G. Webb, Eds.), pp. 309–334, Academic Press, Boston, 1994.
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