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The question of detecting a chirp in the time—frequency plane is addressed.
Strategies based on line integration are discussed with respect to optimality and
adequacy of a representation to a given chirp. Linear and power-law chirps are
considered in some detail and a possible application of affine distributions to the
detection of gravitational waves is proposed, together with an effective implemen-
tation by means of reassigned spectrogransi999 Academic Press

1. INTRODUCTION

Roughly speaking, “chirp” signals (or “chirps,” for short) correspond to waveform
whose expression can be written in the time domain as

x(t) = a(t)e'e®, (1)

with a(t) some positive, low-pass, and smooth amplitude function whose evolution
slow as compared to the oscillations of the phagg). Defined this way, chirps are
intended to serve as models for monocomponent signals modulated in both amplitude
frequency, their “instantaneous” frequency being assumed to be related to the “loc
oscillations of the phase.

Chirps are ubiquitous in nature. They can be observed in animal communication (bil
frogs, whales, etc.) and echolocation (bats), geophysics (whistling atmospherics), a:
physics (gravitational waves radiated by coalescing binaries), acoustics (propagatio
impulses in dispersive media), or biology (epileptic seizure activity in EEG data, uteri
contractions in EMG, etc.). They are also extensively used in manmade systems, suc
radar and sonar, or in the nondestructive evaluation of materials and seismic explora
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Intuitively, chirpsx(t) call for a time—frequency description in which a properly definec
joint representatiorp,(t, f) should mainly exist—in the time—frequency plane—in a
narrow neighborhood of a characteristic time—frequency ctfivimterpreted either as an
“instantaneous frequency” (frequency as a function of time) or—from a du
perspective—as a “group delay” (time as a function of frequency). Assuming this hol
it therefore becomes very natural to propose heuristic schemes aimed at chirp detectic
searching for such a time—frequency localization in a time—frequency distribution of
observatiorr (t), e.g., by using as test statistics

A(r) =J pi(t, f)

and comparing it to some threshold based on noise-only assumptions.
Moreover, in the case where the curifealso depends on some unknown vector of
parameterd), introducing the parameterized quantity

A 0) =f prlt, )

£(6)

and looking for its maximum ovef should allow not only for the detection &ft) but
also for the estimation of, such a strategy being reminiscent of a generalized Radon
Hough transform.

Beyond heuristic considerations, however, the rationale for using test statistics as al
must be questioned and justified. In this respect, and for a given chirp to detect, three r
questions have to be addressed:

1. Which time—frequency representation should be used to make sense of the ide
time-frequency localization?

2. How can a heuristic strategy based on some path integration in the time—freque
plane be made optimal in some precise statistical sense?

3. What can be gained from a time—frequency formulation of optimal chirp dete
tion?

The two first questions are thoroughly addressed in this paper and, although the t
one will not be considered in detail, the results reported here will provide the necess
hints for justifying the usefulness of a time—frequency reformulation of chirp detectio
especially in terms of versatility and robustness. Special emphasis will be placed on
specific case of “power-law” chirps, because of their importance in the context
gravitational wave detection, but before proceeding to the power-law case, we will fi
introduce some definitions (Section 2) and begin the discussion with the more simple ¢
of linear chirps, for which results have been known for a long time (Section 4). This w
offer the guidelines for considering later desired generalizations to nonlinear situatit
such as power-law chirps (Section 5). Finally, a specific example related to the detec
of gravitational waves expected to be radiated by coalescing binaries will be discussed
illustrated (Section 6).

It must be emphasized that the idea of using a time—frequency strategy for detec
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chirps is an old story and that various examples of application of such an approach
already been proposed in the literature, e.g., in [4, 5, 12, 13, 15, 25, 28] or, more recel
in [20, 21]. Moreover, many results which are needed for addressing the time—freque
detection problem have also been treatest, se,in the individual contexts of detection

theory or time—frequency analysis (surveys can be found, e.g., in [8, 9, 14]). Most of the
however, will be recalled (or even restated) in the following, the main objective of tl
paper being to put together various ingredients and to combine them in a coherent fas!

2. CHIRPS

Because of their great importance, chirps deserve, of course, a more precise and |
rigorous definition than the one given above. A sophisticated mathematical treatmer
chirps can be found in [22], whereas a discussion on the possibility of interpreti
representations such as (1) in terms of instantaneous amplitude and frequency is giv
[29]. We will not enter here, however, into the subtleties of both approaches and, wt
necessary, we will only make use of the following definitions:

Derinimion 1. A signalx(t) is said to be a chirp if it admits a representation as in (1)
with a(t) and ¢(t) such that

a(f)(;)(t)] <1
and
‘ fz((tt))‘ <1

where “" " and “ " ” stand for the first and second derivatives, respectively.

The two conditions above aim at formalizing the idea of having fast oscillations unc
a slowly varying envelope. The first condition guarantees that, over a (local) pseu
period T(t) = 2#/¢(t), the amplitudea(t) experiences almost no relative change,
whereas the second condition imposes thé) itself is slowly varying, thus giving
meaning to the notion of pseudo-period.

Derinmion 2. A chirp x(t) is said to be analytic if it is such that Reft)} and
Im{ x(t)} form a Hilbert transform pair.

An equivalent characterization of analytic chirps amounts to saying that their spectr
is nonzero for positive frequencies only.

Derinimion 3. Given an analytic chirpx(t), the instantaneous amplitude, @) and
instantaneous frequency(f) of Re{x(t)} are given, respectively, bg,(t) = |x(t)| and

1
B = 5 6.
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Derinimion 4. Given an analytic chirpx(t), the spectral envelope & f) and group
delay t(f) of Re{x(t)} are given, respectively, byBy(f) = |X(f)| and ty(f)

1.
= — E\If(f), with X( f) the Fourier transform of(t) andW( f) the phase oX(f).?

Moreover, we will only considestrictly monotonic chirpsij.e., chirps such that the
instantaneous frequendy(t) and the group delaty( f) are invertible functions.

Different types of chirps can be considered, depending on the foaftpand/ore(t).
We will adopt the following conventions:

Derinmion 5. A chirp is said to be &near chirpif it admits the representation (1) with
¢(t) a quadratic polynomial in,

[0

(p(t)=277(2t2+Bt+'y>,

with «, B, andy € R, anda # O.
It should be noted that, by construction, a linear chifp defined this way has no

1
reason to be analytic, with the consequence that the qu%itg{t) = ot + Bdoes not,

in general, identify to the actual instantaneous frequency of the real-valued sig
Re{x(t)}. The actual conditions under which a linear chirp is almost analytic can be ma
precise in some cases, when an explicit model is given for the amplage In
particular, in the important case of a Gaussian amplitude, we can easily prove that a lir
chirp with a Gaussian amplitudﬁ’“stz becomes almost analytic (i.e., almost vanishes fo
negative frequencies) in the narrow-band limit whexé ¢ 8°)/682 — 0. This follows
from a direct calculation according to which

|X( f )| — Ce*ﬁ<5/(az+82)>( FB)Z.

We get from this result that the central frequency of a chirp with a Gaussian amplitud
B, whereas its bandwidth is proportional t6 ¢ «*8)"2, whence the narrow-band
condition.

The situation of quasi-analyticity of linear chirps contrasts with thapaofver-law
chirps, which are analytic by construction and whose definition is the following:

Derinimion 6. A chirp is said to be a power-law chirp (of indices R andk = 0)
if its spectrum is nonzero for positive frequencies only and if it admits the frequen
representation

X 1) = CE 0™ hy(f), )

2 Throughout the paper, we will adopt the convention of using a lower case symbol for representing a qual
in the time domain and the corresponding upper case symbol for denoting its Fourier transform, in the frequ
domain.
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with W, (f) = —2m(cf® + tof + y) if k < 0, Wo(f) = —2m(clog f + tof + ), C,
C, to, v € R and whereU( - ) stands for the unit step function.

A power-law chirp therefore is characterized by a group delay of the fg(h) = t,
+ ckf*"1. Although the definition could be extended to positi/s, we will restrict
ourselves in the following to the cage= 0, for which the group delay corresponds to
some generalized hyperbola in the time-frequency plane.

3. DETECTION

3.1. Optimum Detection

Signal detection is usually considered from the point of view of the binary hypothe:
testing problem (see, e.qg., [37])

Ho: r(t) = n(t)

Hy: r(t) = n(t) + s(t),

with —T/2 = t = T/2, and wheres(t) is the reference signal to detect (supposed to b
known and of finite energy over{T/2, T/2]), n(t) is some additive noise, andt) is
the available observation upon which the decision has to be taken.

Given this framework, designing an “optimal” detector depends not only oa gneri
knowledge one may have on the signal and on the noise, but also on the choice
criterion for optimality. A relevant concept in such a search for optimality is that of th
“likelihood ratio test” (LRT), which essentially consists in evaluating the test statistics

_ Pa(r)
Po(r)’

A(r)

where py(r) and p,(r) stand for the conditional probability density functions of the
observation undeH, and H,, respectively. Once the LRT is computed, the detectio
itself amounts to comparing it with a threshold and to deciding that the expected signe
indeed present when the threshold is exceeded.

We are interested here in the case where the expected signal expresses as

s(t) = x(t; 6)e”,

where 6 is a vector of unknown parameters that we may wish to estimate;yauine
unknown random phase, uniformly distributed over [07],2that we would like to
eliminate. In such a situation, the notion of LRT must be extended to that of generali:
LRT (GLRT), defined as

- 1[5 palr[y)dy
MO T2 e
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Given this modified test statistics, detection is still based on a comparison witf
threshold, and (maximum likelihood) estimation can be simultaneously achieved acce
ing to

6 = arg maxa(r; 0).
[’]

In order to get an explicit form for the GLRT, some further assumptions are necess
about the statistics of the additive noise. For the sake of simpliefty,will be assumed
to be zero-mean, Gaussian, and white, i.e., such that

E{n()n(s)} = Npd(t — s)

for anyt andsin R, with E{ - } the expectation operator. Such an assumption allows fc
simplifications in the writing of the GLRT, since we have [37]

py(r[7y) _
Po(r)

1 (12 )
exp{ - N—j (r(t) — x(t: )& |r(t)|2)dt} .
0J 12
After some manipulations, the GLRT follows as
X(r: 0) = e—Exw)/zNoi 2 exp{l (F(0)e ™ + %e“/)}d
’ 2m |, No v
with E,(6) the signal energy and
TI2 -
F(6) zf r(t)x(t; 0)dt.
=T/2

Expressing the above quantity in polar formr(®) = |F(6)|e'r?) and reorganizing
terms, we are led to

- 1 (2= 2|F(6)|
. — A Ex0)/2No _
A(r; 0) =e o JO exp{ No cos(pe(0) 7)}dv,

a result which can be rewritten as

- 2|F(0
A(r; 6) = e_wmlo(l ) ') ,
No
wherely( - ) is the modified Bessel function of first kind [1].
The remarkable point is thalkg( - ) being a monotonic increasing function, the test
statistics reduces to compdfg6)| (or any monotonic increasing function [&%(6)|) with
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a threshold. It follows therefore that the basic ingredient for the considered GLF
detection may simply reduce to

T/2 - 2
A(r; 0) = U r(t)x(t; 0)dt| .
-T/2

Concerning estimation, however, some care must be taken since maximizingtbeer
simplified statistics\(r; 6) in place of the exact onk(r; #) implicitly assumes that the
signal energyE,(6) does not depend upoh

The strategy invoked here is exceedingly simple, since it only amounts to correlat
the observation with a replica of the expected waveform, but one should not forget t
this is so because of the many assumptions which have been made, especially th
Gaussianity. As far as interpretation is concerned, one can note that the GLRT dete
admits a companion interpretation in terms of “matched filtering,” a concept based on
idea of filtering the observation in such a way that the signal-to-noise ratio (i.e., t
contrast between the two competing hypotheses) is maximized at the output of the fi
Because of the corrupting random phase, the optimum GLRT detector turns out
coincide with a matched filter followed by an envelope detector, a structure referred tc
“quadrature matched filtering [37].”

Until now, the additive noise has been assumed to be white. In the more reali
situation where the noise, while stationary and zero-mean, is colored, the same stra
can still be appliedmutatis mutandisinder the assumption of Gaussianity, provided tha
the observation must first be whitened. More precisely, and provided that the time sup
of the signal to detect is entirely contained in the observation interval/R, T/2],
Parseval’s relation guarantees that

ﬂ;r(t)x(“’)dt = UO RO 0)cl]

for analytic signals. Therefore, if we introduce the whitening operation

+o X(f .
X(t) = x"(t) = f ,1% e'#df,
o \in

and if we apply this to the observation, the problem of detecting a given signal in color
noise is (at least formally) transformed into a new problem of detecting a prefilter
version of the original signal in white noise, thus leading to the following strategy:

W[ RDX(F0) )*
A(r,O)—‘fo Wdf . (3)

It is basically this quantity which has to be given an equivalent time—frequen
formulation.
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3.2. Time—Frequency Detection

As shown by the structure of the GLRT, optimum detection relies on a correlati
measure—in terms of the squared inner product—between the observation and a r
ence. This correlation can be expressed equivalently in the time domain or in
frequency domain, and this naturally suggests that a third equivalent approach shoul
feasible, in which the inner product would be directly written in time and frequency (i.e
jointly) by means of a suitable time—frequency distribution which can be thought of a:
“signature” well adapted to nonstationary signals.

The idea, therefore, is to introduce such a time—frequency distribgfi@nf) (which
necessarily must be at least quadratig)iso that we may have, for any signalgt) and
X,(t), a relation of the type

[(X1, X% = [(X1, Xo)t|* = ({pxis P 1t

where( -, « ), (+, ), and({( -, - )) stand for suitably chosen inner products in the
time domain, the frequency domain, and the time—frequency domain, respectively (
plicit definitions of such inner products will be detailed in the following for giving a
precise meaning to the above equalities).

Such an equivalence obviously has no reason to hold for any quadratic time—freque
distribution. For instance, it is not verified by the simplest distributions we may think c
namely thespectrogram(squared short-time Fourier transform) and thealogram
(squared wavelet transform). This can be checked by direct inspection, but this claim (z
with it, the way to find suitable distributions which overcome the limitations of spectr
grams and scalograms) can be justified in a more interesting manner by conside
general classes of distributions to which spectrograms and scalograms belong. We
introduce, for instance, the following definition [9, 14]:

Derinimion 7. The class of all quadratic time—frequency distributions which ar
covariant with respect to shifts in time and frequency is referred ©adaen’s clasand
reads

Cat, 1) = f fw ¢(&, DA(E, T)e P TDded,

with

AE T = JM x<t + %) x<t - %) el 2mégt

©

and wherep(&, 1) is some arbitrary parameterization function such th@, 0) = 1.
With this definition, it is easy to establish the following result [23]:

ProrosiTion1. A time—frequency distribution belonging to Cohen’s clasarigary,
i.e., satisfies
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2
U %, (t)x(D)dt =J J cet, £)CW(t, f)dtdf,

if and only if the arbitrary parameterization functiap(é, 7) is of modulus unity.

The consequence of this result is that a spectrogram with wirfdoannot be unitary
since it is well known [9, 14] that it belongs to Cohen’s class willg, 7) = An(&, 1),
a quantity which cannot be of modulus unity over the entiterl plane. A similar result
can be established for scalograms, which are known to be members of the saffaiked
class [14]. It appears, therefore, that those distributions (spectrogram and scalograms
a priori not qualified for serving as the basis of aptimumtime—frequency detector,
although they may have been put forward for this purpose and may have proven usefi
suboptimum detectors [2, 20, 21]. Other distributions can be found, however, which
optimal with respect to detection. Whereas the interested reader is referred, e.g., to
31] for a general discussion about optimum time—frequency detection, we will focus h
on the specific case of chirp detection.

4. DETECTING LINEAR CHIRPS

The optimum time—frequency detection of linear chirps was first considered in [2!
From a time—frequency perspective, it turns out that linear chirps are intimately relatec
a special member of Cohen’s class, the so-called Wigner—Ville distribution, defined
follows [9, 14]:

Derinimion 8. The Wigner—Ville distributionof a signalx(t) is the special case of
Cohen’s class attached to the parameterizati@h 7) = 1, and its (real-valued) expres-
sion reads explicitly

Wt, f) = f e+ 3 )x(t -3 )e=rar (4

The reason that linear chirps and the Wigner—Ville distribution are closely linke
together is given by the following

ProrosiTion2. When applied to the linear chirp of Definitidk with a(t) = 1, the
Wigner—Ville distribution(4) is perfectly localized and reads

W(t, f) = 8<f - % zp(t)> .

Since the parameterization function of the Wigner-Ville distributiop(§ 7) = 1, it
is of course of modulus unity, thus guaranteeing unitarity. It follows, therefore, that \
have
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‘ J j: onivar = J J j: Wi (t, F)Wi(t, f)dtdf

for any two signals (t) andx,(t). In the case wherg,(t) = r(t)1; 1, /2y (With 1;(t)
the indicator function of the intervdl) and wherex,(t) is the linear chirpx,(t) =
a(t)e'¢®=2m) we get (thanks to the support-preserving property of the Wigner—Vill
distribution and its compatibility with modulations [9, 14])

Z—FZ f”w € )8(f - = ot ) dtdf
- . ra\ts ( 27T(P )

_ JT’Z (J Wa(t, % o) — g)w,(t, §)d§>dt.

=T/2 %o

T/2 .
’ f F(ha(t)e=o-2igt
=T/2

It follows, therefore, that the GLRT optimum detection (in zero-mean white Gaussi
noise) of a linear chirp with unknown parametérs: («, 8) can be achieved by using as
test statistics the time—frequency-based quantity

A(r; a, B) = fwz p:(t, at + B)dt,

=T/2

with
pi(t, ©) = f W £ - OWiL, e,

Given the linear chirp model (5), the energy of the signal to detect does not depend u
the unknown parametersand g, thus allowing for their maximum likelihood estimation
via A(r; a, B).

5. DETECTING POWER-LAW CHIRPS

In the case of power-law chirps, the Wigner—Ville distributions is no longer a goc
candidate since, although unitary, it lacks the localization property which permits us
come up with a solution in terms of a path integral. In the specific case of hyperbc
chirps (i.e..k = 0), a well-adapted solution has been proposed in [28] on the basis o
variant of the Wigner-Ville distribution (the so-called Altes—Marinovic distribution)
obtained from it by means of a warping operation. We will not follow this approach he
because of two different shortcominings, namely the fact that the resulting strategy is
shift invariant in time (which may be a problem if the time origin of the chirp is unknow
and has to be estimated) and also that the technique developed for thecdseannot
be directly extended to arbitrary (negatives.

The framework we rather propose to use is thaaffihe time—frequency distributions,
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as developed by J. and P. Bertrand [6]. Those distributions form a whole class
time—frequency distributions but, as compared to the previously introduced Cohen'’s cl
their introduction is motivated by a covariance requirement with respect to each solve
three-parameter extension of the affine group. The effective construction results i
parameterized family of distributions for which we will adopt the following definition [6]:

Derinmion 9. TheBertrand distribution(of indexk € R) of an analytic signaK( f)
is given by

PU(E 1) = 2008 [ ) XX Wl v, (9

with
&du) = Au) — A(—u).

In this definition,r and q are free real-valued parameters gungdu) is some arbitrary
function, whereas the explicit form of the parameterization funchigu) is fixed by

e*u _ 1 1/(k—1)
Afu) = (km>

if k # 0, 1, the special cases attachedkte 0 andk = 1 being defined by continuity
as

Ao(u) =

1—-e

and

N B p<1 ue™ )
1(U) = exX + m .

One can note that a Bertrand distribution is real valued if we have the hermiti
symmetry conditionu, (u) = w,(—u), a condition we will assume to be satisfied in the
following.

In order to derive the time—frequency formulation of the power-law chirp detector, v
will need a few results about Bertrand distributions. We will summarize this material
the following Propositions 3 to 6, whose proofs can be found in [6, 7].

Localization—Whereas the Wigner—Ville distribution was naturally adapted |
linear chirps, the adequacy between Bertrand distributions and power-law chirps is sh
by the following proposition [6]:

ProrosiTion3.  When applied to the power-law chif@), the Bertrand distribution of
index k(5) is perfectly localizedn the group delay curvgtf) = t, + ck f* *and reads
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Pt f) = Co O 5(t — t( 1)), (6)
if and only if the arbitrary weighting functiop,(u) is given by

W) = S AU A(—u))™L,

This proves that, in terms of time—frequency localization, the structure of Bertra
distributions is matched to that of power-law chirps, which constitutes the first ingredie
for time—frequency detectiovia path integration.

Filtering—When leaving the class of power law chirps, the Bertrand distribution
no longer perfectly localized. For example, when a signal is filtered, the followir
proposition evidences that its Bertrand distribution filtered accordingly. More precise

[71:

ProposiTion4.  When applied to a product signal(X) = M(f)Y(f), the Bertrand
distribution B(t, ) reads

PY(t, f) = fq+1J“° Pt — 6, ) PX(6, f)do,

where

M, (f) =" IM(F).

Unitarity—The third ingredient we will need is unitarity, for which—introducing
suitable inner products on the half-line of positive frequencies and on the associc
time—frequency half-plane—we have the following result [6]:

ProprosiTion5. A Bertrand distribution isunitary, i.e., satisfies

2
U X(£)Y(F)f2ridf =J+ f PX(t, f) PY(t, f) F2edtdf
0 —oo 0

for any two signals Kf) and Y(f), if and only if the arbitrary weighting functiop,(u)
is given by

wU) = AW (AU A (—u))* L

Extended unitarity—As a corollary to Propositions 3 and 5, the requirements
localization and unitarity can be simultaneously fulfilled onlygli(u) = 1, an equation
whose only solution irk is k = 0 (this can readily be established by noting that we hav
the relationi,(u) = e“A (—u), for anyk [6]). Unless we want to consider only the case
of hyperbolic chirps, it seems, therefore, that the two properties of localization a
unitarity cannot be combined directly, so as to mimic what had been done previously
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the case of linear chirps. A way out, however, is possible, which relies on the followi
proposition [6]:

ProposiTIon6.  Given a localized Bertrand distribution{(t, f) with k < 0, there
exists an auxiliary distribution §(t, f) characterized by

) = (AU A(—w)"™*

and such that

2
U X()Y(F)f2ridf =f+ f PU(t, £)PY(t, f) F2odtdf
0 —» J0

for any two signals Xf) and Y(f).

This offers some additional freedom in the manipulation of Bertrand distributions, |
softening the strict constraint of unitarity attached to one given distribwianthe
introduction of a pair of distributions and a duality relation between them. In the speci
casek = —1, this duality identifies to a situation considered by Unterberger (see [36
who coined the terms “active” and “passive” for distinguishing the corresponding dist
butions. As a generalization, we will therefore adopt the following definiton:

Derinimion 10, The auxiliary distributiorP{9(t, f) is called thepassivedistribution
associated witlP{I(t, f), the latter being referred to astive.

Although, by construction, the passive form of a distribution lacks the localizatic
property of its associated active form, the former can be explicitly related to the latter,
shown by the following proposition:

ProposiTion 7. The passive form §(t, f) of a localized Bertrand distribution is
related to the corresponding active forn§¥t, f) by

PX(t, ) = f f T G(f(t— 0) P, T)do,

©

where

too
G(9) =f g'2msiugy,

Proof. Starting from the definition of the passive distribution, based on the weightir
function @, (u), we can write
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Bt 1) = 120 [ () XA )X

—

= e [ PO )X ey

2(r+1)
=f fg( )q[uk(U)X(fAk(U))X(fAk( u))Je'? gy,

so as to make appear explicitly the weighting functjpg(u) of the associated active
distribution. Using then the fact that, fer= 0, the function, (u) = A (U) — A (—U)
is one-to-one fronR to R, one can make the change of variable= ¢, *(v) in order to
expressP{(t, f) as an ordinary Fourier transform. We get, therefore,

i e 20D () EE—T
Pg|(<) ) = . - ) ka kfl ka—El i2mtivy
0= | 7 gz gy ORI e
- f Gy(s) P(k><t—f,f)ds=ff“° G f(t — 6))PX(6, f)d,
with

1
|21TS\/d
Gds) = f T R
o d )
= J B gy (V) ey
- f T gemigy

whence the result follows.

Given an active distribution, its passive counterpart appears, therefore, as a filte
version of it in time, the impulse respon&g of the filter being frequency dependent (the
equivalent “width,” in time, ofG, varies as the inverse of frequency). In the general cas
(arbitraryk), no closed form expression exists 8. Let us note, however, that in the
case wher& = —1 (A_,(u) = e¥2, Unterberger distribution [6]), we get explicitly

+oo 1 )
G_4(s) = —————e'?™v = 4K (4mls)),
1(9) Jm \/m ol 7T| |)

whereKg( - ) is the modified Bessel function of second kind [1], in accordance with tk
results given in [36].
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All the different results derived so far can now be combined together and lead to
following central result:

ProposiTion8. Given the detection problem where the sign@l %) to detect is the
power-law chirp(2) of group delay §(f) = t, + cgkf* > with unknown parameter, =
(toy Co), and where the additive nois€this Gaussian, zero-mean, and stationary with
power spectral density’(f), the optimum test statistics admits the equivalent time
frequency formulation

AM(r: t, ¢) = J pe(t + ckf*L f)df, @)
0
with
pe(t, f) = C¥2 f TBK(t — s, £)PY(s, f)ds ®)
and
—(3r+2)

Proof. Let us first assume tha@t, = (t,, Cp) is known. In this case, starting from the
results of Propositions 3 (localization) and 6 (extended unitarity), we readily obtain [l
for any signalz(f)

2
U Z(£)X,(f)f2+1df :r f o, £)PX.(L, f) f2dtdf
0 —o 0

- ¢ f BY(t,( ), f) fadf.
0

It follows, therefore, that the left-hand side of the above equation exactly identifies w
the test statistics (3) iZ(f) = R(f)f- @D/ (f) and X(f; 6y) = X, «(f). As a
consequence, the right-hand side of the same equation provides an alternate ti
frequency formulation for the power-law chirp detection problem and, making use of t
results established in Proposition 4 (filtering), we end up with the claimed resultfwitt
= 0y, i.e.,t = tyandc = c,. In the actual case where the parameter vegjis unknown,
the same statistics must be used by repladgavith a set of test valueg = (t, c).
Detection is then achieved when

maxA"(r; t, ¢c) > 7,
(t,.c)
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wheren is some prescribed threshold, while estimatiompfan be carried out according
to

B, = (to, €) = arg maxA™(r; t, c).
(t.c)

According to this result, power-law chirps embedded in Gaussian noise can be o
mally detectedvia a path integration strategy in the time—frequency plane, and the
parameters can be estimated by means of a generalized Radon or Hough transform ay
to a well-defined distribution. A potential application of this result will now be discusse

6. THE EXAMPLE OF GRAVITATIONAL WAVES

Whereas the existence of gravitational waves was predicted long ago by gen
relativity theory, no direct experimental evidence has yet been obtained. Detect
gravitational waves on earth is very challenging because of the extremely tiny effects t
induce on physical systems, and it is only in the very recent past that projects at the f
end of current technologies may have been launched. In both VIRGO and LIC
projects—the main projects, which are still under construction—the detector is basic:
a giant laser interferometer, expected to convert the impinging of a gravitational wave i
a detectable motion of interference fringes. Because gravitational waves are so weak;
although the interferometers have arms more than 3 km long, detectability require
relative sensitivity of the order of IG. Given the noise limitations of the detectors, this,
however, should be possible in a frequency “window” between a few tenths and a f
hundreds of Hertz.

As far as detection itself is concerned (from a signal processing point of view), a k
question is to get soma priori information about possible structures for the expecte!
waveforms. In fact, a wide variety of situations can be considered [32], each correspc
ing to different types of signals, more or less well characterized. Nevertheless, i
somewhat universally accepted that the most promising source of detectable gravitati
waves should be produced by the coalescence of very massive binary systems, the
situation we will consider here.

6.1. A Model for Coalescing Binaries

A “coalescing binary” is a system of two very massive astrophysical objects (e.
neutron stars or black holes), rotating around each other. In the process of this rota
some gravitational energy is radiated in the form of gravitational waves, with tl
consequence that the objects become closer and closer, thus speeding up the rotatic
to coalescence. It intuitively follows that coalescing binaries should naturally give rise
gravitational waves which behave as chirps.

In a first (Newtonian) approximation, an explicit form can be given for the expecte
waveform. Up to some unknown phase, it can be expressed as the real part of
complex-valued signal [30, 34]

X(t; to, d) = Aty — 1) og2milbRy (to— 1), (10)
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with a = % andp = g In this expressiont, is the coalescence time, addand A are
constants which mainly depend on the individual masses of the objects and, of courst
other geometrical quantities such as the distance of the binary from earth or the rela
orientation between the wavefronts and the detector. More precisely, given two object
individual masses, andm,, one can introduce the “total masel' = m, + m, and the
“reduced massju such thaj = = m; * + m; *. Using these two quantities, one can then
define [34] the “chirp massit = u3/°*M?’® and, following [30], we have

d= 160X 3% = 241.45>",

with M, = M/Mg and whereM, stands for the solar mass. For an optimal relative
orientation between the detector and the binary, we have furthermore [26]

4 J(/t5/4 Msm
A= (W>1.92>< 10—21762 3.37X 10*2176,

wherer is the earth—binary distance, expressed in Mpc.
According to Definition 1, the waveform (10) can thus be interpreted as a chirp if t
amplitudea(t) = (t, — t)~* and the phase(t) = 2wd(t, — t)? are such that

a(t) o -
‘a(t)c'p(t) = Zmap (V<1
and
e | 1B—1] .
‘402(0 = 2map D P<L

As mentioned in [11], these two conditions lead to one single condition according
which the model (10) can be given a chirp interpretation over the time interval char:
terized by

max{a, |B — 1I}>1’B

to—t>t0=< 2rdp

(11)

In the specific case of gravitational waves, it follows from the values of the differe
constants that we have

t.= 3 X (1600m) %Mo~ 3.6 X 10 5L,.

Assuming that the chirp interpretation is valid, the waveform (10) has (approximate
for instantaneous frequency

5d
() =5 (t,—



TIME-FREQUENCY CHIRP DETECTION 269

mass2 / mass1 = 1 to 10 (from top to bottom)
7 T T T T T T T T

critical frequency (kHz)

1
0 2 4 6 8 10 12 14 16 18 20
mass1 (in solar masses)

FIG. 1. Qualitative validity of the chirp interpretation for gravitational waves. Gravitational waves radiate
by coalescing binaries can be considered as chirps as long as their maximum frequency in much smaller t
critical frequency which depends on the massgsandm, of the binary. This diagram plots (solid lines) this
critical frequency whem, varies betweenM, and 1M, and wherm, = km,, with 1 < k < 10. The dotted
line (plotted here arbitrarily at 500 Hz) stands for the high-frequency cutoff of the detector, which allows ¢
to get a rough bound for the validity of the approximation.

and the condition (11) defines, in turn, a frequency interval characterized by
f<f,=f(t) =100X (1600m)*°M' =~ 1.66 X 10%M " (12)

Figure 1 illustrates the validity of this condition whem, varies between M and
10Ms, and whemm, = km;, with 1 = k = 10. It follows from this diagram that, in the
case where the high-frequency cutoff of the detector is supposed to be about 500 Hz
chirp interpretation can be considered as valid for a wide range of scenarios which
likely to be observed.

Considering (10) as a chirp, its frequency spectrum can be obtained by means
stationary phase approximation, leading to the following result:

ProprosiTion9.  In the domain where it can be considered as a chirp, the wavefb@n
corresponds approximately to @ower-law chirpin the sense of DefinitioB, with an
envelope index = (a« — B/2)/(B — 1), a phase index k B/(B — 1), a phase shifty =
7/4, a chirp rate
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-1
c=— BT (dp) "V, (13)
and an amplitude
— A (dB)(a—llz)/(ﬁ—l) (14)
=1 |

The relative error in this approximation is frequency dependent and is bounded by

o? (B—2)(B - 1/2)) <g> 1/(3_1)1:—[3/([3—1)‘ (15)

Q(f)=§( + o+
4\p-1 6 B

Proof. Computing the Fourier spectrum of (10) amounts to evaluating the integra

X(f: ty, d) = 71270 fﬁ a(t)e"dt, (16)

0

with a(t) = At™* and (t) = —2x(dtP — ft).

It is clear thatys(t) has no stationary point wheh< 0 and, following the result of
Appendix A, we can first conclude that (10) is almost analytic, as long as the ch
condition (11) is satisfied.

For positive frequencies)(t) has one and only one nondegenerate stationary poir

namely
£\ LVB-1)
w-ld
with the conditiony(t)) > 0.

When specializing to the model (10) the general result (23), it turns out that (16) exax
coincides with a power-law chirp in the sense of Definition 6, with the constants given
(13) and (14). For each frequency, the stationary phase evaluation of the spect
amounts to considering the signal contributiort &t t, and thus the remainder (24) at
this point. After a careful removal of all indeterminancies associated with the evaluati
of Q(t.), we finally get the frequency-dependent result given in (15), which allows one
bound the frequency domain over which the stationary phase approximation can
considered as valid, given a maximum relative error.

Two remarks can be made at this point. First, whereas “chirp conditions” of Definitic
1 are usually advocated for validating stationary phase approximations (see, e.g., [11
or [10]), the validity of the approximation is in fact controlled by (24) and this happer
to be much more intricate. Second, if we apply the above result (15) to the case
gravitational waves, we get that, for the relative error in the stationary phase approxit
tion to be at mosk percent, frequency must be bounded by
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(a) - gravitational wave (m1 =10, m2 =1, r =200 Mpc)
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FIG. 2. Stationary phase approximation for the spectrum of a gravitational wave. The waveform, expec
to be radiated by a coalescing binary composed of two objectsMf land 1M, at a distance of 200 Mpc,
is plotted in (a), with the corresponding instantaneous frequency in (b). The energy spectral density is give
(c) (solid line), along with the stationary phase approximation (dashed line). The validity of this approximati
is controlled by the frequency-dependent relative error plotted in (d).

f=7.18x 10%°M % (17)

in agreement with the qualitative chirp condition given in (12). Therefore, both t
heuristic and the exact criteria turn out to be of the same nature, but the results
Proposition 9 allow for a quantitative control of the approximation.

Figure 2 presents a typical example of a waveform and illustrates the effectivenes:
the stationary phase approximation.

6.2. A Simplified Time-Frequency Detector

Strictly speaking, the optimum time—frequency detector (7) requires one to comput
filtered version (in time) of the Bertrand distribution of the observation. This involve
unfortunately, a very heavy computational burden and, in order to end up with a feas
solution, it is mandatory to consider simpler, yet accurate, time—frequency descriptit
instead of the exact functignk(t, f) given in (8). Whereas such a simplification may not
be possible in the general case, it turns out that it can be effectively achieved in the spe
case of gravitational waves, thanks to the specific values of the physical parameters w
are involved.

In fact, if we come back to (8), we can write in an equivalent way

JM pr(t, f)e "?médt = CF "1 %h(u) JM PR(t, f)e '?m¢dt (18)

—



272 CHASSANDE-MOTTIN AND FLANDRIN

with

_ (yua-up

htw) ék(u)

ACTA(W) A(FA(—u)) (19)

and

u= g,:l(%) .

Due to low-frequency (seismic noise) and high-frequency (photon noise) limitatior
the effective observation bandwidth is necessarily restricted to some bandpass frequ
intervalf_ = f = f_ (with typical values that we can choose tothe~ 50 Hz andf_,
~ 500 Hz). This has for consequence that the Fourier spectrum

fﬂ PR(t, F)e2retdt = F2 19 (u) A=) T ROFA(W)R(FA(—w))

—o0

is nonzero only in the range
f,
u =u, = log ¢+,

and it follows that theu-dependent prefactdr(u) of the Fourier transform oP&(t, f)
can be ignored in (18) as long as it is almost equal to 1dbr= u, .

Within the above-mentioned frequency band, we can consider (see, e.g., [20, 21])
the power spectrum densitl/,(f) of the observation noisa(t) has essentially a
continuous background which behavesI3gf) = o ¢, with e ~ 1.3 Assuming
therefore that

A( f) — 072f57(3r+2)
forf_ = f = f,_, we get from (19) that

O (IPWEST))
Zk(U)

h(u) = o

for |u| = u,. In the case of coalescing binarids € —g, r= %) and “1f” noise (€ =
1), this reduces to

(A—S/s(u_))\—S/s( —u)) 3
{_s5(U)

a*h(u) = . (20)

3 Let us notice that this is a first approximation and that, in the case of actual detectors, it will certainly h:
to be refined on the basis of more realistic noise models.
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FIG. 3. When the frequency band of the detector is limited, the time—frequency function to be used car
well approximated by a Bertrand distribution provided that the functiéh(u), defined in (20), acts as a
convolution unit in the space af-limited functions. The validity of this approximation is illustrated here by
plotting in the upper diagram*h(u) (solid line) and the indicator function of theinterval associated with the
frequency range 50—-450 Hz (dotted line), and by comparing in the lower diagram their Fourier transform:

a quantity which, in the considered spaceudimited functions, can be considered as a
convolution unit, as illustrated in Fig. 3.

When the above approximation is valid, it leads therefore to a detector as in (7),
with the simplification

CZ
pr(t £) = g 5 EIPRE, ).

Given this simplified structure, the final problem reduces to finding some accurate «
easy-to-compute approximation to the Bertrand distribuf$fi(t, f). Since the key
feature of this distribution is to satisfy the perfect localization (6) on “matched” chirps, tl
solution that we propose is to replace it wittreassigned spectrograii3, 5] S(t, f)
which, when applied to the same power-law chirps, is known to behave approximately

Sp(t, F) = CH 2 05(t — ty( f)). (21)
The principle of reassignment is briefly recalled in Appendix B and the effectiveness
this approximation is illustrated in Fig. 4.

Comparing (6) and (21), we are led to choosing 2r + 1, with the final form of the
approximated optimum detector given by

C2 [+
At c)= 3 J Syt + ckf< Y, ) fe g,
0
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FIG. 4. Time-frequency distributions for gravitational waves. Given a gravitational wave radiated by
coalescing binary, a “matched” time—frequency distribution is expected to be as localized as possible alon
instantaneous frequency curve. The “ideal” representation (a) is compared with a number of candidate d
butions (coalescence time is fixedtyp= 0). From a theoretical point of view, it is known that the desired
localization is guaranteed by using a matched Bertrand distribukica eg): this is illustrated in (b), where
the algorithm described in [17] has been used. An effective and easy-to-compute approximation is given b
reassigned spectrogram (c). These two situations contrast with the more classical solutions provided b
Wigner—Ville distribution (d), the spectrogram (e), and the scalogram (f).

In the specific case of coalescing binaries, we can prefer to parameterize the sign
detect by means of its coalescence tinand reduced chirp mast.. Together with the
right constants, we finally get (up to an amplitude factor)

AY(r; t, My) o S, )28

L(t,Me)

with
L(t, Me) = {(7, F)|t — 7= 3 X 10O 5},

6.3. An lllustration

In order to illustrate the effectiveness of the proposed approach, we present in Fi
two different examples based upon one of the typical situations discussed in [20, 21]. E
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(a) - detector output {b) - detector output
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FIG. 5. Detection of a gravitational wave. This figure illustrates the efficiency of an optimum time
frequency-based detection for a gravitational wave with coalescence tim@ of a binary composed of two
objects of M, and 1M, at a distance of 200 Mpc in case (a) and 1 Gpc in case (b). Since the distance betw
the binary and Earth changes the only signal amplitude, the signal-to-noise ratio is the only parameter tha
been modified between these two examples. Each plot compares the squared envelope of the output
matched filter (dashed—dotted line) with a time—frequency strategy based on a line integration over eith
classical spectrogram (dashed line) or its reassigned version (solid line). In order to make appear more cl
what is gained in terms of contrast, the maximum of each of these curves has been arbitrarily normalized to L

examples will assume that the binary consists of two objects Mf, Jand 1M,
(coalescence time sette= 0). The binary is located at a distance of 200 Mpc from Eartl
in the first example, and 1 Gpc in the second one. The simulation was run by corrupi
the data with Gaussian additive noise, with= 1 ando? = 0.7 X 10 *¥Hz over a
frequency range of 50-500 Hz. The proposed strategy, based on the reassigned sp
gram, does not reach the ideal performance predicted by the matched filter theory, bec
of the limited accuracy of the different approximations which have been involved in |
derivation (in particular, the band-limited nature of the signal implies that the Bertra
distribution cannot be perfectly localized along the group delay curve). However, t
figure shows that this strategy clearly allows for the detection of the chirp and that it a
overperforms a crude path integration based on a standard spectrogram.

In the examples of Fig. 5, the chirp madt, was implicitly assumed to be known,
which is by no means the case in practice. Assuming filigtis unknown, a refined
strategy amounts to applying the previous one in parallel by performing as many |
integrations as is necessary for sampling valuefl gfover some expected range. Figures
6 and 7 exhibit the application of this strategy on the reassigned spectrogram and star
spectrogram, respectively. This joint detection—estimation problem allows also for
estimate ofill, to be obtained. It should be noted that, when scanning test valudsfor
the reference signal energy is modified. The output of each detector therefore mus
divided by a factor proportional to the squared amplitude of the reference signal (wh
varies asi(2?) in order to compare coherent results.
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FIG. 6. Joint detection—estimation for gravitational waves based on the reassigned spectrogram. In the
where the chirp mass paramet#, is unknown, different line integrations (similar to those of Fig. 5, but over
a number of different time—frequency curves) have to be performed, here on the reassigned spectrogram
results in a surface whose maximum allows for the detection of the gravitational wave (when it exceeds s
prescribed threshold) and for the estimation of both the time of coalescence and the chirp mass (actual v

are indicated with dashed lines).

7. CONCLUSION

The purpose of this paper was to combine elements from optimum detection theory
time—frequency analysis so as to provide a coherent framework for intuitive strateg
aimed at detecting chirplike signals by some line integration in the time—frequency pla
The example of gravitational waves (expected to be radiated by coalescing binarie:
particularly important in this respect, and the possibility of their time—frequency detecti
was discussed in some detail. Once the conditions for such an alternative quasi-optir
strategy have been established, the question now is to discuss further what can be r
gained from such a new approach, especially in terms of versatility and robustness.

APPENDIX A: THE STATIONARY PHASE METHOD

Let | be an integral of the form

| = f a(t)e'"vdt,
(9]

where botha(t) > 0 andys(t) areC*, whereas supg(t)} is restricted to some interval

Q) of the real line over whicla(t) is integrable.
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FIG. 7. Joint detection—estimation for gravitational waves based on the spectrogram. The surface sh
here is the response of the detector—estimator based on path integrations of the standard spectrogran
should be compared with the one in Fig. 6. The smoothness of the detection peak and the poor contrast be
its maximum and the noise level make the detection procedure more difficult. Dashed lines indicated ac
values of the time of coalescence and the chirp mass.

Assuming that the amplitud&(t) is slowly varying as compared to the oscillations of
the phase/i(t), (22) corresponds to an oscillatory integral. Using standard arguments,
can therefore heuristically consider that, when integrated, positive and negative contr
tions of fast oscillations tend to cancel each other, with the consequence that the r
contribution to (22) only comes from the vicinity of those points where oscillations a
significantly slowed down, i.e., where the derivative of the phase is zero. This is 1
essence of the stationary phase principle.

In the specific case of the model (22), classical results from stationary phase theory
presented, e.g., in [33]) cannot be directly applied, because phase oscillations are
controlled by a multiplicative parameter becoming arbitrarily large. Nevertheless, if v
assume thais(t) has one and only one nondegenerate stationary po{ie., thatys(t.)
=0 and{[z(ts) # 0), we can (following, e.g., [19, 35]) make the change of variables

. P(t) — ¢ty
o Pt)l2

SO as to rewrite (22) in the form

| — eil,}(ts)f g(u)eiﬁuzdu,
(0%
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with g(u) = a(x(u))(du/dx)"* andp = J}(ts)/z. Following [19], we get for such an
expression a decomposition of the types |, + R, where the first term corresponds to
the stationary phase approximation

2 ) .
l,= \/7 atye Yt gi(sgmp(ta) i (23)
RG]

whereas the remaind® is such that

R
Q= |

la

5 SURco 9

= Q=1 ploty

The stationary phase approximation is therefore valid if we l@ye< 1. An explicit
evaluation of this quantity leads @, = Sup., Q(t), with

1/2

mwzp‘aw Wﬁ

aaﬂ+zw<1‘¢2

(o) 35 %)

QD) = 52Jy(ta)| ‘

 (24)

wheres denotes the functiog(t) — Yty for short.

The above closed form expression for the remainder allows one both to make exp
the conditions under which (23) is a valid approximation for (22) and to bound tt
corresponding error.

In the case where there is no stationary point, it is intuitive that the integral (22) sho
tend to zero as oscillations become faster. To make this point more precise, let us ass
that§s(t) # O for anyt € €, so that we can rewrite (22) as

- a(t) Q)
| = f“ M0 iP(t)edt.

An integration by parts leads to

a(t) . at) Y7
s f . a(t)[am ) ipZ(t)]e at,

= e' ()

()

from which it follows that

a(t)
=l

(1) |

(il -] v

Assuming that the amplitude may be regularized so as to make negligible the first te
we get that
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llall, =

a(t)

H (o) |
U

This result can be interpreted the following way: as compared to the situation where
oscillations of the phase would be infinitely slowed down, the absolute value of t
oscillatory integral (22) with no stationary point is bounded by a quantity whose decay
zero is controlled by chirplike conditions.

In the case we are here mainly interested in (i.e., the evaluation of a Fourier transfor
we haveyi(t) = ¢(t) — 2=ft, wheree(t) is the phase of a chirp. Since we hay@) >
0 for anyt € Q, we can conclude that the frequency domain for which no stationary poi
exists is the half-line of negative frequencies. Since we have futheriffore= $(t) and
P(t) = p(t) whenf < 0, we get that

a(t) at)
H H a(t)so(t) ,
and
[l = 15

This proves that the chirp conditions of Definition 1 are sufficient to guarantee t
quasi-analyticity of the exponential model (1), in the sense that spectral contribution:
negative frequencies are negligible.

APPENDIX B: THE REASSIGNMENT METHOD

The spectrogranSi(t, f) = |Fi(t, )|, i.e., the_squared modulus of the short-time
Fourier transfornFi(t, f) = [72 X(&) H*(& — f)e'2™¢~Didg, can also be viewed as
a smoothed version of the Wigner—Ville distribution of the signal

St f) = f f T Wi(s, HW(s — t, £ — F)dScE.

The purpose of reassignment [24] is to refocus the spectrogram on the time—freque
energy content given by the Wigner—Ville distribution. It basically consists in moving tt
values of the spectrogram from their initial computation point to a time—frequen
location {(t, f), f(t, f)) given by a local center of mass computed over the Wigner—Vill
distribution of the signal

8(t, ) = j J T Sis, ©a(t— (s, 9), T - H(s, £)dsck.
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This results in a squeezing of each signal component along its associated group ¢
and/or instantaneous frequency path. For example, the reassigned spectrogram is per
localized on linear chirps with a constant envelope,

X(t) = exp{i2w(%t2+ Bt + y)} = 8t f)=8(f— (at + B)).

In the case of nonlinear chirps, a similar squeezing effect will be obtained provided t
the instantaneous frequency or the group delay of the signal is almost linadly, i.e.,
in a time—frequency domain whose effective support is defined by the time and freque
widths of the analysis window. One can mention that reassignment has been provec
to be restricted to the spectrogram and its application has been extended [3] to
smoothed distributions within Cohen and affine classes.

From a computational viewpoint, reassignment is supported by efficient algorithms.
the case of the spectrogram, we get explicitly [3]

t(t, f) =t + Re{Fy(t, f)/FX(t, )}

f(t, f) = f — Im {FL(t, f)/FYt, )}, (25)

whereu(t) = th(t) andv(t) = dh/dt. Therefore, the resulting algorithm combines, in &
proper way, three STFTs of the signal based on three distinct windows (and even two ¢
if the window is a Gaussian).
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