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SIAM J. APPL. MATH. 
Vol. 15, No. 4, July, 1967 

Printed in U.S.A. 

AN EXTENSION OF THE VALIDITY OF THE STATIONARY PHASE 
FORMULA* 

DONALD LUDWIGt 

1. Introduction. The method of stationary phase is applied to integrals 
of the form 

(1.1) I(k) = f eiksp(x)g(x) dx. 

An isolated stationary poinit is defined as a point x such that ,'(x) = 0 
and so" (x) z 0. If xZ is the only critical poinit in the interval of integration, 
then I has an asymptotic expansion (valid for large positive k) of the form 

eikp(.T) - 
(1.2) I(k) -E a 

where aj involves the values of g and its derivatives up to order 2j at x 
and derivatives of so up to order 2j + 2 at xZ. Such an expansion is not valid 
if o" (x) = 0; indeed, each coefficient aj is infinite in such a case. On the 
other hand, experience with certain uniform expansions (see Chester, 
Friedmain aind Ursell [1]) shows that expansions of the form (1.2) are valid 
even for small values of so(x), provided that kV18p" (x) is large. For ex- 
ample, the Debye approximation 

(1.3) Jk(kr) (k 2 Cos [kVr 1 - are cos -- 

if r> 1 

is obtained by applying the method of stationary phase to an integral rep- 
resentation of the Bessel function and retaining only the first term of the 
expansion. We may ask how small r - 1 must be before (1.3) fails. The 
uniform asymptotic expansion of Jk(kr) shows that (1.3) is a valid first 
approximation provided that k1l8Vr - 1 is large. 

In the general case of (1.1), so and g (and hence x) might depend upon a 
parameter X (the analogue of Vr - 1) in such a way that OI (x, X) -> 0 
as X -* 0. (We continue to denote derivatives of so with respect to x by a 
prime.) If X is restricted (dependinig upon k) in such a way that k1p (It X) 
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916 DONALD LUDWIG 

is large, then I(k, X) may be represented by 

eikpo(2,X) - i X 

where 

(1.5) a k1"3 | i 

The coefficients b1 involve the values of g and its derivatives of order up to 
2j at x and derivatives of so up to order 2j + 2 at x. Of course, (1.4) is valid 
wherever (1.2) is valid, but (1.4) provides a transition between the situa- 
tion where the jth term in the expansion has order k-ljGl2 (when 0f has order 
k"3) and the situation where all terms in the expansion have nearly the 
same order in kc (where o- nearly has the order of ko). If ar has the order of 
ko, then neither (1.2) nor (1.3) is valid. We also show that the expansion 
(1.4) is contributed by an interval around x whose length has order k"3. 
It should be emphasized that the expansion (1.4) actually refers to a differ- 
ent situation than (1.2), due to the presence of the parameter X. The range 
of values of X for which (1.4) is valid is larger than for (1.2), but it is 
dependent upon k. 

A similar procedure can be applied to an integral of the form (1.1) whicl 
involves an endpoint of the interval of integration. If xo is such an endpoint, 
if g has a factor (x - xo), and if vo'(xo) 3 0, then the corresponding contri- 
bution to the expansion of I has the form 

(1.6) I (k) 

where cj involves the values of (x - xo)- g and its derivatives up to order j 
at xo and derivatives of s up to order j + 1 at xo . We permit so and g to 
depend upon X, and we set 

(1.7) = k1/2 I y'(xo, I) X) 

If r is large, we have 

(1.8) I(k, X) 1 00E dj(X) IkX)r. k(l+r)/2T1+r Z- T2 

where dj involves the values of (x - xo)- g and its derivatives up to order 
j at xo and derivatives of so up to order j + 1 at xo . Thus our expansion 
(1.8) extends the validity of the endpoint formula (1.6) to the point where 
successive terms of the expansion have nearly the same order in k. Our 
analysis also shows that the expansion (1.8) arises from an interval around 
xo whose length has order k112. 
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VALIDITY OF TlHE STATIONARY PHASE FORMULA 91.7 

Our immediate motivation for the present work was to verify an asymp- 
totic solutionr of a diffraction problem (see Ludwig [3]). However, the re- 
sults appear to be useful in a wider context, for example, to justify integra- 
tion. of asymptotic expansions which break down at one or more points. 

2. An interior stationary point. The statement of our main theorem is 
complicated by the need to ensure that there is only one stationary point 
in the interval of integration. Roughly speaking, we must assume that 
q" (x, X) is different from zero except when x is near x. For our present pur- 
poses, "x is near x" means that x - x has order less than k-"3 (independent 
of X) and "p' is different from zero" means that q and r, defined by 

(2.1) q-213 

(2.2) 2 , z K 
k'1o"(x, X) 

are bounded indepenidently of k and X. 
THEOREM 1. It is assumed that g(x, X) and (p(x, X) are infinitely differ- 

entiable with respect to x and all derivatives of g and so are continuous with 
respect to X, g has compact support in x and X, *p'(x, X) = 0, and there exists a 
number B > 0 (independent of k and X) such that q and r (defined by (2.1) 
and (2.2)) are bounded independently of k and X where k is large and 
(x - X)k"3 I > B. Then for any N, 

I(k, ) =L eikp(x) g(x, ) dx 
00 

(2.3) eikpX N bj(N) 1-I3oS-3-3-1I2) 

where 

(2.4) k"3 2 ( ) | 

and bj involves g and its derivatives up to order 2j at x and derivatives of so up 
to order 2j +- 2 at V. 

Remark. The hypothesis of Theorem 1 can be weakened by use of the 
lemma which appears at the end of this section. There it is shown that there 
exists a number B1(X) (independent of k) such that q and r are bounded if 
k"1/3B ? I x - < B,(X). Thus, in order to apply Theorem 1, it is only 
necessary to bound q and r where j x - I > B1(X). 

The proof of Theorem 1 consists in breaking the interval of integration 
in (2.3) into two pieces. In the interval where x is near x, a change of param- 
eter from k to a- and a change of independent variable results in an integral 
to which the usual method of stationary phase is applicable, even if 'p" (X) 
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918 DONALD LUDWIG 

is not bounded away from zero. The integral over the interval where x is 
bounded away from x is estimated by an integration by parts. Since X 
does not appear explicitly in the calculations, we shall not inidicate its 
presence. However, all funietions which appear will depend continuously on 
X. 

It follows from Taylor's theorem that 

(2.5) k I (x) -v I = k-'213o(x - X)2 + k(x - x)3f(x -) 

with an appropriate function f. We define y by means of 

(2.6) y = k"3(x- - ) 

and we assume for the moment that y is bounded, i.e., we consider a neigh- 
borhood of x of width proportional to -1J3. We define P by means of 

(2.7) 0.2 = k I y(x) -9(x) I = ay2 [1 + Lf(k-1I3Y)] 

In view of (2.4) we may write 

(2.8) f (k 
f C ) I Y) = Y) 

and (2.7) may be rewritten as 

(2.9) - 1 + YTf(_)] 

If P is bounded and a is large enough, we may apply the implicit function 
theorem to obtain 

(2.10) Y - -1 + f2(-)] 

and thus, 

(2.11) dy = 1 + f3 (?) 

with appropriate functions f2 and f3 . 
We can find a number A such that y ? B ifv > A, and we choose a 

C' function p such that 
{1 if s <A2, 

(2.12) lo if s > 2A2. 

Then (2.3) can be written as 

(2.13) feikp g (Ix = f eikgp(?2) dx + f eikpg(j _ p(P2)) dx = Il + I2. 
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VALIDITY OF THE STATIONARY PHASE FORMULA 919 

In the support of p(P2) we have ?' < 2A', and hence from (2.10), y is 
bounded. Using (2.6), (2.7) and (2.11), we obtain 

(2.14) I e' f e?i 2gGx + k-"'y) (I + f3 ()) 3 )' 

where + = sgn (s)(x) )). Applying Taylor's theorem to the product 
qG( + 17'y) (1 + f3( ?/'o)), we obtain 

(2.15) 11= e f e:1- ' g1 2h 2P(2)N1/3 

We note that g9 is a linear combination of derivatives of g up to order 1 
at x, whose coefficients involve the derivatives of so up to order 1 + 2 at x. 
The syinmetry of the integrand implies that odd powers of v do not contrib- 
ute to the integral. Thus we obtaiin 

eik@p(i N gi __a22p(2 (2.16) I 3 E f ei't'2p(.2) cl + 13, 
k"' j= 

where 
ei k ~ 2 -.2N+1 /d__ 

(2.17) I eeior2 h p(P2 3 
013 U~~N+1/2 kll3 

Now we can apply the usual method of stationary phase to the integrals in 
(2.16) and (2.17) (see Erdelyi [2]). The result is 

eik(p(~0N) b. 1 o(~ 
(2.18) I = E -3 + O k--3 1 kl1/30,12 j=o u3i 0,3ll f3N+3 

where 

(2.19) b = -\/7rj! egi(j1/2)/2 j 

Now it only remains to estimate the integral I2, where A'3 i X > B 
in the support of 1 - p(f2). We introduce a new variable A1 by means of 

(2.20) u f k(p(x) -9(z )). 

Then 

(2.21) =,t"(x) -"'cp"(x) -' 

(2.22) k'!'t"(x)) = _____=r, 

and q and r are bounded where A'3 I X - > B by hypothesis. We shall 
estimate the derivatives of q and r with respect to A1. From (2.21) and 
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920 DONALD LUDWIG 

(2.22), 

(2.23) dq = 2r) 
diP 

(2.24) dr= r2q + q2 
0 X 

By repeated differentiation of (2.23) and (2.24), we see that all deriva- 
tives of q and r with respect to 41 are bounded. Now we introduce VI as 
variable of integration, to obtain 

ikt(x)r 
(2.25) 12 = e 1 -p(iP)]g(x(iP)) qdi/. 

Integrating by parts n times, we obtain 

'inei kpCT) r n 
(2.26) I2 =- n J e [(1 - p(i))g(x(4))qJ d4j. 

Sinice all derivatives which appear under the integral sign are bounded, the 
theorem is proved. 

We remark that only 2N + 2 derivatives of g and 2N + 4 derivatives of 
so are required for Theorem 1 to be valid. However, such weaker hypotheses 
would make the estimation of I2 more tedious. 

LEMMA. If g(x, X) and (p(x, X) are infinitely differentiable with respect to 
x and all derivatives of so and g are continuous with respect to X, g has compact 
support in x and X, <p'(x, X) = 0 and B > 0, then there exists a function 
B1( X) such that q and r are bounded independently of k and X if 
kV13B < I x - < B1(X). 

Proof. We choose B1(X) such that 

(oI(XI x) 1 ~ o(P /(x,) (2.27) (X and < 2, 

where I x - I < B1(X). We have the idenitity 

(2.28) q = - - - o'(X) 

and thus, 

(2.29) l - I < if k ''B _ x-x < Bi(X). 

Similarly, 
(r " (xe X) _ so" (XI X) A/" vi X) (2.30) ~ k"13(P(x, X) 1- 0' (X, X) k ( - 

Z)(x - -)~ . 
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VALIDITY OF THE STATIONARY PHASE FORMULA 921 

and thus, 

(2.31) r 4 < 4 if k7"3B _ I x-x I _ B1(X). - 
13Ix - =B 

3. An endpoint. This section is devoted to the proof of the following 
theorem. 

THEOREM 2. If <(x, X) and g(x, X) are infinitely differentiable with respect 
to x and all derivatives of sp and g are continuous with respect to A, g has com- 
pact support in x and X, and if '(O, X)/'(x, X) is bounded independently of 
X in the support of g, then, for any N, 

I(k,) = f eikr(x,)xrg(x, x) dx 

(3.1) eikjp(o,) N 

k(l+r) /2T1+r [0 'r22 + 2N+2 

where r is a fixed complex number, Re r > -1 (to ensure existence of the 
integral), T is defined by 

(3.2) X = k'/2 l /I(O X) 

and the coefficients dj involve g and its derivatives up to order j at x = 0 and 
derivatives of Xp up to order j + 1 at x = 0. 

The proof of Theorem 2 is analogous to the proof of Theorem 1. We shall 
not indicate the presence of the parameter X explicitly. We define ii and y 
by means of 

(3.3) rql = k I <(x) - (?) 1 

(3.4) y = k'12x. 

Taylor's theorelml implies that 

(3.5) k I p(x) -(O) = Ti-=y +yfQ( O) 

with an appropriate f, and thus, 

r r T \2 /r 

If y is bounded and r is large enough, we can apply the implicit function 
theorem to obtain 

(3.7) - =-(+ 
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922 DONALD LUDWIG 

(3.8) dy T (T) 

with appropriate fi and f2 . 
Now we choose p E C' such that 

(3.9) P() = 1 if / >2 
I 

Then (3.1) can be rewritten as 

I(k) = f e ipQ()xrg(x) dx 
(3.10) 

+ f eik(1 - p())xrg(x) dx = I + 12. 

Introducing 41 as a variable of integration in 1 , we have 

eik (o) d 
(3.11) A k1/2 f e r\p(I) (yk-1 2)rg(k12y) dy d, 

where ? = sgn ( p(x) - 5(0)) and dy/dip is given by (3.8). After expand- 
ing yrg(dy/di) in powers of V/T, we obtain 

= ik9o(O) 

k(l+r)I2rr+l 

( 3.12 ) Nw oo j+r oor+NV+l 
(3.12)oe P(1)cj - 1 + e?4p(i) iN?l h-) dx]. 

The integrals which appear in (3.12) may be treated by the usual endpoint 
procedure (see Erdelyi [2]), and we obtain 

ikyo(O) N 

(3.13) I e = d_______ j (T )_ 
kj1?r)I/2 r+l j=0 Ti T2 

where 

(3.14) dl = P(j + r + I)e ?( jr-fl) 7r/2Cj 

The proof of Theorem 2 will be completed if we estimate 12. We define 

(3.15) q = ______ 
= 1P'(0) 

k" 2 1 *PI(x) I - '(x) 

by hypothesis, q is bounded independently of X in the support of g. We have 

dq 3 P 
/ 

O(x) 
(3.16)diT 

This content downloaded from 195.78.108.163 on Wed, 18 Jun 2014 08:56:16 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VALIDITY OF THE SrrATIONARY PHASE FORMiIULA 923 

(3.17) dx q - ' q (O) 

and hence, 

(3.18) d"q - ? (1) 

Introducing 4' as variable of integration in '2, we obtain 
eik(0) g 

(3.19) I2= k,12 f eiTT1 p()]g(X(-))Xrqdl. 

Using (3.4) and (3.6), xT can be expressed in terms of JJrl24'rf( 4) with an 
appropriate f. After integrating by parts n times, we obtain 

(3.20) I ei9? It J + 
eiTf ( d )n [l_P(41/)l/ ] 

. 
q d; (3.20) ~12 = e d 

and the theorem is proved. 
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