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46 alĺee d’Italie, 69364 Lyon Cedex 07, FRANCE
Tel. : +33 4 72 72 81 60 Fax : +33 4 72 72 80 80

E-mail : echassan,flandrin@physique.ens-lyon.fr

ABSTRACT

The use of the stationary phase principle is often advocated
for evaluating the spectrum of a chirp. This issue is con-
sidered here in detail, especially with respect to the quanti-
tative control of the corresponding approximation error. A
careful analysis leads to the introduction of a refined cri-
terion, which turns out to be much more complicated than
the heuristic conditions which are usually considered in this
context. It is moreover evidenced, by means of two coun-
terexamples belonging to the important class of power-law
chirps, that — as opposed to a common belief — usual
heuristic conditions are by themselves neither necessary nor
sufficient for validating a stationary phase approximation.

1. MOTIVATION

Monocomponent AM/FM signals are ubiquitous in Nature
(animal communication, geophysics, astrophysics, acous-
tics,. . . ) as well as in man-made systems (radar, sonar, seis-
mic exploration,. . . ) : “chirps” have been introduced for
serving as natural models to such waveforms.

Definition 1 By definition, chirps are signals of the form

x(t) = a(t) exp{iϕ(t)}, (1)

wherea(t) is some positive, low-pass and smooth ampli-
tude function whose evolution is slow as compared to the
oscillations of the phaseϕ(t).

More precisely, conditions ona(t) andϕ(t) usually read
(see, e.g., [2, 3, 6, 9])

ε1 =
∣∣∣∣ ȧ(t)
a(t) ϕ̇(t)

∣∣∣∣ � 1 ; ε2 =
∣∣∣∣ ϕ̈(t)
ϕ̇2(t)

∣∣∣∣ � 1, (2)

where the first condition guarantees that, over a (local) pseudo-
periodT (t) = 2π/ϕ̇(t), the amplitudea(t) experiences al-
most no relative change, whereas the second condition im-
poses thatT (t) itself is slowly-varying, thus giving sense to
the notion of a pseudo-period.

Although the definition of a chirp is usually given in the
time domain (as in (1)), many applications call for a com-
panion description in the frequency domain [1, 3]. In this
respect, it is customary to make use of a stationary phase
approximation, assuming more or less explicitly that the
conditions given in (2) support the effectiveness of the ap-
proach.

2. STATIONARY PHASE APPROXIMATION OF
CHIRP SPECTRA

2.1. The stationary phase principle

The argument of the stationary phase principle can be phrased
as follows. LetI be an oscillatory integral of the form

I =
∫

Ω

b(t) eiψ(t) dt, (3)

where bothb(t) > 0 andψ(t) areC1, whereassupp{ψ(t)}
is restricted to some intervalΩ ⊂ IR over whichb(t) is
integrable. Assuming thatb(t) is slowly-varying as com-
pared to the oscillations controlled byψ(t), positive and
negative values of the integrand tend to cancel each other,
with the consequence that the main contribution toI only
comes from the vicinity of those points where the derivative
of the phase is zero.

2.2. One stationary point and approximated chirp spec-
tra

In the case of the model (3), classical results from stationary
phase theory (see, e.g. [7]) cannot be applied directly since
oscillations are not controlled by some natural parameter of
large value. Assuming however that the phaseψ(t) has one
and only one non-degenerate stationary pointts (i.e., that
we haveψ̇(ts) = 0 and ψ̈(ts) 6= 0), we can make the
change of variables

u2 =
ψ(t)− ψ(ts)
ψ̈(ts)/2



so as to rewrite (3) in the canonical form

I = eiψ(ts)

∫
Ω′
g(u) eiβu

2
du, (4)

with g(u) = b(t(u))(du/dt)−1 andβ = ψ̈(ts)/2. Using
a Taylor expansion for the exponential in the right-hand side
of (4), we are thus led [4] to decomposing (3) asI = Ia+R,
with

Ia =

√
2π

|ψ̈(ts)|
b(ts) eiψ(ts) ei(sgnψ̈(ts))π/4, (5)

the quality of usingIa as an approximation forI depending
on the magnitude of the remainderR.

Extending an approach developed in [4, 8] allows for
bounding explicitly the relative errorQ = |R/Ia| as

Q ≤ Qm =
5
4

supu∈Ω′ |g̈|
|β| g(ts)

(6)

and the stationary phase approximation is therefore valid if
Qm � 1. Given the model (3), an explicit evaluation of
this quantity leads toQm = supt∈Ω F (t), whereF (t) is a
fairly complicated function which is explicitly given in [1]
and which depends non-linearly onb(t), ψ(t) and some of
their derivatives up to third order.

This result provides us with a sufficient criterion for
(quantitatively) justifying the effectiveness of the approxi-
mation and it can be readily applied to the problem of eval-
uating the spectrum of a chirp (1) with a monotonic in-
stantaneous frequency by settingb(t) = a(t) andψ(t) =
ϕ(t) − 2πft (with the stationary pointts thus defined by
ϕ̇(ts) = 2πf ). What turns out is that the corresponding
error is not only controlled by the termsε1 andε2 (as de-
fined in (2)), but also by additional terms depending on more
complicated combinations ofa(t), ϕ(t) and some of their
higher-order derivatives. In general, evaluating the upper
boundQm in (6) appears not to be feasible but, in most
cases, a useful substitute is given byF (ts), such a simplifi-
cation corresponding in fact to only considering the leading
term in the integral remainderR.

2.3. No stationary point and quasi-analyticity of chirps

Returning to the general model (3), it is finally worth inves-
tigating the case where there is no stationary point. In such
a situation wherėψ(t) 6= 0 for anyt, (3) can be rewritten as

I =
∫

Ω

b(t)
iψ̇(t)

iψ̇(t) eiψ(t) dt,

so as to be integrated by parts. Assuming thatb(t) ∈ L1(Ω)
andb(∂Ω) = 0, we get that

I

‖b‖1
≤

∥∥∥∥∥ ḃ(t)
b(t)ψ̇(t)

∥∥∥∥∥
∞

+

∥∥∥∥∥ ψ̈(t)
ψ̇2(t)

∥∥∥∥∥
∞

, (7)

which means that, as compared to the situation where the
oscillations of the phase would be infinitely slowed down,
the magnitude of (3) is in this case bounded from above by
a quantity whose decay to zero is controlled by chirp-like
conditions. Moreover, in the case whereI corresponds to
the Fourier transform of the chirp (1), i.e. whenb(t) = a(t)
andψ(t) = ϕ(t) − 2πft, and if we furthermore assume
that ϕ̇(t) > 0 for any t ∈ Ω, we can conclude that the
frequency domain for which no stationary point exists is the
half-line of negative frequencies. Since we have in this case
ψ̈(t) = ϕ̈(t) andψ̇(t) ≥ ϕ̇(t) whenf < 0, we are ensured
that ∥∥∥∥∥ ḃ(t)

b(t)ψ̇(t)

∥∥∥∥∥
∞

≤
∥∥∥∥ ȧ(t)
a(t)ϕ̇(t)

∥∥∥∥
∞

and ∥∥∥∥∥ ψ̈(t)
ψ̇2(t)

∥∥∥∥∥
∞

≤
∥∥∥∥ ϕ̈(t)
ϕ̇2(t)

∥∥∥∥
∞
.

It appears therefore that the heuristic conditions (2) are
sufficient for making the right-hand side of (7) negligible,
thus guaranteeing the quasi-analyticity of the exponential
model (1) — in the sense that spectral contributions at neg-
ative frequencies are almost zero —, with the consequence
that the quantityϕ̇(t)/2π can be effectively interpreted as
the instantaneous frequency of the chirp.

3. EXAMPLES AND COUNTER-EXAMPLES

3.1. Power-law chirps

In order to evidence the possible limitations in using a sta-
tionary phase approximation when evaluating a chirp spec-
trum, we focus on the important class of “power-law” chirps
[1, 3] :

Definition 2 By definition, a power-law chirp is a chirp (1),
in which

a(t) = (t0 − t)−α

and
ϕ(t) = 2πd(t0 − t)β ,

with α, β andd real-valued parameters andt < t0.

From this definition, it has to be remarked that differ-
ent types of waveforms can be obtained, depending on the
values of the parametersα andβ :

• consideringa(t) as the amplitude of the chirp, we will
observe thata(t0) = 0 (resp. +∞) if α < 0 (resp.
> 0) ;

• identifying ϕ̇(t)/2π = dβ(t0 − t)β−1 with the “in-
stantaneous frequency” of the chirp leads to a power-
law divergence int0 for all β’s such thatβ < 1. This
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Figure 1: Comparison of heuristic and refined stationary
phase criteria for power-law chirps of indicesα andβ (see
text) — The white (resp. gray) domain corresponds to val-
ues ofα andβ such that the refined criterionC2 is smaller
(resp. larger) than the heuristic oneC1. Full lines corre-
spond to the exact conditionC2 = 0. The cross, the circle
and the star are the specific values used in Figures 2 to 4,
respectively.

will however correspond to an “indefinitely oscillat-
ing” signal in t0 only if we have the stronger condi-
tion β < 0 [5]. In fact, within the range0 < β < 1,
the phase does present a well-defined value int0 :
ϕ(t0) = 0, thus connecting the singular behaviour of
its derivative with a non-oscillating singularity of the
waveform int0.

In the case of power-law chirps, it can be shown that
both criteria, derived from either the heuristic conditions (2)
or the refined analysis sketched in Section 2, share the same
frequency dependence

ε = C (βd)
1

β−1 f−
β

β−1 , (8)

with the only difference stemming from the pre-factorC,
which reads

C1 = (1/2π) max(|α|, |β − 1|)

in the first case and

C2 = (5/48π)|12α2−12α+12αβ+2β2−5β+2|/|β−1|

in the second one.
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Figure 2: Validity of the stationary phase approximation
— Counter-example 1 : in the case of a power-law chirp
with parameters identified by the cross in Figure 1, we ob-
serve that the heuristic criterion (dotted line in the bottom
diagram) predicts a good approximation (in the chosen fre-
quency band), whereas the comparison with the actual spec-
trum (top diagram) reveals a significative difference, as to be
expected from the refined criterion (full line in the bottom
diagram).

Depending on which of these quantities is greater, we
can therefore evidence, for any givend, pairs(α, β) such
that the stationary phase approximation still remains valid
whereas the heuristic conditions (2) are violated or, on the
contrary, such that the approximation breaks down whereas
the same conditions are satisfied. This is illustrated in Fig-
ures 1 to 3.

3.2. Gravitational waves chirps

Finally, we can remark that, in the important context of
gravitational waves data analysis [1, 3], power-law chirps
are extensively used for the modelling of radiations expected
to be observed from the coalescence of very massive binary
objects (typically, neutron stars). The detection of the corre-
sponding waveforms is a challenging problem for which di-
rect implementations of matched filtering techniques in the
time domain may prove prohibitive from the point of view
of the computational load. In this respect, alternative ap-
proaches have been proposed, whose reduced complexity is
based on FFT implementations, thus calling for an accurate
frequency description of the expected waveform [3, 1].

In the considered astrophysical application, the indices
of the chirps have to be fixed — based on physical argu-
ments — toα = 1/4 (blow up of the amplitude) andβ =
5/8 (non-oscillating singularity), whereas the chirp rated is
a free parameter which is related to the masses of the sys-
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Figure 3: Validity of the stationary phase approximation
— Counter-example 2 : in the case of a power-law chirp
with parameters identified by the circle in Figure 1, we ob-
serve that the heuristic criterion (dotted line in the bottom
diagram) predicts a poor approximation (in the chosen fre-
quency band), whereas the comparison with the actual spec-
trum (top diagram) reveals an excellent agreement, as to be
expected from the refined criterion (full line in the bottom
diagram).

tem. It turns out that, with the right values forα andβ, and
over a wide range of meaningful values ford, criteriaC1

andC2 almost coincide. Moreover, they both have a small
value, thus supporting a posteriori the effectiveness of the
stationary phase approximation which is commonly used in
this context (see e.g. [3]). This is illustrated in Figure 4.
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Figure 4: Validity of the stationary phase approximation —
Example of a typical gravitational wave model : in the case
of a power-law chirp with parameters fixed toα = 1/4,
β = 5/8 andd = 137, we observe that the heuristic and re-
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[8] B. TORRÉSANI, Analyse Continue par Ondelettes, In-
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