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AN EXTENSION OF THE METHOD OF STEEPEST DESCENTS

BY C. CHESTER, B. FRIEDMAN and F. URSELL

Received 11 October 1956

ABSTRACT. In the integral

jg(z)exp{Nf{z,a)}dz

the functions g(z),f(z, a.) are analytic functions of their arguments, and N is a large positive para-
meter. When N tends to oo, asymptotic expansions can usually be found by the method of
steepest descents, which shows that the principal contributions arise from the saddle points,
i.e. the values of z at which dfjdz = O.The position of the saddle points varies with a, and if for some
a (say a = 0) two saddle points coincide (say at z = 0) the ordinary method of steepest descents
gives expansions which are not uniformly valid for small a. In the present paper we consider this
case of two nearly coincident saddle points and construct uniform expansions as follows. A new
complex variable u is introduced by the implicit relation

f(z,a)=iu°-£{a)u+A(a),
where the parameters £(<z), A(a) are determined explicitly from the condition that the (u, z)
transformation is uniformly regular near z = 0, a. = 0 (see § 2 below). We show that with these
values of the parameters there is one branch of the transformation which is uniformly regular.
By taking u on this branch as a new variable of integration we obtain for the integral uniformly
asymptotic expansions of the form

5 b,(

where Ai and Ai' are the Airy function and its derivative respectively, and A(cc), f(a) are the
parameters in the transformation. The application to Bessel functions of large order is briefly
described.

1. Introduction. The method of steepest descents. The present paper is concerned with
the problem of finding the asymptotic expansion of contour integrals of the form

g(z)exv{Nf(z)}dz, (1-1)

where N is a large real positive parameter, and/(z) and g(z) are analytic functions of 2.
The asymptotic expansion can often be found by the method of steepest descents, as
follows. The contour is deformed to pass through saddle points of f(z), which are the
zeros of the derivatives/'(z). For the sake of simplicity let us suppose that all zeros of

f'(z) are simple; zeros of higher order introduce no serious comph'cation. Let z0

denote a typical saddle point, and for a contour through z0 let a new local variable u be
introduced by the equation

- K = f(z) -/(z<>) = W - *o) V(*o) + • • • •

whence / ' ( 2 ) T - = ~U-

du
Since f"(zQ) =(= 0, each branch of the transformation is regular and (1,1) in a domain

about z = z0 (see (2), Theorem 115). There is therefore an expansion of the form
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valid in small circles, | z — z0 | < Rz and | u | ^ Ru, say. Because f'(z) occurs in the
denominator of (1-2), the radius of convergence in the z-plane is in general not greater
than the distance from z0 to the nearest saddle point. The contour of integration in the
li-plane is now chosen to be the real axis near u = 0, and this choice corresponds to
the curve of steepest descent in the z-plane. If 0 < U < Ru, the segment ( - U, U)
corresponds to an arc C(U) in the z-plane passing through z0, and

exp { - Nf(zo)\ f g(z) exp {Nf(z)\ dz = fV g{z) -£- exp ( - $Nu2) du
J ecu) J -v du

ru rN*u
= (Lcm um) exp (— \Nu2) du = Scm JV-4<m+1) vm exp (— \v2) dv,

J-U J-NiU

a convergent expansion in terms of incomplete factorial functions. If the limits of
integration are formally replaced by + oo (since N is large) the expansion

L(z) exp {Nf(z)} dz ~ exp {Nf(z0)} Zcm N-km+v P° vm exp ( - \v*) dv (1-3)

is obtained, which is usually not convergent. Usually only the neighbourhood of saddle
points contributes significantly (see Jeffreys and Jeffreys (2), § 17-04; Doetsch(i)). The
complete asymptotic expansion is obtained by adding the contributions (1-3) from
all relevant saddle points; this is the method of steepest descents. For extensions and
details see Doetsch (l).

Suppose next that the function f(z) =/(z, a) contains a parameter a, and that a is
allowed to vary in a domain of the complex a-plane. Then the saddle points vary with
a, and it may happen that for some value of a (say a = 0) two saddle points coincide,
say at z = 0. If a is kept fixed, either at a = 0 or at another value, the method of steepest
descents is applicable for sufficiently large N (depending on a). But if we want expan-
sions uniformly valid in a domain containing a = 0, these cannot be found by steepest
descents since the radius of convergence of (1-2) tends to zero with a. The present paper
is concerned with the extension of the method of steepest descents to two nearly
coincident saddle points.

Many examples are already known of expansions which are uniformly valid near
a = 0. Such expansions can be found for any solution of certain general types of ordinary
linear second-order differential equations, and some of these (e.g. Bessel functions)
can also be expressed as integrals. For an elegant version of this theory, which is
completely rigorous, and for an account of earlier work see Olver (5). The expansions
are in terms of Airy functions and their first derivatives, the typical Airy function being

i f
= , - • exp ( K "£«)<*«. (I'*)

>7i)

where the integrand is the exponential function of a cubic polynomial. For a short
account of Airy functions see Olver (5), (6); Jeffreys and Jeffreys (2), § 17-07; Miller (4).

2. The method of cubic representation. In the present paper similar results are
obtained directly from the integral. The method is applicable whether the integral
satisfies a differential equation or not; conversely, there are differential equations
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which have no known solution of the form (1-1), and so both methods are needed. The
method now to be described expresses/(z) as a cubic in a new variable u, a transforma-
tion suggested by (1-4). The parameters are chosen to give a (1,1) mapping u^>z
uniformly valid near a = 0. Only the simplest case will be studied, that of two nearly
coincident saddle points.

Let us try, then, to represent/(z, a) by the cubic

f(z,a) = ±u3-a«)u + A(a). (2-1)

If this is to be a regular (1,1) transformation we must have dz/du 4= 0 or oo, where

Now/'(z,a) vanishes at the two saddle points zx(a),z2(a), while u2 — £(a) vanishes at
u = ± &{a). If the transformation is to be regular, these points must correspond, and
so we have from (2-1) the equations

f(Zl,<x)= -%l(a)+A{*), f(z2,a)=

to determine £(a) and ^l(a). It will be shown that with these values the transforma-
tion u <-» z is indeed uniformly regular and (1,1) near u = 0. Thus there is an expansion of
the form ,

uniformly valid near u = 0, and we have formally

exp { - NA (a)}J(7(z) exp {Nf(z, a)}dz ~ J(2cm(a)«») exp {iV(>3 - £«)} du

~ Scm(a) um exp {N(%u3 - £w)} du,

an expansion expressible in terms of Airy functions if the limits of integration are
formally made to tend to infinity. Unfortunately, this cannot be regarded as an
asymptotic expansion since successive terms do not tend to decrease as N ->• oo. So we
write instead ,

g(z) £ = S^m(a) (u* - 0m + 2<Zm(«) u{v? - Q™. (2-2)

The coefficients in this expansion can be found by repeatedly differentiating and putting
z = zvu = 0, and z = z2,u = — $. Then

exp { - NA (a)}{g(z) exp {Nf(z, a)} dz

- £«)} du (2-3)

- g«)} du. (2-4)

This also is expressible in Airy functions, and^here successive terms tend to decrease.
Which Airy function is appropriate depends on the contour of integration, e.g. when
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the contour goes from ooe~^f to ooe*"* the expressions (2-3) and (2-4) can be
rearranged in the form

DS(Q ,„ _.
N*

where the first two terms come from (2-3) and the other two from (2-4).
In the following sections of the paper these statements are discussed in greater detail.

There are two principal results requiring proof. I t must be shown that the implicit
relation between u, z and a may be solved to give u as a regular function of z and a
(Theorem 1 below). I t must also be shown that the series (2-5) is asymptotic in the
sense that the error in breaking off the series at any stage is of the same order as the
first neglected term (Theorem 2). As an example the application to Bessel functions
of large order will be briefly described.

3. The regularity of the transformation. The transformation is

Ta: f(z,a) = $u*-a*)u + A(a), (3-1)

where by hypothesis/'(z) has two small zeros zx{a), z2(oc) for small a. To each value of z
there correspond three values of it. We have seen in § 2 that the transformation cannot be
uniformly regular unless

and we shall see that with these values one branch of the transformation is indeed
uniformly regular for small z and a; on this branch zx and z2 correspond to 0 and — 0
respectively. The following case is typical. Suppose that near 2 = 0 and a = 0 the
function f(z, a) can be expanded in the form

f(z, a) = ao(a) + a-^a) z + a2(a) z2 + a3(a) z3 + ...,

where ao(oc), at(a),... are regular near a = 0. By hypothesis %(()) = 0, a2(0) = 0,
a3(0) 4= 0. We suppose, without loss of generality, that a2(a) = 0, a3(a) = £, for these
values can be achieved by a change of origin and of orientation of z. If ax(a) has a simple
zero at a. = 0, we redefine a so as to make a-^a.) = — a, and we then have the expansion

f(z, a) = ao(cc) -az + £z3 + at{a) z4 + . . . . (3-2)

The saddle points are given by

0 = j^/(z.a) = -a + z2 + ia^(a)z3 + ...,

whence! z^oc) = a^p1(a^),z2(oc) = — a*p1(— a^). On substituting these forms in (3-2)
it is found that A (a) = ^/(zx) + £/(z2) is a regular function of a, and that

00
f T h e s y m b o l p(x) s t a n d s f o r a p o w e r s e r i e s of t h e f o r m p(x) = 1 + 2 knx

n, c o n v e r g e n t fo r
n=l

small x and with leading coefficient 1.
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We choose the branch for which £(<x) = ap3(a), a regular function of a vanishing at
a = 0. We now have to study the relation between u and z, and to this end we shall
construct the Riemann surface of (3-1) near z = 0. We shall see that there are two sin-
gular points Zx(<x), Z2(a) near z = 0 and that at these there are square-root singularities.
These points are not identical with zx(<x), z2(cc). The Riemann surface, which consists of
three sheets, has the same two sheets connected at Zx(a) and Z2(a), and the branch
corresponding to the third sheet is therefore uniformly regular near z = 0 for all suffi-
ciently small a. Formal proofs of these results will now be given.

LEMMA. There are {small) radii Rz, Ra with the following properties :
(i) When \ a. \ < Ra, each of the equations

/(z. a) = f(zv a), f(z, a) = /(z2, a)

has exactly three roots inside \z\ = Rz.
(ii) When \ z | describes the circumference of the circle \z\ = Rz, the transformation Ta

(for each fixed a in | a | ^ Ra) defines three image curves, each of which is described once
without double points.

Proof. To prove the first part of the lemma, consider first the limiting case a = 0 of
the equation/(z, a) = f(z1, a). This is

Choose R™ so that z4{a4(0) +...} < ŷ -z3 in | z | ^ R™. When a =j= 0 the equation can be
written

£z<> = - {a4(0) z* +...} + az - {(o4(a) - o4(0)) z* + . . . } - az1 + {a4(a) z\ +...}

The modulus of the first term on the right-hand side is less t h a n ^ | z|3 on \z\ =RZ
1); and,

since zx -> 0 as a -> 0, the moduli of the other terms are together less than ^ | % \3 if a is
small enough, say | a | < RQK Rouche's theorem now shows that the equation has just
as many roots inside | z | < Rf> as ^z3, i.e. there are three roots. A similar argument
applies to the equation f(z, a) = f(z2, a), leading to radii R(

s
2), R£\ The first part of the

lemma holds for any Rz s? min (Rf, Rf), and any Ra ^ min {R™, Rf).
To prove the second part of the lemma, again consider first the limiting transforma-

tion To corresponding to a = 0 . Then %u3 + A(0) = ao(O) + Jz3 + a4(0)z4+..., where
ao(O) = ^4(0), whence \uz = ^z3{l + 3a4(0)z+ .. .}, and for small z we may take the
cube root of both sides. There are three regular branches u = zp4(z), u = e^"izp4(z),
u = e$"fz;p4(z). To fix ideas, consider the first branch. Since | dujdz \ = 1 at z = 0,
there is a radius Rz < \ min (R™, Rf) such that this branch of the transformation is
(1,1) in | z | < 2RS. The image of | z | = Rz is a curve C^ which does not pass through
u = 0 and which is described just once without double points ((3), Theorem 115).
(The same value of Rz can be used on the other two branches.) Take any point Z on
\z\ = Rz, and denote its image on the first branch by U0(Z), where \U0\ > 0. Then the
image Ua(Z) of Z under the transformation Ta is uniquely determined for all sufficiently
small a. For the equations defining Uo and Ua are

f(Z,0) = it/3,+ 4(0), f(Z,a) = $Ul-a*)Ua + A(a),
and so

f(Z, a) -f(Z, 0) + A(0) - A(a) + Uo £(«) = (U* - 0 (Ua - Uo) + U0(Ua - Vof + \(Ua - Vof.
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The left-hand side is small for small a, and the coefficient of Va — Uo on the right-hand
side does not vanish for small a. Thus ((3), Theorem 115, Corollary) there is a unique
image Ua(Z) of any point Z on the circumference of the circle \z\ = Bz, and clearly the
dependence on a is uniformly regular for all small a and for all Z on the circumference.
Denote the image curve by C%\ For small a the slope, curvature, etc., of C^ clearly
differ little from the slope, curvature, etc., of C^, and the ratio of arc lengths
| dUa(Z)/dZ | is bounded away from zero. Thus for all sufficiently small a, say | a | < da),
the curve C£> is described just once without double points, and similarly the image
curves on the other two sheets are described just once, if | a | < d{2\ \ a | ^ di3) respec-
tively. Take Rz as denned above, and take any Ra < min (Bg\ B®>; da), #2>, d<3>). These
satisfy the conditions of the lemma.

THEOREM 1. The transformation (3 • 1) has just one branch which is uniformly regular for
small z and a, and on this branch the points z = zl5 z = z2 correspond to u = 0, u = — 0
respectively. For small a the correspondence u<-*z is (1,1).

Proof. Consider the equation

For any fixed z and a this is a cubic equation for u, and the three values of u can be
represented on a Riemann surface of three sheets. To find the branch points, the multiple
points of the left-hand side must be found. They are at + 0. Thus the branch points are
the roots of/(z, a) = — %$(a) + A(a) = f(zlta) and off(z,a) =/(z2)a). For small a the
lemma shows that there are exactly three roots of the first equation inside \z\ = Rz> and
clearly zx is a double root. Let the third root be denoted by Zx. Similarly, the second
equation has three roots z2, z2, Z2. Thus the possible branch points inside \z\ = Rz

are at zx, Zx\ z2, Z2. We have already seen that zt = a^p1(ai), z2 = — a^p1( —a^), and
it is not difficult to show that Zx(oc) = -2a*p5(a*), Z2(a) = 2atp5(-a.l).

Near zx we have

whence J(« - £*)2 (u + 20) = \{z - zxff"{zx, a) + ...,

where f"{zx, a) = 2aip6(a*) + 0, and so there are two solutions through z = zv u = 0
regular near z = zv and one solution through z = zx, u = — 2£* regular near z = zv

Thus z = zx is not a branch point of the Riemann surface.
Near Zx we have

^ - £(a) u = f(Zl, oc)-A(a) + (z- Zx)f\Zx, a) + ...,

whence i(u-&)2(u+2&) = (z-Z1)f'(Z1,a) +...,

where/'(Z1, a) =# 0, and so there are two solutions through z = Z±, u = $ with square-
root branch points near z = Z1} and one solution through z = Zv u — — 20 regular
near z = Zx. Corresponding results hold for z2, Z2\ we see that the only branch points
are at Zx, Z2.

Let us now consider the arrangement of cuts on the Riemann surface. The second
part of the lemma shows that no cut crosses I z | = Rz, and it is then clear that the only
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possible arrangement is the one where the square-root branches through Zx and Z2 lie
on the same two sheets. (This also follows because in the limit a = 0 the Riemann
surface degenerates into three separate sheets.) The branch on the third sheet is
therefore uniformly regular in \z\ ^ Rz. Apply the second part of the lemma to this
branch. As z describes \z\ — Rz, u on the regular sheet describes a curve once. Inside
the circle u is a regular function of z (only on the regular sheet). Thus, by a known
theorem ((3), Theorem 117), the relation w^z is (1,1). Since we have already seen that
on the regular branch (z = Zx) <->(•&= — 2£*) we cannot have (z = zj <-» (u = — 20),
and so we must have (z = zx) <-> (u = £i). Similarly, (z = z2) <-+ (u = — £*) on the regular
branch. On the regular branch there is an expansion in powers of z,

u = XJa{Z) = 2Cm(a)zm when | 2 | «S Rz.

By Taylor's theorem, Cm(a) = ^

but Ua{Z) is a regular function of a on | Z \ = Rz, and so Cm(a) is a regular function of a.
Also, since the (z, u) relation is (1, 1), the series can be inverted uniformly. This con-
cludes the proof of Theorem 1.

A more analytic proof of Theorem 1 may be preferred by some readers. If the
equation • , • > * , *

is transformed to the neighbourhood of the branch point by making the substitutions
z' = z — zx and u' = u—&, then, after a few trivial rotations and changes of scale it
takes the form ^ + ^ = fe,2 + ^ ^ (3.3)

where a, b, and c are functions of a such that, as a goes to zero, a and b go to zero,
whereas c is bounded away from zero. Also, since the non-zero double point of the
left-hand side, i.e. u = —2a (henceforth we omit the primes on u and z), must corre-
spond to the double point of the right-hand side (call it z = f), we must have the relation

Since z = £ is a double point of the right-hand side it follows that

2& + 3c&(£) + cgy(£) = 0. (3-5)

These two relations combined give

Q-y3

-p-+cp(£) + c£p'(£) = 0. (3-6)

Note that £ goes to zero with a but that a/£ is continuous and bounded away from zero
for all values of a in some neighbourhood of zero, say for | a | < a0.

u = — 2az£-1 + w

in (3-3) which with the help of (3-4) becomes

V ( £ -2z) + iv3 = 8a3g-3z2(z-f) + c22{zp(z)-gp(g)}. (3-7)
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By Taylor's theorem

where P2(z, £) is an analytic function of 2 for | a | < a0; therefore with the help of (3-6)
the right-hand side of (3-7) becomes

Put ,_ ,
w = z{t,-z)v

in (3-7) which then reduces to

Since a2g~2 is bounded away from zero for | a | < a0, while the coefficients of v2 and w3

tend to zero as z and a tend to zero, this equation defines v and consequently also u
as a power series in z for \z\ < z0 say, with coefficients which are continuous in a
for I a I < a0. This concludes the alternative proof of Theorem 1.

Since g(z) and dzjdu are regular functions, there is also a uniform expansion (which
was assumed in § 2)

g(z) ^ = Xpjcc) (u* - 0m + 2?m(a) u{u? - £)«

convergent for small u and a. The coefficients can be found by repeated differentiation
and use of the correspondences zx <-> Q, z2 <-» — £ .̂ Now that the existence of these
expansions has been established, the validity of the expansions can probably be
extended by more detailed study of the transformation, but this aspect of the problem
will not be pursued here.

4. The functions Fm(£, N, Cj), Gm(^, N, C,). These are denned by the equations

N, C,) = ~jc u(u* - 0™ exp {N(fr* - &)} du.

The contours of integration are G± from 00 e~ini to 00 eiwi, or C2 from 00 e$ni to 00 eni, or C3

from 00 e"f to 00 e-^ri. By the change of variable N$u = vwe obtain

FJ£, N, C,) =

QJ£, N, G,) = N-$™-iGm{NK, 1, C,);

and by the change of variable u = v e^ we obtain

FJ&, N, C2) = exp (%mni+\vi) Fm(£ e H N, CJ, (4-1)

GJX, N, C2) = exp (|m77t + %ni) Gm(£efr«, N, OJ. (4-2)

The corresponding relations for C3 are obtained by changing the sign of i. These
equations show that we are actually dealing with a set of functions of the single
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variable N%£,, and with integration along the single contour Cx, but it is convenient to
keep the full notation. Clearly also

Fm& N, Cx) + FJ&, N, C2) + FJ£, N, Ca) = 0,

and there is a similar result for Gm. Straightforward integration by parts shows that

FJ£, N, C,) = - | (m - 1 ) Gm_2(£, N, Ct),

Qn(£,N,Ct) = -

whence Fm{£, N, Ct) = ^ (m - 1) {(2m - 5) Fm_3 + 2(m - 3) £^m_4}, (4-3)

G^N.Cf) = ^ { ( 2 m - l ) ( m - 2 ) ( ? m _ 3 + 2(m-l)(m-3)£Gm_4}. (4-4)

The factor 1/N2 outside the brackets shows that for bounded £ the function Fm is of
smaller order than Fm_i as N -> oo, and that a similar result holds for Gm. Thus the
sequence {F^ tends to decrease in sets of four (which suggests, however, that the
functions are not quite the best possible). When Fo, Flt Go, Gx are known, the higher
functions can be found from the recurrence formulae; for example, for the contour Cx

the first few functions are

N, CJ = N-i Ai (NK), Go(£, N, CJ = - N~* Ai

, N, d ) = 0, Q& N, Cx) = -N-iAi
, N, CJ = 2N-* Ai' (MQ, Qa(£, N, Cx) = - 2£

, N, Cx) = 4N-i Ai {N*Q, (?,(£, N, Gx) = - 10N~* Ai'

For the contours C2, C3 the functions Ai, Ai' must be replaced by the appropriate
Airy functions (see equation (4-1)). In the following section we shall be concerned
not so much with the complete integrals Fm, Gm as with integrals between finite fixed
limits independent of a and N. For large N these differ from the complete integrals
by negligible exponentially small terms.

5. Proof of the asymptotic expansion. Suppose that the transformation u<-*z is
regular and (1,1) for | a | ^ Ra in the closed circle \u\ < Ru which is assumed to contain
the image of the circle \z\ < Rz. The contribution to the integral (1 • 1) from the part of
the contour outside \z\ = Rz is assumed to be negligibly small; this can usually be
proved by the familiar arguments of the ordinary method of steepest descents. Then
we have from equation (2-2)

exp { - NA{a)}L{z) exp {Nf(z, a)} dz

= SPm IW - Om exp {#($«» - £»)} du + %qm L(u* - 0m exp {Nfa* - £«)} du, (5-1)
0 J 0 J

where the integration with respect to u is over a finite arc lying inside | u | = Ru, and the
integration with respect to z is over the image of the same arc. The two series on the
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right of (5-1) are absolutely and uniformly convergent. If each integral is formally
replaced by the corresponding infinite integral, as in § 2, we obtain the series

2n%LpmFJ£, N) + 2niXqmGm(£, N), (5-2)

and each term can be expressed in terms of Ai and Ai'. To fix ideas, suppose that the
contour hi the %-plane is C ;̂ then (5-2) becomes after rearrangement

BJjQ

G8(Q Ai(NH) Ds (0

where the terms (5-3) arise from the functions Fm and the terms (5-4) from the func-
tions Gm. We wish to show that these formal series are asymptotic. Suppose then that
each of the four series is cut off after the ilfth term. We shall show that the error is
of the same order as the first omitted term.

THEOREM 2. When N -»• oo, then for fixed M and for all \ a | ^ Ra

p { - NA (a)} \g(z) exp {Nf(z, a)} dzex

Proof. Consider the formal expansions (5-3) and (5-4) above. Equations (4-3) and
(4-4) show that successive terms tend to decrease. The functions Ao,..., AM; Bo,..., BM\
Co,..., CM; Do,..., DM are therefore completely determined by a finite number of the
coefficientsp0, plt p2,...; q0, qlt q2,.... Choose a finite number L so that these are included
in the setps, qs(0 ^ s ^ L—l). L depends on M and will be defined more precisely later.
Rewrite (5-1) in the form

exp { - NA(a)} (g(z) exp {Nf(z, a)} dz

i - i <•

o mJ
CO / •

= 2 Pm (u% ~ Om exp {N(^u3 — t̂i)} du
L J

0

oo /•

L c
H ( ~g jxp {iV(£«3 - ^M)} dw

t,N), say, (5-6)

where the integration is along a finite arc and all the series are absolutely and uniformly
convergent. Bounds for \jrL will now be obtained. We can write

= f(M2 - QLrL(u) exp {N{%u? - tfrfidu = N~^-i f(z>2 - v)LrL{N~iv) exp (^v3 - tjv)dv,
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where 7} = N$£, and rL(u) is regular and bounded in | u | < Ru. The path of integration
can be deformed into a curve through one or two saddle points +v^. Thus, when
| arg 7) | < \TT, the path of integration is along an arc of Cx passing through the single
saddle point + vl, and

| v — i)i\L{\ v-rjl\L+ \T)\^L}\ exp (%v3 — TJV) \dv.

For large v, | rj | > R say, a bound can be obtained by use of the ideas of the ordinary
method of steepest descents if we choose as paths of integration the paths of steepest
descent through the saddle point. Thus for | rj | > JB

L-i | 7] | ^ - i | exp ( - |T /* ) | = AN~iL~l | £ |*£-t | exp ( -

while for 19/1 <JJwe have \fL\< AN~%L-%. (5-7)

We also have the expressions (Olver (6), p. 364)

Ai(^) ~ ^4^~iexp(— f^) , Ai'iv) ~ Ar/iexp ( —fr]$)

valid for | arg tj | < f 77, | JJ \ > B. Thus, for \TJ\ > R and bounded £,

I i/rL I < AN-iL-i \ £ \* | Ai (V)\ < AN~iL~i \Ai(?j)\

and (5-7) shows that a stronger inequality holds for \rj\ < R. Similarly,

when I arg rj | < f 7r and the path of integration is the curve of steepest descent
through 7fi. More care is required when | arg (— TJ) | < f n, since Ai (TJ) and Ai' (TJ) have
their zeros along arg r\ = n. These zeros cannot coincide, and a simple modification of
the argument gives

| irL | < AN-iL~i \ Ai (JVi£) | +AN~1LS \ Ai' {N*£) \.

Similar bounds can be obtained for <j>L denned by equation (5-6) and for contours other
than Cv By choosing L sufficiently large we can make | ifrL \ and \<pL \ negligible com-
pared with the terms N-2M-iAi(N$Q,N-2M-$Ai'(N%£) retained in (5-5). This com-
pletes the proof of Theorem 2.

6. Besselfunctions. As an illustration let us consider briefly the function (Watson (7),
§ 6-2, equation (3))

1 foo + ni
./A,(iVsech/?)=--T exp{iV(sech^sinhz-z)}dz, (6-1)

2m J oo-ni
when the parameter ft is small. Here/(z,/?) = sech /? sinh z — z, g{z) = 1. The saddle
points are the zeros of f'(z,/3) = sech ft cosh z— 1, i.e. the points ±ft±2mni, where
m = 0,1,2, 3, ....The relevant saddle points are at + fi (see (7), §8-31). When/? = O.two
saddle points coincide at z = 0, and the theory of § 2 applies, with a multiple of /?2

playing the part of a. The cubic transformation is

, (6-2)

whence (sech /? cosh z - 1) -^- = u2 - £(/?).
du

38 Camb. Philos. 53, 3
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The points z = + ft, u= ± $ must correspond, and so, from (6-2),

-&*(/?) = tanh/?-/?, £~2-t/?». (6-3)

The theory of § 3 shows that (6-2) has auniformly regular branch on which z is a regular
function of u and ft. On this branch the points z = ±ft,u = ±0 correspond, and the
coefficients pm, qm of equation (2-2) can be found by repeated differentiation, as
indicated in § 2. I t then appears that qm = 0, and so z is an odd function of u,

dz *°
X(P)(u2-Qm, (6-4)

when u and ft are small. For the Bessel function (6-1) the appropriate contour is Cv and
we obtain

(6"5)

We must now find the coefficients pm (ft) in (6-4). As has just been said, we can do this
in principle by repeatedly differentiating (6-4) and putting z = ±ft, u = ±£i in the
resulting equations. In fact this is a tedious process which will not be discussed at
length, since the coefficients as(ft) and bs(fi) are already known from the work of
Olver (6). We shall calculate only the leading coefficient po(/3). From (6-4), po(ft) is the
value oidz/du at z = ft, and from (6-2)

d2z I dz\2

(sechy^coshz—l)j~2 +sech/?sinhz(-pl = 2M.

Put z = ft, u = £*, then {po(ft)}
2 tanh ft = 20, and it only remains to fix the sign.

Consider dzjdu as z ->- 0, ft ->• 0. The order of the limit operations is immaterial, since
the regularity is uniform on this branch. Since z = ±ft, u= ±0 correspond,
dzjdu ~/?£~* ~2* and so po(O) = 2$. But po(ft) is a regular function of/?; thus

Then we can rewrite (6-5) as

j ( j (6-6)

where A0(ft) = 1. This is precisely Olver's equation (4-24). Olver's results are more
general than ours. The validity of (6-6) has here been proved only for ft sufficiently
small (but independent of N) and for N real, whereas Olver has proved his result for all
/?in domains extending to infinity and for complex N. He also gives a convenient
method for finding As(ft) and Bs(ft) ((6), § 6) and studies the behaviour of these functions
for large £ ((5), § 9, Lemma 1). There remains the problem of extending the validity of
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our results to cover the whole region obtained by Olver. The region of small JS is
nevertheless the most interesting since elsewhere the ordinary method of steepest
descents is available.
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