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Uniform Asymptotic Expansion of the 
Field Scattered by a Convex 

at High Frequencies* 
Object 

DONALD LUDWIG 

1. Introduction 

The problem of scattering is concerned with the determination of a function 
u, (x ,  k )  , which is a solution of the reduced wave equation 

(1.1) Au + k2u = 0 ,  

in the exterior of a closed surface S in three dimensions. An incident field ui(x, k )  
is prescribed, which satisfies (1. l ) ,  and us is required to satisfy 

(1.2) 

The function us is also required to satisfy a radiation condition: 

ui(x, k )  + u,(x, k )  = 0 for x on S I 

(1.3) 

We assume that S has Gauss curvature bounded away from zero (or S is a convex 
cylinder) and S is analytic. For each positive integer n we give a series in 
descending powers of k which satisfies the conditions of the problem in an asymp- 
totic sense, i.e., u ln)  + u j " )  (consisting of n terms of the series) satisfies the 
differential equation and boundary condition to arbitrarily high order in k-l if n 
is chosen large enough. In the region of deep shadow on S (described below), 
u:") + u:) is bounded by k-2(n-1)/3 exp { -k1l3A}, where A is positive and pro- 
portional to the distance from the shadow boundary. 

The asymptotic solution has a complicated form, analogous to an integral 
representation of the field scattered by a circular cylinder. The various regions 
involved if S is a convex cylinder are shown in Figure 1.1. In cross-section, two 
incident rays graze the object S, and their continuations form the shadow 
boundary, which separates the region of direct illumination (where the reflected 
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field is also present) from the region of shadow. The penumbra is a neighborhood 
of the shadow boundary (shown in exaggerated form in Figure 1.1) formed by 
two reflected rays and two rays tangent to S in the shadow region. There is an 
analogous diagram for a general convex body. In  the deeply illuminated region, 
the solution can be simplified, and we obtain the reflected field predicted by 
geometrical optics. In  fact, this construction leads to a proof of the validity of 
geometrical optics in this region, since the errors which are made in satisfying 

Incident 
Rays 5 I 

\::. Deep Illurnination Y. 

Figure 1.1 

the differential equation and boundary condition are smaller than any assigned 
power of k-1. Such a proof will be given elsewhere. In  the deep shadow the 
solution can be simplified to yield the field predicted by J. B. Keller’s geometrical 
theory of diffraction, [7], [8]. Our procedure does not yield a proof of the 
geometrical theory of diffraction, since the error in satisfying the boundary 
condition in the illuminated region is greater than the total field in the shadow. 
However, this approach does lead to an integral equation (not given here) for the 
true solution, which might lead to a rigorous theory of diffraction. In  the pen- 
umbra, which separates the illuminated and shaded regions, we do not simplify 
the solution, although one might attempt to do so by imitating the treatment of 
H. M. Nussenzveig [15] for the sphere. 

Our method can be generalized to apply to a general impedance boundary 
condition on S, and to general differential equations with appropriate boundary 
conditions, e.g., Maxwell’s equations in an inhomogeneous, anisotropic medium. 
Such generalizations will be described in a sequel to this article. 
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‘The results of V. I. Fok [ 5 ] ,  with modifications described by N. A. Logan and 
T. S. Yee 1121 and the more recent results of E. Zauderer [17] differ from the 
present results, since they are valid in regions whose size depends upon k.l As 
k 4 00, the region in which Fok’s expression is valid shrinks to a single curve, 
namely the curve of grazing incidence where the shadow boundary begins. As 
k 03, except in special cases, the region in which Zauderer’s results are valid 
shrinks to include only the shaded half of S, together with a portion of the deep 
shadow region. Although the solutions of Fok and Zauderer can be matched 
with the direct and reflected waves near the illuminated region, and with the 
diffracted field near the shaded region, evidently the differential equation is not 
satisfied in the transition regions. This fact causes difficulty in the attempts of 
V. S. Buslaev [2] and V. M. Babich [ l ]  to establish the validity of geometrical 
optic? in the illuminated region by using the theory of Fok. There are analogous 
difficulties in the work of R. Grimshaw [6 ] ,  who primarily treats the illuminated 
region. Our methods and results, where they apply to the deep shadow, have 
much in common with the work of R. M. Lewis, N. Bleistein and D. Ludwig [ 1 11 
on diffracted waves. 

The procedure is based upon a geometrical interpretation of the exact solution 
for the case of a circular cylinder, which is presented in Appendix A. If r and 0 
are polar coordinates, and the incident field u, is a plane wave coming from the 
left, then, for 0 < 0 < 7, u,  can be represented in the form 

10 

u,(r cos 8, r sin e) = k ezkfl(R/2-@)J k S ( k r )  ’p  ) 

(1.4) Lrn 
where J is the Bessel function. If a is the radius of the cylinder, we have 

where H“) is the Hankel function of the first kind. The functions eikfl(R’2-e)J kfl(kr)  

and 8kfl(n’z-@)H$’(kr) are solutions of the reduced wave equation which are, 
respectively, everywhere regular, and outgoing. The behavior of these func- 
tions for large k is given in terms of a family of rays which are tangent to a circle 
of radius 13. Thus in the case of a general convex surface S, we are motivated to 
represent the incident field in the form 

(1.6) 

and the scattered field 

(1.7) % ( X ,  k )  

Note added in proofs : An interesting discussion of the question is given in W. P. Brown [18]. 
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H~~~ eik6(r,af J(x,  cc; k )  and e ikecr ,a )H( l ) (x ,  cc; k )  are formal asymptotic solutions of 
the reduced wave equation which are, respectively, everywhere regular, and 
outgoing. The behavior of these functions for large k: is given in terms of a family 
of rays which are tangent to certain surfaces S, defined in Appendix B. We have 
So = S, and thus a corresponds to t!? - a in the case of the circular cylinder. 
Such solutions of the reduced wave equation have been given in the author’s 
paper [13] (see also Yu. A. Kravtsov [9], [lo]). Our  representations of ui and us 
are superior to the more usual representation as a superposition of plane waves, 
since the rays associated with S, near S are nearly the same as the reflected and 
diffracted rays near the shadow boundary. The neighborhood of the shadow 

Figure 1.2 

boundary is the most crucial region, since geometrica.1 optics and the geometrical 
theory of diffraction both fail there. As a consequence of the close fitting of the 
rays, the amplitudes involved in the superposition are regular near x = 0 (which 
corresponds to the shadow boundary). The amplitudes associated with J(x, cc; k )  
and H ( l ) ( x ,  cc; k ) ,  the functions J ( x ,  k) and A ( l ) ( a ,  k), and to a certain extent 
the surfaces S,, are determined by requiring that ui be given by (1.6) and ui + u, 
vanish on S. 

According to [13], the functions O(x, x )  and J(x, a ;  k) which appear in (1.6) 
are determined as follows: we let s denote a solution of the surface eikonal 
equation on S, , i.e., 

(1.8) (Vsy  = 1 , Vs tangent to S, . 

Through each point xo on S, , we draw the straight line which has the direction 
of Vs(x,) .  If x is in the exterior of S, , then in general two such tangents pass 
through x (see Figure 1.2). The distances from x to the points of tangency are 
denoted by t, , and the values of s at the points of tangency are denoted by s* . 
We define 
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It follows that 

(1.10) 

(1.11) q3* = s  on S,. 

Now we define 6 ( x ,  a) and p(x, a) by means of 

( Vq3*)2 = 1 in the exterior of S, , 

(1.12) 6 ( x ,  a) = $(4+(x> a) + #-(’> a)) J 

(1.13) 

It is shown in [13] that O ( x ,  a) and p(x ,  a) are regular functions of x ;  in fact, 
e ( x ,  a) and p ( x ,  a) can be determined in the interior ofS, by analytic continuation. 
\.Ye note that there is some arbitrariness in the construction, since the values of s 
can be prescribed on some curve lying on S, . 

Ivow J(x,  a; k )  is defined by 

Here J and h are formal series in inverse powers of k; the differential equation 
(1.1) implies that 6 and f i  satisfy certain transport equations, analogous to the 
transport equations of geometrical optics (see Appendix B). The series and h 
are completely determined if g is specified on S, (see [13]). Where p > 0 (in 
the exterior of S,), we obtain an asymptotic expansion of (1.14) by the method of 
stationary phase (see A. ErdClyi [3]). We have 

(1.15) 

where 2, and 2- are series in descending powers of k. The expansion (1.15) is the 
analogue of the Debye expansion of the Bessel function. 

In Section 2 we shall ensure that (1.6) is satisfied to arbitrarily high order in 
k-1 by stationary phase evaluation of a corresponding double integral. The 
resulting conditions determine O(x,  a) (i.e., s) and i ( x ,  a) on a curve C, on S, , 
where the incident rays are tangent to S, . 

In Section 3 we attempt a representation of u,(x, k) in the form (1.7). The 
function H ( l ) ( x ,  a; k )  (the analogue of the Hankel function) is defined by 

e i k 8 ( x , a ) j  ( >  a. > k )  eik++(z ,a)  f + ( x ,  a; k) + eik+-(z34)2-(x,  a; k )  , 

where the integration is taken over the contour L shown in Figure 1.3. The 
functions p ( x ,  a) and 6 ( x ,  a) are given by (1.12), (1.13), and the requirement that 
eike(z ,a)H(l)(x,  a; k )  be a solution of (1.1) implies certain transport equations for 
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Figure 1.3 

g and h ;  g and h are completely determined if g is specified on S, . Furthermore, 
the contour L has been chosen in such a way that by applying the method of 
steepest descent (see [3]) for p > 0 and k large we obtain 

(1.17) ,WH(l)(x, a ;  k )  - 2eikd+(X,a)  z+(x, a ;  k )  * 

The amplitude z+ is specified in (3.17), (3.18). Frorn the definition (1.9) of 4+, 
we see that ++ - 1x1 for IxI large. It follows that u, satisfies the radiation condition 
(1.3). The details of the behavior of us at infinity are not crucial to our present 
purpose, They will be given elsewhere. The functions J ( a ,  k )  and @l)(a,  k )  are 
defined in a manner analogous to (1.14) and ( I .  16) : 

(1.18) J ( K ,  k )  = - Srn exp { i k ( p ( a ) t  - i t3)}  d E ,  2T --m 

(1.19) exp {ik(p"(cr)f - it3)) d l  

In  fact, J and are expressible in terms of the Airy function (see [3]). I n  
Section 3 the function ~ " ( c c )  will be determined, and g(x ,  LX) will be specified on a 
certain curve R, on S, , by requiring that the boundary condition (1.2) be satisfied 
on the illuminated side of S. At the same time, the calculation will show that, in 
the illuminated region, us behaves like the reflected wave predicted by geometrical 
optics. 

U p  to this point, we have required only that the family of surfaces S, be 
nested, convex and analytic, and the amplitudes g and have each been specified 
on a single curve. If we require in addition that g ( x ,  a ;  k )  = g ( x ,  a ;  k )  and 
h ( x ,  a ;  k )  = h(x ,  u ;  k )  if x is in the shadow of S ,  then u, + ?I, vanishes in the 
shadow to the approximation of geometrical optics, and u 2 ( x )  + u,(x) can be 
written as a sum of residues. The residues correspond to values of CI of the order 
~ f k - " ~ ;  thus the requirement that the residues shall vanish on S imposes conditions 
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on the integrands of (1.6) and (1.7) for K near zero. In particular, the surfaces S, 
are determined asymptotically for K near zero, and the amplitudes g(x ,  a ;  k )  and 
h ( x ,  x :  k )  must satisfy surface transport equations on the shaded 5ide of S, for a 
near 0 Finally, each term of the residue sum can be interpreted as a creeping or 
diffracted wave, and our results agree with J. B. Keller's geometrical theory of 
diffraction, [8 ] .  The details of the preceding discussion, given in Section 4, 
are analogous to the treatment of creeping waves in Ill]. However, in the present 
work the creeping waves appear together with the appropriate diffraction coeffi- 
cients, with no need for additional assumptions. 

Sections 2 ,  3 and 4 are devoted primarily to listing conditions on the com- 
ponents of our "Ansatz" (1 -6) and (1 .7) ,  and deriving their consequences. Section 
.5, with the associated Appendix B, provides a construction of the functions 
which appear in ( 1.6) and (1.7), and a justification of certain formal procedures 
used earlier, The treatment of Sections 2-5 thus yields a formal asymptotic 
series which satisfies the differential equation (1.  l ) ,  and which satisfies the 
boundary condition ( 1.2) in the deeply illuminated region and the deep shadow. 
The  verification that (1.2) is also satisfied in the penumbra is given in Section 6, 
using the results of Appendix C and of the author's paper [14]. This latter part 
of the analysis has no analogue in the treatment of the circular cylinder in Appendix 
A, since the boundary condition is satisfied exactly in that case. Certain of our 
methods in Section 6 are related to boundary layer techniques, but the various 
regions are introduced after the solution has been constructed, so that there is no 
question of matching of solutions. 

The  author is indebted to J. B. Keller for drawing his attention to the problem 
of diffraction and generously making available his knowledge of the subject. 
The author is also indebted to R. M. Lewis, N. Bleistein and J. Moser for a number 
of fruitful discussions of the problem, and to J. Cohen for reviewing the manuscript. 

2. Representation of the Incident Field 

As outlined in the introduction, we attempt to represent the incident field 
in the form (1.6), with 

u,(.x, k )  = e'"bJ")z,(x, k )  , 

where zl(.x, k )  is a formal series in integral powers of k-l. We require (1.6) to be 
\.slid in a neighborhood of the shadow boundary C on S. The results are 
summarized at the end of this section. 

Usine; the definition (1.14) of J(x, a ;  k ) ,  we may rewrite (1.6) as a double 
integral : 
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This integral can be evaluated asymptotically for large k by two-dimensional 
stationary phase; thus (1.6) is equivalent to 

A n  

z&; k )  = 2 p o ( x . G . 5 )  2 ( x ;  k )  9 e i k $ , ( x )  (2.2) 

(2.3) d ( X ,  MY 5) = + p t  - 9t3 , 
where 

A 

and i ( x ,  k )  is a formal series in descending powers of k ,  involving derivatives of 
6, 6 and h at ( x ,  8, 6).  The summation in (2.2) is taken over all pairs (a, i ) ,  
depending upon x ,  which satisfy 

a ,  
- a t  +(% 2, t )  = p(x ,  a) - fz = 0. 

In the present case, only one stationary point will appear. We shall show in 
Section 5 that there is no contribution from the endpoints of the interval of 
integration. We regard (2.2) as a condition on 8, p and 8 to be satisfied at the 
stationary point. This condition will hold if we set 

(2.6) 

(2.7) 

+i(.) = $ ( x ,  k, 8) 9 

q ( x ;  k )  = 2 ( x ;  k) . 

Conditions (2.4)-(2.6) can be replaced by an equivalent set of conditions 
involving +* (x ,  a). From (2.6), (2.5) and (1.12), (1.13) we have 

(2.8) +i(.) = &xy d ,  6) = +*by '9) , 

and (2.4) becomes 
=.-& a + q x ,  a) = 0 

By differentiating (2.8) and applying (2.9), we obtain 

(2.10) V + , ( X )  = V+*(x, a) * 

Thus V+*(x, d )  must be constant along incident rays. On the other hand, for 
fixed u,  Vc#* is constant along rays which are tangent to C, . We conclude that 
if (2.4)-(2.6) or (2.8), (2.9) are to be satisfied, the incident ray through x must be 
tangent to the surface Si  . This condition determines & as a function of x .  
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In order to ensure that (2.8) is satisfied, we define C, as the locus of points on 
Sa where the incident ray direction 04, is tangent to Sa . On Ca we specify (see 
( I .8)-11.12)) 

and we choose the direction of Vs so that 

(2.12) Vs = VO(x, a) = V + i ( x )  on C, 

These relations, together with (1.8), specify s completely on S, , and ultimately 
determine 6 ( x ,  a) and p(x, a) everywhere. 

We first note that, with this choice of 6 ( x ,  a ) ,  (2.8)-(2.9) are satisfied on Ca , 
with d = a. In fact, setting B = a, we have ++(x, a) = +-(x, x )  = O(x, a) 
(see ( l . l l ) ,  (1.12)) and hence (2.8) issatisfiedifxis onCa.  We lety(a) be apoint 
on C, and we differentiate (2.8) with respect to a :  

(2.13) 

In view of (2.12), (2.13) implies (2.9) on Ca . 
Now it remains to be shown that (2.8) is satisfied everywhere (in a neighborhood 

of S )  if it is satisfied on Ca . By differentiating (1 -10) with respect to a, we see that +: is constant along the rays associated with +*. Since (2.9) holds for x on Ca , 
(2.9) also holds at  ( x ,  & ( x ) ) .  Since (2.8) and (2.10) are satisfied at  C; and both 
and + * ( x ,  2) satisfy the eikonal equation (l.lO), (2.8) is satisfied at  ( x ,  d ( x ) ) .  

We observe that the incident phase is equal to +- (x ,  6 )  if x is on the portion 
of the incident ray which has not yet reached S; , and the incident phase is equal 
to ++(x ,  2) if x is on the portion of the incident ray which has left S, . 

In order to determine i ( x ,  k) (mentioned in (2.2) and (2.7)), we first verify 
that the integral in (2.1) has a simple stationary point at B, $, i.e., 

(2.14) 

On Ca , we have d = a, 6 = 0, and thus 

(2.15) A = -(pa(.,  a ) )9  i fx  is on C,. 

Since the surfaces Sa are nested, we have pa # 0 (see also Appendix B), and thus 
A # 0 on C, . A study of the geometry of the rays would show that, in fact, 
A # 0 everywhere. 
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In order to see that &x, a ;  k )  is determined on C, by (2.7), we need some 
additional details about 2 and i: we write 

(2.16) 

(2.17) 

m 
$ ( x ,  a ;  k )  = 2: &(x, a)(ik)-j , 

@ J h  A(%, a ;  k )  = 2 h&, L%)(ik)-j . 
j = O  

Then ; ( x ,  k )  will have the form 

(2.18) 

where 

(2.19) 

i = O  

m 
q x ,  k )  = 2 i & ) ( i k ) - j ,  

¶=O 

fi involves go, * - - , tjp1, A , ,  . . * , and their derivatives. Thus by equating 
coefficients of corresponding powers of k in (2.7), we obtain a system of equations 
which can be solved recursively. In particular, on C, we have = 0, 8 = GC, 

and i ( x ,  a ;  k )  is determined from (2.7). In view of the transport equations 
satisfied by zi and lAl-1'2(i + &), we conclude that (2.7) is satisfied everywhere. 

In summary, we see that (1.6) can be satisfied to arbitrary order in k-l if 
O ( x ,  a )  = s and J ( x ,  a ;  k )  are appropriately specified on C, (see (2.1 l ) ,  (2.12), 
(2.7) and (2.16)-(2.19)). C, is defined as the locus on S, where the incident rays 
are tangent to S, . We remark that the representation (1.6) is a generalization of 
the Kantorovich-Lebedev transform of the incident field (see A. ErdClyi et al. [4]). 

3. The Boundary Condition on the Illuminated Side of S 

As described in the introduction, we represent the scattered field in the form 
(1.7); the integrand in (1.7) is described in (1.16)-(1.19). We shall determine 
~ " ( G c )  (which appears in the definitions ofJ(a)  and At1)(,x)) by applying the method 
of stationary phase to the integral (1.7), and matching the incident phase and 
the phase of us on the illuminated side of S. The amplitude of H ( l ) ( x ,  GC;  k) is 
specified at the stationary point (and hence on a certain curve R, on S) by matching 
the amplitudes of ui and u s .  It is easy to verify that our procedure yields the 
reflected wave in the deeply illuminated region, and that the boundary condition 
(1.2) is satisfied in this region. 

We first restrict the integration in (1.7) to an interval where a < 0. In  this 
case p(x,  R )  > 0 if x is outside S, and H ( l ) ( x ,  a ;  k )  may be replaced by its asymp- 
totic expansion (1.17). We also assume that p ( a )  > 0, and thus J ( a ,  k )  and 
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@ l ) ( ~ ,  k )  may be replaced by their asymptotic expansions: 

u a ,  k )  , (3.1) &, k )  - eikur+(u) z+(a; - k )  + e ikV- ( ' )  

(3.2) 

(3.3) 

Here 

and are given in terms of p"(a) (see (3.18), (3.19)). In Appendix B we shall 
verify that p(a)  > 0 if a < 0; the interval of integration where a is near zero or 

Figure 3.1 

Q > 0 will be treated in Section 6. It is shown in Section 5 that there is no 
contribution from the endpoint a = a,, . Inserting (3.1)-(3.3) into (1.7), we 
obtain 

(3.4) 

The first integral will have stationary points only where q5;(x, a) = 0. The 
discussion of the previous section shows that +:(x, a )  = 0 only if the ray through 
x is tangent to S, (at CJ, and x is on the outgoing half of the ray (since ++ 
corresponds to an outgoing wave). Since a < 0, S, is inside S, and we conclude 
that $; (x ,  a) = 0 only if x is in the shadow of S (see Figure 3.1). Hence the 
first integral is smaller than any power of k-1 in the deeply illuminated region. 

Stationary phase evaluation of the second integral yields 
- 

(3.5) 

where 

(3.6) 

u&, k )  - - e i w ( G ~ )  d x ,  k )  > 

&., a) = ++(x, a) + y-(a) - y+(a) ; 
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the amplitude z,(x, k )  will be discussed later (see (3.17)-(3.22)). The value of 
cc at the stationary point (denoted by 8(x ) )  is determined from the condition of 
stationary phase: 

(3.7) & ( x ,  2) = 4;(x, E )  + y,(E) - W ; ( q  = 0 .  

The boundary condition (1.2) states that ui + us shall vanish on S: thus we 
must have 

(3.8) 

Here ri denotes the illuminated side of S. Differentiating (3.8) in a tangential 
direction and using (3.7), we see that we must have 

(3.9) dx tangent to ri . 
Equation (3.9), together with the conditions that (V$)z = I, and the direction 
of V $  is outgoing, determines V$ uniquely: V $  has the direction of the reflected 
ray at x on I'i . Now we determine E ( x )  if x is on ri by requiring that the reflected 
ray at  x ,  continued inside S, be tangent to S, , i.e., 2(x)  is the minimum of the 
indices of the surfaces S, which are intersected by the reflected ray through x .  
Since the surfaces S, are convex, E is a smooth function of x .  

4 i ( x )  = $(x,  E )  if x is on ri . 

V4i dx = VB(x, E )  * dx if x E Pi, 

To determine p" (as a function of x )  on ri we use (3.3), (3.6) and (3.8) : 

(3.10) Q(P")3'2 = f$+(x, 8) - $&(x:) , 

y+(8) - y-(E) = #J+(x, .) - +I&). 

or equivalently, 

(3.1 1) 

Before making this definition of p ,  we should verify that #J+(x, .&) - +i(x) > 0 on 
T i .  However, we omit the verification, since it is a consequence of the more 
elaborate discussion of Appendix C. In  order to show that p", defined by (3.10), 
is actually a function of 2, we differentiate (3.10) in a direction tangential to r i  : 

(3.12) 2dp" dp" = V$+(X,  E )  * d"x - V 4 i ( ~ )  - dx + c$f(x, 2 )  dE . 
In  view of (3.9), p is constant if E is constant, i.e., p" can be determined as a 
function of ti alone. We define p"(u) for 0: > 0 by analytic continuation. 

In  order to verify (3.7), we differentiate (3.11) in a tangential direction and 
apply (3.9): 

(3.13) yt&(E) dE - y;(E) dE = (bf(x, E )  d E .  

Thus (3.7) is satisfied if dE # 0, which is shown in Appendix C, (C. 17).  In  order 
to compute $@,(x,  E ) ,  we differentiate (3.7) in a tangential direction: 

(3.14) V $ f ( x ,  E )  * dx + JaE(x ,  8)  dZ = 0 . 
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Hence $zza(~ ,  E )  # 0 if Vq5: is not normal to ri, which is shown in Appendix C, 

In order to determine the amplitude z+(x,  E ) ,  we examine the coefficients in 
(3.5) more closely. The amplitudes associated with H(l ) (x ,  cr; k )  (see (1.16)) 
have the form 

((2.15). 

W 

(3.15) 

(3.16) 

Consequently, the amplitude in the asymptotic expansion (1.17) of eikeH(l)(x,  a ;  k )  
has the form 

m 
(3.17) 

where 

herelf;. involves gt , h, and their derivatives for I < j .  Similarly, the amplitudes in 
the asymptotic expansions (3.1) and (3.2) of J ( a ,  k )  and @l)(a,  k )  have the form 

(3.19) 

where 

(3.20) 

Inserting (3.17)-(3.20) into (3.4) and applying 
phase, we obtain 

m 

(3.21) zs(x, k )  = 2 zsj(x)(ik)-’ 3 
j=O 

where 

the method of stationary 

Here Fj involves g, , h, and their derivatives for 1 < j .  Since 6 ( x ,  a) = $ i ( x )  for 
.Y on I’, , ui(x,  k) + u,(x, k )  will vanish on Pi if we set 

(3.23) z,(x, k )  = zi(x,  k) for x on ri. 
In  view of (3.21), (3.22), the amplitudes Q ~ ( x ,  Z) + l / p ( x ,  Z) h j ( x ,  E )  can be 
determined recursively from (3.23). 



116 DONALD LUDWIG 

Finally, we consider points x in the deeply illuminated region, which are not 
necessarily on Fi. From (3 .7) ,  it follows that d is constant where +:(.Y, E )  is 
constant; on the other hand, by differentiating (1.10) with respect to a ,  we see 
that is constant along the reflected rays. Since $ ( x ,  Z) = &(x)  if x is on Pi 
(see (3.8)), we conclude that I$(., E )  is the reflected phase. In  a similar fashion, 
it follows that -z,(x, k )  is the amplitude associated with the reflected wave. 

4. The Boundary Condition on the Shaded Side of S 

As outlined in the introduction, we shall rewrite the total field ui(x, k )  + u,(x,  k )  
as a sum of residues when x is in the deep shadow. We require that the residues 
vanish when x is on I?,, the shaded side of S. This requirement determines the 
behavior of p ( x ,  a )  for x on S and cr near zero (ultimately it determines the surface 
S, for a near zero) ; the amplitudes of H ( l ) ( x ,  a ;  k )  and J(x,  cr; k )  are also deter- 
mined for cr near zero. In  the next section and Appendix B we shall construct 
g(x, a ;  k ) ,  h ( x ,  cr; k ) ,  d ( x ,  a; k) and & ( x ,  cr; k), and we shall justify the trans- 
formation of the integral into a sum of residues. The results are summarized a t  
the end of this section. 

Motivated by the procedure in the case of the circular cylinder (outlined in 
Appendix A), we write the sum ui + us as a single integral: 

(4.1) u i ( x ,  k) + u,(x, k )  = k Jb:' eike(a,a) [ J ( x , a ;  I;)  - H"'(x, a ;  k )  

The next step requires the identity 

(4.2) J(x, a ;  k )  = i [ H " ) ( x ,  a ;  k )  + H(2) (x ,  cr; k)] , 

where 

The contour L is shown in Figure 1.3. There is a similar definition of A(2)(cr, k ) .  
In  view of the definitions of J and H(') ,  the validity of (4.2) requires only that 

(4.4) 

(4.5) 

g b ,  a; k) = B ( x ,  K; k )  , 

h(x,  a ;  k )  = &(x,  a ;  k) , 

i.e., that the amplitudes of J(x, a ;  k )  and H(')(x,  a ;  k )  agree. For our present 
purposes, it suffices that (4.4), (4.5) (and hence (4.2)) hold if x is in the shadow 
of S. In view of the definitions of J(cr, k )  and @I)(cr, k ) ,  we also have 

(4.6) J ( a ,  k )  = $[cl(l)(Cc, k )  + A(Z)(cr, k ) ]  . 
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Substituting (4.2) and (4.6) into (4.1), we obtain 

IVe remark that an evaluation of the integral (4.1) by stationary phase would 
show that in the shadow the term which is removed from ui and u, is equal to the 
incident field (to the approximation of geometrical optics). Thus the incident 
and scattered fields cancel in the shadow to the approximation of geometrical 
optics. Indeed, an evaluation of (4.7) by the method of stationary phase would 
show that there are no real stationary points, i.e., the integral is smaller than any 
power of k-l. There are no endpoint contributions because of the way in which 
the integrands are defined in Section 5 .  

IVe observe that the integrand in (4.7) has poles at  the zeros of A(l)(ct, k ) ,  
which lie in the upper half-plane. We deform the path of integration of (4.7) 
into the upper half-plane and obtain a sum of residues at  these poles. The 
justification of this step will be given in Section 5. Thus we obtain 

(4.8) 

where 

and z l  are functions of k which satisfy 

(4.10) A y a ,  , k )  = 0 # 

According to the definition (1.19) of Z?(l)(ct, k ) ,  we have 

(1.11) fi(l)(a, k )  = 2k1/3etn/3A( -k2/3e2nZ/3 P(4) > 

where 11 is the Airy function (see [3]). To lowest order in k-l, (4.10), (4.1 1) 
impl) that 

q1 J 
(4.12) Piz,) = -k-2/3e--2Zt/3 

where qL is a zero of the Airy function. I t  is known (see [3]) that these roots are 
all real and negative. We recall that P(m) is given by (3.10). Since E(x )  = 0 
and ?I on S implies that x is on C (the shadow boundary), and since ++(x ,  0) = 
+ - ( A ,  01 = ~ $ ~ ( x )  if x is on C (see (1.9) and (2.11)), we conclude from (3.10) 
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that 

(4.13) P(0) = 0 .  

Thus from (4.12) and (4.13), to a first approximation, we have 

(4.14) 

i.e., al  has order k-2/3. 
In order to impose the boundary condition that uz shall vanish for x on Fs 

(the shaded side of S), we rewrite (4.9), expressing H ( l ) ( x ,  cr.; k )  in terms of the 
Airy function : 

213 sni/s f l ( z Y ~ z  > k )  &kO(x,a,) 

a 
(4.15) aa 

x [ A (  -k2/3e2r i i /3p(x ,  ccJ)g(x, c ( ~  ; k )  + ikP1l3A'( -k2/3e2ni/3 p(., cr.,))h(x, c r . 2  ; k ) l  . 

ul (x ,  k )  = k e 
- A(l)(a, , k )  

Consequently, uz will vanish to highest order in k for x on I?, if we require that 

(4.16) 

Comparing (4.1 l ) ,  (4.12) and (4.16), we must have at  least to first order 

(4.17) 

In  Appendix B, we construct Sa for a near 0 in such a way that (see ((2.1)) 

(4.18) 

Moreover (see (B.3)) 

A(-k2 /3e2Ri '3p (~ ,  aJ)  = 0 for x on rS. 

p ( x ,  aL) N p"(az) for x on r,?. 

p ( x ,  a)  - P(a) = O(a") for x on 5'. 

(4.19) 

(4.20) pJ0) = - 1  . 

Pa@, 0) = - 1 ; 

hence 

Combining (4.14) and (4.18), we obtain 

(4.21) 

I t  follows from (4.12) and (4.21) that 

(4.22) 

and thus the first term in the brackets in (4.15) vanishes to order k--2(n--1)'3. 

p(x,  M , )  - p"(a,) = O(k-2n/3)  for x on S .  

A(  -k2/3ezni13p(x, a t )  = O(k-2(n-1)/3) if x is on r, , 
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In order to make the second term in (4.15) vanish to a high order in k-l, we 
shall require in Appendix B that 

(4.23:) h(x ,  a; k) = O(xn-l) for x on S ,  

which implies that 

(4.24j h ( x ,  aL ; k )  = O(k-2‘”-1)/3) for x on S . 

l y e  note that our procedure up to this point differs slightly from the construction 
in [ l l ] ,  since there g and h are permitted to involve integral powers of k--1I3, 
while we use only integral powers of k-l .  On the other hand, p ( x ,  t l l )  involves 
a sun1 of powers of k 2 I 3 ,  while the corresponding function in [l 11 involves only 
two terms. In Appendix B we construct g ( x ,  a; k )  and h ( x ,  a; k )  in such a way 
that (4.23) is satisfied. The construction involves the solution of ordinary differ- 
ential equations along Fs,  for example: 

(4.25 J 

Further details and interpretations of these equations are given in [ll].  Now 
combining (4.15), (4.22) and (4.24), we see that 

(4.26) 

2VO(x, 0 )  . Cgo(x ,  0 )  + AO(x, O)go(x,  0) = 0 . 

H ( l ) ( x ,  aL ; k )  = O(k-2tn-l)’3) if x is on rs . 
In order to evaluate O(x, a t ) ,  we note that, according to the construction of 

S, , p ( x ,  

(4.27) 

In view of the fact that O(x,  0 )  = s o n  S (see ( l . l l ) ,  (1.12)), VO(x, 0) is tangent to 
S. Thus, using (4.19), Oa(x,  0) can be determined from (4.27) if ( V p ( x ,  0))2 is 
known. In the two dimensional case of a wave normally incident on a cylinder, 
the result was given by J. B. Keller 271 (see also [13], equation (1.59)): 

and O(x, x )  (see (B.12)), we have 

2’?8(x, 0) . vO, (x ,  0)  + ( v p ( x ,  0))2pn(x, 0) = 0 if x is on S . 

(4.28) ( v p ( x ,  0 ) ) 2  = (Gp’” for x on S , S a cylinder, 

where a(s) is the radius of curvature of S at x. We conclude from (4.27) and 
(4.28) that in the two dimensional case 

(4.29) 

where s denotes arc length at x ,  and s = so at the shadow boundary. An expression 
for (Vp(x, 0))2 in terms of the relative curvatures of the surface ray on S and the 
tangential rays in space is given in [13], equation (2.64). An interpretation of 
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this term and the corresponding expression for 8,(x, 0) is given in [ l l ] .  For 
present purposes, it is sufficient to observe that Oa(x,  0) is positive in the deep 
shadow. T o  first order, we have 

(4.30) q.?, t c ~  - e(x, 0) + N x l ~ , ( x ,  0)  , 
and thus 

(4.31) le*ke(z,al)l - exp (wv'\/~ qzea(d., 0))  . 

Since qL is negative, eike(*Xal) is exponentially small i n  k1 in the deep shadow. 
Combining (4.15), (4.26) and (4.31), we have 

(4.32) IuL(x, k ) l  N exp { /~ l /~d j  g lOa( .x ,  O)}O(k-2(71-1)/3) for x on r, . 
If x is in the deep shadow and away from S, we may use the asymptotic 

expansion (1.17) of H ( l ) ( x ,  a; k )  ; thus we obtain 

We have, to first order, 

(4.34) ++@, 4 - ++(x, 0) + .,+3., 0) . 

In view of the definition (1.9) of (b+(x, 0) and the fact that +:(x, a) is constant 
along rays corresponding to ++(x, tc), (4.34) becomes 

(4.35) ++(x, ML) - S+ + %ecr(x+, 0) * 

Here x is on a ray which is tangent to S at x+ , and s+ = 8(x+ , 0) = s(x+). The 
result (4.33), (4.35) is identical with the diffracted wave predicted by J. B. 
Keller's geometrical theory of diffraction, [8]. Further details are given in [ 1 11. 

In  summary, we see that if the amplitudes J and H(1) agree in the deep 
shadow, then ui + us can be transformed into a sum of residues in the deep 
shadow. Each such residue will vanish on S to a high order in k-l if p(x,  tc) and 
h(x ,  E) satisfy (4.18) and (4.23). The latter equations are the basis for the con- 
struction of S, , 8, p ,  g and h in Appendix B. A further consequence of the con- 
struction of Appendix B is the identification of the terms of the residue sum with 
the diffracted or creeping waves predicted by the geometrical theory of diffraction. 

5. Specification of the Amplitudes of J and 

In  this section we shall construct functions g, h, ,ij and which satisfy all of 
Thus the specification of the the conditions imposed in Sections 2, 3 and 4. 
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asymptotic solution iS1.6j, (1.7; will lie complete. l:inally, \vc shall justify the 
drforination of the contour of integration used i n  Section 4, b y  estimating 
the inte.#I-and on the displaced contour. 

The  following is a summary of the conditions which have been imposed on the 
functions appearing in (1.6), (1.7). In Section 2, in order that ( l A j  might 
represent the incident field, we derived conditions which determine Oix, aj and 
p , ~ ,  x i  completely (once S, is known), but which specified i <x ,  a; kj only on the 
curve on S, (see (2.1 I ) ,  t2.2) and (2.16)--(2.!9)). Similarly, although Pix) was 
determined completely in Section 3, the amplitudegtx, x ;  k) + h tx ,  a; k )  
was determined only where x = Z(x), i.e., along a certain curve R, on ,Y (see 

Reflected Ray 

/ 

Figure 5.1 

(3.21 j-43.23)). In Section 4, we required that g(x,  cc; k )  = c @ x ,  a; X-) and 
/ I !  v,  x ;  1;; = h ! v ,  rr.; k )  if.r is in the shadow ofS. We later required that h(.r, x ;  k j  
vanish to order ~ " - 1  on the shaded side of S, and that p(.x, a )  = - x  + 0(x7 ' j  for 
.r o n  S. The latter condition is used in Appendix B to construct S, . 

Sow in order to specify g and h, we stipulate that 

(5.1) 

and we recall that i ( x ,  a; k )  is prescribed in C, by means of (2.1 I ) .  The  con- 
struction of' Appendix €3 specifies g and h completely, using these two conditions. 

In order to specify g and h, we set a < 0 and we consider the curve Q, on ,S2 
where those outgoing rays (corresponding to r$+(x, aj) which meet S at C (the 
shado\v boundary) are tangent to S, (see Figure 5.1.) Since the values of ,q 
and h on S to the right of C are determined by the values of,q on S, to the rixht of 
Q, (set [ 1 3 ] ) ,  we will havc , ~ ( . r ,  x; k'j = g i ~ ,  x; k )  arid h(.v, a; k )  = h ( x ,  cc: I;! if 
.t is in 111e shadow by requiring that 

( 3 . 2 )  ,.(x, ccj = k ( x ,  a )  for x on ,Sz, s to the right of 0,. 

On the other hand, g ( . ~ ,  a; k )  + y p l x ,  a )  h ( r ,  rr.; k )  is specified on the ciirvc R, 
on S, Tvhere &(xj = a. \Ve note that R, is to the left of C, since reflection takes 
place i n  the illuniinated region. According to the transport equations satisfied by 

R(x ,  a; kj = O(an-1) if .Y is on S ,  

/- 
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g and h, the values of g + dp h on R, determine the values of *q on T, , T, being 
the curve on S, where the reflected rays a t  R, are tangent to S, . Since T, is to 
the left of Q, , there is no conflict with (5.2). 

Now we define g(x, cc; k )  on S, to the left of Q, by a smooth interpolation and 
extrapolation of the values at T, and Q, . If cc is bounded away from zero, then 
T, is bounded away from Q, , and there is no question that this can be done. 
I n  order to treat the case where a is near zero, i t  is shown in Appendix C that, a t  
R E  3 

(5.3) 
-- 

&(X, Z) + d p ( x ,  E )  h&, G) = &(x,  G )  + d p ( x ,  E )  hj(X, ii) + O(Z'2-2,) . 

Figure 5.2 

Here the subscript j denotes the coefficient of (ik)-j in the expansion of R or h. 
Consequently, for x on T, , 

(5.4) g j ( x ,  a) - &(x, a)  = O(aB-2') . 

We conclude that for n > 2 j ,  g can be defined on S, so that (5.4) is valid evcry- 
where. In  case cc 2 0, we set g(x,  a ;  k )  = i ( x ,  a ;  k) on S, . 

There is still a question about the interval of integration in the integrals 
(1.6), (1.7). The size of this interval is limited by certain geometrical restrictions 
which appear in the construction of S, and in requirements that A (given by 
(2.14)), and $,,(x, E )  (see (3.14)) be different frorn zero. There are numbers 
a. < 0 and a1 > 0 such that all of our constructions are possible if a. 5 a 5 G C ~  . 
Because we have taken no account of endpoint contributions in the asymptotic 
expansions of (1.6), (1.7),  the integrands must vanish together with all of their 
derivatives a t  the ends of the interval. I t  is convenient for our purposes to multiply 
each of the amplitudes g, h, 

(5.5) 

and h as defined above by a factor p ( a ) ,  given by 

+(a)  = exp {-Bk-113(cc - ccO)-l} exp {--13k-1/3(cc1 - cc)-l}, 

where B is a positive number to be specified below. Thus our representations are 
valid in a cylindrical shell, whose size is independent of k ,  which is swept out by 
incident rays in a neighborhood of the shadow boundary, see Figure 5.2. 

Now we shall justify the replacement of ui(x, k )  + u,(x, k )  by a sum of residues 
where x is in the deep shadow. We deform the contour in (4.7) as shown in 
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Qo 0 

Figure 5.3 

Fiqure 3 . 3 ,  and estimate the integral on the deformed contour. Our final estimate 
iq that the integral is less than u,, in (4.8) if the contour is displaced far enough 
into the upper half-plane. 

Near c( = a. , we write a = a. + k-2/3ye20/4, where y is real and positive. 
Between a2 and a s ,  we write a = p + ik-2/3H, , where 1 and B, are real, U ,  > 0. 
From (5.5), we have 

for u between uo and a2. 

Hence Ip(c()l has its maximum at u, , and we have 

(n. 7) 1 p (  u)  1 exp ' -P3 for a between a,, and u2 . \ 2B, 

If'x is in the deep shadow and B?L a 5 .%r a3 < 0, we may use the asymptotic 
expansions of H(1),  Ht2 ) ,  H ( l )  and 

where z:+ are given by ( I .  15) and y+ are given by (3.3). We recall from Section 2 
that $; is constant along rays corresponding to $ - ( x ,  a ) .  Thus if is real, 

. x - ( x ,  /?) is the point on Sb where the ray passing through x (corresponding to $-) 
is tangent to S, . Remembering that 6Jx, p )  = 0 if x is on C, , we see that 
$ ; ( x ,  /I) > B, > 0 if x - ( x ,  1) is in the shadow of Sp , in particular if x is in the 
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shadow of S. Hence we obtain 

9 8  [ik(+f(x, a )  + +-(a) - ++(.))I 5 -k l i3B10a(~+(.~,  p) ,  b) 
(5.12) 

I - -k113BH,11, if a is between a2 and a3 . 

Thus if c( is between ap  and ag , the integrand in (5.8) has order exp { -k1/3B,R,}. 
Actually, a similar estimate is valid even if 9~ Q, is near zero, provided that cc3 is 
not too close to a zero of R(l)(c(, k ) .  Since +;(x, /?) > 0 and +:(x ,  /I) + y;(/3) - 
@(& > 0, (5.7) implies that the integrand in (5.8) has order exp {-k1/3B/2B,) 
for a between a,, and a 2 .  Now B ,  and B are still a t  our disposal. \Ye may choose 
B, so large that exp { -k1/3B1B,} is smaller than u L  in (4.8). Then B is chosen so 
that B/2B1 2 BIB,. 

In order to estimate the integrand for a between cc4 and x1 , we revert to the 
original expression (4.1) for u i  + u, . For x between cx4 and a,, we have P ( K )  # 0. 
Thus j and may be replaced by their asymptotic expansions, using the 
asymptotic expansion of the Airy function (see (1.18), (1.19) and [3]) : 

(5.13) j ( a ,  k )  - exp { - $ k ( - p ( a ) ) 3 ' 2 j Z - ( x ,  k )  , 

(5.14) f i ( I ) ( x ,  k )  - 2 exp {$k ( -p (a ) )3 '2 )Z+(a ,  k )  . 

The asymptotic expansion of H(') (x ,  a ;  k )  might not be valid, since p ( x ,  a )  might 
be small, but we can use it as an estimate on H(l)(s, x ;  k )  : 

M'e cohclude that for a between a4 and a ,  , 

From Appendix C, we know that p ( x ,  x )  - p"(a) = O ( a n )  if x is on S, and hcncc 
the estimate (5.16) is exponentially small if x is on S. Since - p ( x ,  x )  decreases 
as x moves off S, the estimate is also valid if x is off S. I n  order to estimate the 
integral of the first term in (4.1), we may rewrite it as a doutile integral as in 
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Section 2 .  Since x is in the deep shadow, the stationary point of the integral 
correspondi to a negative value of Q. We may apply a steepest descent procedure 
to the integral to obtain a n  exponentially small estimate. 

I;inally, for x between a3 and ci4 , a more delicate analysis is necessary in order 
to avoid the zeros of A(l)(x,  k )  (see [15], Section IV). It  is necessary to choose 13, 
50 that the contour passes midway between the zeros of f i ( l ) (x ,  k ) ;  the factor 
p'ktl(s 1 1  provides an  appropriate exponential decay, since x is in the deep shadow. 

6. The Boundary Condition in the Penumbra 

In  this section we shall verify that the boundary condition is satisfied in a 
neighborhood of the shadow boundary, i.e., that u i ( x ,  k )  + U , ~ ( X ,  k j  = 0(k7/6--"'3)  
if s is on S. Since the solution was completely specified in the previous section, 
we have no free parameters or undetermined functions at  our disposal. O n  the 
other hand, the analogy between the solution and the solution for the circular 
cylinder is especially close in the region of integration where CI is small, which is 
crucial for the behavior of the solution in the penumbra. Our estimates are valid 
for points in the deep illumination or deep shadow, but they are more crude 
than those given in Sections 3 and 4. However, these estimates do show that there 
is no contribution from the interval 0 a 5 a1 or its endpoints when evaluating 
u, in the illuminated region. 

By use of a partition of unity, we shall break the interval of integration into 
three overlapping intervals. In  the first, where lcll 5 2Bk-II3, B > 0, we shall 
use the results of Appendix C to show that 

Here and throughout this section, x is restricted to lie on S. It  follows immediately 
that the corresponding integral has order k7/6-71/3. I n  the interval where 
- x  1 - X-1/311, the asymptotic expansions of H ( l ) ,  J ,  and are valid, and the 
integrals for ui and u,$ may be evaluated by the method of stationary phase, as in 
Section 3. Since the incident and reflected waves cancel on S, the first n terms 
in the expansion of f c ,  + us vanish. I n  the interval where x >= k-1!3R, we can 
again use the asymptotic expansions of J ,  IY( l )  and J .  Since J and .j are 
exponentially small in it-1, we conclude that the corresponding integral is 
exponentially small in k-'. 

1 1 7 ~  choose a function p1 which is infinitely differentiable, such that 
0 5 /I,(?) 5 1 for all y ,  

(6.2) 
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Then we define p 2 ( y )  and p, (y )  by means of  

(6.3) 

Thus we may write 

where 

(6.6) IL(x ,  k )  = k u; k )  - H ( l ) ( x ,  a; k )  J('' k ,  ] pl(k1/3u) du . 
R(l)(u, k )  

I n  order to estimate Il we estimate w, defined by (6.1). In view of the 
definitions of J ,  H( I ) ,  9 and g(l), we have 

P)hl w = k-l/3[A( - 8 2 d 3 k 2 / 3  p)g + ik-l/3A'( -e-2ni/3k2/3 

1 A ( - k2'") - A (  - k m p ) j  + i k - 1 / 3 ~ ' (  - k z / 3  P )  (6.7) 
[A(  -e2ni/3k2/3 p)g + &-1/3A'( -k2/3p)h A (  -e2rf/3k2/3 I4 ' 

From Section 5 and Appendix C, we have (see (5.1), (5.4) and (C.l))  

h .  = O ( f p - 1 - 2 i )  

Thus, in the support ~ f p ~ ( k l / ~ x ) ,  we have 

Since u is real, the denominators in (6.7) are bounded away from zero. If we 
regard w as a function of p, g, h and /2, an expansion around p = p ,  g = 2, 
h = h = 0 shows that UI has order k1/2- -n/3 ,  as stated in ( & I ) ,  and hence Il has 
order k7/s-n13. 
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In the integral I ,  we have -a 5 k-1/3B, and hence k2l3p(x,  a)  3 B1k1/3. 
Thus J ,  H ( l ) ,  3 and may be replaced by their asymptotic expansions. Assum- 
ing for the moment that I ,  may be evaluated by the method of stationary phase, 
the results of Section 3 show that, ifp,(k1/3a) = 1 at the stationary points for ui 
and us , then the first n terms of the expansion will cancel. If the stationary points 
lie in the region k-ll3B 2 -a 6 2k-1/3B, then cancellation will be affected by 
the factor p2(k2/3a). Denoting the stationary points for ui and us by B and i as in 
Sections 2 and 3, Appendix C ( C l l ) ,  shows that B - E = d p ( x ,  i) O(ii") = 
O(k-1/6--n'3). Consequently we have 

(6.10) p z ( k 1 / 3 i )  - p p 3 4  = o ( w - 9  , 

with similar estimates for the derivatives of p2 ; thus the stationary phase con- 
tributions will cancel to the same order. If the stationary points lie outside the 
interval of integration, i.e., 0 5 -a 2 k-1I3B, then we shall see presently that I, 
is smaller than any power of k-l. On the shaded side of S, we may use (4.7), 
and no stationary points appear. 

We turn to the justification of the method of stationary phase. Using the 
asymptotic expansions of J ,  H( I ) ,  J and A(1), we have (see (3.4) and (1.15)) 

(6.11) 

=+J 

The term involving $-(x, a)  is typical. We replace a as variable of integration 
by B, defined by 

and we introduce s(x,  8) by means of 

(6.13) 

Then we have 

(6.14) 

The results in [14] assure us that the method of stationary phase may be applied 
to the first term in (6.1 1 )  as long as k% is large. Thus ifs 2 )Bk-'l6, the remain- 
der after n terms in the stationary phase evaluation of ui + us will have order 
/$-nlz. If s 5 )Bk-'l6, then the stationary point for 4- lies outside the support of 

@ ( x ,  a)  = O ( x ,  a)  - g ( p ( x ,  = e ( x ,  0) + b2s - $p3 .  
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pz . Using the results of [14], we conclude that in the latter case the first term in 
I ,  is smaller than any power of k-I. Similar estimates hold for the remaining 
terms of I , ,  involving ++ and ++ + y-  - y+. 

In  the integral I , ,  we may again use the asymptotic expansions of J ,  W1), 
3 and fltl). As in (5.13)-(5.16), we conclude that I, is exponentially small in k-l. 

Appendix A. Diffraction by a Circular Cylinder 

In  the case of diffraction of a plane wave by a circular cylinder, the exact 
solution can be given explicitly. Since the situation is simpler in that case, 
our procedure is more transparent. The methods and results of this appendix 
are drawn from S. I. Rubinow and J. B. Keller [16] and H. M. Nussenzveig [15]. 

We consider two-dimensional space: x = (xl , x2). The function u ( x ,  I ; )  is 
required to satisfy (1.1)-(1.3), with S replaced by a cylinder of radius a and 
u I ( x ,  k )  = e ikxl .  

I t  is convenient to introduce polar coordinates x, = 7 cos 0, x2 = r sin 6. The 
polar angle 0 is related to, but not the same as, the function 0(x, a) used in other 

means of a Fourier transform with respect to e) ,  we obtain 
parts of this work. By means of the Poisson sum formula (representing eikr 'OS b Y 

First we shall discuss the asymptotic expansion o f J k p ( k r ) ,  and then we shall show 
that, at  any given point, all but one of the terms of the sum (A.l)  are negligible. 
For r > IF], Jkp(kr) may be represented by means of its Debye expansion: 

eikp(--8+u/2)  J ka(kr)  - eikbtz+ + eik+&-z- . (A.2) 

Here we have set 

where 0, and t, - are the angles and lengths shown in Figure A.1.2 Hence, as 
1x1 + co, ++ -+ and +- ---f - co, i.e., e i k d + z +  is outgoing and eikdg-z- is incoming. 
The functions #d also satisfy the eikonal equation (1.10) identically in /?, and 
hence by differentiating (1.10) we see that $$(x, p)  is constant along the rays 
which correspond to +*. 

The radius of the circle in Figure A.l is p. 
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Figure A. 1 

Xow we apply the method of stationary phase to (A.l), after replacing the 
integrand by (A.2). The condition of stationary phase is 

(A.5) +$(x,fl) = -2nm. 

If 1x1 = 8, then from (A.3) we must have e+ = 2mn + &. Hence, the phase is 
stationary along the horizontal ray which is tangent to the circle 1x1 = at the 
top. There is another stationary point with f l  < 0, corresponding to the horizontal 
ray which is tangent at the bottom. The result of the stationary phase evaluation, 
of course, is the incident wave; compare the treatment in Section 2. If we think 
of polar coordinates as giving a many-sheeted covering of the plane, then each 
term in (A.1) is significant on only one sheet; the summation over m is required 
to make the result single-valued. We are interested in values of 8 near &T, and 
hence we may neglect all terms but one in the sum (A.1). 

\l'e are now ready to represent the scattered field. Since u, is outgoing, us 
should be a superposition of Hankel functions of the first kind. The condition 
that u,  + us = 0 for 1x1 = a then implies that 

Only the integration where 2 a is significant, since JkP(ka) is exponentially 
small if Ifl1 > a, and the ratio of the Hankel functions is bounded. 

The following discussion is the prototype for Section 3. In the illuminated 
region, we can replace the Bessel and Hankel functions by their Debye expansions. 
Then (A.6) becomes 
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where y+(a, p)  = -y-(a, p)  = t+(x)  evaluated at 1x1 = a. The first integral in 
(A.7) can be evaluated by stationary phase; we obtain 

( A 4  4 $ ( x ,  a) = 0 at the stationary point . 

This condition is only satisfied if x is on the right half of a horizontal ray which is 
tangent to a circle of radius 8. Since we may restrict ourselves to 1/31 5 a, the 
first integral has a stationary point only in the shadow. 

In the second integral in (A.7), the condition of stationary phase is 

('4.9) 4 g x ,  a, - $(a ,  F) + Y+, 8) = 0 .  

We first consider the case where 1x1 = a. In view of the definitions of +* and y", 
(A.9) becomes 

(A. 10) & ( x ,  p) = o for 1x1 = a ,  

i.e., x is on the incident ray which is tangent to the circle of radius B. At the 
stationary point (not necessarily on 1x1 = a) the total phase is 

(A. 11) 

(A.  12) 

8(4 = (b+(x, PI + y-(a, a, - V+(Q, B, > 

and hence 

= V 4 + ( X ,  a) . 
Symmetry shows that if 1x1 = a, V$+ and 04- make equal angles with the normal 
at x .  Thus if dx is tangent to the circle of radius a and q5z denotes the incident 
phase, we have 

(A.13) d.t * V$(x)  = dx * V ~ + ( X ,  8) = dx * V$-(X, a) = dx * V + l ( ~ )  . 

\.Ve conclude that V$ has the direction of the reflected ray at x ,  if 1x1 = a. Since 
8 is constant if v$ is constant, we conclude that $ ( x )  is the reflected phase, 
and our evaluation of (A.6) yields the reflected wave in the illuminated region. 
However, the procedure breaks down at the shadow boundary. 

In order to discuss the deep shadow region (the analogue of Section 4), we 
combine (A.l)  and (A.6) to obtain 

we may rewrite (A.14) as 
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If the contour of integration is deformed into the upper half-plane, the integral is 
replaced by a sum of residues at the points p1 such that 

(A. 17) H$l(ka) = 0 .  

Each such residue will have the form 

(*4.18) 

The  asymptotic expansions of p1 and u l ( x ,  k) may be obtained by use of uniform 
asymptotic expansions of H ( l )  and f i (z)  in terms of Airy functions. The inter- 
pretation of u l ( x ,  k )  as a creeping wave is given in Section 4. 

Appendix B. Construction of p, 8, and 

In this appendix, we shall construct p(x, a ) ,  e(x,  a) ,  i ( x ,  a ;  k) and h(x ,  a ;  k) 
in such a way as to satisfy the following conditions: 

(B. 1 j p ( G p j 2  + ( V e ) 2  = 1 , 
(B.21 2 c p . v e = o ,  

iB.3 I p ( x ,  K )  = - a  + O(a") for x on S ,  

1 
k iB.5j 2 Y p  * Cg + Apt( + 2 C e .  Yh + AOR + - Ah = 0 ,  

It  is easilyverified that (B. l ) ,  (B.2) are equivalent to (1.10) and (1.12), (1.13) 
( the eikonal equation for #I*), and (B.4), (B.5) are equivalent to the transport 
equations for the amplitudes z ,  - associated with #I*. It  is further shown in [ 131 
that (B.l) ,  (B.2) and (B.4), (B.5) imply that elke(x,a'J(x, a ;  k )  is an asymptotic 
solution of the reduced wave equation. Conditions (B.3) and (B.6) are used in 
Sections 4, 5 and 6. Our  solution will permit e(x,  a) and B ( x ,  E ;  k) to be specified 
on S, as in Section 2. 

1Ve shall first give a formal solution of (B. l)-(B.3). This formal solution will 
be u e d  to construct the surfaces S, . Then an  actual solution of (B.1)-(B.3) can 
be obtained from the theory of [13]. The  construction of 6 and f i  proceeds in an 
analogous fashion. 



132 DONALD LUDWIG 

We look for a (formal) solution of (B.l), (B.2) of the form 

where (B.3) is replaced by 

(B.9) ; ( x ,  a) = --tl if x is on 5'. 

Setting a = 0 in (B.l), (B.2), we observe that B0 and 8, satisfy (B.l), (B.2). In  
view of (2.11), (2.12), we require that o0(x)  = d z ( x )  and V8,(x) = Vdi(x) if x is 
on C (the shadow boundary). According to [13], Sections 1 and 2, O,(x) can be 
determined on S, and then go and 8, can be constructed in the exterior of S by 
integrating along rays which are tangent to S. The resulting functions have 
analytic continuations inside S. 

By substituting (B.7), (B.8) into (B.l), (B.2) and equating each coefficient of 
a to zero, we see that p^, and 0, must satisfy 

(B.lO) 

(B. 1 1) vpno * 08, + vg, .v8, = 0 ,  

with similar linear equations for 
p^, = -1. Thus, on S, (B.lO) becomes 

(B.12) 2 ~ 8 ,  * V8, = (v j i , )~  for x on s . 
The fact that S has Gauss curvature bounded away from zero implies that 
(Vp^o)2 # 0 (see [13], Section 2 or [ l l ] )  and hence the tangential derivative of 8, 
is different from zero. In  view of (2.9), we set 8, = 0 on C. Thus 8, can be 
determined on S from (B.12). After multiplying (B.11) by &22/; and adding 
(B. lo), we obtain 

and Qj . On S, (B.9) implies that p^, = 0 and 

(B. 13) 2(  08, f 4% Vg,) . (V8, f dx v;,) = 0 . 
- 

Hence 8, f d p 0  is constant along rays which correspond to $*(x, 0), and 8, 
and 1, can be determined from (B.13). The functions 8j and p^$ can be con- 
structed in a similar fashion. The appropriate values of 8i on Ccan be computed 
by differentiating (2.9). 

We cannot define p and O by means of (B.7), (B.8), since the corresponding 
series will probably converge only in exceptional cases. This remark is due to 
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J. Moser, who observed an analogy with certain series which are known to diverge. 
\Ve can circumvent this difficulty by truncating the series: we set 

(B.14) 

(B. 13) 

Kow we define S, as the locus where j i ( n ) ( ~ ,  a )  = 0. We obtain p(x, a) and 
812, x )  which satisfy (B.l), (B.2) by prescribing p ( x ,  a) = 0 on S, and using 
(2.1 l ) ,  (2.12). The existence of p ( x ,  x )  and 6(x,  a )  is assured by the results in [13]. 

\Ye shall now verify that 

(B. 16j 

(B.17) 

From our  construction we immediately have 

(B.18) 8 0 ( 4  = PfX, 0) 

(B.19) 8 0 ( x )  = qX, 0) . 

From (2.9), we also have 

(B.20) &(x) = e,b, 0) on C .  

Now let Z(Z) be a point on S, . By definition we have 

(B.21) j3'"'(z(dc), x )  = 0 , 

(B.22) p ( z ( x ) ,  a) = 0 .  

Differentiating (B.21), (B.22) with respect to a and setting dc = 0, we obtain 

(B.23) $1 + og, Z,(O) = 0 ,  

(B.24) p,fx, 0) + C p ( x ,  0) . Z,iO) = 0 .  

Thus, since Po(.) = p i x ,  0), we have 

(8.2 5j  P,(x,  0) = F l ( x )  = - I  if x is on S . 

In a sirnilar fashion, by differentiating (B.lj,  (B.2) and comparing with (B.10), 
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(B.1 l ) ,  we see that 

(B.26) 

(B.27) 

8 1 ( 4  = P d X ,  0 )  2 

& ( x )  = O&, 0)  . 

By a similar procedure, the remaining terms in p ” ( n )  and f%n) can be identified 
with appropriate derivatives of p and 19 at a = 0. 

The 
appropriate surface on which to specify 6 and h is S, ; however, condition (B.6) 
refers to S. This difficulty (like the analogous difficulty in the construction of p 
and 0) can be circumvented by a formal expansion of 6 and h in powers of GI 

and k ,  i.e., 

We turn to the construction of 2 and h which satisfy (B.4)-(B.7). 

(B.28) 

(B.29) 
!xi m m  

h ( x ,  a; k) = 2 z: hlj (x)( ik)-- l  T .  
1=0 j=O 9 -  

Setting u = 0 and inserting (B.28), (B.29) into (B.4), (B.5), we see that (B.4), 
(B.5) are satisfied by i ( x ,  0;  k )  and h ( x ,  0;  k ) ,  and (B.6) becomes 

(B.30) 

In  view of (B.30) and the fact that p ( x ,  0) = 0 on S, (B.4) becomes 

h ( x ,  0;  k )  = 0 for x on S . 

I 
k 

(€3.31) 2V8(x, 0) * V i ( x ,  0 ;  k )  + A8(x, O)g(x, 0;  k )  + - A&x,  0 ;  k )  = 0 .  

This is the surface transport equation on S; it determines d ( x ,  0; k )  as a formal 
power series in k-l if i ( x ,  0;  k )  is prescribed on S. The equation for ioo is especially 
noteworthy: from (B.31) we obtain 

(B.32) 2 v q x ,  0) - ~ g , , ( ~ )  + ~).g~,,(~) = o . 
Now i ( x ,  0;  k )  and h ( x ,  0; k )  can be obtained by integrating along the rays which 
correspond to +*(x,  0) (see [ 131). 

By inserting (B.28), (B.29) into (B.4), (B.5) and equating the coefficient of 
each power of a to zero, we obtain equations analogous to (R.4), (R.5) for 
derivatives of i and h with respect to a at a = 0, which also can be solved by 
integrating along rays. This formal solution can be used to provide the appro- 
priate values for i ( x ,  cr; k )  on S, . Finally, application of the procedure of [13] 
enables us to construct and h from (B.4), (B.5), with the assurance that (R.6) 
will be satisfied. 



ASYMPTOTIC EXPANSION OF THE SCATTERED FIELD 135 

Appendix C. The Connection Between p and g, g and 3 
The functions p ( x ,  a)  and &x, a ;  k) were defined in connection with the 

representation of the incident field in Section 2, and the functions p"(u) and 
g ( x ,  a ;  k )  were defined in connection with the representation of the reflected field 
in Section 3. In order that the boundary condition be satisfied in the penumbra, 
it is necessary that 

(C.1) 

It follows from (B.3) and (C.1) that 

p(x ,  a )  - p"(a) = O(an) for x on S .  

( C 4  

and it is an easy consequence of (B.3) and (C.2) that p and 

p"(a) = - M  + O ( a n ) ,  

satisfy 

We shall derive these facts together with some related information in this appendix. 
From the definition (1.12) of p ( x ,  a ) ,  we have 

(C.4) + ( p ( x ,  ~ 1 ) ) ~ / 2  = ++(x, a) - b ( x ,  M )  . 

Combining (3.10) and (C.4) and observing from (2.8) that +i(x) = +-(x, 2 ( x ) ) ,  
we have 

or from (1.12), (1.13), 

In order to estimate p"(E) - p ( x ,  E )  from (C .6 ) ,  we first estimate E ( x )  - & ( x ) .  
From (2.10) and (3.9), we have 

d . ~ .  U$+(x, E )  = dx * V$$(X) 
(C.7j 

= dx . cI$-(x, a) if x is on r i ,  dx tangent to ri . 
If we express #J+ and #J- in terms of 8 and p, (C.7) becomes 

(C.8) d x .  [VO(x, E )  - V@(X, a) + d p ( x ,  &) V p ( x ,  Z) + d p ( x ,  2) V p ( x ,  a)] = 0 .  
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I t  follows from differentiation of (B.3) that 

((2.9) 

Substituting (C.9) into (C.8), we obtain 

dx - V p ( x ,  M) = O(R") if x is on T i  , dx tangent to r i  . 

(c.10) d x .  [ v q X ,  2) - ve(x, q l  = m) O ( P )  + o p )  , 
or 

(C.11) dx . VB,(x ,  E )  ( E  - a) + O(E - a ) 2  = d p ( x ,  E )  O(Ei") + d p ( x ,  2)  O(8.) . 

In  view of (B.13), we have dx 1 V 8 ,  # 0 if dx has the direction of V B ( x ,  0). Thus 
we conclude from ((2.1 1) that 

-- 

(C.12) ii - 8 = d p ( x ,  E )  O ( Z j  . 

+ @ ( E ) ) 3 ' 2  = Q ( p ( x ,  &))3'2 + z /p (x ,  &) O(8") . 

In  view of (C.12), ((2.6) becomes 

((2.13) 

Our main result ((2.1) follows from (C.13). 

we have 
The following remarks are useful for Section 3. From the definition of 4+ 

1 P  ((2.14) dx VC$;(X, E )  = dx * V 8 ( x ,  E )  + - 2- V p  * dx + dp V p ,  * dx 
2 d P  

if x is on ri, dx tangent to r i .  
In  view of (B.3) and (C.9), we have 

(C.15) 
1 

dx * V+:(x ,  &) = dx VO,(x,  ti) + - O(En) . 6 
Thus if dx has the direction of VO(x ,  0), we conclude from (B.12) that 

((2.16) V€J(x, 0 )  - VC$;(X, E )  # 0 for x on ri. 
Differentiating ((2.2) in the direction of V O ( x ,  O), we also obtain 

(C. 17) vqX, oj I vqX)  + o , 

(C.18) v q X ,  0 )  ~ i ; ( ~ )  + 0 .  

since differentiation of (2.4), (2.5) implies that 

Now we examine the relationship between g ( x ,  E ;  k )  and J ( x ,  8 ;  k ) .  We 
obtained b ( x ,  2 ;  k )  + &{x,  d ;  k )  by applying the method of stationary phase 
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to the double integral (2.1).  The same result is obtained on r, by using the 
asymptotic expansion of J ( x ,  x ;  k )  and applying stationary phase to 11.6). The 
coefficients i j ( x ,  &) - d p ( x ,  &) h , ( x ,  &) thus are obtained in terms of the deriv- 
atives up to order 2 j of 

(C.19) &, a) = qx, a) - $(,+, a ) ) 3 / 2  

O n  the other hand, in Section 3, gj(x, &) + d / p ( x ,  5) h , ( x ,  iij was determined in 
terms of the derivatives up to order 2 j of 

(C.20) &, E )  = qx, ii) + # ( p ( x ,  ~ ) ) 3 / 2  - $ ( p ( & ) ) 3 ' 2 .  

In view of (C12) ,  (C.13), 

(c:.?l) $ix, a)  - 4"(x, Z) = d/p(x, ii) Oiii") . 

Since the results of the stationary phase evaluations are both equal to e i k + , ( z ) z i ( x ,  k )  
on P i ,  we conclude that 

ijh, &} - &(x, a) h j ( X ,  a) = g3(x, E )  + Y'p(x, &) h j ( X ,  2 )  
(C.22) + d p ( x ,  ii) O ( P - 2 j )  . 

It follows from (5.1) and ((2.12) that 

ijh, 2 )  + d p ( x ,  G) &, E )  = g&, ii) + d p j x ,  ti) h&, Z) 
(C.23) + d p ( x ,  &) O(2--2,) . 
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