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In this paper a new vibroacoustic modelling methodology of permanent magnet synchronous 
motors (PMSMs) is presented. The model accurately describes torsional vibration conditions 
of a PMSM in case of single-phase pulsating current excitation, in conjunction with small 
angular displacement of the rotor. The step-by-step derivation of the model, the method of 
model parameter identification based on electrical impedance measurements and the calcula-
tion of model parameters are investigated in details. Special attention is paid to the vi-
broacoustic effect of cogging torque, and using the theoretical results the possibility of sen-
sorless cogging torque measurement is mentioned. 

1. Introduction 

In acoustics there are a number of examples for such systems connecting different fields of 
physics. An excellent example is the direct radiator dynamic loudspeaker, in which three different 
fields of physics are coupled in one device. From one hand the electric side (e.g. the voltage and 
current of the voice coil) is coupled to the mechanical side (the velocity of the diaphragm and the 
force acting on the diaphragm) by means of the interaction between the air-gap flux and the voice 
coil current, and on the other hand the mechanical side of the speaker is coupled to the acoustic 
field (sound pressure and particle velocity) by means of sound radiation of the vibrating diaphragm. 

In enclosure design the use of the lumped equivalent network of the loudspeaker and the cou-
pled acoustic system is a very efficient approach, therefore we are trying to adopt this methodology 
to torsional systems, namely to permanent magnet synchronous motors (PMSMs). The similarity 
between these two different devices becomes obvious when the equivalent networks are compared 
to each other, however in some cases the physical meaning of the model parameters is different. 

In the first part of the article the well known equations of a PMSM are recalled, and on the 
basis of these equations and some illustrative considerations the vibroacoustic model is derived 
step-by-step. Using this vibroacoustic model the electrical impedance of a PMSM is calculated and 
a parameter identification method is presented that can estimate measured impedance curves by 
remarkable accuracy. Finally the possibility of physical parameter calculation from transfer function 
coefficients is investigated and the equations for the parameters are given. In the end, the calculated 
parameters are presented for a medium power (~1 kW) PMSM and the possibility of sensorless cog-
ging torque measurement is mentioned. 
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2. The standard model of a PMSM 

In this section the standard model of a PMSM (Fig. 1.) is briefly summarized. 

   
Figure 1. A schematic section view of a 2 pole 3 

phase PMSM1. 
Figure. 2. The schematic circuit diagram of a 

PMSM with wye-connected phases. 

The electrical behaviour of permanent magnet synchronous motor can be summarized in the 
following equations2: 
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where i = 1, 2, 3, and usi, isi are the stator voltage and current of the ith phase, ui, u0 are the induced 
voltage of the phases and the voltage of the common end of the windings (see Fig. 2.), and Rs, Ls are 
the resistance and inductance of the phases respectively. This model presumes that the rotor-
position dependence of the inductances and the coupling between windings is negligible. In most 
cases – for instance in the design of a closed loop control – this negligence is permissible. 

The induced voltage can be expressed from the flux change: 
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where �ir is the rotor flux in the ith winding, � is the angular displacement, and � is the angular ve-
locity. The torque acting on the rotor can be calculated from the phase currents and from the flux: 
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The structural dynamics of the motor is described by the following two equations: 
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where Jr is the moment of inertia of the rotor, ml is the load torque, mc is the cogging torque, B is 
the viscous friction coefficient, and C is the Coulomb friction coefficient. 

 The cogging torque is due to the attraction of the permanent magnets and to the salient pole 
pieces of the stator iron, therefore the cogging torque is always present, even in the absence of the 
phase currents. 

It is common in practice to express the non-sinusoidal quantities �ir and mc by their Fourier 
series, but the following calculations do not use this approach. 
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3. The vibroacoustic model of a PMSM 

In this section the step-by-step derivation of the vibroacoustic model from the standard model 
is presented. In our case the “vibroacoustic modelling” means that the rotor of the PMSM does not 
whirl but rather oscillates torsionally around an equilibrium position with considerably small ampli-
tude. 

During the modelling it is assumed that the rotor, the shaft and the housing is ideally rigid, 
however it is mentioned that the methodology presented here can be applied to the vibroacoustic 
investigation of the components listed above. 

3.1 Modelling of coupling 
According to the example mentioned in the introduction in Fig. 3. the electromechanical 

transducer of a loudspeaker is shown. 

 
Figure 3. The magnetic circuit of a dynamic loudspeaker as an electromagnetic transducer. 

 
The well known governing equations of the transducer are the following3: 

 )()()( tTvtBlvtu == , (6) 
 )()()( tTitBlitf == , (7) 

where u(t) and i(t) are the voltage and current of the voice coil, and f(t) and v(t) are the force acting 
on the voice coil and the velocity of the voice coil respectively. The magnetic circuit is usually 
characterized by the Bl product (where l is the length of the wire wound on the voice coil and B is 
the induction in the air gap) that is often referred as T electromagnetic transmission. 

According to the everyday acoustic practice it would be convenient to use the same transducer 
model in case of a PMSM too. Eqs. (3) and (4) inherently give the opportunity to do so, the only 
thing that has to be done is to apply the assumption of small angular displacements. Under such 
conditions the derivatives of flux can be rewritten as angular position dependent constants: 
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These equations describe the relationship between the electrical and the mechanical side of 
the motor, and compared to the loudspeaker the only difference is that instead of force and linear 
velocity those contain torque and angular velocity. 

3.2 Modelling the electrical components 
According to Eq. (1) the modelling of the electrical components is rather obvious, the equiva-

lent network should be amended with a resistor and an inductor. In vibroacoustic modelling the po-
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sition dependence of the inductance is not negligible therefore we introduce L(�) position depend-
ent inductance. The equivalent circuit with these two elements and with the electromagnetic trans-
ducer can be seen in Fig. 4. 

 
Figure 4. The vibroacoustic model of a PMSM containing the electronic components and the electromag-

netic transducer. 

3.3 Modelling the mechanical components 
The further investigations are continued in the complex frequency domain and the Laplace 

transform of quantities is denoted with capital letters and s arguments. 
Derivation of the mechanical components is also rather straightforward, however to keep the 

formalism conform with the one used in standard acoustic calculations, torsional mechanical im-
pedance is introduced according to the following definition: 
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Using this definition and Newton’s second law the torsional mechanical impedance of the 
moment of inertia of the rotor can be written as: 
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The vibroacoustic effect of the cogging torque can be derived according to the following con-
cept. Let us write the cogging torque as an arbitrary function of the rotor position: 

 )(ϕcgc mm =  [ ]Nm , (12) 

and write the derivative of it with respect to the rotor position: 
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Eq. 13 shows that the derivative of cogging torque is a ‘torsional stiffness like’ quantity, be-
cause its unit is [Nm/rad], therefore the effect of cogging torque can be taken into account as a posi-
tion dependent torsional spring with a 
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stiffness. 
In the field of electroacoustics instead of stiffness, compliance is very often used to measure 

the rate of a spring, because in that way electrical equivalent networks can be drawn more easily. 
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Considering Eq. (13) one can write the mechanical impedance of the equivalent torsion spring 
of cogging torque: 
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At this point at the mechanical side there is a torsional mass and a spring coming from the in-
ertia of the rotor and from the cogging torque respectively. Mechanical losses such as the Coulomb 
and the viscous friction, as well as the magnetic losses will probably damp this single degree of 
freedom mass-spring system, hence damping can be taken into account most easily by a torsional 
resistor: 

 ttr RsZ =)( . (16) 

3.4 The complete vibroacoustic model of a PMSM 
Fig. 5. shows the complete vibroacoustic linear single-phase lumped equivalent network of a 

permanent magnet synchronous motor, consisting of a series resistance and inductance for model-
ling the winding, an electromagnetic transducer for modelling the coupling, the moment of inertia 
of the rotor, a torsional spring for modelling the cogging torque and a torsional resistor for model-
ling the mechanical and magnetic losses. 

 
Figure 5. The complete vibroacoustic linear single-phase lumped equivalent network of a permanent 

magnet synchronous motor. 

4. Parameter identification 

4.1 Electrical impedance calculation 
To calculate the electrical impedance of the motor let us first examine, how the electro-

mechanical transducer transforms electrical and mechanical impedances. Inserting Laplace trans-
forms of Eqs. (8) and (9) to the expression of electrical impedance, and using the definition of tor-
sional mechanical impedance (Eq. (10)) one can get the following equation: 

 
)(
)(

)(
)(

)(

)(
)(

)()(
)(
)(

)(
2

2

sZ
T

sM
s

T

T
sM

Ts
sI
sU

sZ
m

em

ϕϕ

ϕ

ϕ =Θ=Θ== . (17) 

As one can see, the motor transforms the impedance from one side to the other reciprocally, 
multiplied by the square of the transmission ratio. 
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As far as the mechanical components have the same angular velocity, the mechanical imped-
ance can be written as: 
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Using the expression of mechanical impedance and the relationship among impedances, one 
can write the electrical impedance of the motor: 
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4.2 Curve fitting 
Transfer function models were fitted on measured impedance data by using MATLAB System 

Identification Toolbox (Ident), and the parameters of the Output Error (OE) model were estimated 
in the frequency domain4. In Ident parameters of unstable systems cannot be estimated, hence the 
identification was performed on the electrical admittance rather than the impedance. 

In Ident the leading coefficient of the denominator of a transfer function model is equal to 1, 
therefore one can express the impedance as a transfer function in the following form: 
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Fig. 6. shows measured impedance curves of a medium power (~1 kW) 10 pole 12 slot 
PMSM. Beside the well known effect of the inductance (ie. the impedance is increasing by 20 
dB/decade beyond the corner frequency of the R-L circuit) the peak of the rotor – cogging torque 
resonant system is quite significant. The change of coupling between the electrical and the me-
chanical side is also noticeable, moreover at 13.2° it becomes zero. The correspondence of meas-
ured and estimated impedance curves is very convincing, showing that the order of the theoretical 
model is appropriate. 

4.3 Parameter calculation 
From the estimated transfer function coefficients the model parameters can be calculated solv-

ing a set of equations, however these equations are linearly constrained and the number of uncon-
strained equations is fewer by one than the unknowns to be determined. This means that all the un-
knowns of the system can be calculated only if one is given. Here it is most efficient if one chooses 
the moment of inertia of the rotor as the given value, since it certainly does not depend on �. There-
fore the following equations yield the relationships between the coefficients of the frequency re-
sponse function and model parameters: 
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The calculated electrical and mechanical parameters of a medium power (~1 kW) PMSM are 
shown in Fig. 7. and Fig. 8. respectively. Due to low frequency estimation error in the transfer func-
tions the electrical resistance has some position dependence, that can be avoided by global optimi-
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zation of transfer function coefficients and the use of a single R value. The inductance variation is 
closely sinusoidal with a mean value of around 180 �H that matches the measured inductance well. 
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Figure 6. Measured electrical impedance curves in four different rotor position. 

 
The absolute sine function shape of the electromagnetic transmission is also corresponding 

well with the expectations while the induced voltage of the motor is closely sinusoidal. 
The shape of the torsional compliance and torsional resistance curves has to be analysed fur-

ther, but the effect of the 10 pole of the motor is significant. The fact that the torsional loss varies 
according to the number of poles and the peak variation equals to the minimum value indicates that 
probably the magnetic and mechanical losses have the same order of magnitude, hence none of 
them can be neglected. 

The inversion of the relationship between cogging torque and torsional compliance  
(Eq. (12)-(15)) provides the possibility of sensorless measurement of cogging torque based on vi-
broacoustic principles. 
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Figure 7. Calculated electrical parameters as a function of rotor position. 
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Figure 8. Calculated mechanical parameters as a function of the rotor position. 

5. Summary and future work 

In this paper a novel vibroacoustic model for permanent magnet synchronous motor is out-
lined. In the first part the standard model of the PMSMs is introduced and using these equations the 
vibroacoustic model can be derived. This model can predict the shape of the electrical impedance 
curve of the motor, and it was shown that from estimated transfer function coefficients the model 
parameters can be calculated. 

The next step is to check the theoretical relationship between cogging torque and torsional 
compliance, and to investigate the variation of torsional loss in detail. 
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