
vi . ‘-,I;., ’ >, ’ 

Michel Tournour 
Page number: 1 

INVERSE NUMERICAL ACOUSTICS BASED ON ACOUSTIC 
TRANSFER VECTORS. 

Michel Tournour, Luc Cremers and Pierre Guisset 

LMS International 
Interleuvenlaan 68, 

B-3001 Leuven, Belgium 
Michel.Tournour@lms.be 

Fiiliip Augusztinovicz and Ferenc MArki 

Technical University of Budapest, Dep. of Telecommunications 
Building St, Sztoczek u. 2. 
H-l 111 Budapest, Hungary 

Fulop@hit.bme.hu 

Abstract 

Nearfield Acoustic Holography has proven to be a powerful tool for source identification. 
Nevertheless, the approach is limited to simple sources and measurement surfaces. To overcome 
this limitation, inverse boundary element methods are often used. A new approach based on the 
acoustic transfer vectors and truncated singular value decomposition is proposed here. Acoustic 
transfer vectors are arrays of transfer functions between surface normal velocity and acoustic 
pressure at response points. The approach is general and is therefore refered to as inverse 
numerical acoustics. So far it has been implemented using collocation and variational boundary 
elements. Also, apart from standard nearfield pressure measurements, the approach allows for 
velocity measurements on the boundary surface to increase the reliability of the source 
identification. It also allows for linear or spline interpolation of the acoustic transfer vectors in 
the frequency domain to increase computational speed. The approach will be presented together 
with numerical and experimental validations. 

INTRODUCTION 

Inverse numerical acoustics is a method which reconstructs the source surface normal velocity 
from a measured sound field around the source. This is of particular interest when the source is 
rotating or moving, too light or too hot to be instrumented by accelerometers. The use of laser 
vibrometers is often of no remedy due to the complex shape of the source. Unlike other nearfield 
acoustic holography, Inverse Numerical Acoustics can be used for any arbitrary geometry and is 
therefore the far most attractive alternative to plain surface velocity measurements. 
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Two formulations can be used to derive the integral equations: the direct formulation in 
terms of pressure and velocity as boundary variables and the indirect formulation in terms of 
single and double layer potentials (velocity jump and pressure jump respectively). The direct 
formulation is the most straightforward approach but the indirect formulation is the most 
general. Indeed, when both sides of the boundary radiate, the direct formulation fails to give a 
correct representation. Because it is expressed in terms of velocity jump and pressure jump, the 
indirect formulation is well suited to such problems. Both formulations (using a collocation 
technique for the direct formulation and a variational approach for the indirect formulation) will 
be derived in this paper. 

Finally, and for sake of simplicity, the absorbent boundaries (impedance/admittance 
boundary conditions) and the non-uniqueness treatments will not be presented in the 
mathematical derivations. The reader should be aware that, although not presented, these types 
of boundary conditions or special treatments are possible in inverse boundary element methods. 

DIRECT COLLOCATION APPROACH 

Using a direct formulation, the pressure at any point of a homogeneous fluid domain containing 
no source can be expressed in terms of the pressure on the boundary domain and its normal 
derivative [ 1 ] : 

p(g)= fp($ a;;iy)dsy - fpG($)dSy 

s Y s y 

inward dP@) where p(y)is the pressure on the boundary and - 
dnY 

its normal derivative, 6, is the 

normal at point p on the boundary and G(ZIy) . 1s t e h G reen’s function. Making use of th 

equation, equation (1) becomes: 

e Euler 

(2) 

where v(F) is the normal velocity on the boundary, p is the fluid mass density and w is the 
angular frequency. This equation is true in the domain and on its boundary. Nevertheless, when 
evaluated on the boundary, the Green’s function and it’s normal derivative become singular. 
Whereas the second integral of equation (2) is regular’, the first one is singular and should be 
evaluated in the Cauchy’s principal value sense: 

cG)I)(d = p*v* I P(.F) 
=($) 

dn ds, + jw v(F)G($)d\‘,, 
Y I 

S S 

(3) 

where 

’ although regular, this integral should be evaluated using special integration schemes since the kernel is singular. 
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c(z) = 1 + P.V. I 1 812 - Yl ds 

s 4+-jq2 dny y 
(4) 

in the three dimensional space. Note that c(g) = 1/2 for a smooth surface around X Once 
discretized using boundary elements and evaluated at the mesh nodes, equation (3) leads to the 
following matrix system: 

[Albb I = Dlbb 3 

where the subscript b stands for boundary. Similarly, equation (2) gives: 

P = {dIT IPb I+ hnIT (“b > 

Combining equations (5) and (6) leads to: 

P = {afvjT 1% > 

where @v} is the acoustic transfer vector, given by: 

{a&IT = (d)T [A]-’ [B] + (wz)~ 

(5) 

(6) 

(7) 

(8) 
It is clear that the acoustic transfer vector (ATV) is an array of transfer functions between the 
surface normal velocity and the pressure at the field point. When the fluid domain does not 
exhibit any resonant behavior, the acoustic transfer vectors can be interpolated in the frequency 
domain using linear or spline interpolation schemes. Finally, when the pressure is evaluated at 
several locations, equation (7) can be rewritten as: 

IPI = mflT bb I (9) 

where the acoustic transfer matrix [ATM] . f 1s ormed by the different acoustic transfer vectors. 

INDIRECT VARIATIONAL APPROACH 

lising an indirect formulation, the pressure at any point of the domain with can be expressed in 
terms of layer potentials [2]: 

(10) 

where a(v) and ,&) are the single and double layer potential, respectively. For the Neuman 
problem and when both sides of the boundary have the same velocity, this equation can be 
expressed only in terms of double layer potentials: 

p(i) = 1/l(y) ‘;$‘) dSy 
1, 
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In particular, this equation can be evaluated on an arbitrary surface S’ . It can be derived with 
respect to the normal at x E S’, premultiplyed by an admissible test function &L(X) and 
integrated over the surface S’ : 

@(X)dS’ = a2G”‘L:)6p(-)dS dS’ 
dn,dny 

x y x 

S’ s 

Now, let the surface S’ tend to S and make use of the Euler equation: 

- = &(gd~yd~x 

S ss 

The right hand side integral of equation (13) contains a singularity. This singularity can be 
lowered down to a weak singularity using a geometrical transformation and can be evaluated 
using a semi-analytical integration [3] or special integration points [4]. After discretization using 
boundary elements equation (13) becomes: 

P = IdIT Ii4 

similarly, equation (13) becomes: 

[el(P> = Plbb 3 

(14) 

(15) 

Combining equations (14) and (15), we obtain: 

P = bvlT 1% 1 (16) 

where (n&) is the acoustic transfer vector, given by: 

bJIT = (dlT [el-’ [cl (17) 

When the pressure is evaluated at several locations, equation (16) can be rewritten as: 

(PI = [A TMIT b6 3 (18) 

where the acoustic transfer matrix [ATM] ’ f 1s ormed by the different acoustic transfer vectors. 

NUMERICAL ACOUSTIC HOLOGRAPHY 

The proposed approach 

Equations (9) and (18) are the basic relations for the inverse numerical acoustics. The pressure 
can be measured at a large number of field points and the boundary velocity obtained using the 
relationship: 

(qJ I= [ATM]- (PI 

However, the inversion of the acoustic transfer matrix is not that obvious. First, because the 
matrix is generally not square but rectangular. Second, because this matrix involve a Fredholm 
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equation (of the first kind for the indirect approach and of the second kind for the direct 
approach) and is ill-conditioned. Still, a pseudo-inversion can be performed and generally give 
good results providing that the measurement points are correctly selected. This will be treated in 
the following sections. 

Finally, the known or measured velocities can be withdrawn from equation (18) 
substracting their contribution from the measured pressure. This reduces the number of 
unknowns and increase the accuracy of the method. 

Conditioning of the Acoustic Transfer Matrix 

For a traditional Neuman problem (given velocity at the boundary surface), equations (5) and 
(15) are the basic equations for the boundary problem. Those equations are diagonal dominant 
(i.e. the dominant terms are the autoinfluences and the influences decrease with the distance) 
and are therefore well conditioned. Once the boundary variables are known, equations (6) and 
( 14) are used to calculate the radiated pressure. For inverse problems, equations (6) and (14) are 
used to determine the boundary variables. Unfortunately, these equations are not evaluated on 
the boundary, the system of equations is not diagonal dominant and is generally ill-conditioned. 
The conditioning of the system of equations is function of the position of the field points. If the 
points are too far from the boundary surface, no dominant terms will appear in the acoustic 
transfer matrix and the later will be rank deficient, i.e. close to singular. On the other hand, if 
each field point is relatively close to a mesh point then its acoustic transfer vector will be 
dominated by this mesh point. Consequently, the acoustic transfer matrix will not be rank 
deficient. Still, the acoustic transfer matrix will most probably be poorly conditioned and 
rectangular. Therefore its inversion is performed using singular value decomposition. This point 
is explained in the following section. 

Singular Value Decomposition 

Singular value decomposition is a powerful technique to solve singular or close to singular 
systems. It is based on the fact that any n x m complex matrix can be written as [5]: 

[Al = PImlH (20) 

where the superscript H stands for ‘transpose complex conjugate’, [o] is a diagonal 
min(n, m) x min(n, m) real matrix, [U] is a m x min(n,m) complex matrix and [v] is a 
n x min(n, m) complex matrix. The coefficients of [o], called singular values, are stored in an 
decreasing order and matrices [u] and [v] are such that: 

CVIH PI= MH [ul= [II 

From equations (20) and (21) it follows: 

[A]-’ = [uIo]-’ [ VIH (22) 

Nevertheless, singular or ill-conditioned matrices contain null or small singular values. This 

results in infinite or huge terms in [o]-’ . Whereas the infinite terms clearly lead to an infinite 
solution, the huge terms lead to a solution of equation (19) that will be very sensitive to the right 
hand side variations. Therefore, small errors on the RHS will result in huge errors on the 
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solution. To avoid this problem, the small or null terms of [a] are set to zero in [a ]-1. This

process is called truncated singular value decomposition. The singular values are dropped as

soon as a i < aa 1 where a is a tolerance parameter. The choice of a is a trade off between

regularization and loss of information. Therefore, the critical issue of the method is to correctly
select the tolerance parameter such that the errors are sufficiently reduced without causing
unacceptable loss of information. Examples are shown in the coming paragraph.

EXAMPLES

1
Wooden box with mounted speakers

~

An experimental validation using a
wooden box with mounted speakers has
been performed. The box is 500mm wide,
500mm high and 127mm deep. Six
speakers are mounted on a face of the box.
Two speakers are excited using an
harmonic signal at 800Hz and two other
speakers are excited using an harmonic
signal at 1200Hz. The pressures are
measured on a plane at 70mm from the
mounted speakers. The plane is 650mm
wide and 650mm high. Figure (1) shows. .
the boundary mesh and the field point FIgure 1: Boundary mesh and field pomt me,S'h

mesh.
Only the front panel is supposed to be radiating, all other panels are supposed to be rigid.

Figure (2) shows the retrieved boundary velocity at 800Hz and 1200Hz. The clearest picture was
obtained for a tolerance a of 0.015. It can be clearly observed that only the two left speakers
radiate at 800Hz and that only the two center speakers radiate at 1200Hz. It is important to note
here that, although the field point mesh is not optimal and the system is underestimated, the
sources are correctly detected. This shows the accuracy of the proposed technique.

Figure 2: Retrieved velocity boundary ( amplitude). Left: 800Hz. Right: 1200Hz.
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Figure (3) compares the measured and calculated pressure fields at 800Hz. The calculated
pressure field is obtained using the boundary velocity shown on figure (2). Note that very good
agreement is found. Similar agreement is achieved for the pressure field at l200Hz (not shown

here).

Figure 3: Field presure at 800Hz (amplitude). Left: Measured. Right: Retrieved.

Simulated experimental results for tire noise

In order to show the accuracy of the proposed approach for arbitrary shaped sources, the
analysis of tire vibrations is presented. A finite element analysis of the tire is performed in order
to obtain the boundary velocities. These boundary velocities (figure 5 left) are then used to
calculate the acoustic radiation and in particular the nearfield radiation (figure 4 left). The
nearfield pressure is calculated only around the treat at approximately 4cm. The radiation from
the tire sides is neglected. A 10% random noise is added to the nearfield calculations in order to
simulate experimental results. This noise is added separately on the real and imaginary parts of
the pressure in order to take into account possible errors on both amplitude and phase. Figure 4
(right) shows the simulated experimental results.

Figure 4: Nearfield pressure at 80Hz (amplitude). Left: Exact. Right: With ]0% random noise.

The simulated nearfield measurements are then used to retrieve the boundary velocity
using the proposed approach. Only the tire is supposed to be radiating, the central rim is
supposed to be rigid. Figure 5 (right) shows the retrieved boundary velocity. The clearest picture
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was obtained for a tolerance a of 0.06. It can be observed that good agreement with the original
prescribed boundary velocity is obtained. Most importantly, the two radiating zones are well
identified.

Figure 5: Boundary velocity at 80Hz (amplitude). Left: Prescribed. Right: Retrieved (with 10%
random noise).

CONCLUSION

A new inverse numerical acoustics tool based on acoustic transfer vectors and truncated singular
value decomposition has been presented. Acoustic transfer vectors are arrays of transfer
functions between surface normal velocity and acoustic pressure at field points. Two
formulations were used to obtained these acoustic transfer vectors, namely the direct collocation
technique and the indirect variational approach. The approach allows for linear or spline
interpolation of the acoustic transfer vectors in the frequency domain to increase computational
speed. It has been showed that the method allows for an accurate reconstruction of the boundary

velocity.
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