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ABSTRACT

The aim of the paper is to investigate the vibroacoustic
behaviour of a simple, finite, double wall structure model: ashallow, rectangular acoustical cavity composed of two [K5] structural stiffness matrixparallel plates clamped to a rigid steel framework. This
structure is analyzed by means of analytical, numerical and [Ks] modal stiffness matrixexperimental methods. The analytical treatment of the testing
object is based on an orthogonal modal expansion of the m mass per unit area
response of the coupled acoustic-structural system. The flu-

structural mass matrixmerical calculations use a coupled structural FE - acoustical
BE method, carried out in three consecutive steps. The aim
of the experiments is to verify the results of the calculations, [r1s] modal mass matrix
with special emphasis on the visualization of the sound field
in the coupling cavity between the plates of the double wall Q column vector of generalized source strengthsmodel. The calculated and measured results are discussed in p sound pressuredetails, they are compared in tables and in figures and
conclusions are drawn with special regard to application of column vector of acoustic potentials
the applied numerical technique for transmission loss f position vectorpredictions and for active noise control. t time

U nodal displacement vector

__________________________________________________________

w plate displacement
Wm modal coordinate of coupled structural modeNOMENCLATURE column vector of structural mode shapes
x participation factor

x column vector of participation factors[Aam] coupling submatrix
p0 mean density of air

[Barn] coupling submatrix
(p column vector of acoustical mode shapesc sound speed in air
—

velocity potential
[C] modal coupling matrix modal coordinate of coupled acoustic mode in temis

of velocity potentiald distance of plates
D bending stiffness of the plate uncoupled structural modeshapef frequency: force
F column vector of generalized external forces {P] matrix of uncoupled structural modeshapes

angular frequencyEA column vector of external acoustic forces
[aJ general diagonal submatrix with acousticcolumn vector of external structural forces eigenvalues

column vector of modal forces m1 general diagonal submatrix with structural
eigenvaluesH(k) boundary element system matrix, see Eq. (10)

k stiffness



1. INTRODUCTION

Double wall structures are often used in noise control and inother fields of acoustical engineering, when relatively highTransmission Loss has to be achieved by using light-weightstructures. Unfortunately, due to various fluid-structureinteraction effects the performance of a double wall is not justthe sum of those of the two single layers, and for lowfrequencies it can even fall short of one of the walls alone.The application of active noise control methods can offer aviable solution in these cases [11]. However, the realizationof an effective ANC system requires the thoroughunderstanding of the vibro-acoustical coupling between themechanical and acoustical elements of a double wall, whethervibration or acoustic secondary control sources are utilized.
The analysis of double wall structures goes back to theclassical results of Beranek and Work [1] and London [2].Later Cremer and Heck) [3] and Fahy [4] gave a detaileddescription of the physical behaviour of double-wallstructures. These models were extended by taking intoaccount also the effect of cavity absorption [5,6]. Recently,an analytical method was presented to handle various layeredsystems consisting of porous materials [7]. All of thesemodels and methods refer to plane, infinite plates; the edgeeffects caused by the finite dimensions of the samples are notconsidered.

The aim of this paper is to study the mechanism of vibroacoustical coupling in details in light-weight, double wallstructures of finite dimensions for low frequencies, i.e., belowthe mass controlled region. We have performed analytical,numerical and experimental modal investigations on a simpledouble wall structure, all of these approaches are shortlydiscussed, the obtained results presented and compared.Finally, keeping in mind the needs of the ANC application, theexperimental modal analysis of the normal modes is extendedto include the forced response of the system.

2. ANALYTICAL INVESTIGATIONS
2.1. “Classical” analytical models of double wallstructures in the low frequency range

The usual analytical models of an infinite double wall structureconsist of two infinite parallel, uniform plates separated by acavity of finite depth, filled with air, see Fig. I a. The simplestway of treating this system is to assume that the plates arenon-flexible [4]. By neglecting the stiffness of the plates onecan then show that the Transmission Loss of the structuredrops to a minimum at the frequency

fO=±EPOC 1ini+i211/2

(1)

The air gap between the two plates acts as though it was a setof springs, distributed uniformly over the plates. Therefore, f0
is often referred to as the rna3s-air-nlcn:v resonance frequency
of the structure.
From a modal point of view, this system corresponds to asimple two dof system, see Fig.Ib., thus having two natural
frequencies:

f01O (2a)

fO2=__Ek[m1+m21
2ItL rn1m2 J (2b)

For our acoustic system the zero frequency mode is irrelevant,therefore the infinite double wall structure is characterized byone single mode, the frequency of which is given by Eq.(l).Note that Eq.(1). is identical to Eq.(6.22) in [2] if the platesare alike.

A more detailed physical insight can be gained if the plates areassumed to be flexible. The theoretical analysis as performed
e.g. in [3] shows that the governing coupled equation has twosets of solutions, characterized by two different wavenumbersand associated deflections. The coupled system supportsflexural waves with usually lower wavenumbers than the same
plates do in vacuo and at a certain frequency, which can be
shown to be identical to those given by Eq.(l), the lowerwavenumber vanishes. The associated sets of solutions are
characterized by in-phase and 1800 out of phase plate
deflections, respectively. Nevertheless, this more realistic
model still has only one single meaningful natural mode of
vibration, at least as long as the depth of the cavity is smaller
than the half wavelength in air.

2.2. Analytical modelling of fluid-structure interaction in
a finite double-wall partition

Let the next analytical model consist of two plane, parallel,
flexible plates of the same size, clamped airtight to a rigid
framework and baffled in an infinite rigid wall. The length and
width of the plates are assumed to be in the same order of
magnitude as the wavelength in air for the frequency range of
interest while the distance of the plates, i.e., the cavity depth,
is still thought to be negligible. Due to the fact that this
system is bounded in all directions, one can in principle
anticipate an infinite number of natural modes.
The chosen analytical treatment is based on the modal
expansion method [8]. This theory is summarized and its
extension for a double wall structure is presented in [11],
therefore the most important steps of the derivation are
repeated here only.

The sound field in the cavity is governed by the
inhomogeneous wave equation:
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Fig.1. Physical models of an infinite double wall structure

which corresponds to a rigid body mode and (3)



plate #1

Fig.2. Physical model of a finite double wall structure
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One can assume that the solution takes the form of anorthogonal modal expansion:

p(?,(U,t) a(?) Pa(W,t)
a=O (4)

Here ‘a is the spatial characteristic function of the ath modeof the cavity with rigid walls and 13a is the time- andfrequency-dependant modal amplitude, representing therelative contribution of the ath uncoupled acoustic mode tothe coupled solution. a is a priori known while the avalues are to be determined for the relevant system.
The vibrations of the plates (further referred to as structure)are governed by the following equation:

4 — 2w(r.)DVw(i)+m(r5)
2 —f(?)
cit

(5)
Again, the structural motion is expressed as a weighted sumof modes of the uncoupled subsystem, i.e., the in vacnomodes of the structure:

w(i,w,t) =

(6)
where, as opposed to Eq.(4), the plate modes are summed onthe surface of the cavity.
The derivation of the coupled modal equations yields twoinfinite sets of differential equations with unknowns of themodal amplitudes of the sound pressure and platedisplacement series expansion. Assuming that the number ofthe considered acoustical modes is constrained to n and thatof the structural modes to ni, these differential equations canbe converted into a practical matrix form

2
(7)

Barn W

where and are diagonal matrices with the modalfrequencies of the uncoupled acoustical and structuralsubsystems and am and m are coupling submatrices.and W are mode shape vectors, representing the amplitude ofthe acoustical and structural modes contributing to the overallresponse of the coupled, vibroacoustic system, and Q and Erepresent the possible inputs thereof. The resulting matrixcontains terms of both first and second power of theeigenvalue, and therefore poses a non-standard eigenvalueproblem. This difficulty can, nevertheless, be easily overcomeby using appropriate matrix transformation methods [9] andthe eigenvalues can be calculated.
Eq. (7) represents the general mathematical formulation of thefluid-structure interaction problem. To apply this formulationfor our transmission calculations, the theory has to be adaptedfor a double wall structure and art appropriate excitation fieldhas to be defined. It was assumed that the excitation field isrealized by a loudspeaker source positioned in a relativelysmall sound-proof enclosure, embedding the testing structureon its top, see Fig.2. Thus, the system to be analyzed iscomposed of two cavities and two plates and coupling takesplace between each pair of adjacent elements such as testenclosure (cavity #2) - bottom plate (plate #2), bottom plate -air gap (cavity #1) and air gap - upper plate (plate #1).Consequently, Eq. (7) can be decomposed into four differentfields and we obtain

(8)

The solution of Eq. (8) and the subsequent calculations areperfectly analogous to those of Eq. (7) with the necessaryextensions.

The physical interpretation of this coupling equation is thatdue to the presence of the cavity the response of thesorrounding structure will be determined by combination of anumber of its uncoupled modes rather than by a single oneand vica versa. This mechanism of the coupling of it acousticand m structural modes results in n+rn common eigenvalues,associated with their eigenvectors, and eventually yields avibration and sound field in the coupled system which can besignificantly different from those of the uncoupledconstituting elements.

2.3. Results of calculations

Eq.(8) was used to calculate the natural frequencies andmode shapes of the coupled system, based on numericallycalculated in vacuo eigenfrequencies of the plates asdiscussed below. As noted by other authors [e.g. 9), thecoupling is selective: only a few combination of modes resultin finite values. Therefore, the coupling submatrices arerelatively sparse (which, in turn, can be exploited to performthe calculations more fast and economically) and thecoupling between structural and cavity modes results in fourgroups of coupled eigenfrequencies. Three of these groupstogether with the uncoupled structural and acoustical modefrequencies and mode shapes are summarized in Table 1.below. One can see that the calculated coupled frequencieshardly differ from the uncoupled structural modalfrequencies. On the other side, significant deviations can befound between the uncoupled and coupled acoustical modefrequencies.

As can be expected, the calculated coupled mode shapes arecombinations of the constituting uncoupled modes, but inseveral cases dominated by one of them. Some typicalcoupled structural modes are depicted in Figs. 3a. to 3d.Comparing them to their uncoupled counterpart, one canconclude that the presence of the cavity only slightlymodifies the behaviour of the structural response.



Table 1 a. 94.4 Hz b. 50.6 Hz

Calculation of the coupled resonance frequencies, based on
in vacuo structural and rigid wall acoustical modes

Numerically Analytically calculated resonance
calculated uncoupled frequencies of the coupled system, by
structural resonance considering two uncoupled acoustic

frequencies modes
Freg Freg Freg Freg
0 Hz 149.1 Hz 233 Hz 279.8 Hz

(0,0,0) (1,0,0) (0,1,0) (1,1,0)
301.8 Hz 447.4 Hz 378 Hz 504.3 Hz

Freci [Hz] Mode sh (2,0,0) (3,0,0) (2,1,0) (3,1,0)
16.6 1,1 0
24.8 2,1 22.0
38.9 3,1 35.7
41.1 1,2 38.9
48.5 2,2 46.8
58.7 4,1 57.0
61.3 3,2 60.0
78.2 1,3 68,7
79.6 4,2 78.6
83.9 5,1 82
85.1 2,3 83.9
96.9 3,3 94.4
103.4 5,2 102,9
113.5 4,3 112.3
114.5 6,1 113.8
127.6 1,4 126.3
132,6 6,2 132.1
134.2 5,3 134.3
136.3 2,4 135.5
145.3 3,4 144.7
150.3 7,1 150,6
161.1 4,4 160.7
163.9 6,3 162.8
167.5 7,2 167.0
182.2 5,4 182.0
189.5 8,1 191.3
191.2 1,5 191.1
195.4 7,3 195.5
197.1 2,5 200.1
205.5 8,2 204.9
206.4 6,4 206,3
208.4 3,5 208.3
221.1 4,5 221.3
234.7 8,3 234,8
237.2 9,1 237
239.1 7,4 238.6
241.3 5,5 241.3
252.3 9,2 247.3

101,7 171.6 255,5 293.9
317.5 456.7 388.7 511.7

Perhaps the best examples to visualize this behaviour of the
coupled cavity are those gained from coupling with the
(0,0,0)/(2,0,0) cavity modes. A number of coupled cavity
modes in this group show mode shapes similar to those
depicted in Fig. 4a. That is, standing waves characterized by
small or negligeable spatial variation can exist in the cavity.
Other acoustic modes show the effects of higher modes as
shown in Fig. 4b. to 4d.

c. 191.1 Hz d. 200.1 Hz

Fig.3. Calculated structural mode shapes of the coupled
system

Fig.4. Calculated acoustical mode shapes of the coupled
system

3. EXPERIMENTAL INVESTIGATIONS

3.1. Measuring conditions

The aim of the measurements was to verify the results of the
theoretical calculations by making detailed measurements on
the enclosing plates and within the cavity. Special attention
was paid to visualize the sound field within the cavity, the
coupling element between the two walls of the testing object,
by making use of a fixed microphone array composed of
small microphones.

Our simple structure chosen for the validation measurements
consisted of two plane, parallel aluminium plates of
thickness 1.5 mm, clamped to a 10 mm thick, 150 mm high
rectangular, welded steel framework. The free dimensions of
the plates are 1140 x 730 mm. This testing object was
instrumented by an array of 48 small microphones in the
medium plane of the cavity as well as 36 to 48
accelerometers on both plates. The microphone spacing of
the 8 x 6 mesh was 120 x 127 mm, aimed at mapping the
sound pressure in the whole cavity as far as possible. The
accelerometers were placed in a 6 x 6 mesh with 60 mm
spacing in the central part of the plates. Both the
microphones and the accelerometers were manufactured by
PCB Piezotronics, Inc. (Types Structcel and Acousticel,
respectively). Following these preparatory work the
instrumented testing object was placed in the opening of a
test box designed specifically for this purpose. All the
measurements and the subsequent modal analyses were

lHz



carried out by means of an LMS CADA-X
measurement/analysis system, based on a 16-channel DIFA
Scadas data acquisition unit and a Hewlett Packard 9000
Series 385 workstation. More details of the measurement
system can be found in [10] and [11].

The modal analyses were based on FRF measurements with
reference to different control microphones placed in the test
box. The measurements on plate#1 were performed with
closed cavity and also with removed plate#2; this enables one
to analyse the effect of the cavity on the structural response
of one of the plates.

3.2. Measurement results

The sum of measured FRFs on the bottom plate with and
without cavity, referenced to the sound pressure in the
enclosure, is compared to the sum of sound pressure FRFs
measured within and above the cavity (with the same
reference), as well as to the measured intensity in Fig. 5. The
modal frequencies are also summarized in Table 2. It is seen
that the most important resonance peaks in the cavity and on
the plates are common in frequency but their relative

z

U,

Table 2 Comparison of experimentally determined
resonance frequencies and mode shapes

Structural modes Acoustic modes
Uncoupled Coupled Counled

Freq Mode Freq Mode Freq Mode
fHzl shape [Hzl shape [Hzl shape
43.8 3,1
62.7 4,1 63.4 62.8 0,0,0

65.8
75.4 1,3 76.9 1,3

80.9 79.9 0,0,0
86.8 5,1 87.8 86.7 0,0,0

94.8 93.5 0,0,0
98.9 98.2 0,0,0

98.5 3,3 104.0 3,3 102.7 0,0,0
116.5 4,3 119.9 118.0
121.5 121.0
123.2
134.4 6,2 136.3

140.2 140.0
140.9 5,3 146.5 5,3 144.8
150.6 7,1 155.8 7,1 153.7
163.9 4,4 167.9 4,4 164.6
169.4 7,2 175.3 7,2 174.4
182.8 1,5 185.3 184.7
190.0 8,1 193.2

195.6
193.0 2,5 200.3 199.3 1,0,0
208.5 211.9
211,4 3,5 213.8
216.0 6,4 221.6 6,4 220.6
223.8 4,5 228.4 4,5 226.6
233.8 9,1 238.6 9,1 237.5 0,1,0
251.0 9,2 249.1 249.5

amplitude is highly different. After closing the cavity, i.e., in
the coupled system, the resonances of plate#1 are generally
shifted towards higher frequencies but some new frequencies
appear as well.

When considering the structural mode shapes and comparing
the coupled and uncoupled mode shapes found for plate#1,
one can in general say that the coupled mode shapes stem
from a combination of the uncoupled ones. Again, a number
of coupled modes are strongly influenced by one single
uncoupled mode. (In these cases the mode shape numbers of
the identified dominant uncoupled mode are also given in the
second column of Table 2). Fig.6. shows some of the typical
structural mode shape pairs obtained for plate#l. Note that
the measured modal frequencies and the mode shapes of
plate#2 are very similar to those of plate#1, therefore they are
not shown separately. It is worth to mention, nevertheless,
that for almost all mode frequencies the plates respond with
the same mode shape but out-of-phase.

Fig.7. depicts some typical mode shapes of the cavity,
encountered at various important resonance frequencies in
the cavity. Mode shapes found in the low frequency range
(appr. below 110 Hz) are more or less similar to those shown
in Fig.7a., but with increasing frequency the modes are more
and more combined. Fig.7c. shows the clear effect of the
(1,0,0) mode and at 237 Hz a relatively pure (0,1,0) mode
can be found (Fig.7d.).

Although the comparison of results from different
approaches is delayed to paragraph 5., it is instructive to

55 Frequency [Hz] 220 Hz

Fig.5. Comparison of averaged FRFs
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compare here the mode shapes in the cavity and for the
coupling plate#1 for a common important resonance
frequency, such as shown in Fig.8. In spite of the significant
deviation of the mode shapes, the performed acoustic
insertion loss measurements revealed high transmissions at
these resonance frequencies, suggesting that in spite of the
highly different mode shapes the degree of coupling between
the fluid and the structure is high.

d.i8Hz

Fig.6. Comparison of measured mode shapes of the bottom

plate without cavity (left side) and with cavity (right side)

Fig.7. Measured acoustic mode shapes of the cavity

4. NUMERICAL CALCULATIONS

4.1 Applied method

In order to numerically represent the above described test
situation, a coupled FEM-BEM formulation (provided in the
program SYSNOISE) was chosen, in which the structure was
modelled with finite elements, and the fluid was modelled
with boundary elements, both combined in one comput
ational scheme to solve the total vibro-acoustic problem.
Both the structural FE and acoustic BE part are modelled by
means of a variational approach.

The numerical analysis is based on two matrix equations,
referring to the structural and the acoustical subsystem,
respectively:

([K5]— 2[M])U+ [C]TP
= Es (9)

1
2 [H(k)]+[C]U=EA (10)

PF0
Writing both equations together in one single matrix one
obtains:

(11)

In order to reduce the number of degrees of freedom in the
system and hence to reduce computation time, it Is possible
to use structural modal coordinates instead of physical ones.
The nodal displacement vector is then projected on a
structural modal base and represented as

IJ=Y.x (12)

Thus !J. can be written as a sum of n included (uncoupled)

structural mode shapes multiplied by a (complex)

participation factor x.

With the formalism of Eq. (12), Eq. (11) becomes:

(13)

Fig.8. Comparison of structural and acoustical mode shapes

in the same geometrical scale for a 94 Hz mode



After having solved this equation for a certain frequency, the
structural displacements and the acoustic potentials are
known. From these potentials, the acoustic pressure and
particle velocity in any point in the fluid can be calculated.

An important advantage of the use of this modal base is just
the possibility to monitor the participation factors, in order
to gain a better understanding of the modal coupling between
the structure and the fluid. Structural modes that couple well
with the fluid at a certain frequency will show high
participation factors. Accordingly, the deformation pattern of
the structure will be determined by the mode shapes of those
well-coupling modes.

4.2. Calculations

First a set of 80 uncoupled structural modes was calculated
by means of the structural FE package SYSTUS. The
resulting modal frequencies and displacement patterns are
summarised in Table 3. The notations L and W in the table
indicate the number of displacement maxima in the
longitudinal and transversal direction of the plates,
respectively.

As a second step the coupled responses were calculated over
the frequency band 50 to 220 Hz with a frequency step of 0.5
Hz. As a result, the participation factors of the structural
modes in the coupled responses, the new deformation
patterns and the pressure maps between the plates were
determined. Note that in the course of this numerical
simulation only forced responses in a certain frequency range
have been calculated. (For the time being, mode extraction
by means of boundary element formulation is not possible.)
Although no coupled modes can directly be found in this
way, we can say with high certainty that the modes will
occur at the peaks in a frequency response curve, since no
damping was included into the model. The maximum error in
frequency is 0.5 Hz.

Upper plate Lower plate

Modeshape
Mode Freg. [Hz] L W

1 16.606 1 1
3 24.783 2 1
5 38.809 3 1
7 41.136 1 2
9 48.457 2 2
11 58.344 4 1
13 61.102 3 2
15 78.181 1 3
17 79.208 4 2
19 83.174 5 1
21 84,968 2 3
23 96.596 3 3
25 102.73 5 2
27 113.07 6 1
28 113.46 4 3
31 127.60 1 4
33 131.60 6 2
35 133.96 2 4
37 135.28 5 3
39 144.75 3 4
41 148.46 7 1
43 160.26 4 4
45 162.58 6 3
47 165.82 7 2
49 180.73 5 4
51 188.94 8 1
52 189.46 1 5
55 195.24 7 3
56 195.41 2 5
59 205.26 8 2
60 205.50 3 5
62 206.42 6 4
65 219.95 4 5
67 233.30 8 3
68 234.70 9 1
70 237.22 7 4
72 239.07 5 5
75 250.22 9 2
77 263.08 6 5
78 263.95 1 6

Modeshape
Mode Fred. fHz] — L

2 16.610 1
4 24.813 1
6 38.930 1
8 41.147 2
10 48.511 2
12 58.680
14 61.263 2
16 78.206 3
18 79.559 4 2
20 83.895 5 1
22 85.088 2 3
24 96.875 3 3
26 103.40 5 2
29 113.89 4 3
30 114.46 6 1
32 127.65 1 4
34 132.61 6 2
36 134.15 2 4
38 136.34 5 3
40 145.26 3 4
42 150.27 7 1
44 161.12 4 4
46 163.94 6 3
48 167.50 7 2
50 182.15 5 4
53 189.53 1 5
54 191.18 8 1
57 195.70 2 5
58 197.15 7 3
61 206.07 3 5
63 207.28 8 2
64 208.44 6 4
66 221.13 4 5
69 235.14 8 3
71 237.50 9
73 239.48 7 4
74 241.31 5 5
76 252.31 9 2
79 264.01 1 6
80 265.26 6 5

4.3. Results of calculation

Fig.9. shows the sum of the frequency response functions
(pressure over source input velocity) of the 48 equally spaced
points in the middle plane between the two plates. This figure
clearly shows that the cavity response is not only determined
by the geometry of the cavity. The high peaks indicate that
the two plates highly influence the amplitude of the response.
As the frequency increases, the pressure pattern slightly shifts
from a (0,0,0) behaviour over a (1,0,0) even towards a (2,0,0)
behaviour. This trend can be illustrated in Fig.10., in which
the pressure amplitude in the medium plane of the cavity is
shown for frequencies of 79.5, 159 and 203.5 Hz,
respectively. Note that the influence of the (0,1,0) mode on
the pressure pattern was not found, due to the symmetric
excitation in the y-direction, originating from the exper
imental configuration. The fact that the source is positioned
at the left side in the box is well visible in the remarkably
higher forced amplitudes at the left side of the cross section.
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Fig.9. Averaged FRF, numerically calculated for the
medium plane of the cavity

For the structural part, a detailed investigation of the
deformation patterns at the same peaks of the frequency
response function was performed. As already mentioned, the
coupled displacement of the structure can be represented as a

modal superposition of the uncoupled structural modes P,

with the participation factors x as weighting factors. This
property is demonstrated for a peak at 90 Hz in Fig.12. The
deformation of the plates is shown together with a bar graph
of the amplitudes of the participation factors of the
uncoupled modes. (The plates are shown at a larger
separation for reasons of clarity.) It is clear that the
deformation pattern is dominated by a (1,3) + (5,1) + (3,3)
behaviour. Due to the presence of the fluid, the
displacements of the structure at a certain frequency are
affected by different uncoupled modes, with original
frequencies nearby the coupled frequency. Table 4
summarises the participation factors of the uncoupled modes
for the different peaks of the above mentioned frequency
response function. The less important modes are put between
parentheses. It is striking that the participating uncoupled
mode shapes mostly have an odd number of maxima in the
transversal direction. Modes with an even number of maxima
in that direction cannot be excited in the symmetric source
configuration. The same information is depicted in Fig.12:
the participation factors are shown in function of the un
coupled modes along the x-axis for the selected frequencies
at the peaks along the y-axis.
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Participation Factors at 90 Hz
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Fig.1O. Amplitude of forced pressures, calculated for
various frequencies

Table 4. Coupled structural behaviour at selected frequencies Fig.11. Forced displacement and participation factors
calculated for the 90 Hz mode

Freg. [Hzl Main structural character
58.5 1,1 + 3,1 + 1,3 + (5,1)
79.5 1,3+5,1
82 2,3
90 1,3÷5,1+3,3+(1,1)+(3,l)
95.5 3,3
97 3,3 + (1,1) + (3,1) + (1,3) + (5,1)
110 6,1÷4,3
135 5,3 (lower plate)
147 7,1
149 7,1 (lower plate)
159 4,4 + 6,3 + little (even,odd)
162 6,3 (lower plate)
165 6,3 + 7,2 + little (even,odd)
166 7,2 + (6,3) + little (even,odd)
188.5 1,5
190.5 8,1+1,5+2,5
194 2,5
195.5 7,3 (lower plate)
199 2,5 + 8,1 + (7,3)
203.5 3,5
219.5 4,5 (lower plate) Fig.12. Participation factors for selected frequencies



5. COMPARISON AND DISCUSSION OF RESULTS 7. REFERENCES

The comparison of the most relevant results, obtained fromthe different methods, can be performed by pairing the modalfrequencies associated with identical mode numbers inTables 1, 2 and 4. This analysis reveals that the agreementbetween the analytically and numerically calculatedfrequencies is quite satisfactory. The measured modalfrequencies lie somewhat higher, but the average deviation ofthe measured resonance frequencies from their identifiablecounterpart is certainly less than 5 Hz. (It has been revealedby carrying out careful stepped sine measurements that someof the variation of the measured modal frequencies werecaused by temperature changes during the measurementseries.)

The correspondence of the mode shapes is less convincingbut perhaps still satisfactory to support the presented theory.The analytically calculated mode shapes are quite similar tothe measured ones for certain frequencies ( see e.g. for the 94Hz mode in Figs. 3a, 4a and 7.) However, considerabledeviations were also found in several cases. Reminding that
our numerical calculations resulted in forced responses ratherthan freely vibrating modes, less agreement might weanticipate in advance.
Another important difference between the calculated and
measured results is that many of the lateral modes and someof the longitudinal ones, especially those expected in thecavity, cannot be identified in the experiments and some ofthem do not appear in the numerical results either, This is
thought to be caused by the too symmetric positioning of the
loudspeaker inside the excitation enclosure, caused by spatial
constraints.

Finally, it is worth to compare the results of our detailed
investigations with those of the classical acoustic models,
discussed in point 2,1. The calculated mass-air-mass natural
frequency of our system lies around 98.5 Hz. As one can see
is Fig.4. and in Table 2, we have three important mods in
this region , out of which the acoustic radiation at 102 Hz is
one of the strongest. This agreement is rather paradoxical,
bearing in mind that the behaviour of the structural elements
of our system is far from that of a concentrated mass.

6. CONCLUSIONS

1. The vibro-acoustical behaviour of a finite double wall
system in the low frequency range can be successfully
investigated by the methods presented. The natural fre
quencies of the coupled structural-acoustical system could be
predicted with an accuracy of less than 5Hz and the obtained
mode shapes show satisfactory agreement as well.
2. The coupling in the investigated system is highly
“asymmetric”: the structural response is much less influenced
by the presence of the cavity, than the cavity’s response is by
the enclosing plates. This is in contrast with earlier
achievements for shallow cavities backed by one flexible
plate only.

3. The applied coupled FE-BE method is capable to handle
the coupling mechanisms in double-wall structures.
4. The calculation of the mass-air-mass resonance frequency
of a double-wall structure on the basis of a simple two dof
acoustic system results in reasonable estimation of an
important mode, but incapable of predicting the response of
the system around this frequency.
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