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ABSTRACT

Coupling between the structural dynamical behaviour of a system and its interior acoustical
characteristics, is animportant phenomenon in many applications. For low frequency applications,
a modal approach can be very useful to describe this vibro-acoustical coupling. Based upon
combined vibrational/acoustical FRF measurements, either with respect to acoustical or to
structural excitation, modal vibro-acoustical analysis can be carried out.

This paper presents a consolidation of the theory behind the vibro-acoustical modal model.
The model formulation is shown to be a non-symmetrical formulation. It is shown that this is not
contradictory to the well known vibro-acoustical reciprocity principle. The implications of this
non-symmetry for the modal model are discussed. It is pointed out which variables must be
measured, that allow a consistent model formulation.

The theory is illustraled by measurements on an experimental vibro-acoustical system,
consisting of a rigid cavity, with one flexible wall. Experimental constraints and requirements and
analysis results are discussed.

1.  INTRODUCTION

When considering the global vibro-acoustical problem of enclosures, coupling exists between
the acoustical responsc in the cavity and structural excitation, whereas also the structural response
is coupled (o acoustical excitation sources in the cavity.

Vibro-acoustical coupling implics that the acoustical and vibratory system behaviour are not
independent from each other. The global system behaviour has 1o be considered as one unity.



In order to fully understand and model the vibro-acoustical problem, vibro-acoustical modal
analysis can be considered, which aims at identifying an (interdependent) model both for the
vibratory and the acoustical behaviour of a system.

Modal analysis is an appropriate tool to solve this problem in the lower frequency area.
However, the correct physical quantitics must be measured. Also it is important to understand
how these quantitics relate to each other, and which model formulation is consistent. A special
focus must be put on vibro-acoustical reciprocity, implying a special form of non-symmetry inthe
consistent model formulation. This has repercussions on the choice of the excitation method,
which can be either acoustical or structural.

2. MODEL FORMULATION

pressure (N/m?)

acceleration (m/s?)

volume velocity (n1’/s)
structural (point) force (N)
fluid density (kg/m®)

specd of sound in fluid (m/s)

notation :

[ % = T NETE T

In order to understand the equations describing the vibro-acoustical behaviour of coupled
systems, one can start from the finite element formulations (see reference [1)). The (finite element)
equation of motion for the structural vibrational bchaviour under external structural loading
conditions, as well as under coupled acoustical loading, looks as follows:

'™ —i0C’ +K°] {x} = {ft+{} ey
with
M*,C°, K the structural mass, damping and stiffness matrices
{ft the extemally applicd forces
{L,}= I,bpdS the acoustical pressurc loading vectors over the )

boundary surfaces s, of the cavity

On the other hand, when considering the acoustical problem, the acoustical pressure response
in the cavity is caused by acoustical external excitation, as well as by structural vibration on the
boundaries.

From the indirect acoustical formulation, the following equation can be derived for the
fluidum:

oM —i0C'+K 1 {p} = plg}+@ {l} 3

with




M, Ccl K matrices describing the pressure-volume acceleration

relation in case of a rigid wall structure: these matrices
do not reflect directly physical properties of the
fluidum, but result from an indirect formulation of the
acoustical problem.

o {1} = @[, pxndS theloading due to (normal) vibration v, at the boundary C))
s, of the cavity

Rewriting and combining the two equations (1) and (3) results in the description of the
vibro-acoustical coupled system.
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From (2) and (4) it can be scen intuitively that M and K¢ arc related to each other. Also
according to reference [1]. the elements of the matrices K< and M* can be expressed as follows
(with n the normal to the surface; N;,N; finitc element interpolation functions) :

K;= f N;.nN.dS (6)
5y

M= [ pNN,nds ™
Sy

This indicates that both matrices are (in a transposed form) intcrrelated with a factor of p»
the fluid density.

The set of equations (5) represcnts a second order model formulation for the vibro-acoustical
behaviour and can be used as a basis for further deduction. However, it is clear that the set of
equations is non-symmetrical. This is even more clear when rewriting equation (5) into a more
compact matrix form ;
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3. VIBRO-ACOUSTICAL RECIPROCITY

Reciprocity in purely structural vibration problems, as well as in purely acoustical pressure
problems is well known. In the structural case, acccleration response and force are related, while
in the acoustical case, volume acceleration and pressure are related.

For vibro-acoustical coupled problems, the vibro-acoustical reciprocity principle is valid.
According to publications (e.g. [2],[3].[9]) this reciprocity is expressed as follows:

pi —X; (11)

= oo = 5 ly-
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In words, the ratio between the acoustical pressure response p; at response location i within
a cavity and structural force excitation f; at a location j on the structure (without excitation by an
acoustical source) equals the ratio between the acceleration responsc ¥; measured at the location

and in the direction of the applied forcc j and acoustical excitation (expressed in volume
acceleration) ¢; at the pressure measurement location i (in abscnce of structural excitation).

This basic reciprocity principle is also reflected in the set of cquations (8) that describe the
coupled vibro-acoustical problem.

When only structural excitation is applied and no acoustical excitation (! f; ¢ =o0), the
following set of equations is valid:

A'x—-K'p=f (12)
—'Mx+A p=o
Similarly, when only acoustical excitation is applicd (! ¢; f=0):
A'x-K'p=o (13)
— M x+A p=pg

By elimination and ordering follows:

N (149)
£ lyeo = A’M—A’—K"
f q 0.)2

¢ ‘~l -1 (15)
'—‘." |j=o = (M—-Aff—zA:J
q p pw

From cquations (6) and (7), one can deduce that M*=pK*', which allows to write the
following:
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When the submatrices A*, A/, K and M* are symmetrical the reciprocity relation (11) can
be deduced from this set of equations.

The importance of equation (8) lies in the fact that vibro-acoustical reciprocity is valid, even
if the describing set of equations is not symmetrical. However, symunetry of the submatrices is
required, but this is a priori met under a lincar assumption. The non-symmetry of (8) is a particular
feature of coupled vibro-acoustical systems, and it differs both from the mechanical and acoustical
subsystems, where reciprocity is cxpressed by the symmetric form of the governing equations as
well. In other words, the intrinsic and more general feature of reciprocity of physical systems is
not necessarily accompanicd by symmetry in the mathematical description,

It is worth noting that the non-symmetrical formulation of the set of equations is due to the
choice of variables x, p, f, ¢ which is imperative to come (o the sccond order formulation as
described in cquation (8). By using other scts of variables (c.g. (v, p,f,[q)), the term @? appears
in A/ rather than in M in equation (8), rendering the cquation symmetrical and enabling to use
symmetrical (and more effective) numeric solvers for extracting the eigenvalues in FE calculations.
However, this formulation is no longer a second order formulation and therefore it is not suitable
to be used in standard experimental modal analysis (EMA) techniques. To the authors’ knowledge
no formulation has been put forward which is symmetric, corresponds to the presently used EMA
formulation, and at the same time uses easily measurable acoustical parameters.

4. IMPLICATIONS FOR THEORETICAL
VIBRO-ACOUSTICAL MODAL ANALYSIS

From the set of equations (5), it is clear that both the acoustical uncoupled problem and the
vibrational uncoupled problem (K, M¢ = o) can be described by a symmetrical set of second order
equations. The same type of modal parameter estimation and modal decomposition algorithms as
for vibrational problems can thus be used for acoustical problcms.

For the vibrational uncoupled problem (mcasured) transfer characteristics x/f (displacement
over force) arc equivalent 1o the transfer characteristics plq (acoustical pressure over volume
acceleration of the acoustical sources) for the uncoupled acoustical problem.

For the coupled problem K, M* # o the set of second order cquations (8) can be rewritten

A* =K (18)
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or

{ A —K‘":| {x} {f} (19)
~o*k" ATl W g
or in short notation :

x (20)
o ot = 4]
P q
The non-symmetry of the matrix [B] implics that the right and the left eigenvalue problems
give different solutions.

Conform to general modal analysis theory [6]. it follows that a transfer function matrix [H (p)]
can be written as:

Hp) = BEI @n

with, based upon standard matrix calculation,

adj ((B(p)]) 22)

B(p)™" =
[B(p)l 1B(p)]

adj ([B(p)]) is the adjoined matrix of B(p)

adj(B(p) = [g,;1B;1 23)
with
| B;| the detcrminant of B(p) without row i and column j
g = 1 if (i +j)is cven, and
g = -1 it (i +j)isodd
|B(p)| the determinant of B(p).
With A, the roots of the characteristic system cquation | B(p)| = 0, (21) can be rewritten as :
adj (IB(p)]) (24)
Hp) = . i (1B(p)]

EO (p=2)(p =)
E is a constant.
By applying the thcory of partial fraction cxpansion :

(Al (Al (25)
+ *
r-\) (p-\)

(H(p) =

e




with

A, A the complex conjugate pair of cigenvalucs of the
system matrix B(p), or the roots of the characteristic
equation

[Al,, [A] the complex conjugate residue matrices

N the number of modes in the frequency band of interest.

In order to relate the residue matrices [Al,, [A], to the left and right eigenvectors of the
system matrix [B(p)) the following considerations can be made.

The residues equal :

AL = WHEIp=A) 1, 26)
or
adj (IBO)) @7
[Al, = —
I E =M A=) (-1
or
[Al, = P,-adj (IBA,)) (28)

with P, a pole dependent constant

Equation (22) can be rewritten by right multiplication with {B(p)] as :

adj 1B(p)) - B (p) = |B(p)|IN (29)
and by lcft multiplication with [B(p)] as :

B(p)-adj (IB(P)) = |B(p)|l] (30)

Evaluating the equation (29) at the cigenvalues A gives, since A, is a root of the characteristic
equation :

adj (BA)- B = 0 (3D

This equation shows the proportionality between the adjoincd matrix and the left eigenvector of
the following cigenvalue problem ;

V- [BA) = 0 (32)

From equation (30) it follows:



BO)) -adj (BA) = O (33)

Also the adjoined matrix is proportional to the right cigenvector:

BAN -y, = 0 (34)

Considering any arbitrary row (i) of cquation (31) or any arbitrary row (j) of equation (33)
shows that each row (i) of the adjoincd matrix is proportional to the left eigenvector y, and that
each column (j) of the adjoined matrix is proportional to the right eigenvector v, which in case

of a non-symmetrical system arc diffcrent from cach other. This makes that the adjoined matrix
can be written as :

W) (WaV)  (WaWy,) (35)
. WuVs)  (Wa¥) (Vs V)
d B = R,
adj ([B(A))) W)

R, is a constant.

For the special non-symmetry of the system equation (19) it can be proven that the right and
the left eigenvectors show a special relation with respect to each other. Let the right eigenvectors

be named [:’;’], then the left eigenvectors [3"] can be written as (subscript s is indicative for the
fr 1

structural response locations, subscript f for the acoustical response locations):

[\V,[] _ lw.sr
Vidy, E Vs ;_

This can be proven (sce also reference [7]) by substituting the values for the left eigenvectors
(36) in the corresponding left eigenvalue problem formulation (32) and by transposing the matrix
equation. Based upon the assumption of symmetry of both the structural and the acoustical
submatrices A° and A, and upon the assumption of symmetry of the coupling matrix K, this
indeed yields the right eigenvalue problem with the corresponding right eigenvectors.

(36)

This leads to the following conclusions about the modal description of the coupled
vibro-acoustical system, which are in correspondence with reference {S].

The transfer functions between structural displacement v; or acoustical pressure response p;
at location i and structural force excitation f; at location j can be written as a function of the right

eigenvectors and cigenvalues of the system matrix, as follows, based upon equations (25), (28),
(35), and (36):

LR Y Wy (P, Yo W) @37
fi r=t (=M (p=X\)
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The transfer functions between structural displacement x, or acoustical pressure response p;
atlocation/ and acoustical volume acccleration excitation ¢ ; at location j can be written as follows:

ﬁ - g Pr Wsri \erj + (P, \V_m- Wﬁj). (39)
q; r=t A(p-1) Mp-\)
P _ g Py i Wy P, Wpi W) (40)
q, r=t NP =M Mp-N)

The right eigenvectors of the coupled problem represent (but for a global scale factor) the
vibro-acoustical modcs; the left cigenvectors represent (but for a scale factor per mode) the
participation factors. Duc to the special relation between left and right eigenvectors, the
participation factors for acoustical excitation and structural excitation are different with a scale
factor that equals the eigenvalue squared (and thus different from mode to mode).

5. IMPLICATIONS FOR EXPERIMENTAL
VIBRO-ACOUSTICAL MODAL ANALYSIS

Most of the multiple input / multiple output modal parameter cstimation algorithms do not
require symmetry. The non-symmetry of the basic set of cquations (19) and hence of the modal
description (37) - (40) does not pose as such any problems for those parameter estimation
techniques, in order (o obtain valid modal frequencies, damping factors, and mode shapes. The
non-symmetry of thc model is absorbed by the participation factors.

Structural excitation can be substituted by acoustical excitation (sce cquations (37) to (40)).
The modal models (mode shapes, frequencics and damping factors) derived from either acoustical
excitation FRFs or structural excitation FRFs arc compatible, taking into consideration the normal
excitation controlability restrictions. However, the participation factors, obtained with acoustical
excitation, differ by a scale factor pcr mode, as related 10 structural excitation, this due to the special
non-symmetry of the sct of cquations.

This has its conscquences in expanding the systein matrix {rom one type of excitation to
another type of excitation. For purely structural applications, the cxpansion is symmetrical, based
on the structural reciprocity principle. In vibro-acoustical systcms, the expansion must be done
according to the vibro-acoustical reciprocity principle, which means that the expansion from one
cxcitation type to the other cannot be donc in a symmetrical way. This is reflected in the scale
factors that must be applicd. in order (o go from the structural formulation (37)-(38) to the acoustical
formulation (39)-(40). The scaling factors arc the squarcd cigenvalue for each corresponding
mode.



For practical applications, acoustical excitation is preferred over structural excitation for
different reasons: the measurcments are of better quality, the acoustics of the cavity which is the
goal function to be studied is excited in a direct way, the measurements are more efficient. There
ishowevera very important practical aspect : how to determine the quantity ¢ (volume acceleration)
of the acoustical source. Although commercially available systcms do not yet exist, various
techniques have been suggested [8] and are in usc with success since quite some time. The methods
used for the application part in this paper will be discussed in 6.2.

6. APPLICATION : MEASUREMENTS AND ANALYSIS
ON A VIBRO-ACOUSTICAL MODEL

6.1 Model description

The model used for the experiments is an irrcgular PVC box (with some resemblance to a
car body) of maximum dimensions 0.84x(0.4x0.4 m, platc thickness 0.01 m. By using a large
number of screws in order to prevent clearance, the box can cither be closed with a PVC bottom
plate (for the uncoupled acoustical case) or with a flexible steel plate of 0.001 m thickness (for the
vibro-acoustical coupled case). A third possiblc version of the sctup can be obtained by removing
the three top plates, thus bringing about nearly uncoupled conditions for the flexible bottom plate
(uncoupled structural case).

The acoustical excitation is ensurcd by a loudspeaker provided with a closed back cavity,
built in in one of the upper corners of the modcl box. 1t can be taken out and replaced by a rigid
PVC plate during the structural excitation mcasurcments, in order to close the cavity with uniform
impedance everywhere. For the structural excitation two shakers are used, which are decoupled
during the acoustical excitation expcriments, in order again (o avoid any uncontrolled impedance
constraints. The refcrences for the structural excitation are measurcd by force transducers, the
structural responses are measured by micans of a sct of roving accclcrometers. The reference for
the acoustical excitation, volume acccleration of the acoustical source, is derived from the input
voltage to the loudspeaker (1o be discussed below in more details). The acoustical responses are
measured by means of a roving array of 5 miniature clectret microphones. The total number of
structural responses was 212, the number of acoustical responses was 151 (including driving point
measurements). Figure 1 shows the picture of the experimental sctup.

6.2 Acoustical source calibration

The correct calibration of the acoustical source is cssential if one aims at proving
vibro-acoustical rcciprocity in quantitative terms. The acoustical source is calibrated by laser
velocity measurcments at 31 points on the loudspeaker surface in the form of FRFs referenced to
the input voltage, and this under ancchoic conditions in a frequency range 20 to 1000 Hz. The
volume acccleration vs. input voltage calibration function is then calculated as the average velocity
over all points, multiplied by the active surface of the diaphragm of the loudspeaker and jw. Figure
2 shows the obtaincd calibration curve uscd throughout the measurcment series. Inorder toestablish
whether or not the loudspcaker’s output is unacceptably influenced by the loading impedance of
the cavity during the actual mecasurcments, the pressure in the back cavity of the loudspeaker

O



referenced to the input voltage is mcasured as well, both during calibration, and during the actual
measurement runs. Figure 3 shows the superposition of the backcavity pressure/voltage FRF during
calibration (under free ficld conditions (solid line)) and during measurement (loudspeaker in
enclosed cavity (dashed line)). Clearly the cffects of the acoustical resonances of the cavity can
be seen, but are nevertheless negligable. This implics that the input voltage of the loudspeaker
can be considered as a correct reference si gnal for the mecasurements.

Figure 1 Experimental setup
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Figure 2 Calibration curve : volume acceleration/ voltage FRF
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Figure 3 Backcavity pressure/voltage FRF in loudspeaker in free field and in enclosed cavity
field

6.3 Measurements

In order to establish the effects of the vibro-acoustical coupling on the modal characteristics
of the various systems investigated, three series of measurements are performed : one to reveal the
characteristics of the flexible bottom plate of the box without cavity (uncoupled structural
subsystem - (dual input) structural excitation, structural rcsponses), one to determine the modal
model of the cavity enclosed with rigid walls (uncoupled acoustical subsystem - (single input)
acoustical excitation, acoustical responses). and cventually, mcasurcments on the coupled
vibro-acoustical system (both structural and acoustical excitation - both structural and acoustical
responses). In the course of the measurements scrics only auto- and crosspowers were measured
and stored. The calculation of the FRFs and the modal analysis werc perlormed subsequentially.

Figure 4 gives the summed structural/structural FRFs for both the uncoupled structural case
and the coupled case. between 210 Hz and 260 Hz (232 Hz is the first acoustical cavity mode).
Figure 5 gives the summed acoustical/acoustical FRFs for both the uncoupled acoustical case and
the coupled case. It is clear from figurc 5 that the acoustical response in the cavity is remarkably
affected by the coupling. A new resonance {requency cmerges, while the original (uncoupled)
resonance frequency essentially remains unchanged. The structural response is less sensitive, even
though a thorough analysis shows the existence of a new peak in the data in the coupled case and
aslight shift of the original resonance frequencics can also be observed.

Some global frequency shifts have occurred between coupled and uncoupled cases, which
can be attributed to temperature shifts (in spite of all effort to kecp measurement time as low as
possiblc, the measurements had to be performed over several day’s time) and 1o slightly varying
boundary conditions in between the diflfcrent measurcment sctups.
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6.4 Vibro-acoustical reciprocity

Due to the absolute calibration of the acoustical source used in the cxperiment, the vibro-acoustical
reciprocity can be really verificd. Figure 6 shows the superposition of the FRFs of the acoustical
pressurc response at the loudspeakers location (with the loudspcaker taken away from the
measurcment sct up and substituted by a rigid plate) with respect 1o structural excitation at one
position, with the acceleration response at this shaker position with respect to acoustical excitation
of the loudspeaker (with the shakers disconnected from the bottom plate). Figure 7 shows the
same relationship for the second shaker position. Despite the rather bad quality (caused by low
signal to noise ratio, due (o the not sulliciently high level of excitation) the correspondence between
the pairs of FRFs is rather convincing. It shows that the vibro-acoustical reciprocity is a valid
assumption for this experimental system.
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6.5 Modal analysis results

Least squares complex cxponential and least squares frequency domain curve fitting procedures
were used for curve fitting all available data. This resulted in the following natural frequencies,
and damping factors lor the different cascs considered:



uncoupled uncoupled structural {coupled  structural [coupled acoustical

acoustical excitation cxcitation
230.8 Hz / 0.8% 230.0Hz /0.7% 231.8 Hz/0.7%
2309 Hz/1.4% 232.6 H2/0.6% 233.6 Hz/0.5%

236.3 Hz/0.5% 2372 Hz/0.5%
236.4 Hz / 0.6% 238.1Hz /0.9% 238.4Hz / 1.0%

Figures 8 to 11 show the corresponding mode shapes. The pressure variation in the acoustical
cavity is represented by a "displaccment” perpendicular to the planes that were measured in the
cavity. Clearly both the coupled structural modes and the acoustical modes correspond very well
between the structural excitation casc and the acoustical cxcitation case. The coupled acoustical
modes are very similar to the non-coupled acoustical mode shape; the coupled structural modes
are very clearly related to the original uncoupled structural mode shapes.

6.6 Reciprocal extrapolation

As mentioned above, the extrapolation from onc type of cxcitation to the other type of
excitation requires a vibro-acoustical rcciprocal extrapolation, which is not symmetrical. As an
example the synthesis of acoustical responses duc (o structural excitation at some point requires
special scaling of the modal model, obtaincd by acoustical excitation. If this scaling is not taken
into account, the obtained synthesis will not be correct. The synthesis of the FRF between a pressure
at point £ and a force at point m is calculated as a combination of FRFs obtained via acoustical
excitation in the following way. Assume ¢ the location of acoustical excitation, and assume a
driving point acoustical FRF has been measurcd, then the following can be written :

pk I’k"]:p: (41)

f;u B ‘7: plf;n

The first two FRFs in the multiplication arc known dircctly, synthesised from the acoustical
excitation modal modcl. The third FRF (a structural excitation FRF, which can be expressed by
(38)) must be deduced from the reciprocal acoustical cxcitation FRF (as expressed by (39)).
Combining these two equations indeed introduces for cach mode shape in the synthesis a factor

A

As an example the synthesis of an acoustical response duc to structural excitation is done, derived
from an acoustical cxcitation modal model. Figure 12 shows the superposition of the FRFs
synthesised with and without appropriately scaling the acoustical cxcitation modal model, before
expanding it to the structural excitation case. Clearly large scaling deviations exist between the
two synthesised FRF. Figure 13 then shows the synthesis of the structural excitation FRF with
the appropriately scaled acoustical excitation modal model, together with a synthesised FRF from
the structural excitation modal model. The diflerences are mainly due to the shift in natural
frequencies that were obscrved during the tests. It is clear that the magnitude of the FRFs are
corresponding quitc well.
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Figure 13 Synthesis of acoustical response/structural excitation FRF based on a scaled
acoustical excitation modal model (solid line) and on a structural excitation modal model
(dash line)

7. CONCLUSIONS

Within this paper a framework of reference has been put down for performing vibro-acoustical
modal analysis. Starting from a theoretical finitc element formulation of the vibro-acoustical
problem, it is shown which sccond order model formulation is appropriate and consistent for
experimental vibro-acoustical modal analysis. 1t is cxplained which physical parameters must be
measured, both in casc of structural excitation and in case ol acoustical excitation. Alsoit is shown




that the general vibro-acoustical reciprocity docs not imply model symmetry. On the contrary, the
equations of motion are characterised by a special non-symmetry. The consequence of this is that
special modal scaling, equal to the cigenvalucs squared, must be applicd in the modal models to
£o from acoustical excitation to structural excitation, and vice versa.

The theory is proven by performing extensive structural and acoustical lests, both using structural
and acoustical excitation, on a vibro-acoustical laboratory model. Care is taken to calibrate the
acoustical source strength. By this vibro-acoustical reciprocity can be verified and proven
experimentally. Consistent modal models are derived from the FRFs obtained with structural and
acoustical excitation. The need for scaling the modal models when going fromone type of excitation
to another is demonstrated.
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