
Analysis of soil vibrations by means of the Boundary 
Element Method 

P. Fiala, J. Granát, F. Augusztinovicz 
Budapest University of Technology and Economics, Dept. of Telecommunications 
Magyar tudósok körútja, 111x, Budapest, Hungary 
e-mail: fiala@hit.bme.hu 

Abstract 
This paper introduces some results of the application of the three-dimensional Boundary Element Method for 
the analysis of soil vibrations. Soil is considered to be an isotropic, homogenous, linear elastic medium with 
known mass density, modulus of elasticity and shear. After giving the governing equations that form the base 
of the calculations, the paper investigates the vibrations excited by a point source on the surface of the 
infinite half-space, a soil layer over bedrock, and finally the effect of vertical trenches on the vibration 
reduction.

1 Introduction 
Vibrations propagating in the soil can have 
undesired effects on buildings, roads or other 
structures. Therefore, the ability of predicting or 
controlling soil vibrations due to different excitation 
mechanisms – surface load or underground 
excitation – is of high importance. In order to have 
reliable simulation results, we must correctly 
describe the vibrating source, the method how the 
source vibrations transform to waves in the soil, 
how these waves propagate towards the investigated 
structures and transform back to structural 
vibrations. In this paper only the wave propagation 
in the soil is analyzed. 

The Boundary Element Method is proven to be a 
very useful simulation tool in case of exterior 
acoustical radiation problems. Its main reason is that 
the excited vibrations in an infinite domain can be 
calculated by carrying out numerical integration 
only on the surface of the vibration source, so – 
compared to the finite element method – the 
computational costs can be reduced drastically. 
Unfortunately we cannot fully make use of this 
advantage in case of soil vibrations, because the 
infinite half-space, with which homogenous soil 
must be modeled, has a boundary surface of infinite 
size. Therefore, when dealing with soil radiations, a 
large surface has to be taken to account during the 
numerical calculations. However, the applying the 
Boundary Element Method seems to be one of the 
most efficient ways to simulate soil vibrations. 

2 The mathematical model 

2.1 The governing equations 

Vibrations in homogenous, isotropic elastic media 
can be calculated from the time dependent equation 
of motion: 
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In this equation ),( truu =  denotes the displacement 
field, ),(][ trσuσ =  stands for the stress tensor field 
corresponding to u, and ρ is the mass density of the 
elastic medium. The relationship between the stress 
and displacement fields is given by the kinematical 
equation (2) and Hooke’s theorem (3): 

 ( )Tuuε ∇+∇=  (2) 
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Here I denotes the identity tensor, εεεε stands for the 
strain tensor and tr(εεεε) means the trace of ε.ε.ε.ε. λ and µ 
are the Lamé-constants that can be calculated from 
the Young-modulus (E), the shear modulus (G) or 
Poisson’s ratio (ν ) of the material: 
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Substituting (2) and (3) to (1) leads to the 
Navier–Cauchy equation that, in case of steady state 
sinusoidal time variations, can be written in the 
form: 

 0)( 22222
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Here ω stands for the angular frequency, cP and cS 
denote the velocities of the dilatational P- and the 
distortional S-waves propagating in the medium: 
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To define the boundary conditions of the Navier–
Cauchy equation, the investigated domain D  has to 
be defined by giving its boundary D∂ . The 
boundary is split in two parts, 1D∂  and 2D∂ . On 

1D∂  the complex amplitudes of the displacement 
field vectors, on 2D∂  that of the traction vectors 
must be given. The relationship between the 
displacement and the traction fields is defined by 

 nuσut ][][ =  (7) 

where n  is the outward unit normal of the 
boundary. 

2.2 The Boundary integral equation 

In order to transform the Navier–Cauchy equation to 
an equivalent boundary integral equation, its Green-
function U has to be used. In three-dimensional case 
the Navier–Cauchy equation’s Green-function is [1] 
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This function describes a tensor field, and the i-th 
column of its matrix gives the displacement field 
excited by a point source in infinite medium, placed 
in q and vibrating in the i-th coordinate direction. r 
denotes the distance between r and q, kS and kP are 
the wave numbers corresponding to cS and cP 
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Using the Green’s function and Somigliana’s 
identity [2], the boundary integral equation can be 
written in the form: 
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where the value of c is 1 for D∈q , 0.5 for D∂∈q  
and 0 else. 

The integral equation has to be discretized using 
finite boundary elements and shape functions. The 
missing boundary displacement and traction vectors 
are obtained from a linear equation composed of 
independent discretized integral equations written 
for the surface points. After this, the displacement of 
an arbitrary point in D can be calculated by 
numerical integration on the boundary surface. 

3 The computer code 
The realized computer code was written in 2001-
2002 in standard C++ language. The program 
handles three-dimensional boundary surfaces of 
arbitrary shape, discretized with rectangular or 
triangular finite boundary elements. It solves 
problems defined with both displacement- or 
traction-constraints and also mixed boundary 
conditions, and is able to make use of the multiple 
planar symmetry of the model in order to reduce 
computational time and memory used. 

The numerical integration is carried out using 
linear shape functions and simple Gaussian 
quadrature formulae. The resulting linear equation is 
solved by means of the LU-decomposition method. 

4 Analysis of soil vibrations 

4.1 Soil properties 

All the calculations documented in this paper were 
carried out using the same soil material properties. 
The mass density of the soil was considered to be 

33 m/kg101.2 ⋅=ρ . The shear modulus and 
Poisson’s ratio of the investigated material were 

26 m/N1053 ⋅=G  and 19.0=ν . These values were 
determined by Ciesielski and Zieba [3] by seismic 
measurements on a test ground composed of fine 
and medium sands and sand-gravel mixture. 

4.2 Rayleigh-waves excited by a point-
source 

The first very simple surface model can be seen on 
fig. 1. The flat truncated boundary of the infinite 
half-space is discretized with 60×60 square 
boundary elements, 7 elements per surface wave 
length LR. The excitation is vertical traction vector 
on the nodes of the four central elements and zero 
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traction on every other surface node. Because the 
excitation is simple, the calculations could be 
simplified by making use of the symmetry of the 
model and integrating only on one fourth of the 
boundary (shaded zone on the figure). 

Fig. 2 shows the calculated displacement results 
for this area with an enlargement factor of 3·108, and 
fig. 3 describes the development of the wave 
amplitude with the increase of the source distance r. 
The fact that the wave amplitude decreases with 

r1  shows that the Rayleigh-waves propagate 
close to the surface, therefore the vibration energy is 
distributed on a cylindrical surface with finite depth. 

The same important property of the Rayleigh-
wave can be seen on fig. 4 which shows the wave 
amplitudes on the surface and on one of the vertical 
symmetry axes of the boundary, below the ground. 
This result tells that about 1.5 LR-2 LR far from the 
ground the wave amplitude decreases by 20 dB. 

 
Figure 1: Truncated boundary of the half-space 

 
Figure 2: Rayleigh-wave excited by the point-source 

 
Figure 3: Attenuation of the wave amplitude 

 

Figure 4: Attenuation of the amplitude with depth 

4.3 Rayleigh-waves over bedrock 

The calculations on the following model describe 
the behavior of a soil layer with finite depth H  over 
rigid bedrock. The surface models that can be seen 
on fig. 5 consist of two parallel surfaces; one for the 
upper and one for the lower boundary of the soil 
layer. The excitation is unit vertical traction vector 
in the centre of the upper surface, zero traction on 
the other upper nodes and zero displacement on the 
lower surface layer. The surfaces are discretized 
with 50 elements along the radii and 5 symmetry 
planes reduce the integration domain to one thirty-
second of the whole surface. 

Fig. 5 shows some of the results of the 
calculations carried out on thirteen models with 
different layer width and on one with no lower 
layer, and the diagram of fig. 7 describes the 
increase of the average amplitude of the vertical uz 
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and radial ur surface wave components due to the 
rigid lower layer’s presence. 

The results show that if the layer width is less 
than 0.25 LR, then the average amplitude on the 
upper surface is almost 25 dB less than the 
amplitude due to the same excitation without the 
lower surface. If the layer width is greater than 1 LR 
then the increase of both components converge to 
0 dB. It is clear, because the Rayleigh wave doesn’t 
enter the soil too deeply, and that’s why a rigid layer 
deeper than 1.5-2 LR doesn’t influence the wave 
propagation. The computational results show, that if 
the layer width is between 0.5 LR and 1 LR, then 
the surface amplitude can increase with up to 10 dB, 
which can be explained with resonance. 

 
Figure 5: Surface models with different layer width 

 
Figure 6: Increase of the average surface wave 

amplitude 

4.4 The effects of trenches on the 
Rayleigh-waves 

Because the Rayleigh-waves propagate near to the 
surface, the amplitude of these surface vibrations 
can be reduced by vertical trenches. Fig. 7 shows a 
surface model that contains not only the discretized 
boundary of the half-space, but also a trench that 
fully surrounds the central vibration source. The 
depth of the trench is H, and the distance of the 
trench from the vertical point-source is R0. The 
effect of both geometrical properties on the 
vibration reduction was investigated. 

 
Figure 7: Truncated surface model with a trench 

The diagrams on fig. 8 and fig. 9 show the vertical 
and radial surface wave displacement components in 
three different cases. In the first case (thick solid 
line) there is no trench around the point source, in 
the second case (thick dashed line) the radius of the 
trench is 1 LR and the depth is 0.4 LR, while in the 
third case (thin solid line) the radius is 0.3 LR and 
the depth is also 0.4 LR. The displacement curves 
show that the effect of the vibration reduction 
increases with the decrease of the trench radius. It 
also can be seen, that while the vibration amplitudes 
are reduced behind the trench, they can increase 
between the trench and the source, because the 
excited vibrations can interfere with those reflected 
from the inner side of the trench. 

 
Figure 8: The vertical vibration displacements 
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Figure 9: The radial vibration displacements 

The effect of the trench depth H on the vibration 
reduction is shown on fig. 10 and fig. 11. As on the 
last diagrams, the thick line corresponds to the flat 
surface model, the thick dashed line describes the 
displacement of the vibration components in the 
case when the source is surrounded by a trench with 
radius of 0.5 LR and depth of 0.6 LR. The thin solid 
line corresponds to depth of 1.2 LR and radius of 
0.5 LR. The computational results show that the 
increase of the trench depth increases the effect on 
the vibration reduction. 

These diagrams are in good correlation with the 
measurement results of Richart, Woods and Hall 
[5], who stated that if the trench surrounds the 
source fully, then a trench depth of 0.6 LR is enough 
to reduce the vibration amplitudes to 25%, but in 
order to reach a reduction factor of 10%, trenches 
with depth smaller than 2 LR are not satisfactory. 

 
Figure 10: The radial vibration displacements 

 
Figure 11: The radial vibration displacements 
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