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Abstract
The inversion of the numerical radiation problem can be an effective source identification tool, if vibration
sensors are difficult to use but the sound field around the source can be measured in sufficient detail. The
inversion is often burdened by numerical errors, which can be reduced by regularization techniques such as
singular value decomposition, SVD. The paper aims at investigating the physical meaning and interpretation
of SVD, its effect on the accuracy (including the inevitable information loss) of the results. The treatment
starts from basic mathematics, and the principles and notions applied are extended through well-known
mechanical systems to the acoustical radiation/source identification problem. It is shown that a close analogy
exists between the mathematical formulation of “modal matrix”, the natural “modes” of a vibrating system
and the “field” and “surface modes” of an acoustical system. The “field” and “surface” modes are illustrated
on the example of a simulated experiment with a hypothetical subwoofer source.

1. Introduction

Singular Value Decomposition (SVD, see e.g. [1] or
[2]) is a numerical technique which is nowadays
routinely used for a number of problems such as
solution of inverse problems, source identification
by means of principal component analysis, transfer
path analysis and the like. Even though the tech-
nique is useful and effective, the real content and
meaning of the procedure is somewhat vague, the
physical interpretation of the notions and quantities
involved is often far from obvious.

This paper addresses the application of SVD for
an inverse acoustic radiation problem, which is
called inverse Boundary Element Method or nu-
merical holography [3 to 6]. The sound field, radi-
ated from a vibrating body can be calculated nu-
merically by using the boundary element (BE)
method. The inversion of the BE calculation proce-
dure is apt for calculating the vibration of the
source, given the sound field in sufficient number of
field points and provided that the matrix to be in-
verted is well conditioned. If this latter condition is
not fulfilled, SVD can still be resorted to, aimed at
reducing errors in the calculation [7,8,9]. Neverthe-
less, reduction of errors is accompanied by inevi-
table information loss as well. The aim of the paper
is to investigate, how SVD actually works for the
investigated problem, what the effects of the applied
methods are and, in general, how the numerical
calculation can be interpreted in terms of physical –
mechanical and acoustical - quantities.

2.  Relationship of modes and SVD

2.1 Mathematical definitions: spectral
decomposition, modal matrix, SVD

In mathematics, the formulation of modal matrix
can be introduced as follows. In usual cases (for the
sake of simplicity, the exact conditions will not be
further discussed here) the matrix A can be ex-
pressed by
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where  uk and vk build a biorthogonal vector system
( kll

H
k uv δ= ). The vectors uk and vk can be collected

in the matrices U and V respectively, the parameters
λk in the diagonal matrix Λ, and the matrix form of
equation (1) is then

A = U Λ VH (2)

Since the vectors in U and V  form a biorthogonal
vector system, VHU = E. This means that VH = U -1.
Equation (2) takes thus the form

A = U Λ U -1 (3)

which is called spectral decomposition of the matrix
A. U has a special name, it is called modal matrix. If
one multiplies equation (3) from right by U, a new
form can be obtained:

A U = U Λ (4)



or in a more visible form
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This is equivalent to the expression

iii uuA λ= (6)

for every i=1...k. From this form, we can clearly see
that the resulting modal matrix U of the spectral
decomposition of matrix A contains the eigenvectors
of A.

With the definition of modal matrix, the
singular value decomposition can be defined:

HVUA Σ= , (7)

where Σ is a diagonal matrix containing the so
called singular values, which are the eigenvalues of
AHA, U is the modal matrix of AAH, V is the modal
matrix of AHA. It can be proven that the decomposi-
tion exists and is unique for all kind of matrices, and
U and V are orthogonal. The elements of Σ are or-
dered, the first (left upper) element is the highest,
the last is the lowest.

The condition number κ of A is defined by the
quotient of the largest and smallest singular value.
Omitting some of the smaller singular values and
the associated vectors, a better-conditioned matrix is
achieved, which means a matrix of smaller condi-
tion number. This method – called truncated singu-
lar value decomposition, T-SVD – is often used in
the solution of ill-conditioned matrix equations. The
reason is proven in the matrix theory literature [see
e.g. in 1]: it can be shown that to solve a matrix
equation by using the direct way (applying the
pseudo-inverse of A) is not advantageous if the con-
dition number of A is high, because the errors are
amplified to an unacceptable extent. In order to keep
errors between limits, some regularisation methods
such as the truncated singular value decomposition
are required.

2.2  Natural modes of mechanical systems

For the sake of compeleteness we recall that the
natural modes of a mechanical system are closely
related to the mathematical formulation described
above. A governing system of equations of a simple
undamped mechanical system can be written in the
form

( ) fxMK =− 2ω (8)

where f is the input load (force), x is the displace-
ment vector, K is the stiffness and M the mass
matrix, and ω is the angular frequency. The non-
trivial solutions of equation (8) for f =0 results in the
modes of the mechanical system:

( ) xxKM 21 ω=− (9)

If one collects all the vectors x in a matrix X, and all
the frequencies ω2 in Ω :

( ) OXXKM =− 1 (10)

If the inverse of X exists, then by multiplying from
right we get

( ) 11 −− = XOXKM (11)

Now we see the same form as in the mathematical
section, see Eq.(3), implying that the modal matrix
of the spectral decomposition of M-1K does contain
the modes of the mechanical system indeed.

2.3  Definition of  “modes” in radiation
acoustical systems

A general approach of a wide class of numerical
acoustical problems can be described as follows.
The discretised model of the studied object has to be
created, and some points in the field have to be se-
lected, where we would like to know the sound
pressure for example (see Figure 1). Based on the
discrete geometry and the governing sound field

equations, the relation of the descriptors of the
source and field points can be expressed by

field point surface

sound
radiating object

Figure 1. Numerical model of a vibrating
object and the corresponding sensing surface
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a simple matrix equation, consisting of the normal
surface velocity vs as input, the sound pressure p as
output and a frequency dependent transfer matrix c.
The singular value decomposition of c is given by

HVUc ><= σ (13)

where EVVUU HH == . Two new matrices can
now be defined:

12 −><= UUcc H σ (14)

and
12 −><= VVccH σ (15)

because
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and 1−=UU H . The same derivation can be per-
formed for cHc. Thus it can be seen that the matrices
U and V in the singular value decomposition of c are
modal matrices, in other words: they contain modes.
The only question is now, what are they the modes
of. In order to get a better insight, let us express the
sound pressure by the singular value decomposition
of the transfer matrix – in an additive form:
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σk is here a scalar, and the product vk
H vs is another

one, so the sound pressure along the virtual surface
defined  in   the  field  is  the  weighted  sum  of  the

 modes uk. Therefore, we will introduce the name
“field modes” for these quantities (see also [10] and
[11]). Similarly, the normal velocity on the surface
of the vibrating object can be expressed:
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In verbal form: the surface velocity is the
weighted sum of the modes vk. As a result, in the
following we will call them “surface modes”. As it
will be shown later on, the mathematical name
“modal matrix”, is not just a coincidence or expres-
sion of a formal analogy; its constituting vectors
look very similar to the true mechanical natural
modes of a vibrating body indeed.

3.  Interpretation of SVD for a
simulation experiment

The considerations described above lead to the con-
clusion that the singular value decomposition should
be a kind of frequency decomposition. It couldn’t be
proved generally but a number of examples con-
firmed this assumption, including ours as well. In
the acoustical case, the vectors uk and vk represent
space-dependent quantities, hence the decomposi-
tion is a spatial frequency decomposition.

On the next pages an example of a hypothetical
two-speaker subwoofer box of 0.42 × 0.25 × 0.21 m
will be shown. Figure 2 shows the simple numerical
model of the unit. It is assumed that the box is rigid
everywhere, except for the two circular diaphragms,
which move in-phase with velocity vs = 1m/s. In
front of the box two different field point surfaces
can be seen, in order to have different condition
numbers  for  the  acoustical  transfer   matrix.    The

Figure 2. Model mesh of the subwoofer box (right upper picture: optimal measurement
mesh, right lower picture: non-optimal mesh)



computations have been performed by using the
Inverse Boundary Element method, of which the
governing equation can be written as in equation
(12). The computations presented here have been
made for a typical operating frequency of 100 Hz.

3.1 Decomposition of the sound field
(direct calculation) and the surface
vibration (inverse calculation) from
error-free data

As a first step of the analysis the optimal field point

mesh will be used, which results in a better-condi-
tioned acoustical transfer matrix. After singular
value decomposition we obtain the two modal
matrices U and V. In Figure 3 the first 8 field modes
(contained in U) can be seen. These are those ele-
mentary functions, the weighted sum of which com-
poses the sound field (see equation (16)). Using a
not complete summation of all modes, the sound
pressure field can be calculated for different trunca-
tion values (Figure 4). As one can see, higher order
modes hardly influence the sound field, so their
omission – for a forward calculation problem – is
not critical.

u1 u2

u3 u4

u5 u6

u7 u8
Figure 3. The first eight field modes



k=3 k=10

k=15 k=187
Figure 4. Pressure field along the measurement surface for different truncation values (k)

Not so for the inverse problem, where the rapid
change of surface velocity – from the edge of the
diaphragm to the rigid box – results in significant
high spatial frequency components. Similar to the
field modes, the surface modes also line up from
lower to higher spatial frequencies in the order of
increasing mode index (Figure 5).

This means that by limiting the summation of sur-
face modes during the reconstruction of source ve-
locities one will loose, or almost smooth out, rapid
variations of surface velocity along the surface. This
can clearly be observed in Figure 6 for different
truncation parameters - still without any errors in the
reconstruction.

v1 v2

v3 v4



v5 v6

v8 v7
Figure 5. The first eight surface modes

k=10 k=50

k=120 k=187 (no truncation)
Figure 6. Source velocity distribution for different truncation values (k)

3.2  Inverse calculations from erroneous
field data

As already mentioned earlier, regularisation
methods are required to keep errors between limits.
In order to see the potential of the method, in the
following section the effects of noise will be dis-
cussed. Let us suppose uniformly distributed noise
along the field point surface, which can e.g.
originate from measurement  or  modelling errors.
This means that the noise is a spatial white noise, so

all the (spatial) frequencies are uniformly distorted.
If the condition number of the acoustical transfer
matrix lies in the order of 1000 (which is not too
high for typical acoustical problems), the noise in
the highest spatial frequency range (that is, for
highest order modes) is amplified by some 60 dB
with respect to the lowest spatial frequencies,
thereby easily masking the useful information. Still
with the optimal mesh, a comparison of
reconstructed velocity distributions for two sorts of
typical measurement noise can be seen in Figure 7.



Without errors

Signal to random noise ratio = 40 dB

Randomly perturbed microphone positioning (+ 10%)

Figure 7. Reconstructed velocity distributions for different kind of noises.
Left pictures: k=50 (nearly optimal truncation), right pictures: k= 120 (insufficient truncation)

The last comparison will show, what happens if the
condition number of the transfer matrix is different.
In Figure 8 the singular values of the well
conditioned and ill-conditioned matrix can be seen.
It can clearly be observed that for a low truncation
parameter (e.g. k=50) the two curves are nearly the
same. If however the signal to noise ratio is high
enough to take high frequency components also in
account (e.g. k=150 or 160), the difference will be
more and more significant. To visualise the phe-
nomenon, we have performed a comparison for the
two measurement meshes by assuming a signal to
noise ratio of 60 dB (Figure 9).
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 Figure 8. Singular values for the optimal (upper
curve) and non-optimal (lower curve) meshes



k=50

k=150

k=160
optimal mesh non-optimal mesh

Figure 9. Comparison of reconstructed velocity distributions for the optimal and
non-optimal measurement meshes

The effect of the SVD can then be interpreted as
follows (see equation (16)): V contains surface
modes. These are excited by a particular surface
velocity distribution vs. The surface modes excite
the field modes (ui) in a weighted manner (σi),
which are similar to the modes of a homogeneous
plate having a shape as defined by the field points.
The largest contrast to real mechanical systems lies
in the formulation of V. Due to the fact that surface
modes are generated on the basis of the geometry
only, material characteristics of various parts of an
object are not taken in account.

4.  Conclusions

The effects of the use of truncated singular value
decomposition have been shown and a possible
interpretation of the physical meaning of SVD has
been given. Examples have shown that the surface
velocity reconstruction is the best, when relatively
low order surface modes are mostly excited. The
cut-off parameter of the truncation can be set as a
function of the signal to noise ratio. Note that the
cut-off parameter determines the highest possible
spatial frequency to be recovered and rapid transi-
tions from low to high vibration amplitudes or vice
versa are smoothed out accordingly.
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