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1. Introduction

The phenomena, related to the existence of acoustic modes, were already known in the ancient
world and our ancestors, though instinctively, have even exploited some of the acoustic effects
[11. The first treatments of scientific character of the field date back to the 19th century [2,3]
while the basics of the modal theory of room acoustics were developed in the first half of this
century [4

- 71. Nevertheless, a revival of the acoustic modal theory and its experimental
aspects seems to be worthwhile for a couple of reasons.
in the first place, the ever increasing demand for lower noise levels and personal comfort
necessitates to attack also those problems, for which the traditional armoury of noise control
engineering is no longer sufficient. The booming noise in cars or the propeller noise in small
aircrafts are typical examples of a low frequency noise problem, where the consideration of
the single acoustic modes is inevitable.
In the second place, a wide range of modern computational. experimental and noise control
techniques are based on or closely related to the acoustic modes. We can cite here both the
Finite Element and the Boundary Element method, active noise and/or vibration control of
sound field in closed spaces and others.
A further and very important reason of the renewed interest in acoustical modal analysis
(AMA) is that the rapid development in the experimental techniques of structural dynamics
has just recently enabled us to render the AMA method from a pure theoretical calculation
procedure. burdened with serious application limitations, to an experimental engineering
routine. This transition is however not without dangers. since the analyst can obtain
misleading results if the structural methods are used for acoustic applications without due
foresight.
The aim of these courses notes is to surnmarise the basic notions of the acoustical modal
theory and the inter-relations thereof, to shed light on the existence and limitations of the
analogy between the modal behaviour of mechanical and acoustic systems and to give some
hints for those who are interested in the practical details in the experimental modal analysis in
acoustics and vibro-acoustics.
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2. Physics and mathematics of modes in one-dimensional acoustic systems

2.1. ANALYSIS OF A WAVEGUIDE, TERMINATED BY GENERAL ACOUSTICIMPEDANCES

2.1.1. Mathematical Analysis
We will now repeat the analysis of a one-dimensional acoustic waveguide on the basis of ageneral acoustic formulation: the acoustic wave equation [21].
Consider a finite circular tube of length L and of diameter d so that d<<2.. Let the air in thetube be at rest, with uniform density and temperature. Then the wave motion in the tube canbe described by the one-dimensional acoustic wave equation

____

— i a2,
ax2 (la)

and similarly for the particle velocity

a2v i a2
2 (1b)ax c at

Seeking for a solution to Eq.(6a) in the form

p(x,t)=p(x) p,(t)
the spatial and the temporal variables can be separated:

d2p(x) 2 —

2
+k p(x)—O (2a)dx

7
I d p(t) 2—v- , +k p(r)=O

(2b)c dt
Eq.(2a) is the familiar homogeneous Helmholtz-equation (here in one-dimensional form),describing the spatial variation of the pressure along the tube while Eq.(2b) can be used todetermine the temporal variation. . The solution px(x) has to satisfy both the equation and theboundary conditions at the end of the tube. We face here a classical eigenvalue problem: onehas to determine, for which k values does a non-trivial solution exist and what is the soundfield associated with these eigenvalues.
The solution is assumed to be in the usual complex form:

p(x,r) = Po e1t (ae +beJta) (x)eJW
(3a)

The particle velocity can again be obtained from the Euler-relation:

v(x,t) = —

_____

et (a
— be) (3b)jwpax pc
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To obtain the modes of the investigated system, Eq.(2a) has to be solved with appropriateboundary conditions at the ends of the tube. Assume that the tube is closed at one end (x = 0)by a specific acoustic impedance Z1:

p(x) —

xO — —Z1
(4)v(x)

and similarly at x = L:

p(x) —

x=L — Z2
(5)v(x)

(Note that the negative sign in Eq.(4 is caused by the fact that the outward normal of theenclosing surface is opposite to the direction of the x-axis.) Substituting Eqs. (3a) and (3b) inEqs. (4) and (5) we get the characteristic equation of the system:

Z)+pc Z-,+pc j2kLe —1
(6)Z1-pc Z,—pc

Fortunately, it can be solved in closed form by using the complex logarithm function and thenone obtains for the nth modal frequency a complex value:
Ci) W +jô
where the real value of w,

_____

a)
‘

L 2L
represents the frequency of the eigenvibration while the imaginary value stands for thedamping, caused by the energy losses in the system:

— c lnt2l

2L
and

Z1+pc Z2+pc
l2

(9)Z1—pc Z2—pc
Calculating now the wavenumber

U)
k = — = k +jlc

C
and substituting back to the homogeneous Helmholtz-equation. the mode shape can eventuallybe calculated:

cosh icx(Z coskrx + jpcsinkx)

Z1—pc

( )— sznh icx(pccoskx + 1Z1 Sm kx)

zi — Pc
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2. 1.2. Qualitative discussion of some special cases
To discuss the behaviour of our system quantitatively, it is instructive to calculate the complexmodal frequencies and the mode shapes for various simple parameter combinations.First assume that the closing impedances are purely imaginary: Z = jX. The modal frequency
then becomes purely real, but different from the closed tube resonances (t2) n c ir / L)

_nc,r ctan(pcIX)

L (11)
Depending on the sign of the closing reactances, the impedances at the end of the tube makethe tube seemingly longer or shorter than the closed tube. Depicting the mode shape, Eq.(lO),in the Nyquist plot, one gets a straight line having a slope which depends on the ratio of X/pcas depicted in Fig. 1. These kind of modes are usually referred to in structural dynamics ascollinear modes, in spite of the fact that the mode shape function is actually a complexfunction.
If the terminating (identical) impedances are purely real and greater than the specific acousticimpedance of the fluid (pc), the damped modal frequency remains unchanged with respect tothe rigid-rigid termination but one gets finite damping:

ö=ln[(R+pc)/(R—pc)]/L (12)
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Fig.1. Calculated mode shapes of a one-dimensional waveguide. terminated by pure tmaainarv impedances

The mode shape is accordingly no longer collinear but becomes a truly complex one as shownin Fig. 2.
In the general case both effects take place: the mode will be damped and the modal frequencyis shifted, and the mode shape will be complex, too.

Z2

x=L
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Re w

= 1.5

(acoustic resistance)

Fig.2. Calculated mode shape of a one-dimensional waveguide. terminated by pure real impedance

2. 1.3. Verification Experiments
The aim of our experiments was to conduct an acoustical modal analysis test for theverification of the calculations discussed above. The apparatus used for the experiments was astandard acoustic impedance tube of Type Brüel & Kjr 4002. This instrument is normallyused for measurements of the specific acoustic impedance and absorption coefficient ofcircular cut samples of acoustic materials. The design and the dimensions of the tube ensurethat only one-dimensional wave propagation can exist in the tube within the specifiedfrequency range.
Unlike in the course of the standard procedure, the excitation of the tube was ensured bymeans of a random noise generator and the excitation signal was parallel fed to the input of anexperimental modal analysis system. The sound field was sampled by means of a smallelectret condenser microphone Type AKG CK-6713, traversed along the axis of the tube bymeans of the original microphone carriage system. The first modal analysis test was carriedout without any sound absorbing material. Then a 5 cm thick polyurethane foam disc wasinserted in the sample holder and the experiment was repeated.
As anticipated. the first experiment resulted in a number of lightly damped eigenfrequenciesof the tube. It is interesting to see, however, that the frequencies are not sthctlv harmonic; theslight deviations are thought to be caused by the finite acoustic impedance of the drivingloudspeaker. The residuals of the expenmental AMA test, which are proportional to the modeshape values, are shown in Fig. 3a, depicted both as a spatial function along the tube and in aNyquist plot. In arreement with our findings above, the locus is nearly collinear and the modeshape corresponds to a clear standing wave. In case of the absorber at the end of the tube, seeFig. 3b. the locus of the residuals is trul complex.
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a. Empty tube, f=lI2OHz, O.96

-3,. it

31 31 • *1.323

b. Foamdisc, fllSOHz, 4.75

c Foam stripes, f060Hz, =4.85

Fig.3. Measured mode shapes and locii of residuals of a one-dimensional waveguide.a. Tube rigidly terminated. b. tube terminated by a 50mm thick foam absorber. c. tube provided with absorber
stripes along the whole tube

2.2. ANALYSIS WITH DISTRJBUTED DAMPING

The above analysis represents a rather special case, with non-rigid boundary conditions at theends of a one-dimensional vibrating system only. It is more realistic to assume that thedamping is distributed along the length of the tube. The mathematical treatment of thisproblem is feasible but too complex to repeat here in full details; the reader is rather referredto the relevant literature [9,10). Nevertheless, it is instructive to show the results of a simpleexperiment: the modal analysis of the tube discussed in paragraph 2.1.3 with stripes of soundabsorbing material along the whole tube. The measuring system and the analysis technique isjust the same as it was before. As one can see in Fig.4c., the modal frequency is againdifferent from the case with rigid termination but the mode shape corresponds very well to theundamped situation, in spite of the fact that the modal damping of the test is higher than it waswith the sound absorbing :erminauon.

—.2.fl’
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This observation can be explained by means of the analogy between mechanical andacoustical systems. to be evolved later on in paragraph 4.1. As it is well known from structuraldynamics. it is not the damping itself which is responsible for the complexity of the modeshape but rather the local distribution of it. (Of course, if damping is present in a system, themodal frequencies must always be complex.) Local damping is an inherent characteristics ofthe overwhelming majority of acoustical systems since the viscous or thermal conductivitylosses of the acoustic fluid - which are distributed damping sources - are negligible withrespect to damping caused by the dissipative boundaries of the fluid in the relevant frequencyrange of modal analysis. As a consequence. in most of the cases one encounters complexmodes, the interpretation of which can cause various problems.

3. Modes and forced waves in three-dimensional systems

3.1. MODES IN UNDAMPED SYSTEMS

If we want to extend our analysis for a general. three-dimensional, bounded space, the one-dimensional wave equation. Eq.(la) has to be written in the more general form of

la2p

(13)

The space-dependent Helmholtz-equation then becomes

(v2+k2)p=o
(14)

This equation is not easy to solve in closed form, unless one uses a coordinate system inwhich the variables are separable and the boundary conditions are simple enough. A classical,simple, yet important case is a rectangular room as shown in Fig. 4. Assume that theboundaries are perfectly rigid; then we have the boundary conditions
= 0 at x 0 and x = L, (15a)
= 0 at y = 0 and y = L). (lSb)at z=O and z=L (15c)

z

LXZ

y

x

Fig.4. Sketch of a stmpie three-dimensional room
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Since the individual boundary conditions depend on only one of the coordinates, they can be
fulfilled independently. Let us compose the solution by the product of three functions, each
dependent only on x, y and z, respectively:

p(x,y,z) = p(x) p(y) p(z) (16)
It is rather plausible that all these terms differ from each other in the independent variables
only and the spatial variation in one of the directions should be the same as in the one-
dimensional case [7]. Thus we obtain:

n7rx fl2rx n..7rx
p(x,y,z)=cos

L (17a)

where the numbers n, fl) and are non-negative integers. The corresponding eigenfrequency
is then

2 2 2
fl 7c fl.ICC n..irc

= +[) ] + z
(17b)

If one of the coefficients ni,, is different from zero, the modes are similar to the one
dimensional case and are called ‘axial modes’. In cases where two coefficients are different
from zero, we speak of ‘tangential modes’ and in the general case of ‘obligue modes’.
The eigenfrequencies of a three dimensional rectangular room can be visualised in several
ways. For axial or tangential modes the neutral or nodal lines can be shown as depicted in Fig.
5a. For tangential modes the wavefronts can also be drawn, see Fig. 5b. The true three-dimen
sional “modal model” can be depicted as distorted wireframes, by colors etc. Nevertheless, the
schematic representation of the modal frequencies by means of a three-dimensional lattice
does not only represent the modes in a very concise way, but it can help to understand the
limitations of the AMA method as well. Let us take a three-dimensional spatial mesh in a
Cartesian coordinate system, with unit mesh widths of cit / Lr, Cit / L. and cit I L,
respectively, parallel to the axes as shown in Fig.5c. Any vector from the origin to a nodal
point of this lattice then corresponds to a particular eigen-frequency, because the length of this
vector is equal to (17b). Obviously, as the mode numbers are increasing, more and more
combinations can result in almost identical vector lengths and thus closely spaced modal
frequencies. If the number of modes per unit frequency is too high, the modes can no longer
be distinguished in a proper way by experimental methods. Along with the matter of mode
complexity as discussed above, these features of the acoustic eigenmodes can pose serious
practical limitations to the feasibility of meaningful acoustic modal analyses.
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Fig.5. Possibilities of representanon of acousnc modes in three-dimensional cavitiesa. 2D demonstranon of nodal lines. b. 2D demonstranon of waveti-onts, c. 3D demonstration of modal frequencies
[15]
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3.2. MODES IN DAMPED SYSTEMS

The limited scope of this course notes does not allow the discussion of the eigenmodes ofdamped three-dimensional cases. The topics has been extensively investigated by Morse andBolt in their basic work [6] and a good summary is given in the recent noise control textbookedited by L.L. Beranek and I. Vér [11,12]. We must be content here with making the remarkthat the qualitative results of a rigorous mathematical analysis are in complete agreement withthose of the simple one-dimensional case: the damping results in complex modal frequencieswith slightly changed real part and the mode shapes are always complex, for the reasondetailed in paragraph 2.2. For more complex geometries the theoretical analysis is usually notfeasible, and one has to resume numerical, Finite Element or Boundary Element methods.

3.3. FORCED FIELD IN UNDAMPED, CONTINUOUS ACOUSTIC SYSTEMS

In reality, all modal analysis tests are based on measured forced responses, from which theeigenmodes are extracted, and AMA is no exception. It is therefore useful to derive the forcedresponse of a general 3D acoustic space [8,13]. Note that this derivation will also be repeatedfor mechanical systems in paragraph 4.1.3. and as we will see, the results are in completeequivalence.
Let us consider a simple, elementary case: a point monopole of sinusoidal volume velocity,placed in point F0 of a closed space, surrounded by perfectly rigid (i.e., non-dissipative)
boundaries. The governing equation in this case is [20]

(V2 +k2)p = —4o(F—) (18)
The solution to this inhomogeneous equation is the Greens function, depending both on thefield point F, the source point and the frequency 0.):

p(F)= gF,Fj,w)
Moreover, the Greens function has to satisfy the boundary condition g / ñ = 0, too.
As a usual technique, the Greens function can be assumed to be a series expansion of thenormal modes of the closed space such as

g(F,F0,w)= am ‘m (19)

where çif is a solution to the homogeneous Helmholtz equation

(V2 ± = 0 (20a)
Let yJ be another solution

(2 + 0 (20b)
Multiplying Eq.(20a’ by çii, and Eq.(20b) by ,iIm and summing we obtain:

m(V2n)Vn _n(V2m2)m0
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But çif V2tr,1 — yi is the divergence of -1m V t,ti,1
—

V i’i,. Thus, integration
over the volume and application of Gauss’ theorem yields

§Ot’mV1mn ,tfnV,tfm).dS+(k _k)frn/Jm.dV=O

As VWn and VWm equal zero on the boundary surface S. one get:

(k
— k) = 0.

As k km, this means that

ffltrnct(m.dV=0, (21)

what can be interpreted as the orthogonality relation of acoustic eigenmodes.
The series of Eq.(19) is now substituted to Eq.(18). Making use of Eq.(20b) we have

V2g+k2g=a(k2_k)çtf, =_4S(F_)

Multiplying both sides by and integrating over the volume, one get

am(k2_k,z)fflYJn/Im.dV =—S(—).dV.

Using the orthogonality of the modes and the definition formula of the Dirac function, we
obtain

an(k2—k,)An=—fn(Fo)wherebyAn=fftI,.dV.

As a consequence. the weighting factors am equal

—

__________

am
— Arn(k —k2)’

resulting in

--
. rn(m(b)g(r,r9,w)= q

Am(k_k2)
(22)

This equation is Important for later developments: the forced response of an acoustic system
is expressed by its normal modes. Note that the equation is symmetric in the source and
response position, caused by and, at the same time, representing the reciprocity of acoustic
systems.
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4. Methods and tools of experimental modal analysis

Before we tackle the practical aspects of AMA, it is worth to survey the correspondence ofmechanical and acoustic systems in analytical terms. This analogy is known for a long time[14-17], but nowadays is again of increased importance due to the availability and increasinguse of structural analysis systems and methods for acoustic problems.

4.1. ANALOGIES BETWEEN ACOUSTIC, MECHANICAL AND ELECTRICALSYSTEMS

4.1.1. Lumped Parameter Acoustic Elements
Our analysis, presented in paragraph 2.1.1., is based on the assumption that the dimensions ofthe considered acoustic system is negligible with respect to the wavelength in all but onedirection. This restriction can be fully extended in all of the directions, and this way one cancome to the notion of the lumped or concentrated parameter acoustic elements.Without going into much details of the elaboration (a good summary can be found e.g. in[15]), one can obtain the definition equations as follows.
The acoustic mass is the ratio of the pressure and the rate of change of the volume velocity,that is, the volume acceleration caused by the pressure:

— p — p — plma=————— (23)
It is associated with a mass of air accelerated by a net force which acts to displace the gaswithout appreciably compressing it. In structural terms, an acoustic mass has one degree offreedom, namely, its velocity displacement.
The acoustic capacity is described by the acoustic compliance: the ratio between the volumedisplacement and the pressure:

$qdt v
Ca= “T (24)p p pc

It is associated with a volume of fluid that is compressed by a net force without appreciableaverage displacement of the centre of gravity of the volume.
Eventually, the acoustic resistance is the ratio of the pressure and Inc volume velocity,caused by the pressure:

—p
(25)

Comparing these basic equations with their mechanical and electrical counterparts. a completeanalogy can be established. Making use of this equivalence, real-life acoustic systems can bemodelled by electric or mechanical models and the acoustic problem can readily be solved bywell established methods of these fields.
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4. 1.2. Matrix Description of Acoustical and Mechanical Systems
Continuing the analogy, just like the Kirchoff equations in electricity theor’ and the equationsof motion in mechanics, the acoustic equations can also be summarised in a matrix form:

[maj{}+ {ra]{}+ []{}= {p} (26)

where, for the sake of consistency, we have used the volume displacement instead of thevolume velocity q.
Another kind of acoustic analogy can also be established, in which the volume velocitycorresponds to force and pressure corresponds to velocity. Beranek refers to this equivalenceas a mobility type analogy as opposed to the earlier one which he calls an impedance type.Other authors use the terms ‘direct and “inverse’ instead of impedance and mobility analogy.As the names show, the first one is more straightforward and it is traditionally used forelectroacoustical applications while the latter one is more useful in vibroacoustic applications.In order to obtain the second formulation, recall the inhomogeneous form of the waveequation:

, 1..
(27)

Using the methods of discrete system theory and introducing damping terms, severalresearchers [see e.g. 17, 18, 19] have shown that Eq.(27) can be converted into a matrix formlike

[A]{i5}+ [Bj{/}+ [C]{p}= 4} (28)
Comparing Eqs.(26) and (28) with the usual form of the mechanical equations of motion [22]

[M]{}+ [c]{,}+ [K]{x}= f} (29)
the formal analogy between Eq.(26) or (28) and Eq.(29) becomes obvious.
In principle there is nothing to prevent us from using either Eq.(26) or Eq.(28) as a basis toperform an AMA test. by using the methods originally developed to solve Eq.(29). However,there are some essential difference between them. The matrix description in Eq.(26) is basedon the assumption that the system can be appropriately described by interconnectingindividual lumped parameters, whereas Eq.(28) is free from this serious limitation. Moreover,the lumped parameter description as given in Eq.(26) needs the volume velocity to bemeasured as the response parameter and the system has to be excited by an ideal pressuresource, which isn’t easy to realise in practice. Eq.(28) is therefore much more appropriate forexperimental purposes. One also have to note, nevertheless, that no direct physical meaningcan be attributed to the matrix terms [A], [B] and [C]while the use of Eq.(26 itself oftengives a good physical insight into the nature of the problem. In summary, Eq.(26) is moreappropriate for simple, quick-look calculations while the AMA experiments are based onEq.(28).

4. 1.3. Forced Response of Discrete Mechanical Systems
The derivation of Eq.(33), in other words, the discretisation of the continuous acoustic waveequation tends towards the use of the finite element formulation. However, this transition stepcan be avoided and the acoustic-mechanical analogy can be illustrated from a different aspect,if we proceed in opposite direction. Below we show that the forced response of a discrete
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The expression Eq.(36) may be compared with that given in Eq.(22). This proves the accuracy
of the lumped parameter acoustic elements method.

4.2. EXPERIMENTAL ACOUSTIC MODAL ANALYSIS

The first experimental modal analysis test, to the author’s knowledge, has been reported in
1972, that time still without detailed theoretical background [24]. The first attempt to give a
solid justification for the use of structural methods for acoustical problems stems from Nieter
and Singh [25]. Their original technique, first applied for one-dimensional cases only, has
later been extended to three-dimensional systems and an outline of the derivation of Eq.(28)
was given [26]. A number of further publications about the topics are cited in the references
[30-35].
As already mentioned shortly above, a wider spread of experimental AMA methods is
impeded by a few pnncipal and practical difficulties. One of these is that unlike in structural
mechanics where almost all conceivable transfer functions can be readily measured in
practice. in acoustics only the sound pressure can be determined reliably. Another difficulty,
partly related to the previous one is the problem of how to provide appropriate excitation and
reference signals therefrom. Below we overview the methods of experimental AMA and give
some hints which may be able to overcome the difficulties encountered.

4.2.1. Basics and Methods of the Analysis
Consider a three-dimensional closed acoustic system with rigid or finite impedance but non-
vibrating boundaries. (The modal analysis of vibro-acoustic systems goes beyond the scope of
this paper.) The governing equation of the system can be written in the form

V2p(F,t) — p(F,t) pS(F) =Eq.(27)

Assume now that a number of point monopoles of known volume velocity are placed in the
space and the sound pressure across the volume is sampled at an appropriate number of
points. The continuous wave equation can then be substituted by its discrete equivalent

[A]{p}÷ [B]{}+ [C]{p}= {t:l’} =Eq.(28)
Taking the Laplace-transform and assuming zero initial conditions we get

[s2 [A] + s[B] + [C]] {p(s)} = s{q(s)} (37)

As usual in structural dynamics, the inverse of the matrix term can be substituted by the
frequency response matrix H(s):

p(s) = [H(s)] s{q(s)} (38)
The frequency response matrix can be expressed as a partial fraction expansion of modal
parameters

[H(s)i =

_______±

Q; {}{
}*

Substituting now s by jO.) and using Eq.(38) it becomes obvious, that the modal parameters of
the system can be gained from the FRF measurements where the sound pressures across the
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mechanical system can be described in the same form as the forced response of a continuous
acoustic system.
Assume an undamped multiple degree of freedom mechanical system. excited by sinusoidal
forces. This system will be described by the matrix equation

[{K]_v2[M]] {x}= {f} (30)

The response vector { x) can be calculated by inverting the matrix term on the left side,
usually referred to as system matrix and denoted by [B]:

{x}=[Br’{f} (31)
The inverse of the system matrix can be easier calculated, if we introduce the so called
principle or modal coordinates by means of the transformation

{x}= [P]{q} (32)

where [‘:1’ Jis the modal matrix: a matrix whose columns are the modal vectors of the original
system. and q stands throughout this paragraph for the new, modal coordinates [22]. The
advantage of this coordinate transformation is that the original system of equation, consisting
of general matrices, is decoupled and the new matrix equation contains diagonal matrices
only:

[(K)_a2(M)]{q}= [P
jT

{f} (33)

Introducing the notation (B) = (K)—w2(M), the response of the system expressed in

modal coordinates can be calculated, assuming that the frequency of excitation is different
from any resonance frequency and thereby the diagonalized system matrix can be inverted:

{q}=(B)’ [WJT{f} (34)

One can show [23] that the rnverse of (B) will also be diagonal, containing the elements

, ., (35)

Combining Eqs.(31), (32), (34) and (35) we eventually get

n

__________

[B] = [P](B)
[]T =

2 (36)
i=1 m1 (aj —w)

One element, bre of this matrix represents the response of the system in the rth DOF, excited
by a unity force in the eth DOF

— rz
bre_ ., .) (36)

i=1 m1 (a_w)
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volume are referenced to the volume velocities of the sources. In acoustic terms, the transfer
impedances of the field have to be measured:

Zre (w)
=

=
±

(40)

The expressions (37) to (40) are in complete analogy, up to the constant jU.), with those being
used in structural dynamics [22], therefore the usual structural methods and software packages
can be used without modification.

4.2.2. Equipment Requirements and Simplification Possibilities
In principle, no correct experimental AMA can be conducted without using a well-controlled
volume velocity source. Unfortunately, such actuators are commercially not available. A few
experimental systems have been reported on in the literature [25-28], out of which the
converted acoustic driver method seems and actually has been found to be the most
practicable [29].
Imagine an electrodynamic loudspeaker which is provided with a closed, sealed housing
behind the diaphragm. The most obvious realisation could be to use a horn driver.
Unfortunately, these loudspeakers are generally designed for high frequency sound
reproduction and sometimes cannot radiate sufficient acoustic power in the frequency range
relevant for AMA applications. A good quality medium-range loudspeaker with closed
housing or, in case of even lower frequencies, a closed box loudspeaker unit may be helpful.
(Note that the use of any bass-reflex boxes should be avoided, whatever attractive their low-
frequency characteristics would be. The reflex opening of these units acts as another,
unwanted and uncontrolled local radiator around resonance frequency and the resonance of
the system can cause interpretation problems in the course of the analysis if not damped out
sufficiently.)
If the back cavity’s dimensions are considerably smaller than the wavelength, one can assume
that the pressure is constant everywhere in the cavity. Then we have an acoustic capacity
excited by the backward radiation of the diaphragm, causing a pressure in the cavity which
can be calculated by means of Eq.(24):

PC
p=qback

. (41)ja’V

By measuring this pressure a good reference signal can be derived. In order to calibrate the
whole system, another cavity of known volume can be connected to the loudspeaker and using
the same formula the volume velocity, radiated forward can be related to the pressure
measured in the back cavity.
This method has one single practical drawback, namely, that the pressure in the back cavity is
very often too high. amenable to measurement. Another possibility is to measure the
displacement of the diaphragm, implicitly assuming of course that the whole diaphragm
moves with the same amplitude and phase. Substituting q = Av in Eq.(41 ) it is easy to show
that the pressure in the back cavity is proportional to the displacement.
To demonstrate the applicability of the technique, the cross section of an instrumented
medium range speaker (Type Philips AD 50 060) is shown in Fig.6. along with the measured
frequency response functions of the back pressure and the diaphragm dispiacement. measured
by means of a Bentley proximity probe; both referenced to the inDut voltage of the
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loudspeaker. The similarity of the two FRF’s supports that the diaphragm can indeed be
considered as a rigid piston in the used frequency. range.

Fig.6. Controlled volume veloctty source, a. Cross section of the loudspeaker. b. measured p/u and x/U frequency
responses

If the analyst is interested in the modal frequencies and the mode shapes of the system only
and a correct modal model is of no importance, the volume velocity source can be substituted
by a simple loudspeaker. Then the reference signal can be taken directly from the input
clamps of the speaker. (Needless to say, that the reference signal cannot be derived by using a
microphone in the close vicinity of the source. The sound pressure measured in any point of
the volume is a response rather than an excitation signal. If one aims this way just to detect
the modal frequencies only, it can happen that even strong normal modes will be missed if the
microphone comes to a local maximum.’ One has to be aware of the fact that in this case the
loudspeaker itself becomes an element of the system to be investigated, and any possible
resonances of the exciter appear in the analysis as supplementary modes. These false modes
are not easy to distinguish from the actual modes of the system in case of strong damping. The
same holds for the microphones. The solution is that before the actual test the frequency
response function of the actuators and sensors have to be carefully controlled.
As far as the sensors for the measurement of the responses are concerned, the difficulties are
much smaller but a bit care is appropriate here, too. The acoustic field has to be sampled by
using microphone positions which are closer than AJ6 (a general rule of thumb used for
discrete acoustic methods). In case of large dimensions the number of microphone positions
can run high and if one does not use a large number of parallel channels, the total
measurement time can be long, enabling the loudspeaker to heat up the air in the volume,
thereby changing the sound speed in air which in turn can cause the variation of the modal
frequencies. In case of low damping, i.e.. for sharp peaks in the FRF’s. even a slight frequency
shift can cause serious problems during postprocessing of the data. The problem can be
overcome by using microphone arrays. Since, however, the costs of such ai-ravs can be
prohibitive if good quality measuring microphones are to be used, new types of low-cost
microphones have been developed and commercialised, especially for acoustic modal analysis
application. We have found good results by using electret studio microphones. too.

a. b.
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5. Summary

This course notes gave an overview over the physical reasons and conditions of formation of
natural modes in acoustical systems. The notions related to acoustical modes and their inter
relations are discussed both in qualitative and in analytical terms for simple one-dimensional
systems. Special attention was paid to the effects of non-rigid boundary conditions, being able
to cause complex modal frequencies and complex mode shapes. The analysis was extended to
the normal modes and forced field of three-dimensional systems.
The analogies between acoustical, mechanical and electrical systems are discussed in details.
It is shown that the lumped parameter acoustic approach, based on the “direct or “impedance
type analogy, has inevitable advantages for preliminary, quick-look calculations while the
‘inverse or “mobility” type analogy is more appropriate for acoustic modal analysis
experiments. The forced response of a continuous acoustic and a discrete mechanical system
are calculated and found to be equivalent.
The outcome of theoretical considerations supports and justifies the engineering practice that
those methods, originally developed for problems of structural mechanics, can also be
applied in acoustics. However, high values and strong unproportionality of damping and the
overlapping of modes at higher frequencies make the interpretation of results more difficult in
acoustics than it is usual in structural dynamics. A further inconvenience is caused by the fact
that the graphical interfaces of the presently available modal analysis systems are designed to
animate spatial structures rather then scalar field variables
Eventually, some practical hints are given, how the equipment requirement of acoustic modal
analysis can be met by simple methods.
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