The Photofol project

Péter Rucz rucz@hit.bme.hu

LAST introduction 2021

My current situation

Péter Rucz BME-HIT, Fraunhofer IBP

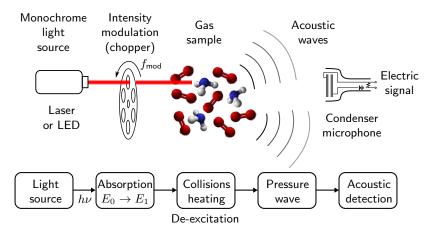
LAST introduction

The Photofol project 21st October 2021

2 / 11

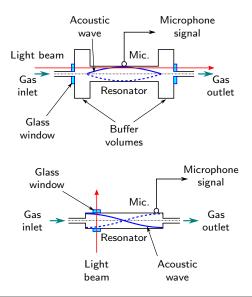
The Photofol project

- Photoacoustics + propofol
 - Photoacoustic detection of
 - propofol in the exhaled breath
- Application, challenges of propofol
 - Anesthesia, given into blood
 - Challenge: real-time monitoring of propofol concentration in surgery
 - Mass spectrometry too expensive
- Project objectives
 - Photoacoustic detector prototype
 - Detect 1 ppb in $10\,\mathrm{s}$ time
 - Instrument design to companies
- Project partners
 - LMU Klinikum, München
 - Fraunhofer IBP, Stuttgart



Propofol molecule $(C_{12}H_{18}O)$

Anesthesia using propofol


The photoacoustic effect

Light wavelength is chosen based on the gas specie to be detected

■ Modulation frequency *f*_{mod} is the resulting acoustical frequency

Photoacoustic detection using a resonator

- Acoustical resonator
 - Amplifies the wave
 - Improves the SNR
- Excitation of the longitudinal eigenmode
 - Open cell with buffersClosed cell
- Cells for azimuthal or radial modes also possible
- Flow through the cell
 - Gas sample must pass through the cell
 - Laminar flow
 - 50-200 cm³/min

Péter Rucz

The Photofol project

Concentration measurement

Heat as an acoustical source

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \nabla^2 p = \underbrace{\frac{\kappa - 1}{c^2}}_{\text{Heat source}} \underbrace{\frac{\partial H}{\partial t}}_{\text{Heat source}}$$

• Light is absorbed at whole length of the cell $(0 \le x \le L)$

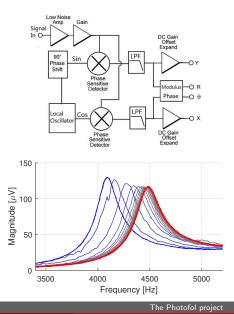
$$H \propto \int_0^L e^{-\alpha x} dx = e^{-\alpha L} - 1 \approx -\alpha L \qquad \alpha L \ll 1$$

Non-resonant and resonant detection

$$p_0 \propto \frac{P_0}{V\omega} \alpha L$$
 $p_0 \propto \frac{QP_0}{V\omega} \alpha L$

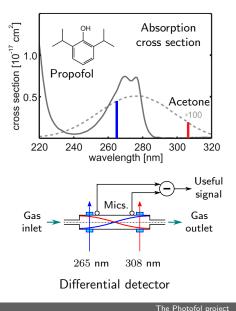
• The signal p_0 is

1 Linearly proportional to α (\sim concentration) over many magnitudes, the light power P_0 , and the quality factor Q


2 Inversely proportional to the cell volume V and frequency ω

Péter Rucz	The Photofol projec		
BME–HIT, Fraunhofer IBP	LAST introduction	21 st October 2021	6 / 11

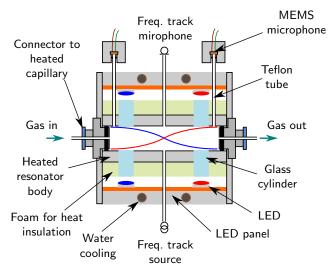
The photoacoustic signal and its processing


- Components of the signal
 - 1 Useful signal, \propto concentration

 - 3 Additive noise acoustical & electrical non-coherent, very large
- Signal processing
 - Lock-in detection (vector voltmeter)
 - Coherent sampling
 - Direct digital lock-in detection for MEMS microphones (possible patent)

Challenges are many ...

- Adsorption / desorption, H_2O
 - Propofol adsorbs to walls
 - \blacksquare Walls heated $> 100^{\circ}{\rm C}$
 - Microphones up to 70°C
 - Measure farther from walls
- Light sources
 - UV power LEDs
 - Cooling is needed
- Temperature and CO₂
 - Speed of sound changes
 - Frequency tracking needed
- Acetone C₃H₆O
 - Natural in human breath
 - Can be high (e.g. diabetes)
 - Differential measurement



Péter Rucz BME–HIT, Fraunhofer IBP

LAST introduction

21st October 2021

The current cell design

Prototype cell built

- Gas system
- Flow control
- LED control
- Heating
- Water cooling
- MEMS mics
- Acoustically OK
- Dimensions
 - Length: $42\,\mathrm{mm}$
 - Diameter: 7 mm
- To be tested
 - Equalization
 - Sensitivity

Péter Rucz The F			hotofol project
BME–HIT, Fraunhofer IBP	LAST introduction	21 st October 2021	9 / 11

Activities at the BME

Participation in teaching

- Online classes last year (mainly programming)
- Supervising undergraduate students
- PhD student: Mihály Ulveczki
- Projects
 - Currently: ANIMA development of the VCT
 - Drone detection project finished this summer

Collaboration

- Research with colleagues from the Dept. of Hydrodynamic Systems
- We recently submitted a journal paper

Péter Rucz The Photofol pro			hotofol project
BME–HIT, Fraunhofer IBP	LAST introduction	21 st October 2021	10 / 11

Thank you for your kind attention.

Péter Rucz The Photofol project			notofol project
BME–HIT, Fraunhofer IBP	LAST introduction	21 st October 2021	11 / 11