Image Processing - Intro

Tamás Szirányi

The path of light through optics

Camera Obscura, Gemma Frisius, 1558

Lens Based Camera Obscura, 1568

Still Life, Louis Jaques Mande Daguerre, 1837

Image matrix at the input

• Digital image = 2D pixel array; (x,y): pixel coordinates

Binary: b(x,y)

Grayscale: f(x,y) f(x,y) : 0 ... 255

Color image array

• Color image: 2D pixelarray (RGB)

Commonly-used Terminology

<u>Neighbors of a pixel</u> p=(i,j)

 $N_4(p) = \{(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)\}$

$$\begin{split} N_8(p) = &\{(i-1,j), (i+1,j), (i,j-1), (i,j+1), \\ &(i-1,j-1), (i-1,j+1), (i+1,j-1), (i+1,j+1)\} \end{split}$$

Adjacency

4-adjacency: p,q are 4-adjacent if p is in the set $N_4(q)$

8-adjacency: p,q are 8-adjacent if p is in the set $N_8(q)$

Note that if p is in $N_{4/8}(q)$, then q must be also in $N_{4/8}(p)$

Common Distance Definitions

Euclidean distance (2-norm)

D ₄ distance			
(city-block distance)			

D₈ distance (checkboard distance)

$2\sqrt{2}$	$\sqrt{5}$	2	$\sqrt{5}$	$2\sqrt{2}$
$\sqrt{5}$	$\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{5}$
2	1	0	1	2
$\sqrt{5}$	$\sqrt{2}$	1	$\sqrt{2}$	$\sqrt{5}$
$2\sqrt{2}$	$\sqrt{5}$	2	$\sqrt{5}$	$2\sqrt{2}$

4	3	2	3	4
3	2	1	2	3
2	1	0	1	2
3	2	1	2	3
4	3	2	3	4

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Picture elements

- Picture in 2D and 3D:
 - 2D: pixel (picture element)
 - 3D: voxel (volume element)
- Pixel geometry:

Neighborhood

- Neighborhood in 2D :
 - 4 or 8 connections

For 3D we have more cases:

– Side (6), edge(18), corner(26)

Resolution

C

Resolution

Sampling theorem

- Double highest frequency fits the sampling rate

Sampling theory

• Sampling is just the double:

Nyquist frequency

• OK

Nyquist sampling rate

• Bad rating:

Sampling Theorem

Sampled function:

$$f_s(x) = f(x)s(x) = f(x)\sum_{n=-\infty}^{\infty}\delta(x - nx_0)$$

Sampling Theorem

Sampled function:

Nyquist Theorem

When can we recover F(u) from $F_s(u)$?

Only if
$$u_{\max} \leq \frac{1}{2x_0}$$
 (Nyquist Frequency)
We can use
$$C(u) = \begin{cases} x_0 & |u| < \frac{1}{2x_0} \\ 0 & \text{otherwise} \end{cases}$$
Then $F(u) = F_s(u)C(u)$ and $f(x) = \text{IFT}[F(u)]$
Sampling frequency must be greater than $2u_{\max}$

Aliasing

Aliasing in Digital Images

FIGURE 2.24 Illustration of the Moiré pattern effect.

Image Formation Fundamentals

How are images represented in the computer?

Color images

Image formation

- There are two parts to the image formation process:
 - The <u>geometry of image formation</u>, which determines where in the image plane the projection of a point in the scene will be located.
 - The <u>physics of light</u>, which determines the brightness of a point in the image plane as a function of illumination and surface properties.

A Simple model of image formation

- The scene is illuminated by a single source.
- The scene reflects radiation towards the camera.
- The camera senses it via chemicals on film.

Pinhole camera

- This is the simplest device to form an image of a 3D scene on a 2D surface.
- Straight rays of light pass through a "pinhole" and form an inverted image of the object on the image plane.

Camera optics

- In practice, the aperture must be larger to admit more light.
- Lenses are placed to in the aperture to <u>focus</u> the bundle of rays from each scene point onto the corresponding point in the image plane

Image formation (cont'd)

- Optical parameters of the lens
 - lens type
 - focal length
 - field of view
- Photometric parameters
 - type, intensity, and direction of illumination
 - reflectance properties of the viewed surfaces
- Geometric parameters
 - type of projections
 - position and orientation of camera in space
 - perspective distortions introduced by the imaging process

Image distortion

• Distortion (barrel, cushion)

What is light?

- The visible portion of the <u>electromagnetic</u> (EM) spectrum.
- It occurs between wavelengths of approximately 400 and 700 nanometers.

Short wavelengths

- Different wavelengths of radiation have different properties.
- The <u>**x-ray**</u> region of the spectrum, it carries sufficient energy to penetrate a significant volume or material.

Long wavelengths

• Copious quantities of **infrared** (IR) radiation are emitted from warm objects (e.g., locate people in total darkness).

Long wavelengths (cont'd)

- "<u>Synthetic aperture radar</u>" (SAR) imaging techniques use an artificially generated source of microwaves to probe a scene.
- SAR is unaffected by weather conditions and clouds (e.g., has provided us images of the surface of Venus).

Range images

- An array of distances to the objects in the scene.
- They can be produced by sonar or by using laser rangefinders.

Sonic images

- Produced by the reflection of sound waves off an object.
- High sound frequencies are used to improve resolution.

CCD (Charged-Coupled Device) cameras

- Tiny <u>solid state cells</u> convert light energy into electrical charge.
- The image plane acts as a digital memory that can be read row by row by a computer.

Frame grabber

- Usually, a CCD camera plugs into a computer board (<u>frame</u> grabber).
- The frame grabber digitizes the signal and stores it in its memory (<u>frame buffer</u>).

Image digitization

Image digitization (cont'd)

Image quantization(example)

• 256 gray levels (8bits/pixel) 32 gray levels (5 bits/pixel) 16 gray levels (4 bits/pixel)

8 gray levels (3 bits/pixel)

4 gray levels (2 bits/pixel)

2 gray levels (1 bit/pixel)

Electromagnetic spectrum

Light: the Visible Spectrum

- Visible range: 0.43µm(violet)-0.78µm(red)
- Six bands: violet, blue, green, yellow, orange, red
- The color of an object is determined by the nature of the light *reflected* by the object
- Monochromatic light (gray level)
- Three elements measuring chromatic light
 - Radiance, luminance and brightness

Beyond Visible

- Gamma-ray and X-ray: medical and astronomical applications
- Infrared (thermal imaging): near-infrared and far-infrared
- Microwave imaging:
- Radio-frequency: MRI and astronomic applications

Thermal Imaging

Operate in infrared frequency

Human body disperses heat (red pixels)

Different colors indicate varying temperatures

EE465: Introduction to Digital Image Processing

Radar Imaging

Operate in microwave frequency

Energy of one photon (electron volts)

Magnetic Resonance Imaging (MRI)

Operate in radio frequency

knee

spine

head

Comparison of Different Imaging Modalities

Fluorescence Microscopy Imaging

Operate in ultraviolet frequency

EE465: Introduction to Digital Image Processing

X-ray Imaging Operate in X-ray frequency

chest

EE465: Introduction to Digital Image Processing

Positron Emission Tomography

Operate in gamma-ray frequency

Energy of one photon (electron volts) 10^{2} 10^{-2} 10^{-5} 10^{-7} 105 10^{3} 10^{1} 10^{-1} 10^{-3} 10^{-4} 10^{-6} 10^{-8} 10-9 10^{-1} ∩4 Radio waves Gamma rays X-rays Ultraviolet Visible Infrared Microwaves

Single-sensor Imaging

EE465: Introduction to Digital Image Processing

"Motion" Aids Imaging

FIGURE 2.13 Combining a single sensor with motion to generate a 2-D image.

Sensor Array: CCD Imaging

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Formation Model

f(x,y)=i(x,y)r(x,y)

$$0 < f(x,y) < \infty$$

Intensity – proportional to energy radiated by a physical source

 $0 < i(x,y) < \infty$

illumination

0 < r(x, y) < 1 reflectance

Sampling and Quantization: 1D Case

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

2D Sampling and Quantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Introduction to Grayscale Images

Image acquisition

- OLight and Electromagnetic spectrum
- OSampling and Quantization

Image perception

Structure of human eyesImage formation in human eyesHuman vision system

Image representation

- OSpatial and bit-depth resolution
- OLocal neighborhood

Human Eye Structure

FIGURE 2.1 Simplified diagram of a cross section of the human eye.

Pupil size: 2-8mm

Eye color: melanin (pigment) in iris

Retina

- When the eye is properly focused, light from an outside object is imaged on the retina
- Two classes of receptors are located over the surface of retina: cones and rods
 - Cone: 6-7 million in each eye, central part of retina (fovea) and highly sensitive to color
 - Rod: 75-150 million, all over the retina surface and sensitive to low levels of illumination

Image Formation in the Eye

Focal length: 14-17mm

Length of tree image≅2.55mm

For distant objects (>3m), lens exhibits the least refractive power (flattened)

For nearby objects (<1m), lens is most strongly refractive (curved)

Diagrammatic representation of the structure and relative position of the active elements of the retina

Eye Physiology

• Rods are more sensitive to light than the cones.

FIGURE 2.2-2. Sensitivity of rods and cones (7) [based upon measurements by Wald (8)].

FIGURE 2.2-3. Distribution of rods and cones on the retina (4).

Eye Physiology

- The eye contains about 6.5 million cones and 100 million rods distributed over the retina.
- The density of the cones is greatest at the fovea, this is the region of sharpest photopic vision.

Rods and Cones in Retina

FIGURE 2.2 Distribution of rods and cones in the retina.

EE465: Introduction to Digital Image Processing

Eye Physiology

- There are three basic types of cones in the retina
- These cones have different absorption characteristics as a function of wavelength with peak absorptions in the red, green, and blue regions of the optical spectrum.

FIGURE 2.2-4. Typical spectral absorption curves of pigments of the retina (10).

Eye Physiology

- The optic nerve bundle contains on the order of 800,000 nerve fibers.
- There are over 100,000,000 receptors in the retina.
- Therefore, the rods and cones must be interconnected to nerve fibers on a many-to-one basis.

Contrast Sensitivity

Just noticeable difference (JND) at 2%

Just noticeable difference (JND) at 2%

Just noticeable difference (JND): 4% (top) and 2% (bottom)

Just noticeable difference (JND): 4% (top) and 2% (bottom)

- The response of the eye to changes in the intensity of illumination is nonlinear
- Consider a patch of light of intensity i+dI surrounded by a background intensity I as shown in the previous figure

- Over a wide range of intensities, it is found that the ratio dl/l, called the Weber fraction, is nearly constant at a value of about 0.02.
- This does not hold at very low or very high intensities
- Furthermore, contrast sensitivity is dependent on the intensity of the surround. Consider the second panel of the previous figure.

Brightness Adaptation

Brightness Discrimination

FIGURE 2.5 Basic

experimental setup used to characterize brightness discrimination.

Weber ratio= $\Delta I/I$

FIGURE 2.6

Typical Weber ratio as a function of intensity.

Mach Bands

Distance from left edge

EE465: Introduction to Digital Image Processing

Simultaneous Contrast

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions

Introduction to Grayscale Images

Image acquisition

 Light and Electromagnetic spectrum
 Sampling and Quantization

 Image perception

 Structure of human eyes
 Image formation in human eyes
 Human vision system

Image representation

Spatial and bit-depth resolutionLocal neighborhood

Image Represented by a Matrix

Coordinate convention used in this book to represent digital images.

Spatial resolution

Bit-depth resolution

Bit-depth Resolution

a b c d

FIGURE 2.21

(a) 452×374 , 256-level image. (b)–(d) Image displayed in 128, 64, and 32 gray levels, while keeping the spatial resolution constant.

EE465: Introduction to Digital Image Processing

Bit-depth Resolution (Con'd)

e f g h

FIGURE 2.21

(Continued) (e)–(h) Image displayed in 16, 8, 4, and 2 gray levels. (Original courtesy of Dr. David R. Pickens, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center.)

High Dynamic Range Imaging

Q: Can we generate a HDR image (16bpp) by a standard camera? A: Yes, adjust the exposure and fuse multiple LDR images together

Spatial Resolution

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Image Resampling

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Towards Gigapixel

Mega-pel

Giga-pel

Photographers and artists have manually or semi-automatically stitched hundreds of mega-pel pictures together to demonstrate how a giga-pel picture looks like \rightarrow **the power of pixels**

http://triton.tpd.tno.nl/gigazoom/Delft2.htm

Block-based Processing

Image file formats

- Many image formats adhere to the simple model shown below (line by line, no breaks between lines).
- The header contains at least the width and height of the image.
- Most headers begin with a <u>signature</u> or "magic number" a short sequence of bytes for identifying the file format.

Comparison of image formats

Image File Format	No. Bytes "Hi"	No. Bytes "Cars"
PGM	595	509,123
GIF	192	138,267
TIF	918	171,430
PS	1591	345, 387
HIPS	700	160,783
JPG (lossless)	684	49,160
JPG (lossy)	619	29,500