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Pitch detection and tracking is a classical problem of signal processing. Over the years, many approaches 
have been elaborated that can be applied in various fields, including the analysis of musical or speech 
signals. In this contribution, a method is introduced for extracting the frequencies and amplitudes of 
partials in transient musical signals, intended to be used for post-processing recorded audio samples. A 
band-pass filtered and a complex base-band signal are created, which are processed block by block. In each 
block, the frequency of each partial is assumed to be constant, while the amplitude varies exponentially with 
a constant growth rate in time. These parameters are found by means of a least-squares fit performed on the 
complex, base-band signal. Then, the signal block is reconstructed by fitting a harmonic function onto the 
corresponding block of the band-pass filtered signal. The performance of the proposed technique is 
compared with that of an other method applicable for pitch detection and tracking. The above signal 
processing strategy is applied for analyzing sound samples of an artificially blown tenor recorder. Systematic 
frequency changes are found during the attack stage, which are interpreted by analyzing the jet-drive model 
of sound production by the recorder.
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1. INTRODUCTION

Pitch detection and tracking are classic problems of signal processing. Many approaches were developed
in the last few decades, aiming at various fields of applications, such as music or speech processing, among
others. In this contribution an approach is proposed for identifying and tracking the changes of the frequen-
cies and magnitudes of partials in transient musical samples. The objective of this paper is to introduce this
method and demonstrate its application by analyzing recorded sound samples.

The proposed technique processes the signal in a block-by-block manner and makes use of complex
modulation and least-squares fits for estimating the parameters of the signal. In its present form, the pro-
posed approach is an offline method, and real-time processing is out of scope. In this paper, the approach is
applied for analyzing the attack transients of a tenor recorder, sounded with different fingerings and blowing
pressures. The method is shown to be capable of reliably tracking the rapid variations of the frequencies and
amplitudes of the most significant partials during the onset of the sound.

The paper is structured as follows. Section 2 introduces the proposed method as well as an alternative
strategy based on the extended Kalman filter. The attack transients of a tenor recorder are analyzed in
Section 3 and the temporal growths and the frequencies of the partials are examined in detail. Explanations
to the observed changes of the frequencies during the attack transient are sought in Section 4 by using
a phase lock condition derived for a simplified jet-drive model of the recorder in the complex frequency
domain. Finally, Section 5 concludes the paper by a brief summary.

2. METHODOLOGY

A. SIGNAL MODEL

The attack transients of air jet instruments are characterized by the following properties. In the onset of
the sound a transition from the edge tone to the “pipe” tone is observed. First, the aeroacoustic sources of
the oscillating air jet dominate the spectrum, while the vibrations of the air column enclosed in the resonator
develop slower. In the attack, multiple acoustical modes can be excited at once, while a single mode becomes
dominant finally in the steady state. These two phenomena lead to the observation that the partials develop
with different envelopes in time and their frequencies are also expected to change during the transient. The
attack transients of flute-like instruments have already been analyzed in various studies;1–3 however, to the
best knowledge of the authors, the frequency variations of the partials were not yet examined in detail.

The analyzed signal p(t) is assumed to be composed of N partials, whose amplitude, frequency and
phase shift is expected to vary slowly in time:

p(t) ≈
N∑

n=1

P̃n(t) cos
(
2πf̃n(t)t+ ϕ̃n(t)

)
+ ν(t), (1)

where P̃ , f̃ , and ϕ̃ are the slowly varying amplitude, frequency, and phase, respectively, with the subscript n
referring to the n-th partial, and ν(t) represents an additive noise that is not correlated to any of the partials.
By slowly varying it is supposed that the relative change of the respective quantity is small in one period.

While the signal model was introduced here for air reed instruments, various other kinds of musical
instruments (e.g. strings, woodwinds, or brass instruments) produce similar signals. Thus, the method may
be applied for analyzing sound samples of a large variety of instruments.

B. THE PROPOSED APPROACH

The proposed method estimates the parameters p̃, f̃ , and ϕ̃ of the signal in three different paths, as
shown in Figure 1. The input signal p(t) is sampled at discrete time instances p[k] = p(kTs), with Ts

P. Rucz et al. Frequency and amplitude tracking in transient musical signals

Proceedings of Meetings on Acoustics, Vol. 49, 035016 (2023) Page 2



p(t)

p[k]

Stationary
detection

FFT
analysis

Modulation
e−2πjf̂nt

Lowpass

Bandpass

Block
segments

Index: i

LS fit
∆fn,i αn,i

LS fit
Pn,i ϕn,i

Signal
resynthesis

Partial
freqs.: f̂n

fn,i, αn,i

Signal paths

Parameter paths

Figure 1: Block scheme of the proposed method

denoting the sampling interval. First, the stationary section of the signal is detected and a frequency analysis
is performed using the fast Fourier transform. From this step, an estimate on the frequencies of the partials
f̂n (n = 1, 2 . . . N ) is attained. It is noted, that this step can also be skipped if an a priori estimate on the
frequencies of the partials is available.

The other two paths process the signal partial-by-partial. In the base-band branch (middle branch in
Figure 1), a complex modulation is performed, using the modulation signal exp(−2πjf̂nt). Then, low-
pass filtering is applied and a slowly varying base-band signal is attained. In the band-pass branch (bottom
branch in Figure 1), a band-pass filter with a center frequency of f̂n is applied. Both the base-band and
the band-pass filtered signals are segmented into possibly overlapping blocks. Then, in each block i, the
frequency fn,i = f̂n +∆fn,i and the temporal growth rate αn,i of the signal are assumed to be constant and
the parameters ∆fn,i and αn,i are determined by means of a least-squares fit procedure, which is discussed
in detail in the sequel. Once these two parameters are attained, the output of the band-pass filter is utilized
for fitting the amplitude Pn,i and phase shift ϕn,i. Performing the fits on successive blocks of the signal
allows for the reconstruction (re-synthesis) of the original signal from the partials.

By means of the modulation by exp(−2πjf̂nt), a complex valued signal is attained, whose spectrum is
shifted by −f̂n on the frequency axis due to the modulation property of the Fourier transform:

pmod,n = p(t) exp(−2πjf̂nt). (2)

The slowly varying frequency f̃n will be shifted close to f ≈ 0 if the estimate f̂n approximates fn well.
Applying the low-pass filter on the modulated signal filters out other partials, and a slowly varying

complex exponential signal is found on the output of the filter:

plpf,n(t) = P̃n(t) exp
(
2jπ∆fn(t)t+ ϕ̃n(t)

)
+ νn(t), (3)

where ∆fn(t) = f̃n(t) − f̂n is the slowly varying frequency difference and νn(t) is the residual signal of
the n-th low-pass filter that contains the noise let through by the filter and residuals from other partials not
being completely suppressed.

The effect of the complex modulation and low-pass filtering on a periodic signal is depicted in Figure 2.
As an example, a signal with a frequency of 113.5Hz was taken, and the modulation frequency was set
to 105Hz. The low-pass filter is a fourth order Butterworth filter with a cutoff frequency of 25Hz. The
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Figure 2: Illustration of complex modulation and filtering on a periodic signal. Left column: time domain signals.
Right column: spectra. Top row: original signal. Bottom row: modulated signal and the effect of low-pass filtering.

diagrams in the first row of Figure 2 show the original signal in the time and frequency domains. The shift
of the spectrum and the effect of the low-pass filter is illustrated in the frequency domain in the bottom right
diagram. The effect in the time domain is visible in the bottom left, where the settle time of the filter is also
marked. It should be noted that the filter shifts the phase of the signal. However, in an offline application
this shift is avoided by applying the filter twice: first on the original signal and for the second time on the
time-reversed signal. Thus, the square of the magnitude characteristics and a zero phase shift is attained.
Such a filtering procedure is available in the filtfilt function of Matlab,4 for example.

If a short block of the signal is taken, it can be assumed that the frequency difference ∆fn and the
phase shift ϕn are constant in the block. Furthermore, it can also be supposed that the amplitude P̃n varies
exponentially in the block. With these assumptions, the ratio of two subsequent samples of the output of the
low-pass filter is written omitting the effect of the noise as:

γn[k] =
plpf,n[k + 1]

plpf,n[k]
≈ exp(αnTs) exp(2jπ∆fnTs) = γn, (4)

where αn is the temporal growth rate of the n-th partial, and γn is independent of k because of assuming a
constant frequency and temporal growth rate within one block.

The value of γn is found by solving the overdetermined set of equations, written for the pairs of succes-
sive samples in a signal block consisting of L samples, by means of a least-squares fit:

plpf,n[0]

plpf,n[1]
...

plpf,n[L− 1]

 γn =


plpf,n[1]

plpf,n[2]
...

plpf,n[L]

 . (5)
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Evaluating the relative error of the fit by substituting the resulting γn back into (5) gives a useful indicator
on the goodness of the fit and the correctness of assuming a single complex exponential in the filtered signal
block. Repeating the same procedure for each block i, gives the block-wise estimates γn,i, from which the
frequency differences ∆fn,i and the temporal growth rates αn,i are found as

∆fn,i =
∠γn,i
2πTs

, αn,i =
log |γn,i|

Ts
. (6)

While the base-band signal already contains the phase shift and the amplitude of the n-th partial, we
propose to evaluate the amplitude and the phase shift from the band-filtered signal. This approach provides
somewhat more flexibility, as a filter with different characteristics can be chosen in the low-pass and band-
pass branches. However, the advantages of using different filters is yet to be explored. The output of the
band-pass filter is assumed to take the form for the n-th partial in the i-th block

pn,i(t) = An,i exp (αn,it) cos
[
2π(f̂n +∆fn,i)t

]
+Bn,i exp (αn,it) sin

[
2π(f̂n +∆fn,i)t

]
. (7)

The coefficients An,i and Bn,i are found by applying a least-squares fit anew. The amplitude Pn,i =√
A2

n,i +B2
n,i and phase ϕn,i = tan−1(Bn,i/An,i) are also found immediately.

C. EXTENDED COMPLEX KALMAN FILTER

As an alternative approach, a Kalman filter-based frequency tracking method was also examined. The
Kalman filter is a state estimator that predicts the state vector x based on the vector of observations y and
the presumed dynamic behavior of the system. While the Kalman filter is optimal for linear systems, its
extensions (such as the extended and unscented Kalman filters, or particle filters) make it applicable in case
of nonlinear systems as well. The discrete-time equations for a nonlinear dynamic system are written as

x[k + 1] = f(x[k]) +w[k] (8)

y[k] = h(x[k]) + v[k] (9)

The operation denoted by f produces the next state from the current one, while h gives the observation
y from the state vector. The vectors w and v are random samples representing the additive noise. It is noted
that it was assumed here that the system has no inputs. The two equations (8) and (9) are often referred to
as the state equation and the observation equation, respectively.

The block scheme of the Kalman filter is depicted in Figure 3. Two kinds of superscripts are introduced
in the block diagram: the superscript − refers to an estimated value, while values with a superscript +
denote variables that are already updated based on the actual observations.

In a recent paper by Das et al.,5 an extended complex Kalman filter (ECKF) was used for tracking the
fundamental frequency of a musical signal. Here, the latter approach was implemented and utilized to be
able to compare the results of the proposed method to an alternative strategy. For the ECKF, we suppose
that the observations are samples of a quasi-harmonic signal:

y[k] = ã cos(ω̃kTs + ϕ̃) + v[k], (10)

with the slowly varying amplitude ã, angular frequency ω̃, and phase ϕ̃. The variance of the noise v is
denoted by σ2

v . Following the approach published by Dash et al.,6 the state space vector x is chosen as

x[k] =

 β[k]

u[k]

u[k]∗

 =

 exp(jωTs)

a exp(jωkTs + jϕ)

a exp(−jωkTs − jϕ)

 , (11)
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Figure 3: Block structure of the Kalman filter

where the superscript ∗ denotes complex conjugate.
This choice leads to the discretized system:

x[k + 1] = f(x[k]) = F[k] · x[k] =

1 0 0

0 β[k] 0

0 0 β[k]∗

 ·

 β[k]

u[k]

u[k]∗

 (12)

y[k] = h(x[k]) = H · x[k] = [0 0.5 0.5] · x[k] (13)

The estimated amplitude â, frequency f̂ , and phase ϕ̂ are found at each time step k as:

â[k] =
√

û[k]û[k]∗

ϕ̂[k] =
1

2j
ln

(
û[k]

û[k]∗β̂[k]2k

)

f̂ [k] =
ln β̂[k]

2πjTs

(14)

The Kalman filter estimates the state vector x̂ for each sample of the signal. First, a predicted state x̂− is
generated using (12). Then, a prediction of the output vector ŷ− is computed using (13). The estimated state
x̂+ is a result of updating the prediction x̂− using the innovation d = y − ŷ−, and the feedback matrix K.
The latter feedback matrix is computed making use of the estimated covariance matrix of the predicted
state vector and the assumed variance of the observation vector y. Finally, the estimated covariance matrix
corresponding to the state vector x+ is also updated.

The prediction of the covariance matrix of x− involves two terms. First, the Jacobian of ∂f/∂x is
utilized for propagating the covariance of x+. Second, an additive term, called the covariance matrix of the
process noise, denoted by Q, is added to the estimated variance. Essentially, the Kalman filter performs
a weighted averaging between the state inferred from the observation and the predicted state, where the
weights are inversely proportional to the variances. Therefore, by increasing the assumed process noise Q
the filter will follow the observation (i.e., the signal y in our case) more closely, which results in a faster
settling of the filter, but comes at a cost of the filter becoming more sensitive to the measurement noise.

Das et al.5 proposed an adaptive choice for the process noise: Q[k] = Iσ2
w[k], where

log10
(
σ2
w[k]

)
= −c+

∣∣y[k]− ŷ−[k]
∣∣ , (15)

and c is a positive scalar. This approach is also adopted here, with a slight improvent of introducing a
diagonal pre-factor for the process noise

Q[k] = diag ⟨qd⟩σ2
w[k], (16)
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where qd is a vector with three positive elements and diag ⟨·⟩ represents a diagonal matrix constructed
from the elements inside the brackets. This modification is reasonable as the elements of the estimated
state vector x̂ contain different parts of information on the three estimated parameters. The first element β̂
represents only the estimated frequency, while the other two elements are related to the frequency, phase,
and amplitude at once. For example, if the amplitude of the signal is expected to vary while its frequency is
constant, the first element in qd can be remarkably smaller than the other two elements.

It is worth mentioning that in the paper by Das et al.5 the Kalman filter is supplemented by other
features, including onset detection and note change detection; however, these options are not used here.
In the following examples, when the proposed method and the ECKF are compared, the input of the Kalman
filter is always a band-filtered signal in which only one partial of the sound signal is dominant.

3. ANALYSIS OF THE ATTACK TRANSIENTS OF A TENOR RECORDER

Sound recordings of a Yamaha YRT-304B II tenor recorder were made at the pipe organ laboratory
of the Fraunhofer Institute for Building Physics in Stuttgart, Germany. The recorder was placed into the
research pipe organ, on top of one of the windchests designed to suite experimental organ pipes. An airtight
sealing between the mouthpiece of the recorder and the windchest of the pipe organ was provided. A valve
installed in the windchest was applied for closing or opening the flow into the mouthpiece of the recorder.
The pressure inside the windchest could be controlled by adjusting the frequency of the fan of the pipe
organ’s wind system in the range of 0 to 1 250Pa. A Honeywell 163PC01D36 pressure sensor was utilized
for measuring the pressure inside the windchest.

The sound radiated by the recorder was measured using a 1/2” GRAS 46AF condenser microphone with
a 26TK type preamplifier. The microphone was located in front of the mouth of the recorder at a distance
of 150 ± 5mm. A Brüel & Kjær Nexus type 2690-OS2 conditioning amplifier was used for amplifying
the microphone signal. Both the windchest pressure and amplified microphone signals were sampled and
recorded synchronously by a Data Translation DT9836 16-bit data acquisition card running at a sampling
frequency of 40 kHz (Ts = 25µs).

Various recordings of different fingerings were taken using the above measurement setup. In the transient
recordings, the frequency of the fan and thus the windchest pressure was kept constant. The recorder was
sounded three times with each sound lasting for ≈ 5 seconds with ≈ 3 seconds pause between them with
opening and closing the valve in the windchest manually. By analyzing the signal of the pressure sensor
located inside the windchest showed that the manual opening of the valve gave reproducible measurements.
This pressure signal was also used as the trigger signal of the transient frequency analysis.

First, the analysis of the attack transient of the E4 note (fundamental frequency ≈ 330Hz) is discussed.
The windchest pressure was set to 120Pa, and the recorder was sounded three times. Figure 4 displays
the results of the analysis of one of the three sounds. The steady state spectrum is depicted in Fig. 4(a).
Naturally, harmonic partials dominate in the steady state spectrum, with the first three partials (fundamental,
octave, and fifth) having the highest levels. Diagram 4(b) displays the reconstruction of the attack signal
using the proposed method. The analysis parameters were set as follows. Both in the base-band and the
band-pass branch Butterworth filters (orders 5 and 4, respectively) were used with a bandwidth of b = f̂1/4,
where f̂1 ≈ 332Hz resulting from the FFT analysis of the steady state part. The block size was 128 samples
with an overlapping of 50%, which results in a temporal resolution of frequency and temporal growth rate
values of 1.6ms. As it is visible, a very good reconstruction is already attained with using three components,
while adding more partials further reduces the difference compared to the original signal. The development
of the second partial is also worth observing here: in the early stage of the attack this partial grows very
quickly but then its amplitude diminishes and the fundamental component becomes clearly dominant.

The tracking of the development of the fundamental component both by the proposed method and the
ECKF is shown in Fig. 4(c). For this comparison, the input signal of the ECKF is chosen as the band-
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Figure 4: Analysis of the E4 note of the tenor recorder. Blowing presure: 120Pa.

pass filtered signal corresponding to the fundamental component. As described in Section 2.3, the tracking
behavior of the Kalman filter depends on the assumptions made on the process and measurement noises.
Here, the coefficient in (15) was set to c = 3 and the diagonal pre-factor qd = [1 10 10] was used. This
choice led to a filter that follows the changes of the parameters of the input signal quite rapidly, while it
allows the estimated frequency, phase, and amplitude to fluctuate a bit from sample to sample. In general,
increasing the coefficient c leads to a slower tracking with smaller variance of the estimated state. As it
is seen, both methods capture the temporal changes of this partial quite well. The relative L2 errors of
the two methods were also evaluated and the proposed method was found to give a slightly smaller error
than the ECKF. The almost perfect reconstruction of the partials was also made audible by subtracting the
re-synthesized signal from the original recording. In this case, only the background noise is heard first,
and when the recorder starts to sound, an increased amount of flow noise is heard, which results from the
microphone being located near to the mouth of the recorder.

Diagram 4(d) displays the change of the frequency of the fundamental component in the attack transient
evaluated using both methods. Interestingly, while both approaches reconstruct the signal quite accurately,
the predicted frequencies differ remarkably for the first 20–25 periods of the sound. (Compare the curves:
“ECKF: from state” and “Proposed: frequency”.) The latter discrepancy can be explained by an inherent
ambiguity that arises when the frequency and phase of the signal has to be estimated at the same time: the
change of the running phase of the signal may be attributed to a change of its frequency as well as a variation
of the phase shift (phase modulation). As the ECKF has to estimate both quantities ϕ̂ and f̂ from a single
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Figure 5: Frequency and temporal growth rate of the first two partials in the attack transient of the E4 note.
The three colors denote three subsequent recordings with the same conditions. Top row: frequency. Bottom row:
temporal growth rate. Left column: fundamental. Right column: second partial.

sample, the deviation of the estimated and the observed sample will cause a change of both the phase and
the frequency estimation. To highlight this ambiguity, two additional curves are also plotted in Fig. 4(d)
(“ECKF: from phase” and “Proposed:from phase”), where the frequency of the signal is calculated from the
change of the running phase in one signal block. As it is visible, when the frequency is extracted from the
running phase, the frequency estimation of the ECKF is much closer to that of the proposed method, yet the
variance of the estimation is greater. It is also worth noting that the initial frequency estimation of the ECKF
also stems from the spectral analysis of one block of the signal (256 samples in our case). As in the attack
transient, the frequency of the signal varies, the initial frequency guess is sensitive to the timing of the first
analysis window. For the proposed method, the phase–frequency ambiguity is mitigated by approximating
both quantities from a block of samples instead of a single observation. When the frequency is extracted
from the phase shifts of subsequent time windows, the result matches almost perfectly with the estimated
frequency (see the curves “Proposed: frequency” and “Proposed: from phase”).

Next, the frequency and the temporal growth rate of the first two partials (fundamental and octave) of the
same E4 note are analyzed in more detail using the proposed method. The results are depicted in Figure 5
with the three curves in each of the diagrams showing the analysis of the three subsequent sounds taken
using the same setup. While it is a known feature of wind instruments that subsequent attack transients
exhibit some variations,7 the results of the evaluation were found to be well reproducible.

Looking at the frequencies of the first two partials, it is visible that both vary significantly in the first
few tens of milliseconds of the attack. It is also interesting to observe that the two partials are not harmonic
in the early stage of the attack (t < 0.06 s in the figure). This observation is explained by the first two,
slightly inharmonic acoustical modes of the resonator being simultaneously excited by the air jet in the early
stage of the attack. After an initial “overshoot”, the frequency of the fundamental component converges
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Figure 6: Frequency of the fundamental component as a function of the temporal growth rate during the attack.

to its steady state value from below, while in case of the second partial no overshoot was observed. By
comparing the temporal growth rates, the quicker development of the second partial is clearly observed, its
maximal temporal growth rate is about three times as high as that of the fundamental. It is also visible that
α2 becomes negative for 0.65 < t < 0.15, which is in correspondence with the results of Fig. 4(b), where
the second partial visibly diminishes after its initial growth.

It is instructive to display the frequency of the fundamental component as a function of the temporal
growth rate. Figure 6 compares the notes E4 and C5. Here, the three colors also denote three repetitions of
the same note. As it is visible, two different behaviors are found: for E4 the frequency gradually increases
as the temporal growth rate decreases during the attack stage, while for the C5 note, the frequency of the
fundamental decreases with decreasing the temporal growth. Notes of the diatonic scale from C4 to G5
were analyzed, and it was found that notes clearly form two groups regarding this behavior. Notes from
C4 to G4 behave similar to E4, and notes from A4 to G5 exhibit a behavior similar to that of C5. In the
next section an attempt is made to explain this interesting observation at least qualitatively by a simplified
physical model of recorder-like instruments.

4. INTERPRETATION BY A TRANSIENT JET-DRIVE MODEL

A simplified model of sound generation in a recorder-like instrument is based on the McIntyre – Wood-
house – Schumacher model,8 that represents the excitation mechanism as a nonlinear system and the acous-
tical resonator as a linear one. There are different possibilities for modeling the excitation of the resonator
by an oscillating air jet, jet-drive and discrete vortex models9 being two of the alternatives. Here, a state-of-
the-art lumped jet-drive model10 is considered.

The jet-drive model, depicted schematically in Figure 7 assumes that the jet emerging from the windway
of the instrument takes up a Bickley profile while it propagates to the upper lip (labium). The jet is sensitive
to cross-stream perturbations of the velocity field, and its most sensitive region is located near the exit of
the windway. The acoustical particle velocity which results from the resonator reflecting the pressure waves
generated by the jet,11 causes a perturbation of the velocity field of the jet. The perturbation propagates
with an effective velocity of ≈ 0.4ujet, with ujet denoting the maximum velocity of the jet at the windway
exit. At the same time, the perturbation waves are amplified by the jet, with the displacement becoming
η at the edge. The time delay of the perturbation from the windway exit to the labium is denoted by τ .
The oscillation of the air jet results in an oscillating volume flow in and out of the resonator. Assuming
incompressibility in the small region of the mouth opening results finally in a dipole pressure source ∆p
driving the resonator.
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Figure 7: Illustration of the lumped jet-drive model.

The resonator is characterized by its frequency dependent input admittance Yin(ω), which is the ratio of
the particle velocity response v and the driving pressure ∆p. The input admittance of the tenor recorder was
computed in the frequency domain using a one-dimensional acoustical model that takes closed and open
toneholes, as well as wall and radiation losses into account. Following Terrien et al.,10 the input admittance
is decomposed into M modes, each mode represented by its eigen angular frequency ωm, damping factor
ξm, and magnitude Fm (m = 1, 2, . . .M ):

Yin(ω) ≈
a0

jωb0 + c0
+

M∑
m=1

jωFm

ω2
m + 2jωωmξm − ω2

. (17)

In a recent paper by the authors,12 the jet–drive model was extended into the complex frequency domain,
allowing for the examination of transient effects, where the magnitude of the signals is allowed to vary
exponentially in time. The Laplace variable is introduced as s = α+ jω and a time dependence of exp(st)
is assumed. Both the stability analysis of the jet and the model of the resonator was extended into the
complex frequency domain, and different conditions for self-sustained oscillations were investigated. Here,
for the sake of simplicity, only the phase lock condition is examined, written for the n-th aerodynamic mode
of the air jet as:

− 2nπ = ∠Yin(f)− 2πfτ(f)− 3π

2
n = 1, 2, . . . (18)

The phase lock condition states that for self-sustained oscillations, the phase delay of the resonator and
that of the perturbations traveling with the jet should give exactly n whole cycles. The constant of −3π/2
incorporates that v points outward of the resonator and contains a conversion from displacement to velocity.

The phase lock condition (18) is solved for the frequency f at different blowing pressures. The graphical
representation of the solution is illustrated in Figure 8. In the left diagram the poles of the resonator are
shown over the complex plane. As the resonator is a passive system, all its poles are located on the left
half-plane. The three dashed-lines illustrate three different temporal growth rates that are also shown by the
same colors on the right hand side of the figure. As it is visible, as the temporal growth rate increases, the
frequency axis moves away from the poles resulting in less steep peaks of the magnitude diagram and the
phase jumps near the poles becoming less abrupt.

The graphical solution of the phase lock condition is shown for two different blowing pressures on the
bottom right phase diagram of Figure 8. For the sake of simplicity, the frequency and temporal growth rate
dependence of the phase velocity of the perturbations were not taken into account here. As it is visible,
including the temporal growth in the model results in a change of frequency. The markers ▲ / ▼ denote the
two cases where the oscillation frequency increases / decreases with increasing the temporal growth rate.
The two inlays on the diagram zoom on the intersection points for the two cases.

While the lumped jet–drive model operates with many simplifications, and its extension into the complex
frequency domain is non-trivial for the jet oscillations, it still can qualitatively explain the observed changes
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Figure 8: Phase lock condition in the complex frequency domain. Left: poles of the input admittance. Right:
Bode diagram with different temporal growth rates α = Re(s). The bottom right diagram illustrates the change of
frequencies resulting from the change of the temporal growth rate for two different blowing pressures.

of the fundamental frequency during the attack transient. A more detailed and quantitative analysis requires
further investigations. The experimental validation of the complex frequency model of the jet is also a
challenging task.

5. SUMMARY AND OUTLOOK

This paper introduced a method for the detailed analysis of the frequencies and amplitudes of partials in
transient musical signals. Relying on the assumption that the signal is composed of partials whose frequency,
amplitude, and phase vary slowly in time, a block-processing approach was proposed, which uses complex
modulation and least squares fits to estimate the time-varying parameters of the signals.

The proposed method was used for the analysis of the recordings made on a tenor recorder with dif-
ferent fingerings. The attack transients of the sounds were analyzed, and the results of the proposed signal
processing method were compared to an alternative strategy that uses the extended complex Kalman filter.
Both methods were found to be capable of tracking the changes of the amplitude and estimate the frequency
of the signal. For the ECKF, the inherent ambiguity of the phase and frequency estimation from a single
observation renders the transient frequency tracking challenging.

Very interestingly, the frequency analysis of the recorder sounds revealed that notes clearly form two
groups: from C4 to G4 the frequency of the fundamental component gradually increases during the attack
(the frequency increases as the temporal growth rate decreases), while for A4 to G5, the opposite behavior
was observed. The explanation of these unexpected results were sought for using a lumped jet-drive model
of the recorder, which has been extended into the complex frequency domain. It was found that the latter
model is capable of at least qualitatively explaining the changes of the frequency during the attack transient.

The proposed method seems to be promising for analyzing transients of musical signals. The authors
plan to apply the approach on sound samples of various wind and string instruments. Different options
regarding the filter choices of the base-band and band-pass stages are also to be explored.

P. Rucz et al. Frequency and amplitude tracking in transient musical signals

Proceedings of Meetings on Acoustics, Vol. 49, 035016 (2023) Page 12



ACKNOWLEDGMENTS

This work has been supported by the Hungarian National Research, Development and Innovation Office
under contract No. K 143436.

REFERENCES

1 M. Castellengo. Acoustical analysis of initial transients of flute-like instruments. Acustica-Acta Acustica,
85:387–400, 1999.

2 A. Miklós and J. Angster. Properties of the sound of flue organ pipes. Acustica-Acta Acustica, 86(4):611–
622, 2000.

3 A. Ernoult and B. Fabre. Temporal characterization of experimental recorder attack transients. Journal of
the Acoustical Society of America, 141(1):383–394, 2017.

4 Mathworks Inc. filtfilt: Zero-phase digital filtering. https://mathworks.com/help/
signal/ref/filtfilt.html Accessed: 10/31/2022.

5 O. Das, J. O. Smith, and C. Chafe. Improved real-time monophonic pitch tracking with the extended
complex Kalman filter. Journal of the Audio Engineering Society, 68(1/2):78–86, 2020.

6 P. K. Dash, R. K. Jena, G. Panda, and A. Routray. An extended complex Kalman filter for frequency
measurement of distorted signals. IEEE Transactions on Instrumentation and Measurement, 49(4):746–
753, 2000.

7 J. Angster, P. Rucz, and A. Miklós. Acoustics of organ pipes and future trends in the research. Acoustics
Today, 13(1):12–20, 2017.

8 M. E. McIntyre, R. T. Schumacher, and J. Woodhouse. On the oscillations of musical instruments. Journal
of the Acoustical Society of America, 74(5):1325–1345, 1983.

9 R. Auvray, A. Ernoult, B. Fabre, and P.-Y. Lagrée. Time-domain simulation of flute-like instruments:
Comparison of jet-drive and discrete-vortex models. Journal of the Acoustical Society of America,
136(1):389–400, 2014.

10 S. Terrien, C. Vergez, B. Fabre, and D. Barton. Calculation of the steady-state osciallations of a flute
model using the orthogonal collocation method. Acustica-Acta Acustica, 100:690–704, 2014.
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