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Motivation

» The acoustical wave equation is a PDE (partial differential
equation). Such equations are generally very hard to solve,
analytical solutions only exsist in very simple, idealized cases.

» |f the so-called fundamental solution of the PDE is known,
instead of solving the PDE, we only need to calculate a
convultion integral to get the solution of a particular problem.!

» In bounded domains, boundary conditions (BCs) must also be
accounted for. The generalization of the fundamental solution
that also satisfies some BC is called the Green'’s function.

» In simple cases, the Green's function can be constructed using
the method of images.

> We will apply these construntions for calculating the static
displacement of a membrane under spatially distributed load.

!Note that calculating an integral is a much easier task than solving a PDE.



Definitions

» Fundamental solution
The solution F(x,xq) of the linear PDE

L{F(x,x0)} = —d(x — xq) x € RY

Is called the fundamental solution of the PDE. Note that
x € RY, which means that the domain is open.?

» Green's function
The solution G(x,xg) of the linear PDE and a homogeneous
BC defined over the whole boundary ' = 9Q

L{G(x,x0)} = —d(x — x0) x € QCR?
B{G(x,x0)} =0 xefl

Is called the Green’s function of the PDE and the respective
BC. Note that domain can be bounded in this case.

2The minus sign on the right hand side is a matter of convention



Importance and usefulness

> Assume that we need to solve
L{u(x)} =—g(x) xeR’

» Statement: the solution is found as a convolution integral
using the fundamental solution F

u=Frg  u(x)= / F(x, x0)g(x0) dxg
» Proof:

1. By definition: £{F(x,x0)} = —(x — xo)
2. Multiply both sides by g(xo) and integrate over the domain

/ £ {F(x.%0)} &(x0) dxo = / ~5(x — x0)g(x0) dxo

3. L acts on x and not xg, it can be moved outside the integral

e{ [ Flxxletea) axa p = ¢t



Physical meaning

| 4

>

The fundamental solution F(x,Xp) is the response at the
location x to a point source of unit strength located at xg.

If we know F(x,xo) we can calculate the response to arbitrary
source distributions g(x) by using convolution.

We are already familiar with linear electrical and mechanical
state space models: in this case we are in the time domain,
and the fundamental solution is the impulse response.

If the system is time invariant, the response to a shifted input
impulse, is also simply shifted in time.

In a homogeneous medium, the operator £ has constant
coefficients. In these cases the fundamental solution is
translation invariant, i.e., F(x,x0) = F(x — xp).

Thus, invariance in the time domain is analogous to a
homogeneous medium in the space domain.



Finding the fundamental solution (an example)

» Find the fundamental solution of the Laplace equation in 2D
V2F(x,x0) = —(x — xg) x € R?

» Take first xg = 0. As u(x) is the field of a point source
centered at the origin, we can expect that F(x,xg) = F(r).

Thus, using the symmetric polar form of the laplacian:3
1 —5(r) d’F 1dF
= =4 _ 2p_ " -
() + r (r) 2r (V dr? + rdr
> We have
1 F"(r) 1
F// 7F/ — — _
(r)+ . (r)=0 Vr>0 — ) p
P> By integration we get
InF'(r)=—1Inr+c¢ — F'(r)= 9 4 F=qlhric
r

3Note that the Dirac-delta in polar reads as: &(x,y) = d(r)/(2xr).



» Any constant ¢ will satisfy the equation, so we take ¢ = 0.

» We can find ¢; by applying the divergence theorem*

V- VF(x,x0)dx = / —0(x —xp)dx = —1

R2 R?

» For all disks B(R) with R > 0 we have

V - VF(x,x0) dx = / n(x) - VF(x,xp) dx =

B(R) 9B(R)

27
/ F/(R)dx = / F(R)Rd§ = 2nRF'(R) = —1
OB(R) 0

—Inr

-  F(R) —  F(r)=

:27_[_7[\) +C2 (C2:0)

» Thus, the fundamental solution of the Laplace equation in 2D:
—Inr Inl/r
2r 27

F(r)=

*It's instructive to carry out the integration in polar-coordinates for &(r)



Green's function in bounded domains |.

» Once we have the fundamental solution, we can construct the
Green's function for a bounded domain.

V2G(x,%x0) = —6(x — xq) xeQ
G(x,%x9) =0 xefl

» We seek G as G(x,xq) = F(x,xg) + v(x,Xg) with

—Vzv(x,xo) =0 xeQ
v(x,x0) = —F(x,%0) xel

» Here v(x,xp) is a "correction term” that compensates the
effect of F on the boundary.

» In general, this can be a very involving task. We arrive at a
similar kind of BVP that we originally had.

» The superposition formula G = F + v still gives us some
important hint on the behavior of the Green's function.



Green’s function in bounded domains II.

» Physical meaning of the superposition formula G = F + v

(&)

F(x,x0) v(x,Xo)
» F(x,xp) — response to a point source without boundaries
> v(x,xg) — effect of the boundaries, without source in Q

> G — response to a point source with the effect of boundaries



Green's functions for the Laplace equation

» Let's construct the Green's function for some simple cases:
1. 2D half-space with Dirichlet BC (u(x,0) = 0)

G(x,%g) = F(x,x0) — F(x,x5) x5 = (x0, —Y0)
2. 2D half-space with Neumann BC (W‘ = 0)
y=0
G(x,x0) = F(x,%0) + F(x,x5) x5 = (x0, —Y0)

» Observe that adding the mirror image sources at the locations
x satisfies the prescribed homogeneous BCs.

» This technique is often referred to as “method of images”.



Example application — membrane |.

» Assume we want to calculate the shape of a membrane with
unit radius under a steady force distribution.
We have the BVP:

—SV2u(x) = g(x) xeQ: {x| <1}
u(x) =0 xel:{|x| =1}

(Where S[N/m] is the uniform tension of the membrane)

» First, let's look for the Green's function that satisfies

V2G(x,%0) = —0(x — o) xeQ:{|x] <1}
G(x,x0) =0 xel:{|x| =1}

» Then, we can use the convolution form:

1 1
ux) = 58+ 6 = 5 [ £()Glx xa)dxo



Example application — membrane |I.

» Construct the Green's function G by finding ,,image points”

» It turns out that for all [xg| < 1 and all x| =1 there is an
image point x§ = Xo/ |xo\2 which satisfies

[x = x0|* = [xol* |x — x5




Example application — membrane Ill.

» By the above property of the image points we have

In|x — xo| = In|xg| + In|x — xg

~~

2mv(x,X0)

» Thus, the term on the r.h.s. is 2mv(x, Xg), with the Green's
function G(x,xg) = F(x,Xo) + v(x,Xo).

» The function v(x,Xg) is a compensating term for the
fundamental solution F(x,xg) such that the Green's function
can satisfy the homogeneous Dirichlet BC on |x| = 0.

» Finally, the Green’s function for the membrane is found as

1 *
G(x,xg) = ~5 (In|x — xg| — In |x — xg| — In[xq])



Example application — membrane V.

P> Let's evaluate the displacement by using the convolution form

u(x) = %g(xo) % G(x,%p) dxo

» We integrate numerically, and sum over “source points” (xg)
to get the response in “receiver points’ (x)
! [ Mesh

¢ Source points
* Receiver points

0.5




Example application — membrane V.
» Define the excitation as a truncated 2D Gaussian function
_ [xe=xo|?

glxg) =< —e 208 if  |xe —Xo| < re
0 otherwise

Resulting displacement

-1 -0.5 0
Force distribution Displacement (normalized)



Green's representation formula

» Green's identity
Let u and v be smooth functions in Q and F = uVv — vVu.
Thus, V- F = uV2v — vV2u.

» By using the divergence theorem we get

ov du
T2y — yV2 _ dgv.  du
/Q(u VvV i) dx /arz (uan Van) o

This is called Green'’s identity.

» Setting u = G(x,x;1) and v = G(x,x2), with G being the
Green's function of the Laplace equation,® we get the
symmetry property for the Green's function

G(X]7 X2) = G(Xz, Xl)

» In the following we will use the representation formula in the
Boundary Element Method.

Ssatisfying either the Dirichlet or the Neumann BC



