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Motivation

▶ The acoustical wave equation is a PDE (partial differential
equation). Such equations are generally very hard to solve,
analytical solutions only exsist in very simple, idealized cases.

▶ If the so-called fundamental solution of the PDE is known,
instead of solving the PDE, we only need to calculate a
convultion integral to get the solution of a particular problem.1

▶ In bounded domains, boundary conditions (BCs) must also be
accounted for. The generalization of the fundamental solution
that also satisfies some BC is called the Green’s function.

▶ In simple cases, the Green’s function can be constructed using
the method of images.

▶ We will apply these construntions for calculating the static
displacement of a membrane under spatially distributed load.

1Note that calculating an integral is a much easier task than solving a PDE.



Definitions

▶ Fundamental solution
The solution F (x, x0) of the linear PDE

L{F (x, x0)} = −δ(x− x0) x ∈ Rd

Is called the fundamental solution of the PDE. Note that
x ∈ Rd , which means that the domain is open.2

▶ Green’s function
The solution G (x, x0) of the linear PDE and a homogeneous
BC defined over the whole boundary Γ = ∂Ω

L{G (x, x0)} = −δ(x− x0) x ∈ Ω ⊆ Rd

B {G (x, x0)} = 0 x ∈ Γ

Is called the Green’s function of the PDE and the respective
BC. Note that domain can be bounded in this case.

2The minus sign on the right hand side is a matter of convention



Importance and usefulness
▶ Assume that we need to solve

L{u(x)} = −g(x) x ∈ Rd

▶ Statement: the solution is found as a convolution integral
using the fundamental solution F

u = F ∗ g u(x) =

∫
F (x, x0)g(x0) dx0

▶ Proof:
1. By definition: L{F (x, x0)} = −δ(x− x0)
2. Multiply both sides by g(x0) and integrate over the domain∫

L{F (x, x0)} g(x0)dx0 =
∫

−δ(x− x0)g(x0)dx0

3. L acts on x and not x0, it can be moved outside the integral

L
{∫

F (x, x0)g(x0)dx0

}
= −g(x)



Physical meaning

▶ The fundamental solution F (x, x0) is the response at the
location x to a point source of unit strength located at x0.

▶ If we know F (x, x0) we can calculate the response to arbitrary
source distributions g(x) by using convolution.

▶ We are already familiar with linear electrical and mechanical
state space models: in this case we are in the time domain,
and the fundamental solution is the impulse response.
If the system is time invariant, the response to a shifted input
impulse, is also simply shifted in time.

▶ In a homogeneous medium, the operator L has constant
coefficients. In these cases the fundamental solution is
translation invariant, i.e., F (x, x0) = F (x− x0).
Thus, invariance in the time domain is analogous to a
homogeneous medium in the space domain.



Finding the fundamental solution (an example)
▶ Find the fundamental solution of the Laplace equation in 2D

∇2F (x, x0) = −δ(x− x0) x ∈ R2

▶ Take first x0 = 0. As u(x) is the field of a point source
centered at the origin, we can expect that F (x, x0) = F (r).
Thus, using the symmetric polar form of the laplacian:3

F ′′(r) +
1

r
F ′(r) =

−δ(r)

2πr

(
∇2F =

d2F

dr2
+

1

r

dF

dr

)
▶ We have

F ′′(r) +
1

r
F ′(r) = 0 ∀r > 0 → F ′′(r)

F ′(r)
= −1

r

▶ By integration we get

lnF ′(r) = − ln r+c0 → F ′(r) =
c1
r

→ F = c1 ln r+c2

3Note that the Dirac-delta in polar reads as: δ(x , y) = δ(r)/(2πr).



▶ Any constant c2 will satisfy the equation, so we take c2 = 0.

▶ We can find c1 by applying the divergence theorem4∫
R2

∇ · ∇F (x, x0)dx =

∫
R2

−δ(x− x0) dx = −1

▶ For all disks B(R) with R > 0 we have∫
B(R)

∇ · ∇F (x, x0) dx =

∫
∂B(R)

n(x) · ∇F (x, x0) dx =

∫
∂B(R)

F ′(R)dx =

∫ 2π

0
F ′(R)R dθ = 2πRF ′(R) = −1

→ F ′(R) =
−1

2πR
→ F (r) =

− ln r

2π
+ c2 (c2 = 0)

▶ Thus, the fundamental solution of the Laplace equation in 2D:

F (r) =
− ln r

2π
=

ln 1/r

2π

4It’s instructive to carry out the integration in polar coordinates for δ(r)



Green’s function in bounded domains I.

▶ Once we have the fundamental solution, we can construct the
Green’s function for a bounded domain.

∇2G (x, x0) = −δ(x− x0) x ∈ Ω

G (x, x0) = 0 x ∈ Γ

▶ We seek G as G (x, x0) = F (x, x0) + v(x, x0) with

−∇2v(x, x0) = 0 x ∈ Ω

v(x, x0) = −F (x, x0) x ∈ Γ

▶ Here v(x, x0) is a “correction term” that compensates the
effect of F on the boundary.

▶ In general, this can be a very involving task. We arrive at a
similar kind of BVP that we originally had.

▶ The superposition formula G = F + v still gives us some
important hint on the behavior of the Green’s function.



Green’s function in bounded domains II.

▶ Physical meaning of the superposition formula G = F + v

x0

Ω

Γ

F (x, x0)

Ω

Γ

v(x, x0)
▶ F (x, x0) – response to a point source without boundaries

▶ v(x, x0) – effect of the boundaries, without source in Ω

▶ G – response to a point source with the effect of boundaries



Green’s functions for the Laplace equation

▶ Let’s construct the Green’s function for some simple cases:

1. 2D half-space with Dirichlet BC (u(x , 0) = 0)

G (x, x0) = F (x, x0)− F (x, x∗0) x∗0 = (x0,−y0)

2. 2D half-space with Neumann BC

(
∂u(x,0)

∂y

∣∣∣
y=0

= 0

)
G (x, x0) = F (x, x0) + F (x, x∗0) x∗0 = (x0,−y0)

▶ Observe that adding the mirror image sources at the locations
x∗0 satisfies the prescribed homogeneous BCs.

▶ This technique is often referred to as “method of images”.



Example application – membrane I.

▶ Assume we want to calculate the shape of a membrane with
unit radius under a steady force distribution.
We have the BVP:

−S∇2u(x) = g(x) x ∈ Ω : {|x | ≤ 1}
u(x) = 0 x ∈ Γ : {|x | = 1}

(Where S [N/m] is the uniform tension of the membrane)

▶ First, let’s look for the Green’s function that satisfies

∇2G (x, x0) = −δ(x− x0) x ∈ Ω : {|x | ≤ 1}
G (x, x0) = 0 x ∈ Γ : {|x | = 1}

▶ Then, we can use the convolution form:

u(x) =
1

S
g ∗ G =

1

S

∫
Ω
g(x0)G (x, x0) dx0



Example application – membrane II.

▶ Construct the Green’s function G by finding ,,image points”

▶ It turns out that for all |x0| < 1 and all |x| = 1 there is an
image point x∗0 = x0/ |x0|2 which satisfies

|x− x0|2 = |x0|2 |x− x∗0|2

R = 1

x

y

x

x

|x0|
x0

x∗0

|x− x∗0 |

|x− x∗0 |

|x− x0|

|x− x0|



Example application – membrane III.

▶ By the above property of the image points we have

ln |x− x0| = ln |x0|+ ln |x− x∗0|︸ ︷︷ ︸
2πv(x,x0)

▶ Thus, the term on the r.h.s. is 2πv(x, x0), with the Green’s
function G (x, x0) = F (x, x0) + v(x, x0).

▶ The function v(x, x0) is a compensating term for the
fundamental solution F (x, x0) such that the Green’s function
can satisfy the homogeneous Dirichlet BC on |x| = 0.

▶ Finally, the Green’s function for the membrane is found as

G (x, x0) = − 1

2π
(ln |x− x0| − ln |x− x∗0| − ln |x0|)



Example application – membrane IV.

▶ Let’s evaluate the displacement by using the convolution form

u(x) =
1

S
g(x0) ∗ G (x, x0) dx0

▶ We integrate numerically, and sum over “source points” (x0)
to get the response in “receiver points” (x)
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Example application – membrane V.

▶ Define the excitation as a truncated 2D Gaussian function

g(x0) =

 −e
−|xe−x0|2

2σ2
e if |xe − x0| < re

0 otherwise



Green’s representation formula

▶ Green’s identity
Let u and v be smooth functions in Ω and F = u∇v − v∇u.
Thus, ∇ · F = u∇2v − v∇2u.

▶ By using the divergence theorem we get∫
Ω
(u∇2v − v∇2u)dx =

∫
∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
dx

This is called Green’s identity.

▶ Setting u = G (x, x1) and v = G (x, x2), with G being the
Green’s function of the Laplace equation,5 we get the
symmetry property for the Green’s function

G (x1, x2) = G (x2, x1)

▶ In the following we will use the representation formula in the
Boundary Element Method.

5satisfying either the Dirichlet or the Neumann BC


