Fundamental solutions and Green's functions

Péter Rucz

Theoretical Acoustics

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Motivation

- The acoustical wave equation is a PDE (partial differential equation). Such equations are generally very hard to solve, analytical solutions only exsist in very simple, idealized cases.
- If the so-called *fundamental solution* of the PDE is known, instead of solving the PDE, we only need to calculate a convultion integral to get the solution of a particular problem.¹
- In bounded domains, boundary conditions (BCs) must also be accounted for. The generalization of the fundamental solution that also satisfies some BC is called the *Green's function*.
- In simple cases, the Green's function can be constructed using the *method of images*.
- We will apply these constructions for calculating the static displacement of a membrane under spatially distributed load.

¹Note that calculating an integral is a much easier task than solving a PDE. $\mathfrak{I}_{\mathbb{C}}$

Definitions

Fundamental solution

The solution $F(\mathbf{x}, \mathbf{x}_0)$ of the *linear* PDE

$$\mathcal{L}\left\{F(\mathbf{x}, \mathbf{x_0})
ight\} = -\delta(\mathbf{x} - \mathbf{x_0}) \qquad \mathbf{x} \in \mathbb{R}^d$$

Is called the *fundamental solution* of the PDE. Note that $\mathbf{x} \in \mathbb{R}^d$, which means that the domain is open.²

Green's function

The solution $G(\mathbf{x}, \mathbf{x}_0)$ of the *linear* PDE and a homogeneous BC defined over the whole boundary $\Gamma = \partial \Omega$

$$\mathcal{L} \{ G(\mathbf{x}, \mathbf{x}_0) \} = -\delta(\mathbf{x} - \mathbf{x}_0) \qquad \mathbf{x} \in \Omega \subseteq \mathbb{R}^d \\ \mathcal{B} \{ G(\mathbf{x}, \mathbf{x}_0) \} = 0 \qquad \mathbf{x} \in \Gamma$$

Is called the *Green's function* of the PDE and the respective BC. Note that domain can be bounded in this case.

²The minus sign on the right hand side is a matter of convention (a, b) = (a, b) = (a, b)

Importance and usefulness

Assume that we need to solve

$$\mathcal{L}\left\{u(\mathbf{x})
ight\}=-g(\mathbf{x})\qquad\mathbf{x}\in\mathbb{R}^{d}$$

Statement: the solution is found as a convolution integral using the fundamental solution F

$$u = F * g$$
 $u(\mathbf{x}) = \int F(\mathbf{x}, \mathbf{x}_0) g(\mathbf{x}_0) \, \mathrm{d}\mathbf{x}_0$

Proof:

- 1. By definition: $\mathcal{L} \{ F(\mathbf{x}, \mathbf{x}_0) \} = -\delta(\mathbf{x} \mathbf{x}_0)$
- 2. Multiply both sides by $g(\mathbf{x}_0)$ and integrate over the domain

$$\int \mathcal{L} \left\{ F(\mathbf{x}, \mathbf{x}_0) \right\} g(\mathbf{x}_0) \, \mathrm{d} \mathbf{x}_0 = \int -\delta(\mathbf{x} - \mathbf{x}_0) g(\mathbf{x}_0) \, \mathrm{d} \mathbf{x}_0$$

3. \mathcal{L} acts on **x** and not **x**₀, it can be moved outside the integral

$$\mathcal{L}\left\{\int F(\mathbf{x},\mathbf{x}_0)g(\mathbf{x}_0)\,\mathrm{d}\mathbf{x}_0\right\} = -g(\mathbf{x})$$

Physical meaning

- The fundamental solution F(x, x₀) is the response at the location x to a point source of unit strength located at x₀.
- If we know F(x, x₀) we can calculate the response to arbitrary source distributions g(x) by using convolution.
- We are already familiar with linear electrical and mechanical state space models: in this case we are in the time domain, and the fundamental solution is the impulse response. If the system is time invariant, the response to a shifted input impulse, is also simply shifted in time.
- In a homogeneous medium, the operator ℒ has constant coefficients. In these cases the fundamental solution is translation invariant, i.e., F(x, x₀) = F(x x₀). Thus, invariance in the time domain is analogous to a homogeneous medium in the space domain.

Finding the fundamental solution (an example)

Find the fundamental solution of the Laplace equation in 2D

$$abla^2 F(\mathbf{x}, \mathbf{x}_0) = -\delta(\mathbf{x} - \mathbf{x_0}) \qquad \mathbf{x} \in \mathbb{R}^2$$

Take first x₀ = 0. As u(x) is the field of a point source centered at the origin, we can expect that F(x, x₀) = F(r). Thus, using the symmetric polar form of the laplacian:³

$$F''(r) + \frac{1}{r}F'(r) = \frac{-\delta(r)}{2\pi r} \qquad \left(\nabla^2 F = \frac{\mathrm{d}^2 F}{\mathrm{d}r^2} + \frac{1}{r}\frac{\mathrm{d}F}{\mathrm{d}r}\right)$$

We have

$$F''(r) + rac{1}{r}F'(r) = 0 \qquad orall r > 0 \quad o \quad rac{F''(r)}{F'(r)} = -rac{1}{r}$$

By integration we get

$$\ln F'(r) = -\ln r + c_0 \quad \rightarrow \quad F'(r) = \frac{c_1}{r} \quad \rightarrow \quad F = c_1 \ln r + c_2$$

³Note that the Dirac-delta in polar reads as: $\delta(x,y) = \delta(x)/(2\pi r)$.

- Any constant c_2 will satisfy the equation, so we take $c_2 = 0$.
- We can find c_1 by applying the divergence theorem⁴

$$\int_{\mathbb{R}^2} \nabla \cdot \nabla F(\mathbf{x}, \mathbf{x}_0) \, \mathrm{d}\mathbf{x} = \int_{\mathbb{R}^2} -\delta(\mathbf{x} - \mathbf{x}_0) \, \mathrm{d}\mathbf{x} = -1$$

► For all disks B(R) with R > 0 we have

$$\int_{B(R)} \nabla \cdot \nabla F(\mathbf{x}, \mathbf{x}_0) \, \mathrm{d}\mathbf{x} = \int_{\partial B(R)} \mathbf{n}(\mathbf{x}) \cdot \nabla F(\mathbf{x}, \mathbf{x}_0) \, \mathrm{d}\mathbf{x} =$$
$$\int_{\partial B(R)} F'(R) \, \mathrm{d}\mathbf{x} = \int_0^{2\pi} F'(R) R \, \mathrm{d}\theta = 2\pi R F'(R) = -1$$
$$\rightarrow \quad F'(R) = \frac{-1}{2\pi R} \quad \rightarrow \quad F(r) = \frac{-\ln r}{2\pi} + c_2 \qquad (c_2 = 0)$$

Thus, the fundamental solution of the Laplace equation in 2D:

$$F(r) = \frac{-\ln r}{2\pi} = \frac{\ln 1/r}{2\pi}$$

⁴It's instructive to carry out the integration in polar coordinates for $\delta(r) \equiv -9$

Green's function in bounded domains I.

Once we have the fundamental solution, we can construct the Green's function for a bounded domain.

$$egin{aligned}
abla^2 G(\mathbf{x},\mathbf{x}_0) &= -\delta(\mathbf{x}-\mathbf{x}_0) & \mathbf{x}\in\Omega \ G(\mathbf{x},\mathbf{x}_0) &= 0 & \mathbf{x}\in\Gamma \end{aligned}$$

• We seek G as $G(\mathbf{x}, \mathbf{x}_0) = F(\mathbf{x}, \mathbf{x}_0) + v(\mathbf{x}, \mathbf{x}_0)$ with

$$\begin{aligned} -\nabla^2 v(\mathbf{x}, \mathbf{x}_0) &= 0 & \mathbf{x} \in \Omega \\ v(\mathbf{x}, \mathbf{x}_0) &= -F(\mathbf{x}, \mathbf{x}_0) & \mathbf{x} \in \Gamma \end{aligned}$$

- Here v(x, x₀) is a "correction term" that compensates the effect of F on the boundary.
- In general, this can be a very involving task. We arrive at a similar kind of BVP that we originally had.
- The superposition formula G = F + v still gives us some important hint on the behavior of the Green's function.

Green's function in bounded domains II.

Green's functions for the Laplace equation

Let's construct the Green's function for some simple cases:
 1. 2D half-space with Dirichlet BC (u(x,0) = 0)

$$G(\mathbf{x},\mathbf{x}_0) = F(\mathbf{x},\mathbf{x}_0) - F(\mathbf{x},\mathbf{x}_0^*) \qquad \mathbf{x}_0^* = (x_0,-y_0)$$

2. 2D half-space with Neumann BC $\left(\frac{\partial u(x,0)}{\partial y} \Big|_{y=0} = 0 \right)$

$$G(\mathbf{x},\mathbf{x}_0) = F(\mathbf{x},\mathbf{x}_0) + F(\mathbf{x},\mathbf{x}_0^*) \qquad \mathbf{x}_0^* = (x_0,-y_0)$$

- Observe that adding the mirror image sources at the locations x₀^{*} satisfies the prescribed homogeneous BCs.
- This technique is often referred to as "method of images".

Example application – membrane I.

Assume we want to calculate the shape of a membrane with unit radius under a steady force distribution. We have the BVP:

$$\begin{split} -S\nabla^2 u(\mathbf{x}) &= g(\mathbf{x}) \qquad \mathbf{x} \in \Omega : \{|x| \leq 1\} \\ u(\mathbf{x}) &= 0 \qquad \mathbf{x} \in \Gamma : \{|x| = 1\} \end{split}$$

(Where S[N/m] is the uniform tension of the membrane)
▶ First, let's look for the Green's function that satisfies

$$\begin{aligned} \nabla^2 G(\mathbf{x}, \mathbf{x}_0) &= -\delta(\mathbf{x} - \mathbf{x}_0) & \mathbf{x} \in \Omega : \{ |x| \le 1 \} \\ G(\mathbf{x}, \mathbf{x}_0) &= 0 & \mathbf{x} \in \Gamma : \{ |x| = 1 \} \end{aligned}$$

Then, we can use the convolution form:

$$u(\mathbf{x}) = \frac{1}{S}g * G = \frac{1}{S}\int_{\Omega} g(\mathbf{x}_0)G(\mathbf{x},\mathbf{x_0})\,\mathrm{d}\mathbf{x}_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example application – membrane II.

- Construct the Green's function G by finding ,,image points"
- ▶ It turns out that for all $|\mathbf{x}_0| < 1$ and all $|\mathbf{x}| = 1$ there is an image point $\mathbf{x}_0^* = \mathbf{x}_0 / |\mathbf{x}_0|^2$ which satisfies

Example application – membrane III.

By the above property of the image points we have

$$\ln |\mathbf{x} - \mathbf{x}_0| = \underbrace{\ln |\mathbf{x}_0| + \ln |\mathbf{x} - \mathbf{x}_0^*|}_{2\pi v(\mathbf{x}, \mathbf{x}_0)}$$

- ► Thus, the term on the r.h.s. is $2\pi v(\mathbf{x}, \mathbf{x}_0)$, with the Green's function $G(\mathbf{x}, \mathbf{x}_0) = F(\mathbf{x}, \mathbf{x}_0) + v(\mathbf{x}, \mathbf{x}_0)$.
- The function v(x, x₀) is a compensating term for the fundamental solution F(x, x₀) such that the Green's function can satisfy the homogeneous Dirichlet BC on |x| = 0.
- Finally, the Green's function for the membrane is found as

$$G(\mathbf{x}, \mathbf{x}_0) = -\frac{1}{2\pi} \left(\ln |\mathbf{x} - \mathbf{x}_0| - \ln |\mathbf{x} - \mathbf{x}_0^*| - \ln |\mathbf{x}_0| \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example application – membrane IV.

Let's evaluate the displacement by using the convolution form

$$u(\mathbf{x}) = \frac{1}{S}g(\mathbf{x}_0) * G(\mathbf{x}, \mathbf{x}_0) \,\mathrm{d}\mathbf{x}_0$$

We integrate numerically, and sum over "source points" (x₀) to get the response in "receiver points" (x)

Example application – membrane V.

Define the excitation as a truncated 2D Gaussian function

Green's representation formula

Green's identity

Let u and v be smooth functions in Ω and $\mathbf{F} = u\nabla v - v\nabla u$. Thus, $\nabla \cdot \mathbf{F} = u\nabla^2 v - v\nabla^2 u$.

By using the divergence theorem we get

$$\int_{\Omega} (u\nabla^2 v - v\nabla^2 u) \, \mathrm{d}\mathbf{x} = \int_{\partial\Omega} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) \, \mathrm{d}\mathbf{x}$$

This is called *Green's identity*.

Setting u = G(x, x₁) and v = G(x, x₂), with G being the Green's function of the Laplace equation,⁵ we get the symmetry property for the Green's function

$$G(\mathbf{x}_1,\mathbf{x}_2)=G(\mathbf{x}_2,\mathbf{x}_1)$$

In the following we will use the representation formula in the Boundary Element Method.