The Boundary Element Method in Acoustics

Péter Rucz

Theoretical Acoustics

(ロ)、(型)、(E)、(E)、 E) の(()

Motivation

- Construction of the BEM for the Helmholtz equation
- Components of the Boundary Element Method (BEM)
 - 1. We have a BVP (= PDE + BC)
 - 2. We construct the boundary integral representation (BIR) using the fundamental solution of the PDE
 - 3. BIR is applied for the boundary points to get a boundary integral equation (BIE)
 - 4. BIE is discretized to get a linear system of algebraic equations. The discretization of the BIE is called the BEM.
 - 5. The discretized system is solved to get the unknown quantities on the boundary.
 - 6. Finally, the BIR can be utlizied to compute the radiated quantities (i.e., the sound pressure) in any point of the domain.

Frequency domain acoustics I.

• The wave equation for the acoustic pressure $p(\mathbf{x}, t)$ is

$$abla^2 p(\mathbf{x},t) - rac{1}{c^2} rac{\partial^2 p(\mathbf{x},t)}{\partial t^2} = -Q(\mathbf{x},t) \qquad \mathbf{x} \in \Omega$$

with Q(x, t) denoting the spatially distributed source term
We take time-harmonic sources with angular frequency ω, due to linearity field quantities oscillate with the same frequency

$$p(\mathbf{x}, t) = A(\mathbf{x}) \cos (\omega t + \phi(\mathbf{x}))$$

= Re { $A(\mathbf{x}) \exp (j\omega t + j\phi(\mathbf{x}))$ }
= Re { $\underline{A(\mathbf{x})} e^{j\phi(\mathbf{x})} e^{j\omega t}$ }
 $\hat{\rho}(\mathbf{x})$

As ω is fixed, the complex amplitude p̂(x) describes the variation of p in space and time too. The complex amplitude conveniently contains both the amplitude and the phase.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Frequency domain acoustics II.

- ► The time derivation $\partial/\partial t$ is simply a multiplication by $j\omega$ in the frequency domain. If $p \rightarrow \hat{p}$, then $\partial p/\partial t \rightarrow j\omega \hat{p}$.
- This leads to the Helmholtz equation

$$abla^2 \hat{
ho}(\mathbf{x}) + k^2 \hat{
ho}(\mathbf{x}) = - \hat{Q}(\mathbf{x}) \qquad \mathbf{x} \in \Omega$$

with $k = \omega/c$ denoting the wave number

In case of BCs the linearized Euler equation is often used

$$\begin{aligned} \nabla \rho(\mathbf{x},t) + \rho_0 \frac{\partial \mathbf{v}(\mathbf{x},t)}{\partial t} &= \mathbf{0} \qquad \mathbf{x} \in \Omega \\ \nabla \hat{\rho}(\mathbf{x}) + \mathbf{j}\omega \rho_0 \hat{\mathbf{v}} &= \mathbf{0} \qquad \mathbf{x} \in \Omega \end{aligned}$$

• After scalar multiplication by the surface normal vector $\mathbf{n}(\mathbf{x})$

$$\frac{\partial \hat{\boldsymbol{p}}(\mathbf{x})}{\partial n} + j\omega \hat{v}_n = 0 \qquad \mathbf{x} \in \Gamma$$

• "Hat" notation is often omitted and simply p and \mathbf{v} are used

Green's function for the Helmholtz equation

- For the Helmholtz equation the fundamental solutions can be constructed using Fourier transform, for example. This is interesting, but not discussed here in detail.
- We have the free field Green's functions (fundamental solutions) for the Helmholtz equation as

1D:
$$G_1(x, x_0) = \frac{1}{2k_j} e^{-jkr}$$

2D: $G_2(\mathbf{x}, \mathbf{x}_0) = -\frac{j}{4} H_0^{(2)}(kr)$
3D: $G_3(\mathbf{x}, \mathbf{x}_0) = \frac{e^{-jkr}}{4\pi r}$

with r = |x - x₀| in all cases. H₀⁽²⁾ is the Hankel function of the second kind, zeroth order
Note: in the limit k → 0 we get the free field Green's functions of the Laplace equation

Plots of the Green's functions

Common properties

- Oscillation with period $\lambda = 2\pi/k$ (λ is the wavelength)
- Derivative of real part discontinuous at r = 0
- Imaginary part smooth in the whole domain
- Decay $\propto r^{-(d-1)/2}$ (*d* is the number of dimensions)
- ln 2D and 3D the functions are singular at r = 0

BIE for the Helmholtz equation

- A.k.a. Kirchhoff–Helmholtz integral equation (KHIE)
- We have the inhomogeneous¹ Helmholtz equation as

$$\underbrace{\nabla^2 p(\mathbf{x}) + k^2 p(\mathbf{x})}_{\mathcal{H}\{p(\mathbf{x})\}} = -Q(\mathbf{x}) \qquad \mathbf{x} \in \Omega \subseteq \mathbb{R}^d$$

1. Testing using the test function $\psi(\mathbf{x})$

$$\int_{\Omega} \psi(\mathbf{x}) \left[\nabla^2 p(\mathbf{x}) + k^2 p(\mathbf{x}) \right] \, \mathrm{d}\mathbf{x} = \int_{\Omega} -\psi(\mathbf{x}) Q(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

2. Integration by parts (twice)

$$\psi
abla^2 p =
abla \cdot (\psi
abla p) -
abla \psi \cdot
abla p =
abla \cdot (\psi
abla p) -
abla \cdot (
abla \psi p) +
abla^2 \psi p$$

Use this in the formula

$$\int_{\Omega} \psi \nabla^2 \rho \, \mathrm{d} \mathbf{x} + \int_{\Omega} \psi k^2 \rho \, \mathrm{d} \mathbf{x} = \int_{\Omega} -\psi Q \, \mathrm{d} \mathbf{x}$$

 1 i.e., the right hand side is non-zero

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

3. Result of integration by parts is (with dx not shown)

$$\int_{\Omega} \nabla \cdot (\psi \nabla p) - \int_{\Omega} \nabla \cdot (\nabla \psi p) + \int_{\Omega} \nabla^2 \psi p + \int_{\Omega} \psi k^2 p = \int_{\Omega} -\psi Q$$

4. Apply Gauss theorem on the first two integrals

$$\int_{\Gamma} \psi \frac{\partial p}{\partial n} \, \mathrm{d}\mathbf{x} - \int_{\Gamma} \frac{\partial \psi}{\partial n} p \, \mathrm{d}\mathbf{x} + \int_{\Omega} \underbrace{\left[\nabla^2 \psi + k^2 \psi \right]}_{\mathcal{H}\{\psi(\mathbf{x})\}} p \, \mathrm{d}\mathbf{x} = \int_{\Omega} -\psi Q \, \mathrm{d}\mathbf{x}$$

Notice that the Helmholtz operator \mathcal{H} acts on the test function $\psi(\mathbf{x})$. We exploit this property in the next step.

5. Apply free field Green's function as $\psi(\mathbf{x}) = G(\mathbf{x}, \mathbf{x}_0)$

$$\int_{\Gamma} G \frac{\partial p}{\partial n} \, \mathrm{d} \mathbf{x} - \int_{\Gamma} \frac{\partial G}{\partial n} p \, \mathrm{d} \mathbf{x} - \alpha(\mathbf{x}_0) p(\mathbf{x}_0) = \int_{\Omega} - G Q \, \mathrm{d} \mathbf{x}$$

with $\alpha(\mathbf{x}_0) = 1$, 1/2, or 0 (in Ω , Γ , or otherwise)

Physical interpretation

- Using reciprocity: G(x, x₀) = G(x₀, x) leads to the physical interpretation of the boundary integral representation
- Let \mathbf{x}_0 be inside the domain Ω , then

$$p(\mathbf{x}_0) = \underbrace{\int_{\Gamma} G(\mathbf{x}_0, \mathbf{x}) \frac{\partial p(\mathbf{x})}{\partial n} \, \mathrm{d}\mathbf{x}}_{\text{scattered field (part I)}} - \underbrace{\int_{\Gamma} \frac{\partial G(\mathbf{x}_0, \mathbf{x})}{\partial n} p(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{\text{scattered field (part II)}} + \underbrace{\int_{\Omega} G(\mathbf{x}_0, \mathbf{x}) Q(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{\text{incident field}}$$

• Denote $\frac{\partial p}{\partial n} = q$ and use the Euler equation: $q = -j\omega\rho_0 v_n$

- lncident field $p_{inc}(x_0)$
- Scattered field $p_{\text{scat}}(\mathbf{x})$
 - Monopole distribution
 Source: surface velocity v_n
 - Dipole distribution
 Source: surface pressure p

 $p(\mathbf{x}_0) = p_{\text{inc}}(\mathbf{x}_0) + p_{\text{scat}}(\mathbf{x})$

The Sommerfeld radiation condition

- Exterior problem: the boundary is composed of the finite boundary and the infinitely far boundary: $\Gamma = \Gamma_{in} \cup \Gamma_{\infty}$
- Sommerfeld's condition:
 - Nathematical statement: the boundary integral on Γ_{∞} must vanish in free field conditions, i.e.:

$$\int_{\Gamma_{\infty}} \left(G \frac{\partial p}{\partial n} - \frac{\partial G}{\partial n} p \right) = 0$$

Physical meaning: no energy is reflected back from infinity

Sommerfeld condition in 3D

For example, in 3D the integral surely vanishes on Γ_∞

$$\lim_{R \to \infty} \int_{\Gamma} \left(\frac{\mathrm{e}^{-\mathrm{j}kr}}{4\pi r} \frac{\partial p}{\partial r} - \frac{\partial}{\partial r} \left(\frac{\mathrm{e}^{-\mathrm{j}kr}}{4\pi r} \right) p \right) \mathrm{d}\Gamma = 0$$

 If it vanishes on all small patches dΓ (Note: G and p are constant on the small patch)

$$\lim_{R \to \infty} R^2 \left(\frac{\mathrm{e}^{-\mathrm{j}kR}}{4\pi R} \frac{\partial p}{\partial r} + (\mathcal{I} + \mathrm{j}kR) \frac{\mathrm{e}^{-\mathrm{j}kR}}{4\pi R^2} p \right) \sin \vartheta \mathrm{d}\varphi \mathrm{d}\vartheta = 0$$

• Drop the constants sin ϑ , e^{-jkR} , 4π , $d\vartheta$, $d\varphi$ to get

$$\lim_{R\to\infty} R\left[\frac{\partial p}{\partial r} + jkp\right] = 0$$

• Using the Euler equation $\frac{\partial p}{\partial r} = -j\omega \rho_0 v_r$ we get

$$\lim_{R\to\infty}R\left[p-z_0v_r\right]=0$$

Note $z_0 = \rho_0 c$ is the specific plane wave impedance

Similarly, in d dimensions we have

$$\lim_{R\to\infty}R^{\frac{d-1}{2}}\left[p-z_0v_r\right]=0$$

- We can verify that the free field Green's functions all satisfy the Sommerfeld condition (p = G₁, G₂, or G₃ above)
- This means that for any radiator radiating finite power the boundary integrals on Γ_∞ can be omitted

Discretization

- We need to solve the KHIE using a numerical method
- Zero incident field is assumed in the following for simplicity
- We discretize the boundary into boundary elements

$$\Gamma \approx \bigcup_{i=1}^{E} \Gamma_i$$
 with $\Gamma_i \cap \Gamma_j = \emptyset$ if $i \neq j$

The general method of data discretization is to approximate the boundary data by a finite number of so-called shape functions N(x)

$$p(\mathbf{x}) = \sum_{j} N_{j}^{(p)}(\mathbf{x}) p_{j} \qquad \mathbf{x} \in \Gamma$$
 $q(\mathbf{x}) = rac{\partial p(\mathbf{x})}{\partial n} = \sum_{j} N_{j}^{(q)}(\mathbf{x}) q_{j} \qquad \mathbf{x} \in \Gamma$

In the BEM we have a great freedom in choosing the shape functions. Here, we will consider the simplest choice: the piecewise constant approximation

The collocation form

Shape and test function choices:

- ▶ $N_i^{(p)}$, $N_i^{(q)}$: piecewise constant over the *j*-th element
- With this we have E unknowns, we also need E equations
- We choose the *E* collocational points \mathbf{x}_i (i = 1...E) by setting \mathbf{x}_i to the center of the *i*-th element

$$\frac{1}{2}p_i = \sum_j \underbrace{\int_{\Gamma_j} G(\mathbf{x}_i, \mathbf{x}) N_j^{(q)}(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{G_{ij}} q_j - \sum_j \underbrace{\int_{\Gamma_j} G_n'(\mathbf{x}_i, \mathbf{x}) N_j^{(p)}(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{H_{ij}} p_j$$

- The shape functions are non-zero only over one element, thus, integration is carried out element-by-element
- Matrix elements by integration of the fundamental solution (and its normal derivative) over one boundary element:

$$G_{ij} = \int_{\Gamma_j} G(\mathbf{x}_i, \mathbf{x}) \, \mathrm{d}\mathbf{x} \qquad (i, j) = 1 \dots E$$
$$H_{ij} = \int_{\Gamma_j} \frac{\partial G(\mathbf{x}_i, \mathbf{x})}{\partial n(\mathbf{x})} \, \mathrm{d}\mathbf{x} \qquad (i, j) = 1 \dots E$$

The BEM system of equations

Matrix form:

$$\frac{1}{2}\textbf{p}=\textbf{G}\textbf{q}-\textbf{H}\textbf{p}$$

(**p** and **q** are column vectors of the unknowns)

From the BCs either **p** or **q** is known²

Solution for **p** (scattered pressure field over the surface)

$$\mathbf{p} = \left(\mathbf{H} + \frac{1}{2}\mathbf{I}\right)^{-1}\mathbf{G}\mathbf{q}$$

- Common properties of matrices G and H
 - 1. Fully populated (size $E \times E$)
 - 2. Complex valued
 - 3. Frequency (wave number k) dependent
 - 4. Contain singular integrals over elements
 - 5. Asymmetric (in case of the collocational formalism)

Computing the radiated field

For the computation of the radiated field, the boundary integral representation (BIR) is used.

$$p(\mathbf{x}_0) = \int_{\Gamma} G(\mathbf{x}, \mathbf{x}_0) q(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \int_{\Gamma} G'_n(\mathbf{x}, \mathbf{x}_0) p(\mathbf{x}) \, \mathrm{d}\mathbf{x} \qquad \mathbf{x}_0 \in \Omega$$

Notice, that this is a simple forward step, as we already know the surface quantities

- As we have discretized the surface variables, the integrals on the r.h.s. can be written as matrix-vector products.
- If we choose a number of field points, we get the field point pressures p_f by a simple multiplication

$$\mathbf{p}_f = \mathbf{G}_f \mathbf{q}_s - \mathbf{H}_f \mathbf{p}_s$$

► G_f and H_f are also full (size M × E, M: number of field points), frequency dependent, but contain no singular integrals

Acoustical BEM – solution steps

Generally, the solution of an acoustical BEM problem consists of the following steps:

- 1. Create a discretized geometry (mesh) of the problem
- 2. Define the boundary conditions (BCs) over the whole surface
- 3. Set the test (angular) frequency ω
- Compute the surface matrices G and H, and the field matrices G_f, H_f using numerical integration
- 5. Solve the BEM equation to get the missing surface quantities (solve the full system with matrices **G** and **H**)
- 6. Use the boundary integral representation formula to calculate the radiated field in the field points (use G_f , H_f)

Multi-frequency analysis: repeat steps 3–6 for each test frequency. Steps 4 and 5 take the most time and computational effort.

Example – A radiation problem I.

- Example problem: exterior radiation from a loudspeaker
- No sources inside the domain (i.e., zero incident field), sound is generated by a vibrating surface (membrane of the speaker)

~ ~ ~ ~

Example – A radiation problem II.

- Computation at different frequencies, maximum frequency is limited by the largest elements (rule of thumb: *l_e < λ/6*)
- Constant acceleration on the membrane is assumed
- $\blacktriangleright\,$ The membrane is not planar \rightarrow normal velocity is not constant

Example – A radiation problem III.

- Solution process (for each frequency)
 - 1. Assembe matrices \mathbf{G} , \mathbf{H} , \mathbf{G}_f , \mathbf{H}_f
 - 2. Compute surface pressure by solving the KHIE
 - 3. Compute field point pressures by using the BIR

Example – A radiation problem IV.

- Field point result Directivity of the loudspeaker
- Frequency dependency is clearly observed
 - Low frequencies radiation is nearly spherical
 - Higher frequencies focused radiation, side lobes appear
 - Vertical directivity is asymmetric, as expected

э