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Motivation

I Construction of the BEM for the Helmholtz equation
I Components of the Boundary Element Method (BEM)

1. We have a BVP (= PDE + BC)
2. We construct the boundary integral representation (BIR) using

the fundamental solution of the PDE
3. BIR is applied for the boundary points to get a boundary

integral equation (BIE)
4. BIE is discretized to get a linear system of algebraic equations.

The discretization of the BIE is called the BEM.
5. The discretized system is solved to get the unknown quantities

on the boundary.
6. Finally, the BIR can be utlizied to compute the radiated

quantities (i.e., the sound pressure) in any point of the domain.



Frequency domain acoustics I.

I The wave equation for the acoustic pressure p(x, t) is

∇2p(x, t)− 1

c2

∂2p(x, t)

∂t2
= −Q(x, t) x ∈ Ω

with Q(x, t) denoting the spatially distributed source term

I We take time-harmonic sources with angular frequency ω, due
to linearity field quantities oscillate with the same frequency

p(x, t) = A(x) cos (ωt + φ(x))

= Re {A(x) exp (jωt + jφ(x))}
= Re {A(x)ejφ(x)︸ ︷︷ ︸

p̂(x)

ejωt}

I As ω is fixed, the complex amplitude p̂(x) describes the
variation of p in space and time too. The complex amplitude
conveniently contains both the amplitude and the phase.



Frequency domain acoustics II.
I The time derivation ∂/∂t is simply a multiplication by jω in

the frequency domain. If p → p̂, then ∂p/∂t → jωp̂.

I This leads to the Helmholtz equation

∇2p̂(x) + k2p̂(x) = −Q̂(x) x ∈ Ω

with k = ω/c denoting the wave number

I In case of BCs the linearized Euler equation is often used

∇p(x, t) + ρ0
∂v(x, t)

∂t
= 0 x ∈ Ω

∇p̂(x) + jωρ0v̂ = 0 x ∈ Ω

I After scalar multiplication by the surface normal vector n(x)

∂p̂(x)

∂n
+ jωv̂n = 0 x ∈ Γ

I “Hat” notation is often omitted and simply p and v are used



Green’s function for the Helmholtz equation

I For the Helmholtz equation the fundamental solutions can be
constructed using Fourier transform, for example.
This is interesting, but not discussed here in detail.

I We have the free field Green’s functions (fundamental
solutions) for the Helmholtz equation as

1D: G1(x , x0) =
1

2kj
e−jkr

2D: G2(x, x0) = − j

4
H

(2)
0 (kr)

3D: G3(x, x0) =
e−jkr

4πr

with r = |x− x0| in all cases.

H
(2)
0 is the Hankel function of the second kind, zeroth order

I Note: in the limit k → 0 we get the free field Green’s
functions of the Laplace equation



Plots of the Green’s functions
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I Common properties
I Oscillation with period λ = 2π/k (λ is the wavelength)
I Derivative of real part discontinuous at r = 0
I Imaginary part smooth in the whole domain
I Decay ∝ r−(d−1)/2 (d is the number of dimensions)
I In 2D and 3D the functions are singular at r = 0



BIE for the Helmholtz equation
I A.k.a. Kirchhoff–Helmholtz integral equation (KHIE)

I We have the inhomogeneous1 Helmholtz equation as

∇2p(x) + k2p(x)︸ ︷︷ ︸
H{p(x)}

= −Q(x) x ∈ Ω ⊆ Rd

1. Testing using the test function ψ(x)∫
Ω
ψ(x)

[
∇2p(x) + k2p(x)

]
dx =

∫
Ω
−ψ(x)Q(x) dx

2. Integration by parts (twice)

ψ∇2p = ∇·(ψ∇p)−∇ψ ·∇p = ∇·(ψ∇p)−∇·(∇ψp)+∇2ψp

Use this in the formula∫
Ω
ψ∇2p dx +

∫
Ω
ψk2p dx =

∫
Ω
−ψQ dx

1i.e., the right hand side is non-zero



3. Result of integration by parts is (with dx not shown)∫
Ω
∇·(ψ∇p)−

∫
Ω
∇·(∇ψp)+

∫
Ω
∇2ψp+

∫
Ω
ψk2p =

∫
Ω
−ψQ

4. Apply Gauss theorem on the first two integrals∫
Γ
ψ
∂p

∂n
dx−

∫
Γ

∂ψ

∂n
p dx+

∫
Ω

[
∇2ψ + k2ψ

]︸ ︷︷ ︸
H{ψ(x)}

p dx =

∫
Ω
−ψQ dx

Notice that the Helmholtz operator H acts on the test
function ψ(x). We exploit this property in the next step.

5. Apply free field Green’s function as ψ(x) = G (x, x0)∫
Γ
G
∂p

∂n
dx−

∫
Γ

∂G

∂n
p dx− α(x0)p(x0) =

∫
Ω
−GQ dx

with α(x0) = 1, 1/2, or 0 (in Ω, Γ, or otherwise)



Physical interpretation

I Using reciprocity: G (x, x0) = G (x0, x) leads to the physical
interpretation of the boundary integral representation

I Let x0 be inside the domain Ω, then

p(x0) =

∫
Γ

G(x0, x)
∂p(x)

∂n
dx︸ ︷︷ ︸

scattered field (part I)

−
∫

Γ

∂G(x0, x)

∂n
p(x)dx︸ ︷︷ ︸

scattered field (part II)

+

∫
Ω

G(x0, x)Q(x) dx︸ ︷︷ ︸
incident field

I Denote ∂p
∂n = q and use the Euler equation: q = −jωρ0vn

Γ

Ω

p(x), q(x)
Q(x)

p(x0)

p(x), q(x)

I Incident field pinc(x0)

I Scattered field pscat(x)
I Monopole distribution

Source: surface velocity vn
I Dipole distribution

Source: surface pressure p

p(x0) = pinc(x0) + pscat(x)



The Sommerfeld radiation condition
Interior problem Exterior problem

Ω

Γ n(x)

Ω

Γ∞

n(x)

Γin

R→∞

I Exterior problem: the boundary is composed of the finite
boundary and the infinitely far boundary: Γ = Γin ∪ Γ∞

I Sommerfeld’s condition:
I Mathematical statement: the boundary integral on Γ∞ must

vanish in free field conditions, i.e.:∫
Γ∞

(
G
∂p

∂n
− ∂G

∂n
p

)
= 0

I Physical meaning: no energy is reflected back from infinity



Sommerfeld condition in 3D
I For example, in 3D the integral surely vanishes on Γ∞

lim
R→∞

∫
Γ

(
e−jkr

4πr

∂p

∂r
− ∂

∂r

(
e−jkr

4πr

)
p

)
dΓ = 0

I If it vanishes on all small patches dΓ
(Note: G and p are constant on the small patch)

lim
R→∞

R2

(
e−jkR

4πR

∂p

∂r
+ (�1 + jkR)

e−jkR

4πR2
p

)
sinϑdϕdϑ = 0

x0

dΓ

sinϑdϕ

dϑ

R→∞



I Drop the constants sinϑ, e−jkR , 4π, dϑ, dϕ to get

lim
R→∞

R

[
∂p

∂r
+ jkp

]
= 0

I Using the Euler equation ∂p
∂r = −jωρ0vr we get

lim
R→∞

R [p − z0vr ] = 0

Note z0 = ρ0c is the specific plane wave impedance

I Similarly, in d dimensions we have

lim
R→∞

R
d−1

2 [p − z0vr ] = 0

I We can verify that the free field Green’s functions all satisfy
the Sommerfeld condition (p = G1, G2, or G3 above)

I This means that for any radiator radiating finite energy the
boundary integrals on Γ∞ can be omitted



Discretization
I We need to solve the KHIE using a numerical method

I Zero incident field is assumed in the following for simplicity

I We discretize the boundary into boundary elements

Γ ≈
E⋃
i=1

Γi with Γi ∩ Γj = ∅ if i 6= j

I The general method of data discretization is to approximate
the boundary data by a finite number of so-called shape
functions N(x)

p(x) =
∑
j

N
(p)
j (x)pj x ∈ Γ

q(x) =
∂p(x)

∂n
=

∑
j

N
(q)
j (x)qj x ∈ Γ

I In the BEM we have a great freedom in choosing the shape
functions. Here, we will consider the simplest choice: the
piecewise constant approximation



The collocation form
I Shape and test function choices:

I N
(p)
j , N

(q)
j : piecewise constant over the j-th element

I With this we have E unknowns, we also need E equations
I We choose the E collocational points xi (i = 1 . . .E ) by

setting xi to the center of the i-th element
1

2
pi =

∑
j

∫
Γj

G (xi , x)N
(q)
j (x)dx︸ ︷︷ ︸

Gij

qj −
∑
j

∫
Γj

G ′n(xi , x)N
(p)
j (x)dx︸ ︷︷ ︸

Hij

pj

I The shape functions are non-zero only over one element, thus,
integration is carried out element-by-element

I Matrix elements by integration of the fundamental solution
(and its normal derivative) over one boundary element:

Gij =

∫
Γj

G (xi , x)dx (i , j) = 1 . . .E

Hij =

∫
Γj

∂G (xi , x)

∂n(x)
dx (i , j) = 1 . . .E



The BEM system of equations

I Matrix form:
1

2
p = Gq−Hp

(p and q are column vectors of the unknowns)

I From the BCs either p or q is known2

I Solution for p (scattered pressure field over the surface)

p =

(
H +

1

2
I

)−1

Gq

I Common properties of matrices G and H
1. Fully populated (size E × E )
2. Complex valued
3. Frequency (wave number k) dependent
4. Contain singular integrals over elements
5. Asymmetric (in case of the collocational formalism)

2More precisely: for each element i , either pi , qi , or their linear combination
must be known



Computing the radiated field

I For the computation of the radiated field, the boundary
integral representation (BIR) is used.

p(x0) =

∫
Γ
G (x, x0)q(x)dx−

∫
Γ
G ′n(x, x0)p(x) dx x0 ∈ Ω

Notice, that this is a simple forward step, as we already know
the surface quantities

I As we have discretized the surface variables, the integrals on
the r.h.s. can be written as matrix–vector products.

I If we choose a number of field points, we get the field point
pressures pf by a simple multiplication

pf = Gf qs −Hf ps

I Gf and Hf are also full (size M × E , M: number of field
points), frequency dependent, but contain no singular integrals



Acoustical BEM – solution steps

Generally, the solution of an acoustical BEM problem consists of
the following steps:

1. Create a discretized geometry (mesh) of the problem

2. Define the boundary conditions (BCs) over the whole surface

3. Set the test (angular) frequency ω

4. Compute the surface matrices G and H, and the field matrices
Gf , Hf using numerical integration

5. Solve the BEM equation to get the missing surface quantities
(solve the full system with matrices G and H)

6. Use the boundary integral representation formula to calculate
the radiated field in the field points (use Gf , Hf )

Multi-frequency analysis: repeat steps 3–6 for each test frequency.
Steps 4 and 5 take the most time and computational effort.



Example – A radiation problem I.

I Example problem: exterior radiation from a loudspeaker

I No sources inside the domain (i.e., zero incident field), sound
is generated by a vibrating surface (membrane of the speaker)



Example – A radiation problem II.
I Computation at different frequencies, maximum frequency is

limited by the largest elements (rule of thumb: le < λ/6)

I Constant acceleration on the membrane is assumed

I The membrane is not planar → normal velocity is not constant



Example – A radiation problem III.

I Solution process (for each frequency)

1. Assembe matrices G, H, Gf , Hf

2. Compute surface pressure by solving the KHIE
3. Compute field point pressures by using the BIR



Example – A radiation problem IV.
I Field point result – Directivity of the loudspeaker
I Frequency dependency is clearly observed

I Low frequencies – radiation is nearly spherical
I Higher frequencies – focused radiation, side lobes appear
I Vertical directivity is asymmetric, as expected
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