Introduction to Numerical Integration

Theoretical Acoustics

Motivation

- BEM matrix elements (in the collocational formalism) are

$$
\begin{aligned}
G_{i j} & =\int_{\Gamma_{j}} G\left(\mathbf{x}_{i}, \mathbf{x}\right) \mathrm{d} \mathbf{x} \\
H_{i j} & =\int_{\Gamma_{j}} \frac{\partial G\left(\mathbf{x}_{i}, \mathbf{x}\right)}{\partial n(\mathbf{x})} \mathrm{d} \mathbf{x}
\end{aligned}
$$

- In case of a 3D problem the fundamental solution G is

$$
\begin{aligned}
G & =\frac{\mathrm{e}^{-\mathrm{j} k r}}{4 \pi r} \\
\frac{\partial G}{\partial n} & =-\frac{\mathrm{e}^{-\mathrm{j} k r}}{4 \pi r^{2}}(1+\mathrm{j} k r) \frac{\mathbf{r} \cdot \mathbf{n}}{r}
\end{aligned}
$$

where $\mathbf{r}=\mathbf{x}-\mathbf{x}_{0}$ and $r=|\mathbf{r}|$

- We need numerical integration of complex functions over simple domains (plane triangular domains in our case)
- First, the quadrature principle is introduced over standardized domains, then, domain mapping is discussed

Problem definition

- Quadrature rule: the integral is approximated as a weighted sum of the function values at predefined base points

$$
\int_{-1}^{1} f(\xi) \mathrm{d} \xi \approx \sum_{j=1}^{n} f\left(\xi_{j}\right) w_{j}
$$

- Different strategies for choosing base points ξ_{j} and weights w_{j} define different quadrature families
- Classification:
- Newton - Cotes quadrature (equidistant interpolation)
- Gaussian quadrature
- Main properties
- Size: n number of function samples
- Order: Highest polynomial order integrated accurately
- Note that the standard domain is $-1 \leq \xi \leq+1$ hereafter

Newton - Cotes quadrature

- Lagrange interpolation with equidistant samples

$$
f(\xi) \approx \sum_{j=1}^{n} f\left(\xi_{j}\right) L_{j}(\xi), \quad L_{j}(\xi)=\prod_{k=1, k \neq j}^{n} \frac{\xi-\xi_{k}}{\xi_{j}-\xi_{k}}
$$

- $L_{j}(\xi)$ are the Lagrange polynomials, as defined above
- The weights w_{j} are the integral of the polynomials

$$
\int_{-1}^{1} f(\xi) \mathrm{d} \xi \approx \sum_{j=1}^{n} f\left(\xi_{j}\right) \underbrace{\int_{-1}^{1} L_{j}(\xi) \mathrm{d} \xi}_{w_{j}}
$$

- Examples
- Brick rule: $n=1, \xi_{j}=0, w_{j}=2$ (0-th order)
- Trapezoid rule: $n=2, \xi_{j}=[-1,1], w_{j}=[1,1]$ (first order)
- Simpson's $\frac{1}{3}$ rule: $n=3, \xi_{j}=[-1,0,1], w_{j}=\left[\frac{1}{3}, \frac{4}{3}, \frac{1}{3}\right]$ (second order)

The Gaussian quadrature I.

- Newton-Cotes rules are inefficient, i.e., higher polynomial order is achievable using the same number of base points.
- A better idea is based on polynomial division.
- Let $f(\xi)$ be a polynomial of order $2 n-1$

$$
f(\xi)=p_{2 n-1}(\xi) \quad-1 \leq \xi \leq+1
$$

- Divide p by the n-th order polynomial q as

$$
p_{2 n-1}(\xi)=q_{n}(\xi) d_{n-1}(\xi)+r_{n-1}(\xi)
$$

- Then, the integral of p is written as

$$
\int_{-1}^{1} p_{2 n-1}(\xi) \mathrm{d} \xi=\int_{-1}^{1} q_{n}(\xi) d_{n-1}(\xi) \mathrm{d} \xi+\int_{-1}^{1} r_{n-1}(\xi) \mathrm{d} \xi
$$

- The next idea is to use orthogonal polynomials as q_{n}.

Note that two functions f and g are orthogonal if, and only if

$$
\int_{-1}^{1} f(\xi) g(\xi) \mathrm{d} \xi=0
$$

The Gaussian quadrature II.

- If q is orthogonal to every polynomial up to order $n-1$ then the integral of p simplifies to the integral of the remainder r

$$
\int_{-1}^{1} p_{2 n-1}(\xi) \mathrm{d} \xi=\int_{-1}^{1} r_{n-1}(\xi) \mathrm{d} \xi
$$

- Legendre polynomials $P_{n}(\xi)$ are orthogonal in $-1 \leq \xi \leq+1$
- Let ξ_{j} be the n roots of $q_{n}(\xi)=P_{n}(\xi)$. In this case

$$
p_{2 n-1}\left(\xi_{j}\right)=r_{n-1}\left(\xi_{j}\right)
$$

- Thus, we have n samples of the n - 1 -th order remainder. The remainder is then reconstructed and integrated.

n	q	x_{j}	w_{j}
1	x	0	2
2	$3 x^{2}-1$	$\pm 1 / \sqrt{3}$	1
3	$5 x^{3}-3 x$	$0, \pm \sqrt{3 / 5}$	$8 / 9,5 / 9$

Domain mapping

- The standard domain $-1 \leq \xi \leq+1$ is mapped to $x_{1} \leq x \leq x_{2}$

$$
x(\xi)=\frac{1-\xi}{2} x_{1}+\frac{1+\xi}{2} x_{2}
$$

- The integration is rewritten from x to ξ as

$$
\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x=\int_{-1}^{1} f(x(\xi)) \underbrace{\frac{\mathrm{d} x}{\mathrm{~d} \xi}}_{J(\xi)} \mathrm{d} \xi
$$

where $J(\xi)$ is the Jacbian of the coordinate transform. Note that $J(\xi)=\left(x_{2}-x_{1}\right) / 2$ in this case.

- Using the mapping quadrature rules can be transformed to arbitrary intervals in x.
- Similar coordinate transformations are used in multiple dimensions as well.

Integration over rectangles

- Tensor product quadrature

$$
\begin{equation*}
\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta=\sum_{i}\left(\sum_{j} f\left(\xi_{i}, \eta_{j}\right) w_{j}\right) w_{i} \tag{1}
\end{equation*}
$$

- Quadrature points: $\left(\xi_{i}, \eta_{j}\right)$, weights: $w_{i} \cdot w_{j}$

Standard triangular domain

- The mapping of a standard triangular domain: $0 \leq \xi \leq 1$, $0 \leq \eta \leq 1-\xi$ is performed using the following linear map

$$
\mathbf{x}(\xi, \eta)=\xi \mathbf{x}_{1}+\eta \mathbf{x}_{2}+(1-\xi-\eta) \mathbf{x}_{3}
$$

- The mapping functions $N_{1}(\xi, \eta)=\xi, N_{2}(\xi, \eta)=\eta$ and $N_{3}(\xi, \eta)=1-\xi-\eta$ are also referred to as shape functions
- The Jacobian of the transfom is constant, $J(\xi, \eta)=2 A$, where A is the area of the element in the (x, y, z) space

Duffy's transform

- An alternative standardized triangular domain can also be defined as $0 \leq \xi \leq 1,0 \leq \eta \leq \xi$
- In this case, we define the integral as:

$$
\int_{0}^{1} \int_{0}^{\xi} f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta
$$

- Duffy's transform: $\eta=\xi \mu, \mathrm{d} \eta=\xi \mathrm{d} \mu$

$$
\int_{0}^{1} \int_{0}^{1} f(\xi, \mu) \xi \mathrm{d} \mu \mathrm{~d} \xi \approx \sum_{i} \sum_{j} f\left(\xi_{i}, \xi_{i} \mu_{j}\right) \xi_{i} w_{i} w_{j}
$$

- Equivalent to integration over a distorted rectangle with corners $(0,0),(1,0),(1,1),(0,0)$
- The transformed base points of the quadrature are shown in the figure to the right

Singular integrals using Duffy's transform I

- Remember that we need to calculate

$$
G_{i j}=\int_{\Gamma_{j}} G\left(\mathbf{x}_{i}, \mathbf{x}\right) \mathrm{d} \mathbf{x}=\int_{\Gamma_{j}} \frac{\mathrm{e}^{-\mathrm{j} k\left|\mathbf{x}_{i}-\mathbf{x}\right|}}{4 \pi\left|\mathbf{x}_{i}-\mathbf{x}\right|} \mathrm{d} \mathbf{x}=\int_{\Gamma_{j}} \frac{\mathrm{e}^{-\mathrm{j} k r}}{4 \pi r} \mathrm{~d} \mathbf{x}
$$

which is singular in the case $i=j$ (i.e., the receiver point is the middle of the source element)

- The problem is that the function is $\sim \frac{1}{r}$
- This singularity of type $\sim \frac{1}{r}$ can be cancelled by using polar transformation

$$
\iint f(x, y) \mathrm{d} x \mathrm{~d} y=\iint f(r, \theta) \underbrace{r}_{J(\rho, \theta)} \mathrm{d} r \mathrm{~d} \theta
$$

as r is the Jacobian of the transform that cancels $1 / r$. Here $x=r \cos \theta$ and $y=r \sin \theta$.

Singular integrals using Duffy's transform II

- Write the integral over the triangle in polar form

$$
\int_{0}^{1} \int_{0}^{\xi} f(\xi, \eta) \mathrm{d} \eta \mathrm{~d} \xi=\int_{0}^{\pi / 4} \int_{0}^{\rho_{e}(\theta)} f(\rho, \theta) \underbrace{\rho}_{J(\rho, \theta)} \mathrm{d} \rho \mathrm{~d} \theta
$$

where $\xi=\rho \cos \theta$ and $\eta=\rho \sin \theta$ and $\rho_{e}(\theta)$ denotes that the upper limit in ρ depends on θ.

- We can utilize Duffy's transformation

$$
\int_{0}^{1} \int_{0}^{1} f(\xi, \mu) \xi \mathrm{d} \mu \mathrm{~d} \xi \approx \sum_{i} \sum_{j} f\left(\xi_{i}, \xi_{i} \mu_{j}\right) \xi_{i} w_{i} w_{j}
$$

here $\xi_{i}=\rho_{i} \cos \theta_{i}$, which means that the summation weight $\xi_{i} w_{i} w_{j}$ automatically cancels the singularity of $1 / r$

- Thus, it is also referred to as Duffy's polar transformation

Singular integrals using Duffy's transform III

- The singular quadrature is created by subdividing the original elements into smaller elements and using Duffy's transform to create the base points
- Notice that the base points are very dense near the singular point

- The other singular integral in the 3D Helmholtz BEM

$$
H_{i j}=\int_{\Gamma_{j}} \frac{\partial G\left(\mathbf{x}_{i}, \mathbf{x}\right)}{\partial n(\mathbf{x})} \mathrm{d} \mathbf{x}=0 \quad \text { if } \quad i=j
$$

is zero over all planar elements.

Summary

- Numerical integration is performed using quadrature rules
- One very efficient strategy is the Gaussian quadrature
- The standardized domain of integration $-1 \leq \xi \leq 1$ is mapped to the actual integration domain
- When integrating in the standard domain, the Jacobian of the coordinate transform needs to be accounted for
- The same strategy is pursued in multiple dimensions
- Duffy's polar transform can be used to evaluate both regular and weakly singular ${ }^{1}$ integrals over triangular domains
- Using planar triangular elements is efficient because we have a simple Jacobian and do not need to integrate $\partial G / \partial n$
- Using these strategies the matrix elements needed in the acoustical Helmholtz BEM can efficiently be evaluated

[^0]
[^0]: ${ }^{1}$ functions containing $1 / r$ singularity

