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Preface 

Facing the unusual popularity of wavelets in sciences, I began to wonder whether 
this was just another fashion that would fade away with time. After several years of 
research and teaching on this topic, and surviving the painful experience of writing 
a book, you may rightly expect that I have calmed my anguish. This might be the 
natural self-delusion affecting any researcher studying his comer of the world, but 
there might be more. 

Wavelets are not based on a “bright new idea”, but on concepts that already 
existed under various forms in many different fields. The formalization and emer- 
gence of this “wavelet theory” is the result of a multidisciplinary effort that brought 
together mathematicians, physicists and engineers, who recognized that they were 
independently developing similar ideas. For signal processing, this connection 
has created a flow of ideas that goes well beyond the construction of new bases or 
transforms. 

A Personal Experience At one point, you cannot avoid mentioning who did what. 
For wavelets, this is a particularly sensitive task, risking aggressive replies from 
forgotten scientific tribes arguing that such and such results originally belong to 
them. As I said, this wavelet theory is truly the result of a dialogue between scien- 
tists who often met by chance, and were ready to listen. From my totally subjective 
point of view, among the many researchers who made important contributions, I 
would like to single out one, Yves Meyer, whose deep scientific vision was a major 
ingredient sparking this catalysis. It is ironic to see a French pure mathematician, 
raised in a Bourbakist culture where applied meant trivial, playing a central role 
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along this wavelet bridge between engineers and scientists coming from different 
disciplines. 

When beginning my Ph.D. in the U.S., the only project I had in mind was to 
travel, never become a researcher, and certainly never teach. I had clearly destined 
myself to come back to France, and quickly begin climbing the ladder of some big 
corporation. Ten years later, I was still in the U.S., the mind buried in the hole 
of some obscure scientific problem, while teaching in a university. So what went 
wrong? Probably the fact that I met scientists like Yves Meyer, whose ethic and 
creativity have given me a totally different view of research and teaching. Trying 
to communicate this flame was a central motivation for writing this book. I hope 
that you will excuse me if my prose ends up too often in the no man’s land of 
scientific neutrality. 

A Few Ideas 
tant ideas that I would like to emphasize. 

Beyond mathematics and algorithms, the book carries a few impor- 

Time-frequency wedding Important information often appears through a 
simultaneous analysis of the signal’s time and frequency properties. This 
motivates decompositions over elementary “atoms” that are well concen- 
trated in time and frequency. It is therefore necessary to understand how the 
uncertainty principle limits the flexibility of time and frequency transforms. 

0 Scalefor zooming Wavelets are scaled waveforms that measure signal vari- 
ations. By traveling through scales, zooming procedures provide powerful 
characterizations of signal structures such as singularities. 

More and more bases Many orthonormal bases can be designed with fast 
computational algorithms. The discovery of filter banks and wavelet bases 
has created a popular new sport of basis hunting. Families of orthogonal 
bases are created every day. This game may however become tedious if not 
motivated by applications. 

0 Sparse representations An orthonormal basis is useful if it defines a rep- 
resentation where signals are well approximated with a few non-zero coef- 
ficients. Applications to signal estimation in noise and image compression 
are closely related to approximation theory. 

0 Try it non-linear and diagonal Linearity has long predominated because of 
its apparent simplicity. We are used to slogans that often hide the limitations 
of “optimal” linear procedures such as Wiener filtering or Karhunen-Lohe 
bases expansions. In sparse representations, simple non-linear diagonal 
operators can considerably outperform “optimal” linear procedures, and 
fast algorithms are available. 
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WAVELAB and LASTWAVE Toolboxes Numerical experimentations are necessary 
to fully understand the algorithms and theorems in this book. To avoid the painful 
programming of standard procedures, nearly all wavelet and time-frequency algo- 
rithms are available in the WAVELAB package, programmed in M~TLAB. WAVELAB 
is a freeware software that can be retrieved through the Internet. The correspon- 
dence between algorithms and WAVELAB subroutines is explained in Appendix B . 
All computational figures can be reproduced as demos in WAVELAB. LASTWAVE is a 
wavelet signal and image processing environment, written in C for X1 l/Unix and 
Macintosh computers. This stand-alone freeware does not require any additional 
commercial package. It is also described in Appendix B. 

Teaching This book is intended as a graduate textbook. It took form after teaching 
“wavelet signal processing” courses in electrical engineering departments at MIT 
and Tel Aviv University, and in applied mathematics departments at the Courant 
Institute and &ole Polytechnique (Paris). 

In electrical engineering, students are often initially frightened by the use of 
vector space formalism as opposed to simple linear algebra. The predominance 
of linear time invariant systems has led many to think that convolutions and the 
Fourier transform are mathematically sufficient to handle all applications. Sadly 
enough, this is not the case. The mathematics used in the book are not motivated 
by theoretical beauty; they are truly necessary to face the complexity of transient 
signal processing. Discovering the use of higher level mathematics happens to 
be an important pedagogical side-effect of this course. Numerical algorithms and 
figures escort most theorems. The use of WAVELAB makes it particularly easy to 
include numerical simulations in homework. Exercises and deeper problems for 
class projects are listed at the end of each chapter. 

In applied mathematics, this course is an introduction to wavelets but also to 
signal processing. Signal processing is a newcomer on the stage of legitimate 
applied mathematics topics. Yet, it is spectacularly well adapted to illustrate the 
applied mathematics chain, from problem modeling to efficient calculations of 
solutions and theorem proving. Images and sounds give a sensual contact with 
theorems, that can wake up most students. For teaching, formatted overhead 
transparencies with enlarged figures are available on the Internet: 

http://www.cmap.polytechnique.fr/.-mallat/Wavetour-fig/. 

Francois Chaplais also offers an introductory Web tour of basic concepts in the 
book at 

http://cas.ensmp.fr/Nchaplais/Wavetour-presentation/. 

Not all theorems of the book are proved in detail, but the important techniques 
are included. I hope that the reader will excuse the lack of mathematical rigor in 
the many instances where I have privileged ideas over details. Few proofs are long; 
they are concentrated to avoid diluting the mathematics into many intermediate 
results, which would obscure the text. 
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Course Design Level numbers explained in Section 1.5.2 can help in designing 
an introductory or a more advanced course. Beginning with a review of the Fourier 
transform is often necessary. Although most applied mathematics students have 
already seen the Fourier transform, they have rarely had the time to understand 
it well. A non-technical review can stress applications, including the sampling 
theorem. Refreshing basic mathematical results is also needed for electrical en- 
gineering students. A mathematically oriented review of time-invariant signal 
processing in Chapters 2 and 3 is the occasion to remind the student of elementary 
properties of linear operators, projectors and vector spaces, which can be found 
in Appendix A. For a course of a single semester, one can follow several paths, 
oriented by different themes. Here are a few possibilities. 

One can teach a course that surveys the key ideas previously outlined. Chapter 
4 is particularly important in introducing the concept of local time-frequency de- 
compositions. Section 4.4 on instantaneous frequencies illustrates the limitations 
of time-frequency resolution. Chapter 6 gives a different perspective on the wavelet 
transform, by relating the local regularity of a signal to the decay of its wavelet 
coefficients across scales. It is useful to stress the importance of the wavelet van- 
ishing moments. The course can continue with the presentation of wavelet bases 
in Chapter 7, and concentrate on Sections 7.1-7.3 on orthogonal bases, multireso- 
lution approximations and filter bank algorithms in one dimension. Linear and 
non-linear approximations in wavelet bases are covered in Chapter 9. Depending 
upon students’ backgrounds and interests, the course can finish in Chapter 10 with 
an application to signal estimation with wavelet thresholding, or in Chapter 11 by 
presenting image transform codes in wavelet bases. 

A different course may study the construction of new orthogonal bases and 
their applications. Beginning with the wavelet basis, Chapter 7 also gives an in- 
troduction to filter banks. Continuing with Chapter 8 on wavelet packet and local 
cosine bases introduces different orthogonal tilings of the time-frequency plane. 
It explains the main ideas of time-frequency decompositions. Chapter 9 on linear 
and non-linear approximation is then particularly important for understanding how 
to measure the efficiency of these bases, and for studying best bases search proce- 
dures. To illustrate the differences between linear and non-linear approximation 
procedures, one can compare the linear and non-linear thresholding estimations 
studied in Chapter 10. 

The course can also concentrate on the construction of sparse representations 
with orthonormal bases, and study applications of non-linear diagonal operators in 
these bases. It may start in Chapter 10 with a comparison of linear and non-linear 
operators used to estimate piecewise regular signals contaminated by a white noise. 
A quick excursion in Chapter 9 introduces linear and non-linear approximations 
to explain what is a sparse representation. Wavelet orthonormal bases are then 
presented in Chapter 7, with special emphasis on their non-linear approximation 
properties for piecewise regular signals. An application of non-linear diagonal op- 
erators to image compression or to thresholding estimation should then be studied 
in some detail, to motivate the use of modern mathematics for understanding these 
problems. 
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A more advanced course can emphasize non-linear and adaptive signal pro- 
cessing. Chapter 5 on frames introduces flexible tools that are useful in analyzing 
the properties of non-linear representations such as irregularly sampled transforms. 
The dyadic wavelet maxima representation illustrates the frame theory, with ap- 
plications to multiscale edge detection. To study applications of adaptive repre- 
sentations with orthonormal bases, one might start with non-linear and adaptive 
approximations, introduced in Chapter 9. Best bases, basis pursuit or matching 
pursuit algorithms are examples of adaptive transforms that construct sparse rep- 
resentations for complex signals. A central issue is to understand to what extent 
adaptivity improves applications such as noise removal or signal compression, 
depending on the signal properties. 

Responsibilities This book was a one-year project that ended up in a never will 
finish nightmare. Ruzena Bajcsy bears a major responsibility for not encourag- 
ing me to choose another profession, while guiding my first research steps. Her 
profound scientific intuition opened my eyes to and well beyond computer vision. 
Then of course, are all the collaborators who could have done a much better job 
of showing me that science is a selfish world where only competition counts. The 
wavelet story was initiated by remarkable scientists like Alex Grossmann, whose 
modesty created a warm atmosphere of collaboration, where strange new ideas 
and ingenuity were welcome as elements of creativity. 

I am also grateful to the few people who have been willing to work with me. 
Some have less merit because they had to finish their degree but others did it on 
a voluntary basis. 1 am thinking of Amir Averbuch, Emmanuel Bacry, FranGois 
Bergeaud, Geoff Davis, Davi Geiger, Frkd6ric Falzon, Wen Liang Hwang, Hamid 
Krim, George Papanicolaou, Jean-Jacques Slotine, Alan Willsky, Zifeng Zhang 
and Sifen Zhong. Their patience will certainly be rewarded in a future life. 

Although the reproduction of these 600 pages will probably not kill many 
trees, I do not want to bear the responsibility alone. After four years writing and 
rewriting each chapter, I first saw the end of the tunnel during a working retreat 
at the Fondation des Treilles, which offers an exceptional environment to think, 
write and eat in Provence. With WAVEJAB, David Donoho saved me from spending 
the second half of my life programming wavelet algorithms. This opportunity was 
beautifully implemented by Maureen Clerc and J6r6me Kalifa, who made all the 
figures and found many more mistakes than I dare say. Dear reader, you should 
thank Barbara Burke Hubbard, who corrected my Franglais (remaining errors are 
mine), and forced me to m o m  many notations and explanations. I thank her for 
doing it with tact and humor. My editor, Chuck Glaser, had the patience to wait 
but I appreciate even more his wisdom to let me think that I would finish in a year. 

She will not read this book, yet my deepest gratitude goes to Branka with 
whom life has nothing to do with wavelets. 

Stkphane Mallat 



Preface to the second edition 

Before leaving this Wavelet Tour, I naively thought that I should take advantage of 
remarks and suggestions made by readers. This almost got out of hand, and 200 
pages ended up being rewritten. Let me outline the main components that were 
not in the first edition. 

Bayes versus Minimax Classical signal processing is almost entirely built 
in a Bayes framework, where signals are viewed as realizations of a random 
vector. For the last two decades, researchers have tried to model images 
with random vectors, but in vain. It is thus time to wonder whether this 
is really the best approach. Minimax theory opens an easier avenue for 
evaluating the performance of estimation and compression algorithms. It 
uses deterministic models that can be constructed even for complex signals 
such as images. Chapter 10 is rewritten and expanded to explain and compare 
the Bayes and minimax points of view. 

Bounded Variation Signals Wavelet transforms provide sparse representa- 
tions of piecewise regular signals. The total variation norm gives an intuitive 
and precise mathematical framework in which to characterize the piecewise 
regularity of signals and images. In this second edition, the total variation is 
used to compute approximation errors, to evaluate the risk when removing 
noise from images, and to analyze the distortion rate of image transform 
codes. 

Normalized Scale Continuous mathematics give asymptotic results when 
the signal resolution N increases. In this framework, the signal support is 
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fixed, say [0,1], and the sampling interval N-' is progressively reduced. In 
contrast, digital signal processing algorithms are often presented by nor- 
malizing the sampling interval to 1, which means that the support [O,N] 
increases with N .  This new edition explains both points of views, but the 
figures now display signals with a support normalized to [0,1], in accordance 
with the theorems. 

Video Compression Compressing video sequences is of prime importance 
for real time transmission with low-bandwidth channels such as the Internet 
or telephone lines. Motion compensation algorithms are presented at the 
end of Chapter 11. 



Notation 

(f 7 g )  
Ilf II Norm (A.3). 
f [n] = O(g[n] )  Order of: there exists K such that f [n] 5 Kg[n]. 
f [n] = o(g[n])  Small order of: limn,+, # = 0. 
f [n] - g[n] 
A<+m A is finite. 
A > B  
Z* 
1x1 
b1 
n mod N 

Inner product (A.6). 

Equivalent to: f [n] = O(g[n])  and g[n] = O ( f [ n ] ) .  

A is much bigger than B. 
Complex conjugate of z E e. 
Largest integer n i x .  
Smallest integer n 2 x .  
Remainder of the integer division of n modulo N .  

Sets 
N Positive integers including 0. 
z Integers. 
w Real numbers. 
R+ Positive real numbers. 
c Complex numbers. 

Signals 
f (4 Continuous time signal. 
f L.1 Discrete signal. 

xxii 
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Dirac distribution (A.30). 
Discrete Dirac (3.16). 
Indicator function which is 1 in [a, b] and 0 outside. 

Uniformly continuous functions (7.240). 
p times continuously differentiable functions. 
Infinitely differentiable functions. 
Sobolev s times differentiable functions (9.5). 
Finite energy functions J I f  (t) Iz dt < +oo. 
Functions such that J I f  (t)lP df < +cc. 
~ i n i t e  energy discrete signals E,'="_, ~ f [ n ]  l2 < +oo. 
Discrete signals such that E,'="_, I f  [n] IP < +oo. 
Complex signals of size N. 
Direct sum of two vector spaces. 
Tensor product of two vector spaces (A.19). 

Identity. 
Derivative y. 
Derivative of order p . 
Gradient vector (6.55). 
Continuous time convolution (2.2). 
Discrete convolution (3.17). 
Circular convolution (3.57) 

Fourier transform (2.6), (3.23). 
Discrete Fourier transform (3.33). 
Short-time windowed Fourier transform (4.11). 

Wavelet transform (4.3 1). 

Wigner-Ville disbibution (4.108). 
Ambiguity function (4.24). 

spectrogram (4.12). 

scalogram (4.55). 

Random variable. 
Expected value. 
Entropy ( 1 1.4). 
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Cov(X1 ,XZ) Covariance (A.22). 
Fb1 Random vector. 
RF lkl 

Differential entropy (1 1.20). 

Autocovariance of a stationary process (A.26). 



INTRODUCTION TO A TRANSIENT 

WORLD 

fter a few minutes in a restaurant we cease to notice the annoying hub- 
bub of surrounding conversations, but a sudden silence reminds us of the A presence of neighbors. Our attention is clearly attracted by transients 

and movements as opposed to stationary stimuli, which we soon ignore. Con- 
centrating on transients is probably a strategy for selecting important information 
from the overwhelming amount of data recorded by our senses. Yet, classical 
signal processing has devoted most of its efforts to the design of time-invariant 
and space-invariant operators, that modify stationary signal properties. This has 
led to the indisputable hegemony of the Fourier transform, but leaves aside many 
information-processing applications. 

The world of transients is considerably larger and more complex than the 
garden of stationary signals. The search for an ideal Fourier-like basis that would 
simplify most signal processing is therefore a hopeless quest. Instead, a multitude 
of different transforms and bases have proliferated, among which wavelets are just 
one example. This book gives a guided tour in this jungle of new mathematical 
and algorithmic results, while trying to provide an intuitive sense of orientation. 
Major ideas are outlined in this first chapter. Section 1 S.2 serves as a travel guide 
and inh-oduces the reproducible experiment approach based on the  WAVE^ and 
LASTWAVE softwares. It also discusses the use of ZeveZ numbers-landmarks that 
can help the reader keep to the main roads. 

I 
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I. I FOURIER KINGDOM 

The Fourier transform rules over linear time-invariant signal processing because 
sinusoidal waves eiWr are eigenvectors of linear time-invariant operators. A linear 
time-invariant operator L is entirely specified by the eigenvalues i ( w ) :  

Qw E B , LeiWt = i ( w )  eiW‘. (1.1) 

To compute L f, a signal f is decomposed as a sum of sinusoidal eigenvectors 
{ eiWt}uER: 

Iff has finite energy, the theory of Fourier integrals presented in Chapter 2 proves 
that the amplitude 3 ( w )  of each sinusoidal wave eiut is the Fourier transform off: 

Applying the operator L to f in (1.2) and inserting the eigenvector expression (1.1) 
gives 

The operator L amplifies or attenuates each sinusoidal component eiW* o f f  by 
i ( w ) .  It is a fiequencyjltering off .  

As long as we are satisfied with linear time-invariant operators, the Fourier 
transform provides simple answers to most questions. Its richness makes it suit- 
able for a wide range of applications such as signal transmissions or stationary 
signal processing. However, if we are interested in transient phenomena-a word 
pronounced at a particular time, an apple located in the left comer of an imagethe 
Fourier transform becomes a cumbersome tool. 

The Fourier coefficient is obtained in (1.3) by correlating f with a sinusoidal 
wave eiwt. Since the support of eiwr covers the whole real line, f ( w )  depends on 
the values f ( t )  for all times t E B. This global “mix” of information makes it 
difficult to analyze any local property of f from 3. Chapter 4 introduces local 
time-frequency transforms, which decompose the signal over waveforms that are 
well localized in time and frequency. 

1.2 TIME-FREQUENCY WEDDING 

The uncertainty principle states that the energy spread of a function and its Fourier 
transform cannot be simultaneously arbitrarily small. Motivated by quantum me- 
chanics, in 1946 the physicist Gabor [187] defined elementary time-frequency 
atoms as waveforms that have a minimal spread in a time-frequency plane. To 
measure time-frequency “information” content, he proposed decomposing signals 
over these elementary atomic waveforms. By showing that such decompositions 
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are closely related to our sensitivity to sounds, and that they exhibit important 
structures in speech and music recordings, Gabor demonstrated the importance of 
localized time-frequency signal processing. 

Chapter 4 studies the properties of windowed Fourier and wavelet transforms, 
computed by decomposing the signal over different families of time-frequency 
atoms. Other transforms can also be defined by modifying the family of time- 
frequency atoms. A unified interpretation of local time-frequency decompositions 
follows the time-frequency energy density approach of Ville. In parallel to Gabor’s 
contribution, in 1948 Ville [342], who was an electrical engineer, proposed ana- 
lyzing the time-frequency properties of signals f with an energy density defined 
by 

Once again, theoretical physics was ahead, since this distribution had already been 
introduced in 1932 by Wigner [35 11 in the context of quantum mechanics. Chapter 
4 explains the path that relates Wigner-Ville distributions to windowed Fourier and 
wavelet transforms, or any linear time-frequency transform. 

I .2. I 

Gabor atoms are constructed by translating in time and frequency a time window g: 

g,,C(t) = g(t- u)ei@. 

The energy of g,,E is concentrated in the neighborhood of u over an interval of size 
af, measured by the standard deviation of I gI2. Its Fourier transform is a translation 
by E of the Fourier transform 2 of g: 

Windowed Fourier Transform 

(1.5) 

The energy of gu,t is therefore localized near the frequency E,  over an interval of size 
a,, which measures the domain where 2 (w) is non-negligible. In a time-frequency 
plane (t ,  w), the energy spread of the atom gUx is symbolically represented by the 
Heisenberg rectangle illustrated by Figure 1.1. This rectangle is centered at (u,  5 )  
and has a time width ut and a frequency width a,. The uncertainty principle proves 
that its area satisfies 

1 
alau 4 -. 2 

This area is minimum when g is a Gaussian, in which case the atoms g,,C are called 
Gabor functions. 

The windowed Fourier transform defined by Gabor correlates a signal f with 
each atom g,x: 

-iu(u-C) ks&) = k ( W  - 5)  e 

s f ( u , < )  = J+r f ( t )g : , c ( t )d t  = f(t>g(t-u)e-ictdt. (1.6) 
-m 
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FIGURE I. I 
energy spread of two Gabor atoms. 

Time-frequency boxes (“Heisenberg rectangles”) representing the 

It is a Fourier integral that is localized in the neighborhood of u by the window 
g(t  - u) .  This time integral can also be written as a frequency integral by applying 
the Fourier Parseval formula (2.25): 

The transform S f ( u ,  E )  thus depends only on the values f ( t )  and ?(u) in the time 
and frequency neighborhoods where the energies of g,,c and bux are concentrated. 
Gabor interprets this as a “quantum of information” over the time-frequency rect- 
angle illustrated in Figure 1.1. 

When listening to music, we perceive sounds that have a frequency that varies in 
time. Measuring time-varying harmonics is an important application of windowed 
Fourier transforms in both music and speech recognition. A spectral line of f 
creates high amplitude windowed Fourier coefficients Sf(u,E) at frequencies E(.) 
that depend on the time u. The time evolution of such spectral components is 
therefore analyzed by following the location of large amplitude coefficients. 

I .2.2 Wavelet Transform 

In reflection seismology, Morlet knew that the modulated pulses sent underground 
have a duration that is too long at high frequencies to separate the returns of fine, 
closely-spaced layers. Instead of emitting pulses of equal duration, he thus thought 
of sending shorter waveforms at high frequencies. Such waveforms are simply 
obtained by scaling a single function called a wavelet. Although Grossrnann was 
working in theoretical physics, he recognized in Morlet’s approach some ideas that 
were close to his own work on coherent quantum states. Nearly forty years after 
Gabor, Morlet and Grossmann reactivated a fundamental collaboration between 
theoretical physics and signal processing, which led to the formalization of the 
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continuous wavelet transform [200]. Yet, these ideas were not totally new to 
mathematicians working in harmonic analysis, or to computer vision researchers 
studying multiscale image processing. It was thus only the beginning of a rapid 
catalysis that brought together scientists with very different backgrounds, first 
around coffee tables, then in more luxurious conferences. 

A wavelet $ is a function of zero average: 

$(t)  dt = 0, 

which is dilated with a scale parameter s, and translated by u: 

The wavelet transform off at the scale s and position u is computed by correlating 
f with a wavelet atom 

Time-Frequency Measurements Like a windowed Fourier transform, a wavelet 
transform can measure the time-frequency variations of spectral components, but 
it has a different time-frequency resolution. A wavelet transform correlates f with 
$J~:,. By applying the Fourier Parseval formula (2.25), it can also be written as a 
frequency integration: 

The wavelet coefficient Wf(u , s )  thus depends on the values f ( t )  and j ( w )  in the 
time-frequency region where the energy of $,,, and $,,, is concentrated. Time 
varying harmonics are detected from the position and scale of high amplitude 
wavelet coefficients. 

In time, $,,, is centered at u with a spread proportional to s. Its Fourier 
transform is calculated from (1 3): 

i+iU:,(w) = e-iuw &$(sw), 

where $ is the Fourier transform of $. To analyze the phase information of 
signals, a complex analytic wavelet is used. This means that &w> = o for w < 0. 
Its energy is concentrated in a positive frequency interval centered at q. The energy 
of $J,,,(w> is therefore concentrated over a positive frequency interval centered at 
q / s ,  whose size is scaled by l/s. In the time-frequency plane, a wavelet atom 
$Ju,, is symbolically represented by a rectangle centered at (u, q / s ) .  The time and 
frequency spread are respectively proportional to s and l/s. When s varies, the 
height and width of the rectangle change but its area remains constant, as illustrated 
by Figure 1.2. 
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FIGURE I .2 Time-frequency boxes of two wavelets $JU+ and $Jm,so. When the 
scale s decreases, the time support is reduced but the frequency spread increases 
and covers an interval that is shifted towards high frequencies. 

Mutiscale Zooming The wavelet transform can also detect and characterize tran- 
sients with a zooming procedure across scales. Suppose that $J is real. Since it 
has a zero average, a wavelet coefficient W f ( u , s )  measures the variation off in a 
neighborhood of u whose size is proportional to s. Sharp signal transitions create 
large amplitude wavelet coefficients. Chapter 6 relates the pointwise regularity 
of f to the asymptotic decay of the wavelet transform Wf(u,s), when s goes to 
zero. Singularities are detected by following across scales the local maxima of 
the wavelet transform. In images, high amplitude wavelet coefficients indicate 
the position of edges, which are sharp variations of the image intensity. Different 
scales provide the contours of image structures of varying sizes. Such multiscale 
edge detection is particularly effective for pattern recognition in computer vision 
[113]. 

The zooming capability of the wavelet transform not only locates isolated sin- 
gular events, but can also characterize more complex multifractal signals having 
non-isolated singularities. Mandelbrot [43] was the h s t  to recognize the existence 
of multifractals in most corners of nature. Scaling one part of a multifractal pro- 
duces a signal that is statistically similar to the whole. This self-similarity appears 
in the wavelet transform, which modifies the analyzing scale. From the global 
wavelet transform decay, one can measure the singularity distribution of multi- 
fractals. This is particularly important in analyzing their properties and testing 
models that explain the formation of multifractals in physics. 

1.3 BASES OF TIME-FREQUENCY ATOMS 

The continuous windowed Fourier transform S f ( u ,  E )  and the wavelet transform 
W f ( u ,  s) are two-dimensional representations of a one-dimensional signal f. This 
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indicates the existence of some redundancy that can be reduced and even removed 
by subsampling the parameters of these transforms. 

Frames Windowed Fourier transforms and wavelet transforms can be written as 
inner products in L2 (W) , with their respective time-frequency atoms 

and 
+m 

Wf(W) = s_, f(t)$:,,(t)dt = ( f , $ U , S ) .  

Subsampling both transforms defines a complete signal representation if any signal 
can be reconstructed from linear combinations of discrete families of windowed 
Fourier atoms {gh,b}(n,klED and wavelet atoms { $ u n , s j } ( j : n l E ~ .  The frame theory 
of Chapter 5 discusses what conditions these families of waveforms must meet if 
they are to provide stable and complete representations. 

Completely eliminating the redundancy is equivalent to building a basis of 
the signal space. Although wavelet bases were the first to arrive on the research 
market, they have quickly been followed by other families of orthogonal bases, 
such as wavelet packet and local cosine bases. 

I .3. I 

In 1910, Haar [202] realized that one can construct a simple piecewise constant 
function 

Wavelet Bases and Filter Banks 

1 i f O < t < 1 / 2  
$ ( t ) =  -1 if 1 / 2 < t <  1 { 0 otherwise 

whose dilations and translations generate an orthonormal basis of L2(R): 

Any finite energy signal f can be decomposed over this wavelet orthogonal basis 
{$ j ,n} ( j ,n)EZz  

(1.11) 
j = - m n = - m  

Since $ ( t )  has a zero average, each partial sum 

+m 

n=-m 



8 CHAPTER I INTRODUCTION TO A TRANSIENT WORLD 

can be interpreted as detail variations at the scale 2j. These layers of details are 
added at all scales to progressively improve the approximation off, and ultimately 
recover f .  

If f has smooth variations, we should obtain a precise approximation when 
removing fine scale details, which is done by truncating the sum (1.11). The 
resulting approximation at a scale is 

j=J 

For a Haar basis, f J is piecewise constant. Piecewise constant approximations of 
smooth functions are far from optimal. For example, a piecewise linear approxi- 
mation produces a smaller approximation error. The story continues in 1980, when 
Strijmberg [322] found a piecewise linear function $ that also generates an ortho- 
normal basis and gives better approximations of smooth functions. Meyer was 
not aware of this result, and motivated by the work of Morlet and Grossmann he 
tried to prove that there exists no regular wavelet $ that generates an orthonormal 
basis. This attempt was a failure since he ended up constructing a whole family 
of orthonormal wavelet bases, with functions $ that are infinitely continuously 
differentiable [270]. This was the fundamental impulse that lead to a widespread 
search for new orthonormal wavelet bases, which culminated in the celebrated 
Daubechies wavelets of compact support [ 1441. 

The systematic theory for constructing orthonormal wavelet bases was es- 
tablished by Meyer and Mallat through the elaboration of multiresolution signal 
approximations [254], presented in Chapter 7. It was inspired by original ideas 
developed in computer vision by Burt and Adelson [lo81 to analyze images at 
several resolutions. Digging more into the properties of orthogonal wavelets and 
multiresolution approximations brought to light a surprising relation with filter 
banks constructed with conjugate mirror filters. 

Filter Banks Motivated by speech compression, in 1976 Croisier, Esteban and 
Galand [141] introduced an invertible filter bank, which decomposes a discrete 
signal f [ n ]  in two signals of half its size, using a filtering and subsampling pro- 
cedure. They showed that f [ n ]  can be recovered from these subsampled signals 
by canceling the aliasing terms with a particular class of filters called conjugate 
mirmrBlters. This breakthrough led to a 10-year research effort to build a com- 
plete filter bank theory. Necessary and sufficient conditions for decomposing a 
signal in subsampled components with a filtering scheme, and recovering the same 
signal with an inverse transform, were established by Smith and Barnwell 13161, 
Vaidyanathan [336] and Vettkrli 13391. 

The multiresolution theory of orthogonal wavelets proves that any conjugate 
mirror filter characterizes a wavelet $ that generates an orthonormal basis of L2 (R) . 
Moreover, a fast discrete wavelet transform is implemented by cascading these 
conjugate mirror filters. The equivalence between this continuous time wavelet 
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theory and discrete filter banks led to a new fruitful interface between digital signal 
processing and harmonic analysis, but also created aculture shock that is not totally 
resolved. 

Continuous Versus Discrete and Finite Many signal processors have been and 
still are wondering what is the point of these continuous time wavelets, since all 
computations are performed over discrete signals, with conjugate mirror filters. 
Why bother with the convergence of infinite convolution cascades if in practice 
we only compute a finite number of convolutions? Answering these important 
questions is necessary in order to understand why throughout this book we alternate 
between theorems on continuous time functions and discrete algorithms applied 
to finite sequences. 

A short answer would be “simplicity”. In L2(W), a wavelet basis is constructed 
by dilating and translating a single function $. Several important theorems relate 
the amplitude of wavelet coefficients to the local regularity of the signal f. Di- 
lations are not defined over discrete sequences, and discrete wavelet bases have 
therefore a more complicated structure. The regularity of a discrete sequence is 
not well defined either, which makes it more difficult to interpret the amplitude 
of wavelet coefficients. A theory of continuous time functions gives asymptotic 
results for discrete sequences with sampling intervals decreasing to zero. This 
theory is useful because these asymptotic results are precise enough to understand 
the behavior of discrete algorithms. 

Continuous time models are not sufficient for elaborating discrete sig- 
nal processing algorithms. Uniformly sampling the continuous time wavelets 
{ @ j , n ( t ) } ( j , n ) E z z  does not produce a discrete orthonormal basis. The transition 
between continuous and discrete signals must be done with ,great care. Restricting 
the constructions to finite discrete signals adds another layer of complexity because 
of border problems. How these border issues affect numerical implementations 
is carefully addressed once the properties of the bases are well understood. To 
simplify the mathematical analysis, throughout the book continuous time trans- 
forms are introduced first. Their discretization is explained afterwards, with fast 
numerical algorithms over finite signals. 

I A 2  Tilings of Wavelet Packet and Local Cosine Bases 

Orthonormal wavelet bases are just an appetizer. Their construction showed that 
it is not only possible but relatively simple to build orthonormal bases of L2(lR) 
composed of local time-frequency atoms. The completeness and orthogonality of 
a wavelet basis is represented by a tiling that covers the time-frequency plane with 
the wavelets’ time-frequency boxes. Figure 1.3 shows the time-frequency box of 
each $ j ,n .  which is translated by 2jn, with a time and a frequency width scaled 
respectively by 2j  and 2-j. 

One can draw many other tilings of the time-frequency plane, with boxes 
of minimal surface as imposed by the uncertainty principle. Chapter 8 presents 
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FIGURE I .3 The time-frequency boxes of a wavelet basis define a tiling of the 
time-frequency plane. 

several constructions that associate large families of orthonormal bases of L2(B) 
to such new tilings. 

Wavelet Packet Bases A wavelet orthonormal basis decomposes the frequency 
axis in dyadic intervals whose sizes have an exponential growth, as shown by 
Figure 1.3. Coifman, Meyer and Wickerhauser [139] have generalized this fixed 
dyadic construction by decomposing the frequency in intervals whose bandwidths 
may vary. Each frequency interval is covered by the time-frequency boxes of 
wavelet packet functions that are uniformly translated in time in order to cover the 
whole plane, as shown by Figure 1.4. 

Wavelet packet functions are designed by generalizing the filter bank tree 
that relates wavelets and conjugate mirror filters. The frequency axis division of 
wavelet packets is implemented with an appropriate sequence of iterated convolu- 
tions with conjugate mirror filters. Fast numerical wavelet packet decompositions 
are thus implemented with discrete filter banks. 

Local Cosine Bases Orthonormal bases of L2(W) can also be constructed by di- 
viding the time axis instead of the frequency axis. The time axis is segmented in 
successive finite intervals [up,up+~]. The local cosine bases of Malvar [262] are 
obtained by designing smooth windows g p ( t )  that cover each interval [up,up+l],  
and multiplying them by cosine functions cos(<t + 4)  of different frequencies. 
This is yet another idea that was independently studied in physics, signal pro- 
cessing and mathematics. Malvar’s original construction was done for discrete 
signals. At the same time, the physicist Wilson [353] was designing a local cosine 
basis with smooth windows of infinite support, to analyze the properties of quan- 
tum coherent states. Malvar bases were also rediscovered and generalized by the 
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0 

FIGURE I .4 A wavelet packet basis divides the frequency axis in separate in- 
tervals of varying sizes. A tiling is obtained by translating in time the wavelet 
packets covering each frequency interval. 

harmonic analysts Coifman and Meyer [138]. These different views of the same 
bases brought to light mathematical and algorithmic properties that opened new 
applications. 

A multiplication by cos(@ + 4)  translates the Fourier transform g,(w) of g p ( t )  
by &E. Over positive frequencies, the time-frequency box of the modulated win- 
dow g, (t) cos(& + 4)  is therefore equal to the time-frequency box of g, translated 
by E along frequencies. The time-frequency boxes of local cosine basis vectors 
define a tiling of the time-frequency plane illustrated by Figure 1.5. 

I .4 BASES FOR WHAT? 

The tiling game is clearly unlimited. Local cosine and wavelet packet bases are 
important examples, but many other kinds of bases can be constructed. It is thus 
time to wonder how to select an appropriate basis for processing a particular class of 
signals. The decomposition coefficients of a signal in a basis define arepresentation 
that highlights some particular signal properties. For example, wavelet coefficients 
provide explicit information on the location and type of signal singularities. The 
problem is to find a criterion for selecting a basis that is intrinsically well adapted 
to represent a class of signals. 

Mathematical approximation theory suggests choosing a basis that can con- 
struct precise signal approximations with a linear combination of a s m a l l  number 
of vectors selected inside the basis. These selected vectors can be interpreted as 
intrinsic signal structures. Compact coding and signal estimation in noise are ap- 
plications where this criterion is a good measure of the efficiency of a basis. Linear 
and non-linear procedures are studied and compared. This will be the occasion to 
show that non-linear does not always mean complicated. 
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FIGURE 1.5 A local cosine basis divides the time axis with smooth windows 
g ,  ( t )  . Multiplications with cosine functions translate these windows in frequency 
and yield a complete cover of the time-frequency plane. 

I .4. I Approximation 

The development of orthonormal wavelet bases has opened a new bridge be- 
tween approximation theory and signal processing. This exchange is not quite 
new since the fundamental sampling theorem comes from an interpolation theory 
result proved in 1935 by Whittaker [349]. However, the state of the art of approx- 
imation theory has changed since 1935. In particular, the properties of non-linear 
approximation schemes are much better understood, and give a firm foundation 
for analyzing the performance of many non-linear signal processing algorithms. 
Chapter 9 introduces important approximation theory results that are used in signal 
estimation and data compression. 

Linear Approximation A linear approximation projects the signal f over M vec- 
tors that are chosen a priori in an o r t h o n o d  basis B = { g m } m E N ,  say the first 
M :  

M- 1 

(1.12) 
m=O 

Since the basis is orthonormal, the approximation error is the s u m  of the remaining 
squared inner products 

f m  

041 = Ilf-fiM1I2 = I ( f 7 g m ) 1 2 .  
m=M 
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The accuracy of this approximation clearly depends on the properties off relative 
to the basis B. 

A Fourier basis yields efficient linear approximations of uniformly smooth 
signals, which are projected over the M lower frequency sinusoidal waves. When 
M increases, the decay of the error E [MI can be related to the global regularity of 
f. Chapter 9 characterizes spaces of smooth functions from the asymptotic decay 
of €[MI in a Fourier basis. 

In a wavelet basis, the signal is projected over the M larger scale wavelets, 
which is equivalent to approximating the signal at a fixed resolution. Linear 
approximations of uniformly smooth signals in wavelet and Fourier bases have 
similar properties and characterize nearly the same function spaces. 

Suppose that we want to approximate a class of discrete signals of size N ,  mod- 
eled by a random vector F[n] .  The average approximation error when projecting 
F over the first M basis vectors of an orthonormal basis 13 = {gm}O<m<N is 

N - l  

E[MI = E{llF-FMll2) = E{I(F,g?n)12). 
m=M 

Chapter 9 proves that the basis that minimizes this error is the Karhunen-hkve 
basis, which diagonalizes the covariance matrix of F .  This remarkable property 
explains the fundamental importance of the Karhunen-hkve basis in optimal linear 
signal processing schemes. This is however only a beginning. 

Non-linear Approximation The linear approximation (1.12) is improved if we 
choose a posteriori the M vectors gm, depending on f. The approximation of f 
with M vectors whose indexes are in I ,  is 

(1.13) 

The approximation error is the sum of the squared inner products with vectors not 
in IM: 

441 = Ilf - fM1I2 = I (f, gm) 12. 
n # h  

To minimize this error, we choose IM to be the set of M vectors that have the 
largest inner product amplitude I ( f , g m ) l .  This approximation scheme is non- 
linear because the approximation vectors change with f. 

The amplitude of inner products in a wavelet basis is related to the local regu- 
larity of the signal. A non-linear approximation that keeps the largest wavelet inner 
products is equivalent to constructing an adaptive approximation grid, whose res- 
olution is locally increased where the signal is irregular. If the signal has isolated 
singularities, this non-linear approximation is much more precise than a linear 
scheme that maintains the same resolution over the whole signal support. The 
spaces of functions that are well approximated by non-linear wavelet schemes are 
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thus much larger than for linear schemes, and include functions with isolated sin- 
gularities. Bounded variation signals are important examples that provide useful 
models for images. 

In this non-linear setting, Karhunen-h&ve bases are not optimal for approxi- 
mating the realizations of a process F. It is often easy to find a basis that produces a 
smaller non-linear error than a Karhunen-h&ve basis, but there is yet no procedure 
for computing the optimal basis that minimizes the average non-linear error. 

Adaptive Basis Choice Approximations of non-linear signals can be improved 
by choosing the approximation vectors in families that are much larger than a 
basis. Music recordings, which include harmonic and transient structures of very 
different types, are examples of complex signals that are not well approximated 
by a few vectors chosen from a single basis. 

A new degree of freedom is introduced if instead of choosing a priori the 
basis 13, we adaptively select a “best” basis, depending on the signal f. This best 
basis minimizes a cost function related to the non-linear approximation error of 
f. A fast dynamical programming algorithm can find the best basis in families of 
wavelet packet basis or local cosine bases [140]. The selected basis corresponds 
to a time-frequency tiling that “best” concentrates the signal energy over a few 
time-frequency atoms. 

Orthogonality is often not crucial in the post-processing of signal coefficients. 
One may thus further enlarge the freedom of choice by approximating the signal f 
with M non-orthogonal vectors {g,m}O<m<M, chosen from a large and redundant 
dictionary D = {gr}rEr: 

M-1 

m=O 

Globally optimizing the choice of these M vectors in D can lead to a combinatorial 
explosion. Chapter 9 introduces sub-optimal pursuit algorithms that reduce the 
numerical complexity, while constructing efficient approximations [ 119,2591. 

I .4.2 Estimation 

The estimation of a signal embedded in noise requires taking advantage of any 
prior information about the signal and the noise. Chapter 10 studies and contrasts 
several approaches: Bayes versus minimax, linear versus non-linear. Until re 
cently, signal processing estimation was mostly Bayesian and linear. Non-linear 
smoothing algorithms existed in statistics, but these procedures were often ad-hoc 
and complex. 7 3 ~ 0  statisticians, Donoho and Johnstone [167], changed the game 
by proving that a simple thresholding algorithm in an appropriate basis can be a 
nearly optimal non-linear estimator. 

Linear versus Non-Linear A signal f [n] of size N is contaminated by the addition 
of anoise. This noise is modeled as the realization of a random process W[n] , whose 
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probability distribution is known. The measured data are 

X[n] = f [ n ]  + W[n] . 
The signal f is estimated by transforming the noisy data X with an operator D: 

F = D X .  

The risk of the estimator F off is the average error, calculated with respect to the 
probability distribution of the noise W: 

It is tempting to restrict oneself to linear operators D, because of their simplicity. 
Yet, non-linear operators may yield a much lower risk. To keep the simplicity, we 
concentrate on diagonal operators in a basis 13. If the basis 23 gives a sparse signal 
representation, Donoho and Johnstone [ 1671 prove that a nearly optimal non-linear 
estimator is obtained with a simple thresholding: 

The thresholding function P T ( X )  sets to zero all coefficients below T: 

In a wavelet basis, such a thresholding implements an adaptive smoothing, which 
averages the data X with a kernel that depends on the regularity of the underlying 
signal f .  

Bayes Versus Minimax To optimize the estimation operator D,  one must take 
advantage of any prior information available about the signal f .  In a Bayes frame 
work, f is considered as a realization of a random vector F, whose probability 
distribution 7r is known a priori. Thomas Bayes was a XW century philosopher, 
who first suggested and investigated methods sometimes referred as “inverse prob- 
ability methods,” which are basic to the study of Bayes estimators. The Bayes risk 
is the expected risk calculated with respect to the prior probability distribution 7r 

of the signal: 

Optimizing D among all possible operators yields the minimum Bayes risk 
= E,{ r (D ,F) ) .  

rn ( r )  = inf r(D77r) . 
allD 

Complex signals such as images are clearly non-Gaussian, and there is yet no 
reliable probabilistic model that incorporates the diversity of structures such as 
edges and textures. 
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In the 1940’s, Wald brought a new perspective on statistics, through a decision 
theory partly imported from the theory of games. This point of view offers a 
simpler way to incorporate prior information on complex signals. Signals are 
modeled as elements of a particular set 0, without specifying their probability 
distribution in this set. For example, large classes of images belong to the set of 
signals whose total variation is bounded by a constant. To control the risk for any 
f E 0, we compute the maximum risk 

r(D, e)  = SUP r(D,  f) . 
f 

The minimax risk is the lower bound computed over all operators D: 

rn(Q) = inf r (D,Q) .  
aND 

In practice, the goal is to find an operator D that is simple to implement and which 
yields a risk close the minimax lower bound. 

Unless 0 has particular convexity properties, non-linear estimators have a 
much lower risk than linear estimators. If W is a white noise and signals in 0 have 
a sparse representation in B, then Chapter 10 shows that thresholding estimators are 
nearly minimax optimal. In particular, the risk of wavelet thresholding estimators 
is close to the minimax risk for wide classes of piecewise smooth signals, including 
bounded variation images. Thresholding estimators are extended to more complex 
problems such as signal restorations and deconvolutions. The performance of a 
thresholding may also be improved with a best basis search or a pursuit algorithm 
that adapts the basis B to the noisy data. However, more adaptivity does not 
necessarily means less risk. 

I .4.3 Compression 

Limited storage space and transmission through narrow band-width channels create 
a need for compressing signals while minimizing their degradation. Transform 
codes compress signals by decomposing them in an orthonormal basis. Chapter 
11 introduces the basic information theory needed to understand these codes and 
optimize their performance. Bayes and minimax approaches are studied. 

A transform code decomposes a signal f in an orthonormal basis B = 
( g m } O < m < N :  

N-1 

m=O 

The coefficients ( f , g m )  are approximated by quantized values Q ( ( f , g m ) ) .  A 
signal is restored from these quantized coefficients: 

N-1 

m=O 
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A binary code is used to record the quantized coefficients Q( ( f ,  g,)) with R bits. 
The resulting distortion is 

At the compression rates currently used for images, d(R,  f) has a highly non-linear 
behavior, which depends on the precision of non-linear approximations off from 
a few vectors in the basis B. 

To compute the distortion rate over a whole signal class, the Bayes framework 
models signals as realizations of a random vector F whose probability distribution 
T is known. The goal is then to optimize the quantization and the basis I3 in order 
to minimize the average distortion rate d(R,.rr) = ET{d(R,F)} .  This approach 
applies particularly well to audio signals, which are relatively well modeled by 
Gaussian processes. 

In the absence of stochastic models for complex signals such as images, the 
minimax approach computes the maximum distortion by assuming only that the 
signal belongs to a prior set 0. Chapter 11 describes the implementation of image 
transform codes in wavelet bases and block cosine bases. The minimax distortion 
rate is calculated for bounded variation images, and wavelet transform codes are 
proved to be nearly minimax optimal. 

For video compression, one must also take advantage of the similarity of images 
across time. The most effective algorithms predict each image from a previous 
one by compensating for the motion, and the error is recorded with a transform 
code. MPEG video compression standards are described. 

I .5 TRAVEL GUIDE 

I .5. I 

The book covers the whole spectrum from theorems on functions of continuous 
variables to fast discrete algorithms and their applications. Section 1.3.1 argues 
that models based on continuous time functions give useful asymptotic results for 
understanding the behavior of discrete algorithms. Yet, a mathematical analysis 
alone is often unable to predict fully the behavior and suitability of algorithms 
for specific signals. Experiments are necessary and such experiments ought in 
principle be reproducible, just like experiments in other fields of sciences. 

In recent years, the idea of reproducible algorithmic results has been cham- 
pioned by Claerbout [127] in exploration geophysics. The goal of exploration 
seismology is to produce the highest possible quality image of the subsurface. 
Part of the scientific know-how involved includes appropriate parameter settings 
that lead to good results on real datasets. The reproducibility of experiments 
thus requires having the complete software and full source code for inspection, 
modification and application under varied parameter settings. 

Donoho has advocated the reproducibility of algorithms in wavelet signal pro- 
cessing, through the development of a WAVELAB toolbox, which is a large library 
of MATLAB routines. He summarizes Claerbout’s insight in a slogan: [lo51 

Reproducible Computational Science 
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An article about computational science in a scient8c publication is 
not the scholarship itself; it is merely advertising of the scholarship. 
The actual scholarship is the complete software environment and the 
complete set of instructions which generated the jgures. 

Following this perspective, all wavelet and time-frequency tools presented in this 
book are available in WAVELAB. The figures can be reproduced as demos and the 
source code is available. The LASTWAVE package offers a similar library of wavelet 
related algorithm that are programmed in C, with a user-friendly shell interface 
and graphics. Appendix B explains how to retrieve these toolboxes, and relates 
their subroutines to the algorithms described in the book. 

1.5.2 Road Map 

Sections are kept as independent as possible, and some redundancy is introduced 
to avoid imposing a linear progression through the book. The preface describes 
several possible paths for a graduate signal processing or an applied mathematics 
course. A partial hierarchy between sections is provided by a level number. If a 
section has a level number then all sub-sections without number inherit this level, 
but a higher level number indicates that a subsection is more advanced. 

Sections of level introduce central ideas and techniques for wavelet and time- 
frequency signal processing. These would typically be taught in an introductory 
course. The first sections of Chapter 7 on wavelet orthonormal bases are exam- 
ples. Sections of level concern results that are important but which are either 
more advanced or dedicated to an application. Wavelet packets and local cosine 
bases in Chapter 8 are of that sort. Applications to estimation and data compres- 
sion belong to this level, including fundamental results such as Wiener filtering. 
Sections of level describe advanced results that are at the frontier of research or 
mathematically more difficult. These sections open the book to research problems. 

All theorems are explained in the text and reading the proofs is not necessary 
to understand the results. Proofs also have a level index specifying their difficulty, 
as well as their conceptual or technical importance. These levels have been set 
by trying to answer the question: “Should this proof be taught in an introductory 
course?” Level ’ means probably, level probably not, level certainly not. Prob- 
lems at the end of each chapter follow this hierarchy of levels. Direct applications 
of the course are at the level ’. Problems at level require more thinking. Prob- 
lems of level are often at the interface of research and can provide topics for 
deeper projects. 

The book begins with Chapters 2 and 3, which review the Fourier transform 
properties and elementary discrete signal processing. They provide the neces- 
sary background for readers with no signal processing experience. Fundamental 
properties of local time-frequency transforms are presented in Chapter 4. The 
wavelet and windowed Fourier transforms are introduced and compared. The 
measurement of instantaneous frequencies is used to illustrate the limitations of 
their time-frequency resolution. Wigner-Ville time-frequency distributions give a 
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global perspective which relates all quadratic time-frequency distributions. Frame 
theory is explained in Chapter 5. It offers a flexible framework for analyzing 
the properties of redundant or non-linear adaptive decompositions. Chapter 6 ex- 
plains the relations between the decay of the wavelet transform amplitude across 
scales and local signal properties. It studies applications involving the detection 
of singularities and analysis of multifractals. 

The construction of wavelet bases and their relations with filter banks are fun- 
damental results presented in Chapter 7. An overdose of orthonormal bases can 
strike the reader while studying the construction and properties of wavelet packets 
and local cosine bases in Chapter 8. It is thus important to read in parallel Chap- 
ter 9, which studies the approximation performance of orthogonal bases. The 
estimation and data compression applications of Chapters 10 and 11 give life to 
most theoretical and algorithmic results of the book. These chapters offer a prac- 
tical perspective on the relevance of these linear and non-linear signal processing 
algorithms. 



FOURIER KINGDOM 

he story begins in 1807 when Fourier presents a memoir to the Institut 
de France, where he claims that any periodic function can be represented T as a series of harmonically related sinusoids. This idea had a profound 

impact in mathematical analysis, physics and engineering, but it took one and a 
half centuries to understand the convergence of Fourier series and complete the 
theory of Fourier integrals. 

Fourier was motivated by the study of heat diffusion, which is governed by a 
linear differential equation. However, the Fourier transform diagonalizes all linear 
time-invariant operators, which are the building blocks of signal processing. It is 
therefore not only the starting point of our exploration but the basis of all further 
developments. 

2. I LINEAR TIME-INVARIANT FILTERING 

Classical signal processing operations such as signal transmission, stationary noise 
removal or predictive coding are implemented with linear time-invariant operators. 
The time invariance of an operator L means that if the input f ( t )  is delayed by T, 
f 7 ( t )  = f ( t  - T), then the output is also delayed by 7: 

g ( t )  = L f ( t )  * s(t - T) = Jv.(t). (2.1) 

For numerical stability, the operator L must have a weak form of continuity, which 
means that L f is modified by a small amount iff is slightly modified. This weak 

20 



2.1 LINEARTIME-INVARIANT FlLTERlNG 21 

continuity is formalized by the theory of distributions [66,69], which guarantees 
that we are on a safe ground without further worrying about it. 

2. I .  I Impulse Response 

Linear time-invariant systems are characterized by their response to a Dirac im- 
pulse, defined in Appendix A.7. If f is continuous, its value at t is obtained by an 
“integration” against a Dirac located at t. Let &(t) = 6(t  - u): 

f ( t )  = / + m f ( u ) 6 u ( t ) d u .  --m 

The continuity and linearity of L imply that 

L f ( t )  = / + m f ( u ) L 6 u ( t ) d u .  
--m 

Let h be the impulse response of L: 

h( t )  = Lb(t). 

The time-invariance proves that L6,(t) = h(t - u) and hence 

L f ( t )  = / + w f ( u ) h ( t - u ) d u =  h ( u ) f ( t - u ) d u = h * f ( t ) .  (2.2) 

A time-invariant linear filter is thus equivalent to a convolution with the impulse 
response h. The continuity of f  is not necessary. This formula remains valid for 
any signal f for which the convolution integral converges. 

-m 1: 

Let us recall a few useful properties of convolution products: 

0 Commutativity 
f * h ( t )  = h * f ( t ) .  

0 Differentiation 

d dh 
- ( f * h ) ( t )  = d f * h ( t )  =f*- ( t ) .  
dt dt dt 

Dirac convolution 
f*&(t) = f ( t  - 7). (2.5) 

Stability and Causality A filter is said to be causal if L f ( f )  does not depend on 
the values f (u )  for u > t. Since 

L f ( t )  = / + m h ( u ) f ( t - u ) d u ,  
-m 
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this means that h(u) = 0 for u < 0. Such impulse responses are said to be causal. 
The stability property guarantees that Lf (t) is bounded if f ( t )  is bounded. 

Since 

ILf(t)I I ~ + w l ~ ~ ~ ~ l I f ~ ~ - ~ ~ l ~ ~ I ~ ~ ~ l f ~ ~ ~ l J + m l h ~ ~ ~ l ~ ~ ,  -W UEW -02 

it is sufficient that J-'," ~ h ( u )  1 du < +m. One can verify that this condition is also 
necessary if h is a function. We thus say that h is stable if it is integrable. 

Example 2.1 An amplijication and delay system is defined by 

The impulse response of this filter is h(t)  = X6(t - T) .  

Example 2.2 A uniform averaging off  over intervals of size T is calculated by 

Lf(t) = - 

This integral can be rewritten as a convolution of f with the impulse response 
= l / T  l [ - T / 2 , T / 2 ] -  

2. I .2 Transfer Functions 

Complex exponentials eiWt are eigenvectors of convolution operators. Indeed 
+W 

LeiWt = S_, h(u) ei"(t+ du, 

which yields 

The eigenvalue 

J -02 

is the Fourier transform of h at the frequency w. Since complex sinusoidal waves 
eiut are the eigenvectors of time-invariant linear systems, it is tempting to try to 
decompose any function f as a sum of these eigenvectors. We are then able to 
express Lf directly from the eigenvalues h(w). The Fourier analysis proves that 
under weak conditions on f, it is indeed possible to write it as a Fourier integral. 

2.2 FOURIER INTEGRALS ' 
To avoid convergence issues, the Fourier integral is first defined over the space 
L1 (W) of integrable functions [57]. It is then extended to the space L2(W) of finite 
energy functions [24]. 
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2.2. I 

The Fourier integral 

Fourier Transform in L’(B) 

j ( w )  = J_+rf(t)e-”dt  (2.6) 

measures “how much” oscillations at the frequency w there is in f. If f E L1(W) 
h s  integral does converge and 

(2.7) 

The Fourier transform is thus bounded, and one can verify that it is a continuous 
function of w (Problem 2.1). If 3 is also integrable, the following theorem gives 
the inverse Fourier transform. 

Theorem 2.1 (INVERSE FOURIER TRANSFORM) I f f  E L’(W) and 1 E L’(B) then 

Proof ’. Replacing j ( w )  by its integral expression yields 

f ( w )  exp(iwt) dw = - 

We cannot apply 
integrable in Rz 
which converges 

the Fubini Theorem A.2 directly because f ( u )  exp[iw(t - u)] is not 
. To avoid this technical problem, we multiply by e x p ( - ~ ’ w ~ / 4 )  
to 1 when E goes to 0. Let us define 

We compute Z, in two different ways using the Fubini theorem. The integration with 
respect to u gives 

Since 

and since 
which proves that 

is integrable, we can apply the dominated convergence Theorem A.l, 

(2.10) 

Let us now compute the integral (2.9) differently by applying the Fubini theorem and 
integrating with respect to w:  

I&) = l:m g.(t - u) f (u )  du, (2.11) 
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with += 
ge(x) = J exp(ixw) exp (F) dw. 

2T -= 
A change of variable w' = EU shows that g,(x) = E-lgl (E-~X), and it is proved in (2.32) 
that gl ( x )  = np1l2 e-'. The Gaussian gl has an integral equal to 1 and a fast decay. 
The squeezed Gaussians g, have an integral that remains equal to 1, and thus they 
converge to a Dirac 6 when E goes to 0. By inserting (2.1 1) one can thus verify that 

Jl +m 

$3 IL ( t )  - f ( t )  I dt = lim g, ( t  - u)  I f  (u) - f ( t )  I dudt = 0.  
E-iO 

Inserting (2.10) proves (2.8). 

The inversion formula (2.8) decomposes f as a sum of sinusoidal waves eiWr 
of amplitude f(w). By using this formula, we can show (Problem 2.1) that the 
hypothesis f E L1 (W) implies that f must be continuous. The reconstruction (2.8) 
is therefore not proved for discontinuous functions. The extension of the Fourier 
transform to the space L2(R) will address this issue. 

The most important property of the Fourier transform for signal processing 
applications is the convolution theorem. It is another way to express the fact that 
sinusoidal waves eifw are eigenvalues of convolution operators. 

Theorem 2.2 (CONVOLUTION) Let f E L1(W) and h E L1(R). Thefunction g = 
h + f  is in L ~ ( w )  and 

i ( w )  = K(w) f(w). (2.12) 

Proof 1. 

(l:m f ( t - u ) h ( u ) d u  dt. b(w) = 1 exp(-itw) 1 

a b )  = 1, lcc exp[-i(u+v)wIf(v)h(u)dudv 

+E 

-cc 

Since If( t  - u)  I Ih(u) I is integrable in Et2, we can apply the Fubini Theorem A.2, and 
the change of variable ( t ,  u )  + (v  = t - u, u )  yields 

+E +m 

) ( l:m exp(-iuw) h(u) du , = (LW exp( -ivw) f ( v )  dv 

The response L f = g = f + h of a linear time-invariant system can be calculated 
from its Fourier transform k (w)  = j ( w )  L (w)  with the inverse Fourier formula 

1 +0° 

27r -m 

) 
which verifies (2.12). 

(2.13) g ( t )  = - J i(w)eiu'dw; 

which yields 

(2.14) 
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Each frequency component eirw of amplitude j ( w )  is amplified or attenuated by 
h(w).  Such a convolution is thus called afrequencyfiltering, and h is the transfer 
function of the filter. 

The following table summarizes important properties of the Fourier transform, 
often used in calculations. Most of these formulas are proved with a change of 
variable in the Fourier integral. 

Property Function Fourier Transform 

f ( t )  3(w ,  
Inverse 3(t> 27rf (-w> (2.15) 

Convolution f l  * f 2 ( t )  j.1 (w )  f 2 W  (2.16) 

(2.17) 
1 

Multiplication f l ( t ) f 2 ( t )  - 27r 1 1  * f , (w)  

Translation f ( t  - u) e-iuw j ( w )  (2.18) 
Modulation eicr f ( t )  j ( w  - () (2.19) 

Scaling j ( t / s )  I ~ I ~ ( S W )  (2.20) 
Time derivatives f ( p ) ( t )  ( i ~ ) ~  f ( w )  (2.21) 

Frequency derivatives ( - i t ) p f ( t )  J(”)(w) (2.22) 

Hermitian symmetry f ( t )  E W ?(-w) = ?(w) (2.24) 

complex conjugate f* ( t )  p ( - w )  (2.23) 

2.2.2 Fourier Transform in L2(B) 

The Fourier transform of the indicator function f = 1[-1~1 is 

e-iWt 2sinw dt -. 
W 

This function is not integrable because f is not continuous, but its square is in- 
tegrable. The inverse Fourier transform Theorem 2.1 thus does not apply. This 
motivates the extension of the Fourier transform to the space L2(W) of functions 
f with a finite energy s-’,“ lf( t)I2dt < +m. By working in the Hilbert space 
L2(W), we also have access to all the facilities provided by the existence of an 
inner product. The inner product of f E L2(R) and g E L2(W) is 

( f ,d  = /+mf(f)g*(f)dt7 -m 

and the resulting norm in L2 (a) is 
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The following theorem proves that inner products and norms in L2(W) are con- 
served by the Fourier transform up to a factor of 27r. Equations (2.25) and (2.26) 
are called respectively the Parseval and Plancherel formulas. 

Theorem 2.3 I f f  and h are in L1(W) n L2(B) then 

f ( t ) h * ( t ) d t =  - f ( w ) h * ( w ) d w .  (2.25) 
27r 1'"- -m 

For h = f it follows that 

(2.26) 

Proof'. Letg= f *&with&(t) =h*(- t ) .  TheconvolutionTheorem2.2andproperty 
(2.23) show that g(w) = j (w) l ; * (w) .  Thereconstruction formula (2.8) applied to g(0) 
yields 

1 +m 

2n -m 2T 
f ( t )h*( t )d t  = g(0) = - / B(w)dw = - 

Density Extension in L2(R) If f E L2(R) but f $! L1(W), its Fourier transform 
cannot be calculated with the Fourier integral (2.6) because f(t)eiW' is not in- 
tegrable. It is defined as a limit using the Fourier transforms of functions in 

Since L1(R) n L2(W) is dense in L2(B), one can find a family { f , , I n E Z  of 
L ~ ( w )  nL2(a). 

functions in L ~ ( w )  nL2(W) that converges to f :  

Since { f ,,),,€z converges, it is a Cauchy sequence, which means that 1 1  f - f 11 is 
arbitrarily small if n and p are large enough. Moreover, f ,, E L1 (a), so its Fourier 
transform in is well defined. The Plancherel formula (2.26) proves that   in},,€^ 
is also a Cauchy sequence because 

II jn-3pII = a I I f n - f p I I  

is arbitrarily small for n and p large enough. A Hilbert space (Appendix A.2) is 
complete, which means that all Cauchy sequences converge to an element of the 
space. Hence, there exists 3 E L2(R) such that 

By definition, j is the Fourier transform of f. This extension of the Fourier 
transform to L2(W) satisfies the convolution theorem, the Parseval and Plancherel 
formulas, as well as all properties (2.15-2.24). 
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Diracs Diracs are often used in calculations; their properties are summarized in 
Appendix A.7. A Dirac 6 associates to a function its value at t = 0. Since eiwr = 1 
at t = 0 it seems reasonable to define its Fourier transform by 

+m 
8(w> = S_, 6( t )  e-fid'dt = 1. (2.27) 

This formula is justified mathematically by the extension of the Fourier transform 
to tempered distributions [66,69]. 

2.2.3 Examples 

The following examples often appear in Fourier calculations. They also illustrate 
important Fourier transform properties. 

0 The indicatorfunction f = 11-T:Tl is discontinuous at t = &T. Its Fourier 
transform is therefore not integrable: 

2sin(Tw) 
dt = e-iwf 

W 
(2.28) 

0 An ideal low-passjlter has a transfer function h = l[-t,4 that selects low 
frequencies over [ -[, S] . The impulse response is calculated with the inverse 
Fourier integral (2.8): 

(2.29) 

0 A passive electronic circuit implements analog filters with resistances, ca- 
pacities and inductors. The input voltage f ( t )  is related to the output voltage 
g(t) by a differential equation with constant coefficients: 

(2.30) 
k=O k=O 

Suppose that the circuit is not charged for t < 0, which means that f ( t )  = 
g(t) = 0. The output g is a linear time-invariant function off and can thus be 
written g = f *h. Computing the Fourier transform of (2.30) and applying 
(2.22) proves that 

(2.31) 

It is therefore a rational function of iw. An ideal low-pass transfer function 
l[-~xl thus cannot be implemented by an analog circuit. It must be approx- 
imated by a rational function. Chebyshev or Butterworth filters are often 
used for this purpose [ 141. 
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0 A Gaussian f ( t )  = exp(-t2) is a Cm function with a fast asymptotic decay. 
Its Fourier transform is also a Gaussian: 

j ( w )  = f i  exp( -w2/4). (2.32) 

This Fourier transform is computed by showing with an integration by parts 
that j ( w )  = J-'," exp(-tz) e-iw'dt is differentiable and satisfies the differ- 
ential equation 

2 7 ( w )  + w j ( w )  = 0. (2.33) 

The solution of this equation is a Gaussian j ( w )  = Kexp( -w2/4),  and since 
j (0 )  = J-2 exp( -t2) dt = fi, we obtain (2.32). 

0 A Gaussian chilp f (t) = exp [ - (a  - ib)t2] has a Fourier transform calculated 
with a similar differential equation: 

(2.34) 

0 A translated Dirac &(t)  = d(t - 7) has a Fourier transform calculated by 
evaluating e-iwf at t = 7: 

+m 
&(w) =lm 6(t-.r)e-iwfdt=e-iW'. (2.35) 

0 The Dirac comb is a s u m  of translated Diracs 

+= 
c ( t ) =  6 ( t - n T )  

n=-m 

that is used to uniformly sample analog signals. Its Fourier transform is 
derived from (2.35): 

(2.36) 
n=-m 

The Poisson formula proves that it is also equal to a Dirac comb with a 
spacing equal to 21r/T. 

Theorem 2.4 (POISSON FORMULA) In the sense of distribution equalities (A.321, 

(2.37) 
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Proof '. The Fourier transform 2. in (2.36) is periodic with period 2 r / T .  To ver- 
ify the Poisson formula, it is therefore sufficient to prove that the restriction of i. to 
[-r /T:  r / T ]  is equal to 2 r / T  6. The formula (2.37) is proved in the sense of a dis- 
tribution equality (A.32) by showing that for any test function $(w) with a support 
included in [ - r / T , x / T ] ,  

The sum of the geometric series is 

N sin[(N+ 1/2)Tw] 
exp(-inTw) = 

sin[Tw/2] . 
n=-N 

(2.38) 

Hence 

&w)dw. (2.39) 
sin[(N+ 1/2)Tw] T w / 2  

7TW sin[Tw/2] 

Let 

and $( t )  be the inverse Fourier transform of &w). Since 2w-' sin(aw) is the Fourier 
transform of l[-a+l (t), the Parseval formula (2.25) implies 

(2.40) 

m e n  N goes to +m the integral converges to &o) = &o). 

2.3 PROPERTIES 

2.3. I Regularity and Decay 

The global regularity of a signal f depends on the decay of I f(w)I when the 
frequency w increases. The differentiability of f is studied. If f E L1(W), then 
the Fourier inversion formula (2.8) implies that f is continuous and bounded: 

The next proposition applies this property to obtain a sufficient condition that 
guarantees the differentiability of f  at any order p. 
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Proposition 2.1 Afunction f is bounded and p times continuously dzrerentiable 
with bounded derivatives if 

+w 
I j ( w )  I (1 + lwlp) dw < +m . (2.42) 

Proof l. The Fourier transform of the k"' order derivative f ( ' ) ( t )  is ( i ~ ) ~ Y ( w ) .  Ap- 
plying (2.41) to this derivative proves that 

L 

Condition (2.42) implies that I-+," 1 j ( w ) ]  [wlkdw < +co for any k 5 p ,  so f(&) ( t )  is 
continuous and bounded. 

This result proves that if there exist a constant K and E > 0 such that 

If j has a compact support then (2.42) implies that f E C". 
The decay of 1 j (w)  I depends on the worst singular behavior off.  For example, 

f = is discontinuous at t = H ,  so 1j(w)l decays like 1 ~ 1 ~ ~ .  In this case, it 
could also be important to know that f ( t )  is regular for t # fT. This information 
cannot be derived from the decay of I j ( w )  I. To characterize local regularity of a 
signal f it is necessary to decompose it over waveforms that are well localized in 
time, as opposed to sinusoidal waves eiW'. Section 6.1.3 explains that wavelets are 
particularly well adapted to this purpose. 

2.3.2 Uncertainty Principle 

Can we construct a function f whose energy is well localized in time and whose 
Fourier transform 3 has an energy concentrated in a small frequency neighbor- 
hood? The Dirac d(t - u)  has a support restricted to t = u but its Fourier transform 
e - i u ~  has an energy uniformly spread over all frequencies. We know that I j ( w )  I 
decays quickly at high frequencies only if f has regular variations in time. The 
energy of f must therefore be spread over a relatively large domain. 

To reduce the time spread of f, we can scale it by s < 1 while maintaining 
constant its total energy. If 

The Fourier transform j s ( w )  = & j ( s w )  is dilated by l/s so we lose in frequency 
localization what we gained in time. Underlying is a trade-off between time and 
frequency localization. 

Time and frequency energy concentrations are restricted by the Heisenberg 
uncertainty principle. This principle has a particularly important interpretation in 
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quantum mechanics as an uncertainty as to the position and momentum of a free 
particle. The state of a one-dimensional particle is described by a wave function 
f E L2(W). The probability density that this particle is located at t is I f  ( t )  12. 
The probability density that its momentum is equal to w is l i ( w )  12. The 
average location of this particle is 

and the average momentum is 

1 +O0 E = -1 w li(w)12dw. 
2 4 l f  1 1 2  --m 

The variances around these average values are respectively 

2 1 +O0 

l l f l l  -ffi 

at (t-u)21f(t)12dt 

and 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

The larger at, the more uncertainty there is concerning the position of the free 
particle; the larger a,, the more uncertainty there is concerning its momentum. 

Theorem 2.5 (HEISENBERG UNCERTAINTY) n e  temporal variance and the fre- 
quency variance off E L’(w) satis& 

(2.47) 2 2  1 at a,. > -. 
” - 4  

This inequality is an equality ifand only ifthere exist (u,J,a,b)  E W2 x C2 such 
that 

f ( t )  = a exp[iEt - b(t - .I2]. (2.48) 

Proof ’. The following proof dueto Weyl[75] supposes that limltl++m & f ( t )  = 0, but 
the theorem is valid for any f E L2 (a). If the average time and frequency localization 
off is u and 6 ,  then the average time and frequency location of exp(--i[t) f ( t  + u) is 
zero. It is thus sufficient to prove the theorem for u = E = 0. Observe that 

(2.49) 

Since i w j ( w )  is the Fourier transform of f’(t), the Plancherel identity (2.26) applied 
to iw)(w) yields 

(2.50) 
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Schwarz’s inequality implies 

Since limltl++a: J i f ( t )  = 0, an integration by parts gives 

(2.51) 

To obtain an equality, Schwarz’s inequality applied to (2.50) must be an equality. This 
implies that there exists b E C such that 

f’(t) = -2bff(t). (2.52) 

Hence, there exists a E C such that f(t)  = a exp(-b?). The other steps of the proof 
are then equalities so that the lower bound is indeed reached. When u # 0 and 6 # 0 

In quantum mechanics, this theorem shows that we cannot reduce arbitrarily the 
uncertainty as to the position and the momentum of a free particle. In signal pro- 
cessing, the modulated Gaussians (2.48) that have a minimum joint timefrequency 
localization are called Gabor chirps. As expected, they are smooth functions with 
a fast time asymptotic decay. 

the corresponding time and frequency translations yield (2.48). 

Compact Support Despite the Heisenberg uncertainty bound, we might still be 
able to construct a function of compact support whose Fourier transform has a 
compact support. Such a function would be very useful in constructing a finite 
impulse response filter with a band-limited transfer function. Unfortunately, the 
following theorem proves that it does not exist. 

Theorem 2.6 I f f  # 0 has a compact support then 3(u) cannot be zero on a whole 
interval. Similarly, if3 # 0 has a compact support then f ( t )  cannot be zero on a 
whole interval. 

Proof ’. We prove only the first statement, since the second is derived from the fist 
by applying the Fourier transform. E j  has a compact support included in [-b, b] then 

(2.53) 

Iff(t) =Ofort E [c,d],bydifferentiatingntimesundertheintegralatfo = (c+d)/2, 
we obtain 

f(”)(tO) = - j ( w )  ( i ~ ) ~ e x p ( i w t O ) d w  = 0. (2.54) 
2n lb -b 
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Since 
b 

f ( t )  = $Jbj(u) exp[iw(t-to)l exp(iwto)du, (2.55) 

developing exp[iw(t - to)] as an infinite series yields for all t E B 

This contradicts our assumption that f # 0. 1 

2.3.3 Total Variation 

The total variation measures the total amplitude of signal oscillations. It plays an 
important role in image processing, where its value depends on the length of the 
image level sets. We show that a low-pass filter can considerably amplify the total 
variation by creating Gibbs oscillations. 

Variations and Oscillations I f f  is differentiable, its total variation is defined by 

l l f l lv = 1'" If'(t)ldt. 
--M 

If { x ~ } ~  are the abscissa of the local extrema of f  where f ' ( x p )  = 0, then 

(2.57) 

P 

It thus measures the total amplitude of the oscillations of f .  For example, 
if f ( t )  = exp(-t2), then llfllv = 2. If f ( t )  = sin(.rrt)/(.rrt), then f has a local 
extrema at x p  E [ p ? p +  11 for any p E Z. Since lf(xp+l) - f(xp)I - IpI-', we 
derive that llfllv = +m. 

The total variation of non-differentiable functions can be calculated by consid- 
ering the derivative in the general sense of distributions [66,79]. This is equivalent 
to approximating the derivative by a finite difference on an interval h that goes to 
zero: 

(2.58) 

The total variation of discontinuous functions is thus well defined. For example, 
i f f  = l[=,b] then (2.58) gives llfllv = 2. We say that f has a bounded variation if 

Whether f' is the standard derivative of f z r  its generalized derivative in the 
l l f l lv  < +m* 

sense of distributions, its Fourier transform is f ' ( w )  = iw j (w) .  Hence 
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which implies that 

13(4 I IWJ l l f l lv  * (2.59) 

However, 1](w)l = O(IUI -~)  is not a sufficient condition to guarantee that f has 
bounded variation. For example, iff(t) = sin(rt)/(rt), then 3 = l[-T,nl satisfies 
lj(w)~ <.rrlwl-l aleough llfllv =+m. Ingeneral,thetotalvariationoffcannot 
be evaluated from If(w) I. 

Discrete Signals Let fnr [n] = f ( n / N )  be adiscrete signal obtained with auniform 
sampling at intervals N - l .  The discrete total variation is calculated by approximat- 
ing the signal derivative by a finite difference over the sampling distance h = N-' , 
and replacing the integral (2.58) by a Riemann sum, which gives: 

II f n r  II v = l fiv - f n r  [n - 11 I . (2.60) 
n 

If np are the abscissa of the local extrema o f f ~ ,  then 

The total variation thus measures the total amplitude of the oscillations o f f .  In 
accordance with (2.58), we say that the discrete signal has a bounded variation if 
l l f ~  1 1  v is bounded by a constant independent of the resolution N. 

Gibbs Oscillations Filtering a signal with a low-pass filter can create oscillations 
that have an infinite total variation. Let fc = f *hg be the filtered signal obtained 
with an ideal low-pass filter whose transfer function is = 1[-6,61. Iff E L2(W), 
then f E converges to f in L2(R) norm: limE++oo I l f  - f s  11 = 0. Indeed, 3~ = 
j l[-g,El and the Plancherel formula (2.26) implies that 

which goes to zero as 6 increases. However, i f f  is discontinuous in to, then we 
show that fs has Gibbs oscillations in the neighborhood of to, which prevents 
suptEw I f ( t )  - f s ( t )  I from converging to zero as E increases. 

Let f be a bounded variation function llfllv < +m that has an isolated dis- 
continuity at to, with a left limit f ( t i )  and right limit f ( t $ ) .  It is decomposed as 
a sum of fc, which is continuous in the neighborhood of to, plus a Heaviside step 
of amplitude f ( t $ )  - f ( t ; ) :  

f(t) = f c ( t )  + [f(to+> - f(ti>l u(t - t o ) ,  
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FIGURE 2. I 
cies that decrease from left to right. 

Gibbs oscillations created by low-pass filters with cut-off frequen- 

with 
1 i f t 2 O  
0 otherwise * 

u(t) = (2.61) 

Hence 
f E(t) = f c *h&) + [f(tof) - f @dl u*h& - to). (2.62) 

Since f has bounded variation and is uniformly continuous in the neighborhood 
of to, one can prove (Problem 2.13) that fc *hS(t) converges uniformly to f c( t )  
in a neighborhood of to. The following proposition shows that this is not true for 
u* he, which creates Gibbs oscillations. 

Proposition 2.2 (GIBBS) For any E > 0, 

(2.63) 

Proof ’. The impulse response of an ideal low-pass filter, calculated in (2.29), is 
hc(t) = sin([t)/(.lrt). Hence 

The change of variable x = [ ( t  - r )  gives (2.63). 

The function 

isasigmoidthatincreasesfromOatt = -mto 1 att = +m, withs(0) = 112. Ithas 
oscillations of period r/E, which are attenuated when the distance to 0 increases, 
but their total variation is infinite: llsllv = fm. The maximum amplitude of the 
Gibbs oscillations occurs at t = h / E ,  with an amplitude independent of 5: 
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Inserting (2.63) in (2.62) shows that 

f ( t )  - fdf) = [f(ta+> - f ( 0 l  M t  - t o ) )  + 4 6 t )  ? (2.64) 

where limc++m ~ u p l ~ - ~ ~ l < ~  le(<, t )  I = 0 in some neighborhood of size Q > 0 around 
to. The sigmoid s(<(t - to)) centered at to creates a maximum error of fixed 
amplitude for all [. This is seen in Figure 2.1, where the Gibbs oscillations have 
an amplitude proportional to the jump f(ta+) - f ( t ; )  at all frequencies <. 

Image Total Variation The total variation of an image f(x1 ,x2) depends on the 
amplitude of its variations as well as the length of the contours along which they 
occur. Suppose that f(x1,x~) is differentiable. The total variation is defined by 

(2.65) 

where the modulus of the gradient vector is 

As in one dimension, the total variation is extended to discontinuous functions by 
taking the derivatives in the general sense of distributions. An equivalent norm is 
obtained by approximating the partial derivatives by finite differences: 

J f ( X I , X 2 )  -f(x1,x2-h) 
h 

One can verify that 

llfllv ~~~JJlAhf(XlIx2)ldXldXZ 5 fillfllv. (2.66) 

The finite difference integral gives a larger value when f(x1 ,x2) is discontinuous 
along a diagonal line in the (XI ,x2) plane. 

The total variation off is related to the length of it level sets. Let us define 

fly = {(x1,x2) E R2 : f (XlJ2)  > Y }  . 

If f is continuous then the boundary d a y  of fly is the level set of all (XI ,x2) such 
that f(x1,~2) = y. Let H1(dfly) be the length of aRy. Formally, this length is 
calculated in the sense of the monodimensional Hausdorffmeasure. The following 
theorem relates the total variation off to the length of its level sets. 
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Theorem 2.7 (CO-AREA FORMULA) If l l f l l  v < +oo then 

llfllv = /+%an,)d,. (2.67) 

Proof '. The proof is a highly technical result that is given in [79]. We give an intuitive 
explanation when f is continuously differentiable. In this case do, is a differentiable 
curve x ( y ,  s )  E Et2, which is parameterized by the arc-length s. Let ?(x) be the vector 
tangent to this curve in the plane. The gradient ef(x) is orthogonal to .'(x). The 
Frenet coordinate system along an, is composed of ?(x) and of the unit vector Z(x) 
parallel to af(x).  Let ds and dn be the Lebesgue measures in the direction of ? and 
ii. We have 

(2.68) 

where dy is the differential of amplitudes across level sets. The idea of the proof is to 
decompose the total variation integral over the plane as an integral along the level sets 
and across level sets, which we write: 

l l f l l v  = //ldf(xl,x2)ldrldr2 = (2.69) 

--3o 

I?f (x) l=  + f ( X ) .  z= - dY , 
dn 

By using (2.68) we can get 

But Sen, ds = H' (an,) is the length of the level set, which justifies (2.67). 

The co-area formula gives an important geometrical interpretation of the total 
image variation. Images are uniformly bounded so the integral (2.67) is calculated 
over a finite interval and is proportional to the average length of level sets. It is 
finite as long as the level sets are not fractal curves. Let f = (Y la  be proportional 
to the indicator function of a set c B2 which has a boundary dR of length L. 
The co-area formula (2.7) implies that llfllv = aL.  In general, bounded variation 
images must have step edges of finite length. 

Discrete Images A camera measures light intensity with photoreceptors that 
perform a uniform sampling over a grid that is supposed to be uniform. For a 
resolution N ,  the sampling interval is N-' and the resulting image can be writ- 
ten f~ [nl n2] = f ( n l  / N :  n z / N ) .  Its total variation is defined by approximating 
derivatives by finite differences and the integral (2.66) by a Riemann sum: 

In accordance with (2.66) we say that the image has bounded variation if IlfN 1 1  is 
bounded by a constant independent of the resolutionN. The co-area formula proves 
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(a> (b) 

FIGURE 2.2 (a): The total variation of this image remains nearly constant when 
the resolution N increases. (b): Level sets do, obtained by sampling uniformly 
the amplitude variable y. 

that it depends on the length of the level sets as the image resolution increases. 
The fi upper bound factor in (2.66) comes from the fact that the length of a 
diagonal line can be increased by 4 if it is approximated by a zig-zag line that 
remains on the horizontal and vertical segments of the image sampling grid. Figure 
2.2(a) shows a bounded variation image and Figure 2.2(b) displays the level sets 
obtained by discretizing uniformly the amplitude variable y. The total variation 
of this image remains nearly constant as the resolution varies. 

2.4 TWO-DIMENSIONAL FOURIER TRANSFORM 

The Fourier transform in R" is a straightforward extension of the one-dimensional 
Fourier transform. The two-dimensional case is briefly reviewed for image pro- 
cessing applications. The Fourier transform of a two-dimensional integrable func- 
tion f E L'(P) is 

In polar coordinates exp[i(wlx +wzy)] can be rewritten 

exp[i(wlxl + W Z X Z ) ]  = exp[ip(xl cosO+xzsinQ)] 

with p = d m .  It is a plane wave that propagates in the direction of 13 and 
oscillates at the frequency p. The properties of a two-dimensional Fourier trans- 
form are essentially the same as in one dimension. We summarize a few important 
results. 



2.5 TWO-DIMENSIONAL FOURIER TRANSFORM 39 

0 I f f fL1(Rz)and~EL1(Wz) then  
1 

f ( x i , ~ z )  = ; i ; ; ~ / / f ( w ~  ,wz) exp[i(wixl + W Z X Z ) ]  dwl dwz. (2.72) 

0 Iff E L1(Rz) and h E L1(Rz) then the convolution 

g(x1,xz) =f*h(x1,xz) = f(Ul,UZ)h(Xl -ul,xz-uz)dulduz ss 
has a Fourier transform 

k(w1,wz) = j ( w l , w Z ) ~ ( w l , ~ z ) .  (2.73) 

0 The Parseval formula proves that 

(2.74) 

I f f  = g, we obtain the Plancherel equality 

The Fourier transform of a finite energy function thus has finite energy. With 
the same density based argument as in one dimension, energy equivalence 
makes it possible to extend the Fourier transform to any function f E L2 (Wz) . 

0 Iff  E L2(Rz) is separable, which means that 

f ( X l , Z 2 )  = g(Xl )h(Xz) ,  

j (w1,wz)  = b(Ul)&4, 

then its Fourier transform is 

where h and b are the one-dimensional Fourier transforms of g and h. For 
example, the indicator function 

is a separable function whose Fourier transform is derived from (2.28): 
4sin( Twl)  sin( Twz) 

w1 wz 
3(w1 9 wz) = 

0 If f(xl ,xZ) is rotated by 8: 

fs (XI, XZ) = f ( x 1  cos 8 - xZ sin 8, x1 sin 8 +xZ cos e) ,  

fs(w1 W Z )  = f(w1 cos8 + wz sine, -wl sin8 + wz cos 8). 

then its Fourier transform is rotated by -8: 
(2.76) 
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2.5 PROBLEMS 

2.1. ' Provethatiff E L'(B)thenj(w) isacontinuousfunctionofw,andifj E L'(B) 
then f ( t )  is continuous. 

2.2. ' Prove the translation (2.18), scaling (2.20) and time derivative (2.21) properties 
of the Fourier transform. 

2.3. ' Let f r ( t )  = Real[f( t ) ]  and f i ( t )  = Ima[f(t)] be the real and imagi- 
nary parts of f ( t ) .  Prove that j r ( w )  = [j(w)+p(-w)]/2 and j i ( w )  = 

2.4. ' By using the Fourier transform, verify that 
[3(4 - P(-41/ (24 .  

2.5. ' Show that the Fourier transform of f ( t )  = exp(-(a - ib)t2) is 

a+ib  
a- ib  

Hint: write a differential equation similar to (2.33). 

Hint: Prove it first for C' functions with a compact support and use a density 
argument. 

(a) Let p be a complex number with Realk] < 0. Compute the Fourier trans- 

(b) A passive circuit relates the input voltage f to the output voltage g by a 

2.6. Riemann-kbesgue Prove that i f f  E L'(B) then lim j ( w )  = 0. 
w+cc 

2.7. ' Stability ofpassive circuits 

forms of f(t)  = exP(Pt) l[O,+m) ( 4  and o f f  0) = t" exP(Pt) q o  +m) ( t ) .  

differential equation with constant coefficients: 

K M 

k=O k=O 

Prove that this system is stable and causal if and only if the roots of the 
equation bk zk = 0 have a strictly negative real part. 

(c) A Butterworth filter satisfies 

For N = 3, compute h(w)  and h( t )  so that this filter can be implemented by 
a stable electronic circuit. 

2.8. ' For any A > 0, construct f such that the time and frequency spread measured 
respectively by a, and a, in (2.46,2.45) satisfy ut > A and a, > A .  

2.9. Suppose that f ( t )  2 0 and that its support is in [ -T,  TI. Verify that I j (w) l  5 
j(0). Let w, be the half-power point defined by 1~(uc)]2 = lf(0)12/2 and 
If(w)lz < If@) 12/2 for w < w,. Prove that w, T 2 s/2.  

2.10. Hilbert transform 
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(a) Prove that i f j (w)  = 2/(iw) then f ( t )  = sign(t) = t / l t l .  
(b) Suppose that f E L'(P) is a causal function, Le., f ( r )  = 0 for t < 0. Let 

j r ( w )  = Real[&)] and ji(w) = I m a [ j ( w ) ] .  Prove that j r  = Hfi and ji = 
-Hf where H is the Hilbert transform operator 

2.11. RectiJcation A rectifier computes g( t )  = I f  (I)/, for recovering the envelope 
of modulated signals [57]. 

(a) Show that iff  ( t )  = a(t)sinwot with a(t)  2 0 then 

2 += ix(w-2nwo) 
j ( w )  = -- 

4n2- 1 ' 
n=-m 

n- 

(b) Suppose that i x ( ~ )  = 0 for I w I  > WO. Find h such that a ( t )  = h*g(t) .  

Amplitude modulation For 0 5 n < N, we suppose that f , , ( t)  is real and that 
j,,(w) = 0 for I W I  > wo. 

(a) Double side-bands An amplitude modulated multiplexed signal is defined 

2.12. 

N 
by 

g( t )  = Cfn(t)cos(2nwot). 
n=O 

Compute g(w) and verify that the width of its support is 4Nwo. Find a 
demodulation algorithm that recovers each f ,, from g. 

(b) Single side-bund We want to reduce the bandwidth of the multiplexed signal 
by 2. Find a modulation procedure that transforms each f ,, into areal signal g,, 
such that j,, has a support included in [ - (n+ l)wo, -nu01 U [nwo, (n+ l)wo], 
with the possibility of recovering fn  from g,,. Compute the bandwidth of 
g = g,,, and find a demodulation algorithm that recovers each f ,, from 
g .  

= l [ - ~ t ] .  Suppose that f has a bounded variation 
11 f 11" < +m and that it is continuous in a neighborhood of to. Prove that in a 
neighborhood of to, fc(t) converges uniformly to f ( t )  when 4 goes to +m. 

Tomography Let ge(t) be the integral of f ( x I , x ~ )  along the line -XI sine + 
x2 cos0 = I ,  which has an angle B and lies at a distance It1 from the origin: 

N-1 

2.13. Let ft  = f *ht with 

2.14. 

ge(t) f (-tsinB+pcosO,tcosB+psinO)dp. 
-W 

Prove that be(w) = j(-wsine,wcose). HOW can we recover f(xl,x2) from the 
tomographic projections ge(t) for 0 5 f3 < 2n- ? 

Let f ( X I  7 2 )  be an image which has a discontinuity of amplitude A along a 
straight line having an angle 0 in the plane ( X I  ,x2). Compute the amplitude of the 
Gibbs oscillations of f *hc(xl ,x2) as a function of [, 6' and A, for &(wl :w2) = 

2.15. 

1[-€.€1(~1) 1I-E:tI (4. 



DISCRETE REVOLUTION 

igital signal processing has taken over. First used in the 1950’s at the 
service of analog signal processing to simulate analog transforms, digital D algorithms have invaded most traditional fortresses, including television 

standards, speech processing, tape recording and all types of information manip- 
ulation. Analog computations performed with electronic circuits are faster than 
digital algorithms implemented with microprocessors, but are less precise and less 
flexible. Thus analog circuits are often replaced by digital chips once the compu- 
tational performance of microprocessors is sufficient to operate in real time for a 
given application. 

Whether sound recordings or images, most discrete signals are obtained by 
sampling an analog signal. Conditions for reconstructing an analog signal from a 
uniform sampling are studied. Once more, the Fourier transform is unavoidable 
because the eigenvectors of discrete time-invariant operators are sinusoidal waves. 
The Fourier transform is discretized for signals of finite size and implemented with 
a fast computational algorithm. 

3. I 

The simplest way to discretize an analog signal f is to record its sample values 
{ f (nT) } , , z  atintervals T. Anapproximationof f ( t )  atanyt E Wmayberecovered 
by interpolating these samples. The Whittaker sampling theorem gives a sufficient 
condition on the support of the Fourier transform p to compute f ( t )  exactly. 
Aliasing and approximation errors are studied when this condition is not satisfied. 
More general sampling theorems are studied in Section 3.1.3 from a vector space 
point of view. 

SAMPLING ANALOG SIGNALS ’ 

42 



3. I SAMPLING ANALOG SIGNALS 43 

3. I .  I 

A discrete signal may be represented as a sum of Diracs. We associate to any 
sample f (nT) a Dirac f (nT)S(t - nT) located at t = nT. A uniform sampling of 
f thus corresponds to the weighted Dirac sum 

Whittaker Sampling Theorem 

The Fourier transform of S(t - nT) is e-inTw so the Fourier transform of f d is a 
Fourier series: 

To understand how to compute f ( t )  from the sample values f (nT)  and hence f 
from f d .  we relate their Fourier transforms 3 and jd. 

Proposition 3.1 The Fourier transform of the discrete signal obtained by sampling 
f at intervals T is 

k=-cc 
(3.3) 

Proof l. Since b(t - nT) is zero outside t = nT, 

f ( n T ) b ( t - n T )  = f ( t ) a ( t - n T ) ,  

so we can rewrite (3.1) as multiplication with a Dirac comb: 

+W 

f d t )  = f ( t )  a(t-nT) =f(t)c(t). 
n=-w 

Computing the Fourier transform yields 

1 -  
j d ( L u )  = - f *? (w) .  

27r 

The Poisson formula (2.4) proves that 

k=-m 
(3.6) 

Since j *b (w  - E )  = j(u - t), inserting (3.6) in (3.5) proves (3.3). 1 

Proposition 3.1 proves that sampling f at intervals T is equivalent to making its 
Fourier transform 27r/T periodic by summing all its translations ](w - 2k7r/T). 
The resulting sampling theorem was first proved by Whittaker [349] in 1935 in a 
book on interpolation theory. Shannon rediscovered it in 1949 for applications to 
communication theory [306]. 
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Theorem 3.1 (SHANNON, W m m R )  If the support of 3 is included in 
[-7r/T,n/T] then 

+= 
f ( t )  = f (nT)h&-nT) ,  (3.7) 

n=-w 

with 

Proof '. I f n  # 0, the support of j ( w  -n.rr/T) does not intersect the support of j ( w )  
because j ( w )  = o for I W I  > T / T .  SO (3.3) implies 

(3.9) 

The Fourier transform of h~ is & = T 1 [ - r r / ~ , r p ~ .  Since the support of is in 
[-T/T,T/T] it results from (3.9) that j ( w )  = hT(W)jd(W). The inverse Fourier 
transform of this equality gives 

+m 

f ( t )  = h T * f d ( t )  = hT* j ( n T ) 6 ( t - n T )  
n=-m 

+m 

f (nT)h&-nT) .  
n=-m 

The sampling theorem imposes that the support of 3 is included in [-n/T,n/T], 
which guarantees that f has no brutal variations between consecutive samples, and 
can thus be recovered with a smooth interpolation. Section 3.1.3 shows that one 
can impose other smoothness conditions to recover f from its samples. Figure 
3.1 illustrates the different steps of a sampling and reconstruction from samples, 
in both the time and Fourier domains. 

3.1.2 Aliasing 

The sampling interval T is often imposed by computation or storage constraints 
and the support of 3 is generally not included in [-7r/T,n/T]. In this case the 
interpolation formula (3.7) does not recover f. We analyze the resulting error and 
a filtering procedure to reduce it. 

Proposition 3.1 proves that 

k=-w 
(3.10) 

Suppose that the support of 3 goes beyond [-7r/T,7r/T]. In general the support 
of f ( ~  - 2k7r/T) intersects [-7r/T,n/T] for several k # 0, as shown in Figure 
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FIGURE 3. I (a): Signal f and its Fourier transform 3. (b): A uniform sampling 
of f makes its Fourier transform periodic. (c): Ideal low-pass filter. (d): The 
filtering of (b) with (c) recovers f .  

3.2. This folding of high frequency components over a low frequency interval is 
called aliasing. In the presence of aliasing, the interpolated signal 

+m 

h T * f d ( t )  = f (nT)hr( t -nT)  
n=-m 

has a Fourier transform 

(3.11) 
which may be completely different from j(w) over [ - -x/T;  7r/T]. The signal 

h T  + f d may not even be a good approximation of f, as shown by Figure 3.2. 

Example 3.1 Let us consider a high frequency oscillation 
eiWO' + e-iuot 

2 -  f ( t )  = COS(WIJt) = 
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FIGURE 3.2 (a): Sipal  f and its Fourier transform 3. (b): Aliasing produced 
by an overlapping of f ( w  - 2k7r/T) for different k, shown in dashed lines. (c): 
Ideal low-pass filter. (d): The filtering of (b) with (c) creates a low-frequency 
signal that is different from f .  

Its Fourier transform is 

1 j ( w )  = 7r 6(w - wo) + 6(w +wo) ( 
If27r/T > wo > 7r/T then (3.11) yields 

j d ( W ) U W )  

27r 27r 
T = 7r (6(w - 7 + wo) + 6(w + - - wo)) , 

so 

f d * h T ( t ) = C O S  --wo t . [(; ) ]  
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The aliasing reduces the high frequency wo to a lower frequency 27r/T - wo E 
[-7r/T,7r/T]. The same frequency folding is observed in a film that samples a 
fast moving object without enough images per second. A wheel turning rapidly 
appears as turning much more slowly in the film. 

Removal d Aliasing To apply the sampling theorem, f is approximated by the 
closest signal J' whose Fourier transform has a support in [-7r/T,n/T]. The 
Plancherel formula (2.26) proves that 

This distance is minimum when the second integral is zero and hence 

1 -  3(4 = 1[-T/* ,r ,T]  (w) = T h T ( 4  h). (3.12) 

It corresponds to J' = f f * h ~ .  The filtering of f by hT avoids the aliasing by 

removing any frequency larger than n/T. Since f has a support in [-n/T; 7r/T], 
the sampling theorem proves that f (t) can be recovered from the samples f ( n T ) .  
An analog to digital converter is therefore composed of a filter that limits the 
frequency band to [-7r/T,n/T], followed by a uniform sampling at intervals T. 

2 

3. I .3 General Sampling Theorems 

The sampling theorem gives a sufficient condition for reconstructing a signal from 
its samples, but other sufficient conditions can be established for different interpo- 
lation schemes [335]. To explain this new point of view, the Whittaker sampling 
theorem is interpreted in more abstract terms, as a signal decomposition in an 
orthogonal basis. 

Proposition 3.2 IfhT(t) = s in(s t /T) / ( r t /T)  then { h ~ ( t - n T ) } , , z  is an orthog- 
onal basis of the space UT offunctions whose Fourier transforms have a support 
included in [-7r/T,n/T]. I f f  E UT then 

(3.13) 
1 

f = T (f ( t ) ,hT( t - -T) ) .  

Proof 2. Since iT = T1!-r /Ts /T~ the Parseval formula (2.25) proves that 
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Thefamily{hT(t-nT)},,z isthereforeorthogonal. ClearlyhT(t-nT) E UT and(3.7) 
proves that any f E UT can be decomposed as a linear combination of {hT ( t  - nT)},,z. 
It is therefore an orthogonal basis of UT. 

Equation (3.13) is also proved with the Parseval formula 

Since the support of 3 is in [-T/T,T/T] and h~ = T ~ L - ~ / T , = / ~ ,  

w 
Proposition 3.2 shows that the interpolation formula (3.7) can be interpreted as a 
decomposition off  E UT in an orthogonal basis of UT: 

(3.14) 

If f $.! UT, which means that has a support not included in [-7r/T,7r/T], the 
removal of aliasing is computed by finding the function j E UT that minimizes 
I I j  - f (I. Proposition A.2 proves that 7 is the orthogonal projection PuTf off in 
UT. 

The Whittaker sampling theorem is generalized by defining other spaces UT 
such that any f E UT can be recovered by interpolating its samples (f(nT)),,z. 
A signal f $.! UT is approximated by its orthogonal projection j = PuTf in UT, 
which is characterized by a uniform sampling { j (nT) }n , z -  

1 +O0 

f ( t )  = T ( f (U) ,hr (u -nT) )hT( t -nT) .  
n=-w 

Block Sampler A block sampler approximates signals with piecewise constant 
functions. The approximation space UT is the set of all functions that are con- 
stant on intervals [nT, (n+ 1)T), for any n E Z. Let hT = 1p,T). The family 
{hr(t  - t ~ T ) } , ~ z  is clearly an orthogonal basis of UT. Any f E UT can be written 

+W 

n=--33 

Iff $.! UT then (A.17) shows that its orthogonal projection on UT is calculated with 
a partial decomposition in an orthogonal basis of UT. Since Ilh~(t  - nT) 11' = T ,  

Let E T ( t )  = hT(-t). Then 

(3.15) 
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This averaging of f over intervals of size T is equivalent to the aliasing removal 
used for the Whittaker sampling theorem. 

Approximation Space The space UT should be chosen so that Pu,f gives an 
accurate approximation off ,  for a given class of signals. The Whittaker interpola- 
tion approximates signals by restricting their Fourier transform to a low frequency 
interval. It is particularly effective for smooth signals whose Fourier transform 
have an energy concentrated at low frequencies. It is also well adapted to sound 
recordings, which are well approximated by lower frequency harmonics. 

For discontinuous signals such as images, a low-frequency restriction pro- 
duces the Gibbs oscillations studied in Section 2.3.3. The visual quality of the 
image is degraded by these oscillations, which have a total variation (2.65) that 
is infinite. A piecewise constant approximation has the advantage of creating no 
spurious oscillations, and one can prove that the projection in UT decreases the 
total variation: IIPu,fllv 5 Ilfllv. In domains where f is a regular function, the 
piecewise constant approximation Pu, f may however be significantly improved. 
More precise approximations are obtained with spaces UT of higher order poly- 
nomial splines. These approximations can introduce small Gibbs oscillations, but 
these oscillations have a finite total variation. Section 7.6.1 studies the construc- 
tion of interpolation bases used to recover signals from their samples, when the 
signals belong to spaces of polynomial splines and other spaces UT. 

3.2 DISCRETE TIME-INVARIANT FILTERS 

3.2. I 

Classical discrete signal processing algorithms are mostly based on time-invariant 
linear operators [55, 581. The time-invariance is limited to translations on the 
sampling grid. To simplify notation, the sampling interval is normalized T = 1, 
and we denote f [n] the sample values. A linear discrete operatorL is time-invariant 
if an input f [n] delayed by p E Z, f [n] = f [n - p], produces an output also delayed 

Impulse Response and Transfer Function 

by P: 
-V,[nl = Lfb - PI. 

Impulse Response We denote by 6[n] the discrete Dirac 

1 i f n = 0  
0 i fn#O ' 

b[n] = 

Any signal f[n] can be decomposed as a sum of shifted Diracs 

(3.16) 

p=-CCl 
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Let LS[n] = h[n] be the discrete impulse response. 
invariance implies that 

The linearity and time- 

p=-CX 

A discrete linear time-invariant operator is thus computed with a discrete convolu- 
tion. If h[n] has a finite support the sum (3.17) is calculated with a Wte number of 
operations. These are called Finite Zrnpulse Response (FIR) filters. Convolutions 
with infinite impulse response filters may also be calculated with a finite number 
of operations if they can be rewritten with a recursive equation (3.29). 

Causality and Stability A discrete filter L is causal if L f [ p ]  depends only on the 
values of f [ n ]  for n I p .  The convolution formula (3.17) implies that h[n] = 0 if 
n < 0. 

The filter is stable if any bounded input signal f [ n ]  produces a bounded output 
signal Lf [n] . Since 

-Cm 

it is sufficient that E,'="_, lh[n]1 < +m, which means that h E ll(Z). One can 
verify that this sufficient condition is also necessary. The impulse response h is 
thus stable if h E l1 (Z). 

Transfer Function The Fourier transform plays a fundamental role in analyzing 
discrete time-invariant operators, because the discrete sinusoidal waves e, [n] = 
eiwn are eigenvectors: 

p=-m p=-W 

The eigenvalue is a Fourier series 

+W 

p=-m 

It is the filter transferfunction. 

Example 3.2 The uniform discrete average 

(3.19) 

n+N 

L f [ n ]  = - f [PI 
+ p=n-N 
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is a time-invariant discrete filter whose impulse response is h = (uV+ I ) - l I [ - N s v ] .  
Its transfer function is 

(3.20) 
E.-"- 1 sin(N + 1/2)w 

2N11  q n r l l  sinw/2 ' 
h(w) = - 

3.2.2 Fourier Series 

The properties of Fourier series are essentially the same as the properties of the 
Fourier transform since Fourier series are particular instances of Fourier transforms 
for Dirac sums. Iff ( t )  = E,'="_, f [n] b(t - n)  then j ( w )  = E,'="_, f [n] e-iun. 

For any n E Z, eciwn has period 27r, so Fourier series have period 27r. An 
important issue is to understand whether all functions with period 27r can be written 
as Fourier series. Such functions are characterized by their restriction to [ -7r, lr]. 

We therefore consider functions ii E L2[-7r,lr] that are square integrable over 
[-T, 7r]. The space Lz[-7r, 7r] is a Hilbert space with the inner product 

= - 21r /= --?r ii(w)P(w)dw 
(3.21) 

and the resulting norm 

The following theorem proves that any function in L2[-7r,lr] can be written as a 
Fourier series. 

Theorem 3.2 The family of functions {e-ikw}kEZ is an orthonoml basis of 

Proof '. The orthogonality with respect to the inner product (3.21) is established with 
a direct integration. To prove that {exp(-ikw)}t ,z  is a basis, we must show that linear 
expansions of these vectors are dense in L'[-T,T]. 

We first prove that any continuously differentiable function 4 with a support in- 
cluded in [-T, T ]  satisfies 

L2 [ -7r, lr] . 

(3.22) 
k = - m  

with a pointwise convergence for any w E [-T, T] .  Let us compute the partial sum 
N 

s N ( w )  = c (&E),exp(-ik6)) exP(-ikw) 
k=-N 
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The Poisson formula (2.37) proves the distribution equality 

N Cm 

and since the support of $ is in [-7r,7r] we get 

lim sN(w)  = &w). 

Since $ is continuously differentiable, following the steps (2.38-2.40) in the proof of 
the Poisson formula shows that S N ( W )  converges uniformly to 4(w) on [-x,T].  

To prove that linear expansions of sinusoidal waves {exp(-ikw)}kGz are dense 
in L2[--x,7r], let us verify that the distance between 2 E L2[-7r,7r] and such a linear 
expansion is less than E ,  for any E > 0. Continuously differentiable fun$ons with 
a support included in [-T,A] are dense in L2[-7r,7r], hence there exists 4 such that 
116 - 411 5 e / 2 .  The uniform pointwise convergence proves that there exists N for 
which 

N + f X  

€ 
SUP I s N  (w) - $(w) I 5 z 9 

U E  [-","I 
which implies that 

It follows that 2 is approximated by the Fourier series SN with an error 

Theorem 3.2 proves that if f E l2(2), the Fourier series 

(3.23) 
n=-m 

can be interpreted as the decomposition of 3 E L2 [-T, T ]  in an orthonormal basis. 
The Fourier series coefficients can thus be written as inner products 

(3.24) 

The energy conservation of orthonormal bases (A. 10) yields a Plancherel identity: 

(3.25) 
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Pointwise Convergence The equality (3.23) is meant in the sense of mean-square 
convergence 

It does not imply a pointwise convergence at all w E W. In 1873, Dubois-Reymond 
constructed a periodic function f ( w )  that is continuous and whose Fourier series 
diverges at some points. On the other hand, if f (w )  is continuously differentiable, 
then the proof of Theorem 3.2 shows that its Fourier series converges uniformly 
to f ( w )  on [-n, n]. It was only in 1966 that Carleson [ 1141 was able to prove that 
if f E L2 [ -n, n] then its Fourier series converges almost everywhere. The proof 
is however extremely technical. 

Convolutions Since {e-iwk}kEZ are eigenvectors of discrete convolution opera- 
tors, we also have a discrete convolution theorem. 

Theorem 3.3 I f f  E 1' (Z) and h E 1' (Z) then g = f * h E 1' (Z) and 

d(w) = j ( w )  i ( w ) .  (3.26) 

The proof is identical to the proof of the convolution Theorem 2.2, if we replace 
integrals by discrete sums. The reconstruction formula (3.24) shows that a filtered 
signal can be written 

(3.27) 

The transfer function i ( w )  amplifies or attenuates the frequency components j ( w )  
o f f  [.I. 
Example 3.3 An ideal discrete low-passj2ter has a 27r periodic transfer function 
defined by k(w)  = 11-~ ,~ l  (w),  for w E [-n,.rr] and 0 < 5 < n. Its impulse response 
is computed with (3.24): 

(3.28) 

It is a uniform sampling of the ideal analog low-pass filter (2.29). 

Example 3.4 A recursiveJilter computes g = L f which is solution of a recursive 
equation 

K M 

k=O k=O 
(3.29) 

with bo # 0. If g[n] = 0 and f [n] = 0 for n < 0 then g has a linear and time-invariant 
dependency upon f ,  and can thus be written g = f * h. The transfer function is 
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obtained by computing the Fourier transform of (3.29). The Fourier transform of 
fk[n] = f [ n  - k] is j k ( w )  = j ( w )  e-ikw so 

It is a rational function of e-iw. If bk # 0 for some k > 0 then one can verify that the 
impulse response h has an infinite support. The stability of such filters is studied 
in Problem 3.8. A direct calculation of the convolution sum g[n] = f*h[n]  would 
require an infinite number of operation whereas (3.29) computes g[n] with K f M  
additions and multiplications from its past values. 

Window Multiplication An infinite impulse response filter h such as the ideal low- 
pass filter (3.28) may be approximated by a finite response filter i by multiplying 
h with a window g of finite support: 

i [ n ]  = g[n] h[n]. 

One can verify that a multiplication in time is equivalent to a convolution in the 
frequency domain: 

1 -  A 

i ( w )  = -+(F)B(w-[)&= 27T -n -h*i(w).  27T (3.30) 

h 

Clearly i = f i  only if g = 2 ~ 6 ,  which would imply that g has an infinite support 
and g[n] = 1. The approximation is close to f i  only if g approximates a Dirac, 
which means that all its energy is concentrated at low frequencies. In time, g 
should therefore have smooth variations. 

The rectangular window g = l [ - N ~  has a Fourier transform 2 computed in 

(3.20). It has important side lobes far away from w = 0. The resulting i is a poor 
approximation of fi. The Hanning window 

A 

h 

g[n] = cos2 (E) l[-Nfl [n] 

is smoother and thus has aFourier transform better concentrated at low frequencies. 
The spectral properties of other windows are studied in Section 4.2.2. 

3.3 FINITE SIGNALS 

Up to now, we have considered discrete signals f [ n ]  defined for all n E Z. In 
practice, f[n] is known over a finite domain, say 0 5 n < N. Convolutions must 
therefore be modified to take into account the border effects at n = 0 and n = N - 1. 
The Fourier transform must also be redefined over finite sequences for numerical 
computations. The fast Fourier transform algorithm is explained as well as its 
application to fast convolutions. 
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3.3. I Circular Convolutions 

Let 7 and 5 be signals of N samples. To compute the convolution product 

+W 

J*i;[n] = J [ p l i [ n - p l  f o r o < n < N ,  
p=-W 

we must know f [ n ]  and i [ n ]  beyond 0 < n < N .  One approach is to extend f and 
i with a periodization over N samples, and define 

f [ n ]  = J[nmodN] , h[n] = i[nmodN]. 

The circular convolution of two such signals, both with period N ,  is defined as a 
sum over their period: 

N-1  N-1  

f@h[nI =Cf[PI+-Pl  = C f b - P l h [ P l .  
p=o p=o 

It is also a signal of period N .  
The eigenvectors of a circular convolution operator 

L f b l  = f h[nI 

are the discrete complex exponentials ek [n] = exp (i27rkn/N). Indeed 

and the eigenvalue is the discrete Fourier transform of h: 

3.3.2 Discrete Fourier Transform 

The space of signals of period N is an Euclidean space of dimension N and the 
inner product of two such signals f and g is 

(3.31) 
n=O 

The following theorem proves that any signal with period N can be decomposed 
as a sum of discrete sinusoidal waves. 
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Theorem 3.4 The family 

is an orthogonal basis of the space of signals of period N .  

Since the space is of dimension N ,  any orthogonal family of N vectors is an 
orthogonal basis. To prove this theorem it is therefore sufficient to verify that 
{ek}O<k<N is orthogonal with respect to the inner product (3.31). Any signal f of 
period N can be decomposed in this basis: 

By definition, the discrete Fourier transform (DFT) off is 

Since llek112 = N ,  (3.32) gives an inverse discrete Fourier formula: 

The orthogonality of the basis also implies a Plancherel formula 

N-1  . N-1  

n=O k=O 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

The discrete Fourier transform of a signal f of period N is computed from its 
values for 0 5 n < N .  Then why is it important to consider it a periodic signal 
with period N rather than a finite signal of N samples? The answer lies in the 
interpretation of the Fourier coefficients. The discrete Fourier sum (3.34) defines 
a signal of period N for which the samples f[O] and f [N - 11 are side by side. If 
f [O] and f [N - 11 are very different, this produces a brutal transition in the periodic 
signal, creating relatively high amplitude Fourier coefficients at high frequencies. 
For example, Figure 3.3 shows that the “smooth” ramp f [n] = n for 0 5 n < N 
has sharp transitions at n = 0 and n = N once made periodic. 

Circular Convolutions 
convolutions, we derive a convolution theorem. 

Since (exp ( i 2 7 r k r ~ / N ) } ~ ~ ~ < ~  are eigenvectors of circular 

Theorem 3.5 I f f  and h have period N then the discrete Fourier transform of 
g =  f @ h i s  

b[k] = f [ k ]  i [ k ] .  (3.36) 
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FIGURE 3.3 Signal f[n] = n for 0 5 n < N made periodic over N samples. 

The proof is similar to the proof of the two previous convolution Theorems 
2.2 and 3.3. This theorem shows that a circular convolution can be interpreted 
as a discrete frequency filtering. It also opens the door to fast computations of 
convolutions using the fast Fourier transform. 

3.3.3 Fast Fourier Transform 

For a signal f of N points, a direct calculation of the N discrete Fourier sums 

requires N 2  complex multiplications and additions. The fast Fourier transform 
(FlT) algorithm reduces the numerical complexity to O(N log, N )  by reorganizing 
the calculations. 

When the frequency index is even, we group the terms n and n + N/2: 

When the frequency index is odd, the same grouping becomes 

(3.39) 

Equation (3.38) proves that even frequencies are obtained by calculating the dis- 
crete Fourier transform of the N / 2  periodic signal 

f e b l  = fbl +fb+N/21.  

Odd frequencies are derived from (3.39) by computing the Fourier transform of 
the N / 2  periodic signal 

A discrete Fourier transform of size N may thus be calculated with two discrete 
Fourier transforms of size N/2 plus O ( N )  operations. 
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The inverse fast Fourier transform of 3 is derived from the forward fast Fourier 
transform of its complex conjugate 3* by observing that 

k=O 

(3.40) 

Complexity Let C ( N )  be the number of elementary operations needed to compute 
a discrete Fourier transform with the FFT. Since f is complex, the calculation of 
f e and f requires N complex additions and N/2 complex multiplications. Let 
KN be the corresponding number of elementary operations. We have 

C ( N )  = 2 C(N/2) + K N .  (3.41) 

Since the Fourier transform of a single point is equal to itself, C( 1) = 0. With the 
change of variable I = log,N and the change of function T(Z) = y, we derive 
from (3.41) that 

Since T ( 0 )  = 0 we get T(1) = KZ and hence 

T(1) = T(Z- 1) +K. 

C ( N )  = K N log, ( N )  . 

There exist several variations of this fast algorithm [177,51]. The goal is to 
minimize the constant K. The most efficient fast discrete Fourier transform to 
this date is the split-radix FFT algorithm, which is slightly more complicated than 
the procedure just described, but which requires only Nlog2N real multiplications 
and 3NlogzN additions. When the input signal f is real, there are half as many 
parameters to compute, since 3 [ -k] = 3* [k] . The number of multiplications and 
additions is thus reduced by 2. 

3.3.4 Fast Convolutions 

The low computational complexity of a fast Fourier transform makes it efficient 
to compute finite discrete convolutions by using the circular convolution Theorem 
3.5. Let f and h be two signals whose samples are non-zero only for 0 5 n < M .  
The causal signal 

+m 

sbl = f *hbI = f [klhb-kl (3.42) 

is non-zero only for 0 5 n < 2M. If h and f have M non-zero samples, calculating 
this convolution product with the sum (3.42) requires M ( M  + 1) multiplications 
and additions. When M 2 32, the number of computations is reduced by using the 
fast Fourier transform [ll, 511. 

To use the fast Fourier transform with the circular convolution Theorem 3.5, 
the non-circular convolution (3.42) is written as a circular convolution. We define 

k=-m 
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two signals of period 2M: 

(3.43) 

Let c = a @  b, one can verify that c[n] = g[n]  for 0 5 n < 2M. The 2M non- 
zero coefficients of g are thus obtained by computing 2 and h from a and b and 
then calculating the inverse discrete Fourier transform of i. = iih. With the fast 
Fourier transform algorithm, this requires a total of O(Mlog,M) additions and 
multiplications instead of M ( M  + 1). A single FFT or inverse FFT of areal signal of 
size N is calculated with 2-'N log, N multiplications, using a split-radix algorithm. 
The FFT convolution is thus performed with a total of 3M log, M + 11M real 
multiplications. ForM 2 32 the FFT algorithm is faster than the direct convolution 
approach. For M 5 16, it is faster to use a direct convolution sum. 

Fast Overlap-Add Convolutions The convolution of a signal f of L non-zero sam- 
ples with a smaller causal signal h of M samples is calculated with an overlap-add 
procedure that is faster than the previous algorithm. The signal f is decomposed 
with a sum of L/M blocks f having M non-zero samples: 

LIM-1  

For each 0 I r < L/M, the 2M non-zero samples of g,  = f * h are computed with 
the FFT based convolution algorithm, which requires O(M log, M) operations. 
These L / M  convolutions are thus obtained with O(Llog,M) operations. The 
block decomposition (3.45) implies that 

L / M - 1  

f *h[n] = g , [ n - r M ] .  
r=O 

(3.46) 

The addition of these L/M translated signals of size 2M is done with 2L additions. 
The overall convolution is thus performed with O(Llog,M) operations. 

3.4 DISCRETE IMAGE PROCESSING 

Two-dimensional signal processing poses many specific geometrical and topolog- 
ical problems that do not exist in one dimension [23,34]. For example, a simple 
concept such as causality is not well defined in two dimensions. We avoid the 
complexity introduced by the second dimension by extending one-dimensional al- 
gorithms with a separable approach. This not only simplifies the mathematics but 
also leads to faster numerical algorithms along the rows and columns of images. 
Appendix A.5 reviews the properties of tensor products for separable calculations. 
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3.4. I Two-Dimensional Sampling Theorem 

The light intensity measured by a camera is generally sampled over a rectangular 
array of picture elements, calledpixels. The one-dimensional sampling theorem is 
extended to this two-dimensional sampling array. Other two-dimensional sampling 
grids such as hexagonal grids are also possible, but non-rectangular sampling arrays 
are hardly ever used. We avoid studying them following our separable extension 
principle. 

Let TI and T2 be the sampling intervals along the x1 and x2 axes of an infinite 
rectangular sampling grid. A discrete image obtained by sampling f (XI 9 2 )  can 
be represented as a sum of Diracs located at the grid points: 

+X 

f d ( x 1 , x ~ )  = f(n1TlIn2Tz)6(x1 -mT1)6(x2-n2T2). 
111 ,n2-03 

The two-dimensional Fourier transform of 

6(xl  -nlT1)6(x2 -n2T2) is exp[-i(nlTlwl +n2Tzwz)]. 

The Fourier transform of fd is thus a two-dimensional Fourier series 

f a  

1 d ( w 1 , ~ 2 )  = f(niTiIn2T2) exp[-i(niTiwi + n z T 2 ~ 2 ) ] .  (3.47) 

It has period 21r/Tl along w1 and period 2w/T2 along w2. An extension of Propo- 
sition 3.1 relates $d to the two-dimensional Fourier transform $ of f .  

n,,n2=--m 

Proposition 3.3 The Fourier transfom of the discrete image obtained by sampling 
f at intervals TI and T2 along X I  and x2 is 

2k1 T rW2-  - 2k2w) .  (3.48) 
Tl T2 

We derive the following two-dimensional sampling theorem, which is analo- 
gous to Theorem 3.1. 

Theorem 3.6 If1 has a support included in [-TITII .rr/T~] x [ -n /T2,7r /T~]  then 

(3.49) 
+m 

f(x1 I x2) = f (n1  TI I n2T2) h, (x1 - n1 Tl hTz (x2 - n2T2) 7 

nl,nz=-m 

where 

(3.50) 
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Aliasing If the support of 3 is not included in the low-frequency rectangle 
[-.rr/T~, r/T1] x [-.rr/Tz, r/Tz], the interpolation formula (3.49) introduces alias- 
ing errors. This aliasing is eliminated by prefiltering f with the ideal low-pass 
separable filter hTl (xl) h~~ (x2)/(T1 Tz)  whose Fourier transform is the indicator 
function of [-.rr/Tl:.rr/Tl] x [-.rr/Tz,7r/T~]. 

3.4.2 Discrete Image Filtering 

The properties of two-dimensional space-invariant operators are essentially the 
same as in one dimension. The sampling intervals TI and T2 are normalized to 
1. A pixel value located at (n1,nz) is written f[nl:nz]. A linear operator L is 
space-invariant if for any fPl:n [nl nz] = f [ n l -  p1 ,nz - pz], with (pi p z )  E Z2, 

~ f p l : P z [ ~ 1 , ~ 2 1  = L f h  -Pl,nz-Pzl. 

Impulse Response Since an image can be decomposed as a sum of discrete Diracs: 
+m 

f[n1,nz] = f [Pl ,Pzl~[nl  -P116[nz-PZl: 
PI ,p2=-Cx: 

the linearity and time invariance implies 
+m 

Lf[n1,nzI = f[Pl:PzIh[nl - P l , n z - P z ]  =f*h[nl,nzI: (3.51) 
p1,p2=-w 

where h[nl,nz] is the response of the impulse 60,0[pl,pz] = 6[p l ]b [pz ] :  

hb l  ,n21 = ~ ~ O , O b l ,  1221. 

If the impulse response is separable: 

h[nl:nzI = hl[nlIhz[nzl, (3.52) 

the two-dimensional convolution (3.5 1) is computed as one-dimensional convolu- 
tions along the columns of the image followed by one-dimensional convolutions 
along the rows (or vice-versa): 

+X +m 
f*h[nl:nz] = c hlb l  -P1] hz[nz-Pzlf[P1,Pzl. (3.53) 

PI=-” pz=-m 

This factorization reduces the number of operations. For example, a moving 
average over squares of (2M + 1)’ pixels: 

M M  1 
Lf[nl:nzl = f[n1 -Pl,nz-Pzl (3.54) 

(2Mf1)2 p,=-Mp2=-M 

is a separable convolution with hl = hz = (2M + l)-’l[-M,M]. A direct calculation 
with (3.54) requires (2M + l)z additions per pixel whereas the factorization (3.53) 
performs this calculation with 2(2M + 1) additions per point. 
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Transfer Function The Fourier transform of a discrete image f is defined by the 
Fourier series 

+oo +m 

3(Wl,WZ) = f[n1,n21 exP[-i(wlnl +wznz)l. (3.55) 
n1=-mnZ=-cc 

The two-dimensional extension of the convolution Theorem 3.3 proves that if 
g = L f = f * h then its Fourier transform is 

b(Wl,WZ) = 3(Wl,~Z>&Jl ,WZ),  

and h is the transfer function of the filter. When a filter is separable h[nl,nz] = 
hl [nl] hz[nz], its transfer function is also separable: 

(3.56) 

3.4.3 Circular Convolutions and Fourier Basis 

The discrete convolution of a finite image 3 raises border problems. As in one di- 
mension, these border issues are solved by extending the image, making it periodic 
along its rows and columns: 

f [ n l , n z ]  =3[nlmodN,nzmodN]. 

The resulting image f [nl ,n2] is defined for all (nl , n ~ )  E Z2, and each of its rows 
and columns is a one-dimensional signal of period N. 

A discrete convolution is replaced by a circular convolution over the image 
period. Iff and h have period N along their rows and columns, then 

N-1 

f @hh[n1,nzI = f[Pl;Pzlh[nl -Pl:nz-P2I. (3.57) 
PI>P2=0 

Discrete Fourier Transform 
dimensional discrete sinusoidal waves: 

The eigenvectors of circular convolutions are two- 

This family of N2 discrete vectors is the separable product of two one-dimensional 
discrete Fourier bases {exp (i2nkn/N)}05k<N. Theorem A.3 thus proves that the 
family 

is an orthogonal basis of the space of images that are periodic with period N along 
their rows and columns. Any discrete periodic image f can be decomposed in this 
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orthogonal basis: 

where 1 is the two-dimensional discrete Fourier transform off  

N-1 

j’[kl:kZI = ( f , % , k 2 )  = 
nl,nz=O 

Fast Convolutions Since exp( (klnl+ kznz)) are eigenvectors of two-dimen- 
sional circular convolutions, the discrete Fourier transform of g = f &? h is 

ah, kz] = .?[kl, kz] K[kl i kzl. (3.60) 

A direct computation of f @ h with the summation (3.57) requires O(N4) multi- 
plications. With the two-dimensional FFT described next, .?[kl, kz] and h[kl kz] 
as well as the inverse DFT of their product (3.60) are calculated with O(N2 logN)  
operations. Non-circular convolutions are computed with a fast algorithm by re- 
ducing them to circular convolutions, with the same approach as in Section 3.3.4. 

Separable Basis Decomposition k t  {ek}O<k<N - be an orthogonal basis of signals 
of size N .  The family { e k ,  [nl]  ek, [nz]}O<kl,kz<N is then an orthogonal basis of the 
space of images of NZ pixels. The decomposition coefficients of an image f 
in such a basis is calculated with a separable algorithm. The application to the 
two-dimensional FFT is explained. 

Two-dimensional inner products are calculated with 

N-1 N-1 

(f, ek, = f1.1, .21 e;, b 1 1  [nzl 
nl=0 nz=O 

N-1 N-1 

(3.61) 
nl=0 nz=O 

For 0 5 nl < N ,  we must compute 

N-1 

~f[n1,kzI = C f [ l l l r ~ z l e z 2 [ ~ Z l ,  
n2=0 

which are the decomposition coefficients of the N image rows in the basis 
{ekz}O<kz<N. The coefficients { (f,ek,ekz)}O~kl,kz<N are calculated in (3.61) as 
the inner products of the columns of the transformed image Tf [nl , kz] in the same 
basis {f?k}O<k<N. This requires expanding 2N one-dimensional signals (N rows 
and N columns) in {f?k}Ojk<N. 
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The fast Fourier transform algorithm of Section 3.3.3 decomposes a signal 
of size N in the discrete Fourier basis {ek[n] = exp(--i2.rrkn/N)}05k<N with 
KNlog2N operations. A separable implementation of a two-dimensional FFT 
thus requires 2KN2 log, N operations. A split-radix FIT corresponds to K = 3. 

3.5 PROBLEMS 

3.1. Suppose that j has asupport in [-(n+ l)7r/Tl -n7r/T] U [ns/T, (n+ 1)7i/T] 
and that f(t) is real. Find an interpolation formula that recovers f(t)  from 
{f (nT))nez* 

Suppose that j has a support in [-.rr/T,n/T]. Find a formula that recovers 3.2. 
f ( t )  from the average samples 

( n + l / W  

vn E z > J'(nT) = J;n-1/2)1. f . 

3.3. An interpolation function f ( t )  satisfies f ( n )  = b[n]. 
(a) Prove that C,'='j(w + 2 k s )  = 1 if and only if f is an interpolation 

function. 
(b) Suppose that f(t) = C,+,"_,h[n] O(t  - n) with 8 E Lz(R). Find i ( w )  so 

that f ( n )  = b[n], and relate j ( w )  to &w). Give a sufficient condition on 8 
to guarantee that f E L2 (R) . 

3.4. Prove that iff  E L2(R) and C;=:"-,f(t -n) E L2[O; 11 then 

3.5. Verify that 

is an all-pass filter, i.e. ~ i ( w ) l =  1. Prove that {h[n -m]),,z is an orthonormal 
basis of 12(Z). 

3.6. lLetg[n] = (-l)"h[n]. Relatejj(w) t o i ( w ) .  Ifhisalow-passfiltercanjj(w) 
be a low-pass filter? 

3.7. 
3.8. RecursiveJilters 

Prove the convolution Theorem 3.3. 

(a) ComputetheFouriertransformofh[n] =an lp+,) [n] for 11x1 < 1. Compute 

(b) Suppose that g = f * h is calculated by a recursive equation with real 
the inverse Fourier transform of i(w) = (1 - ae-iw)-P. 

Show that h is a stable filter if and only if the equation xr=o bk z-' = 0 has 
roots with a modulus strictly smaller than 1. 
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(c) Suppose that l h ( ~ ) 1 ~  = IP(e-i")lz/ID(e-i~)lz where P(z)  and D(z)  are 
polynomials. If D(z)  has no root of modulus 1, prove that one can find 
two polynomials Pl (z) and DI (z) such that h(w) = P I  (e-i")/Dl (e-") is 
the Fourier transform of a stable and causal recursive filter. Hint: find 
the complex roots of D(z)  and compute D1 ( z )  by choosing the appropriate 
roots. 

(d) A discrete Butterworth filter with cut-off frequency w, < 7r satisfies 

1 
I f i ( w ) l z  = + tan(w/Z) 2N ( tantdc/z)) 

Compute h(w)  for N = 3 in order to obtain a filter h which is real, stable 
and causal. 

Let a and b be two integers with many digits. Relate the product ab to a 

Let h-' be the inverse of h defined by h*h-l[n] = b[n] .  

3.9. 

3.10. 
convolution. Explain how to use the FFT to compute this product. 

(a) Prove that if h has a finite support then h-' has a finite support if and only 

(b) Find a sufficient condition on h(w)  for h-l to be a stable filter. 

define ; [N/2 ]  = j [ 3 N / 2 ]  = y [ N / 2 ]  and 

if h[n] = 6[n - p] for some p fi Z. 

3.1 1. Discrete interpolation Let irk] be the DFT of a signal f[n] of size N .  We 

2 j [ k ]  if 0 5 k < N / 2  

f [ k ]  = 0 if N / 2  < k < 3 N / 2  - {  2 j [ k - N ]  if 3 N / 2  < k < 2N 

Prove that j [ 2 n ]  = f [ n ] .  

(a) Show that i ( w )  = M-' 
(b) Give a sufficient condition on j ( w )  to recover y from x .  Describe the 

3.12. Decimation Letx[n] = y[Mn] withM > 1 .  
+(M-'(w - 2k7r)). 

interpolation algorithm. 
3.13. Complexity of FFT 

(a) Find an algorithm that multiplies two complex numbers with 3 additions 

(ti) Compute the total number of additions and multiplications of the FFT 

We want to compute numerically the Fourier transform of f ( t ) .  Let f d [ n ]  = 
f ( n T ) ,  andfp[n] = C ~ Z , f d [ n - ~ N l .  
(a) Prove that the DFT of f p  [n] is related to the Fourier series of f d [n] and to 

the Fourier transform of f ( t )  by 

and 3 multiplications. 

algorithm described in Section 3.3.3, for a signal of size N .  
3.14. 
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(b) Suppose that l f ( ? ) l  and If(w)I are negligible when t $ [-to;to] and 
w $ [-wo,wo]. Relate N and T to to and wo so that one can compute 
an approximation value of j(w) at all w E R by interpolating the samples 
p,[k] .  Is it possible to compute exactly ?(w) with such an interpolation 
formula? 

. What is the support of j? Sample f appro- (c) Let f ( t )  = sin(nt)/(nt) ( - ) 4  

priately and compute f with the FFT algorithm of MATLAB. 
3.15. Suppose that f[n~,nz] is an image with iV non-zero pixels for 0 I nl7n2 < 

N. Let h[nl,nz] be a non-separable filter with MZ non-zero coefficients for 
0 5 n1,nz < M. Describe an overlap-add algorithm to compute g[nl, nz] = 
f *h[nl ,  %I. How many operations does it require? For what range of M is it 
better to compute the convolution with a direct summation? 



IV 
TIME MEETS FREQUENCY 

W ‘hen we listen to music, we clearly “hear” the time variation of the 
sound “frequencies.” These localized frequency events are not pure 
tones but packets of close frequencies. The properties of sounds are 

revealed by transforms that decompose signals over elementary functions that 
are well concentrated in time and frequency. Windowed Fourier transforms and 
wavelet transforms are two important classes of local time-frequency decomposi- 
tions. Measuring the time variations of “instantaneous” frequencies is an important 
application that illustrates the limitations imposed by the Heisenberg uncertainty. 

There is no unique definition of time-frequency energy density, which makes 
this topic difficult. Yet, some order can be established by proving that quadratic 
time-frequency distributions are obtained by averaging a single quadratic form 
called the Wigner-Ville distribution. This unified framework gives a more general 
perspective on windowed Fourier transforms and wavelet transforms. 

4. I TIME-FREQUENCY ATOMS 

A linear time-frequency transform correlates the signal with a family of waveforms 
that are well concentrated in time and in frequency. These waveforms are called 
time-frequency atoms. Let us consider a general family of time-frequency atoms 
{q57}7Er, where y might be a multi-index parameter. We suppose that q5-, E L2(W) 
and that 1 1 + 7 1 1  = 1. The corresponding linear time-frequency transform of f E 

67 
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L2(W) is defined by 

The Parseval formula (2.25) proves that 

If &(t) is nearly zero when t is outside a neighborhood of an abscissa u, then 
(f, &) depends only on the values of f in this neighborhood. Similarly, if &(w) 
is negligible for w far from [, then the right integral of (4.1) proves that (f, &) 
reveals the properties of 3 in the neighborhood of 5. 

Example 4.1 A windowed Fourier atom is constructed with a window g translated 
by u and modulated by the frequency [: 

+r(t)  = g[Jt) = e't'g(t - u). (4.2) 

A wavelet atom is a dilation by s and a translation by u of a mother wavelet +: 

Wavelets and windowed Fourier functions have their energy well localized in time, 
while their Fourier transfom is mostly concentrated in a limited frequency band. 
The properties of the resulting transforms are studied in Sections 4.2 and 4.3. 

Heisenberg Boxes The slice of information provided by (f, &,) is represented 
in a time-frequency plane (t, w )  by a region whose location and width depends on 
the time-frequency spread of c&. Since 

+m 

we interpret 1&(t) 1' as a probability distribution centered at 

z+ = J+mt,q57(t),2dt. -m 

The spread around q is measured by the variance 
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The Plancherel formula (2.26) proves that s-’,” I & ( ~ ) 1 ~ d w  = 2~11q5~,11~. The 
center frequency of a7 is therefore defined by 

and its spread around t7 is 

(4.7) 

The time-frequency resolution of q57 is represented in the time-frequency plane 
( t , ~ )  by a Heisenberg box centered at (u7,&), whose width along time is ut(?) 
and whose width along frequency is uu (7). This is illustrated by Figure 4.1. The 
Heisenberg uncertainty Theorem 2.5 proves that the area of the rectangle is at least 

u,uu 2 -. (4.8) 

This limits the joint resolution of q57 in time and frequency. The time-frequency 
plane must be manipulated carefully because a point (t0,wO) is ill-defined. There 
is no function that is perfectly well concentrated at a point to and a frequency WO. 

Only rectangles with area at least 1 /2 may correspond to time-frequency atoms. 

1/2: 
1 
2 

Energy Density Suppose that for any (u,c) there exists a unique atom q5T(u;c) 
centered at (u,<) in the time-frequency plane. The time-frequency box of q5r(u:E) 
specifies a neighborhood of (u,<) where the energy off  is measured by 

Section 4.5.1 proves that any such energy density is an averaging of the Wigner- 
Ville distribution, with a kernel that depends on the atoms +.-,. 
4.2 WINDOWED FOURIER TRANSFORM 

In 1946, Gabor [187] introduced windowed Fourier atoms to measure the “fre- 
quency variations” of sounds. A real and symmetric window g ( t )  = g(- t )  is 
translated by u and modulated by the frequency E: 

gU,c(t) = e‘@g(t-u). (4.10) 

It is normalized llgll = 1 so that llg,,eII = 1 for any (u,<) E W2. The resulting 
windowed Fourier transform of f E L2(W) is 

+W 

~ f ( u ,  S> = (f: g,:C) = / f ( t >  g(t - u> dt.  (4.11) 
--oc 
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FIGURE 4. I Heisenberg box representing an atom &. 

This transform is also called the short time Fourier tran,!$onn because the multi- 
plication by g(t - u) localizes the Fourier integral in the neighborhood oft  = u. 

As in (4.9), one can define an energy density called a spectrogram, denoted 

The spectrogram measures the energy off in the timefrequency neighborhood of 
(u, t)  specified by the Heisenberg box of g,,c. 

Heisenberg Boxes Since g is even, g,,E(t) = e@g(t - u) is centered at u. The 
time spread around u is independent of u and 5: 

J-w J-CG 

The Fourier transform i of g is real and symmetric because g is real and 

i U & )  = i ( w  - E )  =P[--iu(w - 01. (4.14) 

It is a translation by E of the frequency window i, so its center frequency is E. The 
frequency spread around 5 is 

symmetric. The Fourier transform of g,,€ is 

It is independent of u and 5. Hence g,,e corresponds to a Heisenberg box of 
area at a, centered at (u, E ) ,  as illustrated by Figure 4.2. The size of this box is 
independent of (u;t), which means that a windowed Fourier transform has the 
same resolution across the time-frequency plane. 

Example 4.2 A sinusoidal wave f ( t )  = exp(it0bt) whose Fourier transform is a 
Dirac j ( w )  = 27rS(w - EO) has a windowed Fourier transform 

Sf(u:t) = at - E o )  exp[--iu(E - t o ) ] .  
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FIGURE 4.2 Heisenberg boxes of two windowed Fourier atoms g,,c and gv,7. 

Its energy is spread over the frequency interval [ to  - u,/2, (0 + u,/2]. 

Example 4.3 The windowed Fourier transform of a Dirac f ( t )  = d ( t  - uo) is 

Sf(u,t) = d u o  - u) exp(-Yuo). 

Its energy is spread in the time interval [uo - ut/2, uo + 4 2 1 .  

Example4.4 A linear c h q  f ( t )  = exp(iut2) has an “instantaneous fre- 
quency’’ that increases linearly in time. For a Gaussian window g ( t )  = 
(7ru2)-1/4e~p[--t2/(2u2)], the windowed Fourier transform of f is calculated 
using the Fourier transform (2.34) of Gaussian chirps. One can verify that its 
spectrogram is 

(4.16) 

For a fixed time u, Ps f (u , [ )  is a Gaussian that reaches its maximum at the fre- 
quency ((u) = 2uu. Observe that if we write f ( t )  = exp[i$(t)], then t ( ~ )  is 
equal to the “instantaneous frequency,” defined as the derivative of the phase: 
~ ( u )  = # ( u )  = 2au. Section 4.4.1 explains this result. 

Example 4.5 Figure 4.3 gives the spectrogram of a signal that includes a linear 
chirp, a quadratic chirp and two modulated Gaussians. The spectrogram is com- 
puted with a Gaussian window dilated by u = 0.05. As expected from (4.16), 
the linear chirp yields large amplitude coefficients along the trajectory of its in- 
stantaneous frequency, which is a straight line. The quadratic chirp yields large 
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FIGURE 4.3 The signal includes a linear chirp whose frequency increases, a 
quadratic chirp whose frequency decreases, and two modulated Gaussian functions 
located at t = 0.5 and t = 0.87. (a) Spectrogram Ps f (u ,<) .  Dark points indicate 
large amplitude coefficients. (b) Complex phase of Sf(u,E) in regions where the 
modulus P s f ( u , < )  is non-zero. 

coefficients along a parabola. The two modulated Gaussians produce low and high 
frequency blobs at u = 0.5 and u = 0.87. 

4.2. I Completeness and Stability 

When the time-frequency indices (u ,E)  vary across R2, the Heisenberg boxes of 
the atoms g,,c cover the whole time-frequency plane. One can thus expect that f 
can be recovered from its windowed Fourier transform Sf(u,E). The following 
theorem gives a reconstruction formula and proves that the energy is conserved. 
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Theorem 4.1 I f f  E L2(W) then 

f ( t )  = J’” [T Sf (u, () g(t - u)  eYf d tdu  (4.17) 
27r -= 

Proof ’. The reconstruction formula (4.17) is proved first. Let us apply the Fourier 
Parseval formula (2.25) to the integral (4.17) with respect to the integration in u. The 
Fourier transform of f t  (u)  = S f ( u ,  E )  with respect to u is computed by observing that 

s ~ ( U , E )  = e x p ( - i u t ) /  f ( t ) g ( t - u )  exp[ i t (u - t ) ld t  = exp( - iu t ) f*g t (u ) ,  

where gt( t )  = g ( t )  exp(i@), because g ( t )  = g( - t ) .  Its Fourier transform is therefore 

3&) = 3 ( m  + E )  b&J + E )  = 3(w  + E )  b b ) .  

+m 

-m 

The Fourier transform of g(t  - u )  with respect to u is i ( w )  exp(- i fw) .  Hence 

..!- (L f ( w  + E )  Ib(w) 1’ exp[it(w + E ) ]  dw 
2R -w 27r -m 

If j E L1 (B), we can apply the Fubini Theorem A.2 to reverse the integration order. 
The inverse Fourier transform proves that 

Since & S-Lm lb(w) 12dw = 1 we derive (4.17). If 3 $! L’(B), a density argument is 
used to verify this formula. 

Let us now prove the energy conservation (4.18). Since the Fourier transform in u 
of Sf(u,t) is 3 ( m  + E )  b(w), the Plancherel formula (2.26) applied to the right-hand 
side of (4.18) gives 

The Fubini theorem applies and the Plancherel formula proves that 

which implies (4.18). 
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The reconstruction formula (4.17) can be rewritten 

f ( t >  = -L J’” ( f ,  g u , O  g u , N  d<du. (4.19) 

It resembles the decomposition of a signal in an orthonormal basis but it is not, 
since the functions (gu ,~}u , tE~Z  are very redundant in L2(R). The second equality 
(4.1 8) justifies the interpretation of the spectrogram Psf (u , <) = I Sf (u, <) I as an 
energy density, since its time-frequency sum equals the signal energy. 

2n -m 

Reproducing Kernel A windowed Fourier transform represents a one-dimen- 
sional signal f ( t )  by a two-dimensional function S f ( u , < ) .  The energy conser- 
vation proves that S f  E L2(R2). Because S f ( u , < )  is redundant, it is not true that 
any @ E L2 (a2) is the windowed Fourier transform of some f E L2 (a). The next 
proposition gives a necessary and sufficient condition for such a function to be a 
windowed Fourier transform. 

Proposition 4.1 Let @ E L2(R*). There exists f E L2(R) such that @(u, <) = 
S f ( u , [ )  ifandonly if 

(4.20) 

(4.21) 

Pmof ’. Suppose that there exists f such that @(u,E) = Sf(u,E). Let us replace f 
with its reconstruction integral (4.17) in the windowed Fourier transform definition: 

Inverting the integral on t with the integrals on u and E yields (4.20). To prove that the 
condition (4.20) is sufficient, we define f as in the reconstruction formula (4.17): 

f ( t )  = J- /+m /+m @(u,E) g(t - u )  exp(i<t) dtdu 
2?r -m -m 

and show that (4.20) implies that Q(u,e)  = Sf(u,E). 

Ambiguity Function The reproducing kernel K(u0, u, <o, [) measures the time- 
frequency overlap of the two atoms g,,t and g,,~,. The amplitude of K(uo, u, 6, <) 
decays with uo - u and t o  - < at a rate that depends on the energy concentration 
of g and 2. Replacing gu,< and g,,,~o by their expression and making the change 
of variable v = r - (u + ~ ) / 2  in the inner product integral (4.21) yields 
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where 

Ag(.r,y) = [ r g  (Y+ i) g (v- i) eCir”dv (4.24) 

is called the arnbiguityfunction of g .  Using the Parseval formula to replace this 
time integral with a Fourier integral gives 

(4.25) 
1 

Ag(7 ,y )  = - 1 2 (w + z )  2 (w - z )  eiTWdw. 
27r -m 

The decay of the ambiguity function measures the spread of g in time and of 2 in 
frequency. For example, if g has a support included in an interval of size T, then 
Ag(r ,  w )  = 0 for 171 2 T / 2 .  The integral (4.25) shows that the same result applies 
to the support of 2. 

4.2.2 Choice of Window 

The resolution in time and frequency of the windowed Fourier transform depends 
on the spread of the window in time and frequency. This can be measured from 
the decay of the ambiguity function (4.24) or more simply from the area at a, of 
the Heisenberg box. The uncertainty Theorem 2.5 proves that th is  area reaches 
the minimum value 1/2 if and only if g is a Gaussian. The ambiguity function 
Ag(.r,y) is then a two-dimensional Gaussian. 

Window Scale The time-frequency localization of g can be modified with a scal- 
ing. Suppose that g has a Heisenberg time and frequency width respectively equal 
to at and a,. Let g ,  (t) = s-lI2 g( t / s )  be its dilation by s. A change of variables in 
the integrals (4.13) and (4.15) shows that the Heisenberg time and frequency width 
of g ,  are respectively sat and au/s.  The area of the Heisenberg box is not modified 
but it is dilated by s in time and compressed by s in frequency. Similarly, a change 
of variable in the ambiguity integral (4.24) shows that the ambiguity function is 
dilated in time and frequency respectively by s and 1 /s 

The choice of a particular scale s depends on the desired resolution trade-off 
between time and frequency. 

Finite Support In numerical applications, g must have a compact support. The- 
orem 2.6 proves that its Fourier transform necessarily has an infinite support. It 
is a symmetric function with a main lobe centered at w = 0, which decays to zero 
with oscillations. Figure 4.4 illustrates its behavior. To maximize the frequency 
resolution of the transform, we must concentrate the energy of 2 near w = 0. Three 
important parameters evaluate the spread of 2: 
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FIGURE 4.4 The energy spread of is measured by its bandwidth Aw and the 
maximum amplitude A of the first side-lobes, located at w = f w o .  

0 The root mean-square bandwidth Aw, which is defined by 

0 The maximum amplitude A of the first side-lobes located at w = f w o  in 
Figure 4.4. It is measured in decibels: 

0 The polynomial exponent p, which gives the asymptotic decay of lb(w) I for 

Ig(w)l= 0(w-p-1). (4.26) 

Table 4.1 gives the values of these three parameters for several windows g 
whose supports are restricted to [-1/2,1/2] [204]. Figure 4.5 shows the 
graph of these windows. 

large frequencies: 

To interpret these three frequency parameters, let us consider the spectrogram 
of afrequency tone f (t) = exp(&t). If Aw is small, then ISf(u, <) 1’ = Ig(< - Q) l 2  
has an energy concentrated near 6 = Q. The side-lobes of 2 create “shadows” at 
E = 50 f wo, which can be neglected if A is also small. 

If the frequency tone is embedded in a signal that has other components of much 
higher energy at different frequencies, the tone can still be detected if g(w - S )  
attenuates these components rapidly when Iw - El increases. This means that 
lk(w) 1 has a rapid decay, and Proposition 2.1 proves that this decay depends on the 
regularity of g. Property (4.26) is typically satisfied by windows that are p times 
differentiable. 
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Name 

Rectangle 

Hamming 
Gaussian 
Hanning 

Blxkman 

s(t)  Aw A P 

1 0.89 -13db 0 
0.54 + 0 .46~0~(2m)  1.36 -43db 0 

exp(-18t2) 1.55 -55db 0 
cos2(m) 1.44 -32db 2 

0.42+0.5cos(2xt) 
+O. 08cos(4m) 1.68 -58db 2 

Hamming Gaussian 

I I 
-0.5 0 0.5 

I I 
-0.5 0 0.5 

Hanning Biackman 

0.4 

0.2 

-0.5 0 0.5 -0.5 0 0.5 

FIGURE 4.5 Graphs of four windows g whose support are [-1/2,1/2]. 

4.2.3 Discrete Windowed Fourier Transform 

The discretization and fast computation of the windowed Fourier transform follow 
the same ideas as the discretization of the Fourier transform described in Section 
3.3. We consider discrete signals of period N. The window g[n] is chosen to be a 
symmetric discrete signal of period N with unit norm I I gll= 1. Discrete windowed 
Fourier atoms are defined by 
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The discrete Fourier transform of gm,l is 

The discrete windowed Fourier transform of a signal f of period N is 

For each 0 5 m < N, Sf[m, I] is calculated for 0 5 l < N with a discrete Fourier 
transform of f [ n ] g [ n  - m].  This is performed with N FFT procedures of size N, 
and thus requires a total of O(PlogzN) operations. Figure 4.3 is computed with 
this algorithm. 

Inverse Transform 
and the energy conservation of Theorem 4.1. 

The following theorem discretizes the reconstruction formula 

Theorem 4.2 I f f  is a signal of period N then 

1 N-l N-l 
f [ n ]  = h r ~ ~ S f [ m , l ] g [ n - m ]  exp (y) (4.28) 

m=O l=O 

and 
N-1 . N-1N-1 

(4.29) 

This theorem is proved by applying the Parseval and Hancherel formulas of 
the discrete Fourier transform, exactly as in the proof of Theorem 4.1. The recon- 
struction formula (4.28) is rewritten 

The second sum computes for each 0 5 m < N the inverse discrete Fourier trans- 
form of S f [ m , l ]  with respect to 1. This is calculated with N FFT procedures, 
requiring a total of O(N210g2N) operations. 

A discrete windowed Fourier transform is an N2 image Sf [ l ,m]  that is very 
redundant, since it is entirely specified by a signal f of size N. The redundancy 
is characterized by a discrete reproducing kernel equation, which is the discrete 
equivalent of (4.20). 
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4.3 WAVELET TRANSFORMS 

To analyze signal structures of very different sizes, it is necessary to use time- 
frequency atoms with different time supports. The wavelet transform decomposes 
signals over dilated and translated wavelets. A wavelet is a function + E L2(W) 
with a zero average: 

+(t)dr = 0. (4.30) 

It is normalized [I+ 1 1  = 1, and centered in the neighborhood of t  = 0. A family of 
time-frequency atoms is obtained by scaling + by s and translating it by u: 

+W L 

These atoms remain normalized: I I +u,s 1 1  = 1. The wavelet transform of f E L2 (W) 
at time u and scale s is 

Linear Filtering The wavelet transform can be rewritten as a convolution product: 

with 
1 

&(t) = - +* (;) . 
f i  

The Fourier transform of & ( t )  is 

(4.33) 

Since 4(0) = J-'," + ( t )  dt = 0, it appears that I )  is the transfer function of a band- 
pass filter. The convolution (4.32) computes the wavelet transform with dilated 
band-pass filters. 

Analytic Versus Real Wavelets Like a windowed Fourier transform, a wavelet 
transform can measure the time evolution of frequency transients. This requires 
using a complex analytic wavelet, which can separate amplitude and phase com- 
ponents. The properties of this analytic wavelet transform are described in Section 
4.3.2, and its application to the measurement of instantaneous frequencies is ex- 
plained in Section 4.4.2. In contrast, real wavelets are often used to detect sharp 
signal transitions. Section 4.3.1 introduces elementary properties of real wavelets, 
which are developed in Chapter 6. 
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4.3. I Real Wavelets 

Suppose that $J is a real wavelet. Since it has a zero average, the wavelet integral 

measures the variation of f in a neighborhood of u, whose size is proportional 
to s. Section 6.1.3 proves that when the scale s goes to zero, the decay of the 
wavelet coefficients characterizes the regularity of f in the neighborhood of u. 
This has important applications for detecting transients and analyzing fractals. 
This section concentrates on the completeness and redundancy properties of real 
wavelet transforms. 

Example 4.6 Wavelets equal to the second derivative of a Gaussian are called 
Mexican huts. They were first used in computer vision to detect multiscale edges 
[354]. The normalized Mexican hat wavelet is 

For u = 1, Figure 4.6 plots -$ and its Fourier transform 

(4.34) 

(4.35) 

Figure 4.7 shows the wavelet transform of a signal that is piecewise regular 
on the left and almost everywhere singular on the right. The maximum scale is 
smaller than 1 because the support of f is normalized to [0,1]. The minimum 
scale is limited by the sampling interval of the discretized signal used in numerical 
calculations. When the scale decreases, the wavelet transform has a rapid decay to 
zero in the regions where the signal is regular. The isolated singularities on the left 
create cones of large amplitude wavelet coefficients that converge to the locations 
of the singularities. This is further explained in Chapter 6. 

A real wavelet transform is complete and maintains an energy conservation, 
as long as the wavelet satisfies a weak admissibility condition, specified by the 
following theorem. This theorem was first proved in 1964 by the mathematician 
Calder6n [ 1 1 11, from a different point of view. Wavelets did not appear as such, but 
Calder6n defines a wavelet transform as a convolution operator that decomposes 
the identity. Grossmann and Morlet [200] were not aware of Calderh’s work 
when they proved the same formula for signal processing. 
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-5 0 5 

FIGURE 4.6 Mexican hat wavelet (4.34) for n = 1 and its Fourier transform. 

log,(s) 
-6 

-4 

-2 

0 U 
0 0.2 0.4 0.6 0.8 1 

FIGURE 4.7 Real wavelet transform W f ( u , s )  computed with a Mexican hat 
wavelet (4.34). The vertical axis represents log2 s. Black, grey and white points 
correspond respectively to positive, zero and negative wavelet coefficients. 

Theorem 4.3 (CALDER6N, GROSSMANN, MORLET) Let ?,b E L2(R) be a realfunc- 
tion such that 

Any f E L2(R) satisfies 

(4.36) 
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Proof l. The proof of (4.38) is almost identical to the proof of (4.18). Let us concen- 
trate on the proof of (4.37). The right integral b(t) of (4.37) can be rewritten as a s u m  
of convolutions. Inserting Wf(u,s) = f*&(u) with &(t) = s- ' / *+( t /s)  yields 

(4.39) 

The "." indicates the variable over which the convolution is calculated. We prove that 
b = f by showing that their Fourier transforms are equal. The Fourier transform of b 
is 

Since II, is red we know that I$(-w) Iz = I$(w)Iz. The change of variable E = sw thus 
proves that 

The theorem hypothesis 

is called the wavelet admissibility condition. To guarantee that this integral is finite 
we must ensure that 4 (0) = 0, which explains why we imposed that wavelets must 
have a zero average. This condition is nearly sufficient. If 4(0) = 0 and 4 ( w )  is 
continuously differentiable then the admissibility condition is satisfied. One can 
verify that 4 ( w )  is continuously differentiable if $ has a sufficient time decay 

Reproducing Kernel Like a windowed Fourier transform, a wavelet transform is 
a redundant representation, whose redundancy is characterized by a reproducing 
kernel equation. Inserting the reconstruction formula (4.37) into the definition of 
the wavelet transform yields 
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Interchanging these integrals gives 

with 
K(ug,u:so:s) = (lc'u,s:lc'u0,so) . (4.41) 

The reproducing kernel K(u0, u, so, s) measures the correlation of two wavelets 1cIu,, 
and $uo,so. The reader can verify that any function @(u;s) is the wavelet transform 
of some f E L2(R) if and only if it satisfies the reproducing kernel equation (4.40). 

Scaling Function When W f ( u ,  s) is known only for s < so, to recover f we need a 
complement of information corresponding to Wf(u ,s )  for s > SO. This is obtained 
by introducing a scalingfunction q5 that is an aggregation of wavelets at scales 
larger than 1. The modulus of its Fourier transform is defined by 

and the complex phase of $(w) can be arbitrarily chosen. One can verify that 
11q511 = 1 and we derive from the admissibility condition (4.36) that 

lim 1$(w)12 = c,. (4.43) 
W+O 

The scaling function can thus be interpreted as the impulse response of a low-pass 
filter. Let us denote 

h ( t ) = - q 5 ( - )  1 t  and &(t)=q5;(-t) .  
f i s  

The low-frequency approximation off  at the scale s is 

(4.44) 

With a minor modification of the proof of Theorem 4.3, it can be shown that 

Example 4.7 If $ is the second order derivative of a Gaussian whose Fourier 
transform is given by (4.35), then the integration (4.42) yields 

(4.46) 

Figure 4.8 displays q5 and 4 for (T = 1. 
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FIGURE 4.8 Scaling function associated to a Mexican hat wavelet and its Fourier 
transform calculated with (4.46). 

4.3.2 Analytic Wavelets 

To analyze the time evolution of frequency tones, it is necessary to use an analytic 
wavelet to separate the phase and amplitude information of signals. The properties 
of the resulting analytic wavelet transform are studied. 

Analytic Signal A function fa E L2(W) is said to be unalytic if its Fourier trans- 
form is zero for negative frequencies: 

ja(w)=O ifw<o.  

An analytic function is necessarily complex but is entirely characterized by its real 
part. Indeed, the Fourier transform of its real part f = Real[fa] is 

and this relation can be inverted: 

(4.47) 

The analytic part f a ( t )  of a signal f ( t )  is the inverse Fourier transform of Ja(w) 
defined by (4.47). 

Discrete Analytic Part The analytic part fa[n] of a discrete signal f [ n ]  of size 
N is also computed by setting to zero the negative fresuency components of its 
discrete Fourier transform. The Fourier transform values at k = 0 and k = N/2 
must be carefully adjusted so that Real [ f a ]  = f: { i [ k ]  ifk=O,N/2 

Ia[k] = 2j[k] i fO<k<N/2  . 
ifN/2 < k < N 

(4.48) 

We obtain fa[n] by computing the inverse discrete Fourier transform. 
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The Fourier transform of the analytic part computed with (4.47) is j a ( w )  = 
2nu exp(i+) S(w - wo) and hence 

fa(t)  =aexp[i(wot++)I. (4.49) 

Time-Frequency Resolution An analytic wavelet transform is calculated with an 
analytic wavelet $: 

Its time-frequency resolution depends on the time-frequency spread of the wavelet 
atoms $,,,. We suppose that $ is centered at 0, which implies that $u,s is centered 
at t = u. With the change of variable v = y, we verify that 

(4.51) 
J-w 

with a: = J-2 t 2  ~ $ ( t )  12dt. Since &w> is zero at negative frequencies, the center 
frequency q of 4 is 

(4.52) 

The Fourier transform of $,,, is a dilation of 4 by l/s: 

4 , ~ w )  = &)(sw) exp(-iwu). (4.53) 

Its center frequency is therefore v / s .  The energy spread of &,s around v /s  is 

with 

(4.54) 

The energy spread of a wavelet time-frequency atom $u,r thus corresponds 
to a Heisenberg box centered at (u ,v / s ) ,  of size sa, along time and a w l s  along 
frequency. The area of the rectangle remains equal to at aw at all scales but the 
resolution in time and frequency depends on s, as illustrated in Figure 4.9. 
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FIGURE 4.9 Heisenberg boxes of two wavelets. Smaller scales decrease the 
time spread but increase the frequency support, which is shifted towards higher 
frequencies. 

An analytic wavelet transform defines a local time-frequency energy density 
Pwf, which measures the energy off in the Heisenberg box of each wavelet $,,, 
centered at (u,c = q / s ) :  

2 

P W f ( . , J )  = IWf(U,S)IZ = IWf(U, ;) I . (4.55) 

This energy density is called a scalogram. 

Completeness An analytic wavelet transform off depends only on its analytic 
part fa. The following theorem derives a reconstruction formula and proves that 
energy is conserved for real signals. 

(4.56) 

and 

(4.58) 
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Proof '. Let us first prove (4.56). The Fourier transform with respect to u of 

f s ( 4  = Wf(u;s) = f*iW 

3&) = 3(4 &w). 
is 

Since G(w) = 0 at negative frequencies, and 3.(w) = 23'(w) for w 2 0, we derive that 

3s(4 = ;3.cw, h $ ( s w ) ,  

which is the Fourier transform of (4.56). 

wavelet formula reconstructs the analytic part of f: 
With the same derivations as in the proof of (4.37) one can verify that the inverse 

(4.59) 

Since f = Real[f.], inserting (4.56) proves (4.57). 

the F'lancherel formula: 
An energy conservation for the analytic part f. is proved as in (4.38) by applying 

Since Wf.(u,s) = 2Wf(u,s)  and l l f . 1 1 2  = 211f11', equation (4.58) follows. rn 
Iff is real the change of variable 5 = 1/s in the energy conservation (4.58) proves 
that 

llfllZ = 2 C? 1'" 0 /+mPwf(u ,E)dud5 .  -w 

It justifies the interpretation of a scalogram as a time-frequency energy density. 

Wavelet Modulated Windows An analytic wavelet can be constructed with a 
frequency modulation of a real and symmetric window g. The Fourier transform 
of 

= g(t> exp(i74 (4.60) 
is q ( w )  = g(w -7). If g(w) = 0 for IwI > q then $(w) = 0 for w < 0. Hence $ 
is analytic, as shown in Figure 4.10. Since g is real and even, 2 is also real and 
symmetric. The center frequency of 4 is therefore 7 and 

A Gabor wavelet $( t )  = g ( t )  e'''' is obtained with a Gaussian window 

1 
= exp (S) . 

(4.61) 

(4.62) 

The Fourier transform of this window is g(w)  = (4~a2)'/4exp(-azwz/2). If 
azv2 >> 1 then g(w) M 0 for IwI > 7. Such Gabor wavelets are thus considered to 
be approximately analytic. 
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FIGURE 4. I O  Fourier transform $(w)  of a wavelet +(t) = g( t )  exp(iqt). 

Example 4.9 The wavelet transform of f ( t )  = a exp(iw0t) is 

Observe that the normalized scalogram is maximum at E = WO: 

Example4.10 The wavelet transform of a linear chirp f ( t )  = exp(iat2) = 
exp[i$(t)] is computed for a Gabor wavelet whose Gaussian window is (4.62). 
By using the Fourier transform of Gaussian chirps (2.34) one can verify that 

As long as 4a2s4a4 << 1, at a fixed time u the renormalized scalogram 
v-IEPwf(u,  E )  is a Gaussian function of s that reaches its maximum at 

(4.63) 

Section 4.4.2 explains why the amplitude is maximum at the instantaneous fre- 
quency $' ( u) . 

Example 4.11 Figure 4.11 displays the normalized scalogram 7]-IJPwf(u,[), 
and the complex phase @.W(U,~) of Wf(u , s ) ,  for the signal f of Figure 4.3. The 
frequency bandwidth of wavelet atoms is proportional to l/s = E/Q.  The fre- 
quency resolution of the scalogram is therefore finer than the spectrogram at low 
frequencies but coarser than the spectrogram at higher frequencies. This explains 
why the wavelet transform produces interference patterns between the high fre- 
quency Gabor function at the abscissa t = 0.87 and the quadratic chirp at the same 
location, whereas the spectrogram in Figure 4.3 separates them well. 
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FIGURE 4. I I (a) Normalizedscalogramq-'<Pwf(u,<) computedfrom the sig- 
nal in Figure 4.3. Dark points indicate large amplitude coefficients. (b) Complex 
phase @ w ( u , [ )  of W f ( u , q / < ) ,  where the modulus is non-zero. 

4.3.3 Discrete Wavelets 

Let f ( t )  be a continuous time signal that is uniformly sampled at intervals N- '  
over [0,1]. Its wavelet transform can only be calculated at scales N-' < s < 1, 
as shown in Figure 4.7. In discrete computations, it is easier to normalize the 
sampling distance to 1 and thus consider the dilated signal f ( t )  = f ( W ' t ) .  A 
change of variable in the wavelet transform integral (4.31) proves that 

w ~ ( u , s )  = N - ' / * w ~ ( N U , N S )  . 

To simplify notation, we concentrate on f and denote f [ n ]  = f ( n )  the discrete 
signal of size N .  Its discrete wavelet transform is computed at scales s = a', with 
a = 2 ' / " ,  which provides v intermediate scales in each octave [ 2 j , 2 j f ' ) .  

Let $ ( t )  be a wavelet whose support is included in [ - K / 2 ,  K / 2 ] .  For 2 5 a i  5 
N K - ' ,  a discrete wavelet scaled by aj  is defined by 
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This discrete wavelet has Kaj non-zero values on [ - N / 2 , N / 2 ] .  The scale aj 

is larger than 2 otherwise the sampling interval may be larger than the wavelet 
support. 

Fast Transform To avoid border problems, we treat f [ n ]  and the wavelets $j[n] 

as periodic signals of period N .  The discrete wavelet transform can then be written 
as a circular convolution $j[n] = $J[-n]: 

N-1 

Wf [n ,a j ]  = C f [ m ] $ ; [ m - n ]  = f @ $ j [ n ] .  (4.64) 

This circular convolution is calculated with the fast Fourier transform algorithm, 
which requires O(Nlog,N) operations. If a = 2l/", there are vlog2(N/(2K)) 
scales ai E [Uv-l , ICw1]. The total number of operations to compute the wavelet 
transform over all scales is therefore O(vN(log2N)2) [291]. 

To compute the scalogram Pw [n, c] = I W f [ n ,  3 1' we calculate W f [ n ,  s] at any 
scale s with a parabola interpolation. Let j be the closest integer to log, s/logz a, 
and p ( x )  be the parabola such that 

m=O 

p ( j -  1) = w f [ n , a i - l ]  , p ( j )  = Wf[n,a j ]  , p ( j +  1) = W f [ n , d + l ] .  

A second order interpolation computes 

Parabolic interpolations are used instead of linear interpolations in order to locate 
more precisely the ridges defined in Section 4.4.2. 

Discrete Scaling Filter A wavelet transform computed up to a scale aJ is not a 
complete signal representation. It is necessary to add the low frequencies L f [ n ,  d] 
corresponding to scales larger than d. A discrete and periodic scaling filter is 
computed by sampling the scaling function $(t)  defined in (4.42): 

Let h [ n ]  = 4;[-n]. The low frequencies are carried by 

Reconstruction An inverse wavelet transform is implemented by discretizing the 
integral (4.45). Suppose that d = 2 is the finest scale. Since ds/s2 = d log,s/s and 
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the discrete wavelet transform is computed along an exponential scale sequence 
{ d } j  with a logarithmic increment d o g e  s = log, a, we obtain 

The “.” indicates the variable over which the convolution is calculated. These cir- 
cular convolutions are calculated using the FFT, with 0(vN(l0g~N)~)  operations. 

Analytic wavelet transforms are often computed over real signals f [ n ]  that 
have no energy at low frequencies. In this case do not use a scaling filter + ~ [ n ] .  
Theorem 4.4 shows that 

(4.67) 

The error introduced by the discretization of scales decreases when the number 
v of voices per octave increases. However, the approximation of continuous time 
convolutions with discrete convolutions also creates high frequency errors. Perfect 
reconstructions can be obtained with a more careful design of the reconstruction 
filters. Section 5.5.2 describes an exact inverse wavelet transform computed at 
dyadic scales aj = 2j .  

4.4 INSTANTANEOUS FREQUENCY * 
When listening to music, we perceive several frequencies that change with time. 
This notion of instantaneous frequency remains to be defined. The time varia- 
tion of several instantaneous frequencies can be measured with timefrequency 
decompositions, and in particular with windowed Fourier transforms and wavelet 
transforms. 

Analytic Instantaneous Frequency A cosine modulation 

f ( t )  =acos(wot+qh)) =.cosrp(t) 

has a frequency wo that is the derivative of the phase + ( t )  = wot + 60. To generalize 
this notion, real signals f are written as an amplitude a modulated with a time 
varying phase 4: 

f ( t )  = a( t )  cosq5(t) with a( t )  2 0 . (4.68) 

The instantaneousfrequency is defined as a positive derivative of the phase: 

w( t )  = # ( t )  2 0 . 

The derivative can be chosen to be positive by adapting the sign of q5(t). One must 
be careful because there are many possible choices of a(t)  and $( t ) ,  which implies 
that w ( t )  is not uniquely defined relative to f. 
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A particular decomposition (4.68) is obtained from the analytic part fa o f f ,  
whose Fourier transfom is defined in (4.47) by 

(4.69) 

This complex signal is represented by separating the modulus and the complex 
phase: 

fa@) =a@> exp[i+(t)l . (4.70) 

Since f = Real[f,], it follows that 

f ( t )  = a( t )  cos+(t). 

We call a(t)  the analytic amplitude of f ( t )  and 4'(t) its instuntaneousfreqllency; 
they are uniquely defined. 

Example 4.12 If f ( t )  = a( t )  cos(wot+ 40), then 

j(w> = - 2 7 exp(i4o)ci(w-wo)+exp(-i4o)ci(w+wo)) . 

If the variations of a(t)  are slow compared to the period 27r/wo, which is achieved 
by requiring that the support of ci be included in [-wo, WO],  then 

3u(w> = 6(w - wo) exp(i40) 

so f u ( t )  = a(t)  exP[i(wot+4o)l. 

If a signal f is the sum of two sinusoidal waves: 

f ( t )  = acos(w1t) +acos(w2t), 

then 

f u ( t )  = a  exp(iw1t) +a exp(iw2t) = a  cos w1- w2) t exp w1+ wz) t . (3 ) (2  ) 
The instantaneous frequency is 4'(t) = (w1+ w2)/2 and the amplitude is 

a(t)  = a  lcos (; (Wl -W2)t) 1 .  
This result is not satisfying because it does not reveal that the signal includes two 
sinusoidal waves of the same amplitude. It measures an average frequency value. 
The next sections explain how to measure the instantaneous frequencies of several 
speclml components by separating them with a windowed Fourier transform or a 
wavelet transform. We first describe two important applications of instantaneous 
frequencies. 
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Frequency Modulation In signal communications, information can be transmit- 
ted through the amplitude u(t)  (amplitude modulation) or the instantaneous fre- 
quency $( t )  (frequency modulation) [65]. Frequency modulation is more robust 
in the presence of additive Gaussian white noise. In addition, it better resists 
multi-path interferences, which destroy the amplitude information. A frequency 
modulation sends a message m(t) through a signal 

f ( t )  =acos+(t) with 4’(t) =wo+km(t). 

The frequency bandwidth of f is proportional to k.  This constant is adjusted 
depending on the transmission noise and the available bandwidth. At the reception, 
the message m(t) is restored with a frequency demodulation that computes the 
instantaneous frequency 4‘ ( t  ) [ 10 11. 

Additive Sound Models Musical sounds and voiced speech segments can be mod- 
eled with sums of sinusoidal partials: 

K K 

(4.71) 
k=l k=l 

where a k  and 4; vary slowly [296,297]. Such decompositions are useful for pattern 
recognition and for modifying sound properties [245]. Sections 4.4.1 and 4.4.2 
explain how to compute ak and the instantaneous frequency 4; of each partial, 
from which the phase $k is derived by integration. 

To compress the sound f by a factor a in time, without modifymg the values 
of 4; and ak, we synthesize 

(4.72) 

The partials of g at t = a to and the partials off at t = to have the same amplitudes 
and instantaneous frequencies. If a > 1, the sound g is shorter but it is perceived 
as having the same “frequency content” as f. 

A frequency transposition is calculated by multiplying each phase by a constant 
a: 

(4.73) 

The instantaneous frequency of each partial is now a4l(t). To compute new 
amplitudes b k ( t ) ,  we use a resonance model, which supposes that these amplitudes 
are samples of a smooth frequency envelope F(t ,w):  

ak(t) =F( t : ’$; ( t ) )  and bk(t) = F ( t , a & ( t ) )  . 
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This envelope is called a fonnant in speech processing. It depends on the type of 
phoneme that is pronounced. Since F(t ,  w )  is a regular function of w,  its amplitude 
at w = a+k(t)  is calculated by interpolating the values ak(t) corresponding to 
w = &(t) .  

4.4. I Windowed Fourier Ridges 

The spectrogram ~ s f ( u , ~ )  = Isf(u,[)I2 measures the energy of f in a time- 
frequency neighborhood of (u, r ) .  The ridge algorithm computes instantaneous 
frequencies from the local maxima of Psf(u,S). This approach was introduced 
by Delprat, Escudit, Guillemain, Kronland-Martinet, Tchamitchian and Torr6sani 
[154, 711 to analyze musical sounds. Since then it has found applications for a 
wide range of signals [201,71] that have time varying frequency tones. 

The windowed Fourier transform is computed with a symmetric window 
g( t )  = g(- t )  whose support is equal to [-1/2,1/2]. The Fourier transform 
is a real symmetric function and lg(w)l 5 g(0) for all w E W. The maximum 
g(0) = J!(;2g(t)dt is on the order of 1. Table 4.1 gives several examples of 
such windows. The window g is normalized so that llgll = 1. For a fixed scale s, 
gs(t)  = s-’ /2g(t /s)  has a support of size s and a unit norm. The corresponding 
windowed Fourier atoms are 

and the windowed Fourier transform is defined by 

+m 

Sf (u ,E )  = ( f , g s , u , d  = / f(t)gs(f-4e-‘@dt. (4.74) 
-m 

The following theorem relates S f ( u ,  E )  to the instantaneous frequency of f .  

Theorem 4.5 Let f ( t )  = a( t )  cos$(t). ZfE 2 0 then 

The corrective term satisfies 

with 

(4.76) 

(4.77) 

(4.78) 
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(4.79) 

This integral is computed by using second order Taylor expansions: 

A first order Taylor expansion of exp(ix) gives 

with Ir(t)l 5 1 . (4.80) 
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Inserting this in (4.83) yields 

Whensld(u)llu(u)l-’ 5 1, replacing IP(t)l by its upperboundin (4.84) gives 

Let us finally compute E, when E = I$’(u). Since g(t)  = g(- t ) ,  we derive from 
(4.82) that 

We also derive from (2.22) that the Fourier transform of t + g s ( f )  is is$(sw), so (4.85) 
gives 

Delprat et al. [ 1541 give a different proof of a similar result when g ( t )  is a Gaussian, 
using a stationary phase approximation. If we can neglect the corrective term 
~ ( u ,  E )  we shall see that (4.75) enables us to measure a(.) and qY(u) from S f ( u ,  E ) .  
This implies that the decomposition f ( t )  = a( t )  cos4(t) is uniquely defined. By 
reviewing the proof of Theorem 4.5, one can verify that a and 4’ are the analytic 
amplitude and instantaneous frequencies of f .  

The expressions (4.77,4.78) show that the three corrective terms €,,I, ea,2 and 
€ 4 , ~  are small if a( t )  and # ( t )  have small relative variations over the support of 
the window g,. Let A w  be the bandwidth of g defined by 

lk(w)l<< 1 for IwI 2 Aw.  (4.88) 

The term sup 
I ~ l 2 S l # ‘ ( U ) l  

lg(w) I of E (  u, [) is negligible if 

Ridge Points Let us suppose that a( t )  and # ( t )  have small variations over inter- 
vals of size s and that @ ( t )  > A w / s  so that the corrective term E ( u : [ )  in (4.75) 
can be neglected. Since Ig(w) I is maximum at w = 0, (4.75) shows that for each 
u the spectrogram I~f(u;[)]~ = I(f ,gaU,t)1* is maximum at [(u) = qb’(u). The 
corresponding time-frequency points (u: [(u)) are called ridges. At ridge points, 
(4.75) becomes 



98 CHAPTER N TIME MEITS FREQUENCY 

Theorem 4.5 proves that the c(u,<) is smaller at a ridge point because the first 
order term ca,1 becomes negligible in (4.79). This is shown by verifying that 
12’(2s+’(u))I is negligible when s+’(u) 2 Aw. At ridge points, the second order 
terms ca,2 and c4,2 are predominant in c(u,<). 

The ridge frequency gives the instantaneous frequency e(u) = #(u) and the 
amplitude is calculated by 

(4.90) 

Let Qs(u,<) be the complex phase of Sf(u, <). If we neglect the corrective term, 
then (4.89) proves that ridges are also points of stationary phase: 

Testing the stationarity of the phase locates the ridges more precisely. 

Multiple Frequencies When the signal contains several spectral lines whose fre- 
quencies are sufficiently apart, the windowed Fourier transform separates each 
of these components and the ridges detect the evolution in time of each spectral 
component. Let us consider 

f ( t )  = al(t>cos+l(t) +az(t)cos+z(t), 

where ~ ( t )  and +L(t) have small variations over intervals of size s and s+L(t) 2 
Aw.  Since the windowed Fourier transform is linear, we apply (4.75) to each 
spectral component and neglect the corrective terms: 

The two spectral components are discriminated if for all u 

b(sl+’l(u) -+MI> e 1: (4.92) 

which means that the frequency difference is larger than the bandwidth of ~ ( s w ) :  

Aw I+;(.> -+:(.>I 2 S‘ (4.93) 

In this case, when E = 4; (u),  the second term of (4.91) can be neglected and the 
first term generates a ridge point from which we may recover +i(u) and a1 (u) ,  
using (4.90). Similarly, if < = +h(u) the first term can be neglected and we have 
a second ridge point that characterizes +;(u) and u ~ ( u ) .  The ridge points are 
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FIGURE 4. I 2  Larger amplitude ridges calculated from the spectrogram in Fig- 
ure 4.3. These ridges give the instantaneous frequencies of the linear and quadratic 
c h q s ,  and of the low and high frequency transients at t = 0.5 and t = 0.87. 

distributed along two time-frequency lines ((u) = 4; (u) and ((u) = +;(u). This 
result is valid for any number of time varying spectral components, as long as 
the distance between any two instantaneous frequencies satisfies (4.93). If two 
spectral lines are too close, they interfere, which destroys the ridge pattern. 

Generally, the number of instantaneous frequencies is unknown. We thus 
detect all local maxima of ISf(u,[)  1’ which are also points of stationary phase 
a@$1E) = 4‘(u) - ( = 0. These points define curves in the (u, E )  planes that are 
the ridges of the windowed Fourier transform. Ridges corresponding to a small 
amplitude u(u) are often removed because they can be artifacts of noise variations, 
or “shadows” of other instantaneous frequencies created by the side-lobes of j j(w). 

Figure 4.12 displays the ridges computed from the modulus and phase of 
the windowed Fourier transform shown in Figure 4.3. For t E [0.4,0.5], the 
instantaneous frequencies of the linear chirp and the quadratic chirps are close and 
the frequency resolution of the window is not sufficient to discriminate them. As 
a result, the ridges detect a single average instantaneous frequency. 

Choice ofwindow The measurement of instantaneous frequencies at ridge points 
is valid only if the size s of the window gs is sufficiently small so that the second 
order t e r n  ca,2 and E ~ , Z  in (4.77,4.78) are small: 

2 I1 

sup ~ l‘k(t)l << 1 and sup s21&(t)I << 1 . (4.94) 

On the other hand, the frequency bandwidth Aw/s must also be sufficiently small 
to discriminate consecutive spectral components in (4.93). The window scale s 
must therefore be adjusted as a trade-off between both constraints. 

Table 4.1 gives the spectral parameters of several windows of compact support. 
For instantaneous frequency detection, it is particularly important to ensure that 2 
has negligible side-lobes at f w o ,  as illustrated by Figure 4.4. The reader can verify 

Ir-ul<s/2 I 4 u ) I  jr-ul<s/Z 
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FIGURE 4. I 3  
IS f (u ,  [ ) I 2 .  (b): Ridges calculated from the spectrogram. 

Sum of two parallel linear chirps. (a): Spectrogram P s f ( u ,  [) = 

with (4.75) that these side-lobes "react" to an instantaneous frequency +'(u) by 
creating shadow maxima of ISf(u,<)12 at frequencies 6 = +'(u) f w o .  The ratio of 
the amplitude of these shadow maxima to the amplitude of the main local maxima 
at < = +'(u) is Ik(wO)l2 lk(0)l-2. They can be removed by thresholding or by 
testing the stationarity of the phase. 

Example 4.13 The sum of two parallel linear chirps 

f ( t )  = cos(bt2 + ct) + ~ 2  (4.95) 

has two instantaneous frequencies 4; ( t )  = 2bt + c and &,(t) = 2bt. Figure 4.13 
gives a numerical example. 
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The window g, has enough frequency resolution to discriminate both chirps if 

(4.96) 

Its time support is small enough compared to their time variation if 

s2~q!Jy(u)~ =s2I&(u)I =2bs2<< 1. (4.97) 

Conditions (4.96) and (4.97) prove that we can find an appropriate window g if 
and only if 

C 
- >> Aw. 
fi 

(4.98) 

Since g is a smooth window with a support [-1/2,1/2], its frequency bandwidth 
Awis ontheorderof 1. ThelinearchwpsinFigure4.13 satisfy(4.98). Theirridges 
are computed with the truncated Gaussian window of Table 4.1, with s = 0.5. 

Example 4.14 The hyperbolic c h q  

f ( t )  =cos (’) 
P - t  

for 0 1. t < P has an instantaneous frequency 

which varies quickly when t is close to P. The instantaneous frequency of hyper- 
bolic chirps goes from 0 to +m in a finite time interval. This is particularly useful 
for radars. These chwps are also emitted by the cruise sonars of bats [154]. 

The instantaneous frequency of hyperbolic chirps cannot be estimated with a 
windowed Fourier h-ansfom because for any fixed window size the instantaneous 
fi-equency varies too quickly at high frequencies. When u is close enough to ,B 
then (4.94) is not satisfied because 

Figure 4.14 shows a signal that is a sum of two hyperbolic chirps: 

f ( t )  = a1 cos (”> +a2cos (z) > 
P1 - t  P2 -t 

(4.99) 

with = 0.68 and P2 = 0.72. At the beginning of the signal, the two c h q s  have 
close instantaneous frequencies that are discriminated by the windowed Fourier 
ridge computed with a large size window. When getting close to 01 and P 2 ,  

the instantaneous frequency varies too quickly relative to the window size. The 
resulting ridges cannot follow these instantaneous frequencies. 
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FIGURE 4.14 
Ridges calculated from the spectrogram 

Sum of two hyperbolic chirps. (a): Spectrogram Ps f (u ,<) .  (b): 

4.4.2 Wavelet Ridges 

Windowed Fourier atoms have a fixed scale and thus cannot follow the instanta- 
neous frequency of rapidly varying events such as hyperbolic chirps. In contrast, 
an analytic wavelet transform modifies the scale of its time-frequency atoms. The 
ridge algorithm of Delprat et al. [ 1541 is extended to analytic wavelet transforms to 
accurately measure frequency tones that are rapidly changing at high frequencies. 

An approximately analytic wavelet is constructed in (4.60) by multiplying a 
window g with a sinusoidal wave: 

As in the previous section, g is a symmetric window with a support equal to 
[-1/2,1/2], and a unit norm llgll = 1. Let Aw be the bandwidth of g defined in 
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(4.88). If 77 > Aw then 

b < O ,  ?)(w)=g(W--)<<l. 

The wavelet $ is not strictly analytic because its Fourier transform is not exactly 
equal to zero at negative frequencies. 

Dilated and translated wavelets can be rewritten 

with E = 71s and 
t - -u 

gs,u;&) = f i g  (7) exp(i5t) .  

The resulting wavelet transform uses time-frequency atoms similar to those of a 
windowed Fourier transform (4.74) but in this case the scales varies over R+ while 
E = -1s: 

Wf(% s) = ( f , $ U , S )  = (f, gs,u,g) exp(i5u) . 
Theorem 4.5 computes (f, gs,,,[) when f ( t )  = a(t)  cos+(t), which gives 

Wf(-u,s) = -4.1 4 exp[i+(.)l (B(s [F-+Wl)  + € ( U , E ) ) .  (4.100) 
2 

The corrective term E(U, 5) is negligible if a( t )  and qY(t) have small variations over 
the support of +u,s and if +’(u) 2 Awls.  

Wavelet Ridges The instantaneous frequency is measured from ridges defined 
over the wavelet transform. The normalized scalogram defined by 

is calculated with (4.100): 

Since Ig(w)l is maximum at w = 0, if we neglect e(u,C), this expression shows 
thslt the scalogram is maximum at 

(4.101) 

The corresponding points (u, [(u)) are called wavelet ridges. The analytic ampli- 

(4.102) 
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The complex phase of Wf(u , s )  in (4.100) is @w(u,<) = 4(u). At ridge points, 

(4.103) 

When E = #(u), the first order term cu,l calculated in (4.79) becomes negli- 
gible. The corrective term is then dominated by eU,2 and € 4 , ~ .  To simplify their 
expression we approximate the sup of a“ and 4” in the neighborhood of u by their 
value at u. Since s = q/< = q/#(u),  (4.77,4.78) imply that these second order 
terms become negligible if 

(4.104) 

The presence of 4’ in the denominator proves that a’ and 4’ must have slow vari- 
ations if 4’ is small but may vary much more quickly for large instantaneous 
frequencies. 

Multispectral Estimation Suppose that f is a sum of two spectral components: 

f ( t )  = a1(t>cos41(t) +az(t)cos42(t>. 

As in (4.92), we verify that the second instantaneous frequency 4; does not interfere 
with the ridge of q5\ if the dilated window has a sufficient spectral resolution at the 
ridge scale s = q/< = q/+; (u): 

i2(sl+;‘l(.> - +;(.)I> << 1- (4.105) 

Since the bandwidth of b ( w )  is A w ,  this means that 

(4.106) 

Similarly, the first spectral component does not interfere with the second ridge 
located at s = q/< = q/&(u) if 

(4.107) 

To separate spectral lines whose instantaneous frequencies are close, these con- 
ditions prove that the wavelet must have a small octave bandwidth A w / q .  The 
bandwidth A w  is a fixed constant, which is on the order of 1. The frequency q is 
a free parameter whose value is chosen as a trade-off between the time-resolution 
condition (4.104) and the frequency bandwidth conditions (4.106) and (4.107). 

Figure 4.15 displays the ridges computed from the normalized scalogram and 
the wavelet phase shown in Figure 4.1 1. The ridges of the high frequency transient 
located at t = 0.87 have oscillations because of the interferences with the linear 
chup above. The frequency separation condition (4.106) is not satisfied. This is 
also the case in the time interval [O. 35,O. 551, where the instantaneous frequencies 
of the linear and quadratic chirps are too close. 
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FIGURE 4. I 5  
Compare with the windowed Fourier ridges in Figure 4.12. 

Ridges calculated from the scalogram shown in Figure 4.11. 
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FIGURE 4. I6  
chirps shown in Figure 4.13. (b): Wavelet ridges. 

(a): Normalized scalogram q - ' [ P w f ( u ,  [) of two parallel linear 
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Example 4.15 The instantaneous frequencies of two linear chirps 

f ( t )  = a1 cos(bt2 +c t )  +a2cos(bt2) 

are not well measured by wavelet ridges. Indeed 

Id(.) -4i(U)l - - 5 
4; (u )  bt  

converges to zero when t increases. When it is smaller than A w l v  the two chirps 
interact and create interference patterns like those in Figure 4.16. The ridges follow 
these interferences and do not estimate properly the two instantaneous frequencies, 
as opposed to the windowed Fourier ridges shown in Figure 4.13. 

Example 4.16 The instantaneous frequency of a hyperbolic chirp 

f ( t )  = cos (') 
P - t  
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is # ( t )  = a (1 - t)-’. Wavelet ridges can measure this instantaneous frequency if 
the time resolution condition (4.104) is satisfied 

This is the case if It - PI is not too large. 

Figure 4.17 displays the scalogram and the ridges of two hyperbolic c h q s  

f ( t )  = a1 cos (2) +azcos (5) , 
P1--t h-t 

with = 0.68 and PZ = 0.72. As opposed to the windowed Fourier ridges 
shown in Figure 4.14, the wavelet ridges follow the rapid time modification of 
both instantaneous frequencies. This is particularly useful in analyzing the returns 
of hyperbolic chups emitted by radars or sonars. Several techniques have been 
developed to detect chups with wavelet ridges in presence of noise [ 1 17,3281. 

4.5 QUADRATIC TIME-FREQUENCY ENERGY 

The wavelet and windowed Fourier transforms are computed by correlating the 
signal with families of time-frequency atoms. The time and frequency resolu- 
tion of these transforms is thus limited by the time-frequency resolution of the 
corresponding atoms. Ideally, one would like to define a density of energy in a 
time-frequency plane, with no loss of resolution. 

The Wigner-Ville distribution is a time-frequency energy density computed by 
correlating f with a time and frequency translation of itself. Despite its remarkable 
properties, the application of Wigner-Ville distributions is limited by the existence 
of interference terms. These interferences can be attenuated by a time-frequency 
averaging, but this results in a loss of resolution. It is proved that the spectrogram, 
the scalogram and all squared time-frequency decompositions can be written as a 
time-frequency averaging of the Wigner-Ville distribution. 

4.5. I Wigner-Ville Distribution 

To analyze time-frequency stmctures, in 1948 Ville [342] introduced in signal 
processing a quadratic form that had been studied by Wiper  [351] in a 1932 
article on quantum thermodynamics: 

P v f ( u , [ ) = / f , f ( u + 5 )  -m f * ( u - i )  e-ircdd.r. (4.108) 

The Wigner-Vie distribution remains real because it is the Fourier transform 
of f ( u + ~ / 2 ) f * ( u - ~ / 2 ) ,  which has a Hermitian symmetry in T. Time and 
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frequency have a symmetrical role. This distribution can also be rewritten as a 
frequency integration by applying the Parseval formula: 

(4.109) 
P v f ( u , < ) = - /  1 +0° ?(t+z) .?([-z) eiYudy. 

27r -m 

Time-Frequency Support The Wigner-Ville transform localizes the time 
frequency structures of f .  If the energy of f is well concentrated in time around 
uo and in frequency around Q then P v  f has its energy centered at ( U O ,  EO), with a 
spread equal to the time and frequency spread off .  This property is illustrated by 
the following proposition, which relates the time and frequency support of P v  f to 
the support o f f  and p. 
Proposition 4.2 0 Zfthe support o f f  is [UQ - T / 2 ,  uo + T / 2 ] ,  then for all E the 

0 If the support of 3 is [Q - A / 2 ,  so + A / 2 ] ,  then for all u the support in E of 
support in u of P v  f (u,E) is included in this interval. 

P v  f (u, I )  is included in this interval. 

Proof '. Let T ( f )  = f(-t). The Wigner-Ville distribution is rewritten 

Suppose that f has a support equal to [UO - T / 2 ,  uo + T / 2 ] .  The supports off ( 7 / 2 +  u) 
and f ( r / 2  - u) a e  then respectively 

[ 2 ( 4 - ~ ) - T , 2 ( u o - ~ ) + T ]  and [ - 2 ( u o + ~ ) - T , - 2 ( u o + u ) + T ] .  

The Wiper-Ville integral (4.1 10) shows that P v f ( u ,  E )  is non-zero if these two inter- 
vals overlap, which is the case only if 14 - uI < T .  The support of P v f ( u ,  E )  along u is 
therefore included in the support off .  If the support of is an interval, then the same 
derivation based on (4.109) shows that the support of P V f ( u ,  <) along E is included in 
the support of 3. H 

Example 4.17 Proposition 4.2 proves that the Wigner-Ville distribution does not 
spread the time or frequency support of Diracs or sinusoids, unlike windowed 
Fourier and wavelet transforms. Direct calculations yield 

f ( t )  = q u  - UQ) * P V f b ,  SI = q t  - uo) , (4.11 1 )  
1 

f ( t )  = exp(itot) * P v f  (u, 0 = 271. J(E  - So) . (4.1 12) 

Example4.18 If f is a smooth and symmetric window then its Wigner-Ville 
distribution P v  f (u, E )  is concentrated in a neighborhood o f  u = E = 0. A Gaussian 
f ( t )  = ( ~ 7 ~ 7 r ) - ' / ~  exp(- t2/(2u2))  istransformedintoatwo-dimensionalGaussian 
because its Fourier transform is also a Gaussian (2.32) and one can verify that 

(4.113) 
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The Wigner-Ville distribution has important invariance properties. A phase 
shift does not modify its value: 

g( t )  = eidg(t) 3 ~ v f ( u , t )  = Pvg(u,E) . (4.1 14) 

When f is translated in time or frequency, its Wigner-Ville transform is also trans- 
lated: 

f ( t )  = g( t -uo)  ===+ Pvf (u ,E)  =Pvg(.-uo,E) 7 (4.115) 
f ( t )  = exp(ifot)g(t)  * P v f ( u , E )  = Pvg(u,E - b) . (4.116) 

Iff is scaled by s and thus is scaled by l/s then the time and frequency parameters 
of Pv f are also scaled respectively by s and l/s 

Example 4.19 If g is a smooth and symmetric window then Pvg(u,J)  has its 
energy concentrated in the neighborhood of (0,O). The time-frequency atom 

has a Wigner-Vile distribution that is calculated with (4.114), (4.1 15) and (4.1 16): 

(4.118) 

Its energy is thus concentrated in the neighborhood of (uo, t o ) ,  on an ellipse whose 
axes are proportional to s in time and l/s in frequency. 

Instantaneous Frequency Ville’s original motivation for studying time-frequency 
decompositions was to compute the instantaneous frequency of a signal [342]. Let 
f a  be the analytic part off obtained in (4.69) by setting to zero j ( w )  for w < 0. We 
write f a ( t )  = a( t )  exp[i+(t)] to define the instantaneous frequency w ( t )  = #(t) .  
The following proposition proves that +’(t) is the “average” frequency computed 
relative to the Wigner-Ville distribution Pv f a .  

Proposition 4.3 If fa ( t  ) = a( t ) exp [ i+( t )] then 

(4.119) 
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Proof '. To prove this result, we verify that any function g satisfies 

This identity is obtained by observing that the Fourier transform of it is the derivative 
of a Dirac, which gives an equality in the sense of distributions: 

exp(-i.rt)dt = -i2x6'(7). 

Since J-z 6'(.r) h(7)  = -h'(o), inserting h(7) = g(u + 7/21 g*(u - 7/21 proves 
(4.120). I f g ( u )  = f . (u )  =a(.) exp[i$(u)] then (4.120) gives 

Wewillseein(4.124)that If.(~)1~ =J-~PvfU(u,5)d5,andsince [ f a ( U ) 1 2  =a(u)' 
we derive (4.119). 

This proposition shows that for a fixed u the mass of P v f , ( u , [ )  is typically con- 
centrated in the neighborhood of the instantaneous frequency [ = $'(u). For 
example, a linear clllrp f ( t )  = exp(iat2) is transformed into a Dirac located along 
the instantaneous frequency [ = $'(u) = 2au: 

P v f ( u , [ )  = 6([-2au). 

Similarly, the multiplication of f by a linear chirp exp(iat2) makes a frequency 
translation of Pv f by the instantaneous frequency 2au: 

f ( t )  = exp(iut2) g ( t )  =+- ~ v f ( u , [ )  = Pvg(u ,J  - 2au) . (4.121) 

Energy Density The Moyal[275] formula proves that the Wigner-Ville transform 
is unitary, which implies energy conservation properties. 

Theorem 4.6 (MOYAL) For any f and g in L2(W) 

11: f ( t ) g * ( t ) d t 1 2  = & SSPvf( . , [ )P .g(u ,E)dudE.  (4.122) 

Proof1. Let us compute the integrd 

I = J ~ V f ( u , 5 ) P v g ( u , 5 ) d u d E  

= 1/11 f ( u  + s> f * ( u  - ;) g ( + ;) g* ( u  - ;) 
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The Fourier transform of h( t )  = 1 is i ( w )  = 2 ~ 6 ( w ) ,  which means that we have a 
distribution equality lexp[-iE(r +r')]dE = 2w6(r +r/). As a result, 

The change of variable t = u + r / 2  and t' = u - r / 2  yields (4.122). 

One can consider lf(t)12 and l j ( ~ ) 1 ~ / ( 2 n )  as energy densities in time and fre- 
quency that satisfy a conservation equation: 

The following proposition shows that these time and frequency densities are re- 
covered with marginal integrals over the Wigner-Ville distribution. 

Proposition 4.4 For any f E L2(R) 

(4.123) 
J --M 

2 s  /+mPvf(u,t)dE -m = Ifb)l2. (4.124) 

Proof l. The frequency integral (4.109) proves that the one-dimensional Fourier trans- 
form of gt(u) = Py f (u,E) with respect to u is 

We derive (4.123) from the fact that is 

Similarly, (4.108) shows that P y  f (u,  E )  is the one-dimensional Fourier transform 
off ( u + 7 / 2 ) f ' ( u - r / 2 )  withrespecttor, wheretistheFouriervariable. Itsintegral 

This proposition suggests interpreting the Wigner-Ville distribution as a joint time- 
frequency energy density. However, the Wigner-Ville distribution misses one 
fundamental property of an energy density: positivity. Let us compute for example 
the Wigner-Vie distribution off  = 11-~,q with the integral (4.108): 

in E thus gives the value for r = 0, which is the identity (4.124). 
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It is an oscillating function that takes negative values. In fact, one can prove 
that translated and frequency modulated Gaussians are the only functions whose 
Wigner-Vile distributions remain positive. As we will see in the next section, to 
obtain positive energy distributions for all signals, it is necessary to average the 
Wigner-Ville transform and thus lose some time-frequency resolution. 

4.5.2 Interferences and Positivity 

At this point, the Wigner-Ville distribution may seem to be an ideal tool for an- 
alyzing the time-frequency structures of a signal. This is however not the case 
because of interferences created by the quadratic properties of this transform. 
These interferences can be removed by averaging the Wigner-Ville distribution 
with appropriate kernels which yield positive time-frequency densities. However, 
this reduces the time-frequency resolution. Spectrograms and scalograms are ex- 
amples of positive quadratic distributions obtained by smoothing the Wigner-Ville 
distribution. 

Cross Terms Let f = f l  + fz be a composite signal. Since the Wigner-Ville 
distribution is a quadratic form, 

P V f  =Pvf1  + ~ V ~ 2 + ~ V ~ ~ l , f Z I + ~ V ~ f 2 , f l l ,  (4.125) 

where PV [h, g] is the cross Wigner-Ville distribution of two signals 

Pv[h,g](u,C) = / + w h  (u+ s) g* (u- g )  eCir5d7. 
-W 

(4.126) 

The interference term 

Z [ f l , f Z ]  = P V [ f l , f Z I  + P V [ f Z , f l I  

is a real function that creates non-zero values at unexpected locations of the (u, 5) 
plane. 

Let us consider two time-frequency atoms defined by 

fl(t) = ~ ~ e ' ~ ~ g ( t - u l ) e ' ~ ~ ~  and f 2 ( t )  = ~ z e ' ~ ~ g ( t - u ~ ) e ~ ~ ~ ~ ,  

where g is a time window centered at t = 0. Their Wigner-Ville distributions 
computed in (4.11 8) are 

PVfl(U,t) =&&-u1,5-51) and PVfZ(U,t) = a;Pvg(.-uzlt-tz). 

Since the energy of Pvg is centered at ( O , O ) ,  the energy of Pvfl and Pv fz is 
concentrated in the neighborhoods of (u1, 51) and (u~,&) respectively. A direct 
calculation verifies that the interference term is 
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100- 
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FIGURE 4. I8 Wigner-Ville distribution P v f ( u ,  5) of two Gabor atoms shown 
at the top. The oscillating interferences are centered at the middle time-frequency 
location. 

with 
u1 +u2 t 1  +G 

1 co=- 

A[ = c 1 - &  

2 

& = $ I  - 4 2 + ~ 0 A t .  

It is an oscillatory waveform centered at the middle point ( U O , < O ) .  This is quite 
counter-intuitive since f and f have very little energy in the neighborhood of 
uo and t o .  The frequency of the oscillations is proportional to the Euclidean 
distance d w  of (ul  ,[I) and (u2,&). The direction of these oscillations 
is perpendicular to the line that joins (u1, cl) and (242, &). Figure 4.18 displays the 
Wiper-Ville distribution of two atoms obtained with a Gaussian window g. The 
oscillating interference appears at the middle time-frequency point. 

This example shows that the interference Z[ f l ,  f 2 ]  (u, r )  has some energy in 
regions where I f ( u )  l 2  M 0 and If([) w 0. These interferences can have a compli- 
cated structure [26,211] but they are necessarily oscillatory because the marginal 
integrals (4.123) and (4.124) vanish: 

uo = - 

AU = ~ 1 - u ~  , 

J -m J -cJ 

Analytic Part 
taneous frequency component. Let f u ( t )  = a( t )  exp[i$(t)] be its analytic part: 

Interference terms also exist in a real signal f with a single instan- 
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fltl 

I l 

0 0.2 0.4 0.6 0.8 

FIGURE 4. I9 
the analytic part of the top signal. 

The bottom displays the Wigner-Ville distribution Pv f a (u, <) of 

Proposition 4.3 proves that for fixed u, Pv f a ( ~ ,  I )  and Pv f : (u ,  <) have an energy 
concentrated respectively in the neighborhood of 61 = $'(u) and <2 = -$'(u). 
Both components create an interference term at the intermediate zero frequency 
<o = ((1 +<2)/2 = 0. To avoid this low frequency interference, we often compute 
Pv f a as opposed to Pv f . 

Figure 4.19 displays Pv f a  for a real signal f that includes a linear chirp, a 
quadratic chirp and two isolated time-frequency atoms. The linear and quadratic 
chirps are localized along narrow time frequency lines, which are spread on wider 
bands by the scalogram and the scalogram shown in Figure 4.3 and 4.1 1. However, 
the interference terms create complex oscillatory patterns that make it difficult to 
detect the existence of the two time-frequency transients at t = 0.5 and t = 0.87, 
which clearly appear in the spectrogram and the scalogram. 

Positivity 
they can be partly removed by smoothing Pv f with a kernel 6: 

Since the interference terms include positive and negative oscillations, 

Pef(u,<) = 1';" Jiwpvf(,i,<~)e(u,u',<,<')du'dC'. (4.127) 

The time-frequency resolution of this distribution depends on the spread of the 
kernel 6 in the neighborhood of (u ,  <). Since the interferences take negative values, 
one can guarantee that all interferences are removed by imposing that this time- 
frequency distribution remain positive PO f (u ,<)  > 0 for all (u ,<)  E R2. 

The spectrogram (4.12) and scalogram (4.55) are examples of positive time- 
frequency energy distributions. In general, let us consider a family of time- 
frequency atoms {qhy}yEr. Suppose that for any (u ,<)  there exists a unique atom 

-cc -w 
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+T(u,t) centered in time-frequency at (u, E ) .  The resulting time-frequency energy 
density is 

The Moyal formula (4.122) proves that t h i s  energy density can be written as a 
time-frequency averaging of the Wigner-Ville distribution 

P f ( 4  E )  = I (f: +.y(u,t)) 1 2 .  

P f ( 4  E )  = & S S p v f ( u ’ ,  E’) PV+.y(U,C) (4 t’) du‘dE’. (4.128) 

The smoothing kernel is the Wiper-Vile distribution of the atoms 

1 
27r 

The loss of time-frequency resolution depends on the spread of the distribution 
P ~ + ~ ( ~ : t ) ( u ‘ :  E’) in the neighborhood of (u,v). 

6’b: u’, E ,  E’) = - Pv+,(U;t) (u’: E’) .  

Example 4.20 A spectrogram is computed with windowed Fourier atoms 

4.y(u,() ( t )  = g ( t  - eiEr. 

e ( u : u ’ , t 7 e )  = - ~ ~ + ~ ( ~ : ~ ) ( u ’ : t ’ )  = -pvg(u i -u , t ’ - t ) .  

The Wigner-Ville distribution calculated in (4.1 18) yields 

1 1 
27r 27r 

(4.129) 

For a spectrogram, the Wigner-Ville averaging (4.128) is therefore a two- 
dimensional convolution with Pvg. If g is a Gaussian window, then Pvg is a two- 
dimensional Gaussian. This proves that averaging Pv f with a sufficiently wide 
Gaussian defines a positive energy density. The general class of time-frequency 
distributions obtained by convolving P v f  with an arbitrary kernel 6’ is studied in 
Section 4.5.3. 

Example 4.21 Let $ be an analytic wavelet whose center frequency is 7. The 
wavelet atom $ ~ ~ , ~ ( t )  = s - ’ / ~ $ (  (t - u) /s )  is centered at (u, E = q / s )  and the scalo- 
gram is defined by 

Pwf(u:E) = I (f, $U,J l2 for E = 7 / s .  

Properties (4.115,4.117) prove that the averaging kernel is 

Positive time-frequency distributions totally remove the interference terms but 
produce a loss of resolution. This is emphasized by the following theorem, due to 
Wigner [352]. 
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Theorem 4.7 (WIGNER) There is no positive quadratic energy distribution P f that 
satisfies 

[+= P f (u, S) dc = 27r I f  (u)  1’ and [’” P f (u, S )  du = 13(<) 1’. (4.130) 
J - m  J-00 

Proof 2. Suppose that Pf is a positive quadratic distribution that satisfies these 
rnarginals. Since Pf(u ,E)  2 0, the integrals (4.130) imply that if the support o f f  
is included in an interval Z then P f ( u , [ )  = 0 for u Z. We can associate to the 
quadratic form P f a bilinear distribution defined for any f and g by 

P[f, gl = ; (p(f+ g) -P(f - d) . 
Let f l  and fz be two non-zero signals whose supports are two intervals Zl and Zz that 
do not intersect, so that f l  fz = 0. Let f = af l  +bfz :  

Pf = lalZPfl +ab*P[f1,fzI +a*bP[fz,f11+ lblZPfz. 

Since Z1 does not intersect Zz, Pfl (u,<) = 0 for u E Zz. Remember that Pf(u ,E)  2 0 
forallaandb sonecessarilyP[fl,fz](~,E) =P[fz,fl](u,t) =Ofor u E Z ~ .  Similarly 
we prove that these cross terms are zero for u E Z1 and hence 

P f ( u , O  = laI2Pf1(u,O + lblZPfz(u,E). 

l3(0lZ = laI2 I31(E)I2+ lbI2 l 3 Z ( E ) l Z .  

Integrating this equation and inserting (4.130) yields 

Since.?(E) =a31(E)+bfz(E) itfollowsthatjl(C)jz(() = 0. Butthisisnotpossible 
because f l  and fz have a compact support in time and Theorem 2.6 proves that 31 
and 3 2  are C” functions that cannot vanish on a whole interval. We thus conclude that 
one cannot construct a positive quadratic distribution Pf that satisfies the nmginals 
(4.130). 

4.5.3 Cohen’s Class 

While attenuating the interference terms with a smoothing kernel 0, we may want 
to retain certain important properties. Cohen [135] introduced a general class 
of quadratic time-frequency distributions that satisfy the time translation and fre- 
quency modulation invariance properties (4.115) and (4.116). If a signal is trans- 
lated in time or frequency, its energy distribution is just translated by the cor- 
responding amount. This was the beginning of a systematic study of quadratic 
time-frequency distributions obtained as a weighted average of a Wigner-Ville 
distribution [lo, 26, 136,2101. 

Section 2.1 proves that linear translation invariant operators are convolution 
products. The translation invariance properties (4.1 15,4.116) are thus equivalent 
to imposing that the smoothing kernel in (4.127) be a convolution kernel 

0(u,u’,S,t’) = e(u-u’,<-E’), (4.131) 
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and hence 

The spectrogram is an example of Cohen's class distribution, whose kernel in 
(4.129) is the Wigner-Ville distribution of the window 

Ambiguity Function The properties of the convolution (4.132) are more easily 
studied by calculating the two-dimensional Fourier transform of Pvf(u, E )  with 
respect to u and E. We denote by A f ( ~ , y )  this Fourier transform 

Af ( T? y) = /'" /'" Pvf( u, E )  exp[ -i( uy + ET) ]  du dE. 

Note that the Fourier variables 7 and y are inverted with respect to the usual Fourier 
notation. Since the one-dimensional Fourier transform of Pvf(u,E) with respect 
to u is j (E+y/2) I*(< - y/2), applying the one-dimensional Fourier transform 
with respect to E gives 

-XI -m 

+m 

Af (7,y) = [XI .? ((+ s) j *  ( E -  z )  e-irEdE. (4.134) 

The Parseval formula yields 

A f ( 7 , r )  = / + w f ( ~ + f )  f* (~-;)e-~?'du. (4.135) 
-m 

We recognize the ambiguityfunction encountered in (4.24) when studying the time- 
frequency resolution of a windowed Fourier transform. It measures the energy 
concentration off  in time and in frequency. 

Kernel Properties The Fourier transform of e(u,  E )  is 

As in the definition of the ambiguity function (4.134), the Fourier parameters T 
and y of 8 are inverted. The following proposition gives necessary and sufficient 
conditions to ensure that Po satisfies marginal energy properties like those of 
the Wigner-Vie distribution. The Wigner Theorem 4.7 proves that in this case 
P s f ( u ,  E )  takes negative values. 
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Proposition 4.5 For all f E L2(W) 

+m +m 

Pef(u,t)dt =2rIf(u) l2  I /, Pef(U,C)dU= /.?(<)I2, 

V(T,T) E B2 , 8(T:O) = 8(0,y) = 1. 

(4-136) L 
if and only i f  

(4.137) 

Proof z. Let A ~ f ( 7 , y )  be the two-dimensional Fourier transform of Pof(u,E). The 
Fourier integral at (0,y) gives 

LT s_:P PBf(u, E )  d ~ d u  = ~ e f ( o ,  7 ) .  (4.138) 

Since the ambiguity function Af(7,y) is the Fourier transform of P v f ( u ,  <), the two- 
dimensional convolution (4.132) gives 

AS(7;'Y) =Af(7,7)8(T:'Y). (4.139) 

The Fourier transform of 2 ~ l f ( u ) 1 ~  is Y*?(y), with Y(y) = )*(-7). The relation 
(4.138) shows that (4.136) is satisfied if and only if 

- 

Aof(0:7) = A f ( O , r ) h )  =j*h. (4.140) 

Since PVf satisfies the marginal property (4.123), we similarly prove that 

Af(O,-d = 3*7(r). 
Requiring that (4.140) be valid for any ?(y), is equivalent to requiring that 8(O,y) = 1 
for all y E B. The same derivation applied to the other marginal integration yields 
e(6,o) = 1. 

In addition to requiring time-frequency translation invariance, it may be useful to 
guarantee that Po satisfies the same scaling property as a Wigner-Ville distribution: 

Such a distribution PO is afine invariant. One can verify (Problem 4.15) that affine 
invariance is equivalent to imposing that 

(4.141) 

and hence 
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FIGURE 4.20 Choi-William distribution Pof(u,c) of the two Gabor atoms 
shown at the top. The interference term that appears in the Wigner-Ville dis- 
tribution of Figure 4.18 has nearly disappeared. 

I l 
0 0.2 0.4 0.6 0.8 i t  

400 

FIGURE 4.21 
signal shown at the top. The interferences remain visible. 

Choi-William distribution Pefa(u,c) of the analytic part of the 
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Example 4.22 The Rihaczek distribution is an affine invariant distribution whose 
convolution kernel is 

(4.142) 

A direct calculation shows that 

Example 4.23 The kernel of the Choi-William distribution is [122] 

8(r ,y)  = exp(-a2.r2+) . (4.144) 

It is symmetric and thus corresponds to a real function e(u,C). This distribution 
satisfiesthemarginalconditions(4.137). Sinceliw,o8(r,y) = 1, whenais s m a l l  
the Choi-William distribution is close to a Wigner-Ville distribution. Increasing 
a attenuates the interference terms, but spreads e(u, t ) ,  which reduces the time- 
frequency resolution of the distribution. 

Figure 4.20 shows that the interference terms of two modulated Gaussians 
nearly disappear when the Wigner-Ville distribution of Figure 4.18 is averaged 
by a Choi-William kernel having a sufficiently large a. Figure 4.21 gives the 
Choi-William distribution of the analytic signal whose Wigner-ViUe distribution 
is in Figure 4.19. The energy of the linear and quadratic chirps are spread over 
wider time-frequency bands but the interference terms are attenuated, although 
not totally removed. It remains difficult to isolate the two modulated Gaussians at 
t = 0.5 and t = 0.87, which clearly appear in the spectrogram of Figure 4.3. 

4.5.4 Discrete Wigner-Ville Computations 

The Wigner integral (4.108) is the Fourier transform off  (u + r/2) f *(u - 7/2): 

For a discrete signal f [ n ]  defined over 0 5 n < N, the integral is replaced by a 
discrete sum: 

When p is odd, this calculation requires knowing the value of f  at half integers. 
These values are computed by interpolating f ,  with an addition of zeroes to its 
Fourier transform. This is necessary to avoid the aliasing produced by the dis- 
cretization of the Wigner-Ville integral [126]. 
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The interpolation off is a signal of size 2N whose discrete Fourier transform 
A 

f is defined from the discrete Fourier transform 3 of f by 

if05 k < N / 2  
if N / 2  < k < 3N/2  

if k = N / 2  3 N / 2  

i f 3 N / 2 < k < 2 N  * 

$ [ N / 2 ]  

Computing the inverse discrete Fourier transform shows that f [ 2 n ]  = f [ n ]  for 
n E [O,N - 11. m e n  n L O , ~ N  - 11, we set j [ n ]  = 0. The Wigner summation 
(4.146) is calculated from f :  

2.A-1 -i2.rr( 2k) p 

p=o 

= f [ 2 n + p - N ] j * [ 2 n - p + N ]  exp 

For 0 5 n < N fixed, Pv f [n, k] is the discrete Fourier transform of size 2N of 
g [ p ]  = f [ 2 n  + p - N ]  [2n - p + N ]  at the frequency 2k. The discrete Wigner- 
Vie distribution is thus calculated with N FFT procedures of size 2N, which 
requires O(N210gN) operations. To compute the Wigner-Ville distribution of the 
analytic part fa off ,  we use (4.48). 

Cohen’s Class A Cohen’s class distribution is calculated with a circular convo- 
lution of the discrete Wigner-ViUe distribution with a kernel Ob, 41: 

Po [n,k] = Pv @ O[n,k]. (4.147) 

Its two-dimensional discrete Fourier transform is therefore 

As [P, 41 = A ~ [ P ,  41 8 [P: 41. (4.148) 

The signal A f [ p , q ]  is the discrete ambiguity function, calculated with a two- 
dimensional FFT of the discrete Wigner-Ville distribution P v f [ n , k ] .  As in the 
case of continuous time, we have inverted the index p and q of the usual two- 
dimensional Fourier transform. The Cohen’s class distribution (4.147) is obtained 
by calculating the inverse Fourier transform of (4.148). This also requires a total 
of O(N2 logN) operations. 

4.6 PROBLEMS 

4.1. Znstuntuneousfrequency Let f ( t )  = exp[id( t ) ] .  

(a) Prove that s-2 ISf(u,E)IZd( = 27r. Hint: Sf(u,E) is aFourier transform; 
use the Parseval formula. 
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(b) Similarly, show that 

EISf(U,5)12dE= 2 T / + m m  Is(t-u)l2dt, s_: -cc 

and interpret this result. 

form Sf[m: I ]  defined in (4.27). 
4.2. 

4.3. 

4.4. 

Write a reproducing kernel equation for the discrete windowed Fourier trans- 

When g(t)  = (~.~)-'/~exp(-t~/(2~~)), compute the ambiguity function 

Let g[n] be a window with L non-zero coefficients. For signals of size N, 
describe a fast algorithm that computes the discrete windowed Fourier transform 
(4.27) with O(Nlog,L) operations. Implement this algorithm in WAVELAB. 
Hint: Use a fast overlap-add convolution algorithm. 

Let K be the reproducing kernel (4.21) of a windowed Fourier transform. 
(a) For any CP E L2(Rz) we define: 

Ag(.r,y). 

4.5. 

Prove that T is an orthogonal projector on the space of functions CP(u,<) 
that are windowed Fourier transforms of functions in Lz (E). 

(b) Suppose that for all (u , ( )  E E' we are given s f ( u , ( )  = Q Sf(.,() , 
which is a quantization of the windowed Fourier coefficients. How can 
we reduce the norm L2(E2) of the quantification error ~ ( u , ( )  = S f ( u ,  E )  - 

0 
Q(sf(G1) ? 

4.6. 
4.7. 

Rove that a scaling function q5 defined by (4.42) satisfies 1 1 ~ $ 1 1 =  1. 
Let $ be a real and even wavelet such that C = so+" w-l&w) dw < +cc. 

(4.149) 

Analytic Continuation Let f E Lz(E) be a function such that f ( w )  = 0 for 

Prove that 
ds +m 

V ~ E L ' ( R )  f ( t )  = -c W ( t 7 4 *  . 

w < 0. For any complex z E C such that Im(z) 2 0, we define 
4.8. 

(a) Verify that i f f  is CP then f(p)  ( t )  is the derivative of order p of f ( t ) .  
(b) Prove that if Im(z) > 0, then f ( p )  (z) is differentiable relative to the complex 

variable z. Such a function is said to be analytic on the upper half complex 
plane. 

(c) Prove that this analytic extension can be written as a wavelet transform 

f (P)  (. + i y )  = y - P - ' / 2  Wf ( X l Y )  9 

calculated with an analytic wavelet $ that you will specify. 
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4.9. ’ Let f ( t )  = cos(acosbt). We want to compute precisely the instantaneous 
frequency of f from the ridges of its windowed Fourier transform. Find 
a necessary condition on the window support as a function of a and b. If 
f ( t )  = cos(acosbt) + cos(acosbt + ct) ,  find a condition on a, b and c in or- 
der to measure both instantaneous frequencies with the ridges of a windowed 
Fourier transform. Verify your calculations with a numerical implementation 
in WAVELAB. 

4.10. ’ Sound manipulation 

(a) Make a program that synthesizes sounds with the model (4.71) where the 
amplitudes ak and phase o k  are calculated from the ridges of a windowed 
Fourier transform or of a wavelet transform. Test your results on the Tweet 
and Greasy signals in WAVELAB. 

(b) Make a program that modifies the sound duration with the formula (4.72) 
or which transposes the sound frequency with (4.73). 

4.11. ’ ProvethatPf(u,E) = llfll-’ lf(u)l’l~(~)lz satisfiesthemarginalproperties 
(4.123,4.124). Why can’t we apply the Wigner Theorem 4.7? 

4.12. ’ Let g, be a Gaussian of variance a’. Prove that P ~ f ( u ,  e )  = Pvf*e(u,E)  is 
a positive distribution if e(u , ( )  = g,,(u) go(() with a,B 2 1/2. Hint: consider 
a spectrogram calculated with a Gaussian window. 

4.13. Let {gn(t)}nEA be an orthonormal basis of L2(R). Prove that 

+oc 

t l ( t , W )  E 3 ; C P v g n ( t , w )  = 1 . 
n=O 

4.14. Let f . ( t )  = a(t)  exp[io(t)] be the analytic part of f ( t ) .  Prove that 

4.15. Quadratic affine time-frequency distributions satisfy time shift (4.1 15), scal- 
ing invariance (4.117), and phase invariance (4.114). Prove that any such dis- 
tribution can be written as an affine smoothing of the Wigner-Ville distribution 

where O(a, b) depends upon dimensionless variables. 
To avoid the time-frequency resolution limitations of a windowed Fourier 

transform, we want to adapt the window size to the signal content. Let g(t) 
be a window of variance 1. We denote by Sj f (u ,E)  the windowed Fourier 
transform calculated with the dilated window gj(r) = 2-j/’g(2-Jt). Find a 
procedure that computes a single map of ridges by choosing a ‘%est” window 
size at each (u,E). One approach is to choose the scale 2‘ for each (u:E) 
such that IS’f( u, 6) 1’ = supj lSjf (u,  E )  1’. Test your algorithm on the linear and 
hyperbolic chirp signals (4.95,4.99). Test it on the Tweet and Greasy signals in 
WAVELAB. 

4.16. 
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4.17. The sinusoidal model (4.71) is improved for speech signals by adding a “noise 
component” B( t )  to the partials 12451: 

K 

F ( f )  = x a k ( t ) c o s 4 k ( t )  +B( t ) .  

Given a signal f ( t )  that is considered to be a realization of F ( t ) ,  compute the 
ridges of a windowed Fourier transform, find the “main” partials and compute 
their amplitude ak and phase 4 k .  These partials are subtracted from the signal. 
Over intervals of fixed size, the residue is modeled as the realization of an 
autoregressive process B(t) ,  of order 10 to 15. Use a standard algorithm to 
compute the parameters of this autoregressive process [60]. Evaluate the audio 
quality of the sound restored from the calculated model (4.151). Study an 
application to audio compression by quantizing and coding the parameters of 
the model. 

(4.15 1) 
k=l 



V 
FRAMES 

rame theory analyzes the completeness, stability and redundancy of linear 
discrete signal representations. A frame is a family of vectors {&}nEr F that characterizes any signal f from its inner products { (f, $n)}nEr. Signal 

reconstructions from regular and irregular samplings are examples of applications. 
Discrete windowed Fourier transforms and discrete wavelet transforms are 

studied through the frame formalism. These transforms generate signal repre- 
sentations that are not translation invariant, which raises difficulties for pattern 
recognition applications. Dyadic wavelet transforms maintain translation invari- 
ance by sampling only the scale parameter of a continuous wavelet transform. A 
fast dyadic wavelet transform is calculated with a filter bank algorithm. In com- 
puter vision, dyadic wavelet transforms are used for texture discrimination and 
edge detection. 

5.1 FRAME THEORY 

5. I. I 

The frame theory was originally developed by Duffin and Schaeffer [ 1751 to re- 
construct band-limited signals f from irregularly spaced samples {f( tn)}nEz.  If 
f has a Fourier transform included in [-7r/T,7r/T], we prove as in (3.13) that 

Frame Definition and Sampling 

I25 
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This motivated Duffin and Schaeffer to establish general conditions under which 
one can recover a vector f in a Hilbert space H from its inner products with a family 
of vectors { q5n}ner. The index set I? might be finite or infinite. The following frame 
definition gives an energy equivalence to invert the operator U defined by 

h € l ?  : uf[nl=(f,4”). (5.2) 

Definition 5.1 The sequence {r$n}ner is a frame of H ifthere exist two constants 
A > 0 and B > 0 such that for any f E H 

A I I ~ I I ~  5 CI(f,4n)12 IBII~II~. (5.3) 
ner 

When A = B theframe is said to be tight. 

If the frame condition is satisfied then U is called a frame operator. Section 
5.1.2 proves that (5.3) is a necessary and sufficient condition guaranteeing that U 
is invertible on its image, with a bounded inverse. A frame thus defines a complete 
and stable signal representation, which may also be redundant. When the frame 
vectors are normalized I I 4n I I = 1, this redundancy is measured by the frame bounds 
A and B. If the { q f ~ ~ } ~ ~ ~  are linearly independent then it is proved in (5.23) that 

A s l S B .  

The frame is an orthonormal basis if and only if A = B = 1. This is verified by 
inserting f = in (5.3). If A > 1 then the frame is redundant and A can be 
hkrpreted as a minimum redundancy factor. 

Example 5.1 Let (e l ,  e2) be an orthonormal basis of a two-dimensional plane H. 
The three vectors 

el d3 
2 :  & j = - - - - e 2  4 i = e l ,  4 2 = - - + - e  

el 
2 2  2 2  

have equal angles of 2 ~ / 3  between themselves. For any f E H 

These three vectors thus define a tight frame with A = B = 3/2. The frame bound 
3/2 measures their redundancy in a space of dimension 2. 

Example 5.2 For any 0 I k < K ,  suppose that {ek,n}neZ is an orthonormal basis 
of H. The union of these K orthonormal bases {ek.n}neZ,Osk<K is a tight frame 
with A = B = K. Indeed, the energy conservation in &I orthonormal basis implies 



5. I FRAME THEORY I27 

hence 
K-1 

Example 5.3 One can verify (Problem 5.8) that a finite set of N vectors {a} lsns~ 
is always a frame of the space V generated by linear combinations of these vectors. 
When N increases, the frame bounds A and B may go respectively to 0 and +x. 
This illustrates the fact that in infinite dimensional spaces, a family of vectors may 
be complete and not yield a stable signal representation. 

Irregular Sampling Let UT be the space of L2(R) functions whose Fourier trans- 
forms have a support included in [-r/T,  r / T ] .  For a uniform sampling, tn = nT, 
Proposition 3.2 proves that {T-'l2 hT(t - nT)},,z is an orthonormal basis of UT. 
The reconstruction of f from its samples is then given by the sampling Theorem 
3.1. 

The irregular sampling conditions of Duffin and Schaeffer [175] for construct- 
ing a frame were later refined by several researchers [91, 360, 741. Grochenig 
proved [197] that if lim t,, = f 0 0  and lim tn = -00, and if the maximum 
sampling distance b satisfies 

n++w n + - w  

then 

is a frame with frame bounds A 2 (1 - b/T)' and B 5 (1 + S/T)*.  The amplitude 
factor 2-1/2(rn+l - rn-l)1/2 compensates for the non-uniformity of the density 
of samples. It attenuates the amplitude of frame vectors where there is a high 
density of samples. The reconstruction off requires inverting the frame operator 
Uf[n] = ( f ( t ) , h ( t  - t n ) ) .  

5. I .2 Pseudo Inverse 

The reconstruction of f from its frame coefficients U f [ n ]  is calculated with a 
pseudo inverse. This pseudo inverse is a bounded operator that is expressed with 
a dual frame. We denote 

and by ImU the image space of all Uf with f E H. 
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Proposition 5.1 If{r&}n,r is aframe whose vectors are linearly dependent, then 
ImU is strictly included in 12(r), and U admits an infinite number of left inverses 
0-1: 

(5.5) Vf EH , D-lUf = f .  

Proof z. The frame inequality (5.3) guarantees that ImU c P(r) since 

IIU~II' = CI(f,4n)IZ SBII~II'. (5.6) 

is linearly dependent, there exists a non-zero vector x E lZ(r) such that 

ner 

Since 

Ex* [n] = 0. 

C+I ( f ,  6 n )  = C+I ~ J + I  = 0. 
ner ncr 

This proves that ImU is orthogonal to x and hence that ImU # I* (I?). 
A frame operator U is injective (one to one). Indeed, the frame inequality (5.3) 

guarantees that Uf = 0 implies f = 0. Its restriction to ImU is thus invertible. Let 
ImU' be the orthogonal complement of ImU in lz(r). If {q5,,InEr are linearly depen- 
dent then ImU' # (0) and the restriction of Up' to ImU' may be any arbitrary linear 
operator. 

The more redundant the frame {q5n}nErr the larger the orthogonal complement 
ImUl of the image ImU. The pseudo inverse 0-l is the left inverse that is zero 
on Imul: 

V X E E I ~ U ~  , O-'X=O.  
In infinite dimensional spaces, the pseudo inverse 0-l of an injective operator 
is not necessarily bounded. This induces numerical instabilities when trying to 
reconstruct f from U f .  The following theorem proves that a frame operator has 
a pseudo inverse that is always bounded. We denote by U* the adjoint of U: 

nEr 

For any f E H 

(Uf ,x> = (f , U*X). 

Theorem 5.1 (PSEUDO INVERSE) The pseudo inverse satisfes 

0-1 = (u*u)-'u*. (5.7) 

It is the lej? inverse of minimum sup norm. If U is a frame operator with frame 
bounds A and B then 

Proof '. To prove that 0-l has a minimum sup norm, let us decompose any x E lZ(r) 
as a sum x = x1 +xz with xz E ImUl  and x1 E ImU. Let u-' be an arbitrary left 
inverse of U. Then 

llO-lxll I1f i-h II llu-lxl II <-. llu-lxlll -- -- 
IIxII IIXII IIxII - llx1II 
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We thus derive that 

Since x1 E ImU, there exists f E H such that x1 = Uf. The inequality (5.8) is 
derived from the frame inequality (5.3) which shows that 

1 1 
llfi-lxll = Ilf II I - IlUf II I - IIXII- 6 4 4  

To verify (5.7), we first prove that the self-adjoint operator U*U is invertible by 
showing that it is injective and surjective (onto). If U'Uf = 0 then (U*Ufl f) = 0 
and hence (U f U f )  = 0. Since U is injective then f = 0, which proves that U* U is 
injective. To prove that the image of U* U is equal to H we prove that no non-zero 
vector can be orthogonal to this image. Suppose that g E His  orthogonal to the image 
of U*U. In particular (g, U'Ug) = 0, so (Ug, Ug) = 0, which implies that g = 0. This 
proves that U*U is surjective. 

Since U*U is invertible, proving (5.7) is equivalent to showing that for any x the 
pseudo inverse satisfies 

If x E ImUl then (U* U )  fi-b = 0 because fi-'x = 0, and U"x = 0 because 
(US U )  fi-b = U*X. (5.9) 

Vf E H  , (flU*x)=(Uflx)=O. 

It thus verifies (5.9) for x E ImW. If x E Imu, then ~ f i - l x  = x so (5.9) remains 
valid. We thus derive that (5.9) is satisfied for all x E H. 

Dual Frame 
family, which is specified by the following theorem. 

Theorem 5.2 Let (q5,,n)nE~ be aframe with bounds A,B. The dual frame defined 

The pseudo inverse of a frame operator is related to a dual frame 

bY 

and 
f =  o - 'u f=C( f ;$n)& = C ( f > & ) 4 n .  (5.11) 

nEl? nEl? 

Zfthe frame is tight (i.e., A = B), then & = A-' qbn. 

Proof '. To prove (5.1 l), we relate U* to { + n } n E r  and use the expression (5.7) of C-I. 
For anyx E 1'(r) and f E H 
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so 
6 - l x  = Ex[.] &. 

n E r  

Ifx[n] = Uf [n] = (f,4,,) then 

(5.12) 

(5.13) 

(5.14) 

The dual family of vectors {4n}nEr and {&,}nEr  play symmetrical roles. Indeed (5.14) 
implies that for any f and g in H, 

(f ,g)  =>:(f ,4n)  (JnTg), (5.15) 
nEr  

hence 
g = (g,&) 4 n ,  

n E r  

which proves (5.11). 

The expression (5.12) of U* proves that for x[n] = Uf [n] = (f, 4,J 

u*uf= C( f ,4n )$n .  
nEr 

The frame condition (5.3) can thus be rewritten 

(5.16) 

(5.17) 

Allfll2 I (U*Uf,f)  5Bllf1l2. (5.18) 

If A = B then (U*Uf, f )  = A  11 f 1 1 2 .  Since U*U is symmetrical, one can show-that 
necessarily U* U = AZd where Id is the identity operator. It thus follows that q5,, = 
(U*U)-'q5n =A-14n. 

Similarly (5.10) can be rewritten 

(5.19) 
1 1 
B - llfl12 I ( (u*W-'f , f )  5 Ilf 1 1 2 .  

The double inequality (5.19) is derived from (5.18) by applying the following lemma 
to L = uau. 
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Lemma 5.1 IfL is a self-adjoint operator such that there exist A > 0 and B satisfying 

then L is invertible and 

In finite dimensions, since L is self-adjoint we know that it is diagonalized in an 
orthonormal basis. The inequality (5.20) proves that its eigenvalues are between A 
and B. It is therefore invertible with eigenvalues between B-' and A-l, which proves 

This theorem proves that {&}nEr is a dual frame that recovers any f E H from 
its frame coefficients { ( f ,  @n)}ner .  If the frame is tight then $,, = A-l 4n, so the 
reconstruction formula becomes 

(5.21). In infinite dimensions, the proof is left to the reader. 

(5.22) 

Biorthogonal Bases A Riesz basis is a frame of vectors that are linearly inde- 
pendent, which implies that ImU = I2(r). One can derive from (5.11) that the 
dual frame {&}nEr is also linearly independent. It is called the dual Riesz basis. 
Inserting f = q5p in (5.1 1) yields 

and the linear independence implies that 

Dual Riesz bases are thus biorthogonal families of vectors. If the basis is normal- 
ized (i.e., I14nll = 1). then 

A < l < B .  (5.23) 

This is proved by inserting f = q5p in the frame inequality (5.10): 

Partial Reconstruction Suppose that {4n}ner is a frame of a subspace V of the 
whole signal space. The inner products U f [ n ]  = (f; qbn) give partial information 
on f that does not allow us to fully recover f .  The best linear mean-square ap- 
proximation off computed from these inner products is the orthogonal projection 
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off on the space V. This orthogonal projection is computed with the dual frame 
{&}nEr of {4n}ncr  in V: 

(5.24) 

To prove that Pv f is the orthogonal projection in V, we verify that Pv f E V and 
that (f - Pv f ,  &,) = 0 for all p E r. Indeed, 

nEI? 

and the dual frame property in V implies that 

( J n ? + p )  4 n  = 4 p -  
n E r  

Suppose we have a finite number of data measures { (f, + n ) } ~ s n < ~ .  Since a 
finite family { + n } ~ s n < N  is necessarily a frame of the space V it generates, the 
approximation formula (5.24) reconstructs the best linear approximation off.  

5. I .3 Inverse Frame Computations 

We describe efficient numerical algorithms to recover a signal f from its frame 
coefficients U f  [n] = (f, 4,J. If possible, the dual frame vectors are precomputed: 

and we recover each f with the sum 

n E r  

In some applications, the frame vectors { $ n } n E r  may depend on the signal f, in 
which case the dual frame vectors & cannot be computed in advance. For example, 
the frame (5.1) associated to an irregular sampling depends on the position tn of 
each sample. If the sampling grid varies from signal to signal it modifies the frame 
vectors. It is then highly inefficient to compute the dual frame for each new signal. 
A more direct approach applies the pseudo inverse to U f :  

f = 0-luf = (u*u)-'(u*u) f = L P L f ,  (5.25) 

(5.26) 

Whether we precompute the dual frame vectors or apply the pseudo inverse 
on the frame data, both approaches require an efficient way to compute f = L-lg  
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for some g E H. Theorems 5.3 and 5.4 describe two iterative algorithms with 
exponential convergence. The extrapolated Richardson procedure is simpler but 
requires knowing the frame bounds A and B. Conjugate gradient iterations con- 
verge more quickly when B / A  is large, and do not require knowing the values of 
A and B. 

Theorem 5 3  (EXTRAPOLATED RICHARDSON) Let g E H. To compute f = L-'g 
we initialize f 0 = 0. Let y > 0 be a relaxation parametel: For any n > 0, define 

f n  = f n - 1  + r ( g - L f n - 1 ) .  (5.27) 

If 
6 = m a x { l l - y A I , I l - n / B I } <  1, (5.28) 

then 
Ilf -frill 56" Ilfll, 

and hence lim f n  = f. 
n + C x  

(5.29) 

Proof '. The induction equation (5.27) can be rewritten 

f - f n  = f - fn-1-  7 L( f - f n -  1). 

Let 
R = Id -7L:  

f - f n  = R ( f - f n - l )  = F ( f - f o )  =F(f). (5.30) 
We saw in (5.18) that the frame inequality can be rewritten 

A llfl12 5 (Lf7.f)  I B llf1I2- 
This implies that R = Z - 7 L  satisfies 

where 6 is given by (5.28). Since R is symmetric, this inequality proves that IlRll I 6. 
We thus derive (5.29) from (5.30). The error I l f  - frill clearly converges to zero if 
6 <  1. 

For frame inversion, the extrapolated Richardson algorithm is sometimes called 
theframe algorithm [21]. The convergence rate is maximized when 6 is minimum: 

B - A  - l - A / B  6 =  - 
B + A  - 1 +A/B'  

which corresponds to the relaxation parameter 
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The algorithm converges quickly if A / B  is close to 1. If A / B  is small then 

A 
B 

6%1-2- .  (5.31) 

The inequality (5.29) proves that we obtain an error smaller than E for a number n 
of iterations, which satisfies: 

Inserting (5.31) gives 

-B 
l0ge(l-2A/B) 2A 

M - loge€. log, E 
n M  (5.32) 

The number of iterations thus increases proportionally to the frame bound ratio 
B/A.  

The exact values of A and B are often not known, in which case the relaxation 
parameter y must be estimated numerically by trial and error. If an upper bound 
Bo of B is known then we can choose y = l/Bo. The algorithm is guaranteed to 
converge, but the convergence rate depends on A. 

The conjugate gradient algorithm computes f = L-' g with a gradient descent 
along orthogonal directions with respect to the norm induced by the symmetric 
operator L: 

(5.33) 

This L norm is used to estimate the error. Grochenig's [198] implementation of 
the conjugate gradient algorithm is given by the following theorem. 

Theorem 5.4 (CONJUGATE GRADIENT) Let g E H. To compute f = L-'g we ini- 
tialize 

For any n 2 0, we define by induction 

I l f  11: = llLf 112. 

f o = O  , r o = p o = g  , p - l = O .  (5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.39) 

and hence lim f n  = f. 
n++m 



5. I FRAME THEORY I35 

Proof '. We give the main steps of the proof as outlined by Grochenig [198]. 
Step I: Let U, be the subspace generated by {Ljf},,jsn. By induction on n, we 

derive from (5.38) that pi E U,, for j < n. 
Step 2: We prove by induction that {pj}o<j<n is an orthogonal basis of U, with 

respect to the inner product ( f , h j L  = (f,Lh). Assuming that ( p n , L p j )  = 0, for j 5 
n- 1, it can be shown that (pn+l ,Lp j )  = 0, for j 5 n. 

Step 3: We verify that f, is the orthogonal projection off onto U, with respect 
to (. , . )L which means that 

\JgEUn 9 Ilf-gllL 5 I l f - f n l l L .  

Since f, E U,, this requires proving that (f - f , , , ~ ~ ) ~  = 0, for j < n. 
Step 4: We compute the orthogonal projection off in embedded spaces U, of 

dimension n, and one can verify that limn++, I l f  - f, IIL. = 0. The exponential con- 
vergence (5.39) is proved in [198]. 

As in the extrapolated Richardson algorithm, the convergence is slower when A / B  
is small. In this case 

c T =  1-m 4 - 2 &  
1+m 

The upper bound (5.39) proves that we obtain a relative error 

for a number of iterations 

Comparing this result with (5.32) shows that when A / B  is small, the conjugate 
gradient algorithm needs many fewer iterations than the extrapolated Richardson 
algorithm to compute f = L-' g at a fixed precision. 

5. I .4 Frame Projector and Noise Reduction 

Frame redundancy is useful in reducing noise added to the frame coefficients. The 
vector computed with noisy frame coefficients is projected on the image of U to 
reduce the amplitude of the noise. This technique is used for high precision analog 
to digital conversion based on oversampling. The following proposition specifies 
the orthogonal projector on ImU. 

Proposition 5.2 The orthogonal projection from l2(r> onto ImU is 

(5.40) 
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Proof '. I f x  E ImU then x = U f  and 

P x =  U i P U f  = U f  = x .  

If x E ImU' then Px = 0 because k l x  = 0. This proves that P is an orthogonal 
projector on ImU. Since U f  [n] = ( f ,  q$,) and 0 - l ~  = Cper x [ p ]  &,, we derive (5.40). 

A vector x[n] is a sequence of frame coefficients if and only if x = Px, which means 
that x satisfies the reproducing kernel equation 

4.1 = CX[Pl(&n 4"). (5.41) 

This equation generalizes the reproducing kernel properties (4.20) and (4.40) of 
windowed Fourier transforms and wavelet transforms. 

per 

Noise Reduction Suppose that each frame coefficient Uf[n] is contaminated by 
an additive noise W [n], which is a random variable. Applying the projector P gives 

P(Uf+ W) = Uf+PW, 
with 

PWnI = CW[Pl(4P74"). 
Per 

Since P is an orthogonal projector, llPWll I 1 1  WII. This projector removes the 
component of W that is in ImU' . Increasing the redundancy of the frame reduces 
the size of ImU and thus increases ImU', so a larger portion of the noise is 
removed. If W is a white noise, its energy is uniformly distributed in the space 
1' (I?). The following proposition proves that its energy is reduced by at least A if 
the frame vectors are normalized. 

Proposition 5.3 Suppose that l14n 1 1  = C, for all n E I?. If W is a zero-mean white 
noise ofvariance E{ I W[n] I*} = c2, then 

Iftheframe is tight then this inequality is an equality. 

Proof '. Let us compute 

Since W is white, 

and therefore 
E W [ P l  w* 111 1 = a2 4 P  - I ]  , 

(5.42) 

The last inequality is an equality if the frame is tight. 
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Overrampling This noise reduction strategy is used by high precision analog to 
digital converters. After a low-pass filter, a band-limited analog signal f ( t )  is 
uniformly sampled and quantized. In hardware, it is often easier to increase the 
sampling rate rather than the quantization precision. Increasing the sampling rate 
introduces a redundancy between the sample values of the band-limited signal. 
For a wide range of signals, it has been shown that the quantization error is nearly 
a white noise [194]. It can thus be significantly reduced by a frame projector. 

After the low-pass filtering, f belongs to the space UT of functions whose 
Fourier transforms have their support included in [ - r / T , r / T ] .  The Whittaker 
sampling Theorem 3.1 guarantees perfect reconstruction with a sampling interval 
T ,  but f is oversampled with an interval TO = T / K  that provides K times more 
coefficients. We verify that the frame projector is then a low-pass filter that reduces 
by K the energy of the quantization noise. 

Proposition 3.2 proves that 

1 sin(r t /T)  
f (nTo)  = 7 ( f ( t ) : h ~ ( t - n T o ) )  with hr(t) = r t / T  ’ 

and for each 1 I k I K the family { h ~ ( t  - kT/K  - ~ T ) } , Q ,  is an orthogonal basis 
of UT. As a consequence 

is a union of K orthogonal bases, with vectors having a square norm C2 = T .  It 
is therefore a tight frame of UT with A = B = K T = TO. Proposition 5.3 proves 
that the frame projector P reduces the energy of the quantization white noise W 
of variance IT’ by a factor K :  

(5.43) 

The frame {C$n(t)}ntz is tight so & = $q5n and (5.40) implies that 

1 +m 
pX[nI = - X[PI (hT(t-pTo),hT(t-nTo)).  

To p = - m  

This orthogonal projector can thus be rewritten as the convolution 

1 
TO 

Px[n] =x*ho[n] with ho[n] = - (hT( t ) ,hT( t -nTo)) .  

One can verify that ho is an ideal low-pass filter whose transfer function has a 
restriction to [-T, r] defined by ho = l [ - ? r / K , ? r / K ] .  In this case ImU is simply the 
space of discrete signals whose Fourier transforms have a restriction to [-r,r] 
which is non-zero only in [ -r/K, r / K ] .  
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The noise can be further reduced if it is not white but if its energy is better 
concentrated in ImU'. This can be done by transfonning the quantization noise 
into a noise whose energy is mostly concentrated at high frequencies. Sigma- 
Delta modulators produce such quantization noises by integrating the signal before 
its quantization [82]. To compensate for the integration, the quantized signal is 
differentiated. This differentiation increases the energy of the quantized noise at 
high frequencies and reduces its energy at low frequencies. The low-pass filter IQ 
thus further reduces the energy of the quantized noise. Several levels of integration 
and differentiation can be used to better concentrate the quantization noise in the 
high frequencies, which further reduces its energy after the filtering by ho [330]. 

This oversampling example is analyzed just as well without the frame formal- 
ism because the projector is a simple convolution. However, the frame approach 
is more general and applies to noise removal in more complicated representa- 
tions such as irregularly oversampled signals or redundant windowed Fourier and 
wavelet frames [329]. 

5.2 WINDOWED FOURIER FRAMES 

Frame theory gives conditions for discretizing the windowed Fourier transform 
while retaining a complete and stable representation. The windowed Fourier trans- 
form off E L2(W) is defined in Section 4.2 by 

with 
gu,c(t) = g(t - u)eY'. 

Setting llgll = 1 implies that llg,,t [I = 1. A discrete windowed Fourier transform 
representation 

{ s f (un ,&)  = (fy gh&)}( , :k)@ 

is complete and stable if { g , , t x } ( n , k ) E p  is a frame of L2(B). 
Intuitively, one can expect that the discrete windowed Fourier transform is 

complete if the Heisenberg boxes of all atoms {gun,tk}(n,R)ED fully cover the time- 
frequency plane. Section 4.2 shows that the Heisenberg box of g,,tk is centered 
in the time-frequency plane at (u,,&). Its size is independent of u, and &. It 
depends on the time-frequency spread of the window g. A complete cover of the 
plane is thus obtained by translating these boxes over a uniform rectangular grid, as 
illustrated in Figure 5.1. The time and frequency parameters (u, c)  are discretized 
over a rectangular grid with time and frequency intervals of size ~0 and Q. Let us 
denote 

g n , R ( t )  = g(t - nuo) exp(ikf0t). 

The sampling intervals (uo, EO) must be adjusted to the time-frequency spread of g. 
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FIGURE 5.1 A windowed Fourier frame is obtained by covering the time- 
frequency plane with a regular grid of windowed Fourier atoms, translated by 
un = n uo in time and by Ck = k 50 in frequency. 

Window Scaling Suppose that { g n , k } ( n , k ) &  is a frame of L2(B) with frame 
bounds A and B .  Let us dilate the window g , ( t )  = s- ' /2g(t /s) .  It increases 
by s the time width of the Heisenberg box of g and reduces by s its frequency 
width. We thus obtain the same cover of the time-frequency plane by increasing 
uo by s and reducing Q by s. Let 

-nsuo> exp ( ik$t)  . (5.44) 

We prove that {g&n&}(n,k)@ satisfies the same frame inequalities as {gn,k}(n,k)@,& 
with the same frame bounds A and B,  by a change of variable t' = ts in the inner 
product integrals. 

Necessary Conditions Daubechies [21] proved several necessary conditions on 
g, uo and t o  to guarantee that {gn,k} (n ,k)Ez2  is a frame of L2(R). We do not 
reproduce the proofs, but summarize the main results. 

Theorem 5.5 (DAUBECHIES) The windowed Fourier family {gn,k}(n,k)EZZ is a 
frame only if 

9,- 
L i  1 
- 2 1. 
uo Q 

The frame bounds A and B necessarily satisfy 

27r 
A I -  I B ,  

uo 60 

. +co 

(5.45) 

(5.46) 

(5.47) 

(5.48) 
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The ratio ~ ~ / ( u Q ( o )  measures the density of windowed Fourier atoms in the 
time-frequency plane. The first condition (5.45) ensures that this density is greater 
than 1 because the covering ability of each atom is limited. The inequalities (5.47) 
and (5.48) are proved in full generality by Chui and Shi [124]. They show that 
the uniform time translations of g must completely cover the time axis, and the 
frequency translations of its Fourier transform 2 must similarly cover the frequency 
axis. 

Since all windowed Fourier vectors are normalized, the frame is an orthogonal 
basis only if A = B = 1. The frame bound condition (5.46) shows that this is 
possible only at the critical sampling density u& = 2n. The Balian-Low Theorem 
[86] proves that g is then either non-smooth or has a slow time decay. 

Theorem 5.6 (BAIAN-LOW) If {gn,k}(,,kIED is a windowed Fourierframe with 
U Q ~  = 2n, then 

+m +m 
tZ Ig(t)12dt = +OO or [, w2 Ib(w)lZdw = +OO. Lm (5.49) 

This theorem proves that we cannot construct an orthogonal windowed Fourier 
basis with a differentiable window g of compact support. On the other hand, one 
can verify that the discontinuous rectangular window 

1 
g = - l[-uo/2,uo/21 * 

yields an orthogonal windowed Fourier basis for UO& = 2n. This basis is rarely 
used because of the bad frequency localization of b. 

Sufficient Conditions The following theorem proved by Daubechies [ 1451 gives 
sufficient conditions on UQ, 50 and g for constructing a windowed Fourier frame. 

Theorem 5.7 (DAUBECHIES) Let us deJine 

(5.50) 

and 
+W 

A =  k=-m [P(T)fl(F)]l’z. (5.51) 
k+o 

and Q sati& 

(5.52) 
+E 

A o = ” (  inf lg ( t -nuo)[2-A 
n=-m 

Q W r l u o  
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and 

(5.53) ) 
+m 

Bo-"( sup Ig(t-nuo)12+A <+m, 

then {gn,k}(n;k)@ is a frame. i%e constants A0 and Bo are respectively lower 
bounds and upper bounds of the frame bounds A and B. 

Observe that the only difference between the sufficient conditions (5.52,5.53) 
and the necessary condition (5.47) is the addition and subtraction of A. If A is 
small compared to infoltluo C,'="_, Ig(t - nuO)l2 then A0 and Bo are close to the 
optimal frame bounds A and B. 

b O5t5uo n=-m 

Dual Frame Theorem 5.2 proves that the dual windowed frame vectors are 

(5.54) 

The following proposition shows that this dual frame is also a windowed Fourier 
frame, which means that its vectors are time and frequency translations of a new 
window g .  
Proposition 5.4 Dual windowed Fourier vectors can be rewritten 

gn,/c(t) = g(t-nuo) exp(ikfot) 

where g is the dual window 
g = ( u * u ) - l g .  (5.55) 

Proof z. This result is proved by showing ks t  that L = U*U commutes with time 
and frequency translations proportional to uo and EO. If h E Lz(W) and h,,l(t) = 
h(t - rnm) exp(il&,t)  we verify that 

Lh,;l(t) = exp(ilEot)Lh(t-rnuo). 

Indeed (5.26) shows that 

Lh,J = (hmJ7 &,k) gn,k 
(n ,k )E@ 

and a change of variable yields 

@mJ, gn,!f) = (h,gn-m,k-l). 

Consequently 

L h m , l ( t )  = (h, gn-m,k-I) exp(ilt0t) gn-mt-r(t -ma) 
(n,k)EZ2 

= exp(ileot)Lh(t -rnuo). 

Since L commutes with these translations and frequency modulations we verify that 
L-' necessarily commutes with the same group operations. Hence 

gn;k(t) = L-lgn,k = exp(ikb)L-'go,o(t -nuo) = exp(ikt0) g ( t  -n%>. 
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I Uo50 I A0 I Bo I Bo/Ao 1 

2.4 

Table 5. I Frame bounds estimated with Theorem 5.7 for the Gaussian window 
(5.56) and uo = 50. 

Gaussian Window The Gaussian window 

(5.56) 

has a Fourier transform 2 that is a Gaussian with the same variance. The time 
and frequency spreads of this window are identical. We therefore choose equal 
sampling intervals in time and frequency: uo = 50. For the same product U O ~ O  
other choices would degrade the frame bounds. If g is dilated by s then the time 
and frequency sampling intervals must become SUO and &/s. 

If the time-frequency sampling density is above the critical value: 27r/(u050) > 
1, then Daubechies [145] proves that {gn ,k } (n :k )Es  is a frame. When UO&, tends 
to 27r, the frame bound A tends to 0. For u& = 2 ~ ,  the family {gn,k} (n ,k)Ep 
is complete in L2(W), which means that any f E L2(W) is entirely characterized 
by the inner products { ( f , g n , k ) } ( n , k ) E p .  However, the Balian-Low Theorem 5.6 
proves that it cannot be a frame and one can indeed verify that A = 0 [ 1451. This 
means that the reconstruction off from these inner products is unstable. 

Table 5.1 gives the estimated frame bounds A0 and BO calculated with Theorem 
5.7, for different values of uo = 50. For ~ 0 5 0  = n/2, which corresponds to time 
and frequency sampling intervals that are half the critical sampling rate, the frame 
is nearly tight. As expected, A M B M 4, which verifies that the redundancy factor 
is 4 (2 in time and 2 in frequency). Since the frame is almost tight, the dual frame 
is approximately equal to the original frame, which means that g M g. When uot0 
increases we see that A decreases to zero and g deviates more and more from a 
Gaussian. In the limit u& = 2 ~ ,  the dual window 2 is a discontinuous function 
that does not belong to L2 (W) . These results can be extended to discrete window 
Fourier transforms computed with a discretized Gaussian window [361]. 

Tight Frames Tight frames are easier to manipulate numerically since the dual 
frame is equal to the original frame. Daubechies, Grossmann and Meyer [ 1461 give 
two sufficient conditions for building a window of compact support that generates 
a tight frame. 
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Theorem 5.8 (DAUBECHIES, GROSSMANN, MEYER) Let g be a window whose 
support is included in [-7r/Q:7r/Q]. I f  

(5.57) 

then { g n : k } ( n , k ) &  is a tightffame with affame bound equal to A. 

The proof is studied in Problem 5.4. If we impose that 

27T 
1 5 - 5 2 :  

UOEO 

then only consecutive windows g(t  - nuo) and g(t  - (n+ 1)uo) have supports that 
overlap. The design of such windows is studied in Section 8.4.2 for local cosine 
bases. 

5.3 WAVELET FRAMES 

Wavelet frames are constructed by sampling the time and scale parameters of a 
continuous wavelet transform. A real continuous wavelet transform off E Lz(R) 
is defined in Section 4.3 by 

where $ is a real wavelet and 

Imposing I I $ I I = 1 implies that I I $u,s I I = 1. 
Intuitively, to construct a frame we need to cover the time-frequency plane with 

the Heisenberg boxes of the corresponding discrete wavelet family. A wavelet $u,s 

has an energy in time that is centered at u over a domain proportional to s. Over 
positive frequencies, its Fourier transform &,s has a support centered at a frequency 
v/s ,  with a spread proportional to 1 /s. To obtain a full cover, we sample s along an 
exponential sequence { a j } j E z ,  with a sufficiently smaU dilation step a > 1. The 
time translation u is sampled uniformly at intervals proportional to the scale aj, as 
illustrated in Figure 5.2. Let us denote 

We give necessary and sufficient conditions on $, a and uo so that { $ j : n } ( j ! n ) E ~ 2  

is a frame of L~ (a). 



I 44 CHA!TERV FRAMES 

. . .  *I- 
FIGURE 5.2 The Heisenberg box of a wavelet +jln scaled by s = aj has a time 
and frequency width proportional respectively to a] and a-j. The time-frequency 
plane is covered by these boxes if uo and a are sufficiently small. 

Necessary Conditions We suppose that + is real, normalized, and satisfies the 
admissibility condition of Theorem 4.3: 

(5.58) 

Theorem 5.9 (DAUBECHIES) Z f { + j , n } ( j , n ) E p  is afraame ofL2(R) then the frame 
bounds satisfy 

1 +m 

uo j=-oo 
'dw E R- (0) , A 5 - ($(ajw)Iz 5 B .  

(5.59) 

(5.60) 

The condition (5.60) imposes that the Fourier axis is covered by wavelets 
dilatedby {aj}jEz. Itis provedin [124,21]. Section5.5 explainsthatthiscondition 
is sufficient for constructing a complete and stable signal representation if the time 
parameter u is not sampled. The inequality (5.59), which relates the sampling 
density uo log, a to the frame bounds, is proved in [21]. It shows that the frame is 
an orthonormal basis if and only if 

c* 
UQ loge a 

A = B  = - = 1. 

Chapter 7 constructs wavelet orthonormal bases of L2(R) with regular wavelets 
of compact support. 

Sufficient Conditions The following theorem proved by Daubechies [21] pro- 
vides a lower and upper bound for the frame bounds A and B, depending on $, uo 
and a. 
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Theorem 5.10 (DAUBECHJES) Let us define 

CCO 

(5.61) 

and 
A =  +W [ , 8 ( ~ ) / 3 ( ~ ) ] ' " .  

k=-m 

If uo and a are such that 

and 

then { + j , n } ( j , n ) E z z  is a frame of L2(W). The constants A0 and Bo are respectively 
lower and upper bounds of theframe bounds A and B. 

The sufficient conditions (5.62) and (5.63) are similar to the necessary condition 
(5.60). If A is small relative to i n f 1 . q w ~ 5 a ~ ~ r ~ m  14(ajw)I2 then A0 and Bo are 
close to the optimal frame bounds A-and B. For a fixed dilation step a, the value 
of A decreases when the time sampling interval uo decreases. 

Dual Frame Theorem 5.2 gives a general formula for computing the dual wavelet 
frame vectors 

4 j , n  = (u*u)-'+j:n- (5.64) 

One could reasonably hope that the dual functions 4j:n would be obtained by 
scaling and translating a dual wavelet 6. The sad reality is that this is generally 
not true. In general the operator U* U does not commute with dilations by ai, so 
(U*U)-' does not commute with these dilations either. On the other hand, one 
can prove that (U*U)-' commutes with translations by  najuo, which means that 

4j:n(t) = 6 j j : o ( t  --ajuo). (5.65) 

The dual frame {4j:n}(j,n)Ep is thus obtained by calculating each elementary 
function $j,o with (5.64), and translating them with (5.65). The situation is much 
simpler for tight frames, where the dual frame is equal to the original wavelet 
frame. 
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54.552 
27.276 
13.690 
12.659 

uo I A0 

13.673 
6.768 

1.0000 
1.0000 
1.007 
4.324 

Bo I BolAo 
14.183 1.083 
7.092 1.083 
3.596 1.116 
4.221 12.986 

27.278 1.0002 
13.639 1.0002 
6.870 1.015 t 7.276 14.061 

Table 5.2 Estimated frame bounds for the Mexican hat wavelet computed with 
Theorem 5.10 [21]. 

Mexican Hat Wavelet The normalized second derivative of a Gaussian is 

(5.66) 

Its Fourier transform is 

w2 exp (G) . 
d3 

$(w)  = - 

The graph of these functions is shown in Figure 4.6. 
The dilation step a is generally set to be a = 2'1" where v is the number of 

intermediate scales (voices) for each octave. Table 5.2 gives the estimated frame 
bounds A0 and BO computed by Daubechies [21] with the formula of Theorem 
5.10. For v 2 2 voices per octave, the frame is nearly tight when uo 5 0.5, in 
which case the dual frame can be approximated by the original wavelet frame. As 
expected from (5.59), when A M B 

The frame bounds increase proportionally to v/uo. For a = 2, we see that A0 
decreases brutally from uo = 1 to q, = 1.5. For ~0 = 1.75 the wavelet family is 
not a frame anymore. For a = 2112, the same transition appears for a larger UO. 

5.4 TRANSLATION INVARIANCE 

In pattern recognition, it is important to construct signal representations that are 
translation invariant. When a pattern is translated, its numerical descriptors should 
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be translated but not modified. Indeed, a pattern search is particularly difficult if 
its representation depends on its location. Continuous wavelet transforms and 
windowed Fourier transforms provide translation-invariant representations, but 
uniformly sampling the translation parameter destroys this translation invariance. 

Continuous Transforms 
wavelet transform can be written as a convolution product: 

Let f 7 ( t )  = f ( t  - I - )  be a translation of f ( t )  by T .  The 

with &(t)  = ~ - ' / ~ + ( - t / s ) .  It is therefore translation invariant: 

Wf7(u:s) = f7*&(u)  = W f ( U - T : S ) .  

A windowed Fourier transform can also be written as a linear filtering 

J-w 

with g c ( t )  = g( - t )  eirc. Up to a phase shift, it is also translation invariant: 

sf7 (u, e)  = e-i@ f * gc (u - T )  = epi7c sf( u - T ,  c ) .  
Frame Sampling A wavelet frame 

yields inner products that sample the continuous wavelet transform at time intervals 
a j u o :  

( f , + j , n )  = f*$ , j (nduo)  = W ~ ( T I U ~ U ~ , U ' ) .  

Translating f by T gives 

~f the sampling interval d u o  is large relative to the rate of variation of f * JJaj ( t )  , 
then the coefficients ( f , $ ~ j ; ~ )  and ( f 7 , + i , n )  may take very different values that 
are not translated with respect to one another. This is illustrated in Figure 5.3. 
This problem is particularly acute for wavelet orthogonal bases where uo is max- 
imum. The orthogonal wavelet coefficients of f may be very different from the 
coefficients off .  The same translation distortion phenomena appear in windowed 
Fourier frames. 
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I I I I I I I I  

I I I I I I I I  
I I I I I I I I  

I I I I I I ~ I  

FIGURE 5.3 If f T ( t )  = f ( t - T )  then WfT(u,a j )  = W f ( u - ~ , a j ) .  Uniformly 
sampling WfT(u,a j )  and W f ( u , a j )  at u = najm may yield very Merent values 
if T # kuoaj. 

Translation-Invariant Representations There are several strategies for maintain- 
ing the translation invariance of a wavelet transform. If the sampling interval duo 
is small enough then the samples of f*$=j ( t )  are approximately translated when f 
is shifted. The dyadic wavelet transform presented in Section 5.5 is a translation- 
invariant representation that does not sample the translation factor u. This creates 
a highly redundant signal representation. 

To reduce the representation size while maintaining translation invariance, one 
can use an adaptive sampling scheme, where the sampling grid is automatically 
translated when the signal is translated. For each scale d ,  W f ( u ,  a i )  = f*&j (u)  
can be sampled at locations u where I W f ( a j ,  u)  I is locally maximum. The re- 
sulting representation is translation invariant since the local maxima positions are 
translated when f and hence f*& are translated. This adaptive sampling is 
studied in Section 6.2.2. 

5.5 DYADIC WAVELET TRANSFORM 

To construct a translation-invariant wavelet representation, the scale s is discretized 
but not the translation parameter u. The scale is sampled along a dyadic sequence 
{2 j } jEz ,  to simplify the numerical calculations. Fast computations with filter 
banks are presented in the next two sections. An application to computer vision 
and texture discrimination is described in Section 5.5.3. 

The dyadic wavelet transform off  E L2(W) is defined by 

with 
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The following proposition proves that if the frequency axis is completely covered 
by dilated dyadic wavelets, as illustrated by Figure 5.4, then it defines a complete 
and stable representation. 

Theorem 5.11 Ifthere exist two constants A > 0 and B > 0 such that 

+m 
Qw E R -  { 0 }  , A 5 1$(2jw)I2 I B, (5.68) 

then 

+m A 

Qw ER-{O} , $*(2jw)4(2ju)  = 1, 

then 
+m . 

(5.69) 

(5.70) 

(5.71) 

Proof z. The Fourier transform of fi(u) = W f ( u ,  2 j )  with respect to u is derived from 
the convolution formula (5.67): 

j i ( W )  = f i 4 * ( 2 j u ) j ( w ) .  (5.72) 

The condition (5.68) implies that 

1 +m 

AI.?(~)I’ I 3 13j(u)12 S B I . ? ( ~ ) I * .  

Integrating each side of this inequality with respect to w and applying the Parseval 
equality (2.25) yields (5.69). 

Equation (5.71) is proved by taking the Fourier transform on both sides and in- 
serting (5.70) and (5.72). 

The energy equivalence (5.69) proves that the normalized dyadic wavelet transform 

j=-x 

satisfies frame inequalities. There exist an infinite number of reconstructing 
wavelets 4 that verify (5.70). They correspond to different left inverses of U ,  
calculated with (5.71). If we choose 

(5.73) 
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FIGURE 5.4 Scaled Fourier transforms 1$(2jw)I2 computed with (5.84), for 
1 5 j 5 5 and w E [ - 7 ~ ;  7 ~ ]  . 

then one can verify that the left inverse is the pseudo inverse 0-l. Figure 5.5 
gives a dyadic wavelet transform computed over 5 scales with the quadratic spline 
wavelet shown in Figure 5.6. 

5.5. I Wavelet Design 

A discrete dyadic wavelet transform can be computed with a fast filter bank al- 
gorithm if the wavelet is appropriately designed. The synthesis of these dyadic 
wavelets is similar to the construction of biorthogonal wavelet bases, explained in 
Section 7.4. All technical issues related to the convergence of infinite cascades 
of filters are avoided in this section. Reading Chapter 7 first is necessary for 
understanding the main results. 

Let h and g be a pair of finite impulse response filters. Suppose that h is 
a low-pass filter whose transfer function satisfies h(0) = A. As in the case of 
orthogonal and biorthogonal wavelet bases, we construct a scaling function whose 
Fourier transform is 

(5.74) 

We suppose here that this Fourier transform is a finite energy function so that 
q5 E L2 (B) . The corresponding wavelet $J has a Fourier transform defined by 

(5.75) 

Proposition 7.2 proves that both q5 and $J have a compact support because h and g 
have a finite number of non-zero coefficients. The number of vanishing moments 
of $J is equal to the number of zeroes of $(w)  at w = 0. Since $(O) = 1, (5.75) 
implies that it is also equal to the number of zeros of k(w)  at w = 0. 
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Signal 

2-4 \ 
2-3 1 1  

Approximation 

2-3 - 
FIGURE 5.5 Dyadic wavelet transform Wf(u,2 j )  computed at scales Z7 I: 
2j I with the filter bank algorithm of Section 5.5.2, for signal defined over 
[O, 11. The bottom curve carries the lower frequencies corresponding to scales 
larger than z3. 

Reconstructing Wavelets Reconstructing wavelets that satisfy (5.70) are calcu- 
lated with a pair of finite impulse response dual filters i and g. We suppose that 
the following Fourier transform has a finite energy: 

Let us define 

(5.76) 

(5.77) 
A 

The following proposition gives a sufficient condition to guarantee that i j is the 
Fourier transform of a reconstruction wavelet. 

Proposition 5.5 If the filters satisfy 
A 

vw E [-7r,7r] , i ( w ) f i * ( w )  +&J) b * ( W )  = 2 (5.78) 

then 
+OC A 

t/w EW-{0) , 4*(2'w).J1(2jw) = 1 .  (5.79) 
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Proof z. The Fourier transform expressions (5.75) and (5.77) prove that 

&d)$(w) = $(;) 1- i* (4) q;) 8 (4). 
Equation (5.78) implies 

h 

$(w,$(w) = f p--W(;) ZI (31 ;(;) 8 (E) 2 
c 

= 4 ( ; )  @ (4) -$(w)@(u) .  

Hence 6 ?(2jw)4*(2jw) = 8(2-L);(24w) - $(2b);(2b). 
j=-1 

Since g(0) = 0, (5.78) implies i (0 )  k (0) = 2. We also impose that i (0)  = f i  so one 
can derive from (574,576) that Z(0) = @(O) = 1. Since q5 and 4 belong to L'(W), 
2, and q5 are continuous, and the Riemann-Lebesgue lemma (Problem 2.6) proves that 
1$(w)l and I&(w)l decrease to zero when w goes to 00. For w # 0, letting k and 1 go 

c 
h 

to +oc yields (5.79). 

Observe that (5.78) is the same as the unit gain condition (7.122) for biorthogonal 
wavelets. The aliasing cancellation condition (7.121) of biorthogonal wavelets is 
not required because the wavelet transform is not sampled in time. 

Finite Impulse Response Solution Let us shift h and g to obtain causal filters. 
The resulting transfer functions i ( w )  and i ( w )  are polynomials in e-iW. We sup- 
pose that these polynomials have no common zeros. The Bezout Theorem 7.6 on 
polynomials proves that if P ( z )  and Q(z )  are two polynomials of degree n and I ,  
with no common zeros, then there exists a unique pair of polynomials p ( z )  and 
Q(z)  of degree 1 - 1 and n - 1 such that 

P ( z )  p(z) + Q(z) Q(z)  = 1. (5.80) 

This guarantees the existence of h(w) and $(w) that are polynomials in e-iW and 
satisfy (5.78). These are the Fourier transforms of the finite impulse response filters 
h and 2. One must however be careful because the resulting scaling function 4 in 
(5.76) does not necessarily have a finite energy. 

h 

h 

Spline Dyadic Wavelets A box spline of degree m is a translation of m + 1 con- 
volutions of l p l ]  with itself. It is centered at t = 1/2 if rn is even and at t = 0 if 
rn is odd. Its Fourier transform is 

I (5.81) 
sin(w/2) rn+l 1 ifrniseven 

0 ifmisodd exp (F) with E =  { ~ ( w )  = ( w/2 ) 
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FIGURE 5.6 Quadratic spline wavelet and scaling function. 

I53 

(5.82) 

We construct a wavelet that has one vanishing moment by choosing g(w) = 
O(w) in the neighborhood of w = 0. For example 

g(w> = -i JZ sin - exp - 
2 (-3. (5.83) 

The Fourier transform of the resulting wavelet is 

&W) = -2 1 ( w )  
(E) - -iw (sin(w/4) J z z  2 4 w/4 

(5.84) 
It is the first derivative of a box spline of degree rn + 1 centered at t = (1 + e)/4. 
For rn = 2, Figure 5.6 shows the resulting quadratic splines 4 and $. The dyadic 
admissibility condition (5.68) is verifiednumerically forA = 0.505 and B = 0.522. 

To design dual scaling functions 4 and wavelets 6 which are splines, we choose 
h = i. As a consequence, 4 = 4 and the reconstruction condition (5.78) implies 
that 

h 

2n m - 2- li(w)12 
= -i&exp (9) sin; (cos;) . (5.85) 

n=O 

Table 5.3 gives the corresponding filters form = 2. 

5.5.2 “Algorithme a Trous” 

Suppose that the scaling functions and wavelets 4, $, 4 and are designed with 
the filters h, g ,  and g. A fast dyadic wavelet transform is calculated with a filter 
bank algorithm called in French the algonthme B trous, introduced by Holschnei- 
der, Kronland-Martinet, Morlet and Tchamitchian [212]. It is similar to a fast 
biorthogonal wavelet transform, without subsampling [308,26 I]. 
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0.125 
0.375 
0.375 

, 0.125 

0.125 
0.375 
0.375 
0.125 

-0.5 
0.5 

-0.03125 
-0.21875 
-0.6875 

0.6875 
0.21875 I 0.03125 

Table 5.3 Coefficients of the filters computed fromtheir transfer functions (5.82, 
5.83,5.85) form = 2. These filters generate the quadratic spline scaling functions 
and wavelets shown in Figure 5.6. 

Let j ( t )  be a continuous time signal characterized by N samples at a distance 
N-’ over [0,1]. Its dyadic wavelet transform can only be calculated at scales 
1 > 2j 2 N - l .  To simplify the description of the filter bank algorithm, it is easier 
to consider the signal f ( t )  = j ( N - l r ) ,  whose samples have distance equal to 1 .  A 
change of variable in the dyadic wavelet transform integral shows that W j ( u ,  21’) = 
N-lI2 Wf(Nu,N2j).  We thus concentrate on the dyadic wavelet transform of f, 
from which the dyadic wavelet transform of j is easily derived. 

Fast Dyadic Transform We suppose that the samples ~ [ n ]  of the input discrete 
signal are not equal to f (n) but to a local average off in the neighborhood oft = n. 
Indeed, the detectors of signal acquisition devices perform such an averaging. The 
samples uo[n] are written as averages of f ( t )  weighted by the scaling kernels 
+(r - n): 

+m 
.ob1 = ( f ( t ) , + ( t - n ) )  = 1 f(t)4(t-n)dt. 

-m 

This is further justified in Section 7.3.1. For any j 2 0, we denote 

The dyadic wavelet coefficients are computed for j > 0 over the integer grid 

For any filter 44, we denote by xj[n] the filters obtained by inserting 2j - 1 
zeros between each sample of 4.1. Its Fourier transform is 2(2jw). Inserting 
zeros in the filters creates holes (frous in French). Let Xi[.] = xj[-n]. The next 
proposition gives convolution formulas that are cascaded to compute a dyadic 
wavelet transform and its inverse. 

Proposition 5.6 For any j 2 0, 

(5.86) 
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Proof =. Proof of (5.86). Since 

we verify with (3.3) that their Fourier transforms are respectively 

+E 

i i j+l (w )  = j ( w  + 2 h )  (w + 2k7r) 
k=-m 

and 
+m 

2’+1(U) = j(W+2k7i)&j+l(w+2k7r).  

4 , j + l  (w )  = d 5 4 ( 2 i + l w )  = i(2’w) &74(2Jw),  

&+I (w )  = @4(2’+’W) = i (2’w) &74(2’w). 

k=-m 

The properties (5.76) and (5.77) imply that 

Since j 2 0, both h(2jw) and i ( 2 j w )  are 27r periodic, so 

iij+l(w) = k(2’w)i i j (w)  and Aj+l(w) = i * (2 ’w) i i j (w) .  (5.88) 

These two equations are the Fourier transforms of (5.86). 

Proof of (5.87). Equations (5.88) imply 
h 

iij+ 1 (w ) E (2’w) + ;tj+ 1 (w )  Z( 2’w) 

a’ ( w )  f* (2’w) A(2’w) 

= 
A 

+ 2’ (w)  b” (2’”) Z(2’w). 

Inserting the reconstruction condition (5.78) proves that 
h 

2’+,(U)i(2’U) +;tj+1(w);(2’w) = 2 i i j ( W ) ,  

which is the Fourier transform of (5.87). 

The dyadic wavelet representation of a0 is defined as the set of wavelet coefficients 
up to a scale ZJ plus the remaining low-frequency information uJ: 

(5.89) 

It is computed from a0 by cascading the convolutions (5.86) for 0 5 j < J ,  as 
illustrated in Figure 5.7(a). The dyadic wavelet transform of Figure 5.5 is calcu- 
lated with this filter bank algorithm. The original signal a0 is recovered from its 
wavelet representation (5.89) by iterating (5.87) for J > j 2 0, as illustrated in 
Figure 5.7(b). 
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FIGURE 5.7 (a): The dyadic wavelet coefficients are computed by cascading 
convolutions with dilated filters hj and g j .  (b): The original signal is reconstructed 
through convolutions with i j  and gj .  A multiplication by 1/2 is necessary to 
recover the next finer scale signal aj. 

If the input signal a0 [n] has a finite size of N samples, the convolutions (5.86) are 
replaced by circular convolutions. The maximum scale 2J is then limited to N ,  and 
for J = log,N one can verify that aJ [n] is constant and equal to ~ - 1 1 2  xrzi a0 [n]. 
Suppose that h and g have respectively Kh and K, non-zero samples. The “dilated” 
filters h, and g, have the same number of non-zero coefficients. The number of 
multiplications needed to compute aj+l and dj+l from aj  or the reverse is thus 
equal to (Kh + K,)N. For J = log2N, the dyadic wavelet representation (5.89) 
and its inverse are thus calculated with (Kh + Kg)Nlog2N multiplications and 
additions. 

5.5.3 Oriented Wavelets for a Vision 

Image processing applications of dyadic wavelet transforms are motivated by many 
physiological and computer vision studies. Textures can be synthesized and dis- 
criminated with oriented two-dimensional wavelet transforms. Section 6.3 relates 
multiscale edges to the local maxima of a wavelet transform. 

Oriented Wavelets In two dimensions, a dyadic wavelet transform is computed 
with several mother wavelets ( $ k ) l < k < K  _ _  which often have different spatial orien- 
tations. For x = ( x I , x ~ ) ,  we denote 

The wavelet transform of f E L2(W2) in the direction k is defined at the position 
u = (u1, uz) and at the scale 2j by 

W k f ( u , 2 j )  = ( f ( X ) , $ $ ( X - U ) )  = f * @ j ( U ) .  (5.90) 
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As in Theorem 5.11, one can prove that the two-dimensional wavelet transform is 
a complete and stable signal representation if there exist A > 0 and B such that 

K +a 

VW = ( w ~ , w z )  E R2 - {(O,O)} : A 5 I4?(2’~)1~ 5 B.  (5.91) 
k=l j=-m 

Then there exist reconstruction wavelets {$k}lsks~ whose Fourier transforms 
satisfy 

which yields 

(5.92) 

(5.93) 

Wavelets that satisfy (5.91) are called dyadic wavelets. 
Families of oriented Wavelets along any angle (Y can be designed as a linear 

expansion of K mother wavelets [312]. For example, a wavelet in the direction a 
may be defined as the partial derivative of order p of a window e ( x )  in the direction 
of the vector Z = (cos a,  sina): 

This partial derivative is a linear expansion of K = p + 1 mother wavelets 

with 

(5.94) 

For appropriate windows 8, these p + 1 partial derivatives define a family of dyadic 
wavelets. In the direction a, the wavelet transform Waf(u,2j) = f * $ z ( u )  is 
computed from the p + 1 components Wkf(u; 23) = f (u) with the expansion 
(5.94). Section 6.3 uses such oriented wavelets, with p = 1, to detect the multiscale 
edges of an image. 

Gabor Wavelets In the cat’s visual cortex, Hubel and Wiesel[215] discovered a 
class of cells, called simple cells, whose responses depend on the frequency and 
orientation of the visual stimuli. Numerous physiological experiments [283] have 
shown that these cells can be modeled as linear filters, whose impulse responses 
have been measured at different locations of the visual cortex. Daugmann [ 1491 
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FIGURE 5.8 Each circle represents the frequency support of a dyadic wavelet 
$5. This support size is proportional to 2-j and its position rotates when k is 
modified. 

showed that these impulse responses can be approximated by Gabor wavelets, 
obtained with a Gaussian window g(x1 ,x2) multiplied by a sinusoidal wave: 

$‘(xI,x2> = g(x1,xz) exp[-ir](xl C O S Q ~  +xzsinak)]. 

The position, the scale and the orientation ak of this wavelet depend on the cortical 
cell. These findings suggest the existence of some sort of wavelet transform in the 
visual cortex, combined with subsequent non-linearities [284]. The “physiologi- 
cal” wavelets have a frequency resolution on the order of 1-1.5 octaves, and are 
thus similar to dyadic wavelets. 

Let k(w1,wz) be the Fourier transfonn of g(x1,xz). Then 

$;j(w1:w2) = f i ~ ( 2 ~ w 1 - q c o s a k , 2 j w 2  -qsinak). 

In the Fourier plane, the energy of this Gabor wavelet is mostly concentrated 
around (2-jq cos ak, 2-jqsinak), in a neighborhood proportional to 2- j .  Figure 
5.8 shows a cover of the frequency plane by such dyadic wavelets. The bandwidth 
of k(w1,w2) and r] must be adjusted to satisfy (5.91). 

Texture Discrimination Despite many attempts, there are no appropriate mathe- 
matical models for “homogeneous image textures.” The notion of texture homo- 
geneity is still defined with respect to our visual perception. A texture is said to be 
homogeneous if it is preattentively perceived as being homogeneous by a human 
observer. 

The texton theory of Julesz [231] was a first important step in understanding 
the different parameters that influence the perception of textures. The orientation 
of texture elements and their frequency content seem to be important clues for 
discrimination. This motivated early researchers to study the repartition of texture 



5.5 DYADIC WAVELET TRANSFORM I59 

FIGURE 5.9 Gabor wavelet transform JWkf(u,2j)12 of a texture patch, at the 
scales Z4 and r 5 ,  along two orientations a k  respectively equal to 0 and 7r/2 for 
k = 1 and k = 2. The darker a pixel, the larger the wavelet coefficient amplitude. 

energy in the Fourier domain 1851. For segmentation purposes, it is however 
necessary to localize texture measurements over neighborhoods of varying sizes. 
The Fourier transform was thus replaced by localized energy measurements at 
the output of filter banks that compute a wavelet transform [224, 244, 285, 3341. 
Besides the algorithmic efficiency of this approach, this model is partly supported 
by physiological studies of the visual cortex. 

Since Wkf (u ,  2j) = (f ( x ) ,  $,”, ( x  - u ) ) ,  we derive that 1 Wkf (u ,  2j) 1’ measures 
the energy of f in a spatial neighborhood of u of size 2’ and in a frequency 
neighborhood of ( 2 - j ~  cos a k  , 2-j77 sin a k )  of size 2-j. Varying the scale 21 and 
the angle ak modifies the frequency channel [ 1001. The wavelet transform energy 
IWkf(u,2j)I2 is large when the angle a k  and scale 2j  match the orientation and 
scale of high energy texture components in the neighborhood of u. The amplitude 
of I W k f ( u ,  2j) 1’ can thus be used to discriminate textures. Figure 5.9 shows the 
dyadic wavelet transform of two textures, computed along horizontal and vertical 
orientations, at the scales 2-4 and 2-5 (the image support is normalized to [0,1]’). 
The central texture has more energy along horizontal high frequencies than the 
peripheric texture. These two textures are therefore discriminated by the wavelet 
oriented with ak = 0 whereas the other wavelet corresponding (Yk = 7r/2 produces 
similar responses for both textures. 

For segmentation, one must design an algorithm that aggregates the wavelet 
responses at all scales and orientations in order to find the boundaries of ho- 
mogeneous textured regions. Both clustering procedures and detection of sharp 
transitions over wavelet energy measurements have been used to segment the im- 
age 1224, 285, 3341. These algorithms work well experimentally but rely on ad 
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hoc parameter settings. 
A homogeneous texture can be modeled as a realization of a stationary process, 

but the main difficulty is to find the characteristics of this process that play a role 
in texture discrimination. Texture synthesis experiments [277, 3131 show that 
Markov random field processes constructed over grids of wavelet coefficients offer 
a promising mathematical framework for understanding texture discrimination. 

5.6 PROBLEMS 

5.1. lProvethatifKEZ-{O}then{ek[n] =e~p(i27rkn/(KN))}~~~<~isatight 
frame of CN. Compute the frame bound. 

5.2. Prove that if K E B - (0) then {ek( t )  = exp (i27rknf/K)}kez is a tight frame 
of Lz [0,1]. Compute the frame bound. 

5.3. Let b = Prove that {g( t -nuo)  exp( i2knt /uo)} (k ,n)E~ is an ortho- 
normal basis of Lz(R). 

5.4. ' Let gn,k(t) = g(t - n h )  exp(ik&), where g is a window whose support is 
included in [-../to: 7r/to]. 

(a) prove that Ig(f-nUo)12f(t) =E,'="_, (f,gn,k)gn,k(t). 
(b) Prove Theorem 5.8. 

5.5. ' Compute the trigonometric polynomials &(w) and i ( w )  of minimum degree 
that satisfy (5.78) for the spline filters (5.82,5.83) with m = 2. Compute 4 with 
WAVELAB. Is it a finite energy function? 

Compute a cubic spline dyadic wavelet with 2 vanishing moments using the 
filter h defined by (5.82) form = 3, with a filter g having 3 non-zero coefficients. 
Compute in WAVELAB the dyadic wavelet transform of the Lady signal with this 
new wavelet. Calculate ~ [ n ]  ifi;[n] = I+]. 

5.7. ' Let {g(r  - n h )  exp(ik&bt)}(n,k),G be a windowed Fourier frame defined by 
g( t )  = 7rP1l4 exp(- t2/2)  with uo = (0 and uot0 < 27r. With the conjugate 
gradient algorithm of Theorem 5.4, compute in MATLAB the window j ( t )  that 
generates the dual frame, for the values of % t o  in Table 5.1. Compare j with 
g and explain your result. Verify numerically that when 60 ~0 = 27r then j is a 
discontinuous function that does not belong to Lz (W) . 

Prove that a finite set of N vectors {qhn}lsns~ is always a frame of the space 
V generated by linear combinations of these vectors. With an example, show 
that the frame bounds A and B may go respectively to 0 and +m when N goes 
to +m. 

Sigma-Delta converter A signal f (t) is sampled and quantized. We suppose 
that 

(a) Let x[n] = f(nT/K). Show that if w E [-7r77r] then i(w) # 0 only if 

(b) Let Z[n] = e(.[.]) be the quantized samples. We now consider x[n] as a 
random vector, and we model the error ~ [ n ]  -?[n] = W[n] as a white noise 
process of variance c2. Find the filter h[n] that midmizes 

h 

5.6. 

5.8. 

5.9. 
has a support in [-n/T,r/T]. 

w E [-T/K,T/K]. 

e =  E{JIZ.*h-xJJ2}, 
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and compute this minimum as a function of u2 and K. Compare your result 
with (5.43). 

(c) Let fi ,  (w )  = (1 - e-")-' be the transfer function of a discrete integration of 
orderp. WequantizeZ[n] = Q(x+h,[n]). Findthefilterh[n] thatminimizes 
E = E{ III*h - ~ 1 1 ~ } ,  and compute this minimum as a function of a', K and 
p. For a fixed oversampling factor K, how can we reduce this error? 

Let $ be a dyadic wavelet that satisfies (5.68). Let lz(Lz(R)) be the space of 
sequences {gj(u)}jEz such that Cl=yoc llg,112 < +co. 
(a) Verifythatiff ~L~(R) then{Wf(u ,2 j )}~~z  E I ~ ( L ~ ( R ) ) .  Letqbedefined 

5.10. 

bY 

and W-' be the operator defined by 

1 +30 

W-'{gj(u))jEz = 2gj*&(t ) .  
j=-w 

Prove that W-' is the pseudo inverse of W in l2(LZ(R)). 
(b) Verify that 4 has the same number of vanishing moments as $. 
(c) Let V be the subspace of lZ(Lz(R)) that regroups all the dyadic wavelet 

transforms of functions in L2(R). Compute the orthogonal projection of 
{gj (u)  1 jcz in V- 

5.11. Prove that if there exist A > 0 and B 1 0 such that 

A(2- lh(w)12) I lb(w)1' S B ( 2 -  If i(w)I2), (5.95) 

and if q5 defined in (5.74) belongs to L2(W), then the wavelet T) given by (5.75) 
is a dyadic wavelet. 

5.12. zak transform The Zak transform associates to any f E Lz(R) 

+m 

- I ) .  
l=-ffi  

(a) Prove that it is a unitary operator from Lz(P) to Lz[O, 11': 

by verifying that for g = 1[,3,11 it transforms the orthogonal basis {g+(t) = 
g(t - n) e x p ( i 2 ~ k t ) } ( , , ~ ) ~ ~ ~  of L2(R) into an orthonormal basis of 
LZ[O, 112. 

(b) Prove that the inverse Zak transform is defined by 

I 
Vh E L2[0,1]2 , Z-'h(u) = 1 h(u,S)dE. 
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(c) Prove that if g E Lz(W) then {g(t -n) exp(i2~kr)}(,~~~fi is a frame of 
Lz (W) if and only if there exist A > 0 and B such that 

V h t )  E [O, 112 1 A I IZg(~,t)Iz I B 1 (5.96) 

where A and B are the frame bounds. 

defined by Zg(u,<) = l/Zg*(u,t). 
(d) Prove that if (5.96) holds then the dual window ?: of the dual frame is 

Suppose that 3 has a support in [--7i/T17r/T]. Let ( f ( t , ) } , € ~  be irregular 
samples that satisfy (5.4). With an inverse frame algorithm based on the con- 
jugate gradient Theorem 5.4, implement in - a procedure that computes 
{ f ( n T ) } , E z  (from which f can be recovered with the sampling Theorem 3.1). 
Analyze the convergence rate of the conjugate gradient algorithm as a function 
of 6. What happens if the condition (5.4) is not satisfied? 

Develop a texture classification algorithm with a two-dimensional Gabor 
wavelet transform using four oriented wavelets. The classification procedure 
can be based on “feature vectors” that provide local averages of the wavelet 
transform amplitude at several scales, along these four orientations [224, 244, 
285,3341. 

5.13. 

5.14. 
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wavelet transform can focus on localized signal structures with a zooming 
procedure that progressively reduces the scale parameter. Singularities A and irregular structures often carry essential information in a signal. For 

example, discontinuities in the intensity of an image indicate the presence of edges 
in the scene. In electrocardiograms or radar signals, interesting information also 
lies in sharp transitions. We show that the local signal regularity is characterized 
by the decay of the wavelet transform amplitude across scales. Singularities and 
edges are detected by following the wavelet transform local maxima at fine scales. 

Non-isolated singularities appear in complex signals such as multifractals. In 
recent years, Mandelbrot led a broad search for multifractals, showing that they are 
hidden in almost every comer of nature and science. The wavelet transform takes 
advantage of multifractal self-similarities, in order to compute the distribution 
of their singularities. This singularity spectrum is used to analyze multifractal 
properties. Throughout the chapter, the wavelets are real functions. 

6. I LlPSCHlTZ REGULARITY ’ 
To characterize singular structures, it is necessary to precisely quantify the local 
regularity of a signal f ( t ) .  Lipschitz exponents provide uniform regularity mea- 
surements over time intervals, but also at any point v. If f has a singularity at 
v, which means that it is not differentiable at v, then the Lipschitz exponent at v 
characterizes this singular behavior. 

The next section relates the uniform Lipschitz regularity of f over W to the 

I63 
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asymptotic decay of the amplitude of its Fourier transform. This global regularity 
measurement is useless in analyzing the signal properties at particular locations. 
Section 6.1.3 studies zooming procedures that measure local Lipschitz exponents 
from the decay of the wavelet transform amplitude at fine scales. 

6. I. I 

The Taylor formula relates the differentiability of a signal to local polynomial 
approximations. Suppose that f is m times differentiable in [v - h, v + h]. Let pv 
be the Taylor polynomial in the neighborhood of v: 

Lipschitz Definition and Fourier Analysis 

The Taylor formula proves that the approximation error 

satisfies 

The mrh order differentiability off in the neighborhood of v yields an upper bound 
on the error Ev(t) when t tends to v. The Lipschitz regularity refines this upper 
bound with non-integer exponents. Lipschitz exponents are also called Holder 
exponents in the mathematical literature. 

Definition 6.1 (LPSCHEZ) A function f is pointwise Lipschitz a 2 0 at v, i f  
there exist K > 0, and a polynomial pv of degree m = la1 such that 

V t € B  , If(t>-pv(t)I I K I t - v y .  (6.3) 

A function f is unifonnly Lipschitz a over [a, b] i f  it satisfies (6.3) for all 

The Lipschitz regularity off at v or over [a, b] is the sup of the a such that f 

v E [a, b], with a constant K that is independent of v. 

is Lipschitz a. 

At each v the polynomial pv(t)  is uniquely defined. If f is m = La] times 
continuously differentiable in a neighborhood of v, then pv is the Taylor expansion 
of f at v. Pointwise Lipschitz exponents may vary arbitrarily from abscissa to 
abscissa. One can construct multifractal functions with non-isolated singularities, 
where f has a different Lipschitz regularity at each point. In contrast, uniform 
Lipschitz exponents provide a more global measurement of regularity, which ap- 
plies to a whole interval. Iff  is uniformly Lipschitz a > m in the neighborhood 
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of v then one can verify that f is necessarily m times continuously differentiable 
in this neighborhood. 

If 0 5 Q < 1 then p V ( t )  = f (v) and the Lipschitz condition (6.3) becomes 

v t  E B , I f  ( t )  - f ( v )  I I K It - v y . 
A function that is bounded but discontinuous at v is Lipschitz 0 at v.  If the Lipschitz 
regularity is Q < 1 at v ,  then f is not differentiable at v and a characterizes the 
singularity type. 

Fourier Condition The uniform Lipschitz regularity of f over B is related to 
the asymptotic decay of its Fourier transform. The following theorem can be 
interpreted as a generalization of Proposition 2.1. 

Theorem 6.1 Afunction f is bounded and uniformly Lipschitz Q over B i f  

[ y ] & ) l ( l + / W l a ) d ~  <+m. (6.4) 

Proof '. To prove that f is bounded, we use the inverse Fourier iategral(2.8) and (6.4) 
which shows that 

Let us now verify the Lipschitz condition (6.3) when 0 5 o 5 1. In this case pY(t) = 
f(v) and the uniform Lipschitz regularity means that there exists K > 0 such that for 
all (t,v) E B* 

I f ( t )  - f(') I 5 K. 
It - VI= 

Since 
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If (6.4) is satisfied, then K < +m so f is uniformly Lipschitz a. 

Let us extend this result form = 1.11 > 0. We provedin (2.42) that (6.4) implies that 
f is m times continuously differentiable. One can verify that f is uniformly Lipschitz 
a over R if and only iff'") is uniformly Lipschitz a - m over R. The Fourier transform 
of f(") is ( i ~ ) ~ j ( w ) .  Since 0 5 a - m  < 1, we can use our previous result which 
proves that f(") is uniformly Lipschitz a! - m, and hence that f is uniformly Lipschitz 
a. 

The Fourier transform is a powerful tool for measuring the minimum global reg- 
ularity of functions. However, it is not possible to analyze the regularity of f at 
a particular point v from the decay of 1j(w)l at high frequencies w. In contrast, 
since wavelets are well localized in time, the wavelet transform gives Lipschitz 
regularity over intervals and at points. 

6. I .2 Wavelet Vanishing Moments 

To measure the local regularity of a signal, it is not so important to use a wavelet with 
a narrow frequency support, but vanishing moments are crucial. If the wavelet has 
n vanishing moments then we show that the wavelet transform can be interpreted 
as a multiscale differential operator of order n. This yields a first relation between 
the differentiability off  and its wavelet transform decay at fine scales. 

Polynomial Suppression 
polynomial pv in the neighborhood of v: 

The Lipschitz property (6.3) approximates f with a 

f ( t )  =pv ( t )+Ev( t )  with IcV(t)l <K l t - v l " .  (6.6) 

A wavelet transform estimates the exponent Q by ignoring the polynomial pv. For 
this purpose, we use a wavelet that has n > Q vanishing moments: 

+m 
t k + ( t ) d t = ~  for O < k < n .  L 

A wavelet with n vanishing moments is orthogonal to polynomials of degree n - 1. 
Since CY < n, the polynomial pv has degree at most n - 1. With the change of 
variable t' = (t  - u)  /s we verify that 

1 t - u  +X 

WPV(U,S) = pv(t)--lC, (s) dt=O. L f i  
Since f = pv +eV,  

W f  (u,s) = W E , ( U , S ) .  

Section 6.1.3 explains how to measure Q from I W f  (u, s) I when u is in the neigh- 
borhood of v. 
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Multiscale Differential Operator The following proposition proves that a wavelet 
with n vanishing moments can be written as the nrh order derivative of a function 
8; the resulting wavelet transform is a multiscale differential operator. We suppose 
that $ has a fast decay which means that for any decay exponent m E N there exists 
C,,, such that 

(6.9) 
Cm 

1 + ltlm ' d t € R ;  I$(t)lI-. 

Theorem 6.2 A wavelet $ with a fast decay has n vanishing moments ifand only 
if there exists 8 with a fast decay such that 

dn8(t)  
dt" ' 

$( t )  = (-1)"- (6.10) 

As a consequence 

(6.11) 

with 8,(t) = s- ' /28(- t /s) .  Moreovel; $ has no more than n vanishing moments 
ifand only ifJ+z 8(t)  dt # 0. 

d" 
dun Wf (UP) = S" -(f *8s)(u) 7 

Proof The fast decay of $ implies that $ is Cm. This is proved by setting f = $ in 
Proposition 2.1. The integral of a function is equal to its Fourier transform evaluated 
at w = 0. The derivative property (2.22) implies that for any k < n 

(6.12) 

We can therefore make the factorization 

$(w) = (-iw)"h(w), (6.13) 

and h(w) is bounded. The fast decay of B is proved with an induction on n. For n = 1, 

e( t )  = $(u)du= l+m$(u)du, L 
and the fast decay of 0 is derived from (6.9). We then similarly verify that increasing 
by 1 the order of integration up to n maintains the fast decay of 0. 

Conversely, lh(w)l Is_'," le(t)Idt < +m,becauseB hasafastdecay. TheFourier 
transform of (6.10) yields (6.13) which implies that $@)(O) = 0 fork < n. It follows 
from (6.12) that has n vanishing moments. 

To test whether $ has more than n vanishing moments, we compute with (6.13) 

p $ ( t ) d t  = (i)"@")(O) = ( - i )"n!8(0) .  

Clearly, $ has no more than n vanishing moments if and only if 8( 0) = I_'," B ( t )  dt # 0. 
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FIGURE 6.1 Wavelet transform W f ( u , s )  calculated with q!I = -8' where I3 is a 
Gaussian, for the signal f shown above. The position parameter u and the scale 
s vary respectively along the horizontal and vertical axes. Black, grey and white 
points correspond respectively to positive, zero and negative wavelet coefficients. 
Singularities create large amplitude coefficients in their cone of influence. 

The wavelet transform (4.32) can be written 

Wf(u,s) = f*&(u) with &(t)  = (6.14) 

We derive from (6.10) that &(t)  = s" -. Commuting the convolution and differ- 
entiation operators yields 

d"a, d" 
dtn dun 

Wf(u,s) = s " f * - ( u )  = s n  -(f*e,)(u).  

If K = J-++oo"e(t)dt # 0 then the convolution f * $ , ( t )  can be interpreted as a 
weighted average off  with a kernel dilated by s. So (6.11) proves that W f ( u ,  s) is 
an nZh order derivative of an averaging off over a domain proportional to s. Figure 
6.1 shows a wavelet transform calculated with q!I = 4, where I3 is a Gaussian. 
The resulting W f ( u , s )  is the derivative o f f  averaged in the neighborhood of u 
with a Gaussian kernel dilated by s. 

Since 0 has a fast decay, one can verify that 

1 -  
lim-Os = K S ,  
s+o fi 
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in the sense of the weak convergence (A.30). This means that for any 4 that is 
continuous at u, 

1 -  
lirn4*- Os(.) = K 4 ( u ) .  
s+o 4 

If f is n times continuously differentiable in the neighborhood of u then (6.11) 
implies that 

(6.15) 

In particular, if f is C" with a bounded nth order derivative then IWf (u,s)l = 
O(S"+' /~ ) .  This is a first relation between the decay of I Wf (u, s) I when s decreases 
and the uniform regularity of f .  Finer relations are studied in the next section. 

6. I .3 

The decay of the wavelet transform amplitude across scales is related to the uniform 
and pointwise Lipschitz regularity of the signal. Measuring this asymptotic decay 
is equivalent to zooming into signal structures with a scale that goes to zero. We 
suppose that the wavelet $ has n vanishing moments and is Cn with derivatives 
that have a fast decay. This means that for any 0 I k I n and m E N there exists 
C, such that 

(6.16) 

The following theorem relates the uniform Lipschitz regularity off on an interval 
to the amplitude of its wavelet transform at fine scales. 

Regularity Measurements with Wavelets 

CWI 
Vt E R 7 I$(Yt)l  I l+ltlm . 

Theorem 6.3 I f f  E L2(R) is uniformZy Lipschitz CY 5 n over [a: b],  then there 
exists A > 0 such that 

V(u,s) E [a,b] xR+ , IWf(u,s)I < A s  a+ 1 /2 . (6.17) 

Conversely, suppose that f is bounded and that Wf (u,s) satisJies (6.17) for an 
CY < n that is not an integel: Then f is uniformly Lipschitz CY on [a + E ,  b - E ] ,  for 
any E > 0. 

Proof '. This theorem is proved with minor modifications in the proof of Theorem 
6.4. Since f is Lipschitz a at any v E [n,b], Theorem 6.4 shows in (6.20) that 

For u E [u,b], we can choose v = u, which implies that IWf(u:s)I 5 Asa+'/'. We 
verify from the proof of (6.20) that the constant A does not depend on v because the 
Lipschitz regularity is uniform over [u, b] . 
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To prove that f is uniformly Lipscbitz a over [a + E, b - E] we must verify that 
there exists K such that for all v E [u + E, b - E] we can find a polynomial pv of degree 
La] suchthat 

W E j R  , I f ( t ) - ~ v ( t ) l  I K 1 t - V .  (6.18) 
When t $! [u + 4 2 ,  b - ~ / 2 ]  then It - V I  2 e/2 and since f is bounded, (6.18) is verified 
with a constant K that depends on E. For t E [u + ~ / 2 ,  b - 6/21, the proof follows the 
same derivations as the proof of pointwise Lipschitz regularity from (6.21) in Theorem 
6.4. The upper bounds (6.26) and (6.27) are replaced by 

Vt E [u+~ /2 ,b -  421 , IAy'(t)I 5 K2(a'-k)j for 0 I k 5 LaJ + 1 . (6.19) 

This inequality is verified by computing an upper bound integral similar to (6.25) but 
which is divided in two, for u E [a: b] and u 4 [u: b]. When u E [u, b], the condition 
(6.21) is replaced by IWf(u,s)I 5 Asa+l12 in (6.25). When u $! [u,b], we just use the 
fact that IWf(u,s)I 5 l l f l l  11$11 and derive (6.19) from the fast decay of I$@)(t)l, by 
observing that It - U I  2 ~ / 2  for t E [a + ~ / 2 ,  b - c/2]. The constant K depends on A 
and E but not on v. The proof then proceeds like the proof of Theorem 6.4, and since 
the resulting constant K in (6.29) does not depend on v,  the Lipschitz regularity is 

The inequality (6.17) is really a condition on the asymptotic decay of I Wf(u,s)l 
when s goes to zero. At large scales it does not introduce any constraint since the 
Cauchy-Schwarz inequality guarantees that the wavelet transform is bounded: 

uniformover [u-~:b+c].  

IWf(u,s)l = I ( f , & S J I  I llfll II1CIII- 
When the scale s decreases, W f ( u ,  s) measures fine scale variations in the neigh- 
borhood of u. Theorem 6.3 proves that IWf(u, s) I decays like over intervals 
where f is uniformly Lipschitz a. 

Observe that the upper bound (6.17) is similar to the sufficient Fourier condition 
of Theorem 6.1, which supposes that 1 j ( w )  I decays faster than w-". The wavelet 
scale s plays the role of a "localized" inverse frequency w-l .  As opposed to the 
Fourier transform Theorem 6.1, the wavelet transform gives a Lipschitz regularity 
condition that is localized over any finite interval and it provides a necessary 
condition which is nearly sufficient. When [a,b] = P then (6.17) is a necessary 
and sufficient condition for f to be uniformly Lipschitz a on P. 

If ?,!J has exactly n vanishing moments then the wavelet transform decay gives no 
information concerning the Lipschitz regularity off  for a > n. I f f  is uniformly 
Lipschitz a > n then it is C" and (6.15) proves that lims,~s-"-1/2 Wf(u , s )  = 
~ f ( " ) ( u )  with K # 0.  his proves that I ~ f ( u , s ) )  - f + l l z  at fine scales despite 
the higher regularity of f .  

If the Lipschitz exponent a is an integer then (6.17) is not sufficient in order 
to prove that f is uniformly Lipschitz a. When [a,b] = R, if a = 1 and $ has 
two vanishing moments, then the class of functions that satisfy (6.17) is called the 
Zygmund class [47]. It is slightly larger than the set of functions that are uniformly 
Lipschitz 1. For example, f ( t )  = t log, t belongs to the Zygmund class although 
it is not Lipschitz 1 at t = 0. 
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Pointwire Lipschitz Regularity The study of pointwise Lipschitz exponents with 
the wavelet transform is a delicate and beautiful topic which finds its mathematical 
roots in the characterization of Sobolev spaces by Littlewood and Paley in the 
1930's. Characterizing theregularity off at apoint v can be difficult because f may 
have very different types of singularities that are aggregated in the neighborhood 
of v. In 1984, Bony [99] introduced the "two-microlocalization" theory which 
refines the Littlewood-Paley approach to provide pointwise characterization of 
singularities, which he used to study the solution of hyperbolic partial differential 
equations. These technical results became much simpler through the work of 
Jaffard [220] who proved that the two-microlocalization properties are equivalent 
to specific decay conditions on the wavelet transform amplitude. The following 
theorem gives a necessary condition and a sufficient condition on the wavelet 
transform for estimating the Lipschitz regularity off at a point v. Remember that 
the wavelet ?+!J has n vanishing moments and n derivatives having a fast decay. 

Theorem 6.4 (JAFFARD) I f f  E L2(R) is Lipschitz a I n at v, then there exists A 
such that 

(6.20) 

Conversely, $a < n is not an integer and there exist A and a' < a such thal 

(6.21) 

then f is Lipschitz a at v. 

Prooj The necessary condition is relatively simple to prove but the sufficient condition 
is much more difficult. 

0 Proof of(6.20) Since f is Lipschitz Q at v, there exists a polynomial p v  of degree 
la] <nandKsuchthat I f ( t ) -pv ( t ) I  I K l r - v l a .  Since$hasnvanishingmoments, 
we saw in (6.7) that Wpv(u,s)  = 0 and hence 

The change of variable x = ( t  - u) /s  gives 
F+30 
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which proves (6.20). 

0 Proof of (6.21) The wavelet reconstruction formula (4.37) proves that f can be 
decomposed in a Littlewood-Paley type sum 

+cc 

(6.22) 

with 

(6.23) A j ( t ) =  - - ? - s + " ~ ~ ' W f ( ~ , s ) ~ $ ( ~ )  1 t--u T d u .  dS 
c, --o 

Let A?) be its kth order derivative. To prove that f is Lipschitz a at v we shall 
approximate f with a polynomial that generalizes the Taylor polynomial 

(6.24) 

Uf is R times differentiable at v then pv corresponds to the Taylor polynomial but this is 
not necessarily true. We shall first prove that C,t="_, A?'(.) is finite by getting upper 
bounds on (t) I. These sums may be thought of as a generalization of pointwise 
derivatives. 

To simplify the notation, we denote by K a generic constant which may change 
value from one line to the next but that does not depend on j and t. The hypothesis 
(6.21) and the asymptotic decay condition (6.16) imply that 

Since Iu - vld 5 2"' (Iu - tid + It - vid),  the change of variable u' = 2-j (u - t )  yields 

Choosing rn = a' + 2 yields 

The same derivations applied to the derivatives of Aj( t )  yield 

(6.26) 

(6.27) 

At I = v it follows that 

Vk 5 La] , lAY'(v)I 5 K2("-k)j. (6.28) 
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This guarantees a fast decay of (v) I when 2j goes to zero, because Q is not an 
integer so a! > 1.1. At large scales 21, since IWf(u,s)I 5 l l f l l 1 1 $ 1 1  with the change of 
variable u' = (t - u ) / s  in (6.23) we have 

and hence lAy'(v)I 5 K2-(k+1/2)j. Together with (6.28) this proves that the polyno- 
mial pv defined in (6.24) has coefficients that are finite. 

With the Littlewood-Paley decomposition (6.22) we compute 

The sum over scales is divided in two at 2J such that 2J 2. It - V I  2 2 - l .  For j 2 J ,  
we can use the classical Taylor theorem to bound the Taylor expansion of Aj: 

Inserting (6.27) yields 

j=J 

and since 2J 2 It - vI 2. 25-1 we get Z 5 K Iv - tla. 

Let us now consider the case j < J 

andsince2/ 2 It-vI 22J-1 wegetZZ<KIv-tl". Asaresult 

I f ( t )  - p&) I I z + zz I K Iv - t 1" 
which proves that f is Lipschitz a! at v. 

(6.29) 



I74 CHAPTER W WAVELET ZOOM 

FIGURE 6.2 The cone of influence of an abscissa u consists of the scale-space 
points (u, s) for which the support of $u:s intersects t = u. 

Cone of Influence To interpret more easily the necessary condition (6.20) and the 
sufficient condition (6.21), we shall suppose that $ has a compact support equal 
to [ - C, C] . The cone of injuence of v in the scale-space plane is the set of points 
(u:s) such that u is included in the support of &Jt)  = s-ll2$((t -u ) /s ) .  Since 
the support of $( ( t  - u) /s )  is equal to [u - Cs, u + Cs], the cone of influence of u 
is defined by 

Iu-uI 5 cs. (6.30) 

It is illustrated in Figure 6.2. If u is in the cone of influence of u then Wf(u , s )  = 
(f; $.,) depends on the value off in the neighborhood of u. Since Iu - ul/s 5 C, 
the conditions (6.20,6.21) can be written 

which is identical to the uniform Lipschitz condition (6.17) given by Theorem 6.3. 
In Figure 6.1, the high amplitude wavelet coefficients are in the cone of influence 
of each singularity. 

Oscillating Singularities It may seem surprising that (6.20,6.21) also impose a 
condition on the wavelet transform outside the cone of influence of u. Indeed, this 
corresponds to wavelets whose support does not intersect u. For Iu - V I  > Cs we 

(6.31) 
get 

We shall see that it is indeed necessary to impose this decay when u tends to u in 
order to control the oscillations off that might generate singularities. 

' o-d+1/2 I u  - ul'y. IWf(u,s)I 5 A  s 

Let us consider the generic example of a highly oscillatory function 

1 
f ( t )  = sin - 

t 
which is discontinuous at u = 0 because of the acceleration of its oscillations. Since 
$ is a smooth C" function, if it is centered close to zero then the rapid oscillations 
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S 

FIGURE 6.3 Wavelet transform of f ( t )  = sin(at-') calculated with I) = -8' 
where 8 is a Gaussian. High amplitude coefficients are along a parabola below the 
cone of influence o f t  = 0. 

of sint-' produce a correlation integral ( sint-' , q ! ~ ~ , ~ )  that is very small. With an 
integration by parts, one can verify that if (u,s) is in the cone of influence of v = 0, 
then I Wf(u,s) I 5  AS^+'/^. This looks as iff  is Lipschitz 2 at 0. However, Figure 
6.3 shows high energy wavelet coefficients below the cone of influence of v = 0, 
which are responsible for the discontinuity. To guarantee that f is Lipschitz a, the 
amplitude of such coefficients is controlled by the upper bound (6.31). 

To explain why the high frequency oscillations appear below the cone of in- 
fluence of v, we use the results of Section 4.4.2 on the estimation of instantaneous 
frequencies with wavelet ridges. The instantaneous frequency of sint-' = sin$(t) 
is I$'(t) I = t f 2 .  Let $' be the analytic part of I), defined in (4.47). The correspond- 
ing complex analytic wavelet transform is Waf(u,s) = (f,I),",,). It was proved in 
(4.101) that for a fixed time u, the maximum of s-l/*I W"f(u,s)l is located at the 
scale 

77 2 s(u)  = - +/(u) = q u  ' 

where 77 is the center frequency of @(u). When u varies, the set of points (u, s(u))  
define a ridge that is a parabola located below the cone of influence of v = 0 in the 
plane (u,s). Since $ = Real[P], the real wavelet transform is 

Wf(u,s) = Real[W"f(u,s)]. 

The high amplitude values of W f ( u , s )  are thus located along the same parabola 
ridge curve in the scale-space plane, which clearly appears in Figure 6.3. Real 
wavelet coefficients Wf(u, s) change sign along the ridge because of the variations 
of the complex phase of W"f(u,s). 
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The example of f ( t )  = sint-' can be extended to general oscillatory singular- 
ities [33]. A function f has an oscillatory singularity at v if there exist a 2 0 and 
,L3 > 0 such that for t in a neighborhood of v 

where g( t )  is a Coo oscillating function whose primitives at any order are bounded. 
The function g(t) = sint is a typical example. The oscillations have an instanta- 
neous frequency # ( t )  that increases to infinity faster than 1tl-l when t goes to v. 
High energy wavelet coefficients are located along the ridge s(u) = q/q!~'(u), and 
this curve is necessarily below the cone of influence Iu - V I  5 Cs. 

6.2 WAVELET TRANSFORM MODULUS MAXIMA 

Theorems 6.3 and 6.4 prove that the local Lipschitz regularity of f  at v depends 
on the decay at fine scales of I W f ( u ,  s) I in the neighborhood of v. Measuring 
this decay directly in the time-scale plane (u,s) is not necessary. The decay of 
I Wf (u, s) I can indeed be controlled from its local maxima values. 

We use the term modulus maximum to describe any point (UO, so) such that 
I Wf (u, so) I is locally maximum at u = uo . This implies that 

This local maximum should be a strict local maximum in either the right or the 
left neighborhood of WJ, to avoid having any local maxima when I W f ( u ,  so) I is 
constant. We call maxima line any connected curve s(u) in the scale-space plane 
(u, s) along which all points are modulus maxima. Figure 6.5(b) shows the wavelet 
modulus maxima of a signal. 

6.2. I Detection of Singularities 

Singularities are detected by finding the abscissa where the wavelet modulus max- 
ima converge at fine scales. To better understand the properties of these maxima, 
the wavelet transform is written as a multiscale differential operator. Theorem 6.2 
proves that if $ has exactly n vanishing moments and a compact support, then 
there exists 6 of compact support such that .IC, = (-l)"O(") with J-'," e(t)  dt # 0. 
The wavelet transform is rewritten in (6.11) as a multiscale differential operator 

d" 
dun 

W f ( u , s )  = s" - ( f*Q(u) .  (6.32) 

If the wavelet has only one vanishing moment, wavelet modulus maxima are the 
maxima of the first order derivative off smoothed by e,, as illustrated by Figure 
6.4. These multiscale modulus maxima are used to locate discontinuities, and 
edges in images. If the wavelet has two vanishing moments, the modulus maxima 
correspond to high curvatures. The following theorem proves that if Wf (u,s) has 
no modulus maxima at fine scales, then f is locally regular. 
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FIGURE 6.4 The convolution f* e,(u) averages f over a domain proportional 
tos. If$=-6'then W 1 f ( u , s ) = s $ ( f * 8 , ) ( u )  hasmodulusmaximaatsharp 
variation points of f*e , (u ) .  If $ = 0" then the modulus maxima of Wzf(u,s) = 
s2 -$ (f * 8,) (u)  correspond to locally maximum curvatures. 

Theorem 6.5 (HWANG, MALLAT) Suppose that $ is C" with a compact support, 
and $ = (-l)"&') with S_f,"€J(t)dt # 0. Let f E L1[a,b]. Ifthere exists so > 0 
such that IWf(u,s)I has no local maximum for u E [a,b] and s < so, then f is 
uni$omly Lipschitz n on [a + E ,  b - E ] ,  for any E > 0. 

This theorem is proved in [258]. It implies that f can be singular (not Lipschitz 
1) at a point v only if there is a sequence of wavelet maxima points ( u ~ , ~ ~ ) ~ ~ x  
that converges towards v at fine scales: 

lim u - v  and lim s - 0 .  

These modulus maxima points may or may not be along the same maxima line. 
This result guarantees that all singularities are detected by following the wavelet 
transform modulus maxima at fine scales. Figure 6.5 gives an example where all 
singularities are located by following the maxima lines. 

Maxima Propagation For all $ = (-l)n e(n) ,  we are not guaranteed that a mod- 
ulus maxima located at ( uo , SO) belongs to a maxima line that propagates towards 
finer scales. When s decreases, W f ( u ,  s) may have no more maxima in the neigh- 
borhood of u = UO. The following proposition proves that this is never the case if 6 
is a Gaussian. The wavelet transform W f ( u , s )  can then be written as the solution 
of the heat diffusion equation, where s is proportional to the diffusion time. The 

p++m p -  p + + x  p -  
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maximum principle applied to the heat diffusion equation proves that maxima may 
not disappear when s decreases. Applications of the heat diffusion equation to the 
analysis of multiscale averaging have been studied by several computer vision 
researchers [217,236,3591. 

Proposition 6.1 (HUM=, POGGIO, YUILLE) Let $ = (-l)"O(") where 8 is a 
Gaussian. For any f E L2(W), the modulus maxima of Wf (u,s) belong to con- 
nected curves that are never interrupted when the scale decreases. 

Proof 3. To simplify the proof, we suppose that is a normalized Gaussian e ( t )  = 
2-'w-'/' exp(-t2/4) whose Fourier transform is b(w) = exp(-w2). Theorem 6.2 
proves that 

~ f ( ~ ,  s) = s f(") *es(.) , (6.33) 

where the n* derivative f(") is defined in the sense of distributions. Let ?- be the 
diffusion time. The solution of 

(6.34) 

with initial condition g(0, u )  = go(u) is obtained by computing the Fourier transform 
with respect to u of (6.34): 

It follows that b(?-,w) = ~ O ( W )  exp(-?-w2) and hence 

For ?- = s, setting go = f(") and inserting (6.33) yields Wf(u , s )  = Sn+'/'g(u,s). The 
wavelet transform is thus proportional to a heat diffusion with initial condition f'"). 

The maximum principle for the parabolic heat equation [36] proves that a global 
maximum of Ig(u,s)l for (u,s) E [u,b] x [so,s~] is necessarily either on the boundary 
u = u,b or at s =so. A modulus maxima of Wf(u , s )  at ( ~ 1 , s ~ )  is a local maxima 
of Ig(u,s)l for a fixed s and u varying. Suppose that a line of modulus maxima is 
interrupted at (u1, SI). with s1 > 0. One can then verify that there exists E > 0 such 
thataglobalmaximumof Ig(u,s)Iover[ul-E,~1+E]x[s1--,s1] isat(u1,sl). This 
contradicts the maximum principle, and thus proves that all modulus maxima propagate 
towards finer scales. 

Derivatives of Gaussians are most often used to guarantee that all maxima lines 
propagate up to the finest scales. Chaining together maxima into maxima lines 
is also a procedure for removing spurious modulus maxima created by numerical 
errors in regions where the wavelet transform is close to zero. 
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FIGURE 6.5 (a): Wavelet transform W f ( u , s ) .  The horizontal and vertical axes 
give respectively u and log,s. (b): Modulus maxima of W f ( u , s ) .  (c): The full 
line gives the decay of log, I W f ( u ,  s) I as a function of log, s along the maxima 
line that converges to the abscissa t = 0.05. The dashed line gives log, I W f ( u ,  s) I 
along the left maxima line that converges to t = 0.42. 
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Isolated Singularitier A wavelet transform may have a sequence of local maxima 
that converge to an abscissa v even though f is perfectly regular at v. This is the 
case of the maxima line of Figure 6.5 that converges to the abscissa v = 0.23. 
To detect singularities it is therefore not sufficient to follow the wavelet modulus 
maxima across scales. The Lipschitz regularity is calculated from the decay of the 
modulus maxima amplitude. 

Let us suppose that for s < so all modulus maxima that converge to v are 
included in a cone 

Iu-vI 5 cs. (6.35) 

This means that f does not have oscillations that accelerate in the neighborhood of 
v. The potential singularity at v is necessarily isolated. Indeed, we can derive from 
Theorem 6.5 that the absence of maxima below the cone of influence implies that f 
is uniformly Lipschitz n in the neighborhood of any t # v with t E (v - CSO , v + Cso). 
The decay of I Wf(u,s) I in the neighborhood of v is controlled by the decay of the 
modulus maxima included in the cone Iu - V I  5 Cs. Theorem 6.3 implies that f 
is uniformly Lipschitz a in the neighborhood of v if and only if there exists A > 0 
such that each modulus maximum (u,s) in the cone (6.35) satisfies 

IWf(u,s)l 5 A s  a+'/, 7 (6.36) 

which is equivalent to 

log,IWf(u,s)l I logzA+ a+- logzs. (6.37) 

The Lipschitz regularity at v is thus the maximum slope of log, IWf(u,s)I as a 
function of log, s along the maxima lines converging to v. 

In numerical calculations, the finest scale of the wavelet transform is limited 
by the resolution of the discrete data. From a sampling at intervals N-', Section 
4.3.3 computes the discrete wavelet transform at scales s 2 AN-' ,  where X is 
large enough to avoid sampling coarsely the wavelets at the finest scale. The 
Lipschitz regularity a of a singularity is then estimated by measuring the decay 
slope of log, I Wf(u, s) I as a function of log, s for 2 s 2 AN-'. The largest 
scale 2J should be smaller than the distance between two consecutive singularities 
to avoid having other singularities influence the value of Wf(u,s). The sampling 
interval N-' must therefore be small enough to measure a accurately. The signal 
in Figure 6.5(a) is defined by N = 256 samples. Figure 6.5(c) shows the decay 
of log, I Wf(u,s)l along the maxima line converging to t = 0.05. It has slope 
a + 1/2 M 1/2 for 2-4 2 s 2 2-6. As expected, a = 0 because the signal is 
discontinuous at t = 0.05. Along the second maxima line converging to t = 0.42 
the slope is a + 1/2 M 1, which indicates that the singularity is Lipschitz 1/2. 

When f is a function whose singularities are not isolated, finite resolution 
measurements are not sufficient to distinguish individual singularities. Section 6.4 
describes a global approach that computes the singularity spectrum of multifiactals 
by taking advantage of their self-similarity. 

( :> 
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Smoothed Singularities The signal may have important variations that are in- 
finitely continuously differentiable. For example, at the border of a shadow the 
grey level of an image varies quickly but is not discontinuous because of the diffrac- 
tion effect. The smoothness of these transitions is modeled as a diffusion with a 
Gaussian kernel whose variance is measured from the decay of wavelet modulus 
maxima. 

In the neighborhood of a sharp transition at v, we suppose that 

where g, is a Gaussian of variance a2: 

(6.39) 

If fo has a Lipschitz a singularity at v that is isolated and non-oscillating, it is 
uniformly Lipschitz a in the neighborhood of v. For wavelets that are derivatives of 
Gaussians, the following theorem [261] relates the decay of the wavelet transform 
to u and a. 

Theorem 6.6 Let $J = (-l)n8(n) with 8( t )  = X exp(- t2/(2P2)) .  I f f  = fo*g, 
and f 0 is unifomzly Lipschitz. a on [v - h: v + h] then there exists A such that 

-(n-a)/2 
a+1/2 1 +  - ( $) . V(u,s) E [v -h:v+h]  xR+ : IWf(u,s)I < A s  

(6.40) 

Proof z. The wavelet transform can be written 

(6.41) 
d" dn 

W f ( U , S )  = s" - ( f*es)(U) dun = Sn ~ ( f O * & * e , ) ( U ) .  

Since 0 is a Gaussian, one can verify with a Fourier transform calculation that 

Inserting this result in (6.41) yields 

Since fo is uniformly Lipschitz (Y on [v - h; v + h] , Theorem 6.3 proves that there exists 
A > 0 such that 

(6.44) a+ 1 /2 . V(U,S)  E [v -h ,v+h]  xR+ , IW~O(U,S)I < A S  

Inserting this in (6.43) gives 

(6.45) 

from which we derive (6.40) by inserting the expression (6.42) of SO. rn 
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FIGURE 6.6 (a): Wavelet transform W f ( u , s ) .  (b): Modulus maxima of a 
wavelet transform computed 11, = e”, where 8 is a Gaussian with variance p = 
1. (c): Decay of log, IWf(u,s)I along maxima curves. In the left figure, the 
solid and dotted lines correspond respectively to the maxima curves converging 
to t = 0.81 and t = 0.12. In the right figure, they correspond respectively to the 
curves converging to t = 0.38 and t = 0.55. The diffusion at t = 0.12 and t = 0.55 
modifies the decay for s 5 c = r 5 .  
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Theorem 6.6 explains how the wavelet transform decay relates to the amount of 
diffusion of a singularity. At large scales s >> (T/,& the Gaussian averaging is 
not “felt” by the wavelet transform which decays like For s I alp, the 
variation off  at v is not sharp relative to s because of the Gaussian averaging. At 
these fine scales, the wavelet transform decays like s“+1/2 because f is Cm. 

The parameters K, a, and (T are numerically estimated from the decay of the 
modulus maxima along the maxima curves that converge towards v. The variance 
p2 depends on the choice of wavelet and is known in advance. A regression is 
performed to approximate 

1 n-a  
log, IWf(u, s) I fi: log,(K) + (a  + 2 )  log2s - - 

2 

Figure 6.6 gives the wavelet modulus maxima computed with a wavelet that is 
a second derivative of a Gaussian. The decay of log, 1 W f ( u l  s) I as a function of 
10g2s is given along several maxima lines corresponding to smoothed and non- 
smoothed singularities. The wavelet is normalized so that = 1 and the diffusion 
scale is (T = r5. 
6.2.2 Reconstruction From Dyadic Maxima 

Wavelet transform maxima carry the properties of sharp signal transitions and 
singularities. If one can reconstruct a signal from these maxima, it is then pos- 
sible to modify the singularities of a signal by processing the wavelet transform 
modulus maxima. The strength of singularities can be modified by changing the 
amplitude of the maxima and we can remove some singularities by suppressing 
the corresponding maxima. 

For fast numerical computations, the detection of wavelet transform maxima 
is limited to dyadic scales { 2 j } j E z .  Suppose that $ is a dyadic wavelet, which 
means that there exist A > 0 and B such that 

+m 
Vw EW-{O}  , A I  1$(2jw)l2IB.  (6.46) 

Theorem 5.11 proves that the dyadic wavelet transform { W f ( u , 2 j ) } j E z  is a com- 
plete and stable representation. This means that it admits a bounded left inverse. 
This dyadic wavelet transform has the same properties as a continuous wavelet 
transform W f ( u , s ) .  All theorems of Sections 6.1.3 and 6.2 remain valid if we 
restrict s to the dyadic scales { 2 j } j E z .  Singularities create sequences of maxima 
that converge towards the corresponding location at fine scales, and the Lipschitz 
regularity is calculated from the decay of the maxima amplitude. 

Translation-Invariant Representation At each scale 2j,  the maxima represen- 
tation provides the values of Wf(u, 2 j )  where I W f ( u ,  2 j )  I is locally maximum. 
Figure 6.7(c) gives an example. This adaptive sampling of u produces a translation- 
invariant representation. When f is translated by T each Wf (2j  : u)  is translated by 

j z - m  
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FIGURE 6.7 (a): Intensity variation along one row of the Lena image. (b): 
Dyadic wavelet transform computed at all scales 2N-’ 5 2 j  5 1, with the quadratic 
spline wavelet $J = -8’ shown in Figure 5.6. (c): Modulus maxima of the dyadic 
wavelet transform. 
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T and their maxima are translated as well. This is not the case when u is uniformly 
sampled as in the wavelet frames of Section 5.3. Section 5.4 explains that this 
translation invariance is of prime importance for pattern recognition applications. 

Reconstruction To study the completeness and stability of wavelet maxima rep- 
resentations, Mallat and Zhong introduced an alternate projection algorithm [261] 
that recovers signal approximations from their wavelet maxima; several other algo- 
rithms have been proposed more recently [ 116,142,1991. Numerical experiments 
show that one can only recover signal approximations with a relative mean-square 
error of the order of lo-’. For general dyadic wavelets, Meyer [48] and Berman 
[94] proved that exact reconstruction is not possible. They found families of contin- 
uous or discrete signals whose dyadic wavelet transforms have the same modulus 
maxima. However, signals with the same wavelet maxima differ from each other 
only slightly, which explains the success of numerical reconstructions [261]. If the 
signal has a band-limited Fourier transform and if 5 has a compact support, then 
Kicey and Lennard [235] proved that wavelet modulus maxima define a complete 
and stable signal representation. 

A simple and fast reconstruction algorithm is presented from a frame perspec- 
tive. Section 5.1 is thus a prerequisite. At each scale 2j, we know the positions 
{ ~ j , ~ } ~  of the local maxima of I Wf(u, 2j) I and the values 

with 

Let$‘bethederivativeof$ and$;:,(t) = 2-j / ’~’ (2- j ( t -~j ,~) ) .  Since Wf(u72j) 
has a local extremum at u = uhp 

The reconstruction algorithm should thus recover a function 7 such that 

(6.48) 

This last condition imposes that the derivative of Wf(u,2j) vanishes at u = ~ j , ~ ,  

which does not necessarily mean that it has a modulus maxima at ~ j , ~ .  This is 
further enforced by minimizing I I I I. 
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Frame Pseudo-Inverse The reconstruction algorithm recovers the function j of 
minimum norm that satisfies (6.47) and (6.48). The minimization of 11j11 has a 
tendency to decrease the wavelet transform energy at each scale 2 1 :  

because of the nonn equivalence proved in Theorem 5.1 1 : 
Cm 

j = - x  

The nonn I I W j ( u , 2 j ) l l  is reduced by decreasing I W j ( u 1 2 j ) 1 .  Since we also im- 
posethat W j ( u j , p , 2 j )  = ( f , + j , p ) ,  minimizing I I ~ I I  generallycreateslocalmaxima 
at u = ~ j , ~ .  

The signal j of minimum nonn that satisfies (6.47) and (6.48) is the orthogonal 
projection Pv f off on the space V generated by the wavelets { $ j , p  $ $ , p } j , p .  In 
discrete calculations, there is a finite number of maxima, so { $ ~ j , ~  , $ ~ $ , ~ } j , ~  is a 
finite family and hence a basis or a redundant frame of V. Theorem 5.4 describes 
a conjugate gradient algorithm that recovers j from the frame coefficients with 
a pseudo-inverse. It performs this calculation by inverting a frame symmetrical 
operator L introduced in (5.26). This operator is defined by 

vr E v 7 ~r = ( ( r ,  + j , p )  + j , p  + (17 + i , p )  $ i ; p )  . (6.49) 
j , p  

Clearly j = L-’Lf = L-’g with 

g = L j =  x ( O , + j , p ) + j , p +  ( j , $ i , p ) + i , p )  = C ( f , + j , p ) l ~ l j , p  . (6.50) 
j , P  i , P  

The conjugate gradient computes L-’ g with an iterative procedure that has expo- 
nential convergence. The convergence rate depends on the frame bounds A and B 
of { + j : p  i + $ , p } j , p  in V. 

A faster reconstruction algorithm does not explicitly impose the fact ( j ,  +$,p)  = 
0, by considering a smaller space V generated by the restricted wavelet family 
{ + j , p ) j , p ,  and performing the calculation with the reduced frame operator: 

~r = (17 + j , p )  + j , p  . (6.51) 

The minimization of 11j11 recovers a function such that W j ( u ,  21) is nearly locally 
maximum at u = u , , ~ ,  and fewer operations are needed with this reduced frame 
operator. About 10 iterations are usually sufficient to recover an approximation 
of f with a relative mean-square error on the order of lo-,. More iterations do 
not decrease the error much because .? # f .  Each iteration requires O(N log, N) 
calculations if implemented with a fast “2 trous” algorithm. 

j , p  
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FIGURE 6.8 (a): Original signal. (b): Frame reconstruction from the dyadic 
wavelet maxima shown in Figure 6.7(c). (c): Frame reconstruction from the 
maxima whose amplitude is above the threshold T = 10. 

Example 6.1 Figure 6.8(b) shows the signal 7 = P v f  recovered with 10 iterations 
of the conjugate gradient algorithm, from the wavelet tranform maxima in Figure 
6.7(c). This reconstruction is calculated with the simplified frame operator (6.51). 
After 20 iterations, the reconstruction error is ~ ~ f - ~ ~ ~ / ~ ~ f ~ ~  = 2.5 Figure 
6.8(c) shows the signal reconstructed from the 50% of wavelet maxima that have 
the largest amplitude. Sharp signal transitions corresponding to large wavelet 
maxima have not been affected, but small  texture variations disappear because the 
corresponding maxima are removed. The resulting signal is piecewise regular. 

Fast Discrete Calculations To simplify notation, the sampbg interval of the input 
signal is normalized to 1. The dyadic wavelet transform of this normalized discrete 
signal ao[n] of size N is calculated at scales 2 5 2 j  5 N with the “algorithme 5 
trous” of Section 5.5.2. The cascade of convolutions with the two filters h[n] and 
g[n] is computed with O(NlogzN)  operations. 

Each wavelet coefficient can be written as an inner product of a0 with a discrete 
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wavelet translated by in: 

N - 1  

dj[m] = (ao[nI,+j[n-inI) =C~o[nI+j [n - in l  . 
n=O 

The modulus maxima are located at abscissa u , , ~  where ldj [ ~ j , ~ ]  I is locally maxi- 
mum, which means that 

I d j b j , p l  I 2 Idj[uj:p - 11 I and Idj[uj,pl I 2 Idj[uj,p + 11 I 7 

so long as one of these two inequalities is strict. We denote +j:p [n] = $ j  [n - ~ j , ~ ] .  

To reconstruct a signal from its dyadic wavelet transform calculated up to the 
coarsest scale 2J, it is necessary to provide the remaining coarse approximation 
u~[m], which is reduced to a constant when 2J = N: 

N-1  

Providing the average C is also necessary in order to reconstruct a signal from its 
wavelet maxima. 

The simplified maxima reconstruction algorithm inverts the symmetrical oper- 
ator L associated to the frame coefficients that are kept, without imposing explicitly 
the local extrema property: 

(6.52) 
j=1 p 

The computational complexity of the conjugate gradient algorithm of Theorem 5.4 
is driven by the calculation of Lpn in (5.38). This is optimized with an efficient 
filter bank implementation of L. 

To compute Lr we first calculate the dyadic wavelet transform of r[n] with the 
“algorithme ?I trous”. At each scale 2j, all coefficients that are not located at an 
abscissa uj,p are set to zero: 

(6.53) 

Then Lr [n] is obtained by modifying the filter bank reconstruction given by Propo- 
sition 5.6. The decomposition and reconstruction wavelets are the same in (6.52) 
so we set i[n] = h[n] and 3[n] = g[n]. The factor 1/2 in (5.87) is also removed 
because the reconstruction wavelets in (6.52) are not attenuated by 2-j as are the 
wavelets in the non-sampled reconstruction formula (5.71). For J = log,N, we 
initialize i i~[n] = C/f i  and for logaN > j 2 0 we compute 

iij[n] = i i j+1 *hj[n] +&+I *gj[n] .  (6.54) 
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One can verify that Lr[n] = &[n] with the same derivations as in the proof of 
Proposition 5.6. Let Kh and Kg be the number of non-zero coefficients of h[n] and 
g[n]. The calculation of Lr[n] from r[n] requires a total of 2(Kh + Kg)NlogzN 
operations. The reconstructions shown in Figure 6.8 are computed with the filters 
of Table 5.3. 

6.3 MULTISCALE EDGE DETECTION 

The edges of structures in images are often the most important features for pattern 
recognition. This is well illustrated by our visual ability to recognize an object 
from a drawing that gives a rough outline of contours. But, what is an edge? It 
could be defined as points where the image intensity has sharp transitions. A closer 
look shows that this definition is often not satisfactory. Image textures do have 
sharp intensity variations that are often not considered as edges. When looking at 
a brick wall, we may decide that the edges are the contours of the wall whereas the 
bricks define a texture. Alternatively, we may include the contours of each brick in 
the set of edges and consider the irregular surface of each brick as a texture. The 
discrimination of edges versus textures depends on the scale of analysis. This has 
motivated computer vision researchers to detect sharp image variations at different 
scales [44, 2981. The next section describes the multiscale Canny edge detector 
[113]. It is equivalent to detecting modulus maxima in a two-dimensional dyadic 
wavelet transfom [261]. The Lipschitz regularity of edge points is derived from 
the decay of wavelet modulus maxima across scales. It is also shown that image 
approximations may be reconstructed from these wavelet modulus maxima, with 
no visual degradation. Image processing algorithms can thus be implemented on 
multiscale edges. 

6.3. I 

Canny Edge Detextion 
an image f (XI ,XZ) by calculating the modulus of its gradient vector 

Wavelet Maxima for Images 

The Canny algorithm detects points of sharp variation in 

(6.55) 

The partial derivative of f in the direction of a unit vector Z = (cos a, sin a) in the 
x = (XI ,XZ) plane is calculated as an inner product with the gradient vector 

The absolute value of this partial derivative is maximum if n' is colinear to a f .  
This shows that a f (x) is parallel to the direction of maximum change of the 
surface f (x). A point y E Rz is defined as an edge if la f (x) I is locally maximum 
at x = y when x = y + A? f (y) for (XI small enough. This means that the partial 
derivatives off reach alocal maximum atx = y ,  whenx varies in a one-dimensional 
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neighborhood of y along the direction of maximum change off at y. These edge 
points are inflection points off.  

Multiscale Edge Detection A multiscale version of this edge detector is imple- 
mented by smoothing the surface with a convolution kernel e ( x )  that is dilated. 
This is computed with two wavelets that are the partial derivatives of 8: 

(6.56) 

The scale varies along the dyadic sequence {2 j } jEz  to limit computations and 
storage. For 1 5 k 5 2, we denote for x = (XI ,x2) 

In the two directions indexed by 1 I k i 2,  the dyadic wavelet transform off E 
L ~ ( R . ~ )  at u = (u1,uz) is 

w k f ( u , 2 j )  = V(X) ,&j (x -u) )  =f*$;(u> . (6.57) 

Section 5.5.3 gives necessary and sufficient conditions for obtaining a complete 
and stable representation. 

Let us denote e,(x) = 2-3’8(2-3’x) and &(x)  = Ozj(-x). The two scaled 
wavelets can be rewritten 

We thus derive from (6.57) that the wavelet transform components are proportional 
to the coordinates of the gradient vector of f smoothed by 9, : 

The modulus of this gradient vector is proportional to the wavelet transform mod- 
ulus 

Mf(u,23’) = d/JW’f(u,23’)I2+ lW2f(u,23’))2. (6.59) 

Let A f ( u , 2 i )  be the angle of the wavelet transform vector (6.58) in the plane 

(6.60) 

(x1, x2 1 

with 
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The unit vector Zj(u) = (cosAf(u,2j),sinAf(u,2j)) is colinearto a(f*&j)(u). 
An edge point at the scale 2j is a point v such that M f ( u ,  2j) is locally maximum 
at u = v when u = v + Xn'j(v) for (XI  small enough. These points are also called 
wavelet transform modulus maxima. The smoothed image f *& has an inflection 
point at a modulus maximum location. Figure 6.9 gives an example where the 
wavelet modulus maxima are located along the contour of a circle. 

Maxima curves Edge points are distributed along curves that often correspond 
to the boundary of important structures. Individual wavelet modulus maxima are 
chained together to form a maxima curve that follows an edge. At any location, 
the tangent of the edge curve is approximated by computing the tangent of a level 
set. This tangent direction is used to chain wavelet maxima that are along the same 
edge curve. 

The level sets of g ( x )  are the curves x ( s )  in the (XI,X~) plane where g(x (s ) )  is 
constant. The parameters is the arc-length of the level set. Let .r' = ( 7 1 , ~ ~ )  be the 
direction of the tangent of x(s) .  Since g(x ( s ) )  is constant when s varies, 

SO G g ( x )  is perpendicular to the direction 7' of the tangent of the level set that 
goes through x .  

This level set property applied to g = f * e 2 j  proves that at a maximum point 
v the vector Zj(v) of angle Af(v, 2j) is perpendicular to the level set of f * 6% 
going through v. If the intensity profile remains constant along an edge, then the 
inflection points (maxima points) are along a level set. The tangent of the maxima 
curve is therefore perpendicular to Zj(v). The intensity profile of an edge may 
not be constant but its variations are often negligible over a neighborhood of size 
2j for a sufficiently s n x d  scale 2j, unless we are near a comer. The tangent of 
the maxima curve is then nearly perpendicular to Z, (v) . In discrete calculations, 
maxima curves are thus recovered by chaining together any two wavelet maxima 
at v and v + Z, which are neighbors over the image sampling grid and such that n' 
is nearly perpendicular to Zj (v) . 

Example 6.2 The dyadic wavelet transform of the image in Figure 6.9 yields 
modulus images M f ( 2 j ,  v) whose maxima are along the boundary of a disk. This 
circular edge is also a level set of the image. The vector Z,(v) of angle Af(2j,v) 
is thus perpendicular to the edge at the maxima locations. 

Example 6.3 In the Lena image shown in Figure 6.10, some edges disappear 
when the scale increases. These correspond to fine scale intensity variations that 
are removed by the averaging with & when 2, is large. This averaging also 
modifies the position of the remaining edges. Figure 6.10(f) displays the wavelet 
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FIGURE 6.9 The top image has N 2  = 12g2 pixels. (a): Wavelet transform 
in the horizontal direction, with a scale 2j that increases from top to bottom: 
{ W ' f ( u ,  2 j ) } - , ~ j < o .  Black, grey and white pixels correspond respectively to 
negative, zero and positive values. (b): Vertical direction: { W 2 f ( u ,  2j)}-6< jro. 
(c): Wavelet transform modulus { M f ( u ,  2j)}-6<,<0. White and black pixels 
correspond respectively to zero and large amplitude coefficients. (d): Angles 
{Af(u72j))-65j5o at points where the modulus is non-zero. (e): Wavelet modu- 
lus maxima are in black. 
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FIGURE 6.10 Multiscale edges of the Lena image shown in Figure 6.11. 

(d): { A f ( u ,  2;)}-.75;5-3. (e): Modulus maxima. (f): Maxima whose modulus 
values are above a threshold. 

(a): { W ' f ( u ,  2')}-7<j<-3. (b): {W2f(u,2')}-7<;+3. (c): { M f ( u ,  2')}-7<j<-3. 

maxima such that M f ( v , 2 j )  2 T ,  for a given threshold T .  They indicate the 
location of edges where the image has large amplitude variations. 

Lipschitz Regularity The decay of the two-dimensional wavelet transform de- 
pends on the regularity of f .  We restrict the analysis to Lipschitz exponents 
0 5 a 5 1. A function f is said to be Lipschitz a at v = ( V I , V ~ )  if there exists 
K > 0 such that for all (XI , X Z )  E R2 

(6.61) 

If there exists K > 0 such that (6.61) is satisfied for any v E R then f is uniformly 
Lipschitz a over R. As in one dimension, the Lipschitz regularity of a function f is 
related to the asymptotic decay I W ' f ( u ,  2 j )  I and I W 2 f ( u ,  2 j )  I in the corresponding 
neighborhood. This decay is controlled by M f ( u ,  29 .  Like in Theorem 6.3, one 
can prove that f is uniformly Lipschitz a inside a bounded domain of R2 if and 

2 cy12 
I f ( X l 7 2 )  - f ( v 1 , v 2 ) I  5 K ( I X l - V 1 1 2 + I X 2 - - 2 1  ) . 
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only if there exists A > 0 such that for all u inside this domain and all scales 2j 

IMf(u;  2 j )  I I A2j("+l). (6.62) 

Suppose that the image has an isolated edge curve along which f has Lipschitz 
regularity a. The value of IMf(u, 2 j )  I in a two-dimensional neighborhood of the 
edge curve can be bounded by the wavelet modulus values along the edge curve. 
The Lipschitz regularity Q of the edge is estimated with (6.62) by measuring the 
slope of log2 IMf(u,  2 j )  I as a function of j .  Iff is not singular but has a smooth 
transition along the edge, the smoothness can be quantified by the variance u2 of 
a two-dimensional Gaussian blur. The value of u2 is estimated by generalizing 
Theorem 6.6. 

Reconstruction from Edges In his book about vision, Marr [44] conjectured that 
images can be reconstructed from multiscale edges. For a Canny edge detector, 
this is equivalent to recovering images from wavelet modulus maxima. In two 
dimensions, whether dyadic wavelet maxima define a complete and stable repre- 
sentation is still an open mathematical problem. However, the algorithm of Mallat 
and B o n g  [261] recovers an image approximation that is visually identical to the 
original one. 

As in Section 6.2.2, a simpler inverse frame reconstruction is described. At each 
scale 2j,  a multiscale edge representation provides the positions uj,p of the wavelet 
transform modulus maxima as well as the values of the modulus M f ( ~ j , ~ ,  2 j )  and 
the angle A f ( ~ j , ~ ,  2 j ) .  The modulus and angle specify the two wavelet transform 
components 

WRf(Uj,p,  2') = (f, +$,,) for 1 I k I 2, (6.63) 

with +f:,(x) = 2 - j $ ~ ~ ( 2 - j ( x  - ~ j , ~ ) ) .  Let Z j , p  be the unit vector in the direction 
0 f A f ( ~ j , ~ , 2 j )  and 

Since the gradient modulus Mf(uj, , ,  2 j )  has a local extremum at ~ j , ~  in the direc- 
tion of i i j : p ,  one can verify that 

(f,!&) = 0 . (6.64) 

As in one dimension, the reconstruction algorithm recovers a function of min- 
imum norm 3 such that 

(3, +$,J = (f, ?$,J for 1 I k I 3 (6.65) 

It is the orthogonal projection off  in the closed space V generated by the family 
of wavelets 



6.3 MULTISCALE EDGE DETECTION I95 

FIGURE 6. I I (a): Original Lena. (b): Reconstructed from the wavelet maxima 
displayed in Figure 6.10(e) and larger scale maxima. (c): Reconstructed from the 
thresholded wavelet maxima displayed in Figure 6.10(f) and larger scale maxima. 

If this family is a frame of V, which is true in finite dimension, the associated 
frame operator is 

We compute f = L-'g from g = L f  = Cj,, { f, $I;,,) $I!,,, with the 
conjugate gradient algorithm of Theorem 5.4. 

To simplify the numerical implementation, one can restrict the inner product 
conditions (6.65) to the wavelets $ti",, for k = 1,2. The frame operator (6.66) is 
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FIGURE 6. I 2 The illusory edges of a straight and a curved triangle are perceived 
in domains where the images are uniformly white. 

then limited to these two types of wavelets: 

(6.67) 
2 

Lr = xx (r&,) $,p . 
k = l  j , p  

The resulting reconstructed image 7 is not equal to the original image f but their 
relative mean-square difference is less than lo-’. Singularities and edges are 
nearly perfectly recovered and no spurious oscillations are introduced. The images 
differ slightly in smooth regions, but visually this is not noticeable. 

Example 6.4 The image reconstructed in Figure 6.1 l(b) is visually identical to 
the original image. It is recovered with 10 conjugate gradient iterations. After 20 
iterations, therelativemean-squarereconstructionerroris ~ ~ j - ~ ~ ~ / ~ ~ f ~ ~  =410-’. 
The thresholding of edges accounts for the disappearance of image structures from 
the reconstruction shown in Figure 6.11(c). Sharp image variations are perfectly 
recovered. 

Illusory Contours A multiscale wavelet edge detector defines edges as points 
where the image intensity varies sharply. This definition is however too restrictive 
when edges are used to find the contours of objects. For image segmentation, edges 
must define closed curves that outline the boundaries of each region. Because of 
noise or light variations, local edge detectors produce contours with holes. Filling 
these holes requires some prior knowledge about the behavior of edges in the 
image. The illusion of the Kanizsa triangle [39] shows that such an edge filling 
is performed by the human visual system. In Figure 6.12, one can “see” the 
edges of a straight and a curved triangle although the image grey level remains 
uniformly white between the black disks. Closing edge curves and understanding 
illusory contours requires computational models that are not as local as multiscale 
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differential operators. Such contours can be obtained as the solution of a global 
optimization that incorporates constraints on the regularity of contours and which 
takes into account the existence of occlusions [189]. 

6.3.2 Fast Multircale Edge Computations 

The dyadic wavelet transform of an image of NZ pixels is computed with a separable 
extension of the filter bank algorithm described in Section 5.5.2. A fast multiscale 
edge detection is derived [261]. 

Wavelet Design Edge detection wavelets (6.56) are designed as separable prod- 
ucts of one-dimensional dyadic wavelets, constructed in Section 5.5.1. Their 
Fourier transform is 

and 

(6.68) 

(6.69) 

where $(w) is a scaling function whose energy is concentrated at low fnquencies 
and 

(6.70) 

This transfer function is the Fourier transform of a finite difference filter which is 
a discrete approximation of a derivative 

-0.5 i f p = 0  
g[pl 0.5 i f p =  1 z={ 0 otherwise 

(6.71) 

The resulting wavelets $' and $z are finite difference approximations of partial 
derivatives along x and y of B(x1 ,xz) = 44(2x) 4(2y). 

To implement the dyadic wavelet transform with a filter bank algorithm, the 
scaling function 4 is calculated, as in (5.76), with an infinite product: 

(6.72) 

The 27r periodic function is the transfer function of a finite impulse response low- 
pass filter h [ p ] .  We showed in (5.81) that the Fourier transform of a box spline of 
degree m 

1 ifmis even 
0 ifmisodd ~ ( w > =  ( sin(w/2) w/2 ) m+' ex.(,) - k w  with e =  
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is obtained with 

Table 5.3 gives h[p]  form = 2. 

“Agorithme B trous” The onedimensional “algorithme h trous” of Section 5.5.2 
is extended in two dimensions with convolutions along the rows and columns of 
the image. The support of an image j is normalized to [O, 11’ and the N2 pixels are 
obtained with a sampling on a uniform grid with intervals N-’.  To simplify the 
description of the algorithm, the sampling interval is normalized to 1 by considering 
the dilated image f(x1,xZ) = j (N-’xl ,N-1x2) .  A change of variable shows that 
the wavelet transform off is derived from the wavelet transform off with a simple 
renormalization: 

W k j ( u , 2 j )  = N - ]  Wkf(NU,N2j) . 

Each sample uo[n] of the normalized discrete image is considered to be an 
average off  calculated with the kernel q5(x1) q5(xz) translated at n = (nl,  nz): 

This is further justified in Section 7.7.3. For any j 1 0, we denote 

The discrete wavelet coefficients at n = (nl , n2) are 

di[n] = W 1 f ( n , 2 j )  and d;[n] = W 2 f ( n , 2 j )  . 
They are calculated with separable convolutions. 

For any j 2 0, the filter h[p]  “dilated” by 2j is defined by 

h[ -p /2 j ]  i f p / 2 j  E z 
h j ~ =  { 0 otherwise 

and for j > 0, a centered finite difference filter is defined by 

(6.73) 

0.5 if p = -2j-l 
gj[pl = { ;0.5 i f p = 2 j - l  
& otherwise 

(6.74) 

For j = 0, we define go[O]/& = -0.5, g 0 [ - 1 ] / &  = -0.5 and go[p] = 0 for 
p # 0, - 1. A separable two-dimensional filter is written 

aLqn1:nzl = a[.llp[.zl , 
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and S[n] is a discrete Dirac. Similarly to Proposition 5.6, one can prove that for 
any j 2 0 and any n = (n1,nz) 

dj+,[n] = aj*gjS[n], 
(6.75) 
(6.76) 

d;+Jn] = Uj*Sgj[n]. (6.77) 

Dyadic wavelet coefficients up to the scale 2J are therefore calculated by cascading 
the convolutions (6.75-6.77) for 0 < j 5 J .  To take into account border problems, 
all convolutions are replaced by circular convolutions, which means that the input 
image uo[n] is considered to be N periodic along its rows and columns. Since 
J 5 logz N and all filters have a finite impulse response, this algorithm requires 
O(N210gzN) operations. If J = 1 o g 2 ~  then one can verify that the larger scale 
approximation is a constant proportional to the grey level average C: 

The wavelet transform modulus is M f ( n ,  2 j )  = Id; [n] 1’ + #[n] 1’ whereas 
A f ( n , 2 j )  is the angle of the vector (dj[n]:d?[n]). The wavelet modulus max- 
ima are located at points uj,p where M f ( ~ j , ~ , 2 j )  is larger than its two neighbors 
M f ( ~ j , ~  f Z,2j), where Z =  ( ~ 1 ~  € 2 )  is the vector whose coordinates €1 and €2 are 
either 0 or 1, and whose angle is the closest to A f ( ~ j , ~ , 2 j ) .  This verifies that 
M f ( n , 2 i )  is locally maximum at n = ~ j , ~  in a one-dimensional neighborhood 
whose direction is along the angle A f  ( ~ j , ~  , 2 j ) .  

Reconstruction from Maxima The frame algorithm recovers an image approxi- 
mation from multiscale edges by inverting the operator L defined in (6.67), with 
the conjugate gradient algorithm of Theorem 5.4. This requires computing Lr 
efficiently for any image r [n] .  For this purpose, the wavelet coefficients of r are 
first calculated with the “algorithme B trous,” and at each scale 2 5 2j 5 N all 
wavelets coefficients not located at a maximum position ~ j , ~  are set to zero as in 
the one-dimensional implementation (6.53): 

“k d j [ n ]  = { r k r ( n ,  2 j )  if n = ~ j : ~  

otherwise * 

The signal Lr[n] is recovered from these non-zero wavelet coefficients with a 
reconstruction formula similar to (6.54). Let hj[n] = hj[-n] and gj[n] = gj[-n] 
be the two filters defined with (6.73) and (6.74). The calculation is initialized for 
J = logzN by setting &[n] = CN-I,  where C is the average image intensity. For 
logzN > j 2 0 we compute 

fij[n] =fij+l*hjhj[n] +d j+ l*g j~[n]+d~+l [nI*Sg j [n ]  > 
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and one can verify that Lr [n] = 20 [n] . It is calculated from r [n] with O(N2 log, N )  
operations. The reconstructed images in Figure 6.1 1 are obtained with 10 conjugate 
gradient iterations implemented with this filter bank algorithm. 

6.4 MULTIFRACTALS 

Signals that are singular at almost every point were originally studied as patho- 
logical objects of pure mathematical interest. Mandelbrot [43] was the first to 
recognize that such phenomena are encountered everywhere. Among the many 
examples [25] let us mention economic records like the Dow Jones industrial av- 
erage, physiological data including heart records, electromagnetic fluctuations in 
galactic radiation noise, textures in images of natural terrain, variations of traffic 
flow.. . 

The singularities of multifractals often vary from point to point, and knowing 
the distribution of these singularities is important in analyzing their properties. 
Pointwise measurements of Lipschitz exponents are not possible because of the 
finite numerical resolution. After discretization, each sample corresponds to a 
time interval where the signal has an infinite number of singularities that may all 
be different. The singularity distribution must therefore be estimated from global 
measurements, which take advantage of multifractal self-similarities. Section 6.4.2 
computes the fractal dimension of sets of points having the same Lipschitz regu- 
larity, with a global partition function calculated from wavelet transform modulus 
maxima. Applications to fractal noises such as fractional Brownian motions and 
to hydrodynamic turbulence are studied in Section 6.4.3. 

6.4. I Fractal Sets and Self-Similar Functions 

A set S c E" is said to be self-similar if it is the union of disjoint subsets SI, . . . , Sk 
that can be obtained from S with a scaling, translation and rotation. This self- 
similarity often implies an infinite multiplication of details, which creates irregular 
structures. The triadic Cantor set and the Van Koch curve are simple examples. 

Example 6.5 The Von Koch curve is a fractal set obtained by recursively dividing 
each segment of length 1 in four segments of length 1/3, as illustrated in Figure 
6.13. Each subdivision increases the length by 4/3. The limit of these subdivisions 
is therefore a curve of infinite length. 

Example 6.6 The triadic Cantor set is constructed by recursively dividing inter- 
vals of size I in two sub-intervals of size 1/3 and a central hole, illustrated by Figure 
6.14. The iteration begins from [0,1]. The Cantor set obtained as a limit of these 
subdivisions is a dust of points in [0,1]. 
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FIGURE 6. I3  Three iterations of the Von Koch subdivision. The Von Koch 
curve is the fractal obtained as a limit of an infinite number of subdivisions. 

1 

113 113 - - 
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FIGURE 6. I4  
an infinite number of subdivisions is a closed set in [O,  11. 

Three iterations of the Cantor subdivision of [0,1]. The limit of 

Fractal Dimension The Von Koch curve has infinite length in a finite square of 
B2. The usual length measurement is therefore not well adapted to characterize the 
topological properties of such fractal curves. This motivated Hausdorff in 1919 to 
introduce a new definition of dimension, based on the size variations of sets when 
measured at different scales. 

The capacity dimension is a simplification of the Hausdorff dimension that 
is easier to compute numerically. Let S be a bounded set in Bn. We count the 
minimum number N(s) of balls of radius s needed to cover S. If S is a set of 
dimension D with a finite length (D = l), surface (D = 2) or volume (D = 3) then 

N ( s )  N s -D ,  

so 

The capacity dimension D of S generalizes this result and is defined by 

(6.78) 

logN(s) D = -1iminf -. 
s+o logs 

(6.79) 
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The measure of S is then 

M = limsupN(s)sD. 
s+o 

It may be finite or infinite. 
The H a u s d d  dimension is a refined fractal measure that considers all covers 

of S with balls of radius smaller than s. It is most often equal to the capacity 
dimension, but not always. In the following, the capacity dimension is called 
fractal dimension. 

Example 6.7 The Von Koch curve has infinite length because its fractal dimension 
is D > 1. We need N ( s )  = 4" balls of size s = 3-" to cover the whole curve, hence 

~ ( 3 - n )  = (3-n)-1094/log3 

One can verify that at any other scale s, the minimum number of balls N ( s )  to 
cover this curve satisfies 

As expected, it has a fractal dimension between 1 and 2. 

Example 6.8 The triadic Cantor set is covered by N ( s )  = 2" intervals of size 
s = 3-", so 

One can also verify that 

~ ( 3 - n )  = (3-")-10g2/1og3 

logN(s) - log2 D = -1iminf ___ - - 
s+O logs l0g3' 

Self-Similar Functions Let f be a continuous function with a compact support S. 
We say that f is self-similar if there exist disjoint subsets SI, . . . , SR such that the 
graph off  restricted to each Si is an affine transformation off.  This means that 
there exist a scale Zi > 1, a translation ri, a weight pi and a constant ci such that 

vt , f(t)=c~+pif(h(t--i)). (6.80) 

Outside these subsets, we suppose that f is constant. Generalizations of this 
definition can also be used [ 1101. 

If a function is self similar, its wavelet transform is also. Let g be an affine 
transformation off:  

(6.81) 
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Its wavelet transform is 

With the change of variable t‘ = l ( t  - I ) ,  since $ has a zero average, the affine 
relation (6.81) implies 

) Wg(u,s) = - W f  Z ( U - I ) , S l  dl ” (  
Suppose that $J has a compact support included in [-K,K]. The affine 

invariance (6.80) of f over Si = [ai,bi] produces an affine invariance for all 
wavelets whose support is included in Si. For any s < (bi - a i ) / K  and any 
u E [ ~ j  + Ks, bi - Ks], 

1 Wf(u , s )  = - Pi w f ( l i ( u - I i ) , s z i  . 

The self-similarity of the wavelet transform implies that the positions and values 
of its modulus maxima are also self-similar. This can be used to recover unknown 
affine invariance properties with a voting procedure based on wavelet modulus 
maxima [218]. 

dli 

Example 6.9 A Cantor measure is constructed over a Cantor set. Let dpo ( x )  = dx 
be the uniform Lebesgue measure on [0,1]. As in the Cantor set construction, this 
measure is subdivided into three uniform measures, whose integrals over [0,1/3], 
[1/3,2/3] and [2/3,1] are respectively p 1 , O  and p2. We impose p1 +p2 = 1 to 
obtain a total measure dp1 on [0,1] whose integral is equal to 1. This operation is 
iteratively repeated by dividing each uniform measure of integral p over [a, a + 11 
into three equal parts whose integrals are respectively pip, 0 and p2p over [a, a + 
1/31, [a+Z/3,a+2Z/3] and [a+2Z/3,a+Z]. This is illustrated by Figure 6.15. 
After each subdivision, the resulting measure dpn has a unit integral. In the limit, 
we obtain a Cantor measure d p m  of unit integral, whose support is the triadic 
Cantor set. 

Example 6.10 A devil’s staircase is the integral of a Cantor measure: 
* 1  

(6.82) 

It is a continuous function that increases from 0 to 1 on [0,1]. The recursive 
construction of the Cantor measure implies that f is self-similar: 

P1 f (3t) if t E [0,1/3] 
if t E [1/3,2/3] . 

p1 +pzf(3t-2) if t E [2/3,0] 
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FIGURE 6. I 5 Two subdivisions of the uniform measure on [0,1] with left and 
right weights p1 and p2. The Cantor measure dpw, is the limit of an infinite number 
of these subdivisions. 

0.2 0.4 0.6 0.8 
loa&.) 

1’1 
0.2 0.4 0.6 0.8 

(b) 

FIGURE 6. I6  Devil’s staircase calculated from a Cantor measure with equal 
weights p1 = p2 = 0.5. (a): Wavelet transform W f ( u , s )  computed with ~ = -e’, 
where 0 is Gaussian. (b): Wavelet transform modulus maxima. 
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Figure 6.16 displays the devil's staircase obtained with p1= p2 = 0.5. The wavelet 
transform below is calculated with a wavelet that is the first derivative of a Gaussian. 
The self-similarity of f  yields a wavelet transform and modulus maxima that are 
self-similar. The subdivision of each interval in three parts appears through the 
multiplication by 2 of the maxima lines, when the scale is multiplied by 3. This 
Cantor construction is generalized with different interval subdivisions and weight 
allocations, beginning from the same Lebesgue measure d h  on [0,1] [5]. 

6.4.2 Singularity Spectrum 

Finding the distribution of singularities in a multifractal signal f is particularly 
important for analyzing its properties. The spectrum of singularity measures the 
global repartition of singularities having different Lipschitz regularity. The point- 
wise Lipschitz regularity of f is given by Definition 6.1. 

Definition 6.2 (SPECTRUM) Let Sa be the set of all points t E W where the point- 
wise Lipschitz regularity off is equal to a. The spectrum of singularity D ( a )  of 
f is thefiactal dimension of Sa. The support of D ( a )  is the set of a! such that Sa 
is not empty. 

This spectrum was originally introduced by Frisch and Parisi [185] to analyze 
the homogeneity of multifractal measures that model the energy dissipation of 
turbulent fluids. It was then extended by Ameodo, Bacry and Muzy [278] to 
multifractal signals. The fractal dimension definition (6.79) shows that if we make 
a disjoint cover of the support of f with intervals of size s then the number of 
intervals that intersect Sa is 

Na(s) N s--D((y). (6.83) 

The singularity spectrum gives the proportion of Lipschitz a! singularities that 
appear at any scales. A multifractal f is said to be homogeneous if all singularities 
have the same Lipschitz exponent (YO, which means the support of D( a!) is restricted 
to { ao>. Fractional Brownian motions are examples of homogeneous multifractals. 

Partition Function One cannot compute the pointwise Lipschitz regularity of 
a multifractal because its singularities are not isolated, and the finite numerical 
resolution is not sufficient to discriminate them. It is however possible to measure 
the singularity spectrum of multifractals from the wavelet transform local maxima, 
using a global partition function introduced by Ameodo, Bacry and Muzy [278]. 

Let $ be a wavelet with n vanishing moments. Theorem 6.5 proves that i f f  
has pointwise Lipschitz regularity a0 < n at v then the wavelet transform W f  (u,s)  
has a sequence of modulus maxima that converges towards v at fine scales. The 
set of maxima at the scale s can thus be interpreted as a covering of the singular 
support of f with wavelets of scale s. At these maxima locations 
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Let {up  ( S ) } ~ ~ Z  be the position of all local maxima of I Wg(u, s) I at a fixed scale 
s. The partition function 2 measures the sum at a power q of all these wavelet 
modulus maxima: 

2(qrs)  = IWf (uprs)IQ. (6.84) 

At each scale s, any two consecutive maxima up and up+l are supposed to have a 
distance Iup+l - up I > ES, for some E > 0. If not, over intervals of size ES, the sum 
(6.84) includes only the maxima of largest amplitude. This protects the partition 
function from the multiplication of very close maxima created by fast oscillations. 

For each q E W, the scaling exponent ~ ( q )  measures the asymptotic decay of 
Z(q,s)  at fine scales s: 

P 

This typically means that 
2 ( q , s )  N sT(Q).  

Legendre Transform The following theorem relates ~ ( q )  to the Legendre trans- 
form of D ( a )  for self-similar signals. This result was established in [83] for a 
particular class of fractal signals and generalized by Jaffard [222]. 

Theorem 6.7 (ARNEDDO, BACRY, JAFFARD, MUZY) Let A = [aminr amax] be the 
support of D(a).  Let $ be a wavelet with n > am= vanishing moments. I f f  is a 
self-similar signal then 

(6.85) 

Proof ’. The detailed proof is long; we only give an intuitive justification. The sum 
(6.84) over all maxima positions is replaced by an integral over the Lipschitz param- 
eter. At the scale s, (6.83) indicates that the density of modulus maxima that cover a 
singularity with Lipschitz exponent a is proportional to s - ~ ( ~ ) .  At locations where f 
has Lipschitz regularity a, the wavelet transform decay is approximated by 

It follows that 

When s goes to 0 we derive that z ( q , s )  N s7(q) for T ( q )  = mbE*(q(a + 1/2) - 
D(a) ) -  

This theorem proves that the scaling exponent ~ ( q )  is the Legendre transform of 
D ( a ) .  It is necessary to use a wavelet with enough vanishing moments to measure 
all Lipschitz exponents up to amax. In numerical calculations ~ ( q )  is computed by 
evaluating the sum 2(q ,  s). We thus need to invert the Legendre transform (6.85) 
to recover the spectrum of singularity D(a).  
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Proposition 6.2 0 The scaling exponent r (q )  is a convex and increasingfunc- 
tion of q. 

0 The Legendre transform (6.85) is invertible ifand only i fD(a )  is convex, in 

(6.86) 
which case 

q (a + 1/2) - T(q)) .  

The spectrum D ( a )  of self-similar signals is convex. 

Proof ’. The proof that D ( a )  is convex for self-similar signals can be found in [222]. 
We concentrate on the properties of the Legendre transform that are important in 
numerical calculations. To simplify the proof, let us suppose that D(q) is twice differ- 
entiable. The minimum of the Legendre transform (6.85) is reached at a critical point 
q(a ) .  Computing the derivative of q(a  + 1/2) -D(a )  with respect to a gives 

dD 44 = G’ 
with 

(6.87) 

(6.88) 

Since it is a minimum, the second derivative of T(q(a) )  with respect to a is negative, 
from which we derive that 

d2D(a(q)) I 0. 
da2 

This proves that 7 ( q )  depends only on the values where D ( a )  has a negative second 
derivative. We can thus recover D(a)  from T(q) only if it is convex. 

The derivative of T(q) is 

(6.89) 
1 d a  d a d D ( a )  1 d7(q) - a+ - f q  - - - - = a+ - > 0. -- 

dq 2 dq dq d a  2 -  

It is therefore increasing. Its second derivative is 

d 2 M  - - & 
dq2 dq‘ 

Taking the derivative of (6.87) with respect to q proves that 

- 1. 
d a  d2D(a) 
dq da2 

Since 
(6.89) and the fact that T(q) is convex, we verify that 

5 0 we derive that 9 5 0. Hence 7 ( q )  is convex. B y  using (6.88), 

q ( a + 1 / 2 ) - r ( q ) ) .  

w 
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The spectrum D( a)  of self-similar signals is convex and can therefore be calculated 
from 734) with the inverse Legendre formula (6.86). This formula is also valid for 
a much larger class of multifractals. For example, it is verified for statistical self- 
similar signals such as realizations of fractional Brownian motions. Multifractals 
having some stochastic self-similarity have a spectrum that can often be calculated 
as an inverse Legendre transform (6.86). However, let us emphasize that this 
formula is not exact for any function f because its spectrum of singularity D(a)  
is not necessarily convex. In general, Jaf€ard proved [222] that the Legendre 
transform (6.86) gives only an upper bound of D(a) .  These singularity spectrum 
properties are studied in detail in [49]. 

Figure 6.17 illustrates the properties of a convex spectrumD( a). The Legendre 
transform (6.85) proves that its maximum is reached at 

D(ao) = maxD(a) = -T(O).  

It is the fractal dimension of the Lipschitz exponent a0 most frequently encountered 
in f .  Since all other Lipschitz a singularities appear over sets of lower dimension, 
if a0 < 1 then D( ao) is also the fractal dimension of the singular support of f. The 
spectrum D ( a )  for cx < a0 depends on ~ ( q )  for 4 > 0, and for a > 010 it depends 
on ~ ( q )  for 4 < 0. 

O€A 

Numerical Calculations To compute D ( a ) ,  we assume that the Legendre trans- 
form formula (6.86) is valid. We first calculate Z(4,s )  = IWf(up,s)lq, then 
derive the decay scaling exponent 7-(4), and finally compute D[a) with a Legendre 
transform. If 4 < 0 then the value of Z(4 , s )  depends mostly on the small ampli- 
tude maxima I Wf ( up, s) I. Numerical calculations may then become unstable. To 
avoid introducing spurious modulus maxima created by numerical errors in regions 
where f is nearly constant, wavelet maxima are chained to produce maxima curve 
across scales. If $ = (-1)PB(P) where 0 is a Gaussian, Proposition 6.1 proves 
that all maxima lines up(s) define curves that propagate up to the limit s = 0. All 
maxima lines that do not propagate up to the finest scale are thus removed in the 
calculation of Z(4,s ) .  The calculation of the spectrumD(a) proceeds as follows. 

1. Maxima Compute Wf (u, s) and the modulus maxima at each scale s. Chain 

2. Partitionfunction Compute 
the wavelet maxima across scales. 

Z(W) = IW(up,s)14 . 
P 

3. Scaling Compute ~ ( 4 )  with a linear regression of log, Z ( s ,  4) as a function 
of log, s: 

log2 2(47 s) r(4) lo& s + c(q) . 
4. Spectrum Compute 
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FIGURE 6.17 Convex spectrumD(a). 

Example 6.11 The spectrum of singularity D(a)  of the devil’s staircase (6.82) is 
a convex function that can be calculated analytically [203]. Suppose that p1 < p2. 

The support of D ( a )  is [ami,: a,,] with 

If P I =  pz  = 1/2 then the support of D ( a )  is reduced to a point, which means 
that all the singularities of f have the same Lipschitz log2/log3 regularity. The 
value D(log2/log3) is then the fractal dimension of the triadic Cantor set and is 
thus equal to log2/log3. 

Figure 6.18(a) shows a devil’s staircase calculated with P I =  0.4 and p2 = 0.6. 
Its wavelet transform is computed with $ = -e’, where 6 is a Gaussian. The decay 
of log, Z ( 4 ,  s) as a function of log, s is shown in Figure 6.18(b) for several values 
of 4. The resulting ~ ( q )  and D ( a )  are given by Figures 6.18(c,d). There is 
no numerical instability for 4 < 0 because there is no modulus maximum whose 
amplitude is close to zero. This is not the case if the wavelet transformis calculated 
with a wavelet that has more vanishing moments. 

Smooth Perturbations Let f be a multifractal whose spectrum of singularity 
D ( a )  is calculated from ~ ( q ) .  If a CO” signal g is added to f then the singularities 
are not modified and the singularity spectrum of f = f + g remains D ( a ) .  We 
study the effect of this smooth perturbation on the spectrum calculation. 

The wavelet transform of f is 

W f ( u , s )  = Wf (24,s) + Wg(u,s). 

Let ~ ( 4 )  and ?(q) be the scaling exponent of the partition functions 2 ( q , s )  
and z(q ,s )  calculated from the modulus maxima respectively of W f ( u , s )  and 
W j ( u ,  s). We denote by D ( a )  and b(a) the Legendre transforms respectively of 
~ ( 4 )  and ?(q) .  The following proposition relates T ( q )  and ?(q) .  
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FIGURE 6. I8 (a): Devil's staircase with p1 = 0.4 and pz = 0.6. (b): Partition 
function 2 ( q , s )  for several values of q. (c): Scaling exponent r (q).  (d): The 
theoretical spectrum D ( a )  is shown with a solid line. The + are the spectrum 
values calculated numerically with a Legendre transform of r (q).  

Proposition 6.3 (ARNEODO, BACRY, MUZY) Let .JI be a wavelet with exactly n 
vanishing moments. Suppose that f is a self-similarfunction. 

0 vg is apolynomial of degree p < n then r ( q )  = ?(q) for all q E R 
e Zfg(") is almost everywhere non-zero then 

(6.90) 

where qc is defied by r(qc) = (n  + l/2)qC. 

Proof '. If g is a polynomial of degree p < n then Wg(u,s) = 0. The addition of g 
does not modify the calculation of the singularity spectrum based on wavelet maxima, 
so 7(q) = ?(q) for all q E B. 

If g is a C" function. that is not apolynomial then its wavelet transform is generally 
non-zero. We justify (6.91) with an intuitive argument that is not a proof. A rigorous 
proof can be found in [83]. Since $ has exactly n vanishing moments, (6.15) proves 
that 

I Wg(u, s) I N KS"+"2 g(") ( I d ) .  
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Wesupposethatg(")(u) #O.  F o ~ T ( ~ )  5 (n+1/2)q,shce IWg(u,s)IQNsq(n+1/2) has 
a faster asymptotic decay than s'(Q) when s goes to zero, one can verify that i?(q,s) 
and 2 ( q ; s )  have the same scaling exponent, ?(q) = T ( q ) .  If T ( q )  > (n + 1/2)q, 
which means that q 5 qc. then the decay of IWf(u,s)lq is controlled by the decay of 

This proposition proves that the addition of a non-polynomial smooth function 
introduces a bias in the calculation of the singularity spectrum. Let a, be the 
critical Lipschitz exponent corresponding to 4,: 

IWg(u,s) 14, so ?(q) = (n + 1/2)q. 

The Legendre transform of ?(q) in (6.90) yields 

D ( a )  i f a l a c  
D(a)= 0 i f a = n  (6.91) { -00 i f a > a , a n d a # n  

This modification is illustrated by Figure 6.19. 
The bias introduced by the addition of smooth components can be detected 

experimentally by modifying the number n of vanishing moments of $. Indeed 
the value of 4, depends on n. If the singularity spectrum varies when changing 
the number of vanishing moments of the wavelet then it indicates the presence of 
a bias. 

6.4.3 Fractal Noises 

Fractional Brownian motions are statisticdy self-similar Gaussian processes that 
give interesting models for a wide class of natural phenomena [265]. Despite 
their non-stationarity, one can define a power spectrum that has a power decay. 
Realizations of fractional Brownian motions are almost everywhere singular, with 
the same Lipschitz regularity at all points. 

We often encounter fractal noise processes that are not Gaussian although their 
power spectrum has a power decay. Realizations of these processes may include 
singularities of various types. The spectrum of singularity is then important in 
analyzing their properties. This is illustrated by an application to hydrodynamic 
turbulence. 

Ddnition 6.3 (FRACTIONAL BROWNIAN MOTION) A fractional Brownian motion 
of Hurst exponent 0 < H < 1 is a zero-mean Gaussian process BH such that 

(6.92) 
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FIGURE 6. I9 If @ has n vanishing moments, in presence of a C” perturbation 
the computed spectrum b(a )  is identical to the true spectrum D(a)  for a 5 a,. 
Its support is reduced to {n} for a > a,. 

Property (6.92) imposes that the deviation of l B ~ ( t )  - B H ( ~  - A)] be propor- 
tional to lAIH. As a consequence, one can prove that any realization f of BH 
is almost everywhere singular with a pointwise Lipschitz regularity a = H. The 
smaller H, the more singular f .  Figure 6.20(a) shows the graph of one realization 
for H = 0.7. 

Setting A = t in (6.92) yields 

Developing (6.92) for A = t - u also gives 

o2 
E { B j y ( t ) B ~ ( u ) } =  5 ( I t lw+I~]2H-I t -~Iw) .  (6.93) 

The covariance does not depend only on t - u, which proves that a fractional 
Brownian motion is non-stationary. 

The statistical self-similarity appears when scaling this process. One can derive 
from (6.93) that for any s > 0 

E{& (s t )  BH (su)}  = E{sH BH ( t )  BH (u)}. 

Since BH (s t )  and fl BH (t) are two Gaussian processes with same mean and same 
covariance, they have the same probability distribution 

B ~ ( s t )  s H B ~ ( t ) ,  

where = denotes an equality of finibdimensional distributions. 

Power Spectrum Although BH is not stationary, one can define a generalized 
power spectrum. This power spectrum is introduced by proving that the increments 
of a fractional Brownian motion are stationary, and by computing their power 
spectrum [78]. 
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FIGURE 6.20 (a): One realization of a fractional Brownian motion for a Hurst 
exponent H = 0.7. (b): Wavelet transform. (c): Modulus maxima of its wavelet 
transform. (d): Scaling exponent ~ ( 4 ) .  (e): Resulting D ( a )  over its support. 

Proposition 6.4 Let gA(t)  = 6 ( t )  - b(t - A). The increment 

is a stationary process whose power spectrum is 

k I ~ , ~ ( ' )  = IW12H+1 4 lgA(W)12. 

Proof '. The covariance of IH,a is computed with (6.93): 

ff2 

2 

(6.95) 

E{ZH,~ ( t )  Z H , ~  ( t  - 7)) = - ( I T  - a + I T  + AI" - 217 1'") = R/H,A ( T )  . (6.96) 

The power spectrum R,H,A ( w )  is the Fourier transform of R/H,A ( T ) .  One can verify 
that the Fourier transform of the distribution f ( ~ )  = IT / * "  is j ( w )  = -AH I W I - ( ~ ~ + ' ) ,  
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with AH > 0. We thus derive that the Fourier transform of (6.96) can be written 

which proves (6.95) for a i  = a2X~/2. w 
If x ( t )  is a stationary process then we know that Y ( t )  = X * g ( t )  is also stationary 
and the power spectrum of both processes is related by 

(6.97) 

Although &(t) is not stationary, Proposition 6.4 proves that IH,A(t) = BH * g A ( t )  
is stationary. As in (6.97), it is tempting to define a “generalized” power spectrum 
calculated with (6.95): 

(6.98) 

The non-stationarity of B H ( ~ )  appears in the energy blow-up at low frequencies. 
The increments Z ~ , a ( t )  are stationary because the multiplication by I ~ A ( U )  l2 = 
O(w2) removes the explosion of the low frequency energy. One can generalize 
this result and verify that if g is an arbitrary stable filter whose transfer function 
satisfies lg(w)l = O(w) ,  then Y ( t )  = B ~ * g ( t )  is a stationary Gaussian process 
whose power spectrum is 

(6.99) 

Wavelet Transform The wavelet transform of a fractional Brownian motion is 

W B H ( U , S )  =BH*?Js(u). (6.100) 

Since $J has a least one vanishing moment, necessarily I&w)[ = O(w) in the 
neighborhood of w = 0. The wavelet filter g = ?Js has a Fourier transform 
g(w) = &)*(sw) = O(w) near w = 0. This proves that for a fixed s the process 
Ys( u)  = WBH (u, s) is a Gaussian stationary process [ 18 11, whose power spectrum 
is calculated with (6.99): 

(6.101) 

The self-similarity of the power spectrum and the fact that BH is Gaussian are 
sufficient to prove that WBH (u, s) is self-similar across scales: 

where the equivalence means that they have same finite distributions. Interesting 
characterizations of fractional Brownian motion properties are also obtained by 
decomposing these processes in wavelet bases [49,78,357]. 
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Example 6.12 Figure 6.20(a) displays one realization of a fractional Brownian 
with H = 0.7. The wavelet transform and its modulus maxima are shown in 
Figures 6.20(b) and 6.20(c). The partition function (6.84) is computed from the 
wavelet modulus maxima. Figure 6.20(d) gives the scaling exponent ~ ( q ) ,  which 
is nearly a straight line. Fractional Brownian motions are homogeneous fractals 
with Lipschitz exponents equal to H .  In this example, the theoretical spectrum 
D(a)  has therefore a support reduced to (0.7) with D(0.7) = 1. The estimated 
spectrum in Figure 6.20(e) is calculated with a Legendre transform of ~ ( q ) .  Its 
support is [O. 65,O. 751. There is an estimation error because the calculations are 
performed on a signal of finite size. 

Fractal Noises Some physical phenomena produce more general fractal noises 
X ( t ) ,  which are not Gaussian processes, but which have stationary increments. As 
for fractional Brownian motions, one can define a "generalized" power spectrum 
that has a power decay 

4 &(w) = ___ 
IwIW+1' 

These processes are transformed into a wide-sense stationary process by a convo- 
lution with a stable filter g which removes the lowest frequencies l j j (w) l= O(w). 
One can thus derive that the wavelet transform Ys(u) = WX(u,s) is a stationary 
process at any fixed scale s. Its spectrum is the same as the spectrum (6.101) of 
fractional Brownian motions. If H < 1, the asymptotic decay of &(w) indicates 
that realizations of X ( t )  are singular functions but it gives no information on the 
distribution of these singularities. As opposed to fractional Brownian motions, 
general fractal noises have realizations that may include singularities of various 
types. Such multifractals are differentiated from realizations of fractional Brow- 
nian motions by computing their singularity spectrum D ( a ) .  For example, the 
velocity fields of fully developed turbulent flows have been modeled by fractal 
noises, but the calculation of the singularity spectrum clearly shows that these 
flows differ in important ways from fractional Brownian motions. 

Hydrodynamic Turbulence Fully developed turbulence appears in incompress- 
ible flows at high Reynolds numbers. Understanding the properties of hydrody- 
namic turbulence is a major problem of modem physics, which remains mostly 
open despite an intense research effort since the first theory of Kolmogorov in 1941 
[237]. The number of degrees of liberty of three-dimensional turbulence is consid- 
erable, which produces extremely complex spatio-temporal behavior. No formal- 
ism is yet able to build a statistical-physics framework based on the Navier-Stokes 
equations, that would enable us to understand the global behavior of turbulent 
flows, at it is done in thermodynamics. 

In 1941, Kolmogorov [237] formulated a statistical theory of turbulence. The 
velocity field is modeled as a process V ( x )  whose increments have a variance 

E{ I V ( x  + A) - V ( X )  l'} - 
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The constant E is a rate of dissipation of energy per unit of mass and time, which 
is supposed to be independent of the location. This indicates that the velocity 
field is statistically homogeneous with Lipschitz regularity (Y = H = 1/3. The 
theory predicts that a one-dimensional trace of a three-dimensional velocity field 
is a fractal noise process with stationary increments, and whose spectrum decays 
with a power exponent 2H + 1 = 5/3: 

The success of this theory comes from numerous experimental verifications of 
this power spectrum decay. However, the theory does not take into account the 
existence of coherent structures such as vortices. These phenomena contradict the 
hypothesis of homogeneity, which is at the root of Kolmogorov’s 1941 theory. 

Kolmogorov [238] modified the homogeneity assumption in 1962, by introduc- 
ing an energy dissipation rate E(X) that varies with the spatial locationx. This opens 
the door to “local stochastic self-similar” multifractal models, first developed by 
Mandelbrot [264] to explain energy exchanges between finescale structures and 
large-scale structures. The spectnun of singularity D ( a )  is playing an important 
role in testing these models [ 1851. Calculations with wavelet maxima on turbulent 
velocity fields [5] show that D ( a )  is maximum at 1/3, as predicted by the Kol- 
mogorov theory. However, D( a) does not have a support reduced to { 1/3}, which 
verifies that a turbulent velocity field is not a homogeneous process. Models based 
on the wavelet transform were recently introduced to explain the distribution of 
vortices in turbulent fluids [12, 179, 1801. 

6.5 PROBLEMS 

6.1. Lipschifz regularity 

(a) Prove that if f is uniformly Lipschitz Q on [u, b] then it is pointwise Lips- 
chitz 01 at all to E [a ,b] .  

(b) Show that f ( t )  = tsint-’ is Lipschitz 1 at all to E [-1,1] and verify that it 
is uniformly Lipschitz Q over [- 1,1] only for a! 5 1/2. Hint: consider the 
points tn = (n + 1/2)-’ 7r-I. 

6.2. Regularity of derivatives 

(a) Prove that f is uniformly Lipschitz a > 1 over [u,b] if and only i f f ‘  is 

(b) Show that f may be pointwise Lipschitz Q > 1 at to while f’ is not pointwise 

6.3. ’ Find f ( t )  which is uniformly Lipschitz 1 but does not satisfy the sufficient 
Fourier condition (6.1). 

6.4. ’ Let f(t)  = coswot and $(t)  be a wavelet that is symmetric about 0. 
(a) Verify that 

uniformly Lipschitz a! - 1 over [u, b] . 

Lipschitz a - 1 at to. Consider f ( t )  = 3 costp1 at t = 0. 

Wf(u,s) = &(SWO)COSWOt. 
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(b) Find the equations of the curves of wavelet modulus maxima in the time- 
scale plane (u,s).  Relate the decay of JWf(u,s)J along these curves to the 
number n of vanishing moments of $. 

6.5. ' Let f ( t )  = Itla. Show that Wf(u,s) = Wf(u/s, 1). Prove that it is 
not sufficient to measure the decay of IWf(u,s))  when s goes to zero at u = 0 
in order to compute the Lipschitz regularity off at f = 0. 

6.6. 'Letf(t) = ltla sinJtl-,'witha >Oandp>O. WhatisthepointwiseLipschitz 
regularity off  and f' at t = O? Find the equation of the ridge curve in the (u; s) 
plane along which the high amplitude wavelet coefficients I Wf (u, s) I converge 
to r = 0 when s goes to zero. Compute the maximum values of a and a' such 
that Wf(u,s) satisfy (6.21). 

6.7. ' For a complex wavelet, we call lines ofconstantphase the curves in the (u,s) 
plane along which the complex phase of Wf(u:s) remains constant when s 
varies. 
(a) If f ( t )  = Itla, prove that the lines of constant phase converge towards 

the singularity at t = 0 when s goes to zero. Verify this numerically in 

@) Let $ be a real wavelet and W f ( u , s )  be the real wavelet transform of f .  
Show that the modulus maxima of W f ( u , s )  correspond to lines of constant 
phase of an analytic wavelet transform, which is calculated with aparticular 
analytic wavelet 

6.8. ' Prove that iff = l [ ~ , + ~ )  then the number of modulus maxima of W f ( u , s )  at 
each scale s is larger than or equal to the number of vanishing moments of $. 

6.9. ' The spectrum of singularity of the Riemann function 

WAVELAB. 

that you will specify. 

n=-m 

is defined on its support by D ( a )  = 4a - 2 if a E [1/2,3/4] and 0(3/2) = 0 
[213, 2221. Verify this result numerically with WAVELAB, by computing this 
spectrum from the partition function of a wavelet transform modulus maxima. 

6.10. ' Let $ = -8' where B is a positive window of compact support. If f is a 
Cantor devil's staircase, prove that there exist lines of modulus maxima that 
converge towards each singularity. 

6.1 1. ' Implement in WAVELAB an algorithm that detects oscillating singularities by 
following the ridges of an analytic wavelet transform when the scales decreases. 
Test your algorithm on f ( t )  = sint-'. 

6.12. ' Implement in WAVELAB an algorithm that reconstructs a signal from the local 
maxima of its dyadic wavelet transform, with the frame algorithm of Section 
6.2.2. Compare numerically the speed of convergence and the precision of 
the reconstruction when using the frame operator (6.49) that incorporates the 
extrema condition and the reduced frame operator (6.51). 

6.13. ' Let X[n]  = f [ n ]  + W[n] be a signal of size N, where W is a Gaussian white 
noise of variance CT*. Implement in WAVELAB an estimator off which thresh- 
olds at T = d m  the maxima of a dyadic wavelet transform of X. The 
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6.14. 

6.15. 

6.16. 

6.17. 

6.18. 

6.19. 

estimation of f  is reconstructed from the k h o l d e d  maxima representation 
with the frame algorithm of Section 6.2.2. Compare numerically this estimator 
with a thresholding estimator in a wavelet orthonormal basis. 

(a) Prove that the Laplacian of a two-dimensional Gaussian 
Let e(t )  be a Gaussian of variance 1. 

satisfies the dyadic wavelet condition (5.91) (there is only 1 wavelet). 
(b) Explain why the zero-crossings of this dyadic wavelet transform provide the 

locations of multiscale edges in images. Compare the position of these zero- 
crossings with the wavelet modulus maxima obtained with $ ‘ ( x l , x ~ )  = 

The covariance of a fractional Brownian motion B H ( ~ )  is given by (6.93). 
-e+,) e(xz) and $ z ( ~ ,  ,XZ) = -e(xl) eyx,). 

Show that the wavelet transform at a scale s is stationary by verifying that 

with Q(t) =$*$(t) and$(t) = $ ( - t ) .  
Let X ( t )  be a stationary Gaussian process whose covariance &(T) = 

E { X ( t ) X ( t  - 7)) is twice differentiable. One can prove that the average number 
of zero-crossings over an interval of size 1 is -.rrRI;(O) (.rr2Rx(0))-’ [56]. Let 
&(t) be a fractional BrowNan motion and $ a wavelet that is Cz. Prove that 
the average numbers respectively of zero-crossings and of modulus maxima of 
wBH(u,s) for u E [0,1] are proportional to s. Verify this result numerically in 
WAVRbB. 

We want to interpolate the samples of a discrete signal f ( n / N )  without 
blurring its singularities, by extending its dyadic wavelet transform at finer 
scales with an interpolation procedure on its modulus maxima. The modulus 
maxima are calculated at scales 2j > N-’ .  Implement in WAVELAB an algorithm 
that creates a new set of modulus maxima at the finer scale N-I, by interpolating 
across scales the amplitudes and positions of the modulus maxima calculated at 
2j > N - l .  Reconstruct a signal of size 2N by adding these fine scale modulus 
maxima to the maxima representation of the signal. 

Implement an algorithm that estimates the Lipschitz regularity a and the 
smoothing scale 0 of sharp variation points in one-dimensional signals by a p  
plying the result of Theorem 6.6 on the dyadic wavelet transform maxima. 
Extend Theorem 6.6 for two-dimensional signals and find an algorithm that 
computes the same parameters for edges in images. 

Construct a compact image code from multiscale wavelet maxima [261]. 
An efficient coding algorithm must be introduced to store the positions of the 
“important” multiscale edges as well as the modulus and the angle values of the 
wavelet transform along these edges. Do not forget that the wavelet transform 
angle is nearly orthogonal to the tangent of the edge curve. Use the image 
reconstruction algorithm of Section 6.3.2 to recover an image from this coded 
representation. 
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6.20. A generalized Cantor measure is defined with a renormalization that trans- 
forms the uniform measure on [0,1] into a measure equal to p1, 0 and p2 
respectively on [0,11], [Z l , l 2 ]  and [ lz ,  11, with p1 +p2 = 1. Iterating infinitely 
many times this renormalization operation over each component of the result- 
ing measures yields a Cantor measure. The integral (6.82) of this measure is a 
devil’s staircase. Suppose that 21,12, p1 and p2 are unknown. Find an algorithm 
that computes these renormalization parameters by analyzing the self-similarity 
properties of the wavelet transform modulus maxima across scales. This prob- 
lem is important in order to identify renormalization maps in experimental data 
obtained from physical experiments. 



VI I 
WAVELET BASES 

h ne can construct wavelets tb such that the dilated and translated family 

is an orthonormal basis of L2(W). Behind this simple statement lie very different 
points of view which open a fruitful exchange between harmonic analysis and 
discrete signal processing. 

Orthogonal wavelets dilated by 2j  carry signal variations at the resolution 
2- j .  The construction of these bases can thus be related to multiresolution signal 
approximations. Following this link leads us to an unexpected equivalence between 
wavelet bases and conjugate mirror filters used in discrete multirate filter banks. 
These filter banks implement a fast orthogonal wavelet transform that requires 
only O ( N )  operations for signals of size N .  The design of conjugate mirror filters 
also gives new classes of wavelet orthogonal bases including regular wavelets of 
compact support. In several dimensions, wavelet bases of L2(Rd) are constructed 
with separable products of functions of one variable. 

7. I ORTHOGONAL WAVELET BASES 

Our search for orthogonal wavelets begins with multiresolution approximations. 
For f E L2(R), the partial sum of wavelet coefficients E,'="_, (f, $J~ ,~ )  $ I ~ ~ ~  can 
indeed be interpreted as the difference between two approximations of f at the 

220 
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resolutions 2-j+' and 2-j . Multiresolution approximations compute the approx- 
imation of signals at various resolutions with orthogonal projections on different 
spaces {Vj} jEz .  Section 7.1.3 proves that multiresolution approximations are 
entirely characterized by a particular discrete filter that governs the loss of infor- 
mation across resolutions. These discrete filters provide a simple procedure for 
designing and synthesizing orthogonal wavelet bases. 

7. I. I Multiresolution Approximations 

Adapting the signal resolution allows one to process only the relevant details for 
a particular task. In computer vision, Burt and Adelson [ 1081 introduced a multi- 
resolution pyramid that can be used to process a low-resolution image first and then 
selectively increase the resolution when necessary. This section formalizes multi- 
resolution approximations, which set the ground for the construction of orthogonal 
wavelets. 

The approximation of a function f at a resolution 2-j is specified by a discrete 
grid of samples that provides local averages off  over neighborhoods of size pro- 
portional to 2j. A multiresolution approximation is thus composed of embedded 
grids of approximation. More formally, the approximation of a function at a res- 
olution 2-j is defined as an orthogonal projection on a space V j  c L2(W). The 
space V j  regroups all possible approximations at the resolution 2-j. The orthogo- 
nal projection off is the function f j E V j  that minimizes 1 1  f - f j 1 1 .  The following 
definition introduced by Mallat [254] and Meyer [47] specifies the mathematical 
properties of multiresolution spaces. To avoid confusion, let us emphasize that a 
scale parameter 2j is the inverse of the resolution 2-j. 

Definition 7.1 (MULTIRESOLUTIONS) A sequence (Vj} jEz of closed subspaces of 
L2 (W) is a multiresolution approximation ifthe following 6properties are satisjied: 

(7.1) 
(7.2) 

V ( j , k )  €2' , f ( t )  E V ~  H f ( t - 2 j k )  E V ~ ,  
V j  E Z , Vj+l c V j  , 

+w 

j+-w lim V j  =Closure (,E V i )  =LZ(W). (7.5) 
j=-w 

There exists 8 such that { e ( t  - n)}nEz is a Riesz basis of VO.  

Let us give an intuitive explanation of these mathematical properties. Property 
(7.1) means that V j  is invariant by any translation proportional to the scale 2j. As 
we shall see later, this space can be assimilated to a uniform grid with intervals 2J,  
which characterizes the signal approximation at the resolution 2-j. The inclusion 
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(7.2) is a causality property which proves that an approximation at aresolution 2-j 

contains all the necessary information to compute an approximation at a coarser 
resolution 2-j-I. Dilating functions in V j  by 2 enlarges the details by 2 and (7.3) 
guarantees that it defines an approximation at a coarser resolution 2-j-I. When 
the resolution 2-j goes to 0 (7.4) implies that we lose all the details off and 

On the other hand, when the resolution 2-j goes +m, property (7.5) imposes that 
the signal approximation converges to the original signal: 

lim Ilf-Pv,fl/ = O .  
j+-oo (7.7) 

When the resolution 2-j increases, the decay rate of the approximation error / I f  - 
Pv, f 1 1  depends on the regularity off. Section 9.1.3 relates this error to the uniform 
Lipschitz regularity off. 

The existence of a Riesz basis {e(t - n)}nEZ of VO provides a discretization 
theorem. The function 8 can be interpreted as a unit resolution cell; Appendix A.3 
gives the definition of a Riesz basis. There exist A > 0 and B such that any f E V O  
can be uniquely decomposed into 

n=-w 

with 
+W 

n=--30 

This energy equivalence guarantees that signal expansions over {e(t - n ) } , , € ~  are 
numerically stable. With the dilation property (7.3) and the expansion (7.8), one 
can verify that the family {2-j/20(2-3t - n)}nEZ is a Riesz basis of V j  with the 
same Riesz bounds A and B at all scales 2j. The following proposition gives a 
necessary and sufficient condition for {e(t - n ) } n E Z  to be a Riesz basis. 

Proposition 7.1 A family { O ( t  - I Z ) } , ~ ~  is a Riesz basis of the space Vo it generates 
ifand only ifthere exist A > 0 and B > 0 such that 

(7.10) 
1 1 - < 

A B -  vw E [-n,n] , l8(w-2kn)(25 -. 
k=-w 

Proof '. Any f E Vo can be decomposed as 

n=-m 
(7.11) 
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The Fourier transform of this equation yields 

&) = a(w) B(w) (7.12) 

where 6(w) is the Fourier series 6(w) = E,'="_, u[n] exp(-inw). The norm off can 
thus be written 

(7.13) 

because u(w) is 2n periodic. The family {e(t - I Z ) } , ~ ~  is a Riesz basis if and only if 

If 8 satisfies (7.10) then (7.14) is derived from (7.13). The linear independence of 
{Q(t - n ) } n E ~  is a consequence of the fact that (7.14) is valid for any a[.] satisfying 
(7.1 1). If f = 0 then necessarily u[n] = 0 for all n E Z. The family {e(t - I Z ) } , ~ ~  is 
therefore a Riesz basis of VO. 

Conversely,if {O(t -n)),,~isaRieszbasisthen(7.14)isvalidforanyu[n] E lz(Z). 
If either the lower bound or the upper bound of (7.10) is not satisfied for almost all 
w E [-n, n] then one can construct a non-zero 2n periodic function 2(w) whose support 
corresponds to frequencies where (7.10) is not verified. We then derive from (7.13) 
that (7.14) is not valid for u[n], which contradicts the Riesz basis hypothesis. W 

Example 7.1 Piecewise constant approximations A simple multiresolution ap- 
proximation is composed of piecewise constant functions. The space V j  is the set 
of all g E L2(IR) such that g(t )  is constant for t E [n2j, (n + 1)2j) and n E Z. The 
approximation at a resolution 2-j off  is the closest piecewise constant function 
on intervals of size 2j. The resolution cell can be chosen to be the box window 
0 = 1p1).  Clearly V j  c Vj-1 since functions constant on intervals of size 2j are 
also constant on intervals of size 2j-l. The verification of the other multiresolution 
properties is left to the reader. It is often desirable to construct approximations 
that are smooth functions, in which case piecewise constant functions are not 
appropriate. 

Example 7.2 Shannon approximations Frequency band-limited functions also 
yield multiresolution approximations. The space V j  is defined as the set of func- 
tions whose Fourier transform has a support included in [-2-j7r, 2-j7r]. F'roposi- 
tion 3.2 provides an orthonormal basis {e(t - n ) } n E ~  of VO defined by 

sin7rt 
7rt 

e(t)  = -. (7.15) 

All other properties of multiresolution approximation are easily verified. 
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FIGURE 7. I Cubic box spline 8 and its Fourier transform 8. 

The approximation at the resolution 2-j off E L~ (W) is the functionPvjf E vj 
that minimizes llPv, f - f l l .  It is proved in (3.12) that its Fourier transform is 
obtained with a frequency filtering: 

This Fourier transform is generally discontinuous at f2-j7r, in which case 
lPvj f (t)l decays like ltl-', for large Itl, even though f might have a compact 
support. 

Example 7.3 Spline approximations Polynomial spline approximations con- 
struct smooth approximations with fast asymptotic decay. The space Vj of splines 
of degree m 2 0 is the set of functions that are m - 1 times continuously differ- 
entiable and equal to a polynomial of degree m on any interval [n2j, (n + 1)2j], 
for n E Z. When m = 0, it is a piecewise constant multiresolution approximation. 
When m = 1, functions in Vj are piecewise linear and continuous. 

A Riesz basis of polynomial splines is constructed with box splines. A box 
spline 8 of degree m is computed by convolving the box window 1[0,1~ with itself 
m + 1 times and centering at 0 or 1/2. Its Fourier transform is 

(7.16) 

If m is even then E = 1 and 8 has a support centered at t = 1/2. If m is odd then 
E = 0 and 8 ( t )  is symmetric about t = 0. Figure 7.1 displays a cubic box spline 
m = 3 and its Fourier transform. For all m 2 0, one can prove that {8(t  - n)}aEZ 
is a Riesz basis of VO by verifying the condition (7.10). This is done with a closed 
form expression for the series (7.24). 

7. I .2 Scaling Function 

The approximation off at the resolution 2-i is defined as the orthogonal projection 
Pvj f on Vj. To compute this projection, we must find an orthonormal basis of Vj. 
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The following theorem orthogonalizes the Riesz basis { O(t -n)}nEZ and constructs 
an orthogonal basis of each space Vj  by dilating and translating a single function 
qb called a scaling function. To avoid confusing the resolution 2-j and the scale 
2j,  in the rest of the chapter the notion of resolution is dropped and Pvj f is called 
an approximation at the scale 2j .  

Theorem 7.1 Let {Vj}jEz be a multiresolution approximation and 4 be the scal- 
ing function whose Fourier transfom is 

Let us denote 

(7.17) 

The family { q b j , n } n E ~  is an orthononnal basis of V j  for all j E Z. 

Proof'. To construct an orthonormal basis, we look for a function 4 E Vo. It can thus 
be expanded in the basis {e(t  - n)}nEz: 

+m 

40) = 44 - 4 1  

$(w) = b(w) B(w), 

n=--30 

which implies that 

where b is a 27r periodic Fourier series of finite energy. To compute b we express the 
orthogonality of {q5(t-n)}nEz in the Fourier domain. Let $( t )  = @ ( - t ) .  For any 
(n1p) E z2, 

+m 

(4(t - 4, $0 - P)) = / 4 0  - 4 @ ( t  -PI 
-m 

= d * $ ( p - n ) .  (7.18) 

Hence { ~ $ ( t - n ) } , ~ ~  is orthonormal if and only if c)*$(n) = b[n].  Computing the 
Fourier transform of this equality yields 

+m 

13(w+2k7r)12= 1. (7.19) 
E=-m 

Indeed, the Fourier transform of 4 * $ (t) is I 3 (w ) I ' , and we proved in (3.3) that sampling 
a function periodizes its Fourier &amform. The property (7.19) is verified if we choose 

k=-m )-"' ' 
Proposition 7.1 proves that the denominator has a strictly positive lower bound, so b 
is a 27r periodic function of finite energy. 
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FIGURE 7.2 Cubic spline scaling function + and its Fourier transform 4 com- 
puted with (7.23). 

Approximation 
pansion in the scaling orthogonal basis 

The orthogonal projection off over V i  is obtained with an ex- 

+ffi 

~ v j f  = ( f i + j , n )  + j , n .  (7.20) 
n=-m 

The inner products 
a j b l =  (f, +j,n> (7.21) 

provide a discrete approximation at the scale 2j.  We can rewrite them as a convo- 
lution product: 

with 4 ( t )  = m+( 2-jt) .  The energy of the Fourier transform 4 is typically con- 
centrated in [ - n , n ] ,  as illustrated by Figure 7.2. As a consequence, the Fourier 
transform (23,) of $j( t )  is mostly non-negligible in [-2-jn, 2-jnI. The 
discrete approximation aj[n] is therefore a low-pass filtering of f sampled at in- 
tervals 2j. Figure 7.3 gives a discrete multiresolution approximation at scales 
2-9 5 2j 5 2-4. 

Example 7.4 For piecewise constant approximations and Shannon multiresolu- 
tion approximations we have constructed Riesz bases {8(t  - n ) I n E ~  which are 
orthonormal bases, hence 4 = 0. 

Example 7.5 Spline multiresolution approximations admit a Riesz basis con- 
structed with a box spline 8 of degree m, whose Fourier transform is given by 
(7.16). Inserting this expression in (7.17) yields 

(7.23) 
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FIGURE 7.3 
puted with cubic splines. 

Discrete multiresolution approximations aj[n] at scales 2j, com- 

with 

(7.24) 

and E = 1 if m is even or E = 0 if m is odd. A closed form expression of Sh+z(w)  
is obtained by computing the derivative of order 2m of the identity 

For linear splines m = 1 and 

1 +2cos2w 
S4(&)= 48sin4w : 

which yields 
4&sin2(w/2) 

w2J1+2cos2(w/2)' 

(7.25) 

(7.26) 

The cubic spline scaling function corresponds to m = 3 and $(w) is calculated 
with (7.23) by inserting 

(7.27) 5 + 30 cos2 w + 30 sin2 w cos' w 
105 28 sin8 w 

SS(2W) = 
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70 cos4 w + 2 sin4 w cos2 w + 213 sin6 w 
I 

10528 sin'w 

This cubic spline scaling function 4 and its Fourier transform are displayed in 
Figure 7.2. It has an infinite support but decays exponentially. 

7. I .3 Conjugate Mirror Filters 

A multiresolution approximation is entirely characterized by the scaling function 
4 that generates an orthogonal basis of each space Vi.  We study the properties 
of 4 which guarantee that the spaces Vj  satisfy all conditions of a multiresolution 
approximation. It is proved that any scaling function is specified by a discrete 
filter called a conjugate mirrorfilter. 

Scaling Equation The multiresolution causality property (7.2) imposes that Vj  C 
~j-1.1nparticular2-'/~4(t/2) E V ~  c vO. Since(4(t-n)},,Zisanorthonormal 
basis of VO, we can decompose 

with 

(7.28) 

(7.29) 

This scaling equation relates a dilation of 4 by 2 to its integer translations. The 
sequence h[n] will be interpreted as a discrete filter. 

The Fourier transform of both sides of (7.28) yields 

(7.30) 

for i ( w )  = C,+_"_,h[n] e-inw. It is thus tempting to express $(w) directly as a 
product of dilations of i ( w ) .  For any p 2 0, (7.30) implies 

1 
J(2w) = - i ( w )  J(w) 

4 

(7.31) 
1 

4(2-p+'w) = - i (2-w) J(2-w). Jz 
By substitution, we obtain 

J(w)= (fjv) J(2-pw). 

&w> is continuous at w = o then lim 4(2-'w) = &o) so 
P++ffi 

(7.32) 

(7.33) 
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The following theorem [254,47] gives necessary and then sufficient conditions on 
h(w) to guarantee that this infinite product is the Fourier transform of a scaling 
function. 

Theorem 7.2 (MALLAT, MEYER) Let 4 E L2(W) be an integrable scaling func- 
tion. m e  Fourier series of h[n] = (2-’ /*4(t /2):  $( t  - n ) )  satisfies 

vw E W  li(w)lZ+lh(w+Ir)12=2, (7.34) 

and 
h(0) = Jz. (7.35) 

Conversely, i f i ( w )  is 21r periodic and continuously dgerentiable in a neighbor- 
hood of w = 0, if it satisfies (7.34) and (7.35) and if 

then 

(7.36) 

(7.37) 

is the Fourier transfonn of a scalingfunction 4 E L2(W). 

Pro05 This theorem is a central result whose proof is long and technical. It is divided 
in several parts. 

Proof’ of the necessary condition (7.34) The necessary condition is proved to be 
a consequence of the fact that {4(t - n)}nEZ is orthonormal. In the Fourier domain, 
(7.19) gives an equivalent condition: 

+m 

V U E W  I$(w+2k7r)I2=1. 
k=--30 

(7.38) 

Inserting $(.I) = 2-1/2h(w/2) &w/2)  yields 

Since h(w) is 27r periodic, separating the even and odd integer terms gives 

Inserting (7.38) for w’ = w/2 and w’ = w / 2  + 7r proves that 

Ih(w’)l2+liE(w’+x)l2 =2. 

Proof of the necessary conditiqn (7.35) We prove,that h(0) = .\/z by showing that 
&o) # 0. ~ndeed we know that 4(0) = 2-’/2 h(0)  +(o). MOE precisely, we verify 
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that I&O) 1 = 1 is a consequence ofthe completeness property (7.5) ofmultiresolution 
approximations. 

The orthogond projection off E L2(R) on Vj is 

(7.39) 
n=--m 

Property (7.5) expressed in the time and Fourier domains with the Plancherel formula 
implies that 

j+-w lim Ilf-Pvjfll’ = j ~ ~ w 2 a 1 1 j - ~ v j f ~ ~ ’  =o. (7.40) 

TocomputetheFouriertransformP~f(w), wedenote4j(t) = fi4(2-jt) .  Inserting 
the convolution expression (7.22) in (7.39) yields 

- 

+m +-m 

Pvjf(t)= f * i j J j ( 2 j n ) 4 j ( t - 2 j n ) = 4 j *  f $j (2jn) b(t - 2jn). 

The Fourier transform of f*Jj(t) is fij(w)@(2jw). A uniform sampling has a 
periodized Fourier transform calculated in (3.3), and hence 

n=-m n=--33 

q ( w )  = J(2jw) E 3 (u- $) 8 (. [w - $1) . (7.41) 
k=-m 

Let us choose 3 = l[-x,T~. For j < 0 and w E [-7r,7r], (7.41) gives Pvjf(w) = 
13(2jw) 1’. The mean-square convergence (7.40) implies that 

Since 4 is integrable, &u) is continuous and hence Iimj+= 14(2jw) I = 1&0)1= 1. 
We now prove that the function 4 whose Fourier transform is given by (7.37) is a 
scaling function. This is divided in two intermediate results. 

0 Proof that {4(t  - n))nEg is orthonormal. Observe first that the infinite product 
(7.37) converges and that Id(w)l 5 1 because (7.34) implies that lh(w)l 5 &. The 
Parseval formula gives 

Verifying that {4( t  - n)}nEz is orthonormal is thus equivalent to showing that 

l:m lJ(w)lzehdw = 27rb[n]. 

This result is obtained by considering the functions 
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and computing the limit, as k increases to +oo, of the integrals 

First, let us show that [n] = 27rb[n] for all k 2 1. To do this, we divide zk  [n] into 
two integrals: 

Let us make the change of variable w’ = w + 2‘7r in the first integral. Since h(w)  is 
27r periodic, when p < k then lh(2-p[w’- 2k7r])12 = lh(2-pw’)12. When k = p the 
hypothesis (7.34) implies that 

Ih(2-k[w’-2k7r])12+ li(2-kw’)IZ = 2. 

For k > 1, the two integrds of z k  [n] become 

(7.42) 

Since n:21 1h(2-pw)12 einv is 2% periodic we obtain ~ k [ n ]  = zk-1 [n], and by induction 
z k  [n] = 11 [n] . Writing (7.42) for k = 1 gives 

Zl [n] = 12r einw dw = 27r S[n] 

which verifies that zk[n] = 2@[n], for all k 2 1. 
We shall now prove that 4 E L2(B). For all w E B 

The Fatou Lemma A. 1 on positive functions proves that 

(7.43) 

because zk  [o] = 27r for dl k 2 1. Since 

I&w)12einw = j ~ ~ l & ( w ) l Z e i n w  , 

we finally verify that 
i m  ~ 

Id(w)IZeirwdw =jL:[, lq5k(w)12ei““dw =27rS[n] (7.44) 

by applying the dominated convergence Theorem A.l. This requires verifying the 
upper-bound condition (A.1). This is done in OUT case by proving the existence of a 
constant C such that 

LIP - 

~ ~ h k ( ~ ) ~ 2 e i n “ ~  = l$k(w)lz 5 cl$(w)Iz. (7.45) 
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Indeed, we showed in (7.43) that I$(w)lz is an integrable function. 

For IwI 5 2k7r since 4(w) = 2-1/2h(w/2)  &(w/2) ,  it follows that 
The existence 0f-c > o satisfying (7.45) is trivial for 1wI > 2 k ~  since &(w) = 0. 

I & w ) I z  = I & k ( w ) I z  l & ( 2 - k w ) I z .  
To prove (7.45) for IwI < 2 k ~ ,  it is therefore sufficient to show that I C & W ) I ~  1 1/C for 

Let us first study the neighborhood of w = 0. Since h(w)  is continuously differ- 
entiable in this neighborhood and since ]h(w)I2 < 2 = lh(0)12, the functions Ih(w)12 
and log, Ih(w) 1' have derivatives that vanish at w = 0. It follows that there exists E > 0 
such that 

w E [-w,w].  

Hence, for IwI < E 

Now let us analyze the domain IwI > E. To do this we take an integer I such that 
2-'w < E. Condition (7.36) proves that K = inf,+,/~,~/~] lh(w)l > 0 so if IwI < T 

This last result finishes the proof of inequality (7.45). Applying the dominated con- 
vergence Theorem A.l proves (7.44) and hence that {$( t  - n)},,~ is orthonormal. A 
simple change of variable shows that { q 5 j , n } j G ~  is orthonormal for all j E Z. 

e Proof3 that { V j } j E ~  is a rnultiresolution. To verify that 4 is a scaling function, 
we must show that the spaces Vj  generated by { C # J ~ ? ~ } ~ € Z  define a multiresolution 
approximation. The multiresolution properties (7.1) and (7.3) are clearly true. The 
causality Vj+l C V j  is verified by showing that for any p E Z, 

This equality is proved later in (7.112). Since all vectors of a basis of Vj+l can 
decomposed in a basis of Vj it follows that Vj+l c V i .  

To prove the multksolution property (7.4) we must show that any f E LZ(B) 
satisfies 

(7.47) lim llPvj f 11 = 0. 
j++m 

Since { q 5 j , n } n E ~  is an orthonormal basis of V j  

n=-m 
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Suppose first that f is bounded by A and has a compact support included in [2’ , 2’1. 
The constants A and J may be arbitrarily large. It follows that 

Applying the Cauchy-Schwarz inequality to 1 x 1$(2-jt - n) I yields 

with Sj = UnEZ[n - 2’-j,n + 2 9  for j > J. For t 6 Z we obviously have lsj (t) + 0 
for j --t fm.  ThedominatedconvergenceTheoremA.1 appliedto Iq5(t)l2 lsj (t) proves 
that the integral converges to 0 and hence 

+W 

Property (7.47) is extended to any f E L2 (a) by using the density in L2 (W) of bounded 
function with a compact support, and Proposition A.3. 

To prove the last multiresolution property (7.5) we must show that for any f E 
L2 (W) 1 

j+-cs lim Ilf -Pv,fl12 = J’-W Jim ( llfl12 - IIPVjfl12) = 0. (7.48) 

We consider functions f whose Fourier transform 1 has a compact support included 
in [-2’r: 2’r] for J large enough. We proved in (7.41) that the Fourier transform of 
Pvj f is 

+W 

PYf(w) = J(2’w) 3 (.: - 2-’2kr) p (2j  [w - 2-’2kx]) 
k=-m 

If j < -J,  then the supports of j(w - 2-j2k7r) are disjoint for different k so 

We have already observed that l$(w)l 5 1 and (7.46) proves that for w sufficiently 
small ld(u)l 1 e+ so 

lirnI$(w)I = 1. 
w+o 
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Since ~ ~ ( w ) ~ 2 ~ & 2 j w ) ~ 4  5 I j (w) l2  and limj+-m 1&(2j~)1~1j(w)I~ = I j (w) l *  one can 
apply the dominated convergence Theorem A. 1, to prove that 

The operator Pvj is an orthogonal projector, so llPv,fl\ 5 I l f l l .  With (7.49) and 
(7.50), this implies that limj-t-,,,(llf112 - ~ ~ P v ~ ~ ~ ~ ~ )  = 0, and hence verifies (7.48). 
This property is extended to any f E L2(IK) by using the density in Lz(R) of functions 
whose Fourier transforms have a compact support and the result of Proposition A.3. 

Discrete filters whose transfer functions satisfy (7.34) are called conjugate mirror 
JiZrers. As we shall see in Section 7.3, they play an important role in discrete 
signal processing; they make it possible to decompose discrete signals in separate 
frequency bands with filter banks. One difficulty of the proof is showing that 
the infinite cascade of convolutions that is represented in the Fourier domain by 
the product (7.37) does converge to a decent function in L2(W). The sufficient 
condition (7.36) is not necessary to construct a scaling function, but it is always 
satisfied in practical designs of conjugate mirror filters. It cannot just be removed 
as shown bytheexampleh(w) = cos(3w/2), which satisfies all other conditions. In 
this case, a simple calculation shows that q5 = 1 /3 1 [-3/2,3/21. Clearly { q5( t - n)},Ez 
is not orthogonal so q5 is not a scaling function. The condition (7.36) may however 
be replaced by a weaker but more technical necessary and sufficient condition 
proved by Cohen [17,128]. 

Example 7.6 For a Shannon multiresolution approximation, 4 = l[-T,T~. We thus 
derive from (7.37) that 

vw E [ - 7 4  7 h(w) = &1[-T,2,T/2](W). 

Example 7.7 For piecewise constant approximations, q5 = lpll .  Since h[n] = 
(2-'/24(t/2); 4(t - n ) )  it follows that 

2-'/' if n = 0'1 
otherwise h[n] = (7.51) 

Example 7.8 Polynomial splines of degree m correspond to a conjugate mirror 
filter h(w) that is calculated from $(w) with (7.30): 

Inserting (7.23) yields 

(7.52) 

(7.53) 
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m = l  

m = 3  

FIGURE 7.4 The solid line gives $(w)I2 on [--7r,7~], for a cubic spline multi- 
resolution. The dotted line corresponds to I ~ ( W ) ( ~ .  

0 
1,-1 
2, -2 
3, -3 
4, -4 
5, -5 
6, -6 
7, -7 

9, -9 
10, -10 
11;-11 

0 
1; -1 
2, -2 
3, -3 
4, -4 

8, -8 

I n  

0.8 17645956 
0.397296430 

-0.069 10 1020 
-0.051945337 

0.016974805 
0.009990599 

-0.003883261 
-0.002201945 

0.00092337 1 
0.00051 1636 

-0.000224296 
-0.000122686 

0.766130398 
0.433923147 

-0.050201753 
-0.110036987 

0.032080869 

m = 3  

n 

5, -5 
6, -6 
7, -7 
8, -8 
9, -9 

10, -10 
11,-11 
12, - 12 
13, -13 
14, -14 
15, -15 
16, -16 
17, -17 
18: -18 
19; -19 
20, -20 

hbl  

0.042068328 
-0.017176331 
-0.017982291 

0.008685294 
0.008201477 

-0.004353840 
-0.003882426 

0.0021 867 14 
0.001882120 

-0.001 103748 
-0.000927187 

0.000559952 
0.000462093 

-0.000285414 
-0.000232304 

0.000 146098 

Table 7.1 
and cubic splines m = 3. The coefficients below 

Conjugate mirror filters h[n] corresponding to linear splines m = 1 
are not given. 

where 6 = 0 if m is odd and E = 1 if m is even. For linear splines m = 1 so (7.25) 
implies that 

1 +2cos*(w/2) ] cos2 (i). 
1 +2cos7-w 

i ( w )  = d2 [ (7.54) 

For cubic splines, the conjugate mirror filter is calculated by inserting (7.27) in 
(7.53). Figure 7.4 gives the graph of $ ( ~ ) 1 ~ .  The impulse responses h[n] of 
these filters have an infinite support but an exponential decay. For m odd, h[n] 
is symmetric about n = 0. Table 7.1 gives the coefficients h[n] above for 
m = 1,3. 
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7. I .4 

Orthonormal wavelets carry the details necessary to increase the resolution of a 
signal approximation. The approximations of f at the scales 2j and 2j-’ are 
respectively equal to their orthogonal projections on V j  and Vj-1. We know that 
V j  is included in Vi-1. Let W j  be the orthogonal complement of V j  in Vj-1: 

(7.55) 

The orthogonal projection off on Vj-l  can be decomposed as the sum of orthog- 
onal projections on V j  and W j :  

In Which Orthogonal Wavelets Finally Arrive 

vj-1 = vj a3 wj. 

pv,-, f = Pv,f + PwJ. (7.56) 

The complement Pwj f provides the “details” off that appear at the scale 2j-l but 
which disappear at the coarser scale 2j. The following theorem [47,254] proves 
that one can construct an orthonormal basis of W j  by scaling and translating a 
wavelet $. 

Theorem 7.3 (MALLAT, MEYER) Let be a scaling function and h the corre- 
sponding conjugate mirror filter Let + be the function whose Fourier transfonn 
is 

(7.57) 

with 
i ( w )  =e-’WP(w+.rr). 

Let us denote 

(7.58) 

For any scale 2j, {?,bj,n}nEz is an orthononnal basis of W j .  
{ ? , b j , n } ( j , n l E p  is an orthononnal basis of L2(B). 

For all scales, 

Proof l. Let us prove first that 4 can be written as the product (7.57). Necessarily 
7,!J(t/2) E W1 c VO. Itcanthusbedecomposedin { ~ $ ( t - n ) } , , ~ ~  whichis anorthogonal 
basis of VO: 

with 

(7.59) 

(7.60) 

The Fourier transform of (7.59) yields 

(7.61) 
1 

4 4 2 4  = - i ( w )  &d). 
f i  

The following lemma gives necessary and sufficient conditions on for designing an 
orthogonal wavelet. 
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Lemma 7.1 The family is an orthononnal basis of Wj ifand only if 

lk(u)12 + lk(u + .)I2 = 2 (7.62) 

and 
k(u)P(u) + k(u +.) P ( w  +7r) = 0. (7.63) 

The lemma is proved for j = 0 from which it is easily extended to j # 0 with an 
appropriate scaling. As in (7.19) one can verify that ($( t  - n)}nEz is orthonormal if 
and only if 

+W 

vu E B , Z(u) = 14(u+2k.)(2 = 1. 
k = - w  

Since G(u) = 2-'/'k(w/2) 4(w/2) and k(u) is 2. periodic, 

(7.64) 

We know that E;:-, I$(w +2p.rr)lZ = 1 so (7.64) is equivalent to (7.62). 

are orthogonal families of vectors. This means that for any n E Z 
The space WO is orthogonal to VO if and only if {+(t -n)},,Ez and {$( t  - n)}nEz 

(Wr+(f-4) = $ * a n )  = a  
The Fourier transform of ~ * &t) is $(u)@ (w). The sampled sequence y5 * $(n) is 
zero if its Fourier series computed with (3.3) satisfies 

+x 

vu E B  c 4(u+2k7r)@(u+2k7r) =o. (7.65) 
k = - x  

By inserting 4 ( w )  = 2-'/'k(w/2) 4(u/2) and $(u) = 2-1/2i(u/2) 4(u/2) in this 
equation, since E,'="_, @~(w + 2k7r) 1' = 1 we prove as before that (7.65) is equivalent 
to (7.63). 

We must finally verify that V-1 = VO CB w,. Knowing that { &(2t - n)},,$Z is 
an orthogonal basis of V-1, it is equivalent to show that for any a[.] E 12(Z) there exist 
b[n] E 12(Z) and c[n] E I2(Z) such that 

+ X  +m +W 

a[n]&@(2[t--2-'n]) = b[n]d ( t -n )+  c [ n ] $ ( t - n ) .  (7.66) 
n = - w  n=-w n = - x  

This is done by relating h(u) and ?(u) to i i (w). The Fourier transform of (7.66) yields 

4 (;) = h(u) J(w) +?(w)i)(w). 
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Inserting &w) = 2-'j2 k(w/2) &w/2) and &w) = 2-'j2 h(w/2) &w/2) in this equa- 
tion shows that it is necessarily satisfied if 

Let us define 
1 
2 

1 

L(2w) = - [ i i(w)jl*(w)+ii(w+7r)K*(w+7r)] 

E ( h )  = 5 [ii(w)gqd)+ii(w+n)2*(w+7r)].  
and 

(7.67) 

When calculating the right-hand side of (7.67) we verify that it is equr :o the left-hand 
side by inserting (7.62), (7.63) and using 

Ih(w)lZ+Ih(w+7r)I* =2. (7.68) 

Since S(w) and E(w) are 27r periodic they are the Fourier series of two sequences b[n] 
and c[n] that satisfy (7.66). This finishes the proof of the lemma. 

The formula (7.58) 
k(w)  =e+jl*(u+r) 

satisfies (7.62) and (7.63) because of (7.68). We thus derive from Lemma 7.1 that 
{ T ) j : n } ( j , n ) E s  is an orthogonal basis of Wj. 

We complete the proof of the theorem by verifying that {T)j,n}(j,n)Es is an or- 
thogonal basis of L2(R). Observe first that the detail spaces {Wj}jEz are orthogonal. 
Indeed Wj is orthogonal to V j  and Wl c Vl-1 c Vj for j < 1. Hence Wj and Wl are 
orthogonal. We can also decompose 

L2(R) = e3g==oowj. (7.69) 

Indeed VjPl = Wj $Vi and we verify by substitution that for any L > J 

VL = &-1Wj e vJ. (7.70) 

Since {V j } jEz  is a multiresolution approximation, VL and VJ tend respectively to 
L2(R) and {0} when L and J go respectively to --oc and +m, which implies (7.69). 
A union of orthonormal bases of all Wj is therefore an orthonormal basis of L2(R). 

The proof of the theorem shows that 2 is the Fourier series of 

which are the decomposition coefficients of 

(7.71) 

(7.72) 

Calculating the inverse Fourier transform of (7.58) yields 

g[n] = (-l)'-"h[l-n]. (7.73) 

This mirror filter plays an important role in the fast wavelet transform algorithm. 
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FIGURE 7.5 Battle-LemariC cubic spline wavelet + and its Fourier transform 
modulus. 

FIGURE 7.6 Graphs of 14(2jw)Iz for the cubic spline Battle-LemariC wavelet, 
with 1 5 j 5 5 and w E [-7r,7r]. 

Example 7.9 Figure 7.5 displays the cubic spline wavelet $ and its Fourier trans- 
form 4 calculated by inserting in (7.57) the expressions (7.23) and (7.53) of $(w) 
and h(u). The properties of this Battle-LemariB spline wavelet are further studied 
in Section 7.2.2. Like most orthogonal wavelets, the energy of 4 is essentially 
concentrated in [-27r, -7r] U [T, 27rI. For any $ that generates an orthogonal basis 
of L2 (R), one can verify that 

+m 

This is illustrated in Figure 7.6. 

The orthogonal projection of a signal f in a “detail” space Wj is obtained with 
a partial expansion in its wavelet basis 
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I I I I  I I I 

A signal expansion in a wavelet orthogonal basis can thus be viewed as an aggre- 
gation of details at all scales 2j that go from 0 to +CG 

I 

Figure 7.7 gives the coefficients of a signal decomposed in the cubic spline wavelet 
orthogonal basis. The calculations are performed with the fast wavelet transform 
algorithm of Section 7.3. 

I 1  I l l  ' I l l  I I  

2-5 I I I 
1 . 1  I I 

I " "  ' ' 1  

I 

2-7 . I I , . .  , 1 1 , , 1 , ,  I, I, 1, , 

I 1  I 

2-gl 
f t) 

FIGURE 7.7 Wavelet coefficients dj[n] = ( f , $ j , + )  calculated at scales 2j with 
the cubic spline wavelet. At the top is the remaining coarse signal approximation 
uJ[n] = (f, q5J,n) for J = -5. 

Wavelet Design Theorem 7.3 constructs a wavelet orthonormal basis from any 
conjugate mirror filter f (w)  . This gives a simple procedure for designing and build- 
ing wavelet orthogonal bases. Conversely, we may wonder whether all wavelet 
orthonormal bases are associated to a multiresolution approximation and a conju- 
gate mirror filter. If we impose that $ has a compact support then LemariC [41] 
proved that $ necessarily corresponds to a multiresolution approximation. It is 
however possible to construct pathological wavelets that decay like 1tl-l at infin- 
ity, and which cannot be derived from any multiresolution approximation. Section 
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7.2 describes important classes of wavelet bases and explains how to design i to 
specify the support, the number of vanishing moments and the regularity of $. 

7.2 CLASSES OF WAVELET BASES 

7.2. I Choosing a Wavelet 

Most applications of wavelet bases exploit their ability to efficiently approximate 
particular classes of functions with few non-zero wavelet coefficients. This is true 
not only for data compression but also for noise removal and fast calculations. The 
design of $ must therefore be optimized to produce a maximum number of wavelet 
coefficients (f, $ J ~ : ~ )  that are close to zero. A function f has few non-negligible 
wavelet coefficients if most of the fine-scale (high-resolution) wavelet coefficients 
are small. This depends mostly on the regularity of f, the number of vanishing 
moments of $ and the size of its support. To construct an appropriate wavelet from 
a conjugate mirror filter h[n], we relate these properties to conditions on h(w). 

Vanishing Moments Let us recall that $ has p vanishing moments if 

+m 

tk$(t )dt  = 0 for 0 5 k < p .  (7.74) L 
This means that $ is orthogonal to any polynomial of degree p - 1. Section 6.1.3 
proves that i f f  is regular and $ has enough vanishing moments then the wavelet 
coefficients I (f: $j+) I are small at fine scales 2j .  hdeed, if f is locally Ck, then 
over a small interval it is well approximated by a Taylor polynomial of degree k.  
If k < p ,  then wavelets are orthogonal to this Taylor polynomial and thus produce 
small  amplitude coefficients at fine scales. The following theorem relates the 
number of vanishing moments of $ to the vanishing derivatives of $(w) at w = 0 
and to the number of zeros of h(w) at w = T. It also proves that polynomials of 
degree p - 1 are then reproduced by the scaling functions. 

Theorem 7.4 (VANISHING MOMENTS) Let $ and 4 be a wavelet anda scalingfunc- 
tion that generate an orthogonal basis. Suppose that I$(t) I = O( (1 + t2)-p/’-’) 
and I$(t) I = O( (1 + t2)-p/2-1) .  The four following statements are equivalent: 

( i)  The wavelet $ has p vanishing moments. 
( i i )  $(w) and itsfirst p - 1 derivatives are zero at w = 0. 

(iii) h(w) and itsfirst p - 1 derivatives are zero at w = T. 
(iv) For any 0 5 k < p ,  

+m 

qk(t) = nk +(t - n)  is a polynomial of degree k .  (7.75) 
n=-m 

Proof z. The decay of Id(t)l and I$(t)I implies that G(u) and $(u) are p times con- 
tinuously differentiable. The kfh order derivative G(k)(u) is the Fourier transform of 
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(-it)"(t). Hence 
+m 

@k)(0) = 1 (-it)k$(t)dt. 
-m 

We derive that (i) is equivalent to (ii). 
Theorem 7.3 proves that 

.\/z4(2w) = e+R*(w + a )  &w). 

Since a(0) # 0, by differentiating this expression we prove that (ii) is equivalent to 
(iii). 

Let us now prove that (iv) implies (i). Since $ is orthogonal to {4 ( t  -n))nGz, it is 
thus also orthogonal to the polynomials q k  for 0 5 k < p. This family of polynomials 
is a basis of the space of polynomials of degree at most p - 1. Hence $ is orthogonal 
to any polynomial of degree p - 1 and in particular to tk for 0 5 k < p. This means 
that $ has p vanishing moments. 

To verify that (i) implies (iv) we suppose that $ has p vanishing moments, and 
for k < p we evaluate q k ( t )  defined in (7.75). This is done by computing its Fourier 
transform: 

+m dk +m 

&(w) = a(w)  nk exp(-i.w) = ( i ) k & ~ )  - exp(-inw) . 
n=-m 

dwk 
n=-m 

Let 
A.7. The Poisson formula (2.4) proves that 

be the distribution that is the Idh order derivative of a Dirac, defined in Appendix 

(7.76) 

With several integrations by parts, we verify the distribution equality 

k-1 

$(w)6(k)(w-2Za) = l3(2Za)6(k)(w-2h) + C a ; , p ) ( w  -2174; (7.77) 
n=O 

where 

For any P > 0, (7.32) implies 

is a linear combination of the derivatives {$(")(2h)}0smsk. 
For I # 0, let us prove that = 0 by showing that (2Za) = 0 if 0 5 rn < p .  

i(2-pw) J(w) = &(2-Pw) rl[ -. 
p=l & 

(7.78) 

Since $ has p vanishing moments, we showed in (iii) that h(w2has a zero of order p 
at w = &a. But i(w) is also 2a periodic, so (7.78) implies that $(w) = O( Iw - 2ZaIP) 
in the neighborhood of w = 2Za, for any Z # 0. Hence &'") (2Za) = 0 if rn < p. 

Since = 0 and 4(2Zn) = 0 when I # 0, it follows from (7.77) that 

&w) dk) (w - 2 ~ a )  = o for 1 + 0. 
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The only term that remains in the summation (7.76) is 2 = 0 and inserting (7.77) yields 

The inverse Fourier transform of 6(")(u) is ( 2 ~ ) - l ( - i t ) ~  and Theorem 7.2 proves 
that &o) # 0. Hence the inverse Fourier transform q k  of i jk  is a polynomial of degree 
k. 

The hypothesis (iv) is called the Fix-Strang condition [320]. The polynomials 
{qk}oik<p define a basis of the space of polynomials of degree p - 1 .  The Fix- 
Strang condition thus proves that $J has p vanishing moments if and only if any 
polynomial of degree p - 1 can be written as a linear expansion of {+ ( t  - T Z ) } ~ ~ ~ .  

The decomposition coefficients of the polynomials qk do not have a finite energy 
because polynomials do not have a finite energy. 

Size of Support Iff has an isolated singularity at to and if to is inside the support 
of wj,n(t)  = 2-j/'+(2-jt - n ) ,  then ( f , $ j , n )  may have a large amplitude. If ~ 

has a compact support of size K ,  at each scale 2j there are K wavelets whose 
support includes to. To minimize the number of high amplitude coefficients we 
must reduce the support size of w. The following proposition relates the support 
size of h to the support of 4 and $. 

Proposition 7.2 (COMPACT SWFQRT) The scalingfunction 4 has a compact sup- 
port if and only if h has a compact support and their support are equal. If the 
support o f h  and 4 is [Nl ,Nz]  then the support of $J is [ ( N l -  Nz + 1 ) / 2 ,  (Nz - 
N1+ 1)/21. 

Proof l. If 4 has a compact support, since 

we derive that h also has a compact support. Conversely, the scaling function satisfies 

(7.79) 

If h has a compact support then one can prove [ 1441 that 4 has a compact support. The 
proof is not reproduced here. 

To relate the support of 4 and h, we suppose that h[n] is non-zero for N1 5 n 5 Nz 
and that 4 has a compact support [K l ,  K z ] .  The support of + ( t / 2 )  is [2K1,2K2]. The 
sum at the right of (7.79) is a function whose support is [N1+ K1,Nz +&I .  The 
equality proves that the support of + is [Kl ,  &] = [NI ,&I. 

Let us recall from (7.73) and (7.72) that 
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If the supports of 4 and h are equal to [Nl ,&I, the sum in the right-hand side has a 
support equal to [Nl - NZ + 1 ,Nz - Nl + 11. Hence .J, has a support equal to [ (Nl  - 

If h has a finite impulse response in [Nl,N2], Proposition 7.2 proves that $ has 
a support of size N2 -Nl  centered at 1/2. To minimize the size of the support, 
we must synthesize conjugate mirror filters with as few non-zero coefficients as 
possible. 

Nz+1)/2,(Nz-N1+1)/2]. 

Support Versus Moments The support size of a function and the number of 
vanishing moments are a priori independent. However, we shall see in Theorem 
7.5 that the constraints imposed on orthogonal wavelets imply that if $ has p 
vanishing moments then its support is at least of size 2 p  - 1. Daubechies wavelets 
are optimal in the sense that they have a minimum size support for a given number 
of vanishing moments. When choosing a particular wavelet, we thus face a trade- 
off between the number of vanishing moments and the support size. Iff has few 
isolated singularities and is very regular between singularities, we must choose a 
wavelet with many vanishing moments to produce a large number of small  wavelet 
coefficients (f, $ j , J .  If the density of singularities increases, it might be better 
to decrease the size of its support at the cost of reducing the number of vanishing 
moments. Indeed, wavelets that overlap the singularities create high amplitude 
coefficients. 

The multiwavelet construction of Geronimo, Hardin and Massupust [ 1901 of- 
fers more design flexibility by introducing several scaling functions and wavelets. 
Problem 7.16 gives an example. Better trade-off can be obtained between the 
multiwavelets supports and their vanishing moments [321]. However, multiwave- 
let decompositions are implemented with a slightly more complicated filter bank 
algorithm than a standard orthogonal wavelet transform. 

Regularity The regularity of $ has mostly a cosmetic influence on the error intro- 
duced by thresholding or quantizing the wavelet coefficients. When reconstructing 
a signal from its wavelet coefficients 

an error E added to a coefficient (f , $j+) will add the wavelet component E $j,n 

to the reconstructed signal. If $ is smooth, then ~ $ j ~ ~  is a smooth error. For 
image coding applications, a smooth error is often less visible than an irregular 
error, even though they have the same energy. Better quality images are obtained 
with wavelets that are continuously differentiable than with the discontinuous Haar 
wavelet. The following proposition due to Tchamitchian [327] relates the uniform 
Lipschitz regularity of q5 and $ to the number of zeros of h(w) at w = 7r. 
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Proposition 7.3 (TCHAMITCHIAN) Let h(w) be a conjugate mirror $her with p 
zeros at T and which satisjies the suflcient conditions of Theorem 7.2. Let us 
pe$orm the factorization 

i ( w )  = lh (I) l+eiw i (w) .  

I f s ~ p , , ~  li(w)I = B then $J and q5 are uniformly Lipschitz 01 for 

a < O10 = p - logzB - 1. (7.80) 

Proof '. This result is proved by showing that there exist C1 > 0 and Cz > 0 such that 
for all w E B 

I$(w)I I C1(1+ IwI)-p+log2B (7.81) 
I?J(w)I I c, (1 + IwI)-p+logzB. (7.82) 

The Lipschitz regularity of q5 and 11 is then derived from Theorem 6.1, which shows 
that if s-',"(l+ IwIa) 1j(w)Idw < +cc, then f is uniformly Lipschitz a. 

We proved in (7.37) that $(w) = nTs 2-'/'h(2-jw). One can verify that 

hence 

(7.83) 

Let us now compute an upper bound for nT=y li(2-jw)I. At w = 0 we have 
h(0) = .\/z so i(0) = 1. Since h(w)  is continuously differentiable at w = 0, i (w )  is 
also continuously differentiable at w = 0. We thus derive that there exists E > 0 such 
that if IWI < E then l i ( w ) l ~  1 + K I W I .  Consequently 

+m +m 

(7.84) 

If Iw1 > e, there exists J 2 1 such that 2J-1e I IwI I 2Je and we decompose 

+m J +m 

n q 2 - j u )  = I-I li(2-jw)l n li(2-j-Jw)I. (7.85) 
j=1 j= 1 j =  1 

Since supWEB li'(w) I = B,  inserting (7.84) yields for IwI > E 

(7.86) 
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Since 2J 5 ~- '2 lw l ,  this proves that 

Equation (7.81) is derived from (7.83) and this last inequality. Since 14(2w)1 = 

This proposition proves that if B < 2P-' then a0 > 0. It means that $ and $ are 
uniformly continuous. For any m > 0, if B < 2p-1-m then a0 > m so + and $ 
are m times continuously differentiable. Theorem 7.4 shows that the number p of 
zeros of h(w)  at 7r is equal to the number of vanishing moments of $. A priori, 
we are not guaranteed that increasing p will improve the wavelet regularity, since 
B might increase as well. However, for important families of conjugate mirror 
filters such as splines or Daubechies filters, B increases more slowly than p, which 
implies that wavelet regularity increases with the number of vanishing moments. 
Let us emphasize that the number of vanishing moments and the regularity of 
orthogonal wavelets are related but it is the number of vanishing moments and not 
the regularity that affects the amplitude of the wavelet coefficients at fine scales. 

2-'/* Ih(w+x)I I$(w)I, (7.82) is obtainedfrom (7.81). 

7.2.2 Shannon, Meyer and Battle-Lemarie Wavelets 

We study important classes of wavelets whose Fourier transforms are derived from 
the general formula proved in Theorem 7.3, 

1 1 
$(w ) = - 2 (!) 4 (;) = - exp (F) iz* (4 + 7r) 4 (;) . (7.87) 

f i 2  fi 
Shannon Wavelet The Shannon wavelet is constructed from the Shannon multi- 
resolution approximation, which approximates functions by their restriction to low 
frequency intervals. It corresponds to 4 = l[-r,r~ and h(w)  = fil~-,p,.p] (w)  
for w E [-7r,7r]. We derive from (7.87) that 

(7.88) exp (-iw/2) if w E [-h, -7r] U [7r, 2 4  
otherwise 

and hence 
sin27r(t - 1/2) sin7r(t - 1/2) - 

W ) =  27r(t-1/2) 7r(t-1/2) ' 

This wavelet is C" but has a slow asymptotic time decay. Since $(w) is zero in 
the neighborhood of w = 0, all its derivatives are zero at w = 0. Theorem 7.4 thus 
implies that $ has an infinite number of vanishing moments. 

Since $(w)  has a compact support we know that +(t) is C". However I$(t)I 
decays only like 1tl-l at infinity because $(w) is discontinuous at f 7 r  and f27r. 
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Meyer Wavelets A Meyer wavelet [270] is a frequency band-limited function 
whose Fourier transform is smooth, unlike the Fourier transform of the Shannon 
wavelet. This smoothness provides a much faster asymptotic decay in time. These 
wavelets are constructed with conjugate mirror filters h(w)  that are C" and satisfy 

if w E [-n/3,n/3] 
0 if w E [-n, -2n/3] U [2n/3,n] ' 

(7.89) 

The only degree of freedom is the behavior of h(w) in the transition bands 
[-2n/3, -7r/3] U [n/3,2n/3]. It must satisfy the quadrature condition 

l i ( w )  12 + Ih(w + 7r) 12 = 2: (7.90) 

and to obtain C" junctions at IwI = n/3 and IwI = 27r/3, then first derivatives must 
vanish at these abscissa. One can construct such functions that are C". 

The scaling function $(w) = n:z 2-'/2h(2-Pw) has a compact support and 
one can verify that 

(7.91) 

The resulting wavelet (7.87) is 

The functions 4 and + are C" because their Fourier transfonns have a compact 
support. Since 4 ( w )  = 0 in the neighborhood of w = 0, all its derivatives are zero 
at w = 0, which proves that + has an infinite number of vanishing moments. 

If h is C" then 4 and $ are also Cn. The discontinuities of the (n + l)'h derivative 
of h are generally at the junction of the transition band lwl= 7r/3,27r/3, in which 
case one can show that there exists A such that 

Although the asymptotic decay of $ is fast when n is large, its effective numerical 
decay may be relatively slow, which is reflected by the fact thatA is quite large. As 
a consequence, a Meyer wavelet transform is generally implemented in the Fourier 
domain. Section 8.4.2 relates these wavelet bases to lapped orthogonal transforms 
applied in the Fourier domain. One can prove [21] that there exists no orthogonal 
wavelet that is C" and has an exponential decay. 
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FIGURE 7.8 Meyer wavelet $ and its Fourier transform modulus computed with 
(7.94). 

Example 7.10 To satisfy the quadrature condition (7.90), one can verify that h 
in (7.89) may be defined on the transition bands by 

h(w)  = 1/2 cos [; ,8 ( y  - 1) ] for IwI E [7r/3,2~/3] , 

where P ( x )  is a function that goes from 0 to 1 on the interval [O, 11 and satisfies 

V X €  [0,1] : ,8(x)+P(l-x) = 1. (7.93) 

An example due to Daubechies [21] is 

@ ( x )  =x4(35-84x+70x2-2OX3). (7.94) 

The resulting h(w)  has n = 3 vanishing derivatives at IwI = 7r/3,27r/3. Figure 7.8 
displays the corresponding wavelet $. 

Haar Wavelet The Haar basis is obtained with a multiresolution of piecewise 
constant functions. The scaling function is q5 = l[o,l]. The filter h[n] given in 
(7.51) has two non-zero coefficients equal to 2-'12 at n = 0 and n = 1. Hence 

-$(-) t = +m (-l)'-nh[l-n]q5(t-n)=- 1 (#J( t - l ) -+(t)) ,  
1 

a 2  n=-m fi 
so 

-1 i f O I t < 1 / 2  
1 if 1 / 2 5 t <  1 (7.95) 
0 otherwise 

The Haar wavelet has the shortest support among all orthogonal wavelets. It is not 
well adapted to approximating smooth functions because it has only one vanishing 
moment. 
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FIGURE 7.9 Linear spline Battle-LemariB scaling function 4 and wavelet $. 

Battle-Lemarie Wavelets Polynomial spline wavelets introduced by Battle [89] 
and Lemati6 [249] are computed from spline multiresolution approximations. The 
expressions of &w) and i ( w )  are given respectively by (7.23) and (7.53). For 
splines of degree m, i ( w )  and its first m derivatives are zero at w = 7r. Theorem 
7.4 derives that $ has m+ 1 vanishing moments. It follows from (7.87) that 

exp(-iw/2) S~m+2(~/2  +r) 
wm+l d s~m+2(w) szm+z(w/2). 

444 = 

This wavelet + has an exponential decay. Since it is a polynomial spline of degree 
m, it is m - 1 times continuously differentiable. Polynomial spline wavelets are 
less regular than Meyer wavelets but have faster time asymptotic decay. For m 
odd, + is symmetric about 1/2. For m even it is antisymmetric about 1/2. Figure 
7.5 gives the graph of the cubic spline wavelet $ corresponding to m = 3. For 
m = 1, Figure 7.9 displays linear splines q5 and $. The properties of these wavelets 
are fuaher studied in [93, 15, 1251. 

7.2.3 Daubechies Compactly Supported Wavelets 

Daubechies wavelets have a support of minimum size for any given number p of 
vanishing moments. Proposition 7.2 proves that wavelets of compact support are 
computed with finite impulse response conjugate mirror filters h. We consider real 
causal filters h[n], which implies that i is a trigonometric polynomial: 

N- 1 

i ( w >  = h[n] e-inw. 

To ensure that $ has p vanishing moments, Theorem 7.4 shows that fi  must have 
a zero of order p at w = T. To construct a trigonometric polynomial of minimal 
size, we factor (1 + e-iw)p, which is a minimum size polynomial having p zeros 

n=O 

a t w = r  
(7.96) 
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The difficulty is to design a polynomial R(ePiW) of minimum degree m such that 
i satisfies 

I@) 12 + l i ( w  + 7r) I* = 2. (7.97) 

As a result, h has N = m + p + 1 non-zero coefficients. The following theorem by 
Daubechies [ 1441 proves that the minimum degree of R is m = p - 1. 

Theorem 7.5 (DAUBECHIES) A real conjugate mirrorjlter h, such that i ( w )  has 
p zeros at w = 7r, has at least 2 p  non-zero coeficients. Daubechiesjilters have 
2 p  non-zero coeficients. 

Proof z. The proof is constructive and computes the Daubechies filters. Since h[n] 
is real, l d ( ~ ) / ~  is an even function and can thus be written as a polynomial in cosw. 
Hence IR(e-'")I2 defined in (7.96) is a polynomial in cosw that we can also write as 
a polynomid P(sinz 2) 

w 2P 
ld(w) 12 = 2 (cos P (sin2 4) . (7.98) 

The quadrature condition (7.97) is equivalent to 

( l -Y)pP(Y)+Ypp( l -YY)  = 1, (7.99) 

for any y = sin2(w/2) E [0,1]. To minimize the number of non-zero terms of the finite 
Fourier series d(w), we must find the solution P ( y )  2 0 of minimum degree, which is 
obtained with the Bezout theorem on polynomials. 

Theorem 7.6 (BEZOUT) k t  Ql ( y )  and Qz(y)  be two polynomials of degrees n1 and 
nz with no common zeros. There exist two unique polynomials Pl (y )  and P z ( y )  of 
degrees n2 - 1 and nl - 1 such that 

Theproofofthisclassicalresultisin [21]. SinceQl(y) = ( 1  -y)PandQz(y) =yP 
are two polynomials of degree p with no common zeros, the Bezout theorem proves 
that there exist two unique polynomials PI (y) and Pz (y) such that 

(7.101) 

Clearly P ( y )  2 0 for y E [0,1]. Hence P ( y )  is the polynomial of minimum degree 
satisfying (7.99) with P ( y )  2 0. 
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Minimum Phase Factorization Now we need to construct a minimum degree poly- 
nomial 

m m 

R(e+) = Crke- ikw = ro J-J(1 -ake-") 

such that JR(e-")J2 =P(sin2(w/2)). Since its coefficients are real, R*(e-'") =R(ei") 
and hence 

k=O k=O 

(7.102) 

This factorization is solved by extending it to the whole complex plane with the variable 
z = e-'": 

Let us compute the roots of Q(z). Since Q(z) has real coefficients if ck is aroot, then c; is 
also a root and since it is a function of z +z-' if ck is a root then 1/ck and hence 1 / c i  are 
also roots. To designR(z) that satisfies (7.103), we choose each root ak of R(z )  among 
a pair (ck, 1/ck) and include ui as a root to obtain real coefficients. This procedure 
yields a polynomial of minimum degree rn = p - 1, with ri = Q(0) = P( 1/2) = 2 P - I .  

The resulting filter h of minimum size has N = p + rn + 1 = 2 p  non-zero coefficients. 
Among all possible factorizations, the minimum phase solution R(ebd) is obtained 

by choosing uk among (ck, 1 /ck) to be inside the unit circle luk I 5 1 [55]. The resulting 
causal filter h has an energy maximally concentrated at small abscissa n 2 0. It is a 
Daubechies filter of order p. 

The constructive proof of this theorem synthesizes causal conjugate mirror filters of 
size 2p.  Table 7.2 gives the coefficients of these Daubechies filters for 2 5 p 5 10. 
The following proposition derives that Daubechies wavelets calculated with these 
conjugate mirror filters have a support of minimum size. 

Proposition 7.4 (DAUBECHLES) Zf$ is a wavelet with p vanishing moments that 
generates an orthonormal basis of L2(W), then it has a support of size larger than 
or equal to 2 p  - 1. A Daubechies wavelet has a minimum size support equal to 
[ - p  + 1, p ] .  The support of the corresponding scalingfunction 4 is [0 ,2p - 11. 

This proposition is a direct consequence of Theorem 7.5. The support of the 
wavelet, and that of the scaling function, are calculated with Proposition 7.2. When 
p = 1 we get the Haar wavelet. Figure 7.10 displays the graphs of and $J for 
p = 2 , 3 , 4 .  

The regularity of q5 and $ is the same since + ( t )  is a finite linear combination 
of the 4(2t - n).  This regularity is however difficult to estimate precisely. Let 
B = supuER IR(e-'w)l where R(eciu) is the trigonometric polynomial defined in 
(7.96). Proposition 7.3 proves that $ is at least uniformly Lipschitz a for a < 
p - log, B - 1. For Daubechies wavelets, B increases more slowly than p and 
Figure 7.10 shows indeed that the regularity of these wavelets increases with p .  
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T I r  ,4829629 13 145 
,8365 16303738 
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= 
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p = 7  

- 

- 
n 
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7 
8 
9 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

- 

- 

- 

- 

- 

- 

.077852054085 
,396539319482 
,729132090846 
.469782287405 

-. 143906003929 

.071309219267 

.08061260915 1 

-.016574541631 
,012550998556 
,000429577973 

.000353713800 

-.224036184994 

-.038029936935 

-.001801640704 

- 
U - - 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

- 

- 

- 

.05441 5842243 
.312871590914 
A75630736297 
S8.5354683654 

-.015829105256 
-. 284015542962 

.000472484574 

.128747426620 
-.017369301002 
-.04408825393 

.01398 1027917 

.008746094047 
-. 004870352993 
-. 000391740373 

-. 000117476784 
.000675449406 

.038077947364 
23834674613 
AM823 123690 
.65728807805 1 
.I33197385825 

-. 293273783279 
-. 096840783223 

,148540749338 
.030725681479 

.000250947115 

.022361662124 

-. 067632829061 

-. 004723204758 
-.004281503682 
.00 1847646883 
.000230385764 

.OW039347320 
-. 000251963 189 

.026670057901 

.188176800078 
S27201188932 
.688459039454 
,281 172343661 

- ,249846424327 
-.195946274377 

,127369340336 
,093057364604 

-.071394147166 
-.029457536822 

.033212674059 

.003606553567 
-.010733175483 

.IN139535 1747 

.001992405295 
-. 000685856695 
-. 0001 16466855 

.000093588670 
-. 000013264203 

Table 7.2 Daubechies filters for wavelets with p vanishing moments. 
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FIGURE 7. I O  Daubechies scaling function 4 and wavelet $ with p vanishing 
moments. 

Daubechies and Lagarias [147] have established a more precise technique that 
computes the exact Lipschitz regularity of $. For p = 2 the wavelet $ is only 
Lipschitz 0.55 but for p = 3 it is Lipschitz 1.08 which means that it is already 
continuously differentiable. For p large, 4 and $ are uniformly Lipschitz a for Q! 

of the order of 0 . 2 ~  [129]. 

Symmlets Daubechies wavelets are very asymmetric because they are con- 
structed by selecting the minimum phase square root of Q(e@> in (7.102). One 
can show [55] that filters corresponding to a minimum phase square root have their 
energy optimally concentrated near the starting point of their support. They are 
thus highly non-symmetric, which yields very asymmetric wavelets. 

To obtain a symmetric or antisymmetric wavelet, the filter h must be symmetric 
or antisymmetric with respect to the center of its support, which means that h(w) 
has a linear complex phase. Daubechies proved [144] that the Haar filter is the 
only real compactly supported conjugate mirror filter that has a linear phase. The 
Syrnrnlet filters of Daubechies are obtained by optimizing the choice of the square 
root R(eciW) of Q(e-iw) to obtain an almost linear phase. The resulting wavelets 
still have a minimum support [ - p  + 1, p ]  with p vanishing moments but they are 
more symmetric, as illustrated by Figure 7.1 1 for p = 8. The coefficients of the 
Symmlet filters are in WAVELAB. Complex conjugate mirror filters with a compact 
support and a linear phase can be constructed [251], but they produce complex 
wavelet coefficients whose real and imaginary parts are redundant when the signal 
is real. 
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FIGURE 7. I I 
and wavelets with p = 8 vanishing moments. 

Daubechies (first two) and Symmlets (last two) scaling functions 

Coiflets For an application in numerical analysis, Coifman asked Daubechies 
[144] to construct a family of wavelets $ that have p vanishing moments and a 
minimum size support, but whose scaling functions also satisfy 

+(t)dt = 1 and [ r t k + ( t ) d t  = 0 for 1 5 k < p. (7.104) 

Such scaling functions are useful in establishing precise quadrature formulas. If 
f is Ck in the neighborhood of 2Jn with k < p ,  then a Taylor expansion off up to 
order k shows that 

2PI2  (f, + j , ~  M f (Yn) + 0(2@+')~) . (7.105) 

At a fine scale 2j, the scaling coefficients are thus closely approximated by the 
signal samples. The order of approximation increases with p. The supplemen- 
tary condition (7.104) requires increasing the support of $; the resulting Coiflet 
has a support of size 3p - 1 instead of 2p - 1 for a Daubechies wavelet. The 
corresponding conjugate mirror filters are tabulated in WAVELAB. 

r 

Audio Filters The first conjugate mirror filters with finite impulse response were 
constructed in 1986 by Smith and Barnwell [317] in the context of perfect filter 
bankreconstruction, explained in Section 7.3.2. These filters satisfy the quadrature 
condition lh(w)lz+ li(w+n)12 = 2, whichisnecessaryandsufficientforfilterbank 
reconstruction. However, h(0) # fi so the infinite product of such filters does not 
yield a wavelet basis of L2(W). Instead of imposing any vanishing moments, Smith 
and Barnwell [3 171, and later Vaidyanathan and Hoang [337], designed their filters 
to reduce the size of the transition band, where lh(w) I decays from nearly fi to 
nearly 0 in the neighborhood of f n / 2 .  This constraint is important in optimizing 
the transform code of audio signals, explained in Section 11.3.3. However, many 
cascades of these filters exhibit wild behavior. The Vaidyanathan-Hoang filters are 
tabulated in WAVELAB. Many other classes of conjugate mirror filters with finite 
impulse response have been constructed [74, 731. Recursive conjugate mirror 
filters may also be designed [209] to minimize the size of the transition band for a 
given number of zeros at w = 7r. These filters have a fast but non-causal recursive 
implementation for signals of finite size. 
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7.3 WAVELETS AND FILTER BANKS 

Decomposition coefficients in a wavelet orthogonal basis are computed with a fast 
algorithm that cascades discrete convolutions with h and g ,  and subsamples the 
output. Section 7.3.1 derives this result from the embedded structure of multireso- 
lution approximations. A direct filter bank analysis is performed in Section 7.3.2, 
which gives more general perfect reconstruction conditions on the filters. Section 
7.3.3 shows that perfect reconstsuction filter banks decompose signals in a basis 
of l2(2). This basis is orthogonal for conjugate mirror filters. 

7.3. I 

We describe a fast filter bank algorithm that computes the orthogonal wavelet 
coefficients of a signal measured at a finite resolution. A fast wavelet transform 
decomposes successively each approximation Pvj  f into a coarser approximation 
Pvj+, f plus the wavelet coefficients carried by P w j + l f .  In the other direction, 
the reconstruction from wavelet coefficients recovers each Pvj f from Pvj+, f and 

Since {q5j,n}nE~ and { $ J j , n } n E ~  are orthonormal bases of Vj and Wj the pro- 

Fast Orthogonal Wavelet Transform 

P w j + l f *  

jection in these spaces is characterized by 

aj [nl=  (f :q5j,n) and dj [nl=  (f : $ J j , n )  . 
The following theorem [253,255] shows that these coefficients are calculated with 
a cascade of discrete convolutions and subsamplings. We denoteZ[n] =.[-.I and 

k[n] = { 
Theorem 7.7 (MALLAT) At the decomposition 

(7.106) 

At the reconstruction, 
Cm +m 

(7.109) 

Proof '. Proof of (7.107) Any $ j + l , p  E Vi+,  C Vj can be decomposed in the ortho- 
normal basis { d j , n ) n E ~  of V j :  

(7.110) 
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With the change of variable t’ = 2 - j t  - 2 p  we obtain 

Hence (7.110) implies that 

(7.112) 
n=-m 

Computing the inner product off with the vectors on each side of this equality yields 
(7.107). 

Proof of (7.108) Since $ j + ~ , ~  E W j + l  C Vi,  it can be decomposed as 

+m 

$ j + l , p  = ( $ j + l , p ,  4 j i , n )  4 j i ; n *  
n=-m 

AS in (7.1 1 I), the change of variable t‘ = 2 - j t  - 2 p  proves that 

and hence 

(7.1 14) 
R = - W  

Taking the inner product with f on each side gives (7.108). 

Proof of (7.109) Since W j + l  is the orthogonal complement of Vj+l  in V j  the union of 
the two bases { $ j + ~ + } ~ ~ z  and { ~ j + l : n } n s ~  is an orthonormal basis of Vi.  Hence any 
q ! ~ ~ : ~  can be decomposed in this basis: 

+m 

4 j , p  = ( @ j : p ? $ j + l , n )  $j+l:n 
n=-m 

+ C ( 4 j , p i + j + l : n j $ j + l : n .  

+m 

n=--cx: 

Inserting (7.11 1) and (7.113) yields 

n=-x n=-m 

Taking the inner product with f on both sides of this equality gives (7.109). rn 
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FIGURE 7.12 (a): A fast wavelet transform is computed with a cascade of 
filterings with h and g followed by a factor 2 subsampling. (b): A fast inverse 
wavelet transform reconstructs progressively each aj by inserting zeros between 
samples of aj+l and dj+l ,  filtering and adding the output. 

Theorem 7.7 proves that aj+l and dj+l are computed by taking every other sam- 
ple of the convolution of aj with h and g respectively, as illustrated by Figure 
7.12. The filter h removes the higher frequencies of the inner product sequence aj 

whereas g is a high-pass filter which collects the remaining highest frequencies. 
The reconstruction (7.109) is an interpolation that inserts zeros to expand aj+l and 
dj+l and filters these signals, as shown in Figure 7.12. 

An orthogonal wavelet representation of a~ = (f: $ L , ~ )  is composed of wavelet 
coefficients of f at scales 2L < 2j 5 plus the remaining approximation at the 
largest scale P: 

(7.115) 

It is computed from UL. by iterating (7.107) and (7.108) for L 5 j < J .  Figure 7.7 
gives a numerical example computed with the cubic spline filter of Table 7.1. The 
original signal U L  is recovered from this wavelet representation by iterating the 
reconstruction (7.109) for J > j 2 L. 

Initialization Most often the discrete input signal b[n] is obtained by a finite 
resolution device that averages and samples an analog input signal. For example, 
a CCD camera filters the light intensity by the optics and each photo-receptor 
averages the input light over its support. A pixel value thus measures average 
light intensity. If the sampling distance is N - l ,  to define and compute the wavelet 
coefficients, we need to associate to b[n] a function f( t )  E VL approximated at 
the scale 2L = N-', and compute U L  [n] = (f, $ L , ~ ) .  Problem 7.6 explains how to 
compute aL[n] = (f ,4LL,,J so that b[n] = f ( N - l n ) .  
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A simpler and faster approach considers 

is a weighted average off in the neighborhood of N-'n over a domain proportional 
to N - l .  Hence if f is regular, 

b[n] = N%&] M f(N-1.) . (7.116) 

If $ is a Coiflet and f ( t )  is regular in the neighborhood of N-'n, then (7.105) 
shows that N-' / 'u~[n]  is ahigh order approximation of f (N- 'n ) .  

Finite Signals Let us consider a signal f whose support is in [0,1] and which is ap- 
proximated with a uniform sampling at intervals N-' . The resulting approximation 
UL has N = 2-L samples. This is the case in Figure 7.7 withN = 1024. Computing 
the convolutions with h and g at abscissa close to 0 or close to N requires knowing 
the values of UL [n] beyond the boundaries n = 0 and n = N - 1. These boundary 
problems may be solved with one of the three approaches described in Section 7.5. 

Section 7.5.1 explains the simplest algorithm, which periodizes UL. The con- 
volutions in Theorem 7.7 are replaced by circular convolutions. This is equivalent 
to decomposing f in a periodic wavelet basis of L2 [0,1]. This algorithm has the 
disadvantage of creating large wavelet coefficients at the borders. 

If $ is symmetric or antisymmetric, we can use a folding procedure described 
in Section 7.5.2, which creates smaller wavelet coefficients at the border. It decom- 
poses f in a folded wavelet basis of L2 [0,1]. However, we mentioned in Section 
7.2.3 that Haar is the only symmetric wavelet with acompact support. Higher order 
spline wavelets have a symmetry but h must be truncated in numerical calculations. 

The most efficient boundary treatment is described in Section 7.5.3, but the 
implementation is more complicated. Boundary wavelets which keep their van- 
ishing moments are designed to avoid creating large amplitude coefficients when 
f is regular. The fast algorithm is implemented with special boundary filters, and 
requires the same number of calculations as the two other methods. 
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Complexity Suppose that h and g have K non-zero coefficients. Let a~ be a 
signal of size N = 2-L. With appropriate boundary calculations, each ai and d j  
has 2-j samples. Equations (7.107) and (7.108) compute aj+l and dj+l from a j  
with 2-jK additions and multiplications. The wavelet representation (7.1 15) is 
therefore calculated with at most 2KN additions and multiplications. The recon- 
struction (7.109) of a j  from aj+l and dj+l is also obtained with 2-jK additions 
and multiplications. The original signal a~ is thus also recovered from the wavelet 
representation with at most 2KN additions and multiplications. 

Wavelet Graphs The graphs of q5 and $ are computed numerically with the in- 
verse wavelet transform. Iff = q5 then a0 [n] = S[n] and d j  [n] = 0 for all L < j < 0. 
The inverse wavelet transform computes UL. and (7.1 16) shows that 

N'/'aL[n] M q5(N-'n) . 

If q5 is regular and N is large enough, we recover a precise approximation of the 
graph of q5 from aL. 

Similarly, if f = $ then m[n]  = 0, do[n] = S[n] and dj [n]  = 0 for L < j < 
0. Then a ~ [ n ]  is calculated with the inverse wavelet transform and N'/'aL[n] M 
$(N-'n). The Daubechies wavelets and scaling functions in Figure 7.10 are 
calculated with this procedure. 

7.3.2 Perfect Reconstruction Filter Banks 

The fast discrete wavelet transform decomposes signals into low-pass and high- 
pass components subsampled by 2; the inverse transform performs the recon- 
struction. The study of such classical multirate filter banks became a major signal 
processing topic in 1976, when Croisier, Esteban and Galand [ 1411 discovered that 
it is possible to perform such decompositions and reconstructions with quadrature 
mirrorJilters (Problem 7.7). However, besides the simple Haar filter, a quadrature 
mirror filter can not have a finite impulse response. In 1984, Smith and Barnwell 
[316] and Mintzer [272] found necessary and sufficient conditions for obtain- 
ing perfect reconstruction orthogonal filters with a finite impulse response, that 
they called conjugate mirror$lters. The theory was completed by the biorthog- 
onal equations of Vetterli [338, 3391 and the general paraunitary matrix theory 
of Vaidyanathan [336]. We follow this digital signal processing approach which 
gives a simple understanding of conjugate mirror filter conditions. More complete 
presentations of filter banks properties can be found in [l, 2,68,73,74]. 

Filter Bank A two-channel multirate filter bank convolves a signal a0 with a low- 
pass filter h[n] = h[-n] and a high-pass filter g[n] = g[-n] and subsamples by 2 
the output: 

ai[.] ~ * h [ 2 i ~ ]  and dl [n]  = ~ * g [ 2 n ] .  (7.117) 

A reconstructed signal si0 is obtained by filtering the zero expanded signals with a 
dual low-pass filter and a dual high-pass filter j ,  as shown in Figure 7.13. With 
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FIGURE 7. I 3  The input signal is filtered by a low-pass and a high-pass filter 
and subsampled. The reconstruction is performed by inserting zeros and filtering 
with dual filters i and g. 

the zero insertion notation (7.106) it yields 

iio[n] = iil *i;[n] +;il *g[n] .  (7.118) 

We study necessary and sufficient conditions on h, g, i and 2 to guarantee a perfect 
reconstruction iio = ao. 

Subsampling and Zero Interpolation Subsamplings and expansions with zero 
insertions have simple expressions in the Fourier domain. Since i ( w )  = 
CT=?mx[n]e-inw the Fourier series of the subsampled signal y[n] = x[2n] can 
be written 

n=--33 

The component i ( w  + T )  creates a 
canceled at the reconstruction. 

The insertion of zeros defines 

y[n] =+I = 

whose Fourier transform is 

(7.119) 

frequency folding. This aliasing must be 

x[p] i f n = 2 p  
0 i f n = 2 p + 1  ' 

x[n] e-i2nw = i ( 2 w ) .  (7.120) 
n=-m 

The following theorem gives Vetterli's [339] biorthogonal conditions, which guar- 
antee that iio = ao. 

Theorem 7.8 (VE1TERLr) Thejlter bankpellforms an exact reconstruction for any 
input signal ifand only if 

A 

P ( W + 7 r ) i ; ( W ) + ~ * ( W + T ) ~ ( W )  = o ,  (7.121) 

P ( w ) i ( w ) + y ( w ) & d )  =2.  (7.122) 
and A 
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Proof l. We first relate the Fourier transform of a1 and dl to the Fourier transform of ao. 
Since h and g are real, the transfer functions of and g are respectively A( -w) = fi. (u) 
and b(-u) = $(w). By using (7.119), we derive from the definition (7.117) of a1 
and dl that 

&(2w) = 1 2 ( ~ o ( w ) ~ ( w ) + & ( w + T ) ) ; . ( w + ~ ~ ) ) ~  (7.123) 

(7.124) 1 21 (2w) = (&(w) T ( w )  +clo(w + .) T(w +?r)). 

The expression (7.118) of iio and the zero insertion property (7.120) also imply 

h 

&(w) = &(2w)i(w) + & ( 2 w ) & d ) .  (7.125) 

Hence 

To obtain Q = & for all Q, the filters must cancel the aliasing term &(w + T )  and 
guarantee a unit gain for &(w), which proves equations (7.121) and (7.122). W 

Theorem 7.8 proves that the reconstruction filters h and 2 are entirely specified by 
the decomposition filters h and g. In matrix form, it can be rewritten 

i (w)  ) x ( ‘ ( L J )  ) = ( ) .  (7.126) z* (LJ) 

The inversion of this 2 x 2 matrix yields 

(7.127) 

where A(w) is the determinant 

A(w) = A ( u ) ~ ( w + T )  - A ( L J + T ) ~ ( L J ) .  (7.128) 

The reconstruction filters are stable only if the determinant does not vanish for all 
LJ E [-T, T]. Vaidyanathan [336] has extended this result to multirate filter banks 
with an arbitrary number M of channels by showing that the resulting matrices of 
filters satisfy paraunitary properties [73]. 

Finite Impulse Response When all filters have a finite impulse response, the 
determinant A(w) can be evaluated. This yields simpler relations between the 
decomposition and reconstruction filters. 
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Theorem 7.9 Pe$ect reconstmction jilters satisfv 
h A 

k ( w )  i ( w )  + P ( w  +7r) i ( w  +7r) = 2. (7.129) 

Proof l. Equation (7.127) proves that 

Hence 
(7.132) 

The definition (7.128) implies that A ( ~ + T )  = -A(w). Inserting (7.132) in (7.122) 
yields (7.129). 

The Fourier transform of finite impulse response filters is a finite series in 
exp(finw). The determinant A(w) defined by (7.128) is therefore a finite series. 
Moreover (7.131) proves that A-'(w) must also be a finite series. A finite series 
in exp(finw) whose inverse is also a finite series must have a single term. Since 
A(w) = -A(w + T )  the exponent n must be odd. This proves that there exist I E Z 
and a E B such that 

A(w) = -2aexp[i(21+ l)w]. (7.133) 

Inserting this expression in (7.131) yields (7.130). 

The factor a is a gain which is inverse for the decomposition and reconstruction 
filters and 1 is a reverse shift. We generally set a = 1 and 1 = 0. In the time domain 
(7.130) can then be rewritten 

g[n]  = (-l) l-ni[l  -n ]  and g[n] = (-1)'-"h[l - n ] .  (7.134) 

The two pairs of filters (h, g )  and (i, a) play a symmetric role and can be inverted. 

Conjugate Mirror Filters If we impose that the decomposition filter h is equal 
to the reconstruction filter i, then (7.129) is the condition of Smith and Bamwell 
[316] and Mintzer [272] that defines conjugate mirror filters: 

lh(w) 12 + Ih(w + 7r) 12 = 2. (7.135) 

It is identical to the filter condition (7.34) that is required in order to synthesize 
orthogonal wavelets. The next section proves that it is also equivalent to discrete 
orthogonality properties. 
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7.3.3 Biorthogonal Bases of l2(2) 

The decomposition of a discrete signal in a multirate filter bank is interpreted as 
an expansion in a basis of 12(Z). Observe first that the low-pass and high-pass 
signals of a filter bank computed with (7.117) can be rewritten as inner products 
in P(z): 

+m 

u ~ [ Z ]  = ~o[n]h[n-21]  = ( ~ o [ k ] , h [ k - 2 ~ ~ ] ) ,  (7.136) 
n=-m 

+W 

dl[ l ]  m[n]g[n-21] = (ao[n],g[n-21]).  (7.137) 
n=-x 

The signal recovered by the reconstructing filters is 

(7.138) 

Inserting (7.136) and (7.137) yields 

+m +m 

~ [ n ]  = ( f [k] ,h[k-21])%[n-21]+ ( f [k] ,g[k-21])g[n-21] .  (7.139) 
l=-m I=-m 

We recognize the decomposition of over dual families of vectors {i[n - 211, 
g[n - 21]}1,z and {h[n - 24, g[n - 21]}l,z. The following theorem proves that 
these two families are biorthogonal. 

Theorem 7.10 If h, g, % and are pe$ect reconstruction filters whose Fourier 
transfomz is bounded then {%[n - 2Z],g[n - 2 1 1 1 1 ~ ~  and {h[n - 211, g[n - 21]}1,z 
are biorthogonul Riesz bases of 12(Z). 

Proof ’. To prove that these families are biorthogonal we must show that for all n E Z 

(7.140) 
(7.141) 

and 

For perfect reconstruction filters, (7.129) proves that 
(i;[n],g[n-2zJ) = (g+],h[n-21]) =o. (7.142) 

A - 1 ( i r . ( w ) h ( w ) + ~ ( w + ? r ) ~ ( w + ? r ) )  = 1. 
2 

In the time domain, this equation becomes 

(7.143) 
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which verifies (7.140). The same proof as for (7.129) shows that 

- 1 ( Y ( W ) g ( W ) + $ ( W + X ) & + A ) )  = 1.  

1 (Y ( W ) f ( W )  + b*(W + 7r)f(, + 7r)) = 0, 

- ("* (W)i(W) + k ( w  + 7r) g(, + 7r)) = 0. 

2 

In the time domain, this equation yields (7.141). It also follows from (7.127) that 

2 

1 
2 

and 

The inverse Fourier transforms of these two equations yield (7.142). 
To finish the proof, one must show the existence of Riesz bounds defined in (A. 12). 

The reader can verify that this is a consequence of the fact that the Fourier transform 
of each filter is bounded. 

Orthogonal Bases A Riesz basis is orthonormal if the dual basis is the same as 
the original basis. For filter banks, this means that h = h and g = 2. The filter h is 
then a conjugate mirror filter 

l i ( w )  12 + Id(w + 7r) 12 = 2. (7.144) 

The resulting family {h[n - 211, g[n - 21]}1~z is an orthogonal basis of l2(2). 

Discrete Wavelet Bases The construction of conjugate mirror filters is simpler 
than the construction of orthogonal wavelet bases of L2(R). Why then should we 
bother with continuous time models of wavelets, since in any case all computations 
are discrete and rely on conjugate mirror filters? The reason is that conjugate mirror 
filters are most often used in filter banks that cascade several levels of filterings and 
subsamplings. It is thus necessary to understand the behavior of such a cascade 
[290]. In a wavelet filter bank tree, the output of the low-pass filter is sub- 
decomposed whereas the output of the high-pass filter g is not; this is illustrated in 
Figure 7.12. Suppose that the sampling distance of the original discrete signal is 
N-l .  We denote ~ [ n ]  this discrete signal, with 2L = N-'. At the depth j - L 2 0 
of this filter bank tree, the low-pass signal uj and high-pass signal dj can be written 

U j [ Z ]  = uL*$j[2j-Lz] = (UL[n],q5j[n-2j-L1]) 

dj[l]  = uL*$j[2j-Lz] = (uL[n] ,$j[n-2j-9]) .  
and 

The Fourier transforms of these equivalent filters are 

j-L-1 j-L-2 

$j(u) = A(2pw) and t)j(w) = 2(2' -L- '~)  n 6 ( 2 ' ~ ) .  (7.145) 
p=o p=o 
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A filter bank tree of depth J - L 2 0, decomposes a~ over the family of vectors 

[ { + ~ [ n  - 2J-L1]} , { $j[n - 2j-LZ]} , ] . (7.146) 
l € Z  L< 15.7, IEZ 

For conjugate mirror filters, one can verify that this family is an orthonormal basis 
of l2 (Z) . These discrete vectors are close to a uniform sampling of the continuous 
time scaling functions q5 j ( t )  = 2- j /24(2- j t )  and wavelets $ j ( t )  = 2- j /24(2- j t ) .  
When the number L - j of successive convolutions increases, one can verify that 
4 j [n ]  and $j[n] converge respectively to W1l2 $ j ( W 1 n )  and N-1 /2$ j (N-1n) .  
The factor N-l l2  normalizes the 12(2) norm of these sampled functions. If L - j = 
4 then 41~[n] and $j[n] are already very close to these limit values. The impulse 
responses 4j [n] and $ j  [n] of the filter bank are thus much closer to continuous time 
scaling functions and wavelets than they are to the original conjugate mirror filters 
h and g. This explains why wavelets provide appropriate models for understanding 
the applications of these filter banks. Chapter 8 relates more general filter banks 
to wavelet packet bases. 

If the decomposition and reconstruction filters of the filter bank are different, 
the resulting basis (7.146) is non-orthogonal. The stability of this discrete wavelet 
basis does not degrade when the depth J - L of the filter bank increases. The next 
section shows that the corresponding continuous time wavelet $(t)  generates a 
Riesz basis of L2 (a). 
7.4 BIORTHOGONAL WAVELET BASES 

The stability and completeness properties of biorthogonal wavelet bases are de- 
scribed for perfect reconstruction filters h and having a finite impulse response. 
The design of linear phase wavelets with compact support is explained in Section 
7.4.2. 

7.4. I Construction of Biorthogonal Wavelet Bases 

An infinite cascade of perfect reconstruction filters (h,  g) and (h,  2) yields two 
scaling functions and wavelets whose Fourier transforms satisfy 

1 1 c  - 
$(h) = - h(w) &u) , Z(2w) = - h(w)  $(u) , (7.147) a Jz 

h 1 h 1 G ( h )  = -g (u)$(w)  , &2w) = $(w)$ (u )  . (7.148) 
.\/z 

In the time domain, these relations become 
+m f m  

4(t) = Jz h [ n ] 4 ( 2 t - n )  , $(t) =.\/z h[n]$ (2 t -n )  (7.149) 
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The perfect reconstruction conditions are given by Theorem 7.9. If we nor- 
malize the gain and shift to a = 1 and 1 = 0, the filters must satisfy 

A 

h * ( W ) i ( W )  + P ( w  +7r) h(w + 7 r )  = 2, (7.151) 

(7.152) " 9 
and 

g(w) =e- iWh (w+7r) , g(w) =e-iWP(w+7r). 
h 

Wavelets should have a zero average, which means that $ ( O )  = $(O) = 0. This 
is obtained by setting g(0) = i ( 0 )  = 0 and hence h(7r) = h(7r) = 0. The perfect 
reconstruction condition (7.15 1) implies that k ( O ) i ( O )  = 2. Since both filters are 
defined up to multiplicative constants respectively equal to X and X-', we adjust 
x so that ~(0) = X(O)  = 4. 

In the following, we also suppose that h and h are finite impulse response 
filters. One can then prove [21] that 

" 

(7.153) 
and z(u)=n-- +m i(2-w) 

p=l p=l d3 

are the Fourier transforms of distributions of compact support. However, these 
distributions may exhibit wild behavior and have infinite energy. Some further 
conditions must be imposed to guarantee that 3 and 4 are the Fourier transforms 
of finite energy functions. The following theorem gives sufficient conditions on 
the perfect reconstruction filters for synthesizing biorthogonal wavelet bases of 

A 

L2(R). 

Theorem 7.11 (COHEN, DAUBECHJES, FEAWEAU) Suppose that there exist 
strictly positive trigonometric polynomials P(eiW) and j(eiw) such that 

2 1h(;) IZP(e'"l2) + I'l(; +T) I P(ei(w/2+?r)) = 2P(eiW), (7.154) 

l i (  i) 12p(eiw/Z) + I h ( y  " w  + 7 r )  12~(ei(W/2i?r)) = 2p(eiW) (7.155) 

and that P and k are unique (up to normalization). Suppose that 
A 

i d  lh(w)l> o , inf lh(u)l> 0. (7.156) 
W € [ - ? r / 2 , ? r / 2 ]  w+r/2:7r/2] 

" 
0 Then thefinctions 4 and q5 defined in (7.153) belong to L2(R), and q5, 4 

satisfy biorthogonal relations 

(q5(th 40  -.I> = JbI. (7.157) 



7.4 BIORTHOGONAL WAVELET BASES 267 

0 The two wavelet families { + , , n } ( j : n l E p  and { $ j , n } ( j , n l e p  are biorthogonal 
Riesz bases of L2(W). 

The proof of this theorem is,in [131] and [21]. The hypothesis (7.156) is also 
imposed by Theorem 7.2, which constructs orthogonal bases of scaling functions. 
The conditions (7.154) and (7.155) do not appear in the construction of wavelet 
orthogonal bases because they are always satisfied with P(e’!) = p(eiu) = 1 and 
one can prove that constants are the only invariant trigonometric polynomials 
12471. 

Biorthogonality means that for any ( j ,  j‘,n,n’) E Z4, 

(+ j ,n ,  4 j t : n f )  = a[n - n‘I ~ [ j  - j’I * (7.158) 

Any f E L2(W) has two possible decompositions in these bases: 

+W +m 

f = V , + j , n )  4 j , n  = (7.159) ( f , $ j , n )  +j,n . 
n 71- ‘--W n J -  ‘---3o 

The Riesz stability implies that there exist A > 0 and B > 0 such that 

+m 

(7.160) 

Multiresolutions Biorthogonal wavelet bases are related to multiresolution ap- 
proximations. The family {+(t - n)}nEZ is a Riesz basis of the space VO it gener- 
ates, whereas {$(t  - n)}nEZ is a Riesz basis of another space Vo. Let Vj  and V j  

be the spaces defined by 

f ( t )  EVj * f ( 2 j t )  E V ~ ,  
f ( t )  E V j  * f ( 2 j t )  EVO. 

One can verify that {Vi}  jEZ and {vj}  jEz are two multiresolution approximations 
of L2(W). For any j E Z, { q ! ~ j , ~ } , , € ~  and { $ j , n } n E ~  are Riesz bases of V j  and V j .  

The dilated wavelets { + j , n } n E ~  and { 6 j j ; n } n E ~  are bases of two detail spaces Wj 
and wj such that 

- - - 
V j @ W j = V j - l  and V j @ W j = V j - l .  

The biorthogonality of the decomposition and reconstruction wavelets implies that 
W j  is not orthogonal to V j  but is to vj whereas W j  is not orthogonal to V j  but is 
to vj. 
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Fast Biorthogonal Wavelet Transform The perfect reconstruction filter bank stud- 
ied in Section 7.3.2 implements a fast biorthogonal wavelet transform. For any 
discrete signal input b[n] sampled at intervals N-' = 2L, there exists f E VL such 
that ~ [ n ]  = (f ,  4 ~ : ~ )  = N-'/* b[n]. The wavelet coefficients are computed by suc- 
cessive convolutions with h and g. Let uj [n] = (f, q5j;n) and dj [n] = (f, +jJ .  As 
in Theorem 7.7, one can prove that 

Uj+&] =uj*h[2n] , dj+l[.] =q*g[2n] . (7.162) 

The reconstruction is performed with the dual filters h and g: 

q[n] = Lij+1 * i [ n ]  +lij+l*g[n]. (7.163) 

If UL includes N non-zero samples, the biorthogonal wavelet representation 
[{dj}~<jg,u~]  is calculated with O ( N )  operations, by iterating (7.162) for 
L 5 j < J .  The reconstruction of UL by applying (7.163) for J > j 2 L requires 
the same number of operations. 

7.4.2 Biorthogonal Wavelet Design 

The support size, the number of vanishing moments, the regularity and the sym- 
metry of biorthogonal wavelets is controlled with an appropriate design of h and 6. 

Support If the perfect reconstruction filters h and i have a finite impulse response 
then the corresponding scaling functions and wavelets also have a compact support. 
As in Section 7.2.1, one can show that if h[n] and i[n] are non-zero respectively 
for N1 5 n I NZ and f i 1  5 n 5 f i z ,  then 4 and 3 have a support respectively equal 
to [NI , Nz] and [& , fi4. Since 

g[n] = (-l)l-"h[l -n] and g[n] = (-l) l-ni[l  -.I, 
the supports of + and $ defined in (7.150) are respectively 

] . (7.164) 
fi1-N2+l &-N,+ l  

] a n d [  2 ' 2 [ 2 ' 2  
N1-&+1 Nz-fi1+1 

Both wavelets thus have a support of the same size and equal to 

(7.165) 

Vanishing Moments The number of vanishing moments of $ and $ depends on 
the number of zeros at w = T of h(w)  and h(w).  Theorem 7.4 proves that + has j3 
vanishing moments if the derivatives of its Fourier transform satisfy G @ ) ( O )  = 0 
fork 5 i,. Since $(O)  = 1, (7.4.1) implies that it is equivalent to impose that g(w) 
has a zero of order i, at w = 0. Since b(w) = ePiW @(w + T), this means that h(w) 
has a zero of order j3 at w = T. Similarly the number of vanishing moments of + 
is equal to the number p of zeros of h(w) at T. 

.=. 

h h 
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Regularity Although the regularity of a function is a priori independent of the 
number of vanishing moments, the smoothness of biorthogonal wavelets is related 
to their vanishing moments. The regularity of 4 and $ is the same because (7.150) 
shows that $ is a finite linear expansion of 4 translated. Tchamitchian’s Proposition 
7.3 gives a sufficient condition for estimating this regularity. If h(w) has a zero of 
order p at 7r, we can perform the factorization 

1 fe-iu P 
h(w)  = (T) i ( w ) .  (7.166) 

Let B =  sup,+,;,^ l i (w)l .  Proposition 7.3 proves that 4 is uniformly Lipschitz a 
for 

a<aI )=p- log ,B- l .  

Generally, logz B increases more slowly than p .  This implies that the regularity of 
4 and $ increases with p ,  which is equal to the number of vanishing moments of 
6. Similarly, one can show that the regularity of 4 and 4 increases with 8, which 
is the number of vanishing moments of $. If and h have different numbers of 
zeros at T ,  the properties of $ and 4 can therefore be very different. 

Ordering of Wavelets 
number of vanishing moments, the two reconstruction formulas 

Since $ and 4 might not have the same regularity and 

+m 

n Ll- ‘--m 

(7.167) 

(7.168) 
n, j= -m 

are not equivalent. The decomposition (7.167) is obtained with the filters (h,  g )  at 
the decomposition and ( h , g )  at the reconstruction. The inverse formula (7.168) 
corresponds to (h,  a) at the decomposition and (h,  g )  at the reconstruction. 

To produce small wavelet coefficients in regular regions we must compute the 
inner products using the wavelet with the maximum number of vanishing moments. 
The reconstruction is then performed with the other wavelet, which is generally 
the smoothest one. If errors are added to the wavelet coefficients, for example with 
a quantization, a smooth wavelet at the reconstruction introduces a smooth error. 
The number of vanishing moments of $ is equal to the number 7, of zeros at 7r of 
h. Increasing 7, also increases the regularity of 6. It is thus better to use h at the 
decomposition and h at the reconstruction if h has fewer zeros at 7r than h. 

h 

A 

Symmetry It is possible to construct smooth biorthogonal wavelets of compact 
support which are either symmetric or antisymmetric. This is impossible for 
orthogonal wavelets, besides the particular case of the Haar basis. Symmetric or 
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antisymmetric wavelets are synthesized with perfect reconstruction filters having a 
linear phase. If h and & have an odd number of non-zero samples and are symmetric 
about n = 0, the reader can verify that q5 and 3 are symmetric about t = 0 while 
$ and 4 are symmetric with respect to a shifted center. If h and & have an even 
number of non-zero samples and are symmetric about n = 1/2, then q5(t) and 3( t )  
are symmetric about t = 1/2, while $ and 6 are antisymmetric with respect to a 
shifted center. When the wavelets are symmetric or antisymmetric, wavelet bases 
over finite intervals are constructed with the folding procedure of Section 7.5.2. 

7.4.3 Compactly Supported Biorthogonal Wavelets 

We study the design of biorthogonal wavelets with a minimum size support for a 
specified number of vanishing moments. Symmetric or antisymmetric compactly 
supported spline biorthogonal wavelet bases are constructed with a technique in- 
troduced in [ 13 11. 

Theorem 7.12 (COEJEN, DAUBECHIES, FEAUVEAU) Biorthogonal wavelets $ and 4 with respectively j and p vanishing moments have a support of size at least 
p + 5 - 1. CDF biorthogonal wavelets have a minimum support of size p + j3 - 1. 

Proof '. The proof follows the same approach as the proof of Daubechies's Theorem 
7.5. One can verify that p and jj must necessarily have the same parity. We concentrate 
on filters h[n] and i[n] that have a symmetry with respect to n = 0 or n = 1/2. The 
general case proceeds similarly. We can then factor 

i(w) = ,exp($) (cos;)'L(cosw) , (7.169) 

A 

L(w) = fie..($) (cos;)~qcosw) , (7.170) 

with E = 0 for p and 3 even and E = 1 for odd values. Let q = (p + jj)/2. The perfect 
reconstruction condition 

A 

L . ( w ) i ( w ) + i ' ( w + a ) i ( w + n )  = 2  

is imposed by writing 

~(cosw)L(cosw)  = P (7.171) 

where the polynomial P(y) must satisfy for all y E [0,1] 

(l-Y)"(Y)+YqP(1-Y)= 1.  (7.172) 

We saw in (7.101) that the polynomial of minimum degree satisfying this equation is 

(7.173) 

The spectral factorization (7.171) is solved with a root attribution similar to (7.103). 
The resulting minimum support of $ and 4 specified by (7.165) is then p + 3 - 1. W 



7.4 BIORTHOGONAL WAVELET BASES 27 I 

n 
0 

1:-1 
2,-2 
3; -3 
4; -4 

091 
-1,2 
-2,3 
-3,4 
-4,5 
-5,6 
-6,7 
-7,8 

P.P 

p = 2  
j = 4  

p = 3  
$ = 7  

h[nl 
0.707 106781 18655 
0.35355339059327 

0.53033008588991 
0.17677669529664 

[nl 
0.99436891 104358 
0.41 984465 13295 1 

-0.17677669529664 
-0.06629 126073624 

0.03314563036812 

0.95164212189718 
-0.02649924094535 
-0.30115912592284 

0.03 133297870736 
0.07466398507402 

- 0.0 1683 176542 13 1 
-0.00906325830378 

0.00302 10861 0126 

Table 7.3 Perfect reconstruction filters h and i for compactly supported spline 
wavelets, with i;. and h having respectively 3 and p zeros at w = T. 

e 

Spline Biorthogonal Wavelets Let us choose 

(7.174) 

with E = 0 for p even and E = 1 for p odd. The scaling function computed with 
(7.153) is then a box spline of degree p - 1 

-kw sin(w/2) ' 
4 ( 4 = e * P ( I )  ( w/2 ) 

Since $ is a linear combination of box splines 4(2t - n) , it is a compactly supported 
polynomial spline of same degree. 

The number of vanishing moments p of $ is a free parameter, which must have 
the same parity as p. Let q = (p + j)/2. The biorthogonal filter i of minimum 
length is obtained by observing that L(cosw) = 1 in (7.169). The factorization 
(7.171) and (7.173) thus imply that 

b q-1 

i ( w )  = h e x p  (G) (cosy) ( q- i+k  ) (7.175) 
k=O 

These filters satisfy the conditions of Theorem 7.11 and thus generate biorthogonal 
wavelet bases. Table 7.3 gives the filter coefficients for (p = 2 , p  = 4) and (p = 
3 ,p  = 7). The resulting dual wavelet and scaling functions are shown in Figure 
7.13. 
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0.5 
! 1, 

- 2 - 1  0 I 2  3 

p = 2 ,  p = 4  p = 2 ,  j = 4  p = 3 , p = 7  p = 3 ,  p = 7  

FIGURE 7. I4  Spline biorthogonal wavelets and scaling functions of compact 
support corresponding to the filters of Table 7.3. 

FIGURE 7. I5 Biorthogonal wavelets and scaling functions calculated with the 
filters of Table 7.4, with p = 4 and j3 = 4. 

Closer Filter Length Biorthogonal filters h and 6 of more similar length are 
obtained by factoring the polynomial P(sin2 5 )  in (7.171) with two polynomial 
L(cosu) and L(cosu) of similar degree. There is a limited number of possible 
factorizations. For q = (p + j) /2 < 4, the only solution is L(cos u)  = 1. For q = 4 
there is one non-trivial factorization and for q = 5 there are two. Table 7.4 gives 
the resulting coefficients of the filters h and of most similar length, computed by 
Cohen, Daubechies and Feauveau [131]. These filters also satisfy the conditions 
of Theorem 7.11 and therefore define biorthogonal wavelet bases. Figure 7.15 
gives the scaling functions and wavelets corresponding to p = j~ = 4. These dual 
functions are similar, which indicates that this basis is nearly orthogonal. This par- 
ticular set of filters is often used in image compression. The quasi-orthogonality 
guarantees a good numerical stability and the symmetry allows one to use the fold- 
ing procedure of Section 7.5.2 at the boundaries. There are also enough vanishing 
moments to create small wavelet coefficients in regular image domains. How to 
design other compactly supported biorthogonal filters is discussed extensively in 
[131,340]. 
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5 = 4  E 
5 = 5  

@ = 5  

- 
n 

0 
- 

-1,l 
-2,2 
-3,3 
-4,4 

0 
-1,l 
-2; 2 
-3,3 
-4,4 
- 5 3  

0 
-1, 1 
-2; 2 
-3;3 
-4,4 
-5,5 

- 

- 

- 

hbl  
0.78848561640637 
0.41809227322204 

-0.04068941760920 
-0.06453888262876 

0 

0.89950610974865 
0.47680326579848 

-0.09350469740094 
-0.13670658466433 
-0.0026949668801 1 

0.01345670945912 

0.541 13273169141 
0.34335173921766 
0.061 15645341349 
0.00027989343090 
0.021 83057 133337 
0.00992177208685 

1.1 
0.85269867900889 
0.37740285561283 

-0.11062440441844 
-0.02384946501956 

0.03782845554969 

0.736660 18 14282 1 
0.34560528 195603 

0.00794810863724 
0.03968708834741 

-0.05446378846824 

0 

1.32702528570780 
0.47 19869337909 1 

-0.36378609009851 
-0.11843354319764 

0 
0.05382683783789 

Table 7.4 Perfect reconstruction filters of most similar length. 

7.4.4 LifLing Wavelets 

A lifting is an elementary modification of perfect reconstruction filters, which is 
used to improve the wavelet properties. It also leads to fast polyphase implemen- 
tations of filter bank decompositions. The lifting scheme of Sweldens [325,324] 
does not rely on the Fourier transform and can therefore construct wavelet bases 
over non-translation invariant domains such as bounded regions of RP or surfaces. 
This section concentrates on the main ideas, avoiding technical details. The proofs 
are left to the reader. 

Theorem 7.1 1 constructs compactly supported biorthogonal wavelet bases 
from finite impulse response biorthogonal filters (h, g ,  h, g) which satisfy 

h A 

~ ( W ) h ( W ) + h * ( W + 7 r ) h ( W + T )  = 2  (7.176) 

and 
(7.177) 

The filters h and h are said to be dual. The following proposition [209] characterizes 
all filters of compact support that are dual to h. 
Proposition 7.5 (HEF&EY,~F~"ERLI) Let h and A be dualjlters with afinite sup- 
port. A filter h' with finite support is dual to if and only if there exists a finite 
filter E such that 

~ ' ( w )  = fi(w> + e-iuX (w + i* (2w). (7.178) 
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This proposition proves that if (h, g ,  i, 3)- are biorthogonal then we can con- 

2 ( w )  =i(w)+i(w)P(2w)  (7.179) 

(7.180) 2 (w) = e-iW A'* (w + T )  = i(w) - i(w) i(2w). 

This is verified by inserting (7.177) in (7.178). The new filters are said to be lifsed 
because the use of 1 can improve their properties. 

struct a new set of biorthogonal filters (h', g ,  h, i') with 

h 4 

The inverse Fourier transform of (7.179) and (7.180) gives 

+m 
h'[n] = h[n]+ g[n-2k]l[-k], (7.18 1) 

k=-m 
+m 

g'[n] = i [ n ] -  i [ n - 2 k ] ~ [ k ] .  (7.182) 

Theorem 7.10 proves that the conditions (7.176) and (7.177) are equivalent to 
the fact that {h[n - 2k], g[n - 2k]}kcz and { i [ n  - 21, i [ n  - 2k]}kcZ are biorthog- 
onal Riesz bases of I2(Z). The lifting scheme thus creates new families 

Riesz bases of 12(2). The following theorem derives new biorthogonal wavelet 
bases by inserting (7.181) and(7.182)inthescalingequations (7.149) and(7.150). 

Theorem 7.13 (SWELDENS) Let (4 ,  $, $,q) be a family of compactly supported 
biorthogonal scalingfunctions and wavelets associated to thefilters (h, g ,  h, i). Let 
l[k] be aJinite sequence. A new family of formally biorthogonal scalingfunctions 
and wavelets (#, $', $, 6') is defined by 

k=-w 

{hz[n-2k],g[n-2k])k€a and {i[n-2k],i '[n-2k]}k€z that arealso biorthogonal 

+m +m 

# ( t )  = .\/z h[k]&(2t-k)+ I[-k]$'(t-k) (7.183) 
k=-m k=-m 

k=-w 
+a, 

$( t )  = $(t)  - Z[k]$(t-k). 
k=-m 

(7.185) 

Theorem 7.11 imposes that the new filter h' should satisfy (7.154) and (7.156) 
to generate functions 4' and $' of finite energy. This is not necessarily the case 
for all I ,  which is why the biorthogonality should be understood in a formal sense. 
If these functions have a finite energy then {$f,n}(j,,)Eg and {$f,n}(j,n)E~2 are 
biorthogonal wavelet bases of L2 (W) . 

The lifting increases the support size of $ and 6 typically by the length of the 
support of 1. Design procedures compute minimum size filters 1 to achieve specific 
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properties. Section 7.4.2 explains that the regularity of 4 and $ and the number of 
vanishing moments of 4 depend on the number of zeros of &(w) at w = 7r, which is 
also equal to the number of zeros of i ( w )  at w = 0. The coefficients Z[n] are often 
calculated to produce a lifted transfer function i ' ( w )  with more zeros at w = 0. 

To increase the number of vanishing moment of $ and the regularity of 4 and 
4 we use a dual lifting which modifies i and hence g instead of h and g. The 
corresponding lifting formula with a filter L[k] are obtained by inverting h with g 
and g with 2 in (7.181) and (7.182): 

+m 
I -- 

i"[n] = i[n]- E g[n-2k]L[k]. (7.187) 

The resulting family of biorthogonal scaling functions and wavelets (4: $" , $", 4") 
are obtained by inserting these equations in the scaling equations (7.149) and 
(7.150): 

+m +m 

$L(t)  = h i[k]$"(2t-k)- E L[k]$"(t-kk) (7.188) 
k=-m k = - m  

4"(t) = h E g[k]3"(2t-k) 
k=-m 

(7.189) 

(7.190) 

Successive iterations of liftings and dual liftings can improve the regularity and 
vanishing moments of both $ and 4 by increasing the number of zeros of g(w) 
and g(w) at w = 0. 

h 

Lazy Wavelets LaqJiZters i[n] = h[n] = b[n] and g[n] = g[n] = b[n - 11 satisfy 
the biorthogonality conditions (7.176) and (7.177). Their Fourier transform is 

A 
A 

i ( w )  = k(w)  = 1 and g(w) = b(w) =e-'". (7.191) 

The resulting filter bank just separates the even and odd samples of a signal without 
filtering. This is also called a polyphase decomposition [73]. The lazy scaling 
functions and wavelets associated to these filters are Diracs &t) = $( t )  = b(t)  
and 4(t)  = $ ( t )  = b(t - 1/2). They do not belong to L2(W) because i ( w )  and 
g(w) do not vanish at w = 0. These wavelet can be transformed into finite energy 
functions by appropriate liftings. 
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Example 7.11 A lifting of a lazy filter i ( w )  = eWiW yields 

-1 g (w)  = e-"' - i(2w). 

To produce a symmetric wavelet i(2w) must be even. For example, to create 
4 vanishing moments a simple calculation shows that the shortest filter 1 has a 
Fourier transform 

Inserting this in (7.178) gives 

The resulting 4' is the Deslauriers-Dubuc interpolating scaling function of order 4 
shown in Figure 7.21(b), and $'(t) = &4I(2t - 1) .  These interpolating scaling 
functions and wavelets are further studied in Section 7.6.2. Both and $I are 
continuously differentiable but 4 and 6' are sums of Diracs. A dual lifting can 
transform these into finite energy functions by creating a lifted filter d ( w )  with 
one or more zero at w = 0. 

The following theorem proves that lifting lazy wavelets is a general filter design 
procedure. A constructive proof is based on the Euclidean algorithm [148]. 

Theorem 7.14 (DAUBECHIES, SWELDENS) Any biorthogonal filters (h, g ,  i7 g) 
can be synthesized with a succession of lifings and dual liftings applied to the 
lazy filters (7.191), up to shifting and multiplicative constants. 

Fast Polyphase Transform After lifting, the biorthogonal wavelet transform is 
calculated with a simple modification of the original wavelet transform. This 
implementation requires less calculation than a direct filter bank implementation 
of the lifted wavelet transform. We denote ufi [k] = ( f ,  q5i,k) and dj[k] = (f, $fi,,). 

The standard filter bank decomposition with ( h' i, g ,  2') computes 

+m 

[k] = h' [n - 2k] af [n] = a;. * 5' [2k], (7.193) 
n=-m 
+m 

d;+,[k] = g[n-2k]a>[n] =a$*g[2k]. (7.194) 
n=-cx 

The reconstruction is obtained with 
. - -  

afi[n] = c i[n-2k]af+l[k]+ g'[n-2k]d;+l[k]. (7.195) 
k=-m k=-m 
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Inserting the lifting formulas (7.181) and (7.182) in (7.193) gives an expression 
that depends only on the original filter h: 

+m 

U;+,,[k] = h[n-2k]af[n] =af*h[2k] 
n=-w 

plus a lifting component that is a convolution with 1 

n=-x 

This operation is simply inverted by calculating 

and performing a reconstruction with the original filters (i: E )  
+W t m  

a;[.] = i[n-2k]a;[k]+ a[n-2k]d;[k]. 
k=-m k=-m 

Figure 7.16 illustrates this decomposition and reconstruction. It also includes the 
implementation of a dual lifting with L, which is calculated with (7.186): 

djL+l[k] =d:+,[k]+a;+,*L[k] . 
Theorem 7.14 proves that any biorthogonal family of filters can be calculated 

with a succession of liftings and dual liftings applied to lazy filters. In this case, the 
filtersh[n] =h[n] =d[n]canberemovedwhereasg[n] =6[n+1] andg[n] =d[n-l] 
shift signals by 1 sample in opposite directions. The filter bank convolution and 
subsampling is thus directly calculated with a succession of liftings and dual liftings 
on the polyphase components of the signal (odd and even samples) [73]. One can 
verify that this implementation divides the number of operations by up to a factor 
2 [148], compared to direct convolutions and subsamplings calculated in (7.193) 
and (7.194). 

L i e d  Wavelets on Arbitrary Domains The lifting procedure is extended to signal 
spaces which are not translation invariant. Wavelet bases and filter banks are 
designed for signals defined on arbitrary domains D of RJ’ or on surfaces such as 
a spheres. 

Wavelet bases of L2(D) are derived from a family of embedded vector spaces 
{Vj}jEz that satisfy similar multiresolution properties as in Definition 7.1. These 
spaces are constructed from embedded sampling grids { G j } j E z  included in D .  For 
each index j ,  Gj has nodes whose distance to all its neighbors is of the order of 
2j. Since Gj+, is included in G j  we can define a complementary grid Cj+1 that 
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FIGURE 7. I6  (a): A lifting and a dual lifting are implemented by modifying the 
original filter bank with two lifting convolutions, where 2 and L are respectively 
the lifting and dual lifting sequences. (b): The inverse lifted transform removes 
the lifting components before calculating the filter bank reconstruction. 

regroups all nodes of Gj that are not in Gj+l. For example, if D = [O,N] then Gj 
is the uniform grid { 2 j n } 0 < ~ < 2 - j ~ .  The complementary grid Cj+l corresponds to 
{2’(2n+ l)}O<n<2-j-~N. 6&0 dimensions, the sampling grid Gj can be defmed 
as the nodes of a regular triangulation of D. This triangulation is progressively 
refined with a midpoint subdivision illustrated in Figure 7.17. Such embedded 
grids can also be constructed on surfaces [325]. 

Suppose that { h j , ~ } k ~ ~ ~ + ,  U { g j , m } m E C j + ,  is a basis of the space I2(Gj) of finite 
energy signals defined over Gj. Any aj E I2(Gj) is decomposed into two signals 
defined respectively over Gj+1 and Cj+l by 

This decomposition is implemented by linear operators on subsampled grids as in 
the filter banks previously studied. However, these operators are not convolutions 
because the basis { h j , k } ~ ~ ~ ~ + ~  U {gj,m}mECj+l is not translation invariant. The 



7.4 BIORTHOGONAL WAVELET BASES 279 

FIGURE 7. I7 Black dots are the nodes of a triangulation grid G j + 1  of a polygon 
domain D. This grid is refined with a subdivision, which adds a complementary 
grid C j + l  composed of all midpoints indicated with white circles. The finer grid 
is Gj = G j + 1  U C j + l .  

Scaling functions and wavelets are obtained by cascading filter bank recon- 
structions over progressively finer scales. As a result, they satisfy scaling equations 
similar to (7.112) and (7.114) 

$j+l ,k  = C h j , k [ n ] $ j , n  7 $j+l ,m = x g j , m [ n ] $ j ; n  7 (7.198) 
n G j  n G j  

$ j + l , k  = x i j : k [ n ] $ j , n  7 $ j + l , m = x g j , m [ n ] $ j : n  (7.199) 
n G j  n G j  

These wavelets and scaling functions have a support included in D. If they have a 
finite energy with respect to an appropriate measure d p  defined over D then one 
can verify that for any J 5 log, N 

[{+J,k}kEGJ> {$ j ,m}mEcj , j>J]  a d  [{$J,k}kEGJ 7 { $ j , m } m c c j , j t J ]  

are biorthogonal bases of L2 (D ,  d p )  . 
The discrete lazy basis of 12(G'j) is composed of Diracs h j , k [ n ]  = b[n - k]  for 

(k ,n )  E G j + 1  x Gj and gj,,[n] = b[n - k] for (k ,n )  E C j + 1  x Gj. This basis is 
clearly orthonormal so the dual basis is also the lazy basis. The resulting filter 
bank just separates samples of Gj into two sets of samples that belong respectively 
to G j + 1  and Cj+l. The corresponding scaling functions and wavelets are Diracs 
located over these sampling grids. Finite energy wavelets and scaling functions 
are constructed by lifting the discrete lazy basis. 
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TheORm 7.15 (SWELDENS) suppose that {hj,k}kEGj+l u {gj,m}mECj+l and 
{ i j , k } k E G j + ,  u (gj,m}mECj+l are biorthgonal Riesz bases of 12(Gj). Let Z,[k,m] be 
a matrix with ajnite number of non-zero values. If 

These formulas generalize the translation invariant lifting (7.18 1) and (7.182), 
which corresponds to lj[k,m] = Z[k - m]. In the general case, at each scale 2j, 
the lifting matrix lj [k: m] can be chosen arbitrarily. The lifted bases generate new 
scaling functions and wavelets that are related to the original scaling functions 
and wavelets by inserting (7.200) and (7.201) in the scaling equations (7.198) and 
(7.199) calculated with lifted filters: 

The dual scaling functions $j,k are not modified since i j , k  is not changed by the 
lifting. 

The fast decomposition algorithm in this lifted wavelet basis is calculated with 
the same approach as in the translation invariant case previously studied. However, 
the lifting blocks illustrated in Figure 7.16 are not convolutions anymore. They 
are linear operators computed with the matrices Zj [k, m] , which depend upon the 
scale 2j. 

TO create wavelets i j j , m  with vanishing moments, we ensure that they are or- 
thogonal to a basis of polynomials {pi}i of degree smaller than q. The coefficients 
Z[k; m] are calculated by solving the linear system for all i and m E Cj+l 
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Applications Lifting lazy wavelets is a simple way to construct biorthogonal 
wavelet bases of L2[0, 11. One may use a translation invariant lifting, which is 
modified near the left and right borders to construct filters whose supports remains 
inside D = [0,1]. The lifting coefficients are calculated to design regular wavelets 
with vanishing moments [325]. Section 7.5 studies other ways to construct or- 
thogonal wavelet bases of L2 [0,1]. 

Biorthogonal wavelet bases on manifolds or bounded domains of WP are cal- 
culated by lifting lazy wavelets constructed on embedded sampling grids. Lifted 
wavelets on the sphere have applications in computer graphics [326]. In finite two- 
dimensional domains, lifted wavelet bases are used for numerical calculations of 
partial differential equations [118]. 

To optimize the approximation of signals with few wavelet coefficients, one 
can also construct adaptive wavelet bases with liftings that depend on the signal. 
Short wavelets are needed in the neighborhood of singularities, but longer wavelets 
with more vanishing moments can improve the approximation in regions where 
the signal is more regular. Such a basis can be calculated with a time varying 
lifting whose coefficients Zj[k, m] are adapted to the local signal properties [325]. 

7.5 

To decompose signals f defined over an interval [0,1], it is necessary to construct 
wavelet bases of L2 [0,1]. Such bases are synthesized by modifying the wavelets 
$j;n(t)  = 2-j/2$(2-jt-n) of abasis {$ j ,n } ( j ,n lEz*  of L2(W). The inside wavelets 
$j:n whose support are included in [0,1] are not modified. The boundary wavelets 
$j , ,  whose supports overlap t = 0 or t = 1 are transformed into functions having a 
support in [0,1], which are designed in order to provide the necessary complement 
to generate a basis of L2 [0,1]. If $ has a compact support then there is a constant 
number of boundary wavelets at each scale. 

The main difficulty is to construct boundary wavelets that keep their vanishing 
moments. The next three sections describe different approaches to constructing 
boundary wavelets. Periodic wavelets have no vanishing moments at the bound- 
ary, whereas folded wavelets have one vanishing moment. The custom-designed 
boundary wavelets of Section 7.5.3 have as many vanishing moments as the inside 
wavelets but are more complicated to construct. Scaling functions q5j:n are also 
restricted to [0,1] by modifying the scaling functions q5j:n(t) = 2-j/’q5(2-jr - n) 
associated to the wavelets $ j , , .  The resulting wavelet basis of L2[O: 11 is composed 
of 2-’ scaling functions at a coarse scale 2J < 1, plus 2-j wavelets at each scale 

[ { 6% )OSn<2-’ 1 {$FA } -m< j $J  O$n<Z-J]  . (7.202) 

On any interval [a, b], a wavelet orthonormal basis of L2 [a, b] is constructed with 
a dilation by b - a and a translation by a of the wavelets in (7.202). 

WAVELET BASES ON AN INTERVAL 

2j 5 2J: 

Discrete Basis of CN The decomposition of a signal in a wavelet basis over an 
interval is computed by modifying the fast wavelet transform algorithm of Section 
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7.3.1. A discrete signal b[n] of N samples is associated to the approximation of a 
signal f E L2 [0,1] at a scale N-' = 2L with (7.116): 

N - ' / ~  b[n] = aL[n] = (f, $En) for o 5 n < 2pL . 

Its wavelet coefficients can be calculated at scales 1 2 2j > 2L. We set 

~ j [ n ]  = (f,$z) and dj[n] = (f,$FA) for 0 5 n < 2-j . (7.203) 

The wavelets and scaling functions with support inside [0,1] are identical to the 
wavelets and scaling functions of a basis of L2(R). The corresponding coefficients 
aj [n] and dj [n] can thus be calculated with the decomposition and reconstruction 
equations given by Theorem 7.7. These convolution formulas must however be 
modified near the boundary where the wavelets and scaling functions are modified. 
Boundary calculations depend on the specific design of the boundary wavelets, 
as explained in the next three sections. The resulting filter bank algorithm still 
computes the N coefficients of the wavelet representation [uJ , {dj}L<j<J] of aL 
with O ( N )  operations. 

Wavelet coefficients can also be written as discrete inner products of uL with 
discrete wavelets: 

As in Section 7.3.3, we verify that 

is an orthonormal basis of CN. 

7.5. I Periodic Wavelets 

A wavelet basis { $ j , n } ( j , n ) E ~ ~  of L2(R) is transformed into a wavelet basis of 
L2[0, 11 by periodizing each The periodization of f E L2(W) over [O; 11 is 
defined by 

+w 

fP"(t)  = f ( t + k ) .  (7.205) 
k=-w  

The resulting periodic wavelets are 

For j S 0, there are 2-j different $r: indexed by 0 5 n < 2-j. If the support 
of $j,,, is included in [0,1] then $;;(t) = $j;*(t) for t E [0 ,1] .  The restriction 
to [0,1] of this periodization thus modifies only the boundary wavelets whose 
supports overlap t = 0 or t = 1 .  As indicated in Figure 7.18, such wavelets are 
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FIGURE 7. I8 
components near t = 0 and t = 1. 

The restriction to [0,1] of a periodic wavelet $$; has two disjoint 

transformed into boundary wavelets which have two disjoint components near t = 0 
and t = 1. Taken separately, the components near t = 0 and t = 1 of these boundary 
wavelets have no vanishing moments, and thus create large signal coefficients, as 
we shall see later. The following theorem proves that periodic wavelets together 
with periodized scaling functions 4;; generate an orthogonal basis of L2[O: 11. 

Theorem 7.16 For any J 5 0 

(7.206) 

is an orthogonal basis ofL2[O: 11. 

Proof '. The orthogonality of this family is proved with the following lemma. 

Lemma 7.2 Let a(t),$(t) E L'(B). I f ( a ( t ) , $ ( t + k ) )  = Ofor all k E Z then 

l'aPe'(t) ,OP"(t)dt = 0. (7.207) 

To verify (7.207) we insert the definition (7.205) of periodized functions: 

Since [{$j,n)-w<jsJ,nEZ , {dJJ;n)nEZ] is orthogonal in Lz(W), we can verify that 
any two different wavelets or scaling functions cuper and pp" in (7.206) have necessarily 
a non-periodized version that satisfies ( a ( t ) , $ ( t + k ) )  = 0 for all k E Z. Lemma 7.2 
thus proves that (7.206) is orthogonal in L'[O, 11. 

To prove that this family generates L'[O, 11, we extend f E L'[O, 11 with zeros 
outside [0,1] and decompose it in the wavelet basis of L'(1): 

J t w  +W 
(7.208) 

This zero extension is periodized with the sum (7.205), which defines fp"(t)  = f ( t )  
fort E [0,1]. Periodizing (7.208) proves that f can be decomposed over the periodized 

E wavelet family (7.206) in L2[0, 11. 
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Theorem7.16 shows that periodizing a wavelet orthogonal basis of L2(W) defines a 
wavelet orthogonal basis of L2 [0,1]. I f J  = 0 then there is a single scaling function, 
and one can verify that +o,o(t) = 1. The resulting scaling coefficient (f, +o,o) is 
the average off over [0,1]. 

Periodic wavelet bases have the disadvantage of creating high amplitude 
wavelet coefficients in the neighborhood o f t  = 0 and t = 1, because the boundary 
wavelets have separate components with no vanishing moments. If f ( 0 )  # f(l), 
the wavelet coefficients behave as if the signal were discontinuous at the bound- 
aries. This can also be verified by extending f E L2[0, 11 into an infinite 1 periodic 
signal fp" and by showing that 

(7.209) 

If f ( 0 )  # f( 1) then fper(t) is discontinuous at t = 0 and t = 1, which creates high 
amplitude wavelet coefficients when $jj;n overlaps the interval boundaries. 

Periodic Discrete Transform For f E L2 [0,1] let us consider 

We verify as in (7.209) that these inner products are equal to the coefficients of a 
periodic signal decomposed in a non-periodic wavelet basis: 

aj[n] = ( F , + j , n )  and dj [n]=  (.fpm,$j,n). 

The convolution formulas of Theorem 7.7 thus apply if we take into account the 
periodicity of fPer. This means that aj[n] and dj[n] are considered as discrete 
signals of period 2-j, and all convolutions in (7.107-7.109) must therefore be 
replaced by circular convolutions. Despite the poor behavior of periodic wavelets 
near the boundaries, they are often used because the numerical implementation is 
particularly simple. 

7.5.2 Folded Wavelets 

Decomposing f E L2[0, 11 in a periodic wavelet basis was shown in (7.209) to 
be equivalent to a decomposition of fPer in a regular basis of L2(R). Let us 
extend f with zeros outside [0, 11. To avoid creating discontinuities with such a 
periodization, the signal is folded with respect to t = 0: f o ( t )  = f ( t )  + f( -t). The 
support of fo is [ - 1,1] and it is transformed into a 2 periodic signal, as illustrated 
in Figure 7.19 

+m +m +X 

ffo"(t) = f o ( t - 2 k )  = f(t-2k) + f ( 2 k - t ) .  (7.210) 
k=-W k=--03 k=-oo 

Clearly ff0ld(t) = f ( t )  if t E [0,1], and it is symmetric with respect to t = 0 and 
t = 1. Iff is continuously differentiable then f is continuous at t = 0 and t = 1, 
but its derivative is discontinuous at t = 0 and t = 1 if f'(0) # 0 and f'( 1) # 0. 
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I 

0 1 

FIGURE 7.19 The folded signal ff0ld(t) is 2 periodic, symmetric about t = 0 
and t = 1, and equal to f ( t )  on [0,1]. 

Decomposing ff0ld in a wavelet basis { $ j , n } ( j , n ) E g  is equivalent to decompos- 
ing f on a folded wavelet basis. Let $?:d be the folding of $j,n with the summation 
(7.210). One can venfy that 

(7.21 1) 

Suppose that f is regular over [0,1]. Then ff0ld is continuous at t = 0 , l  and hence 
produces smaller boundary wavelet coefficients than fp'. However, it is not 
continuously differentiable at t = 0: 1, which creates bigger wavelet coefficients 
at the boundary than inside. 

To construct a basis of L2[0, 11 with the folded wavelets $?Ad, it is sufficient 
for $ ( t )  to be either symmetric or antisymmetric with respect to t = 1/2. The 
Haar wavelet is the only real compactly supported wavelet that is symmetric or 
antisymmetric and which generates an orthogonal basis of L2(W). On the other 
hand, if we loosen up the orthogonality constraint, Section 7.4 proves that there 
exist biorthogonal bases constructed with compactly supported wavelets that are 
either symmetric or antisymmetric. Let { $ j , n } ( j , n l E p  and {4j,n}(j,n1Ep be such 
biorthogonal wavelet bases. If we fold the wavelets as well as the scaling functions 
then for J 5 0 

[ ( $ ~ ~ d ) - ~ < j $ J , o s , < z - j  7 {@~d)05n<2-~]  (7.212) 

is a Riesz basis of L2[0, 11 [134]. The biorthogonal basis is obtained by folding 
the dual wavelets 4 j , n  and is given by 

(7.213) [ ( 4 ~ ~ d ) - o o < j y , o ~ n < z - j  , {4J,n "fold ) 0 9 < 2 - J ]  . 

EJ = 0 then +&' = $tLd = 1. 
Biorthogonal wavelets of compact support are characterized by a pair of finite 

perfect reconstruction filters (h, i). The symmetry of these wavelets depends on 
the symmetry and size of the filters, as explained in Section 7.4.2. A fast folded 
wavelet transform is implemented with a modified filter bank algorithm, where the 
treatment of boundaries is slightly more complicated than for periodic wavelets. 
The symmetric and antisymmetric cases are considered separately. 

Folded Discrete Transform For f E L2[0, 11, we consider 

aj[nI = V,@Ld) and dj[nI = (f,$?Ad). 
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We verify as in (7.21 1 )  that these inner products are equal to the coefficients of a 
folded signal decomposed in a non-folded wavelet basis: 

a j [n] = ( ff0ld , $j ,n)  and dj [n] = ( f'"", ? ( l j , J .  

The convolution formulas of Theorem 7.7 thus apply if we take into account the 
symmetry and periodicity of PId. The symmetry properties of q5 and $J imply 
that aj[n] and dj [n] also have symmetry and periodicity properties, which must be 
taken into account in the calculations of (7.107-7.109). 

Symmetric biorthogonal wavelets are constructed with perfect reconstruction 
filters h and fi  of odd size that are symmetric about n = 0. Then q5 is symmetric 
about 0, whereas $J is symmetric about 1/2. As a result, one can verify that a j  [n] is 
2-j+' periodic and symmetric about n = 0 and n = 2-j. It is thus characterized by 
2-j + 1 samples, for 0 5 n 5 2-j. The situation is different ford, [n] which is 2-j+' 
periodic but symmetric with respect to - 1/2 and 2-j - 1 / 2 .  It is characterized by 
2-j samples, foro 5 n < 2-j. 

To initialize this algorithm, the original signal UL [n] defined over 0 5 n < N - 1 
must be extended by one sample at n = N ,  and considered to be symmetric with 
respect to n = 0 and n = N .  The extension is done by setting UL [N] = UL [N - 11. 
For any J < L, the resulting discrete wavelet representation [ { d j } ~ < j g , a ~ ]  is 
characterized by N + 1 coefficients. To avoid adding one more coefficient, one can 
modify symmetry at the right boundary of UL by considering that it is symmetric 
with respect to N - 1/2 instead of N .  The symmetry of the resulting a j  and 
dj at the right boundary is modified accordingly by studying the properties of 
the convolution formula (7.162). As a result, these signals are characterized by 
2-j samples and the wavelet representation has N coefficients. This approach is 
used in most applications because it leads to simpler data structures which keep 
constant the number of coefficients. However, the discrete coefficients near the 
right boundary can not be written as inner products of some function f(t)  with 
dilated boundary wavelets. 

Antisymmetric biorthogonal wavelets are obtained with perfect reconstruction 
filters h and fi  of even size that are symmetric about n = 1/2.  In this case q5 is 
symmetric about 1/2 and $J is antisymmetric about 1/2. As a result aj and d j  
are 2-jt' periodic and respectively symmetric and antisymmetric about - 1 / 2  
and 2-j - 1/2. They are both characterized by 2-j samples, for 0 5 n < 2-j. 
The algorithm is initialized by considering that UL [n] is symmetric with respect to 
- 1/2 andN - 1/2. There is no need to add another sample. The resulting discrete 
wavelet representation [{dj}L<j5J, U J ]  is characterized by N coefficients. 

7.5.3 Boundary Wavelets 

Wavelet coefficients are s m a l l  in regions where the signal is regular only if the 
wavelets have enough vanishing moments. The restriction of periodic and folded 
"boundary" wavelets to the neighborhood oft = 0 and t = 1 have respectively 0 and 
1 vanishing moment. These boundary wavelets thus cannot fully take advantage 
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of the signal regularity. They produce large inner products, as if the signal were 
discontinuous or had a discontinuous derivative. To avoid creating large amplitude 
wavelet coefficients at the boundaries, one must synthesize boundary wavelets that 
have as many vanishing moments as the original wavelet $I. Initially introduced 
by Meyer, this approach has been refined by Cohen, Daubechies and Vial [ 1341. 
The main results are given without proofs. 

Muitiresolution of L2[0, 11 A wavelet basis of L2 [0, 11 is constructed with a multi- 
resolution approximation { V y } - x < j g .  A wavelet has p vanishing moments if 
it is orthogonal to all polynomials of degree p - 1 or smaller. Since wavelets at a 
scale 2j are orthogonal to functions in VT', to guarantee that they have p vanishing 
moments we make sure that polynomials of degree p - 1 are inside VTt. 

We define an approximation space VF c L2[0, 11 with a compactly supported 
Daubechies scaling function $, associated to a wavelet with p vanishing moments. 
Theorem 7.5 proves that the support of 4 has size 2 p  - 1. We translate $ so that its 
support is [ - p  + 1, p ]  . At a scale 2j 5 (2p)-' ,  there are 2-j - 2 p  scaling functions 
with a support inside [0,1]: 

To construct an approximation space Vyt of dimension 2-j we add p scaling 
functions with a support on the left boundary near t = 0: 

and p scaling functions on the right boundary near t = 1: 

The following proposition constructs appropriate boundary scaling functions 
{+ft"ftIO<n<p and {&ght}o<n<p- 

Proposition 7.6 (Corn , ,  DAUBECHJES, VIAL) One can construct boundary scal- 
ing&nctions &* and $:ght so that if 2-j 2 2 p  then {$$}OSn<2-j is an ortho- 
normal basis of a space V F  satisfying 

vy c V'?t 
1-1 

- logz&J) u v?) =L2[0,1], ( j=-W 
lim V? = Closure 

j+-m 

and the restrictions to [0,1] of polynomials of degree p - 1 are in V F .  
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Proof z. A sketch of the proof is given. All details can be found in [134]. Since 
the wavelet $ corresponding to 4 has p vanishing moments, the Fix-Strang condition 
(7.75) implies that 

+E 

= n ” ( t - 4  (7.214) 

is a polynomial of degree k. At any scale 2j, qk(2-jt) is still a polynomial of degree 
k, and for 0 5 k < p this family defines a basis of polynomials of degree p - 1. To 
guarantee that polynomials of degree p - 1 are in V y  we impose that the restriction 
of qk(2-jt) to [0,1] can be decomposed in the basis of Vy:  

D- 1 2-1-D-1 

n=-m 

(7.215) 

Since the support of 4 is [-p + 1: p ] ,  the condition (7.215) together with (7.214) can 
be separated into two non-overlapping left and right conditions. With a change of 
variable, we verify that (7.215) is equivalent to 

(7.216) 

and 
P-1 

n”(t-n)l(--33,0](t)  = C b [ n ] q p t ( t ) .  (7.217) 

c Vi”ll is obtained by imposing that the boundary 
scaling functions satisfy scaling equations. We suppose that &* has a support [0, p +n] 
and satisfies a scaling equation of the form 

n=-p n=O 

The embedding property 

P- 1 P + h  

2-”2&ft(2-1t) =>H?&*(t)+ Ch:$q5( t -m) ,  (7.218) 

whereas #*‘ has a support [-p - n,,O] and satisfies a similar scaling equation on 
the right. The constants HtF,  h!$, H:F and hi% are adjusted to verify the polyno- 
mial reproduction equations (7.216) and (7.217), while producing orthogonal scaling 
functions. The resulting family {@n}Osn<2-j is an orthonormal basis of a space y. 

The convergence of the spaces VF to Lz[O, 11 when 2j goes to 0 is a consequence 
of the fact that the multiresolution spaces Vj generated by the Daubechies scaling 

The proof constructs the scaling functions through scaling equations specified by 
discrete filters. At the boundaries, the filter coefficients are adjusted to construct 
orthogonal scaling functions with a support in [O, 11, and to guarantee that polyno- 
mials of degree p - 1 are reproduced by these scaling functions. Table 7.5 gives 
the filter coefficients for p = 2. 

k 0  m=p 

function {qij;n}nGZ converge to Lz(R). 

0-1 
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Wavelet Basis of L2[0, 11 Let W y  be the orthogonal complement of V;' in V?L1. 
The support of the Daubechies wavelet + with p vanishing moments is [ - p  + 1 ,  p ]  . 
Since $ j ,n  is orthogonal to any I $ ~ , J ,  we verify that an orthogonal basis of W y  can 
be constructed with the 2-j - 2p inside wavelets with support in [0,1]: 

to which are added 2 p  left and right boundary wavelets 

Since W F  c V&, the left and right boundary wavelets at any scale 2j can be 
expanded into scaling functions at the scale 2j-I. For j = 1 we impose that the 
left boundary wavelets satisfy equations of the form 

(7.219) 

The right boundary wavelets satisfy similar equations. The coefficients GFF, : .  &E, 
G:,;", g z g  are computed so that { 7 @ " } 0 < ~ < 2 - j  is an orthonormal basis of W y .  
Table 7.5 gives the values of these coefficients for p = 2. 

For any 2J 5 ( 2 ~ ) ~ '  the multiresolution properties prove that 

L2[0: 11 = vy @;=-30 wy, 
which implies that 

[ { 4E )O<n<Z-' > 1 -E< j $J  OIn<Z-j]  (7.220) 

is an orthonormal wavelet basis of L2 [0 ,1] .  The boundary wavelets, like the inside 
wavelets, have p vanishing moments because polynomials of degree p - 1 are 
included in the space Vyt. Figure 7.20 displays the 2 p  = 4 boundary scaling 
functions and wavelets. 

Fast Discrete Algorithm For any f E L2 [0,1] we denote 

aj[n] = (f,en) and dj[n] = (f,$F') for 0 5 n 5 2-j 

Wavelet coefficients are computed with a cascade of convolutions identical to 
Theorem 7.7 as long as filters do not overlap the signal boundaries. A Daubechies 
filter h is considered here to have a support located at [ - p  + 1, p ] .  At the boundary, 
the usual Daubechies filters are replaced by the boundary filters that relate the 
boundary wavelets and scaling functions to the finer-scale scaling functions in 
(7.218) and (7.219). 



hp,ht right 
k m  gk,m 

k l m  left 

-0.2587922483 
0.2274281 17 

0.48301 2921 8 

-2 
-2 
-2 
- 1 

-5 0.4431490496 0.235575950 
-4 0.7675566693 0.4010695 194 
-3 0.3749553316 -0.7175799994 
-3 0.2303890438 -0.5398225007 

+'I 
0.482962913 145 

h[OI 
0.836516303738 

Table 7.5 Left and right border coefficients for a Daubechies wavelet with p = 2 vanishing moments. The inside 
filter coefficients are at the bottom of the table. A table of coefficients for p 2 2 vanishing moments can be retrieved 
over the Internet at the FIT' site ftp://math.princeton.edu/pub/user/ingrid/intervabtables. 

hP1 
0.224143868042 

~~ 

h PI 
-0.129409522551 
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0.5 0.5 0.5 

-1 

FIGURE 7.20 Boundary scaling functions and wavelets with p = 2 vanishing 
moments. 

Theorem 7.17 (COHEN, DAUBECHIES, VIAL) 
I f O l k < p  

- 1  -p-1 

dj[2-' + k] = Gf.Fht aj-1 [2-jf'  + I ]  + C gF;aj-l[2-j+' + m].  
I=-p m=-p+2k+l 

This cascade algorithm decomposes UL into a discrete wavelet transform 
[ u ~ , { d j } ~ < j g ]  with O ( N )  operations. The maximum scale must satisfy 2J 5 
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(2p)-’, because the number of boundary coefficients remains equal to 2 p  at all 
scales. The implementation is more complicated than the folding and periodic 
algorithms described in Sections 7.5.1 and 7.5.2, but does not require more com- 
putations. The signal a~ is reconstructed from its wavelet coefficients, by inverting 
the decomposition formula in Theorem 7.17. 

Theorem 7.18 (COHEN, DAUBECHIES, VIAL) 
Jyo 5 15 p -  1 

P-1 P-1 

k=O k=O 

P-1 +w 

U j - l [ Z ]  = h;:aj[k]+ h[ l -2k]a j [k ]+  
k=(I-p) /2  k=-w  

P- 1 +W 

+W +oc 

Uj-l[l] = h[ l -2k]a j [k ]+  g[z-2k]dj[k] .  
k = - w  k = - x  

I f - 1 2 1 2 - p  

-1 -1  

P k=-p 

The original signal UL is reconstructed from the orthogonal wavelet representa- 
tion [UJ, { d j } ~ < j < ~ ]  by iterating these equations for L < j 5 J .  This reconstruction 
is performed with O ( N )  operations. 
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7.6 MULTISCALE INTERPOLATIONS 

Multiresolution approximations are closely connected to the generalized interpola- 
tions and sampling theorems studied in Section 3.1.3. The next section constructs 
general classes of interpolation functions from orthogonal scaling functions and 
derives new sampling theorems. Interpolation bases have the advantage of easily 
computing the decomposition coefficients from the sample values of the signal. 
Section 7.6.2 constructs interpolation wavelet bases. 

7.6. I 

Section 3.1.3 explains that a sampling scheme approximates a signal by its orthog- 
onal projection onto a space UT and samples this projection at intervals T .  The 
space UT is constructed so that any function in UT can be recovered by interpolat- 
ing a uniform sampling at intervals T .  We relate the construction of interpolation 
functions to orthogonal scaling functions and compute the orthogonal projector on 
UT. 

We call interpolation function any + such that {+(t - n)}nEZ is a Riesz basis 
of the space U1 it generates, and which satisfies 

Interpolation and Sampling Theorems 

1 i f n = 0  
0 i f n # O .  

Any f E U1 is recovered by interpolating its samples f ( n ) :  

(7.221) 

(7.222) 
n = - x  

Indeed, we know that f is a linear combination of the basis vector { r$(t - n)}nEZ 
and the interpolation property (7.221) yields (7.222). The Whittaker sampling 
Theorem 3.1 is based on the interpolation function 

In this case, the space U1 is the set of functions whose Fourier transforms are 
included in [ -7r, 7r]. 

Scaling an interpolation function yields a new interpolation for a different 
sampling interval. Let us define &(t)  = r$(t/T) and 

UT = {f E L’(R) with f(n) E u,} 
One can verify that any f E UT can be written 

(7.223) 
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Scaling Autocorrelation We denote by 4, an orthogonal scaling function, de- 
fined by the fact that {&(t - n ) } n E Z  is an orthonormal basis of a space VO of a 
multiresolution approximation. Theorem 7.2 proves that this scaling function is 
characterized by a conjugate mirror filter h,. The following theorem defines an 
interpolation function from the autocorrelation of &, [302]. 

Theorern7.19 Let &(t) = 4J-t)  and &[n] = h,[-n]. If l&,(u)l = 0 ( ( 1 +  
Iul)-') then 

4(t) =~+w4~(.)40(.-t)d.=40*~o(t) -W (7.224) 

is an interpolation function. Moreover 

(7.225) 

with 

Proof '. Observe first that 

4(4  = (dJo(t),4o(t-.)) =w, 
which prove the interpolation property (7.221). To prove that {4(t  - n ) } , , ~  is a Riesz 
basis of the space U1 it generates, we verify $e condition (7.10). The autocorrelation 
4(t)  = q50*$o(t) has a Fourier transform 4(w) = I&(w)/'. Condition (7.10) thus 
means that there exist A > 0 and B > 0 such that 

(7.227) 
1 +OC 1 

1 & ( ~ - 2 k 4 1 ~  5 -. vw E [-n,4 , - < 
A k = - x  

B -  

We proved in (7.19) that the orthogonality of a family {&(t - n ) } n E ~  is equivalent to 

vu E [-7r,7r] , I&(w+2k7r)1'= 1. (7.228) 

The right inequality of (7.227) is therefore valid for A = 1. Let us prove the left 
inequality. Since l&(w)I = 0 ( ( 1 +  lul)-'), one can verify that there exists K > 0 
such that for all w E [-s,T]. &K 140(w+2k~)(2 < 1/2, so (7.228) implies that 
E:=-, 1 & ( w + a 7 r ) 1 ~  2 1/2. It follows that 

+a: 

k = - m  

K 

which proves (7.227) for B = 4(2K + 1). 
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Since q5, is a scaling function, (7.28) proves that there exists a conjugate mirror 
filter h, such that 

Computing +(t)  = q5,*&,(t) yields (7.225) with h[n] = h,*&[n]. 

Theorem 7.19 proves that the autocorrelation of an orthogonal scaling function 
r$o is an interpolation function 4 that also satisfies a scaling equation. One can 
design q5 to approximate regular signals efficiently by their orthogonal projection 
in UT. Definition 6.1 measures the regularity of f with a Lipschitz exponent, 
which depends on the difference between f and its Taylor polynomial expansion. 
The following proposition gives a condition for recovering polynomials by in- 
terpolating their samples with 4. It derives an upper bound for the error when 
approximating f by its orthogonal projection in UT. 

Proposition 7.7 (FIX, STRANG) Any polynomial q ( t )  of degree smaller or equal 
to p - 1 is decomposed into 

(7.229) 

ifand only i f i ( w )  has a zero of orderp at w = T. 
Suppose that this property is satisjed. I f f  has a compact support and is unifonnly 
Lipschitz o 5 p then there exists C > 0 such that 

Proof ’. The main steps of the proof are given, without technical detail. Let us set 
T = 2j. One can verify that the spaces {Vi = U2j}iEz define a multiresolution ap- 
proximation of L2(R). The Riesz basis of VO required by Definition 7.1 is obtained 
with 0 = 4. This basis is orthogonalized by Theorem 7.1 to obtain an orthogonal basis 
of scaling functions. Theorem 7.3 derives a wavelet orthonormal basis { $ J ~ , ~ } ( , : ~ ) ~ ~ Z  

Using Theorem 7.4, one can verify that $J has p vanishing moments if and only if 
h(w) has p zeros at ‘TT. Although 4 is not the orthogonal scaling function, the Fix-Strang 
condition (7.75) remains valid. It is thus also equivalent that for k < p 

of L y a ) .  

is a polynomial of degree k .  The interpolation property (7.222) implies that q k  (n) = nk 
for all n E Z so qk(t)  = tk. Since is a basis for polynomials of degree p - 1, 
any polynomial q( t )  of degree p - 1 can be decomposed over {q5(t - I Z ) } , ~ ~  if and 
only if h(w)  has p zeros at ‘TT. 
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We indicate how to prove (7.230) for T = 2j. The truncated family of wavelets 
{$l,n}'sj,nE~ is an orthogonal basis of the orthogonal complement of Uzj = Vi in 
L2(E%). Hence 

i +m 

!=-En=-= 

Iff  is uniformly Lipschitz a, since $ has p vanishing moments, Theorem 6.3 proves 
that there exists A > 0 such that 

To simplify the argument we suppose that $ has a compact support, although this is 
not required. Since f also has a compact support, one can verify that the number of 
non-zero (f, $l,,,) is bounded by K 2-' for some K > 0. Hence 

which proves (7.230) for T = 2j. 1 

As long as a 5 p, the larger the Lipschitz exponent a the faster the error I I f - PuT f I I 
decays to zero when the sampling interval T decreases. If a signal f is Ck with 
a compact support then it is uniformly Lipschitz k, so Proposition 7.7 proves that 
Ilf-'UTfll 5 CTk.  

Example 7.12 A cubic spline interpolation function is obtained from the linear 
spline scaling function 4,. The Fourier transform expression (7.5) yields 

(7.23 1) 

Figure 7.21(a) gives the graph of 4, which has an infinite support but exponential 
decay. With Proposition 7.7 one can verify that this interpolation function recovers 
polynomials of degree 3 from a uniform sampling. The performance of spline 
interpolation functions for generalized sampling theorems is studied in [ 123,3351. 

Example 7.13 Deslaurier-Dubuc [ 1551 interpolation functions of degree 2p - 1 
are compactly supported interpolation functions of minimal size that decompose 
polynomials of degree 2p - 1. One can verify that such an interpolation function 
is the autocorrelation of a scaling function 4,. To reproduce polynomials of degree 
2p - 1, Proposition 7.7 proves that i ( w )  must have a zero of order 2p at 7r. Since 
h[n] = ho*h,[n] it follows that i(w) = &,(w)lz, and hence i , (w) has a zero of 
order p at T. Daubechies's Theorem 7.5 designs minimum size conjugate mirror 
filters h, which satisfy this condition. Daubechies filters h, have 2p non-zero 
coefficients and the resulting scaling function 4, has a support of size 2p - 1. The 
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FIGURE 7.2 I 
interpolation function of degree 3. 

(a): Cubic spline interpolation function. (b): Deslaurier-Dubuc 

autocorrelation 4 is the Deslaurier-Dubuc interpolation function, whose support 
is [-2p+1:2p-l]. 

For p = 1, c#+, = l p l ]  and 4 is the piecewise linear tent function whose sup- 
port is [-1: 11. For p = 2, the Deslaurier-Dubuc interpolation function 4 is the 
autocorrelation of the Daubechies 2 scaling function, shown in Figure 7.10. The 
graph of this interpolation function is in Figure 7.21(b). Polynomials of degree 
2p - 1 = 3 are interpolated by this function. 

The scaling equation (7.225) implies that any autocorrelation filter verifies 
h[2n] = 0 for n # 0. For any p 2 0, the non-zero values of the resulting filter 
are calculated from the coefficients of the polynomial (7.173) that is factored to 
synthesize Daubechies filters. The support of h is [ -2p + 1,2p - 11 and 

for -p 5 n < p .  (7.232) rI2i1 ( k  - p + 1 /2) h[2n+ 11 = (-1)P-" 
(n + 1/2) ( p  - n - 1) ! (p + n) ! 

Dual Basis If f @ UT then it is approximated by its orthogonal projection Pu,f 
on UT before the samples at intervals T are recorded. This orthogonal projection 
is computed with a biorthogonal basis {&(t - nT)}nEZ, which is calculated by 
the following theorem [75]. 

Theorem 7.20 Let 4 be an interpolationfunction. We deJne 4 to be thefunction 
whose Fourier transfomz is 

(7.233) 

Let &(t)  = T-'$(T-'t). Then the family {&(t -nT)}nEZ is the biorthogonal 
basis of{$T(t -nT)},,z in UT. 

Proof '. Let us set T = 1. Since 

(7.234) 
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I 
-10 -5 0 5 10 

FIGURE 7.22 The dual cubic spline $( t )  associated to the spline interpolation 
function $( t )  shown in Figure 7.21(a). 

where k(w) E LZ[-7r,r] is 27r periodic, we derive as in (7.12) that 4 E U1 and hence 
that &t - n) E U1 for any n E Z. A dual Riesz basis is unique and characterized by 
biorthogonality relations. Let $( t )  = 4(-t).  For all (n,m) E Zz, we must prove that 

( (b( t -n) ,&( t -m))  = $ * $ ( n - m ) = 6 [ n - m ] .  (7.235) 

Since the Fourier transform of &k$(t) is 4(w)@(w),  the Fourier transform of the 
biorthogonality conditions (7.235) yields 

h 

+m h 

4(w+2k7r)@(w+2k7r) = 1. 

h 
This equation is clearly satisfied for Q defined by (7.233). The family {&t - n ) } , , ~  is 
therefore the dual Riesz basis of {4(t - n)},6z. The extension for any T > 0 is easily 
derived. 

Figure 7.22 gives the graph of the cubic spline 4 associated to the cubic spline 
interpolation function. The orthogonal projection off  over UT is computed by 
decomposing f in the biorthogonal bases 

Let ZT(t) = &(-t) .  The interpolation property (7.221) implies that 

Pu,f(nT) = (f(u),&(U--T)) = f*&(nT).  (7.237) 

This discretization - of f through a projection onto UT is therefore obtained by a 
filtering with 4, followed by a uniform sampling at intervals T. The best linear 
approximation off is recovered with the interpolation formula (7.236). 
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7.6.2 Interpolation Wavelet Basis 

An interpolation function q5 can recover a signal f from a uniform sampling 
{ f (nT)}nEz  iff belongs to an appropriate subspace UT of L2(W). Donoho [162] 
has extended this approach by constructing interpolation wavelet bases of the 
whole space of uniformly continuous signals, with the sup norm. The decom- 
position coefficients are calculated from sample values instead of inner product 
integrals. 

Subdivision Scheme Let q5 be an interpolation function, which is the autocorrela- 
tion of an orthogonal scaling function q50. Let q5j,n(t) = q5(2-jt - n). The constant 
2-jI2 that normalizes the energy of q5j+ is not added because we shall use a sup 
norm l l f l l m  = suptEw If(t)I instead of the L2(W) norm, and 

ll+j,nIlm = 1141m = I+(O)l= 1- 

We define the interpolation space Vj of functions 

n=-m 

where u[n] has at most a polynomial growth in n. Since q5 is an interpolation 
function, a[.] = g(2jn). This space Vi is not included in L2(W) since a[n] may 
not have a finite energy. The scaling equation (7.225) implies that Vj+l c Vj for 
any j E Z. If the autocorrelation filter h has a Fourier transform h(w) which has a 
zero of order p at w = T, then Proposition 7.7 proves that polynomials of degree 
smaller than p - 1 are included in Vj . 

For f $ Vj, we define a simple projector on Vj that interpolates the dyadic 
samples f(2jn): 

+m 
Pv,f(t) = f(2jn) q5j ( t  - 2jn). (7.238) 

This projector has no orthogonality property but satisfies Pvjf(2jn) = f(2jn). Let 
CO be the space of functions that are uniformly continuous over W. The following 
theorem proves that any f E CO can be approximated with an arbitrary precision 
by Pvj f when 2j  goes to zero. 

Theorem 7.21 (DONOHO) Suppose that q5 has an exponential decay. I f f  E CO 
then 

n=-m 

Proof 3. Let w(6, f) denote the modulus of continuity 

(7.239) 

(7.240) 
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By definition, f E CO if limw(6,f) = 0. 

f P n ) ,  

6+0 
Any t E B can be written t = 2j(n + h) with n E Z and IhlI 1. Since Pvj f(2jn) = 

I f (2 j (n+h) )  - Pvjf(2j(n+h))l I If(2’(n + h ) )  - f ( 2 W  

I w(2j,f) +w(2’,Pvjf). 

+ IPvjf(2’(n+h)) -pvjf(2jn)l 

The next lemma proves that w(2j,Pvj f )  I C,w(2i,f) where C, is a constant inde 
pendent of j and f .  Taking a sup over t = 2j(n + h) implies the final result: 

sup I f ( t )  - Pvj f (t) I 5 (1 + C,) w(2’, f )  + 0 when j + -m. 
tEB 

Lemma 73 There exists C,  > 0 such that for all j E Z and f E Ca 

W(2j,PVjf) I C,w(2j,f). (7.241) 

Let us set j = 0. For Ihl 5 1, a summation by parts gives 

+m 

Pvof(t+h) -Pvof(t) = ( f ( n + l )  - f (n) )  M t - 4  
n=-m 

where 
+m 

&(t)  = C ( $ ( t + h - k )  -$(t-k)). 
k= 1 

Hence 
+m 

iPvof(r+h)-Pvof(t)I ssupIf(n+1)-f(n)I le+.)!. (7.242) 
n=-m nEZ 

Since q!~ has an exponential decay, there exists a constant C, such that if Ihl I 1 and 
t E B then E.’=”_, l&(t -n)l 5 C,. Taking a sup overt in (7.242) proves that 

4 , P v o f )  I C,supIf(n+1)-f(n)I I C,w(Lf). 
nEZ 

Scaling this result by 2j yields (7.241). 

interpolation Wavelets The projection P v j f ( t )  interpolates the values f(2jn). 
When reducing the scale by 2, we obtain a finer interpolation Pvj-lf(t) which 
also goes through the intermediate samples f(2j(n + 1/2)). This refinement 
can be obtained by adding “details” that compensate for the difference between 
Pvjf(2j(n + 1/2)) and f(2j(n + 1/2)). To do this, we create a “detail” space 
Wj that provides the values f ( t )  at intermediate dyadic points t = 2j(n + 1/2). 
This space is constructed from interpolation functions centered at these locations, 
namely $j-1,*+1. We call interpolation wavelets 

$j,n = $j-l,*+l . 
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Observe that $j,n(t) = $(2-jt - n) with 

The function + is not truly a wavelet since it has no vanishing moment. However, 
we shall see that it plays the same role as a wavelet in this decomposition. We 
define W j  to be the space of all sums E,’=”_, u[n] +j,n. The following theorem 
proves that it is a (non-orthogonal) complement of Vj in Vj-1. 

Theorem 7.22 For any j E Z 

vj-, = vj e3 wj . 

Iff E Vj-1 then 

(7.243) 

The function f - Pvj f belongs to Vj-1 and vanishes at ( 2 j r ~ ) ~ ~ ~ .  It can thus be 
decomposed over the intermediate interpolation functions 6j-1,zn+l  = $j,n: 

n=-m 

This proves that Vj-l C Vj 8 Wi.  By construction we know that W j  C Vj-1 so 
Vj - l  = V j  @ W j .  Setting t = 2j-l(2n + 1) in this formula also verifies (7.243). W 

Theorem 7.22 refines an interpolation from a coarse grid 2jn to a finer grid 2jP1n 
by adding “details” whose coefficients dj[n] are the interpolation errors f (2j(n + 
1/2))  -Pv j  f (2j(n+ 1/2)). The following theoremdefines ainterpolation wavelet 
basis of CO in the sense of uniform convergence. 

Theorem 7.23 I f f  E CO then 

m J m  
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The formula (7.244) decomposes f into a coarse interpolation at intervals 2J 
plus layers of details that give the interpolation errors on successively finer dyadic 
grids. The proof is done by choosing f to be a continuous function with a compact 
support, in which case (7.244) is derived from Theorem 7.22 and (7.239). The 
density of such functions in CO (for the sup norm) allows us to extend this result 
to any f in CO. We shall write 

whichmeans that [ { ~ J , ~ } ~ ~ z  , { ~ , b j , ~ } ~ ~ ~ , j g ]  is abasis of Co. InL2(W), “biorthog- 
onal” scaling functions and wavelets are formally defined by 

(7.245) 

Clearly $ ~ , ~ ( t )  = 6(t  - 2Jn). Similarly, (7.243) and (7.238) implies that qj,, ,  is 
a finite sum of Diracs. These dual scaling functions and wavelets do not have 
a finite energy, which illustrates the fact that [ { ~ J , ~ } ~ ~ z  , {+j ,n}neZ, j$J]  is not a 
Riesz basis of L2 (W) . 

I fR(w) has p zeros at T then one can verify that qj,,, has p vanishing moments. 
With similar derivations as in the proof of (6.20) in Theorem 6.4, one can show 
that if f is uniformly Lipschitz a 5 p then there exists A > 0 such that 

~ ( f , q j , n ) I  = Idj[nII 5 ~ 2 ~ ’ .  

A regular signal yields small amplitude wavelet coefficients at fine scales. We can 
thus neglect these coefficients and still reconstruct a precise approximation of f .  

Fast Calculations The interpolating wavelet transform off  is calculated at scale 
1 2 2j > N-’ = 2L from its sample values { f ( N - l n ) } n E ~ .  At each scale 2j,  the 
values of f in between samples {23’n}nE~ are calculated with the interpolation 
(7.238): 

k=-m 

+W 

= f (2 jk)hi [n-k] ,  (7.246) 
k=-m 

where the interpolation filter hi is a subsampling of the autocorrelation filter h in 
(7.226): 

hJn] = 4 ( n  + 1/2)  = h[2n + 11. (7.247) 
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The wavelet coefficients are computed with (7.243): 

4[n] = f(2i (n + 1/2)) -Pvjf(2i (n + 1/2)). 

The reconstruction of f ( N - ' n )  from the wavelet coefficients is performed re- 
cursively by recovering the samples f ( 2 j - I ~ ~ )  from the coarser sampling f(2jn) 
with the interpolation (7.246) to which is added dj[n].  If hi[n] is a finite filter of 
size K and i f f  has a support in [O: 11 then the decomposition and reconstruction 
algorithms require KN multiplications and additions. 

A Deslauriers-Dubuc interpolation function q5 has the shortest support while 
including polynomials of degree 2p - 1 in the spaces Vj. The corresponding 
interpolation filter hi[n] defined by (7.247) has 2p non-zero coefficients for -p 5 
n < p ,  whicharecalculatedin(7.232). I fp=2thenhi[ l ]  =hi[-2] = -1/16and 
hi[O] = hi[-1] = 9/16. Suppose that q( t )  is a polynomial of degree smaller or 
equal to 2p - 1. Since q = Pvjq, (7.246) implies a Lagrange interpolation formula 

k=-m 

The Lagrange filter hi of size 2p is the shortest filter that recovers intermediate 
values of polynomials of degree 2p - 1 from a uniform sampling. 

To restrict the wavelet interpolation bases to a finite interval [0,1] while repro- 
ducing polynomials of degree 2p - 1, the filter hi is modified at the boundaries. 
Suppose that f ( N - ' n )  is defined for 0 5 n < N. When computing the interpolation 

f m  

PVjf(2++1/2)) = f(2jk)hi[n-k], 
k=-cc 

if n is too close to 0 or to 2-j - 1 then hi must be modified to ensure that the support 
of hi[n - k] remains inside [0,2-j - 11. The interpolation Pvjf(2j(n + 1/2)) is 
then calculated from the closest 2p samples f(2jk) for 2jk E [0,1]. The new 
interpolation coefficients are computed in order to recover exactly all polynomials 
of degree 2p - 1 [324]. For p = 2, the problem occurs only at n = 0 and the 
appropriate boundary coefficients are 

The symmetric boundary filter hi [ -n] is used on the other side at n = 2-j - 1. 

7.7 SEPARABLE WAVELET BASES 

To any wavelet orthonormal basis {+j:n}(j,n Ea of L2(W), one can associate a 
separable wavelet orthonormal basis of L2(B 1 ): 

(7.248) 
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The functions @ j ,  m, (XI) $j,,nz (xz) mix information at two different scales 2j1 and 
2j2 along x1 and xz, which we often want to avoid. Separable multiresolutions lead 
to another construction of separable wavelet bases whose elements are products 
of functions dilated at the same scale. These multiresolution approximations also 
have important applications in computer vision, where they are used to process im- 
ages at different levels of details. Lower resolution images are indeed represented 
by fewer pixels and might still carry enough information to perform a recognition 
task. 

Signal decompositions in separable wavelet bases are computed with a separa- 
ble extension of the filter bank algorithm described in Section 7.7.3. Non-separable 
wavelets bases can also be constructed [78,239] but they are used less often in im- 
age processing. Section 7.7.4 constructs separable wavelet bases in any dimension, 
and explains the corresponding fast wavelet transform algorithm. 

7.7. I Separable Multiresolutions 

As in one dimension, the notion of resolution is formalized with orthogonal pro- 
jections in spaces of various sizes. The approximation of an image f ( x 1  ,xz )  at the 
resolution 2-j is defined as the orthogonal projection of f on a space y that is 
included in L2 (R2). The space V i  is the set of all approximations at the resolution 
2-j. When the resolution decreases, the size of V ;  decreases as well. The formal 
definition of a multiresolution approximation {y} jEz of L2(Rz) is a straightfor- 
ward extension of Definition 7.1 that specifies multiresolutions of L2(W). The 
same causality, completeness and scaling properties must be satisfied. 

We consider the particular case of separable multiresolutions. Let {Vj} jEz 
be a multiresolution of L2(R). A separable two-dimensional multiresolution is 
composed of the tensor product spaces 

v; =vj€3vj. (7.249) 

The space V; is the set of finite energy functions f ( x 1  ,x2) that are linear expansions 
of separable functions: 

+E 

f ( x l , x z )  = a[m]fm(xl)gm(xz) with fm E vj > g m  E V j  . 
m=-m 

Section A.5 reviews the properties of tensor products. If {Vj}j€g. is a multireso- 
lution approximation of L~(R) then (y}jEz is a mdtiresolution approximation 

Theorem 7.1 demonstrates the existence of a scaling function r$ such that 
{qbjfl}mEz is an orthonormal basis of V i .  Since V ;  = V j  €3 V j ,  Theorem A.3 
proves that for x = (x1 ,xz) and n = (n1 , nz) 

of L2(RZ). 
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is an orthonormal basis of V?. It is obtained by scaling by 2j the two-dimensional 
separable scaling function Q ( x )  = + ( x ~ ) + ( x z )  and translating it on a two- 
dimensional square grid with intervals 2j .  

Example 7.14 Piecewise constant approximation Let Vj be the approximation 
space of functions that are constant on [2jrn, 2j(m + I ) ]  for any na E Z. The tensor 
product defines a two-dimensional piecewise constant approximation. The space 
V3 is the set of functions that are constant on any square [2jn1,2j(n1+ I ) ]  x 
[2jn2,2j(n2 + l)], for (n1,nz) E Z2. The two dimensional scaling function is 

Example 7.15 Shannon approximation Let Vj be the space of functions whose 
Fourier transforms have a support included in [-2-j,,2-j7r]. The space V; is 
the set of functions whose two-dimensional Fourier transforms have a support 
included in the low-frequency square [-2-j7r,2-j,] x [-2-j7r, 2-j7r]. The two- 
dimensional scaling function is a perfect two-dimensional low-pass filter whose 
Fourier transform is 

Example 7.16 Spline approximation Let Vj be the space of polynomial spline 
functions of degree p that are CP-’, with nodes located at 2-jm for rn E Z. The 
space Vj’ is composed of two-dimensional polynomial spline functions that are 
p - 1 times continuously differentiable. The restriction of f(x1 ,x2) E Vj’ to any 
square [2jnl> 2j(n1 + 1 ) )  x [2jn2,2j(n2 + 1 ) )  is a separable product 41 (xl)q2(n2) 
of two polynomials of degree at most p .  

Multiresolution Vision An image of 512 by 512 pixels often includes too much 
information for real time vision processing. Multiresolution algorithms process 
less image data by selecting the relevant details that are necessary to perform a 
particular recognition task [62]. The human visual system uses a similar strategy. 
The distribution of photoreceptors on the retina is not uniform. The visual acuity 
is greatest at the center of the retina where the density of receptors is maximum. 
When moving apart from the center, the resolution decreases proportionally to the 
distance from the retina center [305]. 

The high resolution visual center is called thefovea. It is responsible for high 
acuity tasks such as reading or recognition. A retina with a uniform resolution 
equal to the highest fovea resolution would require about 10,000 times more pho- 
toreceptors. Such a uniform resolution retina would increase considerably the size 
of the optic nerve that transmits the retina information to the visual cortex and the 
size of the visual cortex that processes this data. 
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FIGURE 7.23 Multiresolution approximations aj[nl,  nz] of an image at scales 
2j ,  for -5 2 j 2 -8. 

Active vision strategies [76] compensate the non-uniformity of visual resolu- 
tion with eye saccades, which move successively the fovea over regions of a scene 
with a high information content. These saccades are partly guided by the lower 
resolution information gathered at the periphery of the retina. This multiresolu- 
tion sensor has the advantage of providing high resolution information at selected 
locations, and a large field of view, with relatively little data. 

Multiresolution algorithms implement in software [lo71 the search for im- 
portant high resolution data. A uniform high resolution image is measured by a 
camera but only a small part of this information is processed. Figure 7.23 dis- 
plays a pyramid of progressively lower resolution images calculated with a filter 
bank presented in Section 7.7.3. Coarse to fine algorithms analyze first the lower 
resolution image and selectively increase the resolution in regions where more 
details are needed. Such algorithms have been developed for object recognition, 
and stereo calculations [196]. Section 11.5.1 explains how to compute velocity 
vectors in video sequences with a coarse to fine matching algorithm. 

7.7.2 Two-Dimensional Wavelet Bases 

A separable wavelet orthonormal basis of L2(Rz) is constructed with separable 
products of a scaling function q5 and a wavelet $. The scaling function q5 is associ- 
ated to a one-dimensional multiresolution approximation (Vj}jEz. Let {V;}jEz 
be the separable two-dimensional multiresolution defined by Vj’ = Vj @ Vj. Let 
W? be the detail space equal to the orthogonal complement of the lower resolution 
approximation space vj’ in v;- : 

v;-l = v; a3 w; . (7.250) 

To construct a wavelet orthonormal basis of L2 (R’), the following theorem builds 
a wavelet basis of each detail space Wj’. 
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Theorem 7.24 Let 4 be a scaling function and + be the corresponding wavelet 
generating a wavelet orthonomal basis of L2(R). We dejne three wavelets: 

(7.251) +w =+(.1)+(.2) : +2(x> =+(x1)4(xz) : $J3(4 =+(x1)Nx2) ,  

and denote for 1 5 k 5 3 

The wavelet family 

is an orthonormal basis of W; and 
(1cIln : +s,n : lCIj,n)ntp (7.252) 

(7.253) 

is an orthonoml basis of L2 ( R2). 

Proof Equation (7.250) is rewritten 

v,-~ = (vj@vj) ewq . (7.254) 

The one-dimensional multiresolution space Vj-1 can also be decomposed into Vj-l = 
Vj €B Wj. By inserting this in (7.254), the distributivity of e3 with respect to @ proves 
that 

w; = (Vj €3 Wj) c3 (Wj @Vj) €B (Wj €3 Wj) . (7.255) 
Since { 4 j , m } m s ~  and {$j,m}mEZ are orthonormal bases of V j  and Wj, we derive that 

{4jm (XI 1 $j,nz (XZ) : $j,n, (XI)  4j:nz (XZ) i $jn (XI) $j,nz ( ~ z ) } ( ~ ~ : ~ ~ ) E G  

is an orthonormal basis of y. As in the one-dimensional case, the overall space 
L2 (EX') can be decomposed as an orthogonal sum of the detail spaces at all resolutions: 

L 2 3  ( ) -@+" - j=-..wj. 2 (7.256) 

Hence 

{4j,nl (xl)$j,nz(xZ) : ~j ,n l  (xl) 4j,nz(xZ) 9 +jm ( X 1 ) ~ j , n z ( X Z ) } ( j m l : n 2 ) ~ ~ 3  

is an orthonormal basis of L2(Rz). 

The three wavelets extract image details at different scales and orientations. Over 
positive frequencies, 4 and 4 have an energy mainly concentrated respectively on 
[0,7r] and [x, 2x1. The separable wavelet expressions (7.251) imply that 

41(wl,wz) = 3(w1>4(wz> : P ( w 1 , w z )  = 4 ( w 1 > 4 ( 4  

and $ I ~ ( w ~ ; w ~ )  = 4 ( w 1 ) 4 ( w z ) .  Hence 141(ul,w2)l is large at low horizontal fie- 
quencies w1 and high vertical frequencies w2, whereas 14'(w1 : w2) 1 is large at high 
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FIGURE 7.24 Fourier transforms of a separable scaling function and of 3 sepa- 
rable wavelets calculated from a one-dimensional Daubechies 4 wavelet. 

horizontal frequencies and low vertical frequencies, and 1&(w1,w2)1 is large at 
high horizontal and vertical frequencies. Figure 7.24 displays the Fourier transform 
of separable wavelets and scaling functions calculated from a one-dimensional 
Daubechies 4 wavelet. Wavelet coefficients calculated with $I1 and $I2 are large 
along edges which are respectively horizontal and vertical. This is illustrated by 
the decomposition of a square in Figure 7.26. The wavelet $I3 produces large 
coefficients at the corners. 

Example 7.17 For a Shannon multiresolution approximation, the resulting two- 
dimensional wavelet basis paves the two-dimensional Fourier plane (w1, w2) with 
dilated rectangles. The Fourier transforms 4 and 4 are the indicator functions 
respectively of [-7r,7r] and [-27r, -7r] U [7rI27r]. The separable space V'j? contains 
functions whose two-dimensional Fourier transforms have a support included in 
the low-frequency square [-2-j7r, 2-j7r] x [-2-j7r, 2-j7r]. This corresponds to 
the support of $?,n indicated in Figure 7.25. The detail space W: is the orthogonal 
complement of V'j? in V!-l and thus includes functions whose Fourier transforms 
have a support in the frequency annulus between the two squares [-2-j7r, 2-j7r] x 
[--2-j7r,2-'7r] and [ -2- j+'~,2- j+'7r]  x [ -2 - j+1~ ,2 - j+17r ] .  As shown inFigure 
7.25, this annulus is decomposed in three separable frequency regions, which are 
the Fourier supports of G!,n for 1 5 k 5 3. Dilating these supports at all scales 2j 
yields an exact cover of the frequency plane (w1, w2). 
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Irn2 

FIGURE 7.25 These dyadic rectangles indicate the regions where the energy of 
4;:n is mostly concentrated, for 1 5 k 5 3. Image approximations at the scale 2 j  
are restricted to the lower frequency square. 

For general separable wavelet bases, Figure 7.25 gives only an indication of 
the domains where the energy of the different wavelets is concentrated. When the 
wavelets are constructed with a one-dimensional wavelet of compact support, the 
resulting Fourier transforms have side lobes that appear in Figure 7.24. 

Example 7.18 Figure 7.26 gives two examples of wavelet transforms computed 
using separable Daubechies wavelets with p = 4 vanishing moments. They are 
calculated with the filter bank algorithm of Section 7.7.3. Coefficients of large am- 
plitude in dj , dj  and d; correspond respectively to vertical high frequencies (hor- 
izontal edges), horizontal high frequencies (vertical edges), and high frequencies 
in both directions (comers). Regions where the image intensity varies smoothly 
yield nearly zero coefficients, shown in grey. The large number of nearly zero 
coefficients makes it particularly attractive for compact image coding. 

Separable Biorthogonal Bases One-dimensional biorthogonal wavelet bases are 
extended to separable biorthogonal bases of LZ(Rz) with the same approach as 
in Theorem 7.24. Let 4, $ and 4, 4 be two dual pairs of scaling functions and 
wavelets that generate biorthogonal wavelet bases of L2(W). The dual wavelets of 
$I ,  q!Jz and q!J3 defined by (7.251) are 

4'(4 =4(xl)6(xz) 7 4"x) =G(x1)4(x2> 7 q 3 ( X )  =6(x,>4(xz) . (7.257) 

One can verify that 
{+;,?I 7 +;,?I i +;,"}(j,n)tz3 (7.258) 
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FIGURE 7.26 Separable wavelet transforms of Lena and of a white square in 
a black background, decomposed respectively on 3 and 4 octaves. Black, grey 
and white pixels correspond respectively to positive, zero and negative wavelet 
coefficients. The disposition of wavelet image coefficients d;[n, m] = (f, +f,n) is 
illustrated at the top. 

and 
(7.259) 

are biorthogonal Riesz bases of L2 ( R2). 

7.7.3 Fast Two-Dimensional Wavelet Transform 

The fast wavelet transform algorithm presented in Section 7.3.1 is extended in two 
dimensions. At all scales 21 and for any n = (nl , nz), we denote 

aj[n] = ( f , d ; , n )  and df[n] = (f,+;,J for 1 I k 5 3 . 

For any pair of one-dimensional filters y[m] and z[m] we write the product filter 
yz[n] = y[nl]z[n2], and y[m] = y[-m]. Let h[m] and g[m] be the conjugate mirror 
filters associated to the wavelet $J. 

The wavelet coefficients at the scale 2j+l are calculated from aj with two- 
dimensional separable convolutions and subsamplings. The decomposition for- 
mula are obtained by applying the one-dimensional convolution formula (7.108) 
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and (7.107) of Theorem 7.7 to the separable two-dimensional wavelets and scaling 
functions for n = (nl ,nz): 

aj+l[n] = ~j*hh[2n] , (7.260) 

d;+l[n] = uj*hg[2n] , (7.261) 

d;+l[n] = uj*gh[2n] , (7.262) 

d;+l [n] = uj*gg[2n] . (7.263) 

We showed in (3.53) that a separable two-dimensional convolution can be factored 
into one-dimensional convolutions along the rows and columns of the image. With 
the factorization illustrated in Figure 7.27(a), these four convolutions equations 
are computed with only six groups of one-dimensional convolutions. The rows of 
U j  are first convolved with h and g and subsampled by 2. The columns of these 
two output images are then convolved respectively with h and g and subsampled, 
which gives the four subsampled images uj+l, 

We denote by 3[n] = jr[nl,n2] the image twice the size of y [ n ] ,  obtained by 
inserting a row of zeros and a column of zeros between pairs of consecutive rows 
and columns. The approximation uj  is recovered from the coarser scale approx- 
imation uj+l and the wavelet coefficients d;+l with two-dimensional separable 
convolutions derived from the one-dimensional reconstruction formula (7.109) 

and d;+l. 

These four separable convolutions can also be factored into six groups of one- 
dimensional convolutions along rows and columns, illustrated in Figure 7.27(b). 

Let b[n] be an input image whose pixels have a distance 2L = N-’ . We associate 
to b[n] a function f ( x )  E approximated at the scale 2L. Its coefficients u ~ [ n ]  = 
( f ,  &,) are defined like in (7.116) by 

b[n] =Nu&] M f(N-1.) . (7.265) 

The wavelet image representation of UL is computed by iterating (7.260-7.263) for 
L I j < J :  

[a, 9 {d: ; dj” 7 d; )L< js~] . (7.266) 

The image UL is recovered from this wavelet representation by computing (7.264) 
forJ  > j 2 L. 

Finite Image and Complexity When UL is a finite image of N2 pixels, we face 
boundary problems when computing the convolutions (7.260-7.264). Since the 
decomposition algorithm is separable along rows and columns, we use one of the 
three one-dimensional boundary techniques described in Section 7.5. The resulting 
values are decomposition coefficients in a wavelet basis of L2[0, 11’. Depending 
on the boundary treatment., this wavelet basis is a periodic basis, a folded basis or 
a boundary adapted basis. 
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Rows Columns 

(a) 
Columns Rows 

FIGURE 7.27 (a): Decomposition of a, with 6 groups of one-dimensional con- 
volutions and subsamplings along the image rows and columns. @): Reconstruc- 
tion of aj by inserting zeros between the rows and columns of and d!+l, and 
filtering the output. 

The resulting images aj and d; have 2-2j samples. The images of the wavelet 
representation (7.266) thus include a total of N2 samples. If h and g have size K, the 
reader can verify that 2K2-2(i-1) multiplications and additions are needed to com- 
pute the four convolutions (7.260-7.263) with the factorization of Figure 7.27(a). 
The wavelet representation (7.266) is thus calculated with fewer than $KN2 oper- 
ations. The reconstruction of a~ by factoring the reconstruction equation (7.264) 
requires the same number of operations. 

Fast Biorthogonal Wavelet Transform The decomposition of an image in a 
biorthogonal wavelet basis is performed with the same fast wavelet transform 
algorithm. Let (&, a)  be the perfect reconstruction filters associated to (h, g).  The 
inverse wavelet transform is computed by replacing the filters (h,  g) that appear in 
(7.264) by (h,  a).  
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7.7.4 Wavelet Bases in Higher Dimensions 

Separable wavelet orthonormal bases of L2(WP) are constructed for any p 2 2, 
with a procedure similar to the two-dimensional extension. Let 4 be a scaling 
function and $ a wavelet that yields an orthogonal basis of L2(W). We denote 
8' = 4 ando' = $. To any integer 0 5 E < 2P written in binary form E = €1 . . . , e p  
we associate the p-dimensional functions defined in x = ( X I  ! . . . , x p )  by 

F ( ~ )  = eel . . . e" (xp) , 

$'(x> = +(XI).  . . 4 ( . p ) .  

For E = 0, we obtain a p-dimensional scaling function 

Non-zero indexes E correspond to 2P - 1 wavelets. At any scale 21 and for n = 
(nl, . . . ,np)  we denote 

Theorem 7.25 The family obtained by dilating and translating the 2P - 1 wavelets 
for E # 0 

(7.267) 

is an orthonormal basis of L2(WP). 

The proof is done by induction on p. It follows the same steps as the proof of 
Theorem 7.24 which associates to a wavelet basis of L2(W) a separable wavelet 
basis of L2(R2).  For p = 2, we verify that the basis (7.267) includes 3 elementary 
wavelets. For p = 3, there are 7 different wavelets. 

Fast Wavelet Transform Let b[n] be an input p-dimensional discrete signal sam- 
pled at intervals N-* = 2L. We associate to b[n] an approximation f at the scale 
2L whose scaling coefficients a L  [n] = ( f ,  $!:n) satisfy 

b[n] = N p / 2 a ~ [ n ]  M f (N-'n) . 

The wavelet coefficients off at scales 2j > 2L are computed with separable con- 
volutions and subsamplings along the p signal dimensions. We denote 

aj[n] = (f ,$;,J and d;[n] = (f ,T):,~) for 0 < E < 2P . 

The fast wavelet transform is computed with filters that are separable products of 
the one-dimensional filters h and g. The separable p-dimensional low-pass filter 
is 

ho[n] = h[nl] . . . h[np] . 
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Let us denote uO[m] = h[m] and u1 [m] = g[m]. To any integer E = € 1  . . . e p  Written 
in a binary form, we associate a separable p-dimensional band-pass filter 

g"n] = U'' [nl] . . . U q l , ] .  

Let gE[n] = g'[-n]. One can verify that 

aj+l[n] = aj*hO[2n], 
d,+,[nI = aj*g'[2n] . 

(7.268) 
(7.269) 

We denote by j [ n ]  the signal obtained by adding a zero between any two 
samples of y[n] that are adjacent in the p-dimensional lattice n = (nl,  . . . ,np) .  
It doubles the size of y[n] along each direction. If y[n] has MP samples, then j[n] 
has ( 2 M ) P  samples. The reconstruction is pedormed with 

2 p - 1  

aj[n] = &j+l *hO[n] + ;i,f+l *g7n] . (7.270) 

The 2P separable convolutions needed to compute aj and {dj}15e12p as well as 
the reconstruction (7.270) can be factored in 2P+l- 2 groups of one-dimensional 
convolutions along the rows of p-dimensional signals. This is a generalization of 
the two-dimensional case, illustrated in Figures 7.27. The wavelet representation 
of U L  is 

[(d;}l<E<W,L<j5J I aJ] . (7.271) 

It is computed by iterating (7.268) and (7.269) for L 5 j < J. The reconstruction 
of U L  is performed with the partial reconstruction (7.270) for J > j 2 L. 

If UL is a finite signal of size NP, the one-dimensional convolutions are modified 
with one of the three boundary techniques described in Section 7.5. The resulting 
algorithm computes decomposition coefficients in a separable wavelet basis of 
L2[0, 1 ] P .  The signals aj and dj have 2-Pj samples. Like U L ,  the wavelet represen- 
tation (7.271) is composed of NP samples. If the filter h has K non-zero samples 
then the separable factorization of (7.268) and (7.269) requires pK2-J'(j-l) multi- 
plications and additions. The wavelet representation (7.27 1 )  is thus computed with 
fewer than p (  1 - 2-P)-1KNP multiplications and additions. The reconstruction is 
performed with the same number of operations. 

€=l 

7.8 PROBLEMS 

7.1. Let h be a conjugate mirror filter associated to a scaling function 4. 
(a) Prove that if h(w)  has a zero of order p at x then & ( I )  (2kx) = 0 for any 

(b) Derive that if q < p then E,'="_, nq $(n) = l_'," t4 4(t)  dt. 
k EZ-{0} andZ < p .  

7.2. Prove that E,'="_, 4(t - n) = 1 if q5 is an orthogonal scaling function. 
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7.3. ' Let 4m be the Battle-Lemari6 scaling function of degree rn defined in (7.23). 
Let 4 be the Shannon scaling function defined by 4 = 1[-.,.1. Prove that 
lim llrjm - 411 = 0. 

7.4. ' Suppose that h[n] is non-zero only for 0 5 n < K .  We denote m[n] = &h[n]. 
The scaling equation is 4( t )  = 

(a) Suppose that K = 2. Prove that if t is a dyadic number that can be written 
in binary form with i digits: t = 0. ~ ~ € 2 . .  . ~ i ,  with Ek E (0, I}, then d ( t )  is 
the product 

m++m 

m[n] 4(2t - n). 

@ ( t )  = r n [ E O ]  x rn[4 x . . . x m [ 4  x 4(0) . 
(b) For K = 2, show that if m[O] = 4 / 3  and m [ l ]  = 2 / 3  then 4(f) is singular 

at all dyadic points. Verify numerically with WAVELAB that the resulting 
scaling equation does not define a finite energy function 4. 

(c) Show that one can find two matrices M[O] and M[1] such that the K- 
dimensionalvector@(t)= [ 4 ( t ) 1 4 ( t + l ) l . .  . , + ( t + K - 1 ) l T  satisfies 

@ ( t )  = M [ O ] @ ( 2 t ) + M [ 1 ] @ ( 2 t -  1). 

(d) Show that one can compute @ ( t )  at any dyadic number t = 0. €1  € 2 . .  . ~i with 
a product of matrices: 

* ( t )  = M[€O] x M[E1] x . . . x M[Ei] x @(O) . 
7.5. Let us define 

I n  
I -  

dJkk+l(t) = Jz C h[n]442t-n) (7.272) 

Prove that iik+l (w) = p&(w).  
(b) Prove that if there exists 4 such that lirnk-,+= l l Q k  - 411 = 0 then 1 is an 

eigenvalue of P and $(w) = n;. 2-1/2h(2-Pw). What is the degree of 
freedom on do in order to still converge to the same limit 4? 

(c) Implement in MATLAB the computations of &(t )  for the Daubechies con- 
jugate mirror filter with p = 6 zeros at T. How many iterations are needed 
to obtain llq5k - 411 < Try to improve the rate of convergence by 
modifying 40. 

7.6. ' Let b[n] = f ( N - ' n )  with 2L = N-' and f E VL. We want to recover u~[n] = 
( f l  4 ~ : ~ ~ )  from b[n] to compute the wavelet coefficients off with Theorem 7.7. 
(a) Let 4L[n] = 2+'~$(2-~n).  Prove that b[n] = aL*4L[n]. 
(b) Prove that if there exists C > 0 such that for all w E [-T; T] 

k=-m 

then uL can be calculated from b with a stable filter 4;' [n]. 
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(c) If q5 is a cubic spline scaling function, compute numerically $L1 [n]. For 
a given numerical precision, compare the number of operations needed to 
compute UL from b with the number of operations needed to compute the 
fast wavelet transform of a,. 

(d) Show that calculating UL from b is equivalent to performing a change of 
basis in V,, from a Riesz interpolation basis to an orthonormal basis. 

Quadrature mirrorJilters We define a multirate filter bank with four filters h, 7.7. 
g, L, and g, which decomposes a signal a0 [n] 

u1[n] =q*h[2n] , 4[n] =urJ*g[2n]. 

Using the notation (7.106), we reconstruct 

(a) Prove that &, [n] = q [n - I ]  if 

A 3. A 

i(w) = L ( W + T )  , L(w) = K(w) , g(w) = -h(w+7r) , 

and h satisfies the quadrature mirror condition 

R'(~)-L'(w+7r)=2e-~'~. 

(b) Show that I is necessarily odd. 
(c) Verify that the Haar filter (7.51) is a quadrature mirror filter (it is the only 

Let f be a function of support [0,1], that is equal to different polynomials of 
degree q on the intervals { [ 7 k , ~ k + 1 ] } 0 ~ k < ~ ,  with 70 = 0 and T~ = 1. Let 11, be 
a Daubechies wavelet with p vanishing moments. Depending on p, compute 
the number of non-zero wavelet coefficients (f; 11,j:J. How should we choose 
p to minimize this number? 

Let B be a box spline of degree m obtained by m + 1 convolutions of 1[0,1~ 
with itself. 
(a) Prove that 

finite impulse response solution). 
7.8. 

7.9. 

where [XI+ = max(x;O). Hint: write lp l ]  = 1[0,+,) - 1(1,+=). 
(b) Let A, and B, be the Riesz bounds of { O ( t  - n)}nE~. With Proposition 

7.1, prove that lim,++,B, = +m. Compute numerically A, and B, for 
m E (0, . . . , 5 } ,  With MATLAB. 

Prove that if {$~j,,,!(~,~)~c is an orthonormal basis of LZ(R) then for all 
1$(2ju) 1' = 1. Find an example showing that the converse 

7.10. 
w E W - (0) 
is not true. 
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7.11. 'Letusdefine 

Prove that {$j,n}(j,nlEp is an orthonormal basis of L2(R). Prove that $ is not 
associated to a scaling function 4 that generates a multiresolution approxima- 
tion. 

Express the Coiflet property (7.104) as an equivalent condition on the conju- 
gate mirror filter Ci(eiu). 

Prove that $( t )  has p vanishing moments if and only if for all j > 0 the 
discrete wavelets $ ~ ~ [ n ]  defined in (7.145) have p discrete vanishing moments 

7.12. 

7.13. 

+= 
n k ~ j [ n ]  = o for 0 5 k < p .  

n=-m 

7.14. Let $( t )  be a compactly supported wavelet calculated with Daubechies con- 
jugate mirror filters (h; g). Let $ i , n ( f )  = 2-j/*$'(2-'t - n) be the derivative 
wavelets. 
(a) Verify that hl and gl defined by 

are finite impulse response filters. 
(b) Prove that the Fourier transform of $'(f) can be written 

(c) Describe a fast filter bank algorithm to compute the derivative wavelet 

Let $( f )  be a compactly supported wavelet calculated with DaubecFes con- 
jugate mirror filters (h,g). Let A(w) = ~Ci (w) l~ .  We verify that ~ ( w )  = 
i j ( w )  A(w/4  - 7r/2) is an almost analytic wavelet. 
(a) Prove that @ is a complex wavelet such that Real[@] = $. 
(b) Compute @(w) in MATLAB for a Daubechies wavelet with four vanishing 

(c) Let $;,n ( t )  = 2-jl2@ (2-jt - n) . Using the fact that 

coefficients ( f l  $;,J [95]. 
7.15. 

moments. Explain why @(w) M 0 for w < 0. 

show that we can modify the fast wavelet transform algorithm to compute 
the "analytic" wavelet coefficients ( f l  $&J by inserting a new filter. 

(d) Let 4 be the scaling function associated to $. We define separable two- 
dimensional "analytic" wavelets by: 

$l(.) = V ( x 1 ) 4 ( . 2 )  1 ?b2(.) = 4(.l)V(.2) 9 
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$3(x)  = V ( ~ l ) V ( x z )  3 $4(x) =V(~l )V(-Xz)  . 
Let $;,n (x) = 2-j$' ( 2 - j ~  - n) for n E Z2. Modify the separable wavelet 
filter bank algorithm of Section 7.7.3 to compute the "analytic" wavelet 
coefficients (f , @;,+). 

(e) Prove that {$$:n}15k54,jEZ,ncd is a frame of the space of real functions 
f E Lz(Rz) [95]. 

7.16. Multiwavelets We define the following two scaling functions: 

(a) Compute the functions 41 and $2. Prove that { 4 1 ( t - n ) , 4 2 ( t - n ) ) ~ ~ ~  is 
an orthonormal basis of a space V, that will be specified. 

(b) Find $1 and $2 with a support on [0,1] that are orthogonal to each other 
and to $1 and 4z. Plot these wavelets. Verify that they have 2 vanishing 
moments and that they generate an orthonormal basis of Lz(R). 

7.17. Let ff0ld be the folded function defined in (7.210). 
(a) Let a(t) ,P(t)  E L2(R) be two functions that are either symmetric or anti- 

symmetric about t =O. If ( a ( t ) , p ( t + 2 k ) )  =Oand (a(r): /3(2k-t))  = O  
for all k E Z, then prove that 

r l  1 afold ( t )  pfo" ( r )  dt = 0 . 

0) Prove that if$, & 4 , $  are either symmetric or antisymmetric with respect 
to t = 1 / 2  or t = 0, and generate biorthogonal bases of Lz(R), then the 
folded bases (7.212) and (7.213) are biorthogonal bases of L2[0, 11. Hint: 
use the same approach as in Theorem 7.16. 

A recursive filter has a Fourier transform that is a ratio of trigonometric 

verify that if h is a recur- 
sive conjugate mirror filter then j ( w )  + j ( w  + .) = 2 and there exists 
i ( w )  = xfzi r[k] e-iku such that 

7.18. 
polynomials as in (2.31). 
(a) Let p[n]  = h*i;[n] with i;[n] = h[-n]. 

(7.273) 

(b) Suppose that K is even and that r [ K / 2  - 1 - k] = r [ K / 2  + k] .  Verify that 

(7.274) 

(c) If i ( w )  = (1 + e-iu)K-l with K = 6,  compute A(") with the factorization 
(7.274), and verify that it is a stable filter (Problem 3.8). Compute nu- 
merically and plot with WAVELAB the graph of the corresponding wavelet 
$(t>.  
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7.19. Balancing Suppose that h, i define a pair of perfect reconstruction filters 
satisfying (7.129). 
(a) Prove that 

) h,,[n] = - h[n] + h [ n -  11 , i,,[n] = - h[n] +L[n- 11 2 Y 1 2 (- 
defines a new pair of perfect reconstruction filters. Verify that h,(w) and 
h,,(w) have respectively 1 more and 1 less zero at 7i than h(w) and i ( w )  
1681. 

A h 

(b) The Deslauriers-Dubuc filters are &w) = 1 and 

e3iw) . h 1 h(w) = - ( -e-3iu + 9 e-"'' + 16 + 9 eiw - 
16 

Compute h ,  and inew as well as the corresponding biorthogonal wavelets 
&,, G,, after one balancing and after a second balancing. 

7.20. ' L@ng The filter (7.192) is calculated by lifting lazy filters. Find a dual lifting 
that produces a lifted filter with a support of size 9 so that i6(w) has 2 zeros 
at 7i. Compute the resulting lifted wavelets and scaling functions. Implement 
in WAVELAB the corresponding fast wavelet transform and its inverse with the 
polyphase decomposition illustrated in Figure 7.16. 

7.21. ' For a Deslaurier-Dubuc interpolation wavelet of degree 3, compute the dual 
wavelet 4 in (7.245), which is a sum of Diracs. Verify that it has 4 vanishing 
moments. 

Prove that a Deslaurier-Dubuc interpolation function of degree 2p - 1 con- 
verges to a sinc function when p goes to +m. 

Let q5 be an autocorrelation scaling function that reproduces polynomials of 
degree p - 1 a s  in (7.229). Prove that iff is uniformly Lipschitz a then under 
the same hypotheses as in Theorem 7.21, there exists K > 0 such that 

A 

7.22. 

7.23. 

llf-pvjfII, I KY". 

7.24. ' Let $( t )  be an interpolation function that generates an interpolation wavelet 
basis of Co(R). Construct a separable interpolation wavelet basis of the 
space CO(W) of uniformly continuous p-dimensional signals f(x1, . . . ,xp) .  
Hint: construct 2P - 1 interpolation wavelets by appropriately translating 

Fractional Brownian Let $( t )  be a compactly supported wavelet with p van- 
ishing moments that generates an orthonormal basis of L2(R). The covariance 
of a fractional Brownian motion B H ( t )  is given by (6.93). 

$(xl)..-$(xP). 
7.25. 

(a) Prove that E{ I ( B H ,  $j,n) l'} is proportional to 2J(wf1). Hint: use Problem 
6.15. 

@) Prove that the decorrelation between same scale wavelet coefficients in- 
creases when the number p of vanishing moments of $ increases: 
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(c) In two dimensions, synthesize “approximate” fractional Brownian motion 
images & with wavelet coefficients (BH, $;:n) that are. independent Gaus- 
sianrandom variables, whose variances are proportional to 2j(w+z).  Adjust 
H in order to produce textures that look like clouds in the sky. 

Zmuge mosaic Let fo [nl , nz] and f l  [nl , nz] be two images of NZ pixels. We 
want to merge the center of fo [nl , nz] for N / 4  5 nl , nz < 3N/4 in the center of 
f l  . Compute in WAVELAB the wavelet coefficients of fo and f l  . At each scale 2j 
and orientation 1 5 k 5 3, replace the 2-2j/4 wavelet coefficients corresponding 
to the center of f l  by the wavelet coefficients of fo. Reconstruct an image from 
this manipulated wavelet representation. Explain why the image f o  seems to 
be merged in fl. without the strong b o u n w  effects that are obtained when 
replacing directly the pixels of f l  by the pixels of fo. 

7.27. ’ Foveal vision A foveal image has a maximum resolution at the center, with 
a resolution that decreases linearly as a function of the distance to the center. 
Show that one can construct an approximate foveal image by keeping a con- 
stant number of non-zero wavelet coefficients at each scale 2j.  Implement this 
algorithm in WAVELAB. You may build a highly compact image code from such 
an image representation. 

High contrust We consider a color image specified by three color channels: 
red r [n] , green g [n] , and blue b [n] . The intensity image (I + g + b ) / 3  averages 
the variations of the three color channels. To create a high contrast image f, for 
each wavelet $$,n we set (f,$;,J to be the coefficient among (I,$$,+), (g,$;J 
and (b,$&), which has the maximum amplitude. Implement this algorithm 
in WAVELAB and evaluate numerically its performance for different types of 
multispectral images. How does the choice of II, affect the results? 

7.29. ’ Restoration Develop an algorithm that restores the sharpness of a smoothed 
image by increasing the amplitude of wavelet coefficients. Find appropriate 
amplification finctionals depending on the scale and orientation of the wavelet 
coefficients, in order to increase the image sharpness without introducing im- 
portant artifacts. To improve the visual quality of the result, study the impact 
of the wavelet properties: symmetry, vanishing moments and regularity. 

Smooth extension Let f [ n ]  be an image whose samples are known only over 
a domain D, which may be irregular and may include holes. Design and imple- 
ment an algorithm that computes the wavelet coefficients of a smooth extension 
j off over a square domain that includes D, and compute 7 from these. Choose 
wavelets with p vanishing moments. Set to zero all coefficients correspond- 
ing wavelets whose support do not intersect D, which is equivalent to impose 
that is locally a polynomial of degree p .  The coefficients of wavelets whose 
support are in D are calculated from f. The issue is therefore to compute the 
coefficients of wavelets whose support intersect the boundary of D. You must 
guarantee that 3 = f on D as well as the numerical stability of your extension. 

7.26. 

7.28. 

7.30. 



WAVELET PACKET AND LOCAL 

COSINE BASES 

ifferent types of time-frequency structures are encountered in complex 
signals such as speech recordings. This motivates the design of bases D whose time-frequency properties may be adapted. Wavelet bases are 

one particular family of bases that represent piecewise smooth signals effectively. 
Other bases are constructed to approximate different types of signals such as highly 
oscillatory waveforms. 

Orthonormal wavelet packet bases use conjugate mirror filters to divide the 
frequency axis in separate intervals of various sizes. A discrete signal of size 
N is decomposed in more than 2N/2 wavelet packet bases with a fast filter bank 
algorithm that requires O(Nlog,N)  operations. 

If the signal properties change over time, it is preferable to isolate different 
time intervals with translated windows. Local cosine bases are constructed by 
multiplying these windows with cosine functions. Wavelet packet and local cosine 
bases are dual families of bases. Wavelet packets segment the frequency axis and 
are uniformly translated in time whereas local cosine bases divide the time axis 
and are uniformly translated in frequency. 

32 I 
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8. I WAVELET PACKETS 

8. I. I 

Wavelet packets were introduced by Coifman, Meyer and Wickerhauser [139] by 
generalizing the link between multiresolution approximations and wavelets. A 
space Vj of a multiresolution approximation is decomposed in a lower resolution 
space Vj+l plus a detail space Wj+l. This is done by dividing the orthogonal 
basis {4j(t - 

Wavelet Packet Tree 

of Vj into two new orthogonal bases 

{4j+l (t - 2j"n))neZ of Vj+l and { $ j + ~  (t - 2"ln) ) ~ E Z  of Wj+l. 

The decompositions (7.112) and (7.114) of 
{+j(t - 

and $ J ~ + I  in the basis 
are specified by a pair of conjugate mirror filters h[n] and 

g[n] = (-1)'-"h[1 - n ] .  

The following theorem generalizes this result to any space Uj that admits an 
orthogonal basis of functions translated by n2j, for n E Z. 

Theorem 8.1 (COIFMAN, MEXER, WICKERHAUSER) Let {Oj( t  - 2 j n ) } n E ~  be an 
orthononnal basis of a space Uj. Let h and g be a pair of conjugate mirror 
Jilters. DeJine 

O:+,,(t) = h[n]Bj(t-2jn) and O,!+l(t) = g[n]Bj(t-2jn). (8.1) 

The family 
{e:+,,(t--j+ln), 0 ; + ~ ( t - 2 j + ~ n ) ) ~ ~ ~  

is an orthononnal basis of Uj. 

Proof z. This proof is very similar to the proof of Theorem 7.3. The main steps are 
outlined. The fact that { O j ( t  - 2jn)},,z is orthogonal means that 

We derive from (8.1) that the Fourier transform of is 

n=-m 

Similarly, the Fourier transform of is 
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Proving that 
onal vectors is equivalent to showing that for I = 0 or I = 1 

2j+ln)) and {Oj+l(f -2j+1n)}n,a are two families of orthog- 

These two families of vectors yield orthogonal spaces if and only if 

The relations (8.5) and (8.6) are verified by replacing a:+, and 8:+1 by (8.3) and (8.4) 
respectively, and by using the orthogonality of the basis (8.2) and the conjugate mirror 
filter properties 

lir(w) 12 + Id(w + 7r)l2 = 2,  
Ib(w)lZ+ Ib(w+.rr)12 = 2,  

~(w)fi*(w)+&?(w+7T)h*(w+7r) = 0. 

Toprovethatthe family {O:+l(t-2J+1n),  ( t -2j+1n)}nEz generatesthesame 
we must prove that for any u[n] E P(Z) there exist b[n] E space as { e j ( t  - 

lz(Z) and c[n] E lz(Z) such that 

To do this, we relate &(w) and ?(w) to 2(w). The Fourier transform of (8.7) yields 

2(2jw)8,(w) = &(2j+'w) e;+,,(,) +?(2j+lw) 8;+l(w). (8.8) 

One can verify that 

1 h(2'+'w) = - 2 2(2jw)fi*(2jw) +2(2jw+7r)fi*(2jw+7r) Y 
and 

Theorem 8.1 proves that conjugate mirror filters transform an orthogonal basis 
{e j ( t  - 2jn)}flEz in two orthogonal families {e:+, (t - and {e;+, (t - 
2if1n)}n~z. Let U?+, and U;+, be the spaces generated by each of these families. 
Clearly UY,, and U;,, are orthogonal and 

?(2'+'W) = - 2 h(2jw) 2*(2'w) + 4 2 j w  + 7r) 2*(2jw + 7r) Y 
satisfy (8.8). 

UQ,, @Uj+, = uj. 
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Computing the Fourier transform of (8.1) relates the Fourier transforms of 
and e,!+, to the Fourier transform of 0,: 

87+1(~) = K(2j~) 8j(w> 3 8;+1(~) = k(2jw) 8j(w). (8.9) 

Since the transfer functions h(2jw) and k(2jw) have their energy concentrated in 
different frequency intervals, this transformation can be interpreted as a division 
of the frequency support of 8 ,. 
Binary Wavelet Packet: Tree Instead of dividing only the approximation spaces 
V, to construct detail spaces Wj and wavelet bases, Theorem 8.1 proves that 
we can set Uj = Wj and divide these detail spaces to derive new bases. The 
recursive splitting of vector spaces is represented in a binary tree. If the signals are 
approximated at the scale 2L, to the root of the tree we associate the approximation 
space VL. This space admits an orthogonal basis of scaling functions. {$L(t - 
2Ln)}n,z with $ L ( t )  = 2-L/2 $(2eLt). 

Any node of the binary tree is labeled by ( j ,  p ) ,  where j - L 2 0 is the depth of 
the node in the tree, and p is the number of nodes that are on its left at the same depth 
j - L. Such a tree is illustrated in Figure 8.1. To each node ( j ,  p )  we associate a 
space Wy, which admits an orthonormal basis {$;(t - 2 j n ) } n E ~ ,  by going down 
the tree. At the root, we have Wi = VL and $! = $L. Suppose now that we have 
already constructed Wy and its orthonormal basis By = {$y(t - 2b~)}~,z at the 
node ( j ,  p ) .  The two wavelet packet orthogonal bases at the children nodes are 
defined by the splitting relations (8.1): 

n=--00 

and 
+ca 

= g[n]$,g(t-2jn). 

(8.10) 

(8.11) 
n = - a  

Theorem 8.1 proves that B;$' = {$$Zl(t - 2jf1n)},,z and I?;$:' = 

{$;::'(t - 2 j + ' n ) } , ~ z  are orthonormal bases of two orthogonal spaces W;Tl 
and W;:T1 such that 

WEl e3 W Z '  = w;. (8.13) 
This recursive splitting defines a binary tree of wavelet packet spaces where each 
parent node is divided in two orthogonal subspaces. Figure 8.2 displays the 8 
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FIGURE 8. I Binary tree of wavelet packet spaces. 

FIGURE 8.2 Wavelet packets computed with the Daubechies 5 filter, at the depth 
j - L = 3 of the wavelet packet tree, with L = 0. They are ordered from low to 
high frequencies. 

wavelet packets $f at the depth j - L = 3, calculated with the Daubechies filter 
of order 5.  These wavelet packets are frequency ordered from left to right, as 
explained in Section 8.1.2. 

Admissible Tree We call admissible tree any binary tree where each node has 
either 0 or 2 children, as shown in Figure 8.3. Let (ji,pi}lgg be the leaves of 
an admissible binary tree. By applying the recursive splitting (8.13) along the 
branches of an admissible tree, we verify that the spaces {W;}lsig are mutually 
orthogonal and add up to W!: 

w; = CB;==,w; . (8.14) 

The union of the corresponding wavelet packet bases 

{$F( t  - 2jin)}nEZ;lli<l 

thus defines an orthogonal basis of W! = VL. 
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FIGURE 8.3 Example of admissible wavelet packet binary tree. 

Number of Wavelet Packet Bases The number of different wavelet packet or- 
thogonal bases of V, is equal to the number of different admissible binary trees. 
The following proposition proves that there are more than 2"-' merent wavelet 
packet orthonormal bases included in a full wavelet packet binary tree of depth J. 

Proposition 8.1 The number BJ of wavelet packet bases in afull wavelet packet 
binary tree of depth J satisfies 

(8.15) 

Proof '. This result is proved by induction on the depth J of the wavelet packet tree. 
The number B3 of different orthonormal bases is equal to the number of different 
admissible binary trees of depth at most J, whose nodes have either 0 or 2 children. 
For J = 0, the tree is reduced to its root so BO = 1. 

Observe that the set of trees of depth at most J + 1 is composed of trees of depth at 
least 1 and at most J + 1 plus one tree of depth 0 that is reduced to the root. A tree of 
depth at least 1 has a left and a right subtree that are admissible trees of depth at most 
J. The configuration of these trees is a priori independent and there are BJ admissible 
trees of depth J so 

BJ+~ =B?+l. (8.16) 
Since B1= 2 and BJ+~ 2 B:, we prove by induction that B3 2 2'-'. Moreover 

I f J  1 1 then BJ 2 2 so 

Since B1 = 2, 

SO BJ 5 2d'-'. 

For discrete signals of size N, we shall see that the wavelet packet tree is at most 
of depth J = log2N. This proposition proves that the number of wavelet packet 
bases satisfies 2N/2 5 B l o g z ~  5 25N/8. 
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Wavelet Packets on Intervals To construct wavelet packets bases of L2[0, 11, we 
use the border techniques developed in Section 7.5 to design wavelet bases of 
L2[0, 11. The simplest approach constructs periodic bases. As in the wavelet case, 
the coefficients off E L2 [0,1] in aperiodic wavelet packet basis are the same as the 
decomposition coefficients of f P " ( t )  = C,'="_, f ( t  + k) in the original wavelet 
packet basis of L2 (W) . The periodization of f often creates discontinuities at the 
borders t = 0 and t = 1, which generate large amplitude wavelet packet coefficients. 

Section 7.5.3 describes a more sophisticated technique which modifies the 
filters h and g in order to construct boundary wavelets which keep their vanishing 
moments. A generalization to wavelet packets is obtained by using these modified 
filters in Theorem 8.1. This avoids creating the large amplitude coefficients at the 
boundary, typical of the periodic case. 

Biorthogonal Wavelet Packets Non-orthogonal wavelet bases are constructed in 
Section 7.4 with two pairs of perfect reconstruction filters (h, g) and (i, g) instead 
of a single pair of conjugate mirror filters. The orthogonal splitting Theorem 8.1 
is extended into a biorthogonal splitting by replacing the conjugate mirror filters 
with these perfect reconstruction filters. A Riesz basis { O j ( t  - 2jn)}nE~ of U, is 
transformed into two Riesz bases (t - 2jf1n)}nEz and {e! J + 1  (t - 2 j + b ~ ) } , ~ ~  
of two non-orthogonal spaces Uq+, and Uj+, such that 

q+1 eu;,, = uj. 
A binary tree of non-orthogonal wavelet packet Riesz bases can be derived by 
induction using this vector space division. As in the orthogonal case, the wavelet 
packets at the leaves of an admissible binary tree define a basis of W!, but this 
basis is not orthogonal. 

The lack of orthogonality is not a problem by itself as long as the basis remains 
stable. Cohen and Daubechies proved [ 1301 that when the depth j - L increases, the 
angle between the spaces W; located at the same depth can become progressively 
smaller. This indicates that some of the wavelet packet bases constructed from 
an admissible binary tree become unstable. We thus concentrate on orthogonal 
wavelet packets constructed with conjugate mirror filters. 

8. I .2 Time-Frequency Localization 

Time Support If the conjugate mirror filters h and g have a finite impulse response 
of size K, Proposition 7.2 proves that q5 has a support of size K - 1 so $: = q 5 ~  has 
a support of size ( K  - 1)2L. Since 

n=-zc n=-m 

an induction on j shows that the support size of qj; is (K - 1)2j. The parameter 
j thus specifies the scale 2, of the support. The wavelet packets in Figure 8.2 are 
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constructed with a Daubechies filter of K = 10 coefficients with j = 3 and thus 
have a support of size Z 3  (10 - 1) = 72.  

Frequency Localization The frequency localization of wavelet packets is more 
complicated to analyze. The Fourier transform of (8.18) proves that the Fourier 
transforms of wavelet packet children are related to their parent by 

( w )  = h(2jw) $;(w) , $$$T1 (w)  = g ( 2 i ~ )  @ ( w ) .  (8.19) 

The energy of 4; is mostly concentrated over a frequency band and the two filters 
h(2iw) and g(2jw) select the lower or higher frequency components within this 
band. To relate the size and position of this frequency band to the indexes ( p ,  j ) ,  
we consider a simple example. 

Shannon Wavelet Packets 
discrete low-pass and high-pass filters 

Shannon wavelet packets are computed with perfect 

(8.20) if w E [-7r/2 + 2k7r, 7r/2 + 2 k ~ ]  with k E Z 
otherwise 

and 

(8.21) if w E [7r/2 + 2k7r, 3 ~ / 2  + 2k7r] with k E Z 
otherwise 

In this case it is relatively simple to calculate the frequency support of the wavelet 
packets. The Fourier transform of the scaling function is 

, . A  

?@ = 4 L  = 1[-2-%r,2-%T]. (8.22) 

Each multiplication with h ( 2 j ~ )  or g(2jw) divides the frequency support of the 
wavelet packets in two. The delicate point is to realize that h(2jw) does not always 
play the role of a low-pass filter because of the side lobes that are brought into 
the interval [ - 2 - ’ ~ , 2 - ~ 7 ~ ]  by the dilation. At the depth j - L, the following 
proposition proves that 4; is proportional to the indicator function of a pair of 
frequency intervals, that are labeled Zj”. The permutation that relates p and k is 
characterized recursively [76]. 

Proposition 8.2 (Comm, WICKERHAUSER) For any j - L > 0 and 0 5 p < 
2j-=, there exists 0 5 k < 2jPL such that 

where I? is a symmetric pair of intervals 

(8.23) 

Z j  = [ - (k+  l )n2-j ,  -k7~2-j] U [ k ~ 2 - j ,  (k+  1)7r2-j]. (8.24) 
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The permutation k = G [ p ]  satisfies for any 0 5 p < 2jPL 

2G[p] i fG[p]  is even 
G[2p1 = { 2G[p] + 1 i fG[p]  is odd 

2G[p] + 1 i fG[p]  is even 
G[2p+ = { 2G[p] i f G [ p ]  is odd 

(8.25) 

(8.26) 

Proof '. The three equations (8.23), (8.25) and (8.26) are proved by induction on the 
depth j - L. For j - L = 0, (8.22) shows that (8.23) is valid. Suppose that (8.23) 
is valid for j = Z2: L and any 0 5 p < 2'-L. We first prove that (8.25) and (8.26) 
are verified for j = 1. From these two equations we then easily carry the induction 
hypothesis to prove that (8.23) is true for j = I+ 1 and for any 0 5 p < 2'+'-L. 

Equations (8.20) and (8.21) imply that 

(8.27) if w E [-2-'-' (4m - I)A, 2P-I (4m + I)A] with m E z! 
0 otherwise 

(8.28) i f w E  [-2-'-'(4m+1)7i,2-'-1(4m+3)~] withmEZ 
0 otherwise 

Since (8.23) is valid for I, the support of 4: is 

z; = [-(2k+2)7T2-'-',-2kA2-'-'] u [2kr2-'-', (2k+2)7r2-'-']. 

#f1 (w) = L(2'w) @(w) , ?);:;l(w) = k(2'w) $f(w) . 

The two children are defined by 

We thus derive (8.25) and (8.26) by checking the intersection of Z: with the supports 

For Shannon wavelet packets, Proposition 8.2 proves that 4; has a frequency 
support located over two intervals of size 2-j7r, centered at f ( k  + 1/2)7r2-j. The 
Fourier transform expression (8.23) implies that these Shannon wavelet packets 
can be written as cosine modulated windows 

of B(2Jw) and B(2jw) specified by (8.27) and (8.28). 

$;(t) = 2-j/2+1 e(2-jt)  cos [2-jr(k + 1/2)( t  - T j , p ) ]  , (8.29) 

with 
sin(7rt/2) 

e(t)  = and hence 8(w)  = 1[-r/2,r/2~(w). 
T t  

The translation parameter rj,p can be calculated from the complex phase of 4;. 
Frequency Ordering It is often easier to label $; a wavelet packet q!f whose 
Fourier transform is centered at f ( k  + 1/2)7r2-j, with k = G b ] .  This means 
changing its position in the wavelet packet tree from the node p to the node k.  
The resulting wavelet packet tree is frequency ordered. The left child always 
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corresponds to a lower frequency wavelet packet and the right child to a higher 
frequency one. 

The permutation k = G[p] is characterized by the recursive equations (8.25) 
and (8.26). The inverse permutation p = G-' [k] is called a Gray code in coding 
theory. This permutation is implemented on binary strings by deriving the follow- 
ing relations from (8.25) and (8.26). If pi is the ifh binary digit of the integer p 
and ki the ith digit of k = G[p] then 

(8.30) 

(8.31) 

Compactly Supported Wavelet Packets Wavelet packets of compact support 
have a more complicated frequency behavior than Shannon wavelet packets, but 
the previous analysis provides important insights. If h is a finite impulse response 
filter, h does not have a support restricted to [-7r/2, n /2]  over the interval [-T, T] .  

It is however true that the energy of h is mostly concentrated in [ - ~ / 2 , ~ / 2 ] .  
Similarly, the energy of 2 is mostly concentrated in [-T, - ~ / 2 ]  U [ ~ / 2 ,  T ] ,  for 
w E [-T,T]. As a consequence, the localization properties of Shannon wavelet 
packets remain qualitatively valid. The energy of 4; is mostly concentrated over 

zj" = [-(k+ 1)7r2-j,-kT2-j] u [kT2-j, ( k+  1)7r2-j], 

with k = G[p].  The larger the proportion of energy of in [ - ~ / 2 , ~ / 2 ] ,  the more 
concentrated the energy of 4; in IF. The energy concentration of h in [ - ~ / 2 , ~ / 2 ]  
is increased by having more zeroes at T ,  so that h(w) remains close to zero in 
[-T, - ~ / 2 ]  U [ T / ~ , T ] .  Theorem 7.4 proves that this is equivalent to imposing that 
the wavelets constructed in the wavelet packet tree have many vanishing moments. 

These qualitative statements must be interpreted carefully. The side lobes of 4; 
beyond the intervals Z? are not completely negligible. For example, wavelet packets 
created with a Haar filter are discontinuous functions. Hence 14;(w) I decays like 
Iw 1-l at high frequencies, which indicates the existence of large side lobes outside 
Zkp. It is also important to note that contrary to Shannon wavelet packets, compactly 
supported wavelet packets cannot be written as dilated windows modulated by 
cosine functions of varying frequency. When the scale increases, wavelet packets 
generally do not converge to cosine functions. They may have a wild behavior 
with localized oscillations of considerable amplitude. 

Walsh Wavelet Packets Walsh wavelet packets are generated by the Haar conju- 
gate mirror filter 

0 otherwise 
h[n] = 
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FIGURE 8.4 Frequency ordered Walsh wavelet packets computed with a Haar 
filter, at the depth j - L = 3 of the wavelet packet tree, with L = 0. 

They have very different properties from Shannon wavelet packets since the 
filter h is well localized in time but not in frequency. The corresponding scal- 
ing function is 4 = l [ O , l ]  and the approximation space VL = W: is composed of 
functions that are constant over the intervals 2L(n + I>>, for n E Z. Since a~ 
wavelet packets created with this filter belong to VL, they are piecewise constant 
functions. The support size of h is K = 2, so Walsh functions $7 have a support 
of size 2j.  The wavelet packet recursive relations (8.18) become 

and 

+2p ( t )  = 1 - $ ! ( t ) + - $ 7 ( t - 2 j ) ,  1 
I+ 1 Jz' Jz 

$2P+l(t) = -$!( t ) - -$jP(t-2j) .  1 1 
'+I Jz' 

(8.32) 

(8.33) 

Since +jP has a support of size 2j,  it does not intersect the support of $;(t - 23'). 
These wavelet packets are thus constructed by juxtaposing $7 with its translated 
version whose sign might be changed. Figure 8.4 shows the Walsh functions at the 
depth j - L = 3 of the wavelet packet tree. The following proposition computes 
the number of oscillations of $7. 
Proposition 8.3 The support of a Walsh wavelet pach t  $; is [0 ,2j] .  Over its 
support, +;( t )  = &2-jlZ. It changes sign k = G [ p ]  times, where G[p ]  is the 
permutation defined by (8.25) and (8.26). 

Proof z. By induction on j ,  we derive from (8.32) and (8.33) that the support is [0,2j] 
and that y!$'(t) = &2-jIz over its support. Let k be the number of times that $$' changes 
sign. The number of times that change sign is either 2k or 2k + 1 
depending on the sign of the first and last non-zero values of $$'. If k is even, then 

and 
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FIGURE 8.5 The wavelet packet tree on the left divides the frequency axis in 
several intervals. The Heisenberg boxes of the corresponding wavelet packet basis 
are on the right. 

the sign of the first and last non-zero values of $Jy are the same. Hence the number of 
times $J;:~ and $J:TT1 change sign is respectively 2k and 2k + 1. If k is odd, then the 
sign of the first and last non-zero values of $Jy are different. The number of times 
and @T1 change sign is then 2k + 1 and 2k. These recursive properties are identical 
to (8.25) and (8.26). 

A Walsh wavelet packet $$' is therefore a square wave with k = G[p]  oscillations 
over a support of size 2j.  This result is similar to (8.29), which proves that a 
Shannon wavelet packet .Jlj" is a window modulated by a cosine of frequency 
2- jkr .  In both cases, the oscillation frequency of wavelet packets is proportional 
to 2-jk. 

Heisenberg Boxes For display purposes, we associate to any wavelet packet 
$'(r - 2jn) a Heisenberg rectangle which indicates the time and frequency do- 
mains where the energy of this wavelet packet is mostly concentrated. The time 
support of the rectangle is set to be the same as the time support of a Walsh wavelet 
packet $'(f -2 jn ) ,  which is equal to [2jn,2j(n+ l ) ] .  The frequency support of 
the rectangle is defined as the positive frequency support [k.n2-j, (k + 1)r2- j ]  
of Shannon wavelet packets, with k = G [ p ] .  The scale 2j modifies the time and 
frequency elongation of this time-frequency rectangle, but its surface remains con- 
stant. The indices n and k give its localization in time and frequency. General 
wavelet packets, for example computed with Daubechies filters, have a time and 
a frequency spread that is much wider than this Heisenberg rectangle. However, 
this convention has the advantage of associating a wavelet packet basis to an exact 
paving of the time-frequency plane. Figure 8.5 shows an example of such a paving 
and the corresponding wavelet packet tree. 

Figure 8.6 displays the decomposition of a multi-chirp signal whose spectro- 
gram was shown in Figure 4.3. The wavelet packet basis is computed with the 
Daubechies 10 filter. As expected, the coefficients of large amplitude are along 
the trajectory of the linear and the quadratic chirps that appear in Figure 4.3. We 
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FIGURE 8.6 Wavelet packet decomposition of the multi-chirp signal whose 
spectrogram is shown in Figure 4.3. The darker the gray level of each Heisen- 
berg box the larger the amplitude I (f, $$‘) I of the corresponding wavelet packet 
coefficient. 

/ :;:::: 
FIGURE 8.7 
packet tree of an M-band wavelet basis with A4 = 2. 

(a): Wavelet packet tree of a dyadic wavelet basis. (b): Wavelet 

also see the trace of the two modulated Gaussian functions located at t = 5 12 and 
t = 896. 

8. I .3 Particular Wavelet Packet Bases 

Among the many wavelet packet bases, we describe the properties of M-band 
wavelet bases, “local cosine type” bases and “best” bases. The wavelet packet 
tree is frequency ordered, which means that $5 has a Fourier transform whose 
energy is essentially concentrated in the interval [k7r2-j, ( k  + 1)7r2-’], for positive 
frequencies. 
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M-band Wavelets The standard dyadic wavelet basis is an example of a wavelet 
packet basis of VL, obtained by choosing the admissible binary tree shown in 
Figure 8.7(a). Its leaves are the nodes k = 1 at all depth j - L and thus correspond 
to the wavelet packet basis 

{$; (t - 2jn))n€z,j>L 

constructed by dilating a single wavelet $' : 

The energy of 4' is mostly concentrated in the interval [-27r, -7r] U [T, 27rI. The 
octave bandwidth for positive frequencies is the ratio between the bandwidth of 
the pass band and its distance to the zero frequency. It is equal to 1 octave. This 
quantity remains constant by dilation and specifies the frequency resolution of the 
wavelet transform. 

Wavelet packets include other wavelet bases constructed with several wavelets 
having a better frequency resolution. Let us consider the admissible binary tree 
of Figure 8.7(b), whose leaves are indexed by k = 2 and k = 3 at all depth j - L. 
The resulting wavelet packet basis of VL is 

{$;(t-2'n, I $;(t-2jn))n€z;j>L+l. 

These wavelet packets can be rewritten as dilations of two elementary wavelets $* 
and g3: 

Over positive frequencies, the energy of 4' and G3 is mostly concentrated respec- 
tively in [7r, 37r/2] and [37r/2,2~]. The octave bandwidths of G2 and G3 are thus 
respectively equal to 1/2 and 1/3. These wavelets $' and $3 have a higher fre- 
quency resolution than $', but their time support is twice as large. Figure 8.8(a) 
gives a 2-band wavelet decomposition of the multi-chirp signal shown in Figure 
8.6, calculated with the Daubechies 10 filter. 

Higher resolution wavelet bases can be constructed with an arbitrary number 
of M = 2' wavelets. In a frequency ordered wavelet packet tree, we define an 
admissible binary tree whose leaves are the indexes 2l 5 k < 2'++' at the depth 
j - L > 1. The resulting wavelet packet basis 

can be written as dilations and translations of M elementary wavelets 
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FIGURE 8.8 (a): Heisenberg boxes of a 2-band wavelet decomposition of the 
multi-chirp signal shown in Figure 8.6. (b): Decomposition of the same signal in 
a pseudo-local cosine wavelet packet basis. 

The support size of 4k is proportional to M = 2’. Over positive frequencies, the 
energy of 4k is mostly concentrated in [k7r2-’, ( k  + 1)7r2-’]. The octave bandwidth 
is therefore 7r2-‘/(k7r2-‘) = k-’, forM 5 k < 2M. TheM wavelets { $ “ } M ~ L < ~ M  

have an octave bandwidth smaller than M-’ but a time support M times larger 
than the support of 4’. Such wavelet bases are called M-band wavelets. More 
general families of M-band wavelets can also be constructed with other M-band 
filter banks studied in [73]. 

Pseudo Local Cosine Bases Pseudo local cosine bases are constructed with an 
admissible binary tree which is a full tree of depth J - L 2 0. The leaves are the 
nodes indexed by 0 5 k < 2J-L and the resulting wavelet packet basis is 

(8.34) 

If these wavelet packets are constructed with a conjugate mirror filter of size K ,  
they have a support of size ( K  - 1)2’. Over positive frequencies, the energy of 
4; is concentrated in [k7r2-’, ( k  + 1)7r2-’]. The bandwidth of all these wavelet 
packets is therefore approximately constant and equal to ~ 2 ~ ’ .  The Heisenberg 
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b 

t 

FIGURE 8.9 Admissible tree and Heisenberg boxes of a wavelet packet pseudo 
local cosine basis. 

boxes of these wavelet packets have the same size and divide the time-frequency 
plane in the rectangular grid illustrated in Figure 8.9. 

Shannon wavelet packets I,$ are written in (8.29) as a dilated window 8 mod- 
ulated by cosine functions of frequency 2-J(k + 1/2)7r. In this case, the uniform 
wavelet packet basis (8.34) is therefore a local cosine basis, with windows of con- 
stant size. This result is not valid for wavelet packets constructed with different 
conjugate mirror filters. Nevertheless, the time and frequency resolution of Uni- 
form wavelet packet bases (8.34) remains constant, like that of local cosine bases 
constructed with windows of constant size. Figure 8.8(b) gives the decomposition 
coefficients of a signal in such a uniform wavelet packet basis. 

Best Basis Applications of orthogonal bases often rely on their ability to effi- 
ciently approximate signals with only a few non-zero vectors. Choosing a wavelet 
packet basis that concentrates the signal energy over a few coefficients also re- 
veals its time-frequency structures. Section 9.4.2 describes a fast algorithm that 
searches for a "best" basis that minimizes a Schur concave cost function, among 
all wavelet packet bases. The wavelet packet basis of Figure 8.6 is calculated with 
this best basis search. 

8. I .4 Wavelet Packet Filter Banks 

Wavelet packet coefficients are computed with a filter bank algorithm that gen- 
eralizes the fast discrete wavelet transform. This algorithm is a straightforward 
iteration of the two-channel filter bank decomposition presented in Section 7.3.2. 
It was therefore used in signal processing by Croisier, Esteban and Galand [ 1411 
when they introduced the first family of perfect reconstruction filters. The algo- 
rithm is presented here from a wavelet packet point of view. 

To any discrete signal input b[n] sampled at intervals N-' = 2L, like in (7.1 16) 
we associate f E VL whose decomposition coefficients u ~ [ n ]  = (f, +L+) satisfy 

b[n] = N%L.[n] M f ( N - ' n )  . (8.35) 

For any node ( j , p )  of the wavelet packet tree, we denote the wavelet packet 
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coefficients 
djP[n] = ( f ( t ) , $ f ( f  -2 jn) ) .  

At the root of the tree d![n] = u ~ [ n ]  is computed from b[n] with (8.35). 

Wavelet Packet Decomposition We denote X[n] = x[-n]  and by k the signal 
obtained by inserting a zero between each sample of x .  The following proposition 
generalizes the fast wavelet transform Theorem 7.7. 

Proposition 8.4 At the decomposition 

At the reconstmction 

(8.36) 

(8.37) 

The proof of these equations is identical to the proof of Theorem 7.7. The 
coefficients of wavelet packet children d;fl  and d;::' are obtained by subsampling 
the convolutions of d; with h and g. Iterating these equations along the branches 
of a wavelet packet tree computes all wavelet packet coefficients, as illustrated by 
Figure 8.1O(a). From the wavelet packet coefficients at the leaves { ji p i } l l i5~  of 
an admissible subtree, we recover df at the top of the tree by computing (8.37) for 
each node inside the tree, as illustrated by Figure 8.10(b). 

Finite Signals If u~ is a finite signal of size 2-L = N, we are facing the same bor- 
der convolution problems as in a fast discrete wavelet transform. One approach 
explained in Section 7.5.1 is to periodize the wavelet packet basis. The convolu- 
tions (8.36) are then replaced by circular convolutions. To avoid introducing sharp 
transitions with the periodization, one can also use the border filters described in 
Section 7.5.3. In either case, d; has 2-j samples. At any depth j - L of the tree, 
the wavelet packet signals {djP}o<p<2j-~ include a total of N coefficients. Since the 
maximum depth is log,N, there &e at most N log, N coefficients in a full wavelet 
packet tree. 

In a full wavelet packet tree of depth log,N, all coefficients are computed by 
iterating (8.36) for L I j < 0. If h and g have K non-zero coefficients, this requires 
KN log, N additions and multiplications. This is quite spectacular since there are 
more than 2N/2 different wavelet packet bases included in this wavelet packet tree. 

The computational complexity to recover UL = d! from the wavelet packet 
coefficients of an admissible tree increases with the number of inside nodes of the 
admissible tree. When the admissible tree is the full binary tree of depth log2N, 
the number of operations is maximum and equal to KN log2 N multiplications and 
additions. If the admissible subtree is a wavelet tree, we need fewer than 2Kh7 
multiplications and additions. 
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FIGURE 8. I O  (a): Wavelet packet filter-bank decomposition with successive 
filterings and subsamplings. (b): Reconstruction by inserting zeros and filtering 
the outputs. 

Discrete Wavelet Packet Bases of I2(Z) The signal decomposition in a conjugate 
mirror filter bank can also be interpreted as an expansion in discrete wavelet packet 
bases of l2 (Z) . This is proved with a result similar to Theorem 8.1. 

Theorem 8.2 Let { 0, [m - 2j -Ln]}nE~ be an orthonoml basis of a space Uj ,  with 
j - L E N. Define 

+W +W 

e;+,[m]= h[n]0~[m--2 j -~n]  , e;+,[m]= g[ n] € J j [ m - 2 % z ] .  (8.38) 
n=-w n=-w 

The family 

is an orthonoml basis of Uj. 
{ [LTZ - 2j+'-'n], e;+l [LTZ - 2j+1-L 1 neZ 

The proof is similar to the proof of Theorem 8.1. As in the continuous time 
case, we derive from this theorem a binary tree of discrete wavelet packets. At the 
root of the discrete wavelet packet tree is the space W! = 12@) of discrete signals 
obtained with a sampling interval N-' = 2L. It adrnits a canonical basis of Diracs 
{$![m-n] = S[m -n]}nE;e. The signal a ~ [ m ]  is specified by its sample values in 
this basis. One can verify that the convolutions and subsamplings (8.36) compute 

d;[n] = ( a ~ [ m ] , $ ' [ m - 2 j - ~ n ] ) ,  
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where { $; [m - 2j-Ln]}nEz is an orthogonal basis of a space W;. These discrete 
wavelet packets are recursively defined for any j 2 L and 0 5 p < 2j-L by 

+m f m  

n = - x  n=-m 
(8.39) 

8.2 IMAGE WAVELET PACKETS 
8.2. I Wavelet Packet Quad-Tree 

We construct wavelet packet bases of L2(Rz) whose elements are separable prod- 
ucts of wavelet packets $' (XI - 2jnl) $;(x2 - 2jn2) having the same scale along 
x1 and x2. These separable wavelet packet bases are associated to quad-trees, and 
divide the two-dimensional Fourier plane (w1, w2) into square regions of varying 
sizes. Separable wavelet packet bases are extensions of separable wavelet bases. 

If images are approximated at the scale 2L, to the root of the quad-tree we as- 
sociate the approximation space V: = VL @ VL c L2 (W2) defined in Section 7.7.1. 
Section 8.1.1 explains how to decompose VL with a binary tree of wavelet packet 
spaces W; c VL, which admit an orthogonal basis {@'(t - 2 j n ) } , E ~ .  The two- 
dimensional wavelet packet quad-tree is composed of separable wavelet packet 
spaces. Each node of this quad-tree is labeled by a scale 2j and two integers 
0 5 p < 2j-L and 0 5 q < 2jPL, and corresponds to a separable space 

wi"'q = w; @WWq. (8.40) 

The resulting separable wavelet packet for x = (XI ,xz )  is 

q " x )  = $;(xl)$;(a) . 

Theorem A.3 proves that an orthogonal basis of W;?' is obtained with a separable 
product of the wavelet packet bases of W; and W?, which can be written 

At the root W y  = V: and the wavelet packet is a two-dimensional scaling function 

dp (x) = 4; (x) = 4 L  (x1) 4 L  (x2) * 

One-dimensional wavelet packet spaces satisfy 

wj" = w;$l @ w2p+' and Wy = W z l  @ W2"'. 1+1 

Inserting these equations in (8.40) proves that W;;q is the direct sum of the four 
orthogonal subspaces 

w;" = j +  1 @ w:p+l'z~ @W2P:24+l 1+1 @w2P+1,2q+l 1+1 (8.41) 
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FIGURE 8. I I 
by decomposing each separable space W y  in four subspaces. 

A wavelet packet quad-tree for images is constructed recursively 

These subspaces are located at the four children nodes in the quad-tree, as shown 
by Figure 8.11. We call admissible quad-tree any quad-tree whose nodes have 
either 0 or 4 children. Let {ji, pi:qj}o<js~ be the indices of the nodes at the leaves 
of an admissible quad-tree. Applying recursively the reconstruction sum (8.41) 
along the branches of this quad-tree gives an orthogonal decomposition of W y  : 

wy = &W??@. 
J i  

The union of the corresponding wavelet packet bases 

is therefore an orthonormal basis of Vi  = W$O. 

Number of Wavelet Packet Bases The number of different bases in a full wavelet 
packet quad-tree of depth J is equal to the number of admissible subtrees. The 
following proposition proves that there are more than 245-' such bases. 

Proposition 8.5 The number BJ of wavelet packet bases in a full wavelet packet 
quad-tree of depth J satis$es 

4 9 5 1  2"-' 5 BJ 5 284 - . 
Proof '. This result is proved with induction, as in the proof of Proposition 8.5. The 
reader can verify that BJ satisfies an induction relation similar to (8.16): 

BJ+I =#+I .  (8.42) 

Since Bo = 1, B1 = 2, and BJ+~  2 e, we derive that BJ 2 z4'-'. Moreover, for J 2 1 

1 1 J-l 
lOgzBj+1 = 4lOgzB~ +lOgz(l +By4) 5 41OgzBj + - < 4J + - 

16 - 16 j=o 

which implies that BJ 2 2g4'-'. 
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For an image of N 2  pixels, we shall see that the wavelet packet quad-tree has a 
depth at most logzN. The number of wavelet packet bases thus satisfies 

(8.43) 

Spatial and Frequency Localization The spatial and frequency localization of 
two-dimensional wavelet packets is derived from the time-frequency analysis per- 
formed in Section 8.1.2. If the conjugate mirror filter h has K non-zero coefficients, 
we proved that $; has a support of size 2j(K - 1 )  hence $;(XI) q!~:(x2) has a square 
support of width 2j(K - 1 ) .  

We showed that the Fourier transform of $; has its energy mostly concentrated 
in 

[ - (k  + 1)2-j7r: -k2-j7r] u [k2-j7r, (k  + 1)2-'7r], 

where k = G [ p ]  is specified by Proposition 8.2. The Fourier transform of a two- 
dimensional wavelet packet $;" therefore has its energy mostly concentrated in 

[k,237r, (kl + 1)2-j7r] x [kz2-k ,  (kz + 1)2-j7r], (8 .44  

with kl = G [ p ]  and kz = G[q] ,  and in the three squares that are symmetric with 
respect to the two axes w1 = 0 and wz = 0. An admissible wavelet packet quad- 
tree decomposes the positive frequency quadrant into squares of dyadic sizes, as 
illustrated in Figure 8.12. For example, the leaves of a full wavelet packet quad- 
tree of depth j - L define a wavelet packet basis that decomposes the positive 
frequency quadrant into squares of constant width equal to 2 - j ~ .  This wavelet 
packet basis is similar to a two-dimensional local cosine basis with windows of 
constant size. 

8.2.2 Separable Filter Banks 

The decomposition coefficients of an image in a separable wavelet packet basis 
are computed with a separable extension of the filter bank algorithm described 
in Section 8.1.4. Let b[n] be an input image whose pixels have a distance 2L = 
N-'. We associate to b[n] a function f E V; approximated at the scale 2L, whose 
decomposition coefficients UL [n] = (f (x) , 4: (x - 2%)) are definedlike in (7.265): 

b[n] = Nu&] M f ( N - l n )  . 

The wavelet packet coefficients 

d 3 n ]  = ( f , $ y ( X  - 2 h ) )  

characterize the orthogonal projection of f  in W77q. At the root, d::' = aL. 
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0 

FIGURE 8. I 2  A wavelet packet quad-tree decomposes the positive frequency 
quadrant into squares of progressively smaller sizes as we go down the tree. 

Separable Filter Bank From the separability of wavelet packet bases and the 
one-dimensional convolution formula of Proposition (8.4), we derive that for any 
n = (n1,nz) 

d;$q[n] = dy*h3;[2n] , d ; p 2 4 [ n ]  = d y * g h [ 2 n ] ,  (8.45) 

(8.46) d;:,+1 [n] = dy *hg[2n] , d ; p + 1  [n] = d;'q * gg[2n]. 

The coefficients of a wavelet packet quad-tree are thus computed by iterating these 
equations along the branches of the quad-tree. The calculations are performed 
with separable convolutions along the rows and columns of the image, illustrated 
in Figure 8.13. 

At the reconstruction 

djP'"n] = 2;:, *hh[n] + 2 ; p q * g h [ n ]  

(8.47) 

The image UL = d2O is reconstructed from wavelet packet coefficients stored at the 
leaves of any admissible quad-tree by repeating the partial reconstruction (8.47) 
in the inside nodes of this quad-tree. 

+ J2P'29+1 - 2p+l,2q+l 
j+1  *hg[nl +dj+l *gg[n].  

Finite Imager If the image UL has N 2  = 2-2L pixels, the one-dimensional con- 
volution border problems are solved with one of the two approaches described in 
Sections 7.5.1 and 7.5.3. Each wavelet packet image d;lq includes 2-2j pixels. 
At the depth j - L, there are wavelet packet coefficients in {dy}05p,q<2j-L. 

A quad-tree of maximum depth log2N thus includes N 2  log2N coefficients. If h 
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FIGURE 8. I3  (a): Wavelet packet decomposition implementing (8.45) and 
(8.46) with one-dimensional convolutions along the rows and columns of dpq.  
(b): Wavelet packet reconstruction implementing (8.47). 

and g have K non-zero coefficients, the one-dimensional convolutions that imple- 
ment (8.45) and (8.46) require 2K2-’j multiplications and additions. All wavelet 
packet coefficients at the depth j + 1 - L are thus computed from wavelet packet 
coefficients located at the depth j - L with 2KN2 calculations. The N210gzN 
wavelet packet coefficients of a full tree of depth logzN are therefore obtained 
with 2& logzN multiplications and additions. The numerical complexity of re- 
constructing a~ from a wavelet packet basis depends on the number of inside nodes 
of the corresponding quad-tree. The worst case is a reconstruction from the leaves 
of a full quad-tree of depth log, N ,  which requires 2Mv2 log, N multiplications 
and additions. 

8.3 BLOCK TRANSFORMS 

Wavelet packet bases are designed by dividing the frequency axis in intervals of 
varying sizes. These bases are thus particularly well adapted to decomposing 
signals that have different behavior in different frequency intervals. If f has 
properties that vary in time, it is then more appropriate to decompose f in a block 
basis that segments the time axis in intervals whose sizes are adapted to the signal 
structures. The next section explains how to generate a block basis of L2(R) from 
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any basis of L2[0, 11. The cosine bases described in Sections 8.3.2 and 8.3.3 define 
particularly interesting block bases. 

8.3. I Block Bases 

Block orthonormal bases are obtained by dividing the time axis in consecutive 
intervals [ap,  ap+l] with 

lim a ---00 and lim a,=+oo. 
p+--30 p -  P++W 

The size 1, = a p + ~  - ap of each interval is arbitrary. Let g = l [ o , l l .  An interval is 
covered by the dilated rectangular window 

(8.48) 

The following theorem constructs a block orthogonal basis of L2(B) from a single 
orthonormal basis of L2 [0,1]. 

Theorem 8.3 If{ek)k& is an orthononnul basis ofL2[0, 11 then 

is a block orthonoimal basis of L2(B). 

Proof ’. One can verify that the dilated and translated family 

(8.49) 

(8.50) 

is an orthonormal basis of L2[up,up+1]. If p # q then ( g p , k , g q , k )  = 0 since their 
supports do not overlap. The family (8.49) is thus orthonormal. To expand a signal f 
in this family, it is decomposed as a sum of separate blocks 

p=-m 

and each block f ( t ) g p ( t )  is decomposed in the basis (8.50). 

Block Fourier Basis A block basis is constructed with the Fourier basis of L2 [0, 11: 

The time support of each block Fourier vector gp,k is [up,ap+l],  of size Zp. The 
Fourier transform of g = 1[0,1~ is 
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and 

It is centered at 2k7rli1 and has a slow asymptotic decay proportional to 1;' 1wl-I. 

Because of this bad frequency localization, even though a signal f is smooth, its 
decomposition in a block Fourier basis may include large high frequency coeffi- 
cients. This can also be interpreted as an effect of periodization. 

Discrete Block Bases For all p E Z, we suppose that up E Z. Discrete block bases 
are built with discrete rectangular windows whose supports are [ -ap!ap+l  - 11 

g,bI = l[a,,a,+,-l] (.I. 
Since dilations are not defined in a discrete framework, we generally cannot derive 
bases of intervals of varying sizes from a single basis. The following theorem thus 
supposes that we can construct an orthonormal basis of @' for any 1 > 0. The proof 
is straightforward. 

Theorem 8.4 Suppose that {ek , l }O<k<l  is an orthogonal basis of @', for any 1 > 0. 
The family 

(8.51) 
O<k<l,;pEZ { g p , k  = g p  L.1 ek , l ,  [n - U p ] }  

is a block orthonormal basis of I2(Z). 

A discrete block basis is constructed with discrete Fourier bases 

The resulting block Fourier vectors g p , k  have sharp transitions at the window 
border, and are thus not well localized in frequency. As in the continuous case, the 
decomposition of smooth signals f may produce large amplitude high frequency 
coefficients because of border effects. 

Block Bases of Images General block bases of images are constructed by par- 
titioning the plane Rz into rectangles { [up, bP] x [c,, d p ] } p E ~  of arbitrary length 
lp = b, - up and width wp = dp - c,. Let { e k } k E Z  be an orthonormal basis of 
L2[0, 11 and g = l[o,l~. We denote 

The family { g p , k , j } ( k , j ) @  is an OrthOnOrmd basis O f  L2([ap,bp]  X [cp:dp]) ,  and 
hence { g P & , j } ( , , k : j ) &  is an orthonormal basis of L2(R2). 
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FIGURE 8.14 The function j ( t )  is an extension of f ( t ) ;  it is symmetric about 
0 and of period 2. 

For discrete images, we define discrete windows that cover each rectangle 

g p  = l [ a P , b p - 1 ] x  [cP,dP-l]  * 

If {t?k,J}o<k<l - is an orthogonal basis of C' for any z > 0, then 

is a block basis of l2 ( Z2). 

8.3.2 Cosine Bases 

If f E L2[0, 11 and f(0) # f( l),  even though f might be a smooth function, the 
Fourier coefficients 

(f(u>,e"kru> = 1 f ( u >  e-gzrudu 
1 

0 

have a relatively large amplitude at high frequencies 2k7r. Indeed, the Fourier 
series expansion 

+ffi 

k=-ffi 

is a function of period 1, equal to f over [0,1], and which is therefore discontinuous 
i f f  (0) # f (1). This shows that the resttiction of a smooth function to an interval 
generates large Fourier coefficients. As a consequence, block Fourier bases are 
rarely used. A cosine I basis reduces this border effect by restoring a periodic 
extension j of f which is continuous i f f  is continuous. High frequency cosine I 
coefficients thus have a smaller amplitude than Fourier coefficients. 

Cosine I Basis We define 7 to be the function of period 2 that is symmetic about 
0 and equal to f over [0,1]: 

(8.52) 

Iff is continuous over [0,1] then 7 is continuous over R, as shown by Figure 8.14. 
However, if f has a non-zero right derivative at 0 or left derivative at 1, then j is 
non-differentiable at integer points. 
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The Fourier expansion of J’ over [0,2] can be written as a sum of sine and 
cosine terms: 

2nkt fm 27rkt J ’ ( t ) = x a [ k ] ~ o s ( ~ )  +m + x b [ k ] s i n ( T ) .  

k=O k=l 

The sine coefficients b[k] are zero because J’is even. Since f ( t )  = J’(t) over [0,1], 
this proves that any f E Lz[O, 11 can be written as a linear combination of the 
cosines {cos(k7rt)}kEN. One can venfy that this family is orthogonal over [0,1]. 
It is therefore an orthogonal basis of L2[0, 11, as stated by the following theorem. 

Theorem 8.5 (COSINE I) The family 

2-Il2 i fk=O 
(1 ifk#O 

{ x k  CoS(7rkt)) with & = 
keN 

is an orthononnul basis of L2[0, 11. 

Block Cosine Basis Let us divide the real line with square windows g, = l[ap,ap+,~. 
Theorem 8.3 proves that 

is a block basis of L2(B). The decomposition coefficients of a smooth function 
have a faster decay at high frequencies in a block cosine basis than in a block 
Fourier basis, because cosine bases correspond to a smoother signal extension 
beyond the intervals [a, , ap+l]. 

Cosine IV Basis Other cosine bases are constructed from Fourier series, with dif- 
ferent extensions off beyond [0,1]. The cosine IV basis appears in fast numerical 
computations of cosine I coefficients. It is also used to construct local cosine bases 
with smooth windows in Section 8.4.2. 

Any f E L2 [0,1] is extended into a function 7 of period 4, which is symmetric 
about 0 and antisymmetric about 1 and -1: 

f ( t )  
f(-t) if t E (-1,O) 

if t E [O: 11 

’(‘1 = - f ( 2  - t )  if t E [1 , 2) { -f(2+t) if t E [-1:-2) 

If f(1) # 0, the antisymmetry at 1 creates a function j that is discontinuous at 
f(2n + 1) for any n E Z, as shown by Figure 8.15. This extension is therefore less 
regular than the cosine I extension (8.52). 
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FIGURE 8. I5 A cosine IV extends f ( t )  into a signal j ( t )  of period 4 which is 
symmetric with respect to 0 and antisymmetric with respect to 1. 

Since j is 4 periodic, it can be decomposed as a sum of sines and cosines of 
period 4: 

27rkt t-3c 27rkt +cc 

j ( t )  = x a [ k ]  + x b [ k ]  sin(4). 
k=O k= 1 

The symmetry about 0 implies that 

b [ k ] =  - / 2 f ( t ) s i n ( g ) d t = 0 .  l 2  27rkt 
2 -  

For even frequencies, the antisymmetry about 1 and - 1 yields 

@k] = - 1 / :? ( t )  cos( -> 27r (2k) t dt = 0. 
2 -  

The only non-zero components are thus cosines of odd frequencies: 

(8.53) 

Since f ( t )  = j ( t )  over [0,1], this proves that any f E L2[0, 11 is decomposed as a 
sum of such cosine functions. One can verify that the restriction of these cosine 
functions to [0,1] is orthogonal in L2[0, 11, which implies the following theorem. 

Theorem 8.6 (COSINE IV) The family 

{ f i  cos [ (k+ 3 . t ] }  
kEN 

is an orthononnal basis of L2 [0,1]. 

The cosine transform IV is not used in block transforms because it has the same 
drawbacks as a block Fourier basis. Block Cosine IV coefficients of a smooth f 
have a slow decay at high frequencies because such a decomposition corresponds 
to a discontinuous extension off beyond each block. Section 8.4.2 explains how 
to avoid this issue with smooth windows. 
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8.3.3 Discrete Cosine Bases 

Discrete cosine bases are derived from the discrete Fourier basis with the same 
approach as in the continuous time case. To simplify notations, the sampling 
distance is normalized to 1. If the sampling distance was originally N-' then the 
frequency indexes that appear in this section must be multiplied by N. 

Discrete Cosine I A signal f [ n ]  defined for 0 5 n < N is extended by symmetry 
with respect to -1/2 into a signal j [ n ]  of size 2N: 

(8.54) 

The 2N discrete Fourier transform of j can be written as a sum of sine and cosine 
terms: 

N - 1  

i [ 3 = C a [ k ] c o s [ $ ( n + ~ ) ]  k=O + E b [ k ] s i n [ $ ( n + i ) ] .  k=O 

Since f is symmetric about -1/2, necessarily b[k] = 0 for 0 5 k < N .  Moreover 
f [ n ]  = j [ n ]  for 0 5 n < N, so any signal f E CN can be written as a s u m  of these 
cosine functions. The reader can also verify that these discrete cosine signals are 
orthogonal in CN.  We thus obtain the following theorem. 

Theorem 8.7 (Cosnv~ I) The family 

is an orthononnal basis of CN 

This theorem proves that any f E CN can be decomposed into 

(8.55) 

where 

(8.56) 

is the discrete cosine transform I (DCT-I) of f .  The next section describes a fast 
discrete cosine transform which computes 11 with O(Nlog2N) operations. 
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Discrete Block Cosine Transform Let us divide the integer set Z with discrete 
windows gp[n]  = l [ u p , u p - ~ ~ ( n ) ,  with a, E Z. Theorem 8.4 proves that the corre- 
sponding block basis 

is an orthonormal basis of l'(2). Over each block of size I ,  = up+l -up,  the fast 
DCT-I algorithm computes all coefficients with O(Z, log, Z p )  operations. Section 
1 1.4.3 describes the PEG image compression standard, which decomposes images 
in a separable block cosine basis. A block cosine basis is used as opposed to a 
block Fourier basis because it yields smaller amplitude high frequency coefficients, 
which improves the coding pedormance. 

Discrete Cosine N To construct a discrete cosine IV basis, a signal f of N 
samples is extended into a signal j of period 4N,  which is symmetric with respect 
to -1/2 and antisymmetric with respect to N - 1/2 and -N+ 1/2. As in (8.53). 
the decomposition of 7 over a family of sines and cosines of period 4N has no sine 
terms and no cosine terms of even frequency. Since ?[n] = f [ n ] ,  for 0 5 n < N, 
we derive that f can also be written as a linear expansion of these odd frequency 
cosines, which are orthogonal in CN.  We thus obtain the following theorem. 

Theorem 8.8 (COSINE IV) The family 

is an orthonormal basis of CN.  

This theorem proves that any f E CN can be decomposed into 

where 
N-1  

(8.58) 
n=O 

is the discrete cosine transform IV @CT-IV) of f .  

8.3.4 

The discrete cosine transform IV (DCT-IV) of a signal of size N is related to 
the discrete Fourier transform (DFT) of a complex signal of size N/2 with a 
formula introduced by Duhamel, Mahieux, and Petit [ 176,421. By computing this 
DFT with the fast Fourier transform (FFT) described in Section 3.3.3, we need 
O(N log, N )  operations to compute the DCT-IV. The DCT-I coefficients are then 
calculated through an induction relation with the DCT-IV, due to Wang [346]. 

Fast Discrete Cosine Transforms ' 
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Fast DCT-IV To clarify the relation between a DCT-IV and a DFT, we split f [n] 
in two half-size signals of odd and even indices: 

bbl = f [ W ,  
~ [ n ]  = f [ N - 1 - 2 n ] .  

The DCT-IV (8.58) is rewritten 

N / 2 - 1  

n=O 
N/2-1 

c[n] cos [ (N  - 1 - 2n + I) (k + i) i] 
2 

1 27r 

n=O 

N/2-1 

= b [ n ] c o s [ ( n + ; ) ( k + I ) F ] +  
n=O 

N I 2 - l  

n=O 

The even frequency indices can thus be expressed as a real part 

jw[2k] = 

Real{exp [*] C~-' (b[n]+ic[n] )exp [ - i ( n + : ) $ ]  exp [-I}! 
(8.59) 

whereas the odd coefficients correspond to an imaginary part 

j w [ N - 2 k - l ]  = 
-1m { exp [ l ~ ~ ~ - ' ( b [ n ] + i c [ n l ) e x p [ - i ( n + t ) ~ l e x p [ ~ ] } .  

(8.60) 

For 0 5 n < N / 2 ,  we denote 

g[n] = (b[n] + ic[n]) exp -i n + - [ ( :E]* 
The DFT g[k] of g[n] is computed with an FFT of size N / 2 .  Equations (8.59) and 
(8.60) prove that 

j1?;v[2k] = Real { exp [ $1 g [ k ] }  , 

and 
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The DCT-IV coefficients f ~ [ k ]  are thus obtained with one FFT of size N / 2  plus 
O ( N )  operations, which makes a total of O(Nlog2N) operations. To normalize 
the DCT-IV, the resulting coefficients must be multiplied by fi. An efficient 
implementation of the DCT-IV with a split-radix FFT requires [42] 

N 
2 PDCT-N ( N )  = - h 2 N  + N ,  (8.61) 

real multiplications and 

3N 
2 aDm-N(N)  = - log2N (8.62) 

additions. 
The inverse DCT-IV of IN is given by (8.57). Up to the proportionality 

constant 2/N, this sum is the same as (8.58), where j m  and f are interchanged. 
This proves that the inverse DCT-IV is computed with the same fast algorithm as 
the forward DCT-IV. 

Fast DCT-I A DCT-I is calculated with an induction relation that involves the 
DCT-IV. Regrouping the terms f[n] and f [N - 1 - n] of a DCT-I (8.56) yields 

N/2-1 

.rr(k+1/2) n+- . (8.64) [ N / 2  ( :)I j z [ 2 k  + 11 = (f[n] - f [ N  - 1 - n]) cos 
n=O 

The even index coefficients of the DCT-I are thus equal to the DCT-I of the signal 
f [n] + f [N - 1 - n] of length N/2. The odd coefficients are equal to the DCT-IV 
of the signal f[n] - f [N - 1 - n] of length N / 2 .  The number of multiplications 
of a DCT-I is thus related to the number of multiplications of a DCT-IV by the 
induction relation 

PDCT-z ( N )  = PDCT-I (N/2) + PDCZ-N , (8.65) 

while the number of additions is 

aDCT-I ( N )  = aDCT-I (N/2) + aDCT-N (N/2) + N -  (8.66) 

Since the number of multiplications and additions of a DCT-IV is O(Nlog2N) this 
induction relation proves that the number of multiplications and additions of this 
algorithm is also O(Nlog2N). 

If the DCT-IV is implemented with a split-radix FFT, inserting (8.61) and 
(8.62) in the recurrence equations (8.65) and (8.66), we derive that the number of 
multiplications and additions to compute a DCT-I of size N is 

N 
PDCT-I(N) = +2N+ 1, (8.67) 
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and 
3N 
2 o D ~ - ~ ( N )  = -log,N-N+l. (8.68) 

The inverse DCT-I is computed with a similar recursive algorithm. Applied to 
1 1 ,  it is obtained by computing the inverse DCT-IV of the odd index coefficients 
j1[2k + 11 with (8.64) and an inverse DCT-I of a size N/2 applied to the even 
coefficients f1[[2k] with (8.63). From the values f [n] + f [N - 1 - n] and f [n] - 
f [N - 1 - n], we recover f [n] and f [N - 1 - n]. The inverse DCT-IV is identical 
to the forward DCT-IV up to a multiplicative constant. The inverse DCT-I thus 
requires the same number of operations as the forward DCT-I. 

8.4 LAPPED ORTHOGONAL TRANSFORMS 

Cosine and Fourier block bases are computed with discontinuous rectangular win- 
dows that divide the real line in disjoint intervals. Multiplying a signal with a 
rectangular window creates discontinuities that produce large amplitude coeffi- 
cients at high frequencies. To avoid these discontinuity artifacts, it is necessary to 
use smooth windows. 

The Balian-Low Theorem 5.6 proves that for any uo and (0, there exists no 
differentiable window g of compact support such that 

is an orthonormal basis of L2 (a). This negative result discouraged any research in 
this direction, until Malvar discovered in discrete signal processing that one could 
create orthogonal bases with smooth windows modulated by a cosine IV basis [262, 
2631. This result was independently rediscovered for continuous time functions by 
Coifman and Meyer [ 1381, with a different approach that we shall follow here. The 
roots of these new orthogonal bases are lapped projectors, which split signals in 
orthogonal components with overlapping supports [46]. Section 8.4.1 introduces 
these lapped projectors; the construction of continuous time and discrete lapped 
orthogonal bases is explained in the following sections. The particular case of 
local cosine bases is studied in more detail. 

8.4. I Lapped Projectors 

Block transforms compute the restriction of f  to consecutive intervals [up;up+l] 
and decompose this restriction in an orthogonal basis of [up,up+~]. Formally, 
the restriction of f to [up,up+l] is an orthogonal projection on the space WP 
of functions with a support included in [up,up+l]. To avoid the discontinuities 
introduced by this projection, we introduce new orthogonal projectors that perform 
a smooth deformation of f .  

Projectors on Half Lines Let us first construct two orthogonal projectors that 
decompose any f E L2(W) in two orthogonal components P+ f and P- f whose 
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supports are respectively [ - 1, +oo) and ( -M, 11. For this purpose we consider a 
monotone increasing profile function P such that 

0 i f t < - l  
1 i f t > l  (8.69) 

and 

A naive definition 

vt E [-1,1] , pyt)  +P2(-r) = 1. (8.70) 

P+f(f> = P2(t )  f ( t )  and P-f(t) = P2(-t )  f ( t >  

satisfies the support conditions but does not define orfhogonal functions. Since 
the supports of P+ f ( t )  and P- f (t) overlap only on [ - 1,1], the orthogonality is 
obtained by creating functions having a different symmetry with respect to 0 on 

P + f ( t )  = P(t )  [P(t) f ( t >  + P ( 4  f(-t>l = P(t)  P( t )  7 (8.71) 
[-1, 11: 

and 

P-fw = P(-d K - t )  f ( t )  - P(t> f(-t)l = P(-t> * (8.72) 

The functions p ( t )  and q ( t )  are respectively even and odd, and since p ( t ) p ( - t )  is 
even it follows that 

F 1  

(8.73) 

Clearly P + f  belongs to the space W+ of functions f E L2(W) such that there 
exists p ( t )  = p ( - t )  with 

Similarly P- f is in the space W- composed of f E L2(W) such that there exists 
q(t)  = -q(- t )  with 

Functions in W+ and W- may have an arbitrary behavior on [l,+cc) and 
(- 00, - 11 respectively . The following theorem characterizes P+ and P- . We 
denote by Id the identity operator. 

Theorem 8.9 (COIFMAN, NIEYER) The operators P+ and P- are orthogonal pro- 
jectors respectively on w+ and w-. The spaces w+ and w- are orthogonal 
and 

P++P- =Id.  (8.74) 
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FIGURE 8. I6  A multiplication with p( 7) and p( 7) restricts the support of 
functions to [a-q,+oo) and (-00,a+q]. 

Proof 2. To verify that P+ is a projector we show that any f E W+ satisfies P+ f = f. 
I f t  < -1 then P + f ( t )  = f ( t )  = 0 andif t > 1 thenP+f(t) = f (t) = 1. I f t  E [-1; 11 
then f ( t )  = , 8 ( t )po ( t )  and inserting (8.71) yields 

P + f ( t )  =m lo ' (r)Po(t)  +P'(-t)Po(-t)l = P(t)po(t): 

because po(t)  is even and p(t )  satisfies (8.70). The projector P+ is proved to be 
orthogonal by showing that it is self-adjoint: 

A change of variable t' = -t in the second integral verifies that this formula is sym- 
metric in f and g and hence (P+f; g) = ( f , P + g ) .  Identical derivations prove that P- 
is an orthogonal projector on W-. 

The orthogonality of W- and W+ is proved in (8.73). To verify (8.74), for 
f E L2(W) we compute 

P + f ( t )  + P - f ( t )  = f(t)lo'(t)+,8'(-t)l = f(t). 

These half-line projectors are generalized by decomposing signals in two orthogo- 
nal components whose supports are respectively [a - q, +m) and (-00, a + 771. For 
this purpose, we scale and translate the profile function p( 7 ), so that it increases 
from 0 to 1 on [a - q,a + q], as illustrated in Figure 8.16. The symmetry with 
respect to 0, which transforms f ( t )  in f(-t), becomes a symmetry with respect 
to a, which transforms f ( t )  in f ( 2 a  - t). The resulting projectors are 

and 
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A straightforward extension of Theorem 8.9 proves that P& is an orthogonal 
projector on the space W&, of functions f E L2(R) such that there exists p ( t )  = 
p(2a - t) with 

(8.77) 

Similarly Pqq is an orthogonal projector on the space W&, composed off E L2(R) 
such that there exists q(t)  = - q ( k  - t) with 

(8.78) 

The spaces W& and W& are orthogonal and 

p;f;tl+ P i q  = Id. (8.79) 

Projectors on Intervals A lapped projector splits a signal in two orthogonal com- 
ponents that overlap on [a - q, a + q]. Repeating such projections at different 
locations performs a signal decomposition into orthogonal pieces whose supports 
overlap. Let us divide the time axis in overlapping intervals: 

ZP = [.P - ~ , , a p + l + ~ p + l I  

with 
lim a ---00 and lim a -+eo. (8.80) 

p + - w  p -  p++f f i  p -  

To ensure that Zp-l  and Zp+l do not intersect for any p E %, we impose that 

a P + l -  V P + l 2  a, + I l P ,  

and hence 
l p  = a p + 1  -a ,  2 q p + 1 +  q p .  

The support off is restricted to Z p  by the operator 

(8.81) 

PP =p;,vrpG+l,qp+,. (8.82) 

Sime q : q p  and P&f,9"p+, are orthogonal projections on Wz:qp and W&+l,qp+l, it 
follows that P p  is an orthogonal projector on 

W P  = w+ wG+l:91p+, . (8.83) 

Let us divide Z ,  in two overlapping intervals 0,, 0,+1 and a central interval C,: 

ZP = b , - ~ p ~ ~ p + l + ~ p + l l  = o , u ~ , u o p + 1  (8.84) 
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FIGURE 8.17 Each window g, has a support [up - qp,up+l + r],+l] with an 
increasing profile and a decreasing profile over [up - qp, up + 7lP] and [ a p f l  - 
rlP+l> a p + 1 +  rlP+l I. 
with 

The space WP is characterized by introducing a window g, whose support is I,, 
and which has a raising profile on 0, and a decaying profile on 0,+1 : 

0 , = [ ~ , - r l p > ~ , + r l P l  and ~ , = ~ ~ , + r l p , ~ p + l - r l p + l l .  

ift$Z, 
if t E 0, 

g,(t>= [: i f tEC,  
if t E 0,+1 

(8.85) ,8(qp1 (t - a,)) 

,8(& (Up+l - 0 )  
This window is illustrated in Figure 8.17. It follows from (8.77), (8.78) and (8.83) 
that WP is the space of functions f E L2(R) that can be written 

(8.86) h(2a, - t) if t E 0, 
-h(2uP+l - t) if t E 0,+1 f ( t )  = gp(t)h(t) with h(t) = 

The function h is symmetric with respect to up and antisymmetric with respect 
to up+l, with an arbitrary behavior in C,. The projector Pp on WP defined in 
(8.82) can be rewritten 

p&,,f(t> i f t  E 0, 

p;+l,qp+lf(t) i f t  E 0,+1 

Ppf(t)  = f ( t >  if t E C, = gp(t) hp(t), (8.87) 

i f t  E 0, 

{ 
where hp(t) is calculated by inserting (8.75) and (8.76): 

g p ( t )  f ( t )  + g,(2a, - t) f ( & p  - t) 
hP(t) = f ( t>  i f t  E C, . (8.88) { g p ( t )  f(t> - g,(%+1- t )  f(2a,+1- t> if t E 0 , + 1  

The following proposition derives a decomposition of the identity. 

Proposition 8.6 The operator P, is an orthogonalprojector on WP. Ifp # q then 
WP is orthogonal to Wq and 

Pp=Zd. (8.89) 
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Proof '. If p # q and I p - q1 > 1 then functions in WP and Wq have supports that do 
not overlap so these spaces are orthogonal. If q = p + 1 then 

and WP+' = W+ 
ap+1Jlp+1 " WiP+2>qp+2. 

wp = w+ 
a P J l P  wiP+l,rlp+l 

since w~p+l,r/p+l is orthogonal to W&+] ,qp+l it follows that Wp is orthogonal to Wp+'. 

To prove (8.89), we first verify that 

P P  + P P + l  = p:,Tlp pip+2;qp+2. (8.90) 

This is shown by decomposing Pp and Pp+l with (8.87) and inserting 

p:+l;~p+l +pip+I,,p+l =Id.  
As a consequence 

m 

p=n 

For any f E L2(R), 

llf-p:,q"pim,% f l l Z  2 Jan+% If(f)l"f+J+w If(t)I2dt 
-m am-qm 

and inserting (8.80) proves that 

n+-m lim llf-~:,,P;m,~fllz = 0. 
m++m 

The summation (8.91) implies (8.89). 

(8.91) 

Discretized Projectors Projectors P p  that restrict the signal support to [up - qp, 
up+l +qp+l] are easily extended for discrete signals. Suppose that {up}pEZ are 
halfintegers, which means that up + 1/2 E Z. The windows gp(t) definedin (8.85) 
areuniformlysampledg,[n] = gp(n). Asin(8.86) wedefinethespacewp c 12(Z) 
of discrete signals 

The orthogonal projector P p  on WP is defined by an expression identical to (8.87, 
8.88): 

PPfbI = g, [.I hP 1.1 (8.93) 
with 

gpbl fbl + g, 12% - .I f Pap - .I i f n E O P  
iFnECp . (8.94) 

gpbl fbl - gpPap+l- .I fPap+1-.1 if n E 0 , + 1  

Finally we prove as in Proposition 8.6 that if p # q, then WP is orthogonal to Wq 
and 

(8.95) 
+w 

P p = I d .  
p = - m  
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8.4.2 Lapped Orthogonal Bases 

An orthogonal basis of L2(R) is defined from a basis {ek}&N of L2 [0,1] by multi- 
plying a translation and dilation of each vector with a smooth window g, defined in 
(8.85). A local cosine basis of L2(R) is derived from a cosine-IV basis of L2[0, 11. 

The support of g, is [a, - q,, a,+l +77,+1], with I ,  = a,+l- a,, as illustrated 
in Figure 8.17. The design of these windows also implies symmetry and quadrature 
properties on overlapping intervals: 

= g,+1(%+1 - t )  fort E [~p+l-~p+l,~p+l+77,+l1 (8.96) 

and 
g;(t)+g;+l(t) = 1 fort E bp+l -77p+1:ap+1+77,+11. 

Each ek E L2 [O, 11 is extended over E+. into a function zk that is symmetric with 
respect to 0 and antisymmetric with respect to 1. The resulting i& has period 4 and 
is defined over [-2,2] by 

ek(t) if t~ [0,1] 

The following theorem derives an orthonormal basis of L2 (a). 
Theorem 8.10 ( C O ~ ,  NIALvAR, MEYER) Let {ek}k,n be an orthonormal ba- 
sis o~L’[o, 11. Thefamily 

(8.97) 

is an orthonormal basis of L2(R). 

Proof ’. Since & ( l i l ( t  - u p ) )  is symmetric with respect to up and antisymmetric 
with respect to up+l it follows from (8.86) that gp,k E wp for all k E M. Proposition 
8.6 proves that the spaces WP and Wq are orthogonal for p # q and that Lz(R) = 
S$z-,WJ’. To prove that (8.97) is an orthonormal basis of L’(R) we thus need to 
show that 

(8.98) 

is an orthonormal basis of WP. 
Let us prove first that any f E WP can be decomposed over this family. Such 

a function can be written f (t) = gp(t)h(t )  where the restriction of h to [ U , , U ~ + ~ ]  is 
arbitrary, and h is respectively symmetric and antisymmetric with respect to up and 
up+].  Since {i?k})kEN is an orthonormal basis of L2[0, I ] ,  clearly 

(8.99) 
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is an orthonormal basis of Lz[a,,a,+l]. The restriction of h to [a,,u,+l] cantherefore 
be decomposed in this basis. This decomposition remains valid for all t E [a, - 
v , , ~ , + ~  +v,+~] sinceh(t) andtheZ~”Z~k(Z~’(r-a,)) havethesamesymmetrywith 
respecttoa, anda,+l. Thereforef(t) = h(t)g,(t) canbedecomposedoverthefamily 
(8.98). The following lemma finishes the proof by showing that the orthogonality of 
functions in (8.98) is a consequence of the orthogonality of (8.99) in L2[a,,a,+l]. 

Lemma 8.1 Iffb(t) = hb(t)gp(t) E WP andfc ( t )  = hc(t)gp(t) E Wp, then 

Let us evaluate 

We know that hb (f) and h, (t) are symmetric with respect to a, so 

Since &(t)  + &(2a,+l- t) = 1 over this interval, we obtain 

The functions hb(f) and h,(t) are antisymmetric with respect to a,+l so hb(t)hz(t) is 
symmetric about a,+]. We thus prove similarly that 

a P + l  + q P + l  J hb(t) h,*(t) g;+l(o = r1 hb(t)h::(t)dt. (8.103) 

Sinceg,(t) = 1forrE [a,+71,,a,+~ -~p+~],inserting(8.102)and(8.103)in(8.101) 

Theorem 8.10 is similar to the block basis Theorem 8.3 but it has the advantage of 
using smooth windows g p  as opposed to the rectangular windows that are indicator 
functions of [ap,  ap+l] .  It yields smooth functions g p , k  only if the extension i?k of ek 
is a smooth function. This is the case for the cosine lV basis { e k ( r )  = d c o s [ ( k +  
1/2)7Tt]}k~N of Lz[O, 11 defined in Theorem 8.6. Indeed cos[(k+ 1/2)7rt] has a 
natural symmetric and antisymmetric extension with respect to 0 and 1 over R. 
The following corollary derives a local cosine basis. 

Corollary 8.1 The family of local cosinefunctions 

a P + l  -qP+  I a P + l - ‘ l P + l  

proves the lemma property (8.100). 

is an orthononnal basis of L2(R). 
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Cosine-Sine I Basis Other bases can be constructed with functions having a dif- 
ferent symmetry. To maintain the orthogonality of the windowed basis, we must 
ensure that consecutive windows g ,  and gp+l are multiplied by functions that have 
an opposite symmetry with respect to up+l.  For example, we can multiply gzp 
with functions that are symmetric with respect to both ends UZ, and uzP+l, and 
multiply g2,+l with functions that are antisymmetric with respect to uzP+l and 
u2,+2. Such bases can be constructed with the cosine I basis { ~ X R  cos(7Tkt)}k,Z 
defined in Theorem 8.5, with XO = 2-'12 and X k  = 1 for k # 0, and with the sine 
I family {dsin(.rrkt)}k,N*, which is also an orthonormal basis of L2[0, 11. The 
reader can verify that if 

then { g p , k } k E N : p E Z  is an orthonormal basis of L2 (a). 

Lapped Transforms in Frequency Lapped orthogonal projectors can also divide 
the frequency axis in separate overlapping intervals. This is done by decomposing 
the Fourier transform j ( w )  of f ( t )  over a local cosine basis defined on the fre- 
quency axis {gp,k(w)}pEZ,REN. This is also equivalent to decomposing f ( t )  on its 
inverse Fourier transform { $ ~ p , ~ ( - t ) } p E Z , k E N .  As opposed to wavelet packets, 
which decompose signals in dyadic frequency bands, this approach offers complete 
flexibility on the size of the frequency intervals [up - qp,up+l +vP+l]. 

A signal decomposition in a Meyer wavelet or wavelet packet basis can be 
calculated with a lapped orthogonal transform applied in the Fourier domain. In- 
deed, the Fourier transform (7.92) of a Meyer wavelet has a compact support and 
{ 1 $ ( 2 j w ) l } j , ~  can be considered as a family asymmetric windows, whose sup- 
ports only overlap with adjacent windows with appropriate symmetry properties. 
These windows cover the whole frequency axis: CT=T, 1 $ ( 2 j ~ ) ] ~  = 1. As a re- 
sult, the Meyer wavelet transform can be viewed as a lapped orthogonal transform 
applied in the Fourier domain. It can thus be efficiently implemented with the 
folding algorithm of Section 8.4.4. 

8.4.3 Local Cosine Bases 

The local cosine basis defined in (8.104) is composed of functions 
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with a compact support [up - q,, up+l + qp+l].  The energy of their Fourier trans- 
forms is also well concentrated. Let 2, be the Fourier transform of g,, 

where 
T ( k  + 1 / 2 )  

1, 
<p,k = 

The bandwidth of 2 p , k  around <p,k and -<p,k is equal to the bandwidth of 2,. If 
the sizes qp and qp+l of the variation intervals of g, are proportional to l,, then 
this bandwidth is proportional to 1;’. 

For smooth functions f, we want to guarantee that the inner products (f, g p , k )  

have a fast decay when the center frequency <p,k increases. The Parsevd formula 
proves that 

The smoothness of f implies that I f ( w )  I has a fast decay at large frequencies w. 
This integral will therefore become small when <p,k increases if g ,  is a Smooth 
window, because I 2, (w ) I has a fast decay. 

Window Design 
which defines it in (8.85). This profile must satisfy 

The regularity of g ,  depends on the regularity of the profile ,8 

p2(t)+p2(-t) = 1 f o r t e  [-1,1], ( 8 . 1 0 5 )  

p l u s P ( t ) = O i f t < - l a n d P ( t ) = l i f t > l .  Oneexampleis 

,&(t)=sin - ( I + t )  f o r t €  [ - 1 , 1 ] ,  (I ) 
but its derivative at t = f l  is non-zero so p is not differentiable at f l .  Windows 
of higher regularity are constructed with a profile p k  defined by induction fork 2 0 

p k + l ( t ) = p k ( s i n ; )  f o r t €  [ - 1 , 1 1 .  

For any k 2 0, one can verify that ,8k satisfies ( 8 . 1 0 5 )  and has 2‘ - 1 vanishing 
derivatives at t = f l .  The resulting ,f3 and g ,  are therefore 2k - 1 times continu- 
ously differentiable. 

by 
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FIGURE 8. I8 The Heisenberg boxes of local cosine vectors define aregular grid 
over the time-frequency plane. 

Heirenberg Box A local cosine basis can be symbolically represented as an exact 
paving of the time-frequency plane. The time and frequency region of high energy 
concentration for each local cosine vector g p , k  is approximated by a Heisenberg 
rectangle 

as illustrated in Figure 8.18. A local cosine basis {gp,k}kEFy,p&c corresponds to a 
time-frequency grid whose size varies in time. 

Figure 8.19(a) shows the decomposition of a digital recording of the sound 
“ p a ”  coming from the word “greasy”. The window sizes axe adapted to the 
signal structures with the best basis algorithm described in Section 9.4.2. High 
amplitude coefficients are along spectral lines in the time-frequency plane, which 
correspond to different harmonics. Most Heisenberg boxes appear in white, which 
indicates that the corresponding inner product is nearly zero. This signal can 
thus be approximated with a few non-zero local cosine vectors. Figure 8.19(b) 
decomposes the same signal in a local cosine basis composed of small windows 
of constant size. The signal time-frequency structures do not appear as well as in 
Figure 8.19(a). 

Translation and Phase Cosine modulations as opposed to complex exponentids 
do not provide easy access to phase information. The translation of a signal can 
induce important modifications of its decomposition coefficients in a cosine basis. 
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Consider for example 

Since the basis is orthogonal, (f; g p , k )  = 1 ,  and all other inner products are zero. 
After a translation by T = I,/ (2k + 1 )  

The opposite parity of sine and cosine implies that (fT, gp,k)  M 0. In contrast, 
(fT, g p , k - l )  and (fT, g p , k + l )  become non-zero. After translation, a signal com- 
ponent initially represented by a cosine of frequency r ( k  + 1/2)/ZP is therefore 
spread over cosine vectors of different frequencies. 

This example shows that the local cosine coefficients of a pattern are severely 
modified by any translation. We are facing the same translation distortions as 
observed in Section 5.4 for wavelets and time-frequency frames. This lack of 
translation invariance makes it difficult to use these bases for pattern recognition. 

8.4.4 Discrete Lapped Transforms 

Lapped orthogonal bases are discretized by replacing the orthogonal basis of 
L2[0, 11 with a discrete basis of CN, and uniformly sampling the windows g,. 
Discrete local cosine bases are derived with discrete cosine-IV bases. 

Let { ~ , } ~ , z  be a sequence of half integers, a, + 1 / 2  E Z with 

lim a ---00 and lim a -+-00. 

A discrete lapped orthogonal basis is constructed with the discrete projectors P,  
defined in (8.93). These operators are implemented with the sampled windows 
gp[n]  = g ,  (n) .  Suppose that {ek,l[n]}O<k<l is an orthogonal basis of signals defined 
for 0 5 n < 1. These vectors are extended over Z with a symmetry with respect to 
- 1 /2 and an antisymmetry with respect to Z - 1 /2. The resulting extensions have 
a period 41 and are defined over [-21,21- 11 by 

,+-XI p -  ,++XI ,- 

el:k [n] i f n  E [ O , Z - l ]  
el ,k[-l-n] if n E [ - Z , - l ]  { -eR[21 + n] if n E [-2Z, -I - 11 

-ek[2Z- 1 -n] if n E [Z;2Z- 11 . &;k[n] = 

The following theorem proves that multiplying these vectors with the discrete 
windows gp[n]  yields an o r t h o n o d  basis of 12(Z). 
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FIGURE 8. I9 (a): The signal at the top is a recording of the sound “grea” in the 
word “greasy”. This signal is decomposed in a local cosine basis with windows of 
varying sizes. The larger the amplitude of I ( f ,  g p , k )  I the darker the gray level of the 
Heisenberg box. (b): Decomposition in a local cosine basis with small windows 
of constant size. 

Theorem 8.11 (COIFMAN, MALVAR, MEYER) Suppose that { e k , l } O s k < l  is an or- 
thogonal basis of C’, for any 1 > 0. The family 

is a lapped orthonormal basis of 12(Z). 

(8.106) 

The proof of this theorem is identical to the proof of Theorem 8.10 since we 
have a discrete equivalent of the spaces WP and their projectors. It is also based on 
a discrete equivalent of Lemma 8.1, which is verified with the same derivations. 
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Beyond the proof of Theorem 8.1 1, we shall see that this lemma is important for 
quickly computing the decomposition coefficients (f, gp,k) .  

Lelllma 8.2 Any f b  [n] = g ,  [n] hb [n] E w p  and fc [n] = g, [n] hc [n] E wp SUtisfr 

( f b , f c )  = fb[n]f:[n] = hb[n]h:[n]. (8.107) 

Theorem 8.1 1 is similar to the discrete block basis Theorem 8.4 but constructs 
an orthogonal basis with smooth discrete windows g ,  [n] . The discrete cosine IV 

ap-qp<n<ap+l+~p+i  ap<n<ap+l 

bases 

{ e l . k ~ n l = ~ c O s [ ; ( k + l ,  (n+;)]} O<k<l 

have the advantage of including vectors that have a natural symmetric and anti- 
symmetric extension with respect to -1/2 and 1 - 1/2. This produces a discrete 
local cosine basis of l2 (Z) . 
Corollary 8.2 The family 

is an orthonormal basis of 1’ (Z). 

Fast Lapped Orthogonal Transform A fast algorithm introduced by Malvar [42] 
replaces the calculations of ( f , g p , k )  by a computation of inner products in the 
original bases {el ,k}Osk<[,  with a folding procedure. In a discrete local cosine 
basis, these inner products are calculated with the fast DCT-IV algorithm. 

To simplify notations, as in Section 8.4.1 we decompose Z, = [up - vP, a p + l  + 
77,+1] into Z p  = 0, u C, u 0,+1 with 

o,= [a,-77p,a,+rlpl and c,= [a ,+77p,ap+1-77p+11.  

The orthogonal projector Pp on the space WP generated by {gp,k}Olk<lp was 
calculated in (8.93): 

where h, is a folded version of f: 
P,f[nI = g,[nlh,[nl, 

g, [.I f [.I + g ,  Pa, - .I f Pa, - .I i fnEO, 
hpbl = fin1 ifnEC, . (8.109) { g,[.lf[nl -g$a,+1 -nIf[%+1-.1 ifn E %+I 

Since g p , k  E WP, 

(f, g p , k )  = P P f ,  = (gph,  7 g,z.rp,k). 
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Since Zip,&] = el, ,~[n] for n E [up,up+l],  Lemma 8.2 derives that 

This proves that the decomposition coefficients ( f ,gp ,k)  can be calculated by 
folding f into h, and computing the inner product with the orthogonal basis 
{ ~ ~ , , R ) o s R < I ,  defined over [ ~ , , a P + l ] .  

For a discrete cosine basis, the DCT-IV coefficients 

are computed with the fast DCT-IV algorithm of Section 8.3.4, which requires 
O( l p  log, Z,) operations. The inverse lapped transform recovers h, [n] over 

sine IV basis, this is done with the fast inverse DCkIV, whch is identical to the 
forward DCT-IV and requires O(1, log, I , )  operations. The reconstruction off  is 
done by applying (8.95) which proves that 

[ap,ap+Il frcnn the 1, imm products { ( h p , e l p , k ) [ a  , a p + i ] l O ~ k < l p .  In a local co- 

(8.112) 
p=-w p=-w 

Let us denote 0; = [up - qp,u,] and 0; = [up, up + q,]. The restriction of 
(8.112) to [u,,u,+I] gives 

gp[~]~,[~l+~,-l[~l~,-l~~l i f n  E 0; 

g p b l  h, [.I + g,+1 [.I h,+l [.I if n E op+1 
i f n e e ,  

The symmetry of the windows guarantees that g,-1 [n] = g ,  [2u, -n] and gp+l [n] = 
g,[2u,+1 - n].  Since h,-1 [n] is antisymmetric with respect to up and h,+l [n] is 
symmetric with respect to up+l, we can recover f [ n ]  on [a,: up+l] from the values 
of hp-l[n],  hp[n] and h,+l[n] computed respectively on [u,-l,up], [ u p , u p + ~ ] ,  and 
[%+l9 %+zl: 

g ,  1.1 h, [.I - g ,  [2a, - .I h p -  1 12% - 4 i f n E o p '  
fbl = hp[nI i fnEC,  (8.113) { g,[~l~p[~l+g,[2~,+l-~l~p+l[2~p+l -.I i fn  E op+1 

This unfolding formula is implemented with O(Zp) calculations. The inverse local 
cosine transform thus requires O(Z,log2Z,) operations to recover f [ n ]  on each 
interval [up,up+l] of length Z,. 
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Finite Signals If f[n] is defined for 0 5 n < N, the extremities of the first and 
last interval must be a0 = -1/2 and uq = N - 1/2. A fast local cosine algorithm 
needs O(Z, log, Zp) additions and multiplications to decompose or reconstruct the 
signal on each interval of length Zp. On the whole signal of length N, it thus needs 
a total of O(Nlogz L) operations, where L = supolp<q Zp. 

Since we do not know the values of f [ n ]  for n < 0, at the left border we set 
170 = 0. This means that go[n] jumps from 0 to 1 at n = 0. The resulting transform 
on the left boundary is equivalent to a straight DCT-IV. Section 8.3.2 shows that 
since cosine IV vectors are even on the left boundary, the DCT-IV is equivalent 
to a symmetric signal extension followed by a discrete Fourier transform. This 
avoids creating discontinuity artifacts at the left border. 

At the right border, we also set vq = 0 to limit the support of gq-l to [O,N - 11. 
Section 8.4.4 explains that since cosine IV vectors are odd on the right boundary, 
the DCT-IV is equivalent to an antisymmetric signal extension. If f[N - 11 # 
0, this extension introduces a sharp signal transition that creates artificial high 
frequencies. To reduce this border effect, we replace the cosine IV modulation 

gq-l,&[n] = g q - l [ n ] J 1 , s  Zq- 1 [ n ( k + ; ) 5 ]  14- 1 

by a cosine I modulation 

The orthogonality with the other elements of the basis is maintained because these 
cosine I vectors, like cosine IV vectors, are even with respect to Since 
cos[nkn - uq-l/Zq-l] is also symmetric with respect to uq = N - 1/2, comput- 
ing a DCT-I is equivalent to performing a symmetric signal extension at the right 
boundary, which avoids discontinuities. In the fast local cosine transform, we thus 
compute a DCT-I of the last folded signal hq-l instead of a DCT-IV. The recon- 
struction algorithm uses an inverse DCT-I to recover hq-l from these coefficients. 

8.5 LOCAL COSINE TREES 

Corollary 8.1 constructs local cosine bases for any segmentation of the time axis 
into intervals [up,up+l] of arbitrary lengths. This result is more general than 
the construction of wavelet packet bases that can only divide the frequency axis 
into dyadic intervals, whose length are proportional to powers of 2. However, 
Coifman and Meyer [138] showed that restricting the intervals to dyadic sizes 
has the advantage of creating a tree structure similar to a wavelet packet tree. 
“Best” local cosine bases can then be adaptively chosen with the fast dynamical 
programming algorithm described in Section 9.4.2. 
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8.5. I 

A local cosine tree includes orthogonal bases that segment the time axis in dyadic 
intervals. For any j 2 0, the interval [0, 11 is divided in 2 j  intervals of length 2-j 
by setting 

aPJ = p2- j  for o 5 p 5 2j.  

These intervals are covered by windows g,,j defined by (8.85) with a support 
[ a p , j  - ~ , a p + ~ , j  + VI: 

Binary Tree of Cosine Bases 

B(q-' (t - a p , j ) )  i f f  E [ a p , j  - V r a p , j  + 771 

i f f  E [ a p , j + 7 ) : a p + 1 , j - 7 ) ]  (8.114) 
g ~ > j ( ~ )  = P ( q - I ( a p + l , j - t ) )  i f f  E [ a p + l , j - ~ , a p + l , j + 7 ) ]  ir otherwise 

To ensure that the support of gp, j  is in [0, 11 for p = 0 and p = 2 j  - 1, we modify 
respectively the left and right sides of these windows by setting go, j ( t )  = 1 if 
t E [0:77], and g a - l , j ( t )  = 1 if t E [ l -v ,  11. It follows that g0,o = l[o,,].  The size 
q of the raising and decaying profiles of g,,j is independent of j .  To guarantee 
that windows overlap only with their two neighbors, the length ap+l,j - a p ,  j - - 2-j 
must be larger than the size 27) of the overlapping intervals and hence 

7)- < 2-i- 1. (8.115) 

Similarly to wavelet packet trees, a local cosine tree is constructed by recur- 
sively dividing spaces built with local cosine bases. A tree node at a depth j and 
a position p is associated to a space Wp generated by the local cosine family 

23; = { g p , j ( t )  cos [ 7i (k + ;) 3]} . (8.116) 
kEZ 

Any f E W{ has a support in [ a , ~  - q,ap+l,j + 7)] and can be written f ( t )  = 
g p , j ( t )  h( t )  where h(t)  is respectively symmemc and antisymmetric with respect 
to ap,j and up+l,j. The following proposition shows that W; is divided in two 
orthogonal spaces W;:l and W;;'' that are built over the two half intervals. 

Proposition 8.7 (COIFMAN, MEYER) For any j 1 0 and p < 2j, the spaces W;:, 
and W z l  are orthogonal and 

wp = w;:l @ W Z ' .  (8.117) 

Proof '. The orthogonality of W::l and W;:T1 is proved by Proposition 8.6. We 
denote Pp,j  the orthogonal projector on Ws. With the notation of Section 8.4.1, this 
projector is decomposed into two splitting projectors at up,j and u,+I,~: 

Pp;/ = P&j,~Pipp+l , j :~ .  
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Equation (8.90) proves that 

- +  
P ~ p , j + l  +%+l,i+l = P&,,j+l,r,P~p+Z,j+lrq - Pnp,j:qPip+l,j,r, = PPi .  

This equality on orthogonal projectors implies (8.1 17). 

The space Wp located at the node ( j ,  p )  of a local cosine tree is therefore the sum of 
the two spaces W;Tl and W g l  located at the children nodes. Since g0,o = 
it follows that W: = L2 [0,1]. The maximum depth J of the binary tree is limited 
by the support condition q 5 2-J-1, and hence 

(8.118) 

Admissible Local Cosine Bases As in a wavelet packet binary tree, many local 
cosine orthogonal bases are constructed from this local cosine tree. We call admis- 
sible binary tree any subtree of the local cosine tree whose nodes have either 0 or 
2 children. Let { j i ,  pi}15jsI be the indices at the leaves of a particular admissible 
binary tree. Applying the splitting property (8.117) along the branches of this 
subtree proves that 

Hence, the union of local cosine bases U;==,B; is an orthogonal basis of L2[0, 11. 
This can also be interpreted as a division of the time axis into windows of various 
length, as illustrated by Figure 8.20. 

The number BJ of different dyadic local cosine bases is equal to the number of 
different admissible subtrees of depth at most J .  For J = - 10gz(277), Proposition 
8.1 proves that 

Figure 8.19 shows the decomposition of a sound recording in two dyadic local 
cosine bases selected from the binary tree. The basis in (a) is calculated with the 
best basis algorithm of Section 9.4.2. 

L2[0,1] = w; = e;==,w;. 

21/('h) < - BJ 5 23/(8q). 

Choice of q At all scales 2j, the windows g,,j of a local cosine tree have raising 
and decaying profiles of the same size q. These windows can thus be recombined 
independently from their scale. If r] is small compared to the interval size 2-j 
then g,,j has a relatively sharp variation at its borders compared to the size of its 
support. Since 77 is not proportional to 2-j, the energy concentration of k,,j is 
not improved when the window size 2-j increases. Even though f may be very 
smooth over [a,,j,ap+l,j], the border variations of the window create relatively 
large coefficients up to a frequency of the order of r/q.  

To reduce the number of large coefficients we must increase 77, but this also 
increases the minimum window size in the tree, which is 2-' = 27. The choice 
of q is therefore the result of a trade-off between window regularity and the max- 
imum resolution of the time subdivision. There is no equivalent limitation in the 
construction of wavelet packet bases. 
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1 I 

FIGURE 8.20 An admissible binary tree of local cosine spaces divides the time 
axis in windows of dyadic lengths. 

8.5.2 Tree of Discrete Bases 

For discrete signals of size N, a binary tree of discrete cosine bases is constructed 
like a binary tree of continuous time cosine bases. To simplify notations, the sam- 
pling distance is normalized to 1. If it is equal to N-I then frequency parameters 
must be multiplied by N. 

The subdivision points are located at half integers: 

ap,,=pN2-j-1/2 f o r O < p < 2 j .  

The discrete windows are obtained by sampling the windows gp(t) defined in 
(8.114), gp,j[n] = gp,j(n). The same border modification is used to ensure that the 
support of all g,,j [n] is in [O; N - 11. 

A node at depth j and position p in the binary tree corresponds to the space 
Wj” generated by the discrete local cosine family 

Since g0,o = 1[0,N-1], the space W,O at the root of the tree includes any signal 
defined over 0 5 n < N ,  so W: = C N .  As in Proposition 8.7 we verify that Wj” is 
orthogonal to W; for p # q and that 

wj” = w2p a3 w;:y. (8.119) 

The splitting property (8.1 19) implies that the union of local cosine families BT 
located at the leaves of an admissible subtree is an orthogonal basis of W! = CN.  
The minimum window size is limited by 2q 5 2-jN so the maximum depth of 
this binary tree is J = log, $ . One can thus construct more than 2”-’ = 2N/(473) 
different discrete local cosine bases within this binary tree. 
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Fast Calculations The fast local cosine transform algorithm described in Section 
8.4.4 requires O(2-jN10g2(2-jN)) operations to compute the inner products off 
with the 2-jN vectors in the local cosine family I?;. The total number of operations 
to perform these computations at all nodes ( j ,  p) of the tree, for 0 5 p < 2j and 
0 5 j 1. J ,  is therefore O(NJlog ,N) .  The local cosine decompositions in Figure 
8.19 are calculated with this fast algorithm. To improve the right border treatment, 
Section 8.4.4 explains that the last DCT-IV should be replaced by a DCT-I, at each 
scale 2j. The signal f is recovered from the local cosine coefficients at the leaves 
of any admissible binary tree, with the fast local cosine reconstruction algorithm, 
which needs O(NlogzN)  operations. 

8.5.3 Image Cosine Quad-Tree 

A local cosine binary tree is extended in two dimensions into a quad-tree, which 
recursively divides square image windows into four smaller windows. This separa- 
ble approach is similar to the extension of wavelet packet bases in two dimensions, 
described in Section 8.2. 

Let us consider images of fl pixels. A node of the quad-tree is labeled by 
its depth j and two indices p and q. Let gp,j[n] be the discrete one-dimensional 
window defined in Section 8.5.2. At the depth j, a node (p, q )  corresponds to a 
separable space 

wp’” = wj” @ w;, (8.120) 

which is generated by a separable local cosine basis of 2-’jN2 vectors 

We know from (8.119) that 

Wy = W;$l @ W;$:’ and W; = W E 1  @WZq+’ j + l  . 

Inserting these equations in (8.120) proves that W? is the direct sum of four 
orthogonal subspaces: 

wp’” = WZP& J+1 @WZP+l& I+ 1 @WZP,24+1 j+ 1 @WZP+1,2q+l If1 (8.121) 

A space W7lq at a node (j, p, q)  is therefore decomposed in the four subspaces 
located at the four children nodes of the quad-tree. This decomposition can also 
be interpreted as a division of the square window gp,j[nl]gq,j[nz] into four sub- 
windows of equal sizes, as illustrated in Figure 8.21. The space located at the root 
of the tree is 

Wt0 = W,O@*. (8.122) 
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FIGURE 8.2 I 
image. It is divided into four subspaces that cover smaller squares in the image. 

Functions in Ws’q have a support located in a square region of the 

FIGURE 8.22 The grid shows the support of the windows gj,p[nl] g j , q [ n ~ ]  of a 
“best” local cosine basis selected in the local cosine quad-tree. 

It includes all images of N 2  pixels. The size q of the raising and decaying 
profiles of the one-dimensional windows defines the maximum depth J = log, 
of the quad-tree. 

Admissible Quad-Trees An admissible subtree of this local cosine quad-tree has 
nodes that have either 0 or four children. Applying the decomposition property 
(8.121) along the branches of an admissible quad-tree proves that the spaces W:,q’ 
located at the leaves decompose W:)’ in orthogonal subspaces. The union of the 
corresponding two-dimensional local cosine bases l?: ’qL is therefore an orthogonal 
basis of W;”. We proved in (8.42) that there are more than 24J-’ = 2N2/1672 
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different admissible trees of maximum depth J = log, $ . These bases divide the 
image plane into squares of varying sizes. Figure 8.22 gives an example of image 
decomposition in a local cosine basis corresponding to an admissible quad-tree. 
This local cosine basis is selected with the best basis algorithm of Section 9.4.2. 

Fast Calculations The decomposition of an image f [ n ]  over a separable local 
cosine family t3,P9q requires O(2-,jN2 10g2(2-jN)) operations, with a separable 
implementation of the fast one-dimensional local cosine transform. For a full 
local cosine quad-tree of depth J ,  these calculations are performed for 0 5 p ,  q < 2j 
and 0 5 j 5 J, which requires O(N2Jlog2N) multiplications and additions. The 
original image is recovered from the local cosine coefficients at the leaves of any 
admissible subtree with O(N2 log,N) computations. 

8.6 PROBLEMS 

8.1. ' Prove the discrete splitting Theorem 8.2. 
8.2. Meyer wavelet packets are calculated with a Meyer !onjugate mirror filter 

(7.89). Compute the size of the frequency support of $7 as a function of 2j. 
Study the convergence of $ ~ ~ , , ( t )  when the scale 2j goes to +m. 

Extend the separable wavelet packet tree of Section 8.2.2 for discrete p- 
dimensional signals. Verify that the wavelet packet tree of a p-dimensional 
discrete signal of NP samples includes O(NP log,N) wavelet packet coefficients 
that are calculated with O(K NP log,N) operations if the conjugate mirror filter 
h has K non-zero coefficients. 

8.4. ' Anisotropic wavelet packets $; [a - 2L-jn,] +; [b - 2L-1n2] may have different 
scales 2j and 2' along the rows and columns. A decomposition over such wavelet 
packets is calculated with a filter bank that filters and subsamples the image 
rows j - L times whereas the columns are filtered and subsampled Z - L times. 
For an image f [ n ]  of fl pixels, show that a dictionary of anisotropic wavelet 
packets includes O(p[log, N]') different vectors. Compute the number of 
operations needed to decompose f in this dictionary. 

8.5. ' HartZey transjonn Let cas(t) = cos(t) +sin(t). We define 

8.3. 

(a) Prove that B is an orthonormal basis of CN.  
@) For any signal f [n] of size N ,  find a fast Hartley transform algorithm based 

on the PPT, which computes { (f, gk)}O5k<N with O(Nlog, N )  operations. 
8.6. ' Provethat {&.in[(k+1/2).rrt]}kEZisanorthonormalbasisofLZ[O, 11. Find 

8.7. ' Prove that {&sin(k.rrt)}kEZ is an orthonormal basis of Lz[O, 11. Find a 

8.8. Lapped Fourier basis 

a corresponding discrete orthonormal basis of CN.  

corresponding discrete orthonormal basis of CN. 

(a) Construct alapped orthogonal basis { j p : k ) ( p , k ) E ~  of L2(R) fromtheFourier 
basis {exp(i2.rrkt)}kEz of Lz[O, 11. 
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(b) Explain why this local Fourier basis does not contradict the Balian-Low 
Theorem 5.6. 

(c) Let f E L2(IR) be such that I j ( w ) I  = 0((1+ for some p > 0. 
compute the rate of decay of I (f, j p , k )  I when the frequency index Ikl in- 
creases. Compare it with the rate of decay of I ( f , g p , k ) l ,  where g p , k  is 
a local cosine vector (8.104). How do the two bases compare for signal 
processing applications? 

Describe a fast algorithm to compute the Meyer orthogonal wavelet transform 
with a lapped transform applied in the Fourier domain. Calculate the numerical 
complexity of this algorithm for periodic signals of size N. Compare this result 
with the numerical complexity of the standard fast wavelet transform algoritbm, 
where the convolutions with Meyer conjugate mirror filters are calculated with 
an m. 

8.9. 

8.10. Arbitrary Walsh tilings 

(a) Prove that two Walsh wavelet packets $$, and $$,n, are orthogonal if their 
Heisenberg boxes defined in Section 8.1.2 do not intersect in the time- 
frequency plane [761. 

(b) A dyadic tiling of the time-frequency plane is an exact cover {[2jn, 
2j(n + l)] x [k7r2-j, ( k  + 1)7r2-j]}(j,n:p)a, where the index set Z is ad- 
justed to guarantee that the time-frequency boxes do not intersect and that 
they leave no hole. Prove that any such tiling corresponds to a Walsh 
orthonormal basis of L2@) {$In}(p,j,n)a. 

Double tree We want to construct a dictionary of block wavelet packet bases, 
which has the freedom to segment both the time and frequency axes. For this 
purpose, as in a local cosine basis dictionary, we construct a binary tree, which 
divides [0,1] in 2j intervals [p2-j, ( p +  1)2-j], that correspond to nodes indexed 
by p at the depth j of the tree. At each of these nodes, we construct another 
tree of wavelet packet orthonormal bases of L2[p2-j, ( p  + 1)2-j] [208]. 

(a) Define admissible sub-trees in this double tree, whose leaves correspond to 
orthonormal bases of L2 [O: 11. Give an example of an admissible tree and 
draw the resulting tiling of the time-frequency plane. 

(b) Give a recursive equation that relates the number of admissible sub-trees 
of depth J + 1 and of depth J .  Give an upper bound and a lower bound for 
the total number of orthogonal bases in this double tree dictionary. 

(c) Can one find a basis in a double tree that is well adapted to implement an 
efficient transform code for audio signals? Justify your answer. 

An anisotropic local cosine basis for images is constructed with rectangular 
windows that have a width 2j that may be merent from their height 2'. Simi- 
larly to a local cosine tree, such bases are calculated by progressively dividing 
windows, but the horizontal and vertical divisions of these windows is done 
independently. Show that a dictionary of anisotropic local cosine bases can be 
represented as a graph. Implement in WAVELAB an algorithm that decomposes 
images in a graph of anisotropic local cosine bases. 

8.1 1. 

8.12. 



IX 
AN APPROXIMATION TOUR 

t is time to wonder why are we constructing so many different orthonormal 
bases. In signal processing, orthogonal bases are of interest because they can I efficiently approximate certain types of signals with just a few vectors. l k o  

examples of such applications are image compression and the estimation of noisy 
signals, which are studied in Chapters 10 and 11. 

Approximation theory studies the error produced by different approximation 
schemes in an orthonormal basis. A linear approximation projects the signal over 
A4 vectors chosen a priori. In Fourier or wavelet bases, this linear approximation is 
particularly precise for uniformly regular signals. However, better approximations 
are obtained by choosing theM basis vectors depending on the signal. Signals with 
isolated singularities are well approximated in a wavelet basis with this non-linear 
procedure. 

A further degree of freedom is introduced by choosing the basis adaptively, 
depending on the signal properties. From families of wavelet packet bases and 
local cosine bases, a fast dynamical programming algorithm is used to select the 
“best” basis that minimizes a Schur concave cost function. The approximation 
vectors chosen from this “best” basis outline the important signal structures, and 
characterize their time-frequency properties. Pursuit algorithms generalize these 
adaptive approximations by selecting the approximation vectors from redundant 
dictionaries of time-frequency atoms, with no orthogonality constraint. 

376 
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9. I LINEAR APPROXIMATIONS 

A signal can be represented with M parameters in an orthonormal basis by keeping 
M inner products with vectors chosen a priori. In Fourier and wavelet bases, 
Sections 9.1.2 and 9.1.3 show that such a linear approximation is efficient only 
if the signal is uniformly regular. Linear approximations of random vectors are 
studied and optimized in Section 9.1.4. 

9. I. I 

Let B = { gm}mEN be an orthonormal basis of a Hilbert space H. Any f E H can 
be decomposed in this basis: 

Linear Approximation Error 

+E 

m=O 

If instead of representing f by all inner products { (f, gm)}mEN we use only the 
first M, we get the approximation 

M-I 

m=O 

This approximation is the orthogonal projection off over the space VM generated 
by {gm}O<m<M. Since 

+m 

f -fM = ( f s g m )  g in ;  
m=M 

the approximation error is 

+W 

EZWI = I I ~ - ~ M I I ’  = I I f , g m ) I ’ .  (9.1) 
m=M 

The fact that l l f l 1 2  = I (f, g m )  1’ < +KJ implies that the error decays to zero: 

lim q[M] = 0. 
M++m 

However, the decay rate of E I  [MI as M increases depends on the decay of I (f , g,) I 
as m increases. The following theorem gives equivalent conditions on the decay 
of 61 [MI and I (f g m )  I. 
Theorem9.1 For any s > l/2, there exists A , B  > 0 such that if 
CLZo ImIZs I (f, 8,) I’ < +KJ then 

and hence q[M] = O ( M - ~ ) .  
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Proof'. By inserting (9.1), we compute 

M=O m=O M=O 

For any s > 1/2 

which implies that CE=oMa-l N m2 and hence proves (9.2). 
To verify that EI [MI = o(M-'"), observe that EI [m] 2 €1 [MI for m I M, so 

Since E,'=", m2-1q[m] < +ca it follows that 

+m 

lim ma-' q[m] = 0. 
M++m 

m=M/Z 

Moreover, there exists C > 0 such that C ~ ~ ~ / z m z s - l  2 CM2, so (9.3) implies that 

This theorem proves that the linear approximation error off in the basis B decays 
faster than M-2S i f f  belongs to the space 

limM++m EI [M] MZS = 0. 

f 

The next sections prove that if B is a Fourier or wavelet basis, then W B , ~  is a 
Sobolev space. Observe that the linear approximation off from the first M vectors 
of B is not always precise because these vectors are not necessarily the best ones 
with which to approximate f. Non-linear approximations calculated with vectors 
chosen adaptively depending upon f are studied in Section 9.2. 

9. I .2 

The Fourier basis can approximate uniformly regular signals with few low- 
frequency sinusoydal waves. The approximation error is related to the Sobolev 
differentiability. It is also calculated for discontinuous signals having a bounded 
total variation. 

Linear Fourier Approximations 

Sobolev Differentiabiliq The smoothness of f  can be measured by the number 
of times it is differentiable. However, to distinguish the regularity of functions that 
are n - 1 times, but not n times, continuously differentiable, we must extend the 
notion of differentiability to non-integers. This can be done in the Fourier domain. 
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Recall that the Fourier transform of the derivative f ' ( t )  is i w j ( w ) .  The Plancherel 
formula proves that f' E L'@) if 

J --3o J --m 

This suggests replacing the usual pointwise definition of the derivative by a defi- 
nition based on the Fourier transform. We say that f E L2(B) is differentiable in 
the sense of Sobolev if 

J-00 

This integral imposes that I j ( w ) l  must have a sufficiently fast decay when the 
frequency w goes to +x. As in Section 2.3.1, the regularity o f f  is measured 
from the asymptotic decay of its Fourier transform. 

This definition is generalized for any s > 0. The space Ws(B) of Sobolev 
functions that are s times differentiable is the space of functions f E L2(B) whose 
Fourier transforms satisfy [72] 

If s > n + 1/2, then one can verify (Problem 9.2) that f is n times continuously 
differentiable. We define the space Ws[O, 11 of functions on [O, 11 that are s times 
differentiable in the sense of Sobolev as the space of functions f E L'[O, 11 that 
can be extended outside [0,1] into a function f E Ws(B). 

Fourier Approximations Theorem 3.2 proves (modulo a change of variable) that 
{ei2rmr}mEZ is an orthonormal basis of L2[0,1]. We can thus decompose f E 
L2 [0,1] in the Fourier series 

+!n 

1 
with 

(f(u),ei2rmu) = 1 f(u)e-iZrmudu. 

The decomposition (9.6) defines a periodic extension off for all t E B. The decay 
of the Fourier coefficients I ( f ( u ) ,  I as m increases depends on the regularity 
of this periodic extension. To avoid creating singularities at t = 0 or at t = 1 with 
this periodization, we suppose that the support o f f  is strictly included in (0,l). 
One can then prove (not trivial) that i f f  E L2[0, 11 is a function whose support is 
included in (0, l), then f E Ws[O, 11 if and only if 

0 

(9.7) 
m=--m 
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The linear approximation off E L2[0, 11 by the M sinusoids of lower frequen- 
cies is 

For differentiable functions in the sense of Sobolev, the following proposition 
computes the approximation error 

+ 4 1  = I l f - f M l l 2  = 
lml>M/2 

Proposition 9.1 Let f E L2 [0,1] be afunction whose support is included in (0,l). 
n e n  f E Ws[O, 11 ifand only if 

which implies q [ ~ ]  = o(M-&). 

Functions in W"[O, 11 with a support in (0,l) are characterized by (9.7). This 
proposition is therefore a consequence of Theorem 9.1. The linear Fourier approx- 
imation thus decays quickly if and only if f has a large regularity exponent s in 
the sense of Sobolev. 

Discontinuities and Bounded Variation If f is discontinuous, then f $! ws [o, 11 
for any s > 1/2. Proposition 9.1 thus proves that q [ M ]  can decay like M P  only 
if Q 5 1. For bounded variation functions, which are introduced in Section 2.3.3, 
the following proposition proves that €2  [MI = O(M-').  A function has a bounded 
variation if 

1 

l l f l lv  = J If'(t>ldt < -too . 
0 

The derivative must be taken in the sense of distributions because f may be discon- 
tinuous, as is the case for f = lp1/21. Recall that a[M] - b[M] if a[M] = O(b[M])  
and b[M] = O(a[M]). 

Proposition 9.2 0 ~f l l f l lv  < +oo then q [ ~ ]  = ~ ( l l f l l $ ~ - ' > .  
I f f  = C1[0,1/2] then 6 0 4 1  - l l f 1 1 $ ~ - ' .  
Proof '. If l l f l l v  < -too then 

I ( f  (u) ,exp(i2mm))I  = f ( u )  exp(-i2mru)du II' 
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f(t) 
I 

0 0.2 0.4 0.6 

40 t A 4  

0.4 0.6 0.8 

t 0 0.2 0.4 0.6 0.8 1 

FIGURE 9.1 Top: Original signal f. Middle: Signal f M  approximated from 
lower frequency Fourier coefficients, with M / N  = 0.15 and 1 1  f - fMII/II f 11 = 
8.631OP2. Bottom: Signal f u  approximated from larger scale Daubechies 4 
waveletcoefficients, withM/N=0.15and I l f  - - f M ~ ~ / ~ ~ f ~ ~  =8.5810-'. 

Hence 

so €6 [M] - c2 M-'. 
This proposition shows that when f is discontinuous with bounded variations, then 
Q [ M ]  decays typically like M-' .  Figure 9.l(b) shows a bounded variation signal 
approximated by Fourier coefficients of lower frequencies. The approximation 
error is concentrated in the neighborhood of discontinuities where the removal of 
high frequencies creates Gibbs oscillations (see Section 2.3.1). 

Localized Approximations To localize Fourier series approximations over inter- 
vals, we multiply f by smooth windows that cover each of these intervals. The 
Balian-Low Theorem 5.6 proves that one cannot build local Fourier bases with 
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smooth windows of compact support. However, Section 8.4.2 constructs orthonor- 
mal bases by replacing complex exponentials by cosine functions. For appropriate 
windows g, of compact support [up - qp,uP+l + qp+l],  Corollary 8.1 constructs 
an orthonormal basis of L2 (W) : 

Writing f in this local cosine basis is equivalent to segmenting it into several 
windowed components f p ( t )  = f ( t )  g p ( t ) ,  which are decomposed in a cosine IV 
basis. If g p  is Coo, the regularity of g p ( t )  f (t) is the same as the regularity o f f  
over [up -qp,up+l +qp+l]. Section 8.3.2 relates cosine IV coefficients to Fourier 
series coefficients. It follows from Proposition 9.1 that if f p  E Ws(R), then the 
approximation 

M-1 

k=O 

yields an error 

The approximation error in a local cosine basis thus depends on the local regularity 
off  over each window support. 

Ep,Z[MI = l l fp  - fp,Ml12 = 4 M - 2 ” .  

9. I .3 

Linear approximations of f from large scale wavelet coefficients are equivalent 
to finite element approximations over uniform grids. The approximation error de- 
pends on the uniform regularity of f .  In a periodic orthogonal wavelet basis, this 
approximation behaves like a Fourier series approximation. In both cases, it is nec- 
essary to impose that f have a support inside (0 , l )  to avoid border discontinuities 
created by the periodization. This result is improved by the adapted wavelet basis 
of Section 7.5.3, whose border wavelets keep their vanishing moments. These 
wavelet bases efficiently approximate any function that is uniformly regular over 
[0,1], as well as the restriction to [O, 11 of regular functions having a larger support. 

Linear Multiresolution Approximations 

Uniform Approximation Grid Section 7.5 explains how to design wavelet ortho- 
normal bases of L2[O; 11, with a maximum scale 2J < 1: 

[{4J:n)0<n<2-J : {$j,n)-oo<j<J,O<n<2-j 1 . (9.10) 

We suppose that the wavelets $j+ are in Cq and have q vanishing moments. The 
M = 2-‘ scaling functions and wavelets at scales 2j > 2‘ define an orthonormal 
basis of the approximation space VI: 

(9.11) 
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The approximation of f over the M fist wavelets and scaling functions is an 
orthogonal projection on VI: 

J 2-j-1 2-’-1 

j=l+l n=O 

Since VI also admits an orthononnal basis 
(41,n}o<n<2-i. this projection can be rewritten: 

2-1-1 

(f 7 $.?,fa) +J,n.  (9.12) 
n=O 

of M = 2-’ scaling functions 

fiM =pvif = (f, +l,n) +l,n. (9.13) 

 his summation is an approximation of f with 2-‘ finite elements +I,+ (t) = + I  (t - 
2’12) translated over a uniform grid. The approximation error is the energy of 
wavelet coefficients at scales finer than 2: 

n=O 

I 2-j-1 

(9.14) 

If 2-’ < M < 2-’+’, one must include in the approximations (9.12) and (9.13) the 
coefficients of the M - 2-’ wavelets (+l)I- l ,n}Oln<M-2-l  at the scale 2l-l. 

Approximation error Like a Fourier basis, a wavelet basis provides an efficient 
approximation of functions that are s times differentiable in the sense of Sobolev 
over [0,1] (i.e., functions of Ws[O, 11). If I) has q vanishing moments then (6.11) 
proves that the wavelet transform is a multiscale differential operator of order q. 
To test the differentiability of f  up to order s we thus need q > s. The following 
theorem gives a necessary and sufficient condition on the wavelet coefficients so 
that f E Ws[O,l]. 

Theorem 9.2 Let 0 < s < q be a Sobolev exponent. Afunction f E L2[0, 11 is in 
Ws[O, 11 ifand only if 

.I 2-j-1 

(9.15) 
j=-m n=O 

Proof z. We give an intuitive justification but not a proof of this result. To simplify, 
we suppose that the support off is included in (0,l). If we extend f by zeros outside 
[O, 11 then f E Ws(W), which means that 

(9.16) 

The low frequency part of th is  integral always remains finite because f E L2(R): 
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The energy of $j,n is essentially concentrated in the intervals [-2-j27~, -2-4~1 U 
[2- j7~,  2-j27r]. As a consequence 

Over this interval IwI N 2-j, so 

It follows that 

which explains why (9.16) is equivalent to (9.15). 

This theorem proves that the Sobolev regularity off is equivalent to a fast decay of 
the wavelet coefficients I (f, q!Jjj;") I when the scale 2j decreases. If q!J has 4 vanishing 
moments but is not 4 times continuously differentiable, then f E W"[O, 11 implies 
(9.15), but the opposite implication is not true. The following proposition uses the 
decay condition (9.15) to compute the approximation error with M wavelets. 

Proposition 9.3 Let 0 < s < 4 be a Sobolev exponent. Afunction f E L2[0, 11 is 
in Ws[O, 11 ifand only if 

(9.17) 

which implies q [ ~ ]  = O ( M - ' ~ ) .  

Proofz. Let us write the wavelets +j,n = g, with m = 2-j + n. One can verify that 
the Sobolev condition (9.15) is equivalent to 

The proof ends by applying Theorem 9.1. 

Proposition 9.3 proves that f E Ws [O: 11 if and only if the approximation error EJ [MI 
decays slightly faster than MP2". The wavelet approximation error is of the same 
order as the Fourier approximation error calculated in (9.9). If the wavelet has 4 
vanishing moments but is not 4 times continuously differentiable, then f E Ws[O: 11 
implies (9.17) but the opposite implication is false. 

Iff has a discontinuity in (0 , l )  then f $! W"[O, 11 for s > 1/2 so Proposition 
9.3 proves that we cannot have €1 [MI = O(M-") for a > 1. Iff has a bounded total 
variation norm I I f  1 1  v then one can verify (Problem 9.4) that EI [MI = O( 1 1  f 11; M-l ) . 
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For example, i f f  = C1[0 ,1p]  then q[M] - llf11$M-’. This result is identical to 
Proposition 9.2, obtained in a Fourier basis. 

Figure 9.1 gives an example of discontinuous signal with bounded variation, 
which is approximated by its larger scale wavelet coefficients. The largest am- 
plitude errors are in the neighborhood of singularities, where the scale should be 
refined. The relative approximation error ] I f  - f~ / I /  l l f l l  = 8.56 lo-’ is almost 
the same as in a Fourier basis. 

9. I .4 Karhunen-Lo&ve Approximations 

Let us consider a whole class of signals that we approximate with the first M vectors 
of a basis. These signals are modeled as realizations of a random vector F[n] of 
size N .  We show that the basis that minimizes the average linear approximation 
error is the Karhunen-Lohe basis (principal components). 

Appendix A.6 reviews the covariance properties of random vectors. If F[n] 
does not have a zero mean, we subtract the expected value E{F[n]}  from F[n] to 
get a zero mean. The random vector F can be decomposed in an orthogonal basis 
{gm}O<m<N: 

N-1 

F = ( F ,  8,) gm . 
m=O 

Each coefficient 
N -  1 

P :  g m >  = C F [ ~ I  g;[nl 
n=O 

is a random variable (see Appendix A.6). The approximation from the first M 
vectors of the basis is 

M-1 

The resulting mean-square error is 

This error is related to the covariance of F defined by 

R[n:m]  = E{F[n]F*[m]} .  

Let K be the covariance operator represented by this matrix. For any vector ~ [ n ] ,  
I N-1 N-1  

= (Kx ,x ) .  
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The error q [ M ]  is therefore a sum of the last N - M diagonal coefficients of the 
covariance operator 

N-1  

m=M 
The covariance operator K is Hermitian and positive and is thus diagonalized in an 
orthogonal basis called a Karhunen-Lo2ve basis. This basis is not unique if several 
eigenvalues are equal. The following theorem proves that a Karhunen-Lohe basis 
is optimal for linear approximations. 

Theorem 9.3 LRt K be a covariance operator For all M 2 1, the approximation 
error 

N-1  

€2  [MI = (Kgm 7 8,) 
m=M 

is minimum i f  and only i f  { gm}O<m<N is a Karhunen-Ldve basis whose vectors 
are ordered by decreasing eigenvalues 

(Kgm,gm) 2 (Kgm+l,gm+l) f o r O < m < N - l -  

Proof 3. Let us consider an arbitrary orthonormal basis { h m } ~ s m < ~ .  The trace t r (K)  
of K is independent of the basis: 

N - 1  

m=O 

The basis that minimizes xiik (Khm,hm) thus maximizes (Khm,hm). 
k t  { gm}O+<N be a basis that diagonalizes K :  

Kgm = a ; g m  with ai 2 for O 5 m < N- 1. 

The theorem is proved by verifying that for all M 2 0, 

M-1 M-1 M-1 

m=O m=O m=O 

To relate (Khm>&) to the eigenvalues { U ? } O ~ ~ < N ,  we expand h, in the basis 
{gi}OSi<N: 

N- 1 

(9.18) 
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We evaluate 
M-1 M-1 N-1 M- 1 

C ( K h , , & )  - ~ o : = C q i o ~ - ~ o ;  
m=O i=O i=O i=O 

N-1 M-1 , N-1 \ 

i=O i=M 

Since the eigenvalues are listed in order of decreasing amplitude, it follows that 
M- 1 M-1 

m=O m=O 

Suppose that this last inequality is an equality. We finish the proof by showing that 
{hm}~sm<N must be a Karhunen-Lohve basis. If i < M ,  then o; # o&-~ implies qi = 1. 
If i 2 M ,  then o! # o&-~ implies qi = 0. This is valid for all M 2 0 if (hm, gi) # 0 
only when o? = 0:. This means that the change of basis is performed inside each 

Theorem 9.3 proves that a Karhunen-Lohe basis yields the smallest average error 
when approximating a class of signals by their projection on M orthogonal vectors, 
chosen a priori. This result has a simple geometrical interpretation. The realiza- 
tions of F define a cloud of points in CN.  The density of this cloud specifies the 
probability distribution of F .  The vectors g,,, of the Karhunen-Lohve basis give the 
directions of the principal axes of the cloud. Large eigenvalues ai  correspond to 
directions g, along which the cloud is highly elongated. Theorem 9.3 proves that 
projecting the realizations of F on these principal components yields the smallest 
average error. If F is a Gaussian random vector, the probability density is uniform 
along ellipsoids whose axes are proportional to a,,, in the direction of g,,,. These 
principal directions are thus truly the preferred directions of the process. 

eigenspace of K so {hm}~sm<N also diagonalizes K .  

Random Shift Processes If the process is not Gaussian, its probability distribution 
can have a complex geometry, and a linear approximation along the principal axes 
may not be efficient. As an example, we consider a random vector F[n] of size 
N that is a random shift modulo N of a deterministic signal f[n] of zero mean, c;i; f[n] = 0: 

F[n] = f[(n-P)modN]. (9.19) 
The shift P is an integer random variable whose probability distribution is uniform 
on [O,N- 11: 

Pr(P = p )  = - for0 I p < N. 
1 
N 

This process has a zero mean: 
. N-1 
1 

E{F[n]) = - x f [ ( n - p ) m o d N ]  =0, 
p=o 
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and its covariance is 

1 N - l  
R[n,k] = E{F[n]F[k]) = xf [ (n -p )modN]  f [ ( k -  p)modN] 

p=o 

1 
N 

= - f o f [ n - k ]  with f[n] = f [ - n ]  . (9.20) 

Hence R[n: k] = RF [n - k] with 

Since RF is N periodic, F is a circular stationary random vector, as defined 
in Appendix A.6. The covariance operator K is a circular convolution with 
RF and is therefore diagonalized in the discrete Fourier Karhunen-Lokve basis - 
{ & exp (9) }0sm<~.  The eigenvalues are given by the Fourier transform of 
RF : 

(9.21) 

Theorem 9.3 proves that a linear approximation that projects F on M vectors 
selected a priori is optimized in this Fourier basis. To better understand this re- 
sult, let us consider an extreme case where f[n] = 6[n] - 6[n - 11. Theorem 9.3 
guarantees that the Fourier Karhunen-Lohe basis produces a smaller expected ap- 
proximation error than does a canonical basis of Diracs { gm [n] = 6[n - m] )o<m<N. 

Indeed, we do not know a priori the abscissa of the non-zero coefficients of F, so 
there is no particular Dirac that is better adapted to perform the approximation. 
Since the Fourier vectors cover the whole support of F, they always absorb part 
of the signal energy: 

Selecting M higher frequency Fourier coefficients thus yields a better mean-square 
approximation than choosing a priori M Dirac vectors to perform the approxima- 
tion. 

The linear approximation of F in a Fourier basis is not efficient because all the 
eigenvalues R, [m] have the same order of magnitude. A simple non-linear algo- 
rithm can improve this approximation. In a Dirac basis, F is exactly reproduced by 
selecting the two Diracs corresponding to the largest amplitude coefficients, whose 
positions P and P - 1 depend on each realization of F. A non-linear algorithm that 
selects the largest amplitude coefficient for each realization of F is not efficient in 
a Fourier basis. Indeed, the realizations of F do not have their energy concentrated 
over a few large amplitude Fourier coefficients. This example shows that when F 
is not a Gaussian process, a non-linear approximation may be much more precise 
than a linear approximation, and the JSarhunen-Lokve basis is no longer optimal. 
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9.2 NON-LINEAR APPROXIMATIONS 

Linear approximations project the signal on M vectors selected a priori. This 
approximation is improved by choosing the M vectors depending on each signal. 
The next section analyzes the performance of these non-linear approximations. 
These results are then applied to wavelet bases. 

9.2. I Non-Linear Approximation Error 

A signal f E H is approximated with M vectors selected adaptively in an ortho- 
normal basis I3 = {gm}mEN of H. Let f~ be the projection off over M vectors 
whose indices are in ZM : 

m E B  

The approximation error is the sum of the remaining coefficients: 

E M  = I v - ~ M I I ~  = I(f,gm)12- (9.22) 
m@Ikt 

To minimize this error, the indices in ZM must correspond to the M vectors having 
the largest inner product amplitude l(f,gm)l. These are the vectors that best 
correlate f. They can thus be interpreted as the “main” features off. The resulting 
E,[M] is necessarily smaller than the error of a linear approximation (9.1), which 
selects the M approximation vectors independently of f. 

Let us sort { I  (f, g,) I } m E ~  in decreasing order. We denote fB[k] = (f, gmk} 
the coefficient of rank k: 

If;[k]I>If;[k+1]I withk>O. 

The best non-linear approximation is 

M 

fM = f; [kI gnu. 
k= 1 

It can also be calculated by applying the thresholding function 

withathresholdTsuchthatfBIM+l] <TIfBIM]:  

+= 

(9.23) 

(9.25) 
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The minimum non-linear approximation error is 

k=M+1 

The following theorem relates the decay of this approximation error as M increases 
to the decay of IfB[k] I as k increases. 

Theorem 9.4 Let s > 1/2. Ifthere exists C > 0 such that IfB[k] I 5 Ck+ then 

Conversely, if e, [MI satisJies (9.26) then 

Proof '. Since 
+m +m 

e n [ M ]  = Ifi[k]l' I Cz kKPs, 
k=M+1 k=M+l  

and 

(9.26) 

(9.27) 

(9.28) 

we derive (9.26). 
Conversely, let a < 1, 

So if (9.26) is satisfied 

For a = 1 - 1/2s we get (9.27) for k = M. 

The decay of sorted inner products can be evaluated from the 1P norm of these 
inner products: 

The following theorem relates the decay of E ,  [MI to I I f  I I B , ~ .  

Theorem 9.5 Let p < 2. I f l [ f l l B , p  < +oo then 

Ifi;[klI I Ilfllr3;p k-'lp 

and €,[MI = O ( M ' - ~ / P ) .  

(9.29) 
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Proof ’. We prove (9.29) by observing that 

n=l  n=l 

To show that €,[MI = o(M’-’/P), we set 

+m +m 

€,[MI = lf i[k]l’  5 S[k/2]’/p(k/2)-’/p 
k=M+1 k=M+l 

+m 

5 sup IS[k]l’/’ ) (k/2)-’/p 
k > M / 2  R=M+l 

Since l l f l / ~ , p  = ET=?, I f i [ n ] I ~  < +m, it follows that limk-t+msupk,M12 ~ ~ [ k l l  = 0. 
We thus derive from (9.28) that 4 [ M ]  = o(M’-’/P).  

This theorem specifies spaces of functions that are well approximated by a few 
vectors of an orthogonal basis I3. We denote 

B B # = ( f  € H  : IlfllB,p<+m}. (9.30) 

If f E B B ; ~  then Theorem 9.5 proves that E ~ [ M ]  = O ( M ’ - ~ / P ) .  This is called a 
Jackson inequality [22]. Conversely, if en[M] = O(M’-2/p)  then the Bernstein 
inequality (9.27) for s = l/p shows that f E B B , ~  for any q > p .  Section 9.2.3 
studies the properties of the spaces B B , ~  for wavelet bases. 

9.2.2 Wavelet Adaptive Grids 

A non-linear approximation in a wavelet orthonormal basis defines an adaptive grid 
that refines the approximation scale in the neighborhood of the signal singularities. 
Theorem 9.5 proves that this non-linear approximation introduces a small error if 
the sorted wavelet coefficients have a fast decay, which can be related to Besov 
spaces [157]. We study the performance of such wavelet approximations for 
bounded variation functions and piecewise regular functions. 

We consider a wavelet basis adapted to L2[0, 11, constructed in Section 7.5.3 
with compactly supported wavelets that are Cq with q vanishing moments: 

I3 = [{$J>n}O<n<Z-J 3 {$j,n}-co<j<J,O<n<Z-j 1 . 
To simplify the notation we write 4 ~ , ~  = $ ~ + l , ~ .  The best non-linear approximation 
off  E L~[o ,  11 from M wavelets is 

f M  = U , $ j , n ) $ j , n  i 

( j , n ) E h  
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where IM is the index set of the M wavelet coefficients having the largest amplitude 
I (f, $ j : n )  I. The approximation error is 

E n W I  = I l f - f M l l 2 =  l ( f : ~ j , r a ) 1 2 -  

W@h 

Letf[t,[k]= (f,$jk,,)bethecoefficientofrankk: If i [k]I  2 Ifb[k+l]Ifork>l. 
Theorem 9.4 proves that Ifk[k]I = O(k-S) if and only if en[M] = O(MpZs) .  The 
error Q [MI is always smaller than the linear approximation error E I  [MI studied in 
Section 9.1.3, but we must understand under which condition this improvement is 
important. 

Piecewise Regularity If f is piecewise regular then we show that E,[M] has a 
fast decay as M increases. Few wavelet coefficients are affected by isolated dis- 
continuities and the error decay depends on the uniform regularity between these 
discontinuities. 

Proposition 9.4 I f f  has a jinite number of discontinuities on [O, 11 and is uni- 
fonnly Lipschitz a < 4 between these discontinuities, then €,,[MI = O(M-'"). 

Proof '. We prove that ~,,[jl4l = O(M-'") by verifying that fb[k] = O(k-a*-1/2) and 
applying inequality (9.26) of Theorem 9.4. We distinguish type 1 wavelets $j :n ,  whose 
support includes an abscissa where f is discontinuous, from type 2 wavelets, whose 
support is included in a domain where f is uniformly Lipschitz a. Let fhl [k] and 
f h z [ k ]  be the values of the wavelet coefficient of rank k among type 1 and type 2 
wavelets. We show that &[k] = O(k-"-'/') by verifying that &.l [k] = O(k-"-'/') 
and that &,'[k] = O(k-"-'/'). 

Iff is uniformly Lipschitz a on the support of $j:,, then there exists A such that 

I(fl$j,n)I 5 A 2 j ( " + 1 / 2 ) .  (9.31) 

Indeed, orthogonal wavelet coefficients are samples of the continuous wavelet trans- 
form (f,$j,,,) = W f ( 2 h , 2 j ) ,  so (9.31) is a consequence of (6.17). 

For any I > 0, there are at most 2' type 2 coefficients at scales 2j > 2-'. Moreover, 
(9.31) shows that all type 2 coefficients at scales 21 5 2-' are smaller than A2'("+'/'), 

fhz[2']  <A2-'("+'/*). 
so 

It follows that fb ,z[k]  = O(k-"-'/*), for all k > 0. 
Let us now consider the type 1 wavelets. There exists K > 0 such that each wavelet 

$j:,, has its support included in [2Jn - 2jK/2,2jn + 2jnK/2] .  At each scale 2j, there 
are thus at most K wavelets whose support includes a given abscissa v. This implies 
that there are at most K D  wavelets $j,n whose support includes at least one of the D 
discontinuities of f. Since f is uniformly Lipschitz a > 0 outside these points, f is 
necessarily uniformly bounded on [0, 11 and thus uniformly Lipschitz 0. Hence (9.31) 
shows that there exists A such that I (f , $ j Y n )  I 5 A2j/'. Since there are at most ZKD 
type 1 coefficients at scales 2j > 2-' and since all type 1 coefficients at scales 2j 5 2-* 
are smaller than A2-'/' we get 

ffr,l [lKD] 5 A2-'/'. 
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This implies that YE,, [k] = O(k-8-1/2) for any /3 > 0, which ends the proof. 

If a > 1/2, then €,[MI decays faster than q [ M ]  since we saw in Section 9.1.3 
that the presence of discontinuities implies that E I  [MI decays like M - l .  The more 
regular f is between its discontinuities, the larger the improvement of non-linear 
approximations with respect to linear approximations. 

Adaptive Grids Isolated singularities create large amplitude wavelet coefficients 
but there are few of them. The approximation f M calculated from the M largest am- 
plitude wavelet coefficients can be interpreted as an adaptive grid approximation, 
where the approximation scale is refined in the neighborhood of singularities. 

A non-linear approximation keeps all coefficients I (f, $ j , J  I 2 T ,  for a thresh- 
old f2 [MI 2 T > & [M + 11. In a region where f is uniformly Lipschitz a, since 
I (f, $jj?,)  I - A2j(a+1/2) the coefficients above T are typically at scales 

Setting to zero all wavelet coefficients below the scale 2' is equivalent to computing 
a local approximation off at the scale 2'. The smaller the local Lipschitz regularity 
a, the finer the approximation scale 2'. 

Figure 9.2 shows the non-linear wavelet approximation of a piecewise regular 
signal. Observe that the largest amplitude wavelet coefficients are in the cone 
of influence of each singularity. Since the approximation scale is refined in the 
neighborhood of each singularity, they are much better restored than in the fixed 
scale linear approximation shown in Figure 9.1. The non-linear approximation 
error in this case is 17 times smaller than the linear approximation error. 

Non-linear wavelet approximations are nearly optimal compared to adaptive 
spline approximations. A spline approximation YM is calculated by choosing K 
nodes tl < t2 < . . . < t~ inside [0,1]. Over eachintemal [tk, tk+l], f is approximated 
by the closest polynomial of degree r.  This polynomial spline YM is specified 
by M = K ( r  + 2 )  parameters, which are the node locations {tk}l<k<K plus the 
K ( r  + 1) parameters of the K polynomials of degree r.  To reduce [ I f  - f M l l ,  the 
nodes must be closely spaced when f is irregular and farther apart when f is 
smooth. However, finding the M parameters that minimize I l f  - YM 1 1  is a difficult 
non-linear optimization. 

A non-linear approximation with wavelets having q = r + 1 vanishing 
moments is much faster to compute than an optimized spline approximation. A 
spline wavelet basis of Battle-LemariC gives non-linear approximations that are 
also splines functions, but the nodes tk are restricted to dyadic locations 2jn, with 
a scale 2J that is locally adapted to the signal regularity. For large classes of 
signals, including the balls of Besov spaces, the maximum approximation errors 
with wavelets or with optimized splines have the same decay rate when M in- 
creases [158]. The computational overhead of an optimized spline approximation 
is therefore not worth it. 
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FIGURE 9.2 (a): Original signal f. (b): LargerM = 0.15N wavelet coefficients 
calculated with a Symmlet 4. (c): Non-linear approximation f~ recovered from 
theM wavelet coefficients shown above, I l f  - f ~ ~ ~ / ~ [ f ~ ~  = 5.1 lop3. 

9.2.3 Besov Spaces 

Studying the performance of non-linear wavelet approximations more precisely 
requires introducing a new space. As previously, we write 4 J , n  = $J+l,n. The 
Besov space B>,7[O; 11 is the set of functions f E L2[0, 11 such that 

Frazier, Jawerth [ 1821 and Meyer [270] proved that B>,,-, [0,1] does not depend on 
the particular choice of wavelet basis, as long as the wavelets in the basis have 
q > s vanishing moments and are in C4. The space BAT [O; 11 corresponds typically 
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to functions that have a “derivative of order s” that is in Lo[O, 11. The index -1 is a 
fine tuning parameter, which is less important. We need q > s because a wavelet 
with q vanishing moments can test the differentiability of a signal only up to the 
order q. 

If ,B 2 2, then functions in B;,,,, [0,1] have a uniform regularity of order s. For 
,l3 = y = 2, Theorem 9.2 proves that B;,2[0, 11 = W”[O, 11 is the space of s times 
differentiable functions in the sense of Sobolev. Proposition 9.3 proves that this 
space is characterized by the decay of the linear approximation error EI [MI and that 
E[ [ M I  = o ( M - ~ ” ) .  Since en [MI 5 q [ M I  clearly en [MI = o(M-”).  One can verify 
(Problem 9.7) that for a large class of fmctions inside Ws[O, 11, the non-linear 
approximation error has the same decay rate as the linear approximation error. It 
is therefore not useful to use non-linear approximations in a Sobolev space. 

For ,B < 2, functions in B;,YIO, 11 are not necessarily uniformly regular. The 
adaptativity of non-linear approximations then improves the decay rate of the error 
significantly. In particular, if p = /3 = 7 and s = 1/2 + l /p ,  then the Besov norm 
is a simple 1P norm: 

Theorem 9.5 proves that iff E Bi,,,[O, 11, then E,[M] = o(M1-’/P). The smaller p ,  
the faster the error decay. The proof of Proposition 9.4 shows that although f may 
be discontinuous, if the number of discontinuities is finite and f is uniformly 
Lipschitz a between these discontinuities, then its sorted wavelet coefficients 
satisfyIfi[k]( = O ( k - ” - 1 / 2 ) , ~ ~ f ~ B ~ Y [ 0 , 1 ] f o r l / p < a + 1 / 2 .  Thisshowsthat 
these spaces include functions that are not s times differentiable at all points. The 
linear approximation error el [MI for f E B”p7 [0, 11 can decrease arbitrarily slowly 
because the M wavelet coefficients at the largest scales may be arbitrarily small. 
A non-linear approximation is much more efficient in these spaces. 

Bounded Variation Bounded variation functions are important examples of sig- 
nals for which a non-linear approximation yields a much smaller error than a linear 
approximation. The total variation norm is defined in (2.57) by 

The derivative f’ must be understood in the sense of distributions, in order to 
include discontinuous functions. The following theorem computes an upper and 
a lower bound of I I f  1 I v from the modulus of wavelet coefficients. Since 1 I f  I I v 
does not change when a constant is added to f, the scaling coefficients of f are 
controlled with the sup norm I I f  I I = suptEw I f  ( t )  I. 
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Theorem 9.6 Consider a wavelet basis constructed with $ such that 11.11, I I v < +m. 
There exist A ,  B > 0 such that for all f E L2 [0,1] 

and 

Proof z. By decomposing f in the wavelet basis 

we get 

The wavelet basis includes wavelets whose support are inside (0,l) and border 
wavelets, which are obtained by dilating and translating a finite number of mother 
wavelets. To simplify notations we write the basis as if there were a single mother 
wavelet: $j:n(t)  = 2-j/z$(2-jf  - n) .  Hence, we verify with a change of variable that 

- - 2-’I2 (lllctllv + ll+llm) . 

Since 4Jl,,,(t) = 2-J /24(2 -J t -n )  we also prove that 

I14JJ,nllV+ ~ ~ ~ J , n ~ ~ ~  = 2 - J / 2  ( l l 4 l l V +  ~ ~ ~ ~ ~ c o )  . 

The inequality (9.33) is thus derived from (9.35). 
Since $ has at least one vanishing moment, its primitive 0 is a function with the 

same support, which we suppose included in [ - K / 2 , K / 2 ] .  To prove (9.34), for j 5 J 
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we make an integration by parts: 

Since B has a support in [-K/2, K/2], 

2-j-1 1 

I(f:$j,n)I 1 2 i / 2 K s u ~ I e ( t ) I  / If'(t)Idt ~ A " ~ ' " I I ~ I I v .  (9-36) 
tEP 0 n=O 

The largest scale 2J is a fixed constant and hence 

"1  

This inequality and (9.36) prove (9.34). 

This theorem shows that the total variation norm is bounded by two Besov norms: 

A llflll,l~~ I Ilf l lv+ I l f l lm I Bllfll1,l;l . 
One can verify that if llfllv < +m, then llfllw < +m (Problem 9.1), but we 
do not control the value of I l f l l X  from llfllv because the addition of a constant 
changes llfllw butdoesnotmodlfy Ilfllv. ThespaceBV[O, 11 ofboundedvariation 
functions is therefore embedded in the corresponding Besov spaces: 

B;,, [O, 11 c W O ,  11 c B:,,[O, 11 . 
Iff  E BV[O, 11 has discontinuities, then the linear approximation error q [ M ]  does 
not decay faster than M-' . The following theorem proves that E, [MI has a faster 
decay. 

Proposition 9.5 There exists B such thatfor all f E BV[O, 11 

E,[MI s B Irfll; M - * .  (9.37) 

Proof z. We denote by fb [k] the wavelet coefficient of rank k,  excluding all the scaling 
coefficients ( f , d J J ,  since we cannot control their value with Ilfllv. We first show 
that there exists BO such that for all f E BV[O, 11 

Ifi[kll IBO IlfIlvk-3/2. (9.38) 
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To take into account the fact that (9.38) does not apply to the 2J scaling coefficients 
(f l  $J,n), we observe that in the worst case they are selected by the non-linear approx- 
imation so 

+m 

E n I M ]  5 IfiPII' . (9.39) 
k=M-2'+1 

Since 2J is a constant, inserting (9.38) proves (9.37). 
The upper bound (9.38) is proved by computing an upper bound of the number of 

coefficients larger than an arbitrary threshold T. At scale 2j, we denote by rB[j, k] the 
coefficient of rank k among { ( f l $ j , n ) } O s n 5 2 - j .  The inequality (9.36) proves that for 
a l l j 5 . I  

z-j-1 

IVl$j ,n) I  IA-"'/' IIfIIv- 
n=O 

It thus follows from (9.29) that 

fi[j ,k] <A-'2j/'IlfIlvk-'= C2'1'k-l. 

At scale 2j, the number kj of coefficients larger than T thus satisfies 

kj 5 min(2-j 2J/' C T-') . 

The total number k of coefficients larger than T is 

I 6(CT-')'/3. 

By choosing T = Ifb[k]l, since C =A-' Ilfllv, we get 

Ifi[k]l I 63/2A-1 I l f I l ~ k - ~ " ~  

which proves (9.38). 

The error decay rateMP2 obtained with wavelets for all bounded variation functions 
cannot be improved either by optimal spline approximations or by any non-linear 
approximation calculated in an orthonormal basis [160]. In this sense, wavelets 
are optimal for approximating bounded variation functions. 

9.3 IMAGE APPROXIMATIONS WITH WAVELETS 

Linear and non-linear approximations of functions in L2[0, lId can be calculated 
in separable wavelet bases. In multiple dimensions, wavelet approximations are 
often not optimal because they cannot be adapted to the geometry of the signal 
singularities. We concentrate on the two-dimensional case for image processing. 

Section 7.7.4 constructs a separable wavelet basis of L2[Ol 1Id from a wavelet 
basis of L2[0, 11, with separable products of wavelets and scaling functions. We 
suppose that all wavelets of the basis of L2[0, 11 are C4 with q vanishing moments. 
The wavelet basis of L2[Ol 112 includes three elementary wavelets {$'}Is~s~ that 
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are dilated by 2j and translated over a square grid of interval 2j in [0,1]'. Modulo 
modifications near the borders, these wavelets can be written 

(9.40) 

~f we limit the scales to 2j I zJ, we must complete the wavelet family with two- 
dimensional scaling functions 

to obtain the orthonormal basis 

({&,n}ZJnt[O,l)z {$: . ; ,}j~J,Zlnt[0,1~2,1~Z~3) . 

Bounded Variation Imager Bounded variation functions provide good models for 
large classes of images, which do not have irregular textures. The total variation 
off  is defined in Section 2.3.3 by 

(9.41) 

The partial derivatives of a f must be taken in the general sense of distributions 
in order to include discontinuous functions. Let dR, be the level set defined as the 
boundary of 

Theorem 2.7 proves that the total variation depends on the length H' (dR,) of level 
sets: I'll laf(xl,xz)l&dn2 = H'(dR2,)dt. (9.42) 

The following theorem gives upper and lower bounds for 1 1  f I1v from wavelet 
coefficients. We suppose that the separable wavelet basis has been calculated 
from a one-dimensional wavelet with bounded variation. 

Theorem 9.7 There existA,B > 0 such that if llfllv < +oo then 

= ((X1,Xz) E Etz : f (X1,XZ) > t }  . 

E 

J 3  

and 

(9.44) 

Proof z. The inequalities (9.43) and (9.44) are proved with the same proof as in Theo- 
rem 9.6 for one-dimensional bounded variation functions, given that I I $$:n I I v = I I $' I I v 
and ll&.nlIv = I l Q l l V .  
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Linear Approximations A linear approximation of f E L2[0, 11' is computed by 
keeping only the M = 2-2" wavelet coefficients at scales 2j > 2". This recovers 
the projection of f in the multiresolution space V:. A function with finite total 
variation does not necessarily have a bounded amplitude, but images do have a 
bounded amplitude. The following theorem derives an upper bound for the linear 
approximation error €1 [MI. 

Proposition 9.6 There exists E > 0 such that if I I f  I I v < -too and I I f  I I (x) < +oo 
then 

El[MI I llfllv llfllm kf-'/' . (9.45) 

Proof'. The linear approximation error from M = 2-2" wavelets is 

(9.46) 

We shall verify that there exists B1 > 0 such that for all j and I 

c I(f7?$,)12 I B 1  l l f l l V l l f l l W 2 j ~  (9.47) 
Zm~[o,l]z 

Applying this upper bound to the sum (9.46) proves that 

E'[2-2"1 I 6 B 1  l l f l l v  I l f l lw2" I 

from which (9.45) is obtained for any M > 1. 

B2 > 0 such that for all j and I 
The upper bound (9.47) is calculated with (9.44), which shows that there exists 

c I(f,$:,n)I ~ B ~ I I ~ I I ~ .  (9.48) 
2inE[0,1]* 

The amplitude of a wavelet coefficient can also be bounded: 

l(f,$;:,)l 5 l l f l lm Il$;,,lll = l l f l l w ~ ~ l l $ ~ l l l  7 

where 11$'1]1 is the L'[O, 112 norm of $'. IfB3 = II]axlCl<3 II$'lll this yields 

I(f,$:,,}l sB32jIlfIlm . (9.49) 

Sincex, lan12 I sup, lanl E, la,I,weget(9.47)from(9.48)and(9.49)forB1 =B2B3.  

Iff has a finite total variation but is not bounded then the linear approximation error 
[M]  may decay arbitrarily slowly (Problem 9.6). The indicator function f = C la  

of a set f2 whose boundary 80 has a finite length is an example of bounded variation 
function with a bounded amplitude. One can verify (Problem 9.5) that in this case 
q [ M ]  N llfllv IlfllooM-1/2. In general, if f is discontinuous along contour of 
non-zero length, and if it is bounded with a bounded total variation, then q [ M ]  
decays like M-'/*.  This is the case of many images such as Lena in Figure 
9.3(a). Figure 9.3(b) is a linear approximation calculated with the M = NZ/16 
largest scale wavelet coefficients. This approximation produces a uniform blur 
and creates Gibbs oscillations in the neighborhood of contours. 
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FIGURE 9.3 (a): Original Lena f of N 2  = 2562 pixels. (b): Linear approxi- 
mations f~ calculated from the M = N2/16 Symmlet 4 wavelet coefficients at 
the largest scales: I l f  - f ~ l l / l l f l l  = 0.036. (c): The positions of the M = N2/16 
largest amplitude wavelet coefficients are shown in black. (d): Non-linear ap- 
proximation f~ calculated from the M largest amplitude wavelet coefficients: 
l l f - fM l l / l l f l l  = O . O l l .  
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Non-linear Approximations A non-linear approximation f~ is constructed from 
the M wavelet coefficients of largest amplitude. Figure 9.3(c) shows the position of 
these M = NZ/16 wavelet coefficients for Lena. The large amplitude coefficients 
are located in the area where the image intensity varies sharply, in particular along 
the edges. The corresponding approximation f~ is shown in Figure 9.3(d). The 
non-linear approximation error is much smaller than the linear approximation error: 
en [MI 5 q [MI/ 10. As in one dimension, the non-linear wavelet approximation can 
be interpreted as an adaptive grid approximation. By keeping wavelet coefficients 
at fine scales we refine the approximation along the image contours. 

We denote by fB[k] the rank k wavelet coefficient of f, without including 
the 225 scaling coefficients (f, q5:,"). Indeed, scaling coefficients depend upon 
the average of f over [0, 112, which can be controlled from Ilfllv. However, 
there are few scaling coefficients, which therefore play a negligible role in the 
non-linear approximation error. The following theorem proves that the non-linear 
approximation error E,, [MI of a bounded variation image decays at least like M-' , 
whereas q [ M ]  decays like W1/, for discontinuous functions. 

Theorem 9.8 ( C o r n ,  DEVORE, PERTRusHEV, XU) There exist E l ,  E2 such that if 
llfllv < +m then 

IfL[klI I E1 l l f l lv  k-' 7 (9.50) 

(9.51) 

Proof z. The proof of (9.50) is quite technical and can be found in [133]. To take into 
account the exclusion of the 2' scaling coefficients (f, CJ~;~ )  in (9.50), we observe as 
in (9.39) that €,[MI 5 C,'=",_,+, IyB[k]lZ. Since 2u is a fixed number, we derive 
(9.51) from (9.50). 

Theinequality(9.51)provesthatifllfllv < +cothen lfB[k]l = ~ ( k - ' ) .  Lenaisa 
bounded variation image in the sense of (2.70), and Figure 9.4 shows that indeed 
log, IfB[k] I decays with a slope that reaches - 1 as log, k increases. In contrast, 
the Mandrill image shown in Figure 11.6 does not have a bounded total variation 
because of the fur texture, and indeed log, IfB [k] I decays with a slope that reaches 
-0.65 > -1. 

Piecewise Regular Images In one dimension, Proposition 9.4 proves that a finite 
number of discontinuities does not influence the decay rate of sorted wavelet 
coefficients &[k] I, which depends on the uniform signal regularity outside the 
discontinuities. Piecewise regular functions are thus better approximated than 
functions for which we only know that they have a bounded variation. A piecewise 
regular image has discontinuities along curves of dimension 1, which create a 
non-negligible number of high amplitude wavelet coefficients. The following 
proposition verifies with a simple example of piecewise regular image, that the 
sorted wavelet coefficients &[k] I do not decay faster than E'. As in Theorem 
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FIGURE 9.4 Sorted wavelet coefficients log, IfB[k] I as a function of log,k for 
two images. (a): Lena image shown in Figure 9.3(a). (b): Mandrill image shown 
in Figure 11.6. 

9.8, the 225 scaling coefficients (f: $;,J are not included among the sorted wavelet 
coefficients. 

Proposition 9.7 I f f  = C la is the indicatorfunction of a set 0 whose border 80 
has afinite length, then 

lfL[kIl Ilf b-’ : (9.52) 

(9.53) 

Proof ’. The main idea of the proof is given without detail. If the support of +ifia does 
not intersect the border bR, then (f,+;,+) = 0 because f is constant over the support 
of l(lfi,+. The wavelets $:,+ have a square support of size proportional to 23, which is 
translated on a grid of interval 2j.  Since Xl has a finite length L, there are on the order 
of L2-j wavelets whose support intersects an. Figure 9.5(b) illustrates the position 
of these coefficients. 

Along the border, we verify like in (9.49) that I (f,+:,+) I N C2j. Since the ampli- 
tude of these coefficients decreases as the scale 2j decreases and since there are on the 
order of L 2-j non-zero coefficients at scales largerthan 2j,  the wavelet coefficient pB [k] 
of rank k is located at a scale 2j such that k N L2-j.  Hence &[k] 1 - c 2 j  N CLk- ’ .  
The co-area (9.41) formula proves that )If  IIv = C L ,  so Ifb[k]l N Ilfllvk-’, which 
proves (9.52). As in the proof of Theorem 9.8, (9.53) is derived from (9.52). 

This proposition shows that the sorted wavelet coefficients of f = C l n  do not 
decay any faster than the sorted wavelet coefficients of any bounded variation 
function, for which (9.50) proves that lfB[k]l = O(ll f I l ~ k - ’ ) .  This property can 
be extended to piecewise regular functions that have a discontinuity of amplitude 
larger than C > 0 along a contour of length L > 0. The non-linear approximation 
errors en[M] of general bounded variation images and piecewise regular images 
have essentially the same decay. 
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FIGURE 9.5 (a): Image f = la. (b): At the scale 2j,  the wavelets $fa have a 
square support of width proportional to 2j .  This support is translated on a grid of 
interval 2j ,  which is indicated by the smaller dots. The darker dots correspond to 
wavelets whose support intersects the frontier of R, for which (f, $f,J # 0. 

Approximation with Adaptive Geometry Supposing that an image has bounded 
variations is equivalent to imposing that its level set have a finite average length, 
but it does not impose geometrical regularity conditions on these level sets. The 
level sets and “edges” of many images such as Lena are often curves with a regular 
geometry, which is a prior information that the approximation scheme should be 
able to use. 

In two dimensions, wavelets cannot use the regularity of level sets because they 
have a square support that is not adapted to the image geometry. More efficient 
non-linear approximations may be constructed using functions whose support has 
a shape that can be adapted to the regularity of the image contours. For example, 
one may construct piecewise linear approximations with adapted triangulations 
[178,293]. 

A function f E L2 [0, 112 is approximated with a triangulation composed of M 
triangles by a function f M that is linear on each triangle and which minimizes 11 f - 
f M 11. This is a two-dimensional extension of the spline approximations studied 
in Section 9.2.2. The difficulty is to optimize the geometry of the triangulation to 
reduce the error I l f  - f M 11. Let us consider the case where f = 10, with a border 
8 R  which is a differentiable curve of finite length and bounded curvature. The 
triangles inside and outside R may have a large support since f is constant and 
therefore linear on these triangles. On the other hand, the triangles that intersect 
8 R  must be narrow in order to minimize the approximation error in the direction 
where f is discontinuous. One can use M / 2  triangles for the inside and M / 2  for 
the outside of R. Since 8R has a finite length, this border can be covered by M / 2  
triangles which have a length on the order of M-’ in the direction of the tangent 
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FIGURE 9.6 A piecewise linear approximation of f  = In is optimized with a 
triangulation whose triangles are narrow in the direction where f is discontinuous, 
along the border do. 

7 of do. Since the curvature of do  is bounded, one can verify that the width 
of these triangles can be on the order of M P 2  in the direction perpendicular to 
7‘. The border triangles are thus very narrow, as illustrated by Figure 9.6. One 
can now easily show that there exists a function f M that is linear on each triangle 
of this triangulation and such that 1 1  f - f M  1 1 2  N M-2.  This error thus decays 
more rapidly than the non-linear wavelet approximation error E ,  [MI - M-’ . The 
adaptive triangulation yields a smaller error because it follows the geometrical 
regularity of the image contours. 

Donoho studies the optimal approximation of particular classes of indicator 
functions with elongated wavelets called wedglers [ 1651. However, at present there 
exists no algorithm for computing quasi-optimal approximations adapted to the 
geometry of complex images such as Lena. Solving this problem would improve 
image compression and denoising algorithms. 

9.4 ADAPTIVE BASIS SELECTION 

To optimize non-linear signal approximations, one can adaptively choose the basis 
depending on the signal. Section 9.4.1 explains how to select a “best” basis from 
a dictionary of bases, by minimizing a concave cost function. Wavelet packet and 
local cosine bases are large families of orthogonal bases that include different types 
of time-frequency atoms. A best wavelet packet basis or a best local cosine basis 
decomposes the signal over atoms that are adapted to the signal time-frequency 
structures. Section 9.4.2 introduces a fast best basis selection algorithm. The 
performance of a best basis approximation is evaluated in Section 9.4.3 through 
particular examples. 
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9.4. I 

We consider a dictionary 2) that is a union of orthonormal bases in a signal space 
of finite dimension N: 

Best Basis and Schur Concavity 

2)= U"? 
X€h 

Each orthonormal basis is a family of N vectors 

B' = { &  11 SrnSN- 

Wavelet packets and local cosine trees are examples of dictionaries where the bases 
share some common vectors. 

Comparison of Bases We want to optimize the non-linear approximation off by 
choosing a best basis in 2). Let Zh be the index set of the M vectors of Bx that 
maximize I (f , g k )  1. The best non-linear approximation of f in Bx is 

fA= C(f7$,)6. 
m c I i  

The approximation error is 

E W l =  I ( f , g ~ ~ l 2 = l l f l l 2 - ~ I ( f r g ~ ) I 2 .  (9.54) 
m $ I i  mEIh 

Definition9.1 We say that f3" = { g g } l S m g  is a betcer basis than W = 
{ g 2 ) 1 < m g  for  approximating f iffor allM 2 1 

E a [ ~ l  I E 7 [ ~ 1 .  (9.55) 

This basis comparison is a partial order relation between bases in 2). Neither B" 
nor B7 is better if there exist MO and A41 such that 

ea [Mol < e7 [Mol and E" [MI] > e7 [MI]. (9.56) 

Inserting (9.54) proves that the better basis condition (9.55) is equivalent to: 

VM2 1 7 I ( f 7 g 3 I 2  1 l ( f 7 g U 2 .  (9.57) 
m€Ig m c I i  

The following theorem derives a criteria based on Schur concave cost functions. 

Theorem 9.9 A basis B" is a better basis than I37 to approximate f ifand only if 
for all concavefunctions a(.) 

(9.58) 
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Proof 3. The proof of this theorem is based on the following classical result in the 
theory of majorization [45]. 

Lemma 9.1 (HARDY, LJTTLEWOOD, P6LYA) Lef x[m] 2 0 and y[m] 2 0 be two posi- 
tive sequences of size N ,  with 

x[m]>x[rn+l] and y[m]>y[m+l]  f o r l s m < N ;  (9.59) 

and c;=,x[m] = El=, y[m]. For all M 5 N these sequences satisfy 

M M 

C x [ m I  1 CYbl 
m=l  m= 1 

(9.60) 

ifand only iffor all concavefunctions @(u) 

N N 

We first prove that (9.60) implies (9.61). Let @ be a concave function. We denote 
by H the set of vectors z of dimension N such that 

411 2 '.. 2 z [ N ] .  

For any z E H, we write the partial sum 

M 

m = l  

We denote by 0 the multivariable function 

N 

Q(~Z[11,~,[21,~ . . ,S,[NI) = C @ ( z [ m l >  
m=l  

N 

= Q(~,~ll)+~@(Sz[ml-S,~m-ll) 
m=2 

The sorting hypothesis (9.59) implies that x E H and y E H, and we know that they 
have the same sum S, [N] = S,  [N] . Condition (9.60) can be rewritten S, [MI 2 S,, [MI 
for 1 < M < N .  To prove (9.61) is thus equivalent to showing that 8 is a decreasing 
function with respect to each of its arguments S, [k] as long as z remains in H. In other 
words, we must prove that for any 1 5 k 5 N 

@(SZ[~I:SZ[~], . . . ,&[N]) 2 Q(Sz[l], . . . , S z [ k -  l],Sz[k] + q , S z [ k +  11: . . . ,Sz[N]): 
which means that 

N k-1 N 

@(z[m])  2 @(z[m])  + @(z[k]  + 71) + @(z[k + 11 - 71) + @(z[m]) .  (9.62) 
m= 1 m = l  m=k+2 

To guarantee that we remain in H despite the addition of 71, its value must satisfy 

z [ k -  11 2 z[k] +7I1 z[k+ I] -7) 1 z [ k + 2 ] .  
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The inequality (9.62) amounts to proving that 

@ (z[k]) +@ (z[k+ 11) 1 Q (z[k] +7) + 
By definition, @ is concave if for any (x ,  y) and 0 f a f 1 

(z[k+ 11 -7) .  (9.63) 

Let us show that this is a consequence of the concavity of Q. 

Q ( a x  + (1 - a) y) 2 a @ (x )  + (1 - a) @( y) . (9.64) 

Let us decompose 

z[k] = a (z[k] + 7) + ( 1 - a) (z[k + 11 - 7) 

z[k+ 11 = (1 -a) (z[k] +7) +a (z[k+ 11 -v) 
and 

with 

Computing @(z[k]) + @(z[k+ 11) and applying the concavity (9.64) yields (9.63). This 
finishes the proof of (9.61). 

We now verify that (9.60) is true if (9.61) is valid for a particular family of concave 
thresholding functions defined by 

m= 1 m=l 

The hypothesis (9.61) implies that @~(x[m])  5 E;=, @~(y[m]).  Moreover 
@(u) f 0 and @(u) f x[M] - u SO 

M N M M 

W M I - C x b l  I x @ M ( Y [ m l )  fx@M(Y[ml )  5Mx[M]-Cy[mI:  
m=l m=l m=l m=l 

which proves (9.60) and thus Lemma 9.1. 

Bx, we sort the inner products I (f, g:) 1 and denote 
The statement of the theorem is a direct consequence of Lemma 9.1. For any basis 

The energy conservation in an orthogonal basis implies 
(9.57) proves that a basis B" is better than a basis R if and only if for all M 1 1 

xx [k] = 1. Condition 

M M 

k=l k=l 

Lemma 9.1 proves that this is equivalent to imposing that for all concave functions @, 
N N 

k=l k= 1 

which is identical to (9.58). 
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In practice, two bases are compared using a single concave function CP(u). The 
cost of approximating f in a basis BX is defined by the Schur concave sum 

Theorem 9.9 proves that if B" is a better basis than Br for approximating f then 

C(f:B") SC(f:B,8). (9.65) 

This condition is necessary but not sufficient to guarantee that Ba is better than By 
since we test a single concave function. Coifman and Wickerhauser [ 1401 find a 
best basis B" in 27 by minimizing the cost o f f :  

C(f , a") = E? C (  f : BX). 

There exists no better basis in 27 to approximate f .  However, there are often other 
bases in 27 that are equivalent in the sense of (9.56). In this case, the choice of the 
best basis depends on the particular concave function CP. 

Ideal and Diffusing Bases An ideal basis B for approximating f has one of its 
vectors proportional to f, say g ,  = q f with q E @. Clearly f can then be recovered 
with a single basis vector. If @(O) = 0 then the cost off  in this basis is C ( f ,  B) = 
cP(1). In contrast, a worst basis for approximating f is a basis B that diffuses 
uniformly the energy off  across all vectors: 

The cost o f f  in a diffusing basis is C( f :  13) = N@(N-'). 

Proposition 9.8 Any basis B is worse than an ideal basis and better than a dif- 
fusing basis for approximating f. If @ (0)  = 0 then 

(9.66) 

Proof *. An ideal basis is clearly better than any other basis in the sense of Definition 
9.1, since it produces a zero error for M 2 1 .  The approximation error from M vectors 
in a diffusing basis is ) I f  ll'(N - M ) / N .  To prove that any basis B is better than a 
diffusing basis, observe that if rn is not in the index set ZM corresponding to the M 
largest inner products then 

@ ( 1 ) S c ( f , B ) 5 N @ ( z ) .  1 

(9.67) 
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The approximation error from M vectors thus satisfies 

which proves that it is smaller than the approximation error in a diffusing basis. The 
costs of ideal and diffusing bases are respectively @(1) and N@(N-’ ) .  We thus derive 
(9.66) from (9.65). 

Examples of Cost Functions As mentioned earlier, if there exists no basis that is 
better than all other bases in D, the “best” basis that minimizes C ( f ,  BX) depends 
on the choice of a. 

Entropy The entropy @ ( x )  = -x log, x is concave for x 2 0. The corresponding 
cost is called the entropy of the energy distribution 

Proposition 9.8 proves that 

0 I C(f,B) I logeN* (9.69) 

It reaches the upper bound log, N for a diffusing basis. 
Let us emphasize that this entropy is a priori not related to the number of 

bits required to encode the inner products (f, gm}. The Shannon Theorem 11.1 
proves that a lower bound for the number of bits to encode individually each 
(f, gm) is the entropy of theprobability distribution of the values taken by (f, gm). 
This probability distribution might be very different from the distribution of the 
normalized energies I (f, gm} 1 2 /  I l f l 1 2 .  For example, if (f, 8,) = A for 0 5 m < 
N then I(f,gm)(2/11f1)2 =N-’ and the cost C ( f , B )  = logeN is maximum. In 
contrast, the probability distribution of the inner product is a discrete Dirac located 
at A and its entropy is therefore minimum and equal to 0. 

IP Cost For p < 2, a(.) = xPl2 is concave for x 2 0. The resulting cost is 

Proposition 9.8 proves that it is always bounded by 

1 5 C(f,B) I N’-p /2 .  

This cost measures the 1P norm of the coefficients off in B: 

(9.70) 

Ilf IIS,P C q f , B )  = -. 
Ilf II 
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We derive from (9.26) that the approximation error €[MI is bounded by 

The minimization of this lp cost can thus also be interpreted as a reduction of the 
decay factor C such that 

C 
MVp-1 . €[MI I ~ 

9.4.2 

A best wavelet packet or local cosine basis divides the time-frequency plane into 
elementary atoms that are best adapted to approximate a particdar signal. The 
construction of dictionaries of wavelet packet and local cosine bases is explained 
in Sections 8.1 and 8.4. For signals of size N, these dictionaries include more than 
2N/2 bases. The best basis associated to f minimizes the cost 

Fast Best Basis Search in Trees 

(9.71) 

Finding this minimum by a brute force comparison of the cost of all wavelet packet 
or local cosine bases would require more than N2N/2 operations, which is compu- 
tationally prohibitive. The fast dynamic programming algorithm of Coifman and 
Wickerhauser [140] finds the best basis with O(NlogzN) operations, by taking 
advantage of the tree structure of these dictionaries. 

Dynamic Programming In wavelet packet and local cosine binary trees, each 
node corresponds to a space Wp, which admits an orthonormal basis By of wavelet 
packets or local cosines. This space is divided in two orthogonal subspaces located 
at the children nodes: 

In addition to 23; we can thus construct an orthogonal basis of Wp with a union of 
orthogonal bases of W;Tl and W;;:'. The root of the tree corresponds to a space 
of dimension N ,  which is e for local cosine bases and W! with 2L = N-' for 
wavelet packet bases. 

The cost of f in a family of M 5 N orthonormal vectors B = {gm}Osm<M is 
defined by the partial sum 

wj P - - W2P j+l e3 w;;;1 . 

(9.72) 

This cost is additive in the sense that for any orthonormal bases Bo and B1 of two 
orthogonal spaces 

C(f,BOUB1) = C ( f , a O ) + C ( f , B l ) .  (9.73) 
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The best basis 0s of W; is the basis that minimizes the cost (9.72), among all the 
bases of W; that can be constructed from the vectors in the tree. The following 
proposition gives a recursive construction of best bases, from bottom up along the 
tree branches. 

Proposition 9.9 (COIFMAN, WICKERHAUSER) If C is an additive cost function 
then 

Proof 2. The best basis 0; is either equal to 23; or to the union @ U B1 of two bases of 
W z l  and WZ;'. In this second case, the additivity property (9.73) implies that the 
cost off in 05 is minimum if @ and 23' minimize the cost off in W;T1 and Wz;'. 
Hence Bo = 0;;' and 23' = 0:;;'. This proves that 0; is either 23; or U;zl U 0::;'. 

The best basis of the space at the root of the tree is obtained by finding the best 
bases of all spaces WT in the tree, with a bottom-up progression. At the bottom 
of the tree, each W; is not subdecomposed. The best basis of Wf is thus the only 
basis available: Of = Bf. The best bases of the spaces { Wj"}, are then recursively 
computed from the best bases of the spaces { W;+l}p with the aggregation relation 
(9.74). Repeating this for j > J until the root gives the best basis off  in Wi for 
local cosine bases and in W: for wavelet packet bases. 

The fast wavelet packet or local cosine algorithms compute the inner product of 
f with all the vectors in the tree with respectively 0 (N log, N) and 0 (N (log, N)') 
operations. At a level of the tree indexed by j, there is a total of N vectors in the 
orthogonal bases {BsIp .  The costs {C(f,By)}p are thus calculated with 0 ( N )  
operations by summing (9.72). The computation of the best basis of all the spaces 
{W;}, from the best bases of {W?+l}p via (9.74) thus requires 0 ( N )  operations. 
Since the depth of the tree is smaller than log2N, the best basis of the space at the 
root is selected with O(Nlog,N) operations. 

The best basis is obtained by comparing the cost of these two possibilities. 

Best Bases of Images Wavelet packet and local cosine bases of images are or- 
ganized in quad-trees described in Sections 8.2.1 and 8.5.3. Each node of the 
quad-tree is associated to a space W;'q, which admits a separable basis of 
wavelet packet or local cosine vectors. This space is divided into four subspaces 
located at the four children nodes: 

The union of orthogonal bases of the four children spaces thus defines an orthogonal 
basis of Wy. At the root of the quad-tree is a space of dimension N2, which 
corresponds to W:?' for local cosine bases and to Wy with 2L = N-' for wavelet 
packet bases. 
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Let Oy:q be the best basis W y  for a signal f. Like Proposition 9.9 the 
following proposition relates the best basis of Wp’q to the best bases of its children. 
It is proved with the same derivations. 

Proposition 9.10 (COIFMAN, WICKERHAUSER) Suppose that C is an additive cost 
function. If 

C( f, By) < C ( f ,  O p )  + C ( f ,  U ; y )  + 
C( f ;  u;:y+1 ) + C (  f ,  O ; p q + l )  

then 
OP’4 = BP,4 

I J 

otherwise 

This recursive relation computes the best basis of (Wj”’q}p,q from the best 
bases of the spaces {W7fl}p,q, with O(N2)  operations. Iterating this procedure 
from the bottom of the tree to the top finds the best basis of f with O(N2 log2N) 
calculations. 

9.4.3 Wavelet Packet and Local Cosine Best Bases 

The performance of best wavelet packet and best local cosine approximations 
depends on the time-frequency properties off .  We evaluate these approximations 
through examples that also reveal their limitations. 

Best Wavelet Packet Bases A wavelet packet basis divides the frequency axis 
into intervals of varying sizes. Each frequency interval is covered by a wavelet 
packet function that is translated uniformly in time. A best wavelet packet basis 
can thus be interpreted as a “best” frequency segmentation. 

A signal is well approximated by a best wavelet packet basis if in any frequency 
interval, the high energy structures have a similar time-frequency spread. The time 
translation of the wavelet packet that covers this frequency interval is then well 
adapted to approximating all the signal structures in this frequency range that ap- 
pear at different times. Figure 9.7 gives the best wavelet packet basis computed 
with the entropy @(u) = -ulog, u, for a signal composed of two hyperbolic chirps. 
The wavelet packet tree was calculated with the Symmlet 8 conjugate mirror filter. 
The time-support of the wavelet packets is reduced at high frequencies to adapt 
itself to the rapid modification of the chirps’ frequency content. The energy distri- 
bution revealed by the wavelet packet Heisenberg boxes is similar to the scalogram 
shown in Figure 4.17. Figure 8.6 gives another example of a best wavelet packet 
basis, for a different multi-chup signal. Let us mention that the application of best 
wavelet packet bases to pattern recognition remains difficult because they are not 
translation invariant. If the signal is translated, its wavelet packet coefficients are 
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FIGURE 9.7 The top signal includes two hyperbolic chirps. The Heisenberg 
boxes of the best wavelet packet basis are shown below. The darkness of each 
rectangle is proportional to the amplitude of the wavelet packet coefficient. 

severely modified and the minimization of the cost function may yield a different 
basis. This remark applies to local cosine bases as well. 

If the signal includes different types of high energy structures, located at dif- 
ferent times but in the same frequency interval, there is no wavelet packet basis 
that is well adapted to all of them. Consider, for example a sum of four transients 
centered respectively at uo and u1, at two different frequencies 50 and E1 : 

The smooth window g has a Fourier transform g whose energy is concentrated at 
low frequencies. The Fourier transform of the four transients have their energy 
concentrated in frequency bands centered respectively at 50 and 51: 
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FIGURE 9.8 Time-frequency energy distribution of the four elementary atoms 
in (9.75). 

If SO and SI have different values, the time and frequency spread of these tran- 
sients is different, which is illustrated in Figure 9.8. In the best wavelet packet 
basis selection, the first transient Kos;1/2g(s;1(t - 4)) exp(if0t) “votes” for a 
wavelet packet whose scale 2j  is of the order SO at the frequency f o  whereas 
K1 sT1’2g(s;’ (t - u1)) exp(if0t) “votes” for a wavelet packet whose scale 2j  is 
close to s1 at the same frequency. The “best” wavelet packet is adapted to the 
transient of highest energy, which yields the strongest vote in the cost (9.71). The 
energy of the smaller transient is then spread across many “best” wavelet packets. 
The same thing happens for the second pair of transients located in the frequency 
neighborhood of & . 

Speech recordings are examples of signals whose properties change rapidly in 
time. At two different instants, in the same frequency neighborhood, the signal 
may have a totally different energy distributions. A best wavelet packet is not 
adapted to this time variation and gives poor non-linear approximations. 

As in one dimension, an image is well approximated in a best wavelet packet 
basis if its structures within a given frequency band have similar properties across 
the whole image. For natural scene images, the best wavelet packet often does not 
provide much better non-linear approximations than the wavelet basis included in 
this wavelet packet dictionary. For specific classes of images such as fingerprints, 
one may find wavelet packet bases that outperform significantly the wavelet basis 
[103]. 

Best Local Cosine Bases A local cosine basis divides the time axis into intervals 
of varying sizes. A best local cosine basis thus adapts the time segmentation to 
the variations of the signal time-frequency structures. In comparison with wavelet 
packets, we gain time adaptation but we lose frequency flexibility. A best local 
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FIGURE 9.9 Recording of bird song. The Heisenberg boxes of the best local 
cosine basis are shown below. The darkness of each rectangle is proportional to 
the amplitude of the local cosine coefficient. 

cosine basis is therefore well adapted to approximating signals whose properties 
may vary in time, but which do not include structures of very different time and 
frequency spread at any given time. Figure 9.9 shows the Heisenberg boxes of the 
best local cosine basis for the recording of a bird song, computed with an entropy 
cost. Figure 8.19 shows the best local cosine basis for a speech recording. 

The sum of four transients (9.75) is not efficiently represented in a wavelet 
packet basis but neither is it well approximated in a best local cosine basis. In- 
deed, if the scales so and s~ are very different, at uo and u1 this signal includes 
two transients at the frequency &, and 51 that have a very different time-frequency 
spread. In each time neighborhood, the size of the window is adapted to the tran- 
sient of highest energy. The energy of the second transient is spread across many 
local cosine vectors. Efficient approximations of such signals require using larger 
dictionaries of bases, which can simultaneously divide the time and frequency axes 
in intervals of various sizes [208]. 

In two dimensions, a best local cosine basis divides an image into square 
windows whose sizes are adapted to the spatial variations of local image structures. 
Figure 9.10 shows the best basis segmentation of the Barbara image, computed 
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FIGURE 9. I O  The grid shows the approximate support of square overlapping 
windows in the best local cosine basis, computed with an l1 cost. 

with an 1' cost calculated with @(u) = u1/2 .  The squares are bigger in regions 
where the image structures remain nearly the same. Figure 8.22 shows another 
example of image segmentation with a best local cosine basis computed with the 
same cost function. As in one dimension, a best local cosine basis is an efficient 
representation if the image does not include very different frequency structures in 
the same spatial region. 

9.5 APPROXIMATIONS WITH PURSUITS 

A music recording often includes notes of different durations at the same time, 
which means that such a signal is not well represented in a best local cosine basis. 
The same musical note may also have different durations when played at different 
times, in which case a best wavelet packet basis is also not well adapted to represent 
this sound. To approximate musical signals efficiently, the decomposition must 
have the same flexibility as the composer, who can freely choose the time-frequency 
atoms (notes) that are best adapted to represent a sound. 

Wavelet packet and local cosine dictionaries include P = N log, N different 
vectors. The set of orthogonal bases is much smaller than the set of non-orthogonal 
bases that could be constructed by choosing N linearly independent vectors from 
these P. To improve the approximation of complex signals such as music record- 
ings, we study general non-orthogonal signal decompositions. 

Consider the space of signals of size N. Let 2, = { g p } 0 5 p < p  be a redundant 
dictionary of P > N vectors, which includes at least N linearly independent vec- 
tors. For any M 2 1, an approximation f M  off  may be calculated with a linear 
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combination of any M dictionary vectors: 

m=O 

The freedom of choice opens the door to a considerable combinatorial explosion. 
For general dictionaries of P > N vectors, computing the approximation f~ that 
minimizes [ I f  - f ~ l l  is an NP hardproblem [151]. This means that there is no 
known polynomial time algorithm that can solve this optimization. 

Pursuit algorithms reduce the computational complexity by searching for ef- 
ficient but non-optimal approximations. A basis pursuit formulates the search as 
a linear programming problem, providing remarkably good approximations with 
0(N3.5 Io&.~N) operations. For large signals, this remains prohibitive. Matching 
pursuits are faster greedy algorithms whose applications to large time-frequency 
dictionaries is described in Section 9.5.2. An orthogonalized pursuit is presented 
in Section 9.5.3. 

9.5. I Basis Punuit 

We study the construction of a “best” basis 23, not necessarily orthogonal, for 
efficiently approximating a signal f. The N vectors of t? = {gpm}O<m<N are 
selected from a redundant dictionary 2) = { g p } O S p < p  with a pursuit elaborated by 
Chen and Donoho [119]. Let us decompose f in this basis: 

(9.76) 

If we had restricted ourselves to orthogonal bases, Section 9.4.1 explains that the 
basis choice would be optimized by minimizing 

(9.77) 

where @(u) is concave. For non-orthogonal bases, this result does not hold in 
general. 

Despite the absence of orthogonality, a basis pursuit searches for a “best” basis 
that minimizes (9.77) for @(u> = u’/’: 

(9.78) 

Minimizing the l1 norm of the decomposition coefficients avoids diffusing the 
energy of f among many vectors. It reduces cancellations between the vectors 
a[p,]g,  that decompose f, because such cancellations increase la[pm] I and thus 
increase the cost (9.78). The minimization of an l1 norm is also related to linear 
programming, which leads to fast computational algorithms. 
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Linear Programming Instead of immediately isolating subsets of N vectors in 
the dictionary 27, a linear system of size P is written with all dictionary vectors 

(9.79) 

while trying to minimize 
P- 1 

I4P1 I. (9.80) 
p=o 

The system (9.79) can be expressed in matrix form with the P x N matrix G = 

G a =  f .  (9.81) 

Although the minimization of (9.80) is nonlinear, it can be reformulated as a linear 
programming problem. 

A standard-form linear programming problem [28] is a constrained optimiza- 
tion over positive vectors of size L. Let b[n] be a vector of size N < L, c[p] a 
non-zero vector of size L and A[n,p] an L x N matrix. We must find x [ p ]  E RL 
such that x [ p ]  2 0, while minimizing 

{gp [ 4 ) O S n < N , O 5 p < P  

L- 1 

(9.82) 
p=o 

subject to 
Ax = b. 

To reformulate the minimization of (9.80) subject to (9.81) as a linear pro- 
gramming problem, we introduce “slack variables” u[p] 1 0 and v[p] 2 0 such 
that 

ab1 = .[PI - VlPl. 

As a result 
Ga=Gu-Gv= f (9.83) 

P-1 
and 

P- 1 

&PIl = C u [ P l + C v [ P l .  (9.84) 
p=o p=o p=o 

We thus obtain a standard form linear programming of size L = 2P with 

A=(G, -G)  , X =  (:) b = f  c = l .  

The matrix A of size N x L has rank N because the dictionary 27 includes N 
linearly independent vectors. A standard result of linear programming [28] proves 
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that the vector x has at most N non-zero coefficients. One can also verify that 
if a[p]  > 0 then a[p]  = u[p]  and u[p]  = 0 whereas if a[p]  5 0 then ab] = u[p] 
and u[p]  = 0. In the non-degenerate case, which is most often encountered, the 
non-zero coefficients of x [ p ]  thus correspond to N indices (pm}O<m<N such that 
{g,}Osm<N are linearly independent. This is the best basis of lRN that minimizes 
the cost (9.78). 

Linear Programming computations The collection of feasible points {x : Ax = 
b , x 2 0) is a convex polyhedron in EtL. The vertices of this polyhedron are 
solutions x[p] having at most N non-zero coefficients. The linear cost (9.82) can 
be minimum only at a vertex of this polyhedron. In the non-degenerate case, the N 
non-zero coefficients correspond to N column vectors B = {g,}O~m<N that form 
a basis. 

One can also prove [28] that if the cost is not minimum at a given vertex 
then there exists an adjacent vertex whose cost is smaller. The simplex algorithm 
takes advantage of this property by jumping from one vertex to an adjacent vertex 
while reducing the cost (9.82). Going to an adjacent vertex means that one of 
the zero coefficients of x[p ]  becomes non-zero while one non-zero coefficient is 
set to zero. This is equivalent to modifying the basis B by replacing one vector 
by another vector of 23. The simplex algorithm thus progressively improves the 
basis by appropriate modifications of its vectors, one at a time. In the worst case, 
all vertices of the polyhedron will be visited before finding the solution, but the 
average case is much more favorable. 

Since the 1980’s, more effective interior point procedures have been developed. 
Karmarkar’s interior point algorithm [234] begins in the middle of the polyhedron 
and converges by iterative steps towards the vertex solution, while remaining inside 
the convex polyhedron. For finite precision calculations, when the algorithm has 
converged close enough to a vertex, it jumps directly to the corresponding vertex, 
which is guaranteed to be the solution. The middle of the polyhedron corresponds 
to a decomposition of f over all vectors of D, typically with P > N non-zero 
coefficients. When moving towards a vertex some coefficients progressively de- 
crease while others increase to improve the cost (9.82). If only N decomposition 
coefficients are significant, jumping to the vertex is equivalent to setting all other 
coefficients to zero. Each step requires computing the solution of a linear sys- 
tem. If A is an N x L matrix then Kannarkar’s algorithm terminates with 0(L”5)  
operations. Mathematical work on interior point methods has led to a large vari- 
ety of approaches that are summarized in [252]. The basis pursuit of Chen and 
Donoho [119] is implemented in WAVELAB with a “Log-barrier” method [252], 
which converges more quickly than Kannarkar’s original algorithm 

Wavelet Packet and Local Cosine Dictionaries These dictionaries have P = 
N log, N time-frequency atoms. A straightforward implementation of interior 
point algorithms thus requires 0(N3.510g:.5N) operations. By using the fast 
wavelet packet and local cosine transforms together with heuristic computational 
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rules, the number of operations is considerably reduced [119]. The algorithm still 
remains relatively slow and the computations become prohibitive for N 2 1000. 

Figure 9.11 decomposes a synthetic signal that has two high frequency tran- 
sients followed by two lower frequency transients and two Diracs for t < 0.2. 
The signal then includes two linear chirps that cross each other and which are 
superimposed with localized sinusoidal waves. In a dictionary of wavelet packet 
bases calculated with a Daubechies 8 filter, the best basis shown in Figure 9.1 l(c) 
optimizes the division of the frequency axis, but it has no flexibility in time. It 
is therefore not adapted to the time evolution of the signal components. A basis 
pursuit algorithm adapts the wavelet packet choice to the local signal structures; 
Figure 9.1 l(d) shows that it better reveals its time-frequency properties. 

9.5.2 Matching Pursuit 
Despite the linear programming approach, a basis pursuit is computationally ex- 
pensive because it minimizes a global cost function over all dictionary vectors. 
The matching pursuit introduced by Mallat and Zhang [259] reduces the computa- 
tional complexity with a greedy strategy. It is closely related to projection pursuit 
algorithms used in statistics [184] and to shape-gain vector quantizations [27]. 
Vectors are selected one by one from the dictionary, while optimizing the signal 
approximation at each step. 

Let D = {gy)yEr be a dictionary of P > N vectors, having a unit norm. This 
dictionary includes N linearly independent vectors that define a basis of the space 
CN of signals of size N. A matching pursuit begins by projecting f on a vector 
g,,, E D and computing the residue R f: 

f = ( f : 8 , ) g , + R f .  (9.85) 

Since R f is orthogonal to g, 

(9.86) 

To minimize IIR f 1 1  we must choose g, E D such that I (f, g,,) I is maximum. In 
some cases, it is computationally more efficient to find a vector g, that is almost 
optimal: 

l ( f 7 & o ) I 2 ~ ~ ~ P l ( f 7 ~ 7 ) L  (9.87) 

where a E (0,1] is an optimality factor. The pursuit iterates this procedure by 
subdecomposing the residue. Let Ro f = f .  Suppose that the mth order residue 
Rm f is already computed, for rn 2 0. The next iteration chooses gym E 2) such that 

7 E r  

and projects Rmf on g,: 

(9.88) 

(9.89) 
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The orthogonality of Rm+l f and g,, implies 

IIR"fl12 = I(Rrnf:gym)I2+ IlRm+'fll2. (9.90) 

Summing (9.89) from m between 0 and M - 1 yields 

Similarly, summing (9.90) from m between 0 and M - 1 gives 

M- 1 

(9.92) 
m=O 

The following theorem proves that IIR"f I I converges exponentially to 0 when m 
tends to infinity. 

Theorem 9.10 There exists X > 0 such that for all m 2 0 

IIR"fll I Tx" Ilfll. (9.93) 

As a consequence 

m=O 

and 
+m 

(9.94) 

(9.95) 
m=O 

Proof '. Let us first verify that there exists p > 0 such that for any f E CN 

Suppose that it is not possible to find such a p. This means that we can construct 
{ f m ) m ~ ~  with llfrnll = 1 and 

(9.97) 

Since the unit sphere of CN is compact, there exists a sub-sequence { f m k } k E ~  that 
converges to a unit vector f E CN. It follows that 

lim SUP I ( f m ,  g7) I = 0- 
m++m ,Er 

(9.98) 

so (f, g7) = 0 for all g, E D. Since D contains a basis of CN, necessarily f = 0 which 
is not possible because l l f l l  = 1. This proves that our initial assumption is wrong, and 
hence there exists such that (9.96) holds. 
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FIGURE 9. I I (a): Signal synthesized with a sum of c h q s ,  truncated sinusoids, 
short time transients and Diracs. The time-frequency images display the atoms 
selected by different adaptive time-frequency transforms. The darkness is propor- 
tional to the coefficient amplitude. (b): Gabor matching pursuit. Each dark blob 
is the Wigner-Ville distribution of a selected Gabor atom. (c): Heisenberg boxes 
of a best wavelet packet basis calculated with Daubechies 8 filter. (d): Wavelet 
packet basis pursuit. (e): Wavelet packet matching pursuit. (0: Wavelet packet 
orthogonal matching pursuit. 
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The decay condition (9.93) is derived from the energy conservation 

II~"+'f1l2 = IIR"fl12 - I(W:gpm)12. 

The matching pursuit chooses g,,,, that satisfies 

7Er 
I(R"f,g,,)l I QsuPI(Rrnf1g,)I: (9.99) 

and(9.96)impliesthat I(R"f,g,,)l 2 crPIIR"fll. So 

(9.100) 2 2 1/2 IIR"+'fll5 IIR"fll(1- Q P 1 

2 4  = (1 -Q2/32)1'2 < 1. 

1 

which verifies (9.93) for 

This also proves that lim,,,, IIRmfll = 0. Equation (9.94) and (9.95) are thus derived 
from (9.91) and (9.92). 

The convergence rate X decreases when the size N of the signal space increases. In 
the limit of infinite dimensional spaces, Jones' theorem proves that the algorithm 
still converges but the convergence is not exponential [230,259]. The asymptotic 
behavior of a matching pursuit is further studied in Section 10.5.2. Observe that 
even in finite dimensions, an infinite number of iterations is necessary to completely 
reduce the residue. In most signal processing applications, this is not an issue 
because many fewer than N iterations are needed to obtain sufficiently precise 
signal approximations. Section 9.5.3 describes an orthogonalized matching pursuit 
that converges in fewer than N iterations. 

Fast Network Calculations A matching pursuit is implemented with a fast algo- 
rithm that computes ( ~ + l f ,  g,) from ( ~ ~ f ,  8,) with a simple updating formula. 
Taking an inner product with g, on each side of (9.89) yields 

(9.101) 

In neural network language, this is an inhibition of (Rmf,g,) by the selected 
pattern gym with a weight (gTm:g-{) that measures its correlation with g7. To 
reduce the computational load, it is necessary to construct dictionaries with 
vectors having a sparse interaction. This means that each g, E 2) has non-zero 
inner products with only a small fraction of all other dictionary vectors. It can 
also be viewed as a network that is not fully connected. Dictionaries are designed 
so that non-zero weights (g, , g,) can be retrieved from memory or computed with 
O( 1) operations. A matching pursuit with a relative precision E is implemented 
with the following steps. 

1. Initialization Set rn = 0 and compute { (f, g,)},Er. 

2. Best match Find g,,,, E 2) such that 

(9.102) 
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3. Update For all g-, E 2, with (g-,m, g7)  '# 0 

4. Stopping rule If 

then stop. Otherwise m = m + 1 and go to 2. 

If 2, is very redundant, computations at steps 2 and 3 are reduced by performing 
the calculations in a sub-dictionary Vs = {g7}7Ers c D. The sub-dictionary Vs 
is constructed so that if gTm E Ds maximizes I(f,g-,)l in Vs then there exists 
g ,  E 2, which satisfies (9.102) and whose index -I,,, is "close" to rm. The index 
yrn is found with a local search. This is done in time-frequency dictionaries where 
a sub-dictionary can be sufficient to indicate a time-frequency region where an 
almost best match is located. The updating (9.103) is then restricted to vectors 

The particular choice of a dictionary V depends upon the application. Spe- 
cific dictionaries for inverse electro-magnetic problems, face recognition and data 
compression are constructed in [268,229,279]. In the following, we concentrate 
on dictionaries of local time-frequency atoms. 

g ,  E vs. 

Wavelet Packets and Local Cosines Wavelet packet and local cosine trees con- 
structed in Sections 8.2.1 and 8.5.3 are dictionaries containing P = Nlog2N vec- 
tors. They have a sparse interaction and non-zero inner products of dictionary 
vectors can be stored in tables. Each matching pursuit iteration then requires 
O(Nlog2N) operations. 

Figure 9.11 (e) is an example of a matching pursuit decomposition calculated 
in a wavelet packet dictionary. Compared to the best wavelet packet basis shown 
in Figure 9.11(c), it appears that the flexibility of the matching pursuit selects 
wavelet packet vectors that give a more compact approximation, which reveals 
better the signal time-frequency structures. However, a matching pursuit requires 
more computations than a best basis selection. 

In this example, matching pursuit and basis pursuit algorithms give similar 
results. In some cases, a matching pursuit does not perform as well as a basis pur- 
suit because the greedy strategy selects decomposition vectors one by one [159]. 
Choosing decomposition vectors by optimizing a correlation inner product can 
produce a partial loss of time and frequency resolution [ 1 191. High resolution pur- 
suits avoid the loss of resolution in time by using non-linear correlation measures 
[195,223] but the greediness can still have adverse effects. 

Translation Invariance Section 5.4 explains that decompositions in orthogonal 
bases lack translation invariance and are thus difficult to use for pattern recognition. 
Matching pursuits are translation invariant if calculated in translation invariant 
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dictionaries. A dictionary D is translation invariant if for any gr E D then gr [n - 
p ]  E D for 0 I p < N .  Suppose that the matching decomposition off in V is 

M -  1 

f [nl = (Pf, g,) g% [.I + P f [ n I .  (9.104) 

One can verify [ 1511 that the matching pursuit off [n] = f [n - p ]  selects a trans- 
lation by p of the same vectors g,, with the same decomposition coefficients 

m=O 

M-1 

fp[nl = ( P f , g r n m )  g, [n - PI + P f , [ n I .  
m=O 

Patterns can thus be characterized independently of their position. The same 
translation invariance property is valid for a basis pursuit. However, translation 
invariant dictionaries are necessarily very large, which often leads to prohibitive 
calculations. Wavelet packet and local cosine dictionaries are not translation in- 
variant because at each scale 2j the waveforms are translated only by k2j with 
k E Z. 

Translation invariance is generalized as an invariance with respect to any group 
action [151]. A frequency translation is another example of a group operation. If 
the dictionary is invariant under the action of a group then the pursuit remains 
invariant under the action of the same group. 

Gabor Dictionary A time and frequency translation invariant Gabor dictionary 
is constructed by Qian and Chen [287] as well as Mallat and Zhong [259], by 
scaling, translating and modulating a Gaussian window. Gaussian windows are 
used because of their optimal time and frequency energy concentration, proved by 
the uncertainty Theorem 2.5. 

For each scale 2j,  a discrete window of period N is designed by sampling and 
periodizing a Gaussian g( t )  = 2lI4exp(-7rt2): 

The constant Kj is adjusted so that 11 g j  I I = 1. This window is then translated in time 
and frequency. Let I? be the set of indexes y = ( p , k , 2 j )  for ( p , k )  E [O,N - 11, 
and j E [0, log, N ]  . A discrete Gabor atom is 

(9.105) 

The resulting Gabor dictionary V = {gr},Er is time and frequency translation 
invariant modulo N .  A matching pursuit decomposes real signals in this dictionary 
by grouping atoms gr+ and g-,- with yk = ( p ,  f k ,  2’). At each iteration, instead 
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of projecting Rm f over an atom gr, the matching pursuit computes its projection 
on the plane generated by (gy+, g,-). Since Rmf[n]  is real, one can verify that this 
is equivalent to projecting Rm f on a real vector that can be written 

The constant Kj:b sets the norm of this vector to 1 and the phase 4 is optimized to 
maximize the inner product with Rm f .  Matching pursuit iterations yield 

Crn 

(9.106) 
m=O 

This decomposition is represented by a timefrequency energy distribution ob- 
tained by summing the Wigner-Ville distribution Pvg,m [n, k] of the complex atoms 
gym ’ 

(9.107) 

Since the window is Gaussian, if T,,, = (pm,km,2jm) then Pvg, is a two- 
dimensional Gaussian blob centered at ( p m  , &) in the time-frequency plane. It is 
scaled by 2jm in time and N2-jm in frequency. 

m=O 

Example 9.1 Figure 9.1 l(b) gives the matching pursuit energy distribution 
P ~ f [ n , k ]  of a synthetic signal. The inner structures of this signal appear more 
clearly than with a wavelet packet matching pursuit because Gabor atoms have 
a better time-frequency localization than wavelet packets, and they are translated 
over a finer time-frequency grid. 

Example 9.2 Figure 9.12 shows the Gabor matching pursuit decomposition of 
the word “greasy”, sampled at 16 kHz. The time-frequency energy distribution 
shows the low-frequency component of the “g” and the quick burst transition 
to the “ea”. The “ea” has many harmonics that are lined up. The “s” is noise 
whose time-frequency energy is spread over a high-frequency interval. Most of 
the signal energy is characterized by a few time-frequency atoms. For m = 250 
atoms, IIRmfll/llfll =. 169, although the signal has 5782 samples, and the sound 
recovered from these atoms is of excellent audio-quality. 

Matching pursuit calculations in a Gabor dictionary are performed with a sub- 
dictionary Vs. At each scale 2j, the time-frequency indexes ( p , k )  are subsampled 
at intervals u2j and aN2-j where the sampling factor u < 1 is small enough to 
detect the time-frequency regions where the signal has high energy components. 
The step 2 of the matching pursuit iteration (9.102) finds the Gabor atom in g7m E Vs 
which best matches the signal residue. This match is then improved by searching 
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FIGURE 9.12 Speech recording of the word "greasy" sampled at l6kHz. In 
the time-frequency image, the dark blobs of various sizes are the Wigner-Ville 
distributions of a Gabor functions selected by the matching pursuit. 

for an atom g, E V whose index is close to q,,, and which locally maximizes 
the correlation with the signal residue. The updating formula (9.103) is calculated 
for g, E Vs. Inner products between two Gabor atoms are computed with an 
analytic formula 12591. Since Vs has O(Nlog2N) vectors, one can verify that 
each matching pursuit iteration is implemented with O(N log, N) calculations. 

9.5.3 Orthogonal Matching Pursuit 

The approximations of a matching pursuit are improved by orthogonalizing the 
directions of projection, with a Gram-Schmidt procedure proposed by Pati et al. 
[280] and Davis et al. [152]. The resulting orthogonal pursuit converges with 
a finite number of iterations, which is not the case for a non-orthogonal pursuit. 
The price to be paid is the important computational cost of the Gram-Schmidt 
orthogonalization. 

The vector g, selected by the matching algorithm is a priori not orthogonal 
to the previously selected vectors { gy,}05p<m. When subtracting the projection 
of Rm f over g, the algorithm reintroduces new components in the directions of 
{ g , , } O ~ p < m .  This is avoided by projecting the residues on an orthogonal family 

Let us initialize uo = g,. For m 2 0, an orthogonal matching pursuit selects 
{Up}o<p<rn  computed from { g ~ , } ~ < p < m .  
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(9.108) 

The Gram-Schmidt algorithm orthogonalizes g ,  with respect to {g,p}O~p<rn and 
defines 

The residue Rm f is projected on urn instead of g,: 

Summing this equation for 0 5 m < k yields 

(9.109) 

(9.110) 

(9.11 1) 

= Pv,f + @ f 7  

where PV, is the orthogonal projector on the space v k  generated by {Um}O<m<k.  

The Gram-Schmidt algorithm ensures that {g,}O<m<k is also a basis of v k .  For 
any k 2 0 the residue Rk f is the component of f that is orthogonal to v k .  For 
m = k (9.109) implies that 

( R m f , u m )  = ( R m f > g y m ) *  (9.112) 

Since v k  has dimension k there exists M 5 N such that f E V M ,  so RM f = 0 and 
inserting (9.1 12) in (9.1 11) for k = M yields 

(9.1 13) 

The convergence is obtained with a finite number M of iterations. This is a de- 
composition in a family of orthogonal vectors so 

(9.114) 

To expand f over the original dictionary vectors { g-,m}05m<M, we must perform 
a change of basis. The triangular Gram-Schmidt relations (9.109) are inverted to 
expand urn in {g-,,}O<p~m: 

m 

(9.115) 
p=o 
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Inserting this expression into (9.113) gives 
M-1 

(9.116) 
p=o 

with 

During the first few iterations, the pursuit often selects nearly orthogonal vectors, 
so the Gram-Schmidt orthogonalization is not needed. The orthogonal and non- 
orthogonal pursuits are then nearly the same. When the number of iterations 
increases and gets close to N ,  the residues of an orthogonal pursuit have norms 
that decrease faster than for a non-orthogonal pursuit. 

Figure 9.1 l(f) displays the wavelet packets selected by an orthogonal match- 
ing pursuit. A comparison with Figure 9.11(e) shows that the orthogonal and 
non-orthogonal pursuits selects nearly the same wavelet packets having a high 
amplitude inner product. These wavelet packets are selected during the first few 
iterations, and since they are nearly orthogonal the Gram-Schmidt orthogonaliza- 
tion does not modify much the pursuit. The difference between the two algorithms 
becomes significant when selected wavelet packet vectors have non-negligible 
inner products, which happens when the number of iterations is large. 

The Gram-Schmidt summation (9.109) must be carefully implemented to avoid 
numerical instabilities [29]. Orthogonalizing M vectors requires O(NM*) oper- 
ations. In wavelet packet, local cosine and Gabor dictionaries, M matching pur- 
suit iterations are calculated with O(MNlogzN) operations. For M large, the 
Gram-Schmidt orthogonalization increases very significantly the computational 
complexity of the pursuit. The non-orthogonal pursuit is thus more often used for 
large signals. 

9.6 PROBLEMS 

9.1. ' Prove that for any f E Lz [0,1], if llfllv < +m then l l f l l m  < +m. Verify that 
one can find an image f E Lz[O, 11' such that llfllv < +m and l l f l l r n  = +m. 

9.2. 
9.3. ' The family of discrete polynomials {pk [n] = n k } 0 5 k < ~  is a basis of CN. 

(a) Implement in WAVELAB a Gram-Schmidt algorithm that orthogonalizes 

(b) Let f be a signal of size N. Compute the polynomial f k of degree k which 
minimizes I l f  - f k  11. Perform numerical experiments on signals f that 
are uniformly smooth and piecewise smooth. Compare the approximation 
error with the error obtained by approximating f with the k lower frequency 
Fourier coefficients. 

9.4. ' Iff has a finite total variation l l f l l v  on [O, 11, prove that its linear approxi- 
mation in a wavelet basis satisfies Q[M] = O(llfl l;M-') (Hint: use Theorem 
9.6). Verify that q[M] N llfll;M-l iff = Cl[o,~p].  

Prove that iff  E Ws(R) with s > p +  1/2 then f E CP. 

{ P k  )O<k<N. 
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9.5. Let f = Cln  where R is a subset of [0, 112 with a regular boundary aR of 
finite length L > 0. Prove that the linear approximation error in a wavelet basis 
satisfies S[M] - lljllv l l f l l , , , ~ - ' / ~ .  

Let a[M] be a decreasing sequence such that limM-t+m a[M] = 0. By using 
(9.43) prove that there exists a bounded variation function f E L2[0, 112 such 
that Ef[M] 2 a [ M ]  (the amplitude off is not bounded). 

Consider a wavelet basis of L2[0, 11 constructed with wavelets having q > s 
vanishing moments and which are 0. Construct functions f E Ws[O; 11 for 
which the linear and non-linear approximation errors in this basis are identical: 
Q[M] = €,[MI for any M 2 0. 

Color images A color pixel is represented by red, green and blue components 
( r ,  g, b), which are considered as orthogonal coordinates in a three dimensional 
color space. The red r[nl ,  1121, green g[nl, n2] and blue b[nl, n2] image pixels 
are modeled as values taken by respectively three random variables R, G and 
B, that are the three coordinates of a color vector. Estimate numerically the 3 
by 3 covariance matrix of this color random vector from several images and 
compute the Karhunen-Lohve basis that diagonalizes it. Compare the color 
images reconstructed from the two Karhunen-Mve color channels of highest 
variance with a reconstruction from the red and green channels. 

9.6. 

9.7. 

9.8. 

9.10. 'Letf(t) beapiecewisepolynomialsignalofdegree3definedon [0,1], withK 
discontinuities. We denote by fK and jK respectively the linear and non-linear 
approximations off from K vectors chosen from a Daubechies wavelet basis 
of L2[0, 11, with p + 1 vanishing moments. 
(a) Give upper bounds as a function of K and p of I l f  - f~ 11 and [ I f  - 7~11. 
(b) The Piece-Polynomial signal f in WAVELAB is piecewise polynomial with 

degee 3. Decompose it in a Daubechies wavelet basis with four vanishing 
moments, and compute I l f  - f K  11 and I l f  - j~ 11 as a function of K. Verify 
your analytic formula. 

Let f[n] be defined over [O,W. We denote by fp ,k[n]  the signal that is 9.11. 
piecewise constant on [O,k], takes at most p different values, and minimizes 

k 

Ep,k= I l f - f p , k I I t O : k ]  = ) l f [ n l - f ~ C [ n 1 1 2 .  
n=O 

(a) Compute as a function of f [ n ]  the value that minimizes cI,k = 

Ep,k = min {+,,I + q k l .  
1E [O,k-I] 

Derive a bottom up algorithm that computes progressively f p , k  for 0 5 k 5 
N and 1 5 p 5 K, and obtains f K , N  with O(KN2) operations. Implement 
this algorithm in WAVELAB. 

(c) Compute the non-linear approximation off with the K largest amplitude 
Haar wavelet coefficients, and the resulting approximation error. Compare 
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this error with I I f  - f aSJ I I as a function of K, for the Lady and the Piece- 
Polynomial signals in WAVELAB. Explain your results. 

9.12. Approximation of oscillatory finctions 
(a) Let f ( t )  = a(t)  exp[i4(t)]. I fa ( t )  and q5'(t) remain nearly constant on the 

support of ?,bj,,, then show with an approximate calculation that 

(f,$j,n) M a(2jn) f i i j  (2j4'(2jn)) . (9.1 17) 

(b) Let f ( t )  = sint-' l~-l/sl/Tl(t). Show that the P norm of the wavelet 
coefficients off is finite if and only if p < 1. Use the approximate formula 
(9.117). 

(c) Compute an upper bound of the non-linear approximation error E[M] of 
sint-' from M wavelet coefficients. Verify your theoretical estimate with 
a numerical calculation in WAVELAB. 

Let f be a signal of size N and T a given threshold. Describe a fast algo- 
rithm that searches in a wavelet packet or a local cosine dictionary for the best 
basis B = {gm}O<m<N that minimizes the number of inner products such that 
l(f:gm)l? T .  

Best translated basis Let {$j,m[n]}j,m be a discrete wavelet orthonormal 
basis of signals of period N, computed with a conjugate mirror filter h with K 
non-zero coefficients. Let $$,,[n] = $j,m[n - k] and Bk = { $ ~ f , ~ [ n ] } j ~  be the 
translated basis, for any 0 5 k < N. 
(a) Describe an algorithm that decomposes f over all wavelets with 

O(KNlog,N) operations. 
(b) Let C(f,Bk) = ~ , , m ~ ( ~ ( f , # , m ) ~ 2 / ~ ~ ~ ~ ~ z ) .  Describe an algorithm that 

findsthebestshiftlsuchthat C(f,B') = o ~ i = , C ( f , B k ) , w i t h O ( N l o g , N )  
operations [281]. 

9.13. 

9.14. 

9.15. Best waveletpacket and local cosine approximations 
(a) Synthesize a discrete signal that is well approximated by few vectors in a 

best wavelet packet basis, but which requires many more vectors to obtain 
an equivalent approximation in a best local cosine basis. Test your signal 

(b) Design a signal that is well approximated in a best local cosine basis but 
requires many more vectors to approximate it efficient in a best wavelet 
packet basis. Verify your result in WAVELAB. 

In two dimensions, a wavelet packet quad-tree of an image of size N2 requires a 
storage of NZ log,N numbers. Describe an algorithm that finds the best wavelet 
packet basis with a storage of 4N2/3, by constructing the wavelet packet tree 
and computing the cost function in a depth-first preorder [76]. 

(a) Describe a fast best basis algorithm which requires O(N(log,N)') opera- 
tions to find the block wavelet packet basis that minimizes an additive cost 
(9.71) [208]. 

(b) Implement the double tree decomposition and the best basis search in 
W A V U .  Program a display that shows the timefrequency tiling of the 

hwAV&AB. 

9.16. 

9.17. A double tree of block wavelet packet bases is defined in Problem 8.1 1. 
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best basis and the amplitude of the decomposition coefficients. How does 
the best block wavelet packet basis compae with a best local cosine basis 
for the Greasy and Tweet signals? 

= {6[n - k ] ,  exp(i27rkn/N)}05k<N be a Dirac-Fourier dictionary to 
decompose N periodic signals. 
(a) Prove that a matching pursuit residue calculated with an optimality factor 

a= 1 satisfies IIRrnfll 5 l l f l l  exp(-m/(m)). 
(b) Implement the matching pursuit in this Dirac-Fourier dictionary and de- 

compose f[n] = exp (-i27rn2/N). Compare the decay rate of the residue 
with the upper bound that was calculated. Suggest a better dictionary to 
decompose this signal. 

Let f be a piecewise constant image defined over [0,NI2. Suppose that f is 
constant over regions {S2i} lsR5K whose borders are differentiable curves with a 
bounded curvature. It may be discontinuous along the borders of the ai. Prove 
that there exists K > 0 such that for any M > 0 one can construct f~ which 
is constant on the M triangles of a triangulation of [O,Nl2 and which satisfies 
I l f  - f ~ I 1  5 KM-'. Design and implement in WAVELAB an algorithm which 
computes fM for any piecewise constant function f. Compare the performance 
of your algorithm with an approximation with M vectors selected from a two- 
dimensional Haar wavelet basis. 

Let O ( t )  be a cubic box spline centered at t = 0. We define a dictionary of N 
periodic cubic splines: 

9.18. k t  

9.19. 

9.20. 

1 1 05 j l l o g z N :  Osk<N 
V = Oj[(n-k)modN] { 

where Oj[n] = KjO(2-jn) for j 2 1 ,  and Oo[n] = 

(a) Implement a matching pursuit in this dictionary. 
(b) Show that if f[n] = e,[.] + Oj[n - k ]  where k is on the order of 2j,  then 

the greediness of the matching pursuit may lead to a highly non-optimal 
decomposition. Explain why. Would a basis pursuit decomposition do 
better? 

(c) If f [ n ]  2 0, explain how to improve the matching pursuit by imposing that 
Rrnf[n] 2 0 for any m 2 0. 



ESTIMATIONS ARE 

APPROXI MATIONS 

n a background noise of French conversations, it is easier to carry on a personal 
discussion in English. The estimation of signals in additive noise is similarly 
optimized by finding a representation that discriminates the signal from the 

noise. 

An estimation is calculated by an operator that attenuates the noise while 
preserving the signal. Linear operators have long predominated because of their 
simplicity, despite their limited performance. It is possible to keep the simplicity 
while improving the performance with non-linearities in a sparse representation. 
Thresholding estimators are studied in wavelet and wavelet packet bases, where 
they are used to suppress additive noises and restore signals degraded by low-pass 
filters. Non-linear estimations from sparse representations are also studied for 
operators, with an application to power spectrum estimation. 

Optimizing an estimator requires taking advantage of prior information. Bayes 
theory uses a probabilistic signal model to derive estimators that minimize the 
average risk. These models are often not available for complex signals such as 
natural images. An alternative is offered by the minimax approach, which only 
requires knowing a prior set where the signal is guaranteed to be. The quasi- 
minimax optimality of wavelet thresholding estimators is proved for piecewise 
regular signals and images. 

434 
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IO. I BAYES VERSUS MINIMAX 

A signal f [ n ]  of size N is contaminated by the addition of a noise. This noise is 
modeled as the realization of arandom process W [n] , whose probability distribution 
is known. The measured data are 

X [ n ]  = f [ n ]  + W[n] . 
The signal f is estimated by transfonning the noisy dataX with a decision operator 
D. The resulting estimator is 

F = D X .  
Our goal is to minimize the error of the estimation, which is measured by a loss 
function. For speech or images, the loss function should measure the audio and 
visual degradation, which is often difficult to model. A mean-square distance is 
certainly not a perfect model of perceptual degradations, but it is mathematically 
simple and sufficiently precise in most applications. Throughout this chapter, the 
loss function is thus chosen to be a square Euclidean norm. The risk of the estimator 
k of f is the average loss, calculated with respect to the probability distribution 
of the noise W :  

@,f) = E{llf-DX1I2). (10.1) 
The optimization of the decision operator D depends on prior information that 

is available about the signal. The Bayes framework supposes that we know the 
probability distribution of the signal and optimizes D to minimize the expected 
risk. The main difficulty is to acquire enough information to define this prior 
probability distribution, which is often not possible for complex signals. The 
minimax framework uses a simpler model which says that signals remain in a 
prior set 0. The goal is then to minimize the maximum risk over 9. Section 
10.1.2 relates minimax and Bayes estimators through the minimax theorem. 

IO. I. I Bayes Estimation 

The Bayes principle supposes that signals f are realizations of a random vector F 
whose probability distribution 7i is known a priori. This probability distribution is 
called the prior distribution. The noisy data are thus rewritten 

X [ n ]  = F[n] + W[n] . 

We suppose that the noise values W [k] are independent from the signal F [n] for any 
0 5 k ;  n < N. The joint distribution of F and W is the product of the distributions 
of F and W .  It specifies the conditional probability distribution of F given the 
observed data X, also called the posterior distribution. This posterior distribution 
can be used to construct a decision operator D that computes an estimation k = DX 
of F from the data X. 

The Bayes risk is the expected risk calculated with respect to the prior proba- 
bility distribution IT of the signal: 

I.(Rn) = E,{r(D,F)). 
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By inserting (lO.l), it can be rewritten as an expected value relative to the joint 
probability distribution of the signal and the noise: 

N-1 

r ( D , r )  = E{lIF-Fl]'} = x E { I F [ n ]  -F[n]I2}.  
n=O 

Let 0, be the set of all operators (linear and non-linear) from CN to CN. Optimizing 
D yields the minimum Bayes risk 

rn(r)  = inf r ( D , r )  . 
DEO" 

The following theorem proves that there exist a Bayes decision operator D and a 
corresponding Bayes estimator F that achieve this minimum risk. 

Theorem 10.1 The Bayes estimator 
is the conditional expectation 

that yields the minimum Bayes risk rn(n) 

F[n]  = E{F[n] I X [ O ] , X [ l ] ,  ..., X[N-l]}. (10.2) 

Proof 2. Let nn ( y ) be the probability distribution of the value y of F [n] . The minimum 
riskis obtainedby findingF[n] =Dn(X)  that minimizes r(Dn,Tn) = E{ IF[n] -F[n]12}. 
for each 0 5 n < N. This risk depends on the conditional distribution Pn(xly) of the 
data X = x, given F[n] = y :  

r(Dn , r n )  = 1 1 ( O n  ( x )  - Y ) 2  dpn Y )  dnn ( Y )  . 

Let P ( x )  = JP, , (x l y )d~ , , ( y )  be the marginal distribution of X and nn(yIx) be the 
posterior distribution of F[n] given X. The Bayes formula gives 

r(Dn,nn) = 1 [/(Dn(x) - Y ) ~ ~ X ~ ( Y I X ) ]  dp(x) . 

The double integral is minimized by minimizing the inside integral for each x. This 
quadratic form is minimum when its derivative vanishes: 

which implies that 
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Linear Estimation The conditional expectation (10.2) is generally a complicated 
non-linear function of the data { X [ ~ ] } O ~ R < N ,  and is difficult to evaluate. To simplify 
this problem, we restrict the decision operator D to be linear. Let 01 be the set of 
all linear operators from CN to CN. The linear minimum Bayes risk is: 

The linear estimator F = DF that achieves this minimum risk is called the Wiener 
estimator. The following proposition gives a necessary and sufficient condition 
that specifies this estimator. We suppose that E{F[n]}  = 0, which can be enforced 
by subtracting E{F[n]}  from X [ n ]  to obtain a zero-mean signal. 

Proposition 10.1 A linear estimator F is a Wiener estimator ifand only if 
E{ (F[n] - F[n])  X [ k ] }  = 0 for 0 5 k ,  n < N . (10.3) 

Proof '. For each 0 5 n < N, we must find a linear estimation 
N-1 

g[n] = D , X = x h [ n , k ] X [ k ]  
k=O 

which minimizes 

The minimum of this quadratic form is reached if and only if for each 0 5 k < N ,  

which verifies (10.3). W 

If F and W are independent Gaussian random vectors, then the linear optimal esti- 
mator is also optimal among non-linear estimators. Indeed, two jointly Gaussian 
random vectors are independent if they are non-correlated [56]. Since F[n] - k[n] 
is jointly Gaussian with X [ k ] ,  the non-correlation (10.3) implies that F [ n ]  - F [ n ]  
and X [ k ]  are independent for any 0 5 k,n < N .  In this case, we can verify that p 
is the Bayes estimator (10.2): k [ n ]  = E{F[n] I X } .  

Estimation in a Karhunen-Loeve Basis The following theorem proves that if the 
covariance matrices of the signal F and of the noise W are diagonal in the same 
Karhunen-Lohe basis B = { grn}Osm<N then the optimal linear estimator is diag- 
onal in this basis. We write 

x ~ [ m I  = ( ~ 7 g m )  7 FB[~I = (F;,grn) 7 

F B [ ~ ]  = (F,grn) 7 W B [ ~ ]  = (W,grn) > 

P i  = E{IFt3[ml12} 7 C i  = E{IWB[~ll21 
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Theorem 10.2 (WIENER) Ifthere exists a Karhunen-LoBve basis B = {gm)O<m<N 
that diagonalizes the covariance matrices of both F and W, then the Wener esti- 
mator is 

and the resulting minimum linear Bayes risk is 

Proof z. Let F[n] be a linear estimator of F[n]:  
N-1 

F[nl = C h [ n J l X [ 4  
k 0  

(10.5) 

(10.6) 

(10.7) 

This equation can be rewritten as a matrix multiplication by introducing the N x N 
matrix H = (h [n ,Z] )O<n, f<N:  

k = HX. (10.8) 
The non-correlation condition (10.3) implies that for 0 5 n,k < N 

N - 1  

E{F[n]X[k]}  = E{P[n]X[k] }  = x h [ n , l ]  E{X[Z]X[k]}.  
I=O 

Since X[k] = F[k] + W[k]  and E(F[n] W [ k ] }  = 0, we derive that 

Let RF and Rw be the covariance mahices of F and W, whose entries are respectively 
E{F[n] F [ k ] }  and E {  W[n] W [ k ] } .  Equation (10.9) can be rewritten as amatrixequation: 

RF = H (RF -t Rw). 

H = RF ( R ~  + R~)-’. 
Since RF and Rw are diagonal in the basis B with diagonal values respectively equal to 
,B: and o:, the matrix H is also diagonal in B with diagonal values equal to ,Bi(,Bi + 
CT:)-’. So (10.8) shows that the decomposition coefficients of F and X in B satisfy 

Inverting this equation gives 

FB[rn]  = ___ xB[m], E + UH 

which implies (10.5). 
The resulting risk is 

(10.10) 

N-I 

E{ IIF - kllz} = E{ / F B [ ~ ]  - F B [ ~ ] / ’ > .  (10.11) 
m=O 

Inserting (10.10) in (10.11) knowing that X ~ [ r n ]  = F ~ [ r n ]  + W B [ ~ ]  where F ~ [ r n ]  and 
rn Ws[m] are independent yields (10.6). 
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This theorem proves that the Wiener estimator is implemented with a diagonal 
attenuation of each data coefficient X & n ]  by a factor that depends on the signal to 
noise ratio p:/oi in the direction of g,. The smaller the signal to noise ratio, the 
more attenuation is required. If F and W are Gaussian processes, then the Wiener 
estimator is optimal among linear and non-linear estimators of F .  

If W is a white noise then its coefficients are uncorrelated with the same variance 

E{W[n] W [ k ] }  = g2 S[n - k] . 

Its covariance matrix is therefore Rw = u2Zd. It is diagonal in all o r t h o n o d  
bases and in particular in the Karhunen-Lokve basis of F .  Theorem 10.2 can thus 
be applied and a, = CT for 0 5 m < N .  

Frequency Filtering Suppose that F and W are zero-mean, wide-sense circu- 
lar stationary random vectors. The properties of such processes are reviewed in 
Appendix A.6. Their covariance satisfies 

E{F[n]F[k] }  =RF[n-k] E{W[n]W[k] }  = R w [ n - k ]  

where &[n] and Rw[n] are N periodic. These matrices correspond to circular 
convolution operators and are therefore diagonal in the discrete Fourier basis 

The eigenvalues 
also called power spectra: 

and g i  are the discrete Fourier transforms of RF [n] and Rw [n], 

N-1 

/3: = c R ~ [ n ]  exp (T) = R F [ ~ ]  , 
n=O 

The Wiener estimator (10.5) is a diagonal operator in the discrete Fourier basis, 
computed with the frequency filter: 

6[m] = (10.12) R F  [ml 
Mnl +iw[ml  . 

P[n] = D X = X @ h [ n ] .  

It is therefore a circular convolution: 

The resulting risk is calculated with (1 0.6): 

(10.13) 
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FIGURE 10.1 (a): Realization of a Gaussian process F. @): Noisy signal 
obtained by adding a Gaussian white noise (SNR = -0.48 db). (c): Wiener esti- 
mation (SNR = 15.2db). 

The numerical value of the risk is often specified by the Signal to Noise Ratio, 
which is measured in decibels 

(10.14) 

Example 10.1 Figure lO.l(a) shows a realization of a Gaussian process F ob- 
tained as a convolution of a Gaussian white noise B of variance pz with a low-pass 
filter g: 

F[nI =B@gbI,  
with 

Theorem A.4 proves that 
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The noisy signal X shown in Figure lO.l(b) is contaminated by a Gaussian white 
noise W of variance L T ~ ,  so &[m] = a2. The Wiener estimation F is calculated 
with the frequency filter (10.12) 

This linear estimator is also an optimal non-linear estimator because F and W are 
jointly Gaussian random vectors. 

Piecewise Regular The limitations of linear estimators appear clearly for pro- 
cesses whose realizations are piecewise regular signals. A simple example is a 
random shift process F constructed by translating randomly a piecewise regular 
signal f [ n ]  of zero mean, f [ n ]  = 0: 

F[n] =f[(n-P)modN] . (10.15) 

The shift P is an integer random variable whose probability distribution is uniform 
on [O,N - I]. It is proved in (9.20) that F is a circular wide-sense stationary process 
whose power spectrum is calculated in (9.21): 

(1 0.16) 

Figure 10.2 shows an example of a piecewise polynomial signal f of degree 
d = 3 contaminated by a Gaussian white noise W of variance LT'. Assuming that we 
know ~j[m] 1 2 ,  the Wiener estimator F is calculated as a circular convolution with 
the filter whose transfer function is (10.12). This Wiener filter is a low-pass filter 
that averages the noisy data to attenuate the noise in regions where the realization of 
F is regular, but this averaging is limited to avoid degrading the discontinuities too 
much. As a result, some noise is left in the smooth regions and the discontinuities 
are averaged a little. The risk calculated in (10.13) is normalized by the total noise 
energy E{llW112} = Na2: 

(10.17) 

Suppose that f has discontinuities of amplitude on the order of C 2 LT and that 
the noise energy is not negligible: N a' 1 C2. Using the fact that lj[m] 1 decays 
typically like C N m-l,  a direct calculation of the risk (10.17) gives 

( 10.1 8) 

The equivalence - means that upper and lower bounds of the left-hand side are 
obtained by multiplying the right-hand side by two constants A,B > 0 that are 
independent of C, LT and N. 
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FIGURE 10.2 (a): Piecewise polynomial of degree 3. (b): Noisy signal de- 
graded by a Gaussian white noise (SNR = 21.9 db). (c): Wiener estimation (SNR= 
25.9 db). 

The estimation of F can be improved by non-linear operators, which average the 
data X over large domains where F is regular but do not make any averaging where 
F is discontinuous. Many estimators have been studied [183,276] that estimate 
the position of the discontinuities off in order to adapt the data averaging. These 
algorithms have long remained ad hoc implementations of intuitively appealing 
ideas. Wavelet thresholding estimators perform such an adaptive smoothing and 
Section 10.3.3 proves that the normalized risk decays like N-' as opposed to N-'/2 
in (10.18). 

IO. I .2 Minimax Estimation 

Although we may have some prior information, it is rare that we know the prob- 
ability distribution of complex signals. This prior information often defines a set 
0 to which signals are guaranteed to belong, without specifying their probability 
distribution in 0. The more prior information, the smaller the set 0. For example, 
we may know that a signal has at most K discontinuities, with bounded derivatives 
outside these discontinuities. This defines a particular prior set 0. Presently, there 
exists no stochastic model that takes into account the diversity of natural images. 
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However, many images, such as the one in Figure 2.2, have some form of piecewise 
regularity, with a bounded total variation. This also specifies a prior set 0. 

The problem is to estimate f E 0 from the noisy data 

X [ n ]  = f [ n ]  + W[n] . 

The risk of an estimation = DX is r(D, f )  = E{ [ [ D X -  f11*}. The expected risk 
over 0 cannot be computed because we do not know the probability distribution 
of signals in 0. To control the risk for any f E 0, we thus try to minimize the 
maximum risk: 

r(D: 0)  = supE{ llDX - f 1 I 2 } .  
f EO 

The minimax risk is the lower bound computed over all linear and non-linear 
operators D: 

rn(@) = inf r ( D : O ) .  
DEO" 

In practice, we must find a decision operator D that is simple to implement and 
such that r(D, 0) is close to the minimax risk r,, (0). 

As a first step, as for Wiener estimators in the Bayes framework, we can simplify 
the problem by restricting D to be a linear operator. The linear minimax risk over 
0 is the lower bound: 

r l (0 )  = inf r(D,Q).  
DEOi 

This strategy is efficient only if r ~ ( 0 )  is of the same order as rn(0 ) .  

Bayes Priors A Bayes estimator supposes that we know the prior probability 
distribution 7r of signals in 0. If available, this supplement of information can 
only improve the signal estimation. The central result of game and decision theory 
shows that minimax estimations are Bayes estimations for a "least favorable" prior 
distribution. 

Let F be the signal random vector, whose probability distribution is given by 
the prior 7r. For a decision operator D, the expected risk is r(D,  7r)  = ET{r (D7F)} .  
The minimum Bayes risks for linear and non-linear operators are defined by: 

q ( 7 r )  = inf r ( D , r )  and I-,,(.) = inf r(D,7r) .  
DE01 DEO" 

Let 0* be the set of all probability distributions of random vectors whose real- 
izations are in 0. The minimax theorem reIates a minimax risk and the maximum 
Bayes risk calculated for priors in O*. 

Theorem 10.3 (MINIMAX) For any subser 0 of@ 

. I ( @ )  = sup rl(7r) and r n ( 0 )  = sup rn(7r) . ( 10.19) 
TE@' a€@' 
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Proof '. For any T E 0* 

because r(D: T) is an average risk over realizations of F that are in 0, whereas r(D, 0) 
is the maximum risk over 0. Let 0 be a convex set of operators (either Ul or On). 
The inequality (10.20) implies that 

r (D,T)  I r(D, 0) (10.20) 

sup r ( ~ )  = sup inf @,T) 5 inf r(D, Q) = r ( 0 )  . 
TEB* ,€8*DEO D E 0  

(10.21) 

The main difficulty is to prove the reverse inequality: r (Q)  I sup,Ee* r ( ~ ) .  When 
0 is a finite set, the proof gives an important geometrical interpretation of the minimum 
Bayes risk and the minimax risk. The extension to an infinite set 0 is sketched. 

Suppose that 0 = {fi}l<ijp is a finite set of signals. We define a risk set: 

R = { ( y l , .  .. , y p )  E CP : 3 3  E 0 with yi = r ( D , f i )  for 1 5 i I p }  . 
This set is convex in (CP because 0 is convex. We begin by giving geometrical inter- 
pretations to the Bayes risk and the minimax risk. 

A prior T E Q* is a vector of discrete probabilities (TI ,  . . . , rP) and 

P 

r(7r:D) = f i ) .  
i=l 

(10.22) 

The equation c f = l ~ i y i  = b defines a hyperplane P b  in C p .  Computing r ( ~ )  = 
infDEO r(D,  T )  is equivalent to finding the infimum bo = r ( ~ )  of d l  b for which Pb 

intersects R. The plane Pbo is tangent to R as shown in Figure 10.3. 
The minimax risk r ( 0 )  has a different geometrical interpretation. Let Q, = 

( ( y l ,  . . . , y p )  E (CP : yi I c }  One can verify that r (Q)  = infDEosupfiEer(D, f i )  

is the infimum co = r( Q) of all c such that Q, intersects R. 
To prove that r ( 0 )  4 supTEeI r(n) we look for a prior distribution r E 0' such 

that r ( r )  = r ( 0 ) .  Let Q, be the interior of Q,. Since Q, n R = 0 and both Qco and R 
are convex sets, the hyperplane separation theorem says that there exists a hyperplane 
of equation 

P 
F 1Y1- . - ~ . y = b ,  (10.23) 

with r .  y 5 b for y E Q, and r .  y 2 b for y E R. Each q 2 0, for i f r j  < 0 then for 
y E Qco we obtain a contradiction by taking y j  to -m with the other coordinates being 
fixed. Indeed, r . y goes to +XJ and since y remains in Qq it contradicts the fact that 
7 .  y 5 b.  We can normalize Cf, ri = 1 by dividing each side of (10.23) by Cbl T~ > 
0. So r corresponds to a probability distribution. By letting y E Qco converge to the 
comer point ( co , . . , , CO) , since y . r 5 b we derive that co 5 b.  Moreover, since 7 . y 2 b 
for all y E R, 

r (7)  = inf C - r i r ( D , f i )  2 c 2 co = r ( 0 )  . 

i=l 

P 

DE0 i=l 

So r(f3) 5 supTee,r(~) which, together with (10.21), proves that r ( 0 )  = 

The extension of this result to an infinite set of signals Q is done with acompactness 
argument. When CJ = Ol or CJ = On, for any prior T E 8* we know from Theorem 10.1 

SUP,E@* r(4. 
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FIGURE 10.3 At the Bayes point, a hyperplane defined by the prior 7r is tangent 
to the risk set R. The least favorable prior T defines a hyperplane that is tangential 
to R at the minimax point. 

and Proposition 10.1 that info,o r(D,  T )  is reached by some Bayes decision operator 
D E: 0. One can verify that there exists a subset of operators C that includes the Bayes 
operator for any prior T E 0*, and such that C is compact for an appropriate topology. 
When 0 = 01, one can choose C to be the set of linear operators of norm smaller 
than 1, which is compact because it belongs to a finite dimensional space of linear 
operators. Moreover, the risk r ( f , D )  can be shown to be continuous in this topology 
with respect to D E C. 

Let c < r ( 0 ) .  For any f E 0 we consider the set of operators Sf = {D E 
C : r(D,f) > c}. The continuity of r implies that Sf is an open set. For each 
D E C there exists f E 0 such that D E Sf, so C = U f E ~ S f .  Since C is compact there 
exists a finite subcovering C = Ul5ilPSfi. The minimax risk over 0, = { f i ) l 5 i S p  

satisfies 
r ( 0 , )  = inf sup r ( D , f i )  2 c . 

Since 0, is a finite set, we proved that there exists 7, E 0: c Q* such that r(7,) = 
~(0,).  But r ( 0 , )  2 c so letting c go to r ( Q )  implies that supxEe* r ( r )  2 r ( 0 ) .  

A distribution T E Q* such that r (7)  = infTE8* r ( r )  is called a leasffavorable prior 
distribution. The minimax theorem proves that the minimax risk is the minimum 
Bayes risk for a least favorable prior. 

In signal processing, minimax calculations are often hidden behind apparently 
orthodox Bayes estimations. Let us consider an example involving images. It has 
been observed that histograms of the wavelet coefficients of “natural” images can 
be modeled with generalized Gaussian distributions [255,311]. This means that 
natural images belong to a certain set 0, but it does not specify a prior distribution 
over this set. To compensate for the lack of knowledge about the dependency of 
wavelet coefficients spatially and across scales, one may be tempted to create a 

D E 0  l < i s p  

Together with (10.21) this shows that infrEe* r (7)  = r ( 0 ) .  
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“simple probabilistic model” where all wavelet coefficients are considered to be 
independent. This model is clearly wrong since images have geometrical structures 
that create strong dependencies both spatially and across scales (see Figure 7.26). 
However, calculating a Bayes estimator with this inaccurate prior model may give 
valuable results when estimating images. Why? Because this “simple” prior is 
often close to a least favorable prior. The resulting estimator and risk are thus good 
approximations of the minimax optimum. If not chosen carefully, a “simple” 
prior may yield an optimistic risk evaluation that is not valid for real signals. 
Understanding the robustness of uncertain priors is what minimax calculations are 
often about. 

10.2 

It is generally not possible to compute the optimal Bayes or minimax estimator 
that minimizes the risk among all possible operators. To manage this complexity, 
the most classical strategy limits the choice of operators among linear operators. 
This comes at a cost, because the minimum risk among linear estimators may be 
well above the minimum risk obtained with non-linear estimators. Figure 10.2 
is an example where the linear Wiener estimation can be considerably improved 
with a non-linear averaging. This section studies a particular class of non-linear 
estimators that are diagonal in a basis B. If the basis I3 defines a sparse signal 
representation, then such diagonal estimators are nearly optimal among all non- 
linear estimators. 

Section 10.2.1 computes a lower bound for the risk when estimating an ar- 
bitrary signal f with a diagonal operator. Donoho and Johnstone [167] made a 
fundamental breakthrough by showing that thresholding estimators have arisk that 
is close to this lower bound. The general properties of thresholding estimators are 
introduced in Sections 10.2.2 and 10.2.3. Thresholding estimators in wavelet bases 
are studied in Section 10.2.4. They implement an adaptive signal averaging that 
is much more efficient than linear operators to estimate piecewise regular signals. 
Section 10.2.5 ends this section by explaining how to search for a best basis that 
minimizes the risk. The minimax optimality of diagonal operators for estimating 
signals in a prior set 8 is studied in Section 10.3. 

10.2. I 

We consider estimators computed with a diagonal operator in an orthonormal basis 
B = {gm}05m<N. Lower bounds for the risk are computed with “oracles,” which 
simplify the estimation by providing information about the signal that is normally 
not available. These lower bounds are closely related to errors when approximating 
signals from a few vectors selected in B. 

DIAGONAL ESTIMATION IN A BASIS 

Diagonal Estimation with Oracles 

The noisy data 
X = f + W  (10.24) 

is decomposed in 23. We write 

X B [ ~ I  = (X,gm) 7 f~b] = ( f , g m )  and W B [ ~ ]  = (W,gm). 
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The inner product of (10.24) with g ,  gives 

xs [ml = fs [mI+ wL3 14. 
We suppose that W is a zero-mean white noise of variance cr2, which means 

E{W[n] W[k]} = a2c5[n-k]. 

The noise coefficients 
N-1 

WB [ml = WbI g; [.I 
n=O 

also define a white noise of variance a'. Indeed, 

N-IN-1 

E{WBbI WB[PlI = XXgrn[nI g P P 1  E{W[nI w w  
n=O k=O 

- 2  - ( g p 7 g m )  = ~ 2 c 5 [ ~ - r n ] .  

Since the noise remains white in all bases, it does not influence the choice of basis. 
When the noise is not white, which is the case for the inverse problems of Section 
10.4, the noise can have an important impact on the basis choice. 

A diagonal operator estimates independently each fs[rn] from X~[rn] with a 
function d,(x). The resulting estimator is 

N-1  

F = DX = C d m ( X ~ [ m ] )  g m .  (10.25) 

The class of signals that are considered is supposed to be centered at 0, so we set 
DO = 0 and hence dm(0) = 0. As a result, we can write 

m=O 

dm(X~[m]) = a[rn]X~[m] for 0 5 rn < N, 

where a[m] depends on Xs [m]. The operator D is linear when a[m] is a constant 
independent of XB [m]. We shall see that a smaller risk is obtained with la[m] I 5 1, 
which means that the diagonal operator D attenuates the noisy coefficients. 

Attenuation With Oracle Let us find the a[m] that minimizes the risk r(D7 f) of 
the estimator (10.25): 

N-1 

m f )  = E{ l l f - ~ 1 1 2 }  = CE{lfBbI -X*jmla[mIl2I . (10.26) 
m=O 

Since X B  = f~ + Ws and E{ I Wa [m] I"-} = u2 it follows that 

E{lfs[m] -XB[WZ]U[WZ]~~} = Ifa[m]12 (1 -a[m])' + a 2 ~ [ m I 2 .  (10.27) 
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This risk is minimum for 

a[m] = Ifs[ml12 
lfa[ml12+ff2 ' 

(10.28) 

in which case 

In practice, the attenuation factor a[m] in (10.28) cannot be computed since it 
depends on Ifs[m]l, whose value is not known. The risk q,f(f) is therefore a 
lower bound which is not reachable. This risk is obtained with an oracle that 
provides information that is normally not available. Section 10.2.2 shows that one 
can get close to cnf (f) with a simple thresholding. 

Linear Projection The analysis of diagonal estimators can be simplified by re- 
stricting a[m] E {0,1}. W e n  a[m] = 1, the estimator E = DX selects the coeffi- 
cient Xs[m], and it removes it if a[m] = 0. 

If each a[m] is a constant, then D is a linear orthonormal projection on the 
space generated by the M vectors gm such that a[m] = 1. Suppose that u[m] = 1 
for 0 5 m < M. The risk (10.26) becomes 

N-1 

@,f) = Ifs[m]1' + M a 2  = €Z[M] + M g 2 ,  (10.30) 

where q [ M ]  is the linear approximation error computed in (9.1). The two terms 
€1 [MI and M a2 are respectively the bias and the variance components of the esti- 
mator. To minimize r ( 0 ,  f), the parameter M is adjusted so that the bias is of the 
same order as the variance. When the noise variance u2 decreases, the following 
proposition proves that the decay rate of r(D,  f) depends on the decay rate of q[M] 
as M increases. 

m=M 

Proposition 10.2 Ifez[M] - C2M'-2s with 1 5 C/o 5 Ns then 

%nr(D,f) N c1ls f f .  2-1/s (10.31) 

Proof '. Let MO be defined by: 

(Mo + 1) 2 L El[MO] 2 it40 2 .  
Since E ~ [ M ]  N C2M'-2" we get Mo N Cs/as. The condition 1 5 C/u 5 N~ ensures 
that 1 5 MO 5 N. The risk (10.30) satisfies 

(10.32) Moa 2 < r n j n r ( D , f ) 5 ( 2 & + 1 ) u 2 ,  

and MO N C s / d  implies (10.32). 
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Projection With Oracle The non-linear projector that minimizes the risk (10.27) 
is defined by 

(10.33) 

This projector cannot be implemented because a[m] depends on If~[m]l instead 
of XB [m] . It uses an “oracle” that keeps the coefficients fs [m] that are above the 
noise. The risk of this oracle projector is computed with (10.27): 

Since for any x ,  y 
1 

min(x,y) 2 - x y  2 - min(x, y )  
x f y  2 

the risk of the oracle projector (10.34) is of the same order as the risk of an oracle 
attenuation (10.29): 

(10.35) 

As in the linear case, the risk of an oracle projector can be related to the 
approximation error off in the basis B. Let M be the number of coefficients such 
that Ifa [m] I 2 a. The optimal non-linear approximation of f by these M larger 
amplitude coefficients is 

The approximation error is studied in Section 9.2: 

The risk (10.34) of an oracle projection can thus be rewritten 

The following proposition proves that when a decreases, the decay of this risk 
depends on the decay of E ,  [MI as M increases. 

(10.37) 
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Proof *. Observe that 

and hence 

Let rn be such that C2 m,-a = mo a2, 

which proves (10.37). The hypothesis 1 5 C/o 5 Ns is required to make sure that 
1 Smo S N .  

Propositions 10.2 and 10.3 prove that the performance of linear and oracle pro- 
jection estimators depends respectively on the precision of linear and non-linear 
approximations in the basis B. Having an approximation error that decreases 
quickly means that one can then construct a sparse and precise signal representa- 
tion with only a few vectors in B. Section 9.2 shows that non-linear approximations 
can be much more precise, in which case the risk of a non-linear oracle projection 
is much smaller than the risk of a linear projection. 

10.2.2 Thresholding Estimation 

In a basis B = (gm}O<m<N1 a diagonal estimator of f from X = f + W can be 
written 

F = DX = dm (XB [m]) gm . (10.38) 

We suppose that W is a Gaussian white noise of variance $. When dm are thresh- 
olding functions, the risk of this estimator is shown to be close to the lower bounds 
obtained with oracle estimators. 

N-1 

m=O 

Hard thresholding A hard thresholding estimator is implemented with 

(10.39) 

The operator D in (10.38) is then a non-linear projector in the basis B. The risk 
of this thresholding is 

N-1 

. t ( f >  = .(D,f> = E(lfs[ml -PT(xs[ml>lz). 
m=O 

Since XB [m] = fs [m] + WB [m] , 
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A thresholding is a projector whose risk is therefore larger than the risk (10.34) of 
an oracle projector: 

N-1 

r d f )  2 r,(f) = ~ m i n ( l f a [ m l 1 2 , ~ 2 ) .  
m=O 

Soft Thresholding An oracle attenuation (10.28) yields a risk rinf(f) that is 
smaller than the risk r , ( f )  of an oracle projection, by slightly decreasing the am- 
plitude of all coefficients in order to reduce the added noise. A similar attenuation, 
although non-optimal, is implemented by a soft thresholding, which decreases by 
T the amplitude of all noisy coefficients. The resulting diagonal estimator k in 
(10.38) is calculated with the soft thresholding function 

x - T  i fx  2 T 

( 0  i f I x l I T  
d , ( x ) = p ~ ( x ) =  x + T  i f x s - T  . (10.40) 

This soft thresholding is the solution that minimizes a quadratic distance to the data, 
penalized by an l1 norm. Given the data x[m], the vector y [m] which minimizes 

N- 1 N- 1 

m=l m=l 

is u[mI = p T ( 4 m l ) .  
The threshold T is generally chosen so that there is a high probability that it is 

just above the maximum level of the noise coefficients I WB [m] 1. Reducing by T the 
amplitude of all noisy coefficients thus ensures that the amplitude of an estimated 
coefficient is smaller than the amplitude of the original one: 

IPT(xa[ml)I I Ifa[mll. (10.41) 

In a wavelet basis where large amplitude coefficients correspond to transient signal 
variations, this means that the estimation keeps only transients coming from the 
original signal, without adding others due to the noise. 

Thresholding Risk The following theorem [167] proves that for an appropriate 
choice of T, the risk of a thresholding is close to the risk of an oracle projector 
r p ( f )  = Cilh min( Ifg[m] 1 2 ,  o’). We denote by Od the set of all operators that 
are diagonal in 8, and which can thus be written as in (10.38). 

Theorem 10.4 (DONOHO, JOHNSTONE) Let T = o d m .  The risk r f ( f )  o f a  
hard or a soft thresholding estimator satisfies for all N 2 4 

(10.42) 
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The factor 2 log, N is optimal among diagonal estimators in B: 

(10.43) 

Proof 2. The proof of (10.42) is given for a soft thresholding. For a hard thresholding, 
the proof is similar although slightly more complicated. For a threshold A, a soft 
thresholding is computed with 

E i l l f  -W)  1 lim inf sup - = l .  
N + + W D € O d f E @  Dz+rp( f )  210g,N 

P x ( 4  = (.-Asign(.))1lxl>x. 

Let X be a Gaussian random variable of mean p and variance 1. The risk when 
estimating p with a soft thresholding of X is 

T(X,P) = E{lPA(X) - PIZ) = E W  - XSign(X)) llXl>A -PI2} . (10.44) 

KX has a variance e' and a mean p then by considering 2 = X/c we verify that 

Since f&n] is a constant, XB [m] = fe [m] + We [m] is a Gaussian random variable 
with a of mean fe[m] and variance 2. The risk of the soft thresholding estimator 

threshold T is thus 
N-l 

r t ( f )  = e z x r  (E, F) . (10.45) 
rn=O 

An upper bound of this risk is calculated with the following lemma. 

Lemma 10.1 Zfp 2 0 then 

r(A,p) I r(A,0)+min(p2,1+AZ). 

To prove (10.46), we first verify that if p 2 0 then 

(10.46) 

(10.47) 

where 4 ( x )  is the normalized Gaussian probability density 

Indeed (10.44) shows that 

-x+p 

.(A,p) = p ' / x - p  4(x) dx + I+=(. - A)24(x) dr + I ,  (.+X)'4(XW. 
-x+p A-P 

We obtain (10.47) by differentiating with respect to p. 
Since J-f," $ ( x )  dx = J-2 xz 4 ( x )  dx = 1 and 

(10.48) 

2 0, necessarily 

r (X,p)  5 Iim r(A,p) = l + X z .  ( 10.49) 
P++X 
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Moreover, since 5 2s 

(10.50) 

The inequality (10.46) of the lemma is finally derived from (10.49) and (10.50): 

r ( ~ , p )  5 r n i n ( r ( ~ , o ) + p ~ , 1 + X ~ )  5 r(X,~)+min(p' ,~+X~).  

By inserting the inequality (10.46) of the lemma in (10.45), we get 

The expression (10.48) shows that r(X,O) = 2 ~ ~ " x 2 4 ( x  + A)&. 
u,/= and N 2 4, one can verify that 

For T = 

N r  -,O 5210geN+1. (a ) (10.52) 

Moreover, 

5 (210geN+ 1)  min(c?, If~[m]l~). (10.53) 

Inserting (10.52) and (10.53) in (10.51) proves (10.42). 

estimators, the inequality (10.42) implies that 
Since the soft and hard thresholding estimators are particular instances of diagonal 

(10.54) 

To prove that the limit is equal to 1, for N fixed we compute a lower bound by replacing 
the sup over all signals f by an expected value over the distribution of a particular 
signal process F .  The coefficients FB [m] are chosen to define a very sparse sequence. 
They are independent random variables having a high probability 1 - C ~ N  to be equal to 
0 and a low probability CYN to be equal to a value p~ that is on the order of u d w ,  
but smaller. By adjusting p~ and CYN,  Donoho and Johnstone [ 1671 prove that the Bayes 
estimator of F tends to zero as N increases and they derive a lower bound of the 

The upper bound (10.42) proves that the risk r t ( f )  of a thresholding estimator is 
at most 210geN times larger than the risk r p ( f )  of an oracle projector. Moreover, 
(10.43) proves that the 210geN factor cannot be improved by any other diagonal 
estimator. For r p ( f )  to be small, (10.36) shows that f must be well approximated 
by a few vectors in B. One can verify [ 1671 that the theorem remains valid if rp (f) 
is replaced by the risk qnf (f) of an oracle attenuation, which is smaller. 

left-hand side of (10.54) that tends to 1. 
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Choice of Threshold The threshold T must be chosen just above the maximum 
level of the noise. Indeed, i f f  = 0 and thus X s  = Ws, then to ensure that k M 0 
the noise coefficients IWa[m]1 must have a high probability of being below T. 
However, iff # 0 then T must not be too large, so that we do not set to zero too many 
coefficients such that Ifa [m] I 3 u. Since WB is a vector of N independent Gaussian 
random variables of variance u2, one can prove [9] that the maximum amplitude 
of the noise has a very high probability of being just below T = ad-: 

5 max IWa[m]l (10.55) 
u log, log, N 

N + + w  logeN Olm<N 

This explains why the theorem chooses this value. That the threshold T increases 
with N may seem counterintuitive. This is due to the tail of the Gaussian distribu- 
tion, which creates larger and larger amplitude noise coefficients when the sample 
size increases. The threshold T = u d m  is not optimal and in general a lower 
threshold reduces the risk. One can however prove that when N tends to +m, the 
optimal value of T grows like ad-. 

Upper-Bound Interpretation Despite the technicality of the proof, the factor 
2 log, N of the upper bound (10.42) can be easily explained. The ideal coefficient 
selection (10.33) sets Xa[m] to zero if and only if I f ~ [ m ] l  5 u, whereas a hard 
thresholding sets Xs[m] to zero when IXB[~]I I T. If Ifg[m]ll 5 u then it is 
very likely that IXa[m] I 5 T ,  because T is above the noise level. In this case 
the hard thresholding sets X B [ ~ ]  to zero as the oracle projector (10.33) does. If 
Ifs [m] I 2 2T then it is likely that IXs [m] 1 3 T because I WB [m] I I T .  In this case 
the hard thresholding and the oracle projector retain X s  [m] . 

The hard thresholding may behave differently from the ideal coefficient se- 
lection when Ifs[m]l is on the order of T. The ideal selection yields a risk 
min(u2, Ifs[m] 1’) = u2. If we are unlucky and IXs[m] I 5 T ,  then the thresholding 
sets Xs[m]  to zero, which produces a risk 

Ifs[m]12 N T2 = 2 log,Nu2. 

In this worst case, the thresholding risk is 210geN times larger than the ideal 
selection risk. Since the proportion of coefficients Ifs[m]l on the order of T is 
often small, the ratio between the hard thresholding risk and the oracle projection 
risk is generally significantly smaller than 2 log, N. 

Colored Noise Thresholding estimators can be adapted when the noise W is not 
white. We suppose that E{W[n]} = 0. Since W is not white, ui  = E{IWg[m]12} 
depends on each vector gm of the basis. As in (10.33) and (10.34), we verify that 
an oracle projector which keeps all coefficients such that Ifs[m] I 2 urn and sets to 
zero all others has a risk 

N-1 

d f )  = C m ~ ( l f s [ m l l Z , u 3  . 
m=O 
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Any linear or non-linear projector in the basis B has a risk larger than rp (f)  . 
Since the noise variance depends on m, a thresholding estimator must vary the 

threshold Tm as a function of m. Such a hard or soft thresholding estimator can be 
written 

DX = PT, (xs[m]) gm. (10.56) 

The following proposition generalizes Theorem 10.4 to compute the thresholding 
risk rf(f) = E{llf-F\12}. 

Proposition 10.4 (DONOHO, JOHNSTONE) Let F be a hard or sofr thresholding 
estimator with 

T m = g m d m  f o r O I m < N .  

N-1 

m=O 

Let (T2 = N-' g;. For any N 2 4 

rdf)  5 (210g,N+1)((T2+rp(f)). (10.57) 

The proof of (10.57) is identical to the proof of (10.42). The thresholds Tm are 
chosen to be just above the amplitude of each noisy coefficient Ws[m]. Section 
10.4.2 studies an application to the restoration of blurred signals. 

10.2.3 Thresholding Refinements 

We mentioned that the thresholding risk can be reduced by choosing a threshold 
smaller than a,/-. A threshold adapted to the data is calculated by minimiz- 
ing an estimation of the risk. This section finishes with an important improvement 
of thresholding estimators, obtained with a translation invariant algorithm. 

SURE Thresholds To study the impact of the threshold on the risk, we denote 
by r, (f, T )  the risk of a soft thresholding estimator calculated with a threshold 
T .  An estimate Ft(f, T )  of r , ( f ,  7') is calculated from the noisy data X, and T is 
optimized by minimizing Ft (f, T )  . 

To estimate the risk r, ( f ,  T ) ,  observe that if IXs[m] I < T then the soft thresh- 
olding sets this coefficient to zero, which produces a risk equal to Ifs[m] 1'. Since 

E{IXr3[mIl2} = Ifs[m112+~2, 

onecanestimate Ifs[m]12 with IX~[rn]1~ -n2. If IXa[m]I 1 T ,  thesoftthresholding 
subtracts T from the amplitude of Xs[m]. The expected risk is the sum of the noise 
energy plus the bias introduced by the reduction of the amplitude of Xs [m] by T .  
It is estimated by a2 + T2.  The resulting estimator of r t ( f ,  T )  is 

N-1 

(10.58) 
m=O 
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with 
u-0’ i f u I T ’  { a2+T2 i f u > T  * 

@(u)  = (10.59) 

The following theorem [169] proves that Ft(f ,  T) is a Stein Unbiased Risk Esti- 
mator (SURE) [319]. 

Theorem 10.5 (DONOHO, JOHNSTONE) For a SOB thresholding, the risk estimator 
Ft ( f ,  T )  is unbiased: 

E ( W , T ) }  = rr(f,T). (10.60) 

Proof 3. As in (10.45), we prove that the risk of a soft thresholding can be written 

N-1 

G ( f , T )  = E { I l f - W }  = a 2 C r ( T , f B 1 4 , 4 ,  
m=O 

with 

.(X,P,.) = E{lPx(X) -PI’} = E{I(X-Xsign(X))l,xl,x-pI’}, (10.61) 

where X is a Gaussian random variable with mean p and variance u2. The equality 
(10.60) is proved by verifying that 

Following the calculations of Stein [319], we rewrite 

4 T , P , 4  = E{(X-g(X) -d21, (10.63) 

where g(x) = Tsign(x) + (x  - Tsign(x)) 1 b 1 < ~  is a differentiable function. Develop- 
ing (10.63) gives 

(10.64) 

The probability density of X is the Gaussian &(y  - p). The change of variable 
x = y - p shows that 

d T , P , 4  = E{@ -d2} + E{lg(X)I’) -2Et(X-P)g(X)I* 

E{ (X - PI g(X) 1 = /-+= x g(x + PI 4 u  (XI h. 
-m 

Since x & ( x )  = -uz flu ( x ) ,  an integration by parts gives 
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Inserting this expression in (10.64) yields 

~ ( T , P , o )  =a2+E{lg(X)IZ} -2~ZE{llxls~}.  

But )g(x)12 = Ix1211x11T + T211xpT and E{llxltT} + E{llxl<T) = 1, so 

r ( T , P , 4  = (a' +T2) E I l l X l > T ) +  E (1x1' - O 2 ) l l x I s T } ,  { 
To find the T that minimizes the SURE estimator F t ( f ,  T ) ,  the N data coefficients 
X~[rn] are sorted in decreasing amplitude order with O(Nlog,N) operations. Let 
X i [ k ]  = XB [rnk] be the coefficient of rank k:  IXL [k] I 2 IXt; [k + 11 I for 1 5 k < N .  
Let Z be the index such that IXjj[Z]I 5 T < IXt;[Z+ 111. We can rewrite (10.58): 

which proves (10.62) and hence (10.60). 

N 

Ft (f, T )  = IXl;[k] l 2  - (N - l )02  + 1 (0, + T 2 )  . (10.65) 
k=l 

To minimize Ff (f, T )  we must choose T = IXh[1] I because r r ( f ,  T )  is increasing in 
T .  To find the ? that minimizes 7, (f, T )  it is therefore sufficient to compare the N 
possible values { IXh[k] I}lskl~, that requires O(N)  operations if we progressively 
recompute the formula (10.65). The calculation of T is thus performed with 
O(N log, N )  operations. 

Although the estimator Ff (f, T )  of r t ( f ,  T )  is unbiased, its variance may induce 
errors leading to a threshold T that is too small. This happens if the signal energy 
is small relative to the noise energy: l l f 1 I 2  << E{ llW112} = Nu2. In this case, one 
must impose T = (rl/uogeN in order to remove all the noise. Since E{ 11X112} = 
Ilf1I2+Ng2, we estimate l l f 1 I 2  with llX112 - N g 2  and compare this value with a 
minimum energy level EN = ( ~ ~ N ~ / ~ ( l o g , N ) ~ / ~ .  The resulting SURE threshold is 

(10.66) 

Let 0 be a signal set and minT r, (0) be the minimax risk of a soft thresholding 
obtained by optimizing the choice of T depending on 0. Donoho and Johnstone 
[169] prove that the threshold computed empirically with (10.66) yields a risk 
r, (Q) equal to minrr,(Q) plus a corrective term that decreases rapidly when N 
increases, if EN = O ~ N ~ / ~ ( ~ O ~ , N ) ~ / ~ .  

Problem 10.9 studies a similar risk estimator for hard thresholding. However, 
this risk estimator is biased. We thus cannot guarantee that the threshold that 
minimizes the estimated risk is nearly optimal for hard thresholding estimations. 

Translation Invariant Thresholding An improved thresholding estimator is calcu- 
lated by averaging estimators for translated versions of the signal. Let us consider 
signals of period N .  Section 5.4 explains that the representation off in a basis B is 
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nottranslationinvariant,unlessBisaDiracoraFourierbasis. LetfP[n] = f [ n - p ] .  
The vectors of coefficients fa and f i are not simply translated or permuted. They 
may be extremely different. Indeed 

fib1 = (f b - ~ l , g m [ n l )  = ( f [ n l , g m [ n + ~ l ) ,  

and not all the vectors gm [n + p ]  belong to the basis B, for 0 5 p < N .  As a 
consequence, the signal recovered by thresholding the coefficients f i [ m ]  is not a 
translation of the signal reconstructed after thresholding fs [m] . 

The translation invariant algorithm of Coifman and Donoho [ 1371 estimates all 
translations off and averages them after a reverse translation. For all 0 5 p < N ,  
the estimator P P  of fP is computed by thresholding the translated data Xp[n]  = 
X[n  - p ] :  

N-1  

F p  = C p T ( x , P [ , I ) g m ,  
m=O 

where P T ( X )  is a hard or soft thresholding function. The translation invariant 
estimator is obtained by shifting back and averaging these estimates: 

N-1 

P[n] = &PP[n+p]. 
p=o 

(10.67) 

In general, this requires N times more calculations than for a standard thresholding 
estimator. In wavelet and wavelet packet bases, which are partially translation 
invariant, the number of operations is only multiplied by log2N, and the translation 
invariance reduces the risk significantly. 

10.2.4 Wavelet Thresholding 

A wavelet thresholding is equivalent to estimating the signal by averaging it with a 
kernel that is locally adapted to the signal regularity [4]. This section justifies the 
numerical results with heuristic arguments. Section 10.3.3 proves that the wavelet 
thresholding risk is nearly minimax for signals and images with bounded variation. 

A filter bank of conjugate mirror filters decomposes a discrete signal in a 
discrete orthogonal wavelet basis defined in Section 7.3.3. The discrete wavelets 
$j,m [n] = + j  [n - N2jm] are translated modulo modifications neaf the boundaries, 
which are explained in Section 7.5. The support of the signal is normalized to 
[0,1] and has N samples spaced by N - l .  The scale parameter 2j thus varies from 
2L =N-1 up to 2J < 1: 

= [ { + j , m m l > , c j < J , O ~ ~ c 2 - j  7 {4J,m[n]>o<m<2-J]. 

A thresholding estimator in this wavelet basis can be written 

(10.68) 

, (10.69) 
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where PT is a hard thresholding (10.39) or a soft thresholding (10.40). The upper 
bound (10.42) proves that the estimation risk is small if the energy off is absorbed 
by a few wavelet coefficients. 

Adaptive Smoothing The thresholding sets to zero all coefficients I (X, $j;rn) I 5 
T .  This performs an adaptive smoothing that depends on the regularity of the signal 
f .  Since T is above the maximum amplitude of the noise coefficients I ( W, $j,,,J 1, 
if 

then I (f, $j,rn) I has a high probability of being at least of the order T .  At fine 
scales 2j, these coefficients are in the neighborhood of sharp signal transitions, 
as shown by Figure 10.4(b). By keeping them, we avoid smoothing these sharp 
variations. In the regions where I (X; $j!rn) I < T ,  the coefficients (f , $j,rn) are likely 
to be small, which means that f is locally regular. Setting wavelet coefficients to 
zero is equivalent to locally averaging the noisy data X, which is done only if the 
underlying signal f appears to be regular. 

l(X:$j:rn)l= l ( f , $ j , m )  + (W,$j,rn)I 2 T ,  

Noise Variance Estimation To estimate the variance g2 of the noise W [n] from 
the data X[n] = W[n] + f[n], we need to suppress the influence of f [ n ] .  When f 
is piecewise smooth, a robust estimator is calculated from the median of the finest 
scale wavelet coefficients [167]. 

The signal X of size N has N / 2  wavelet coefficients { (X, $l ,rn)}05rn<N/2 at the 
finest scale 2’ = 2 ~ - ’ .  The coefficient I (f, $lll,rn) I is small if f is smooth over the 
support of $ ~ l l , ~ ,  in which case (X, $l,m) M (W, $lJ. In contrast, I (f, $ I , ~ )  I is large 
if f has a sharp transition in the support of $l,rn. A piecewise regular signal has 
few sharp transitions, and hence produces a number of large coefficients that is 
small compared to N / 2 .  At the finest scale, the signal f thus influences the value 
of a small portion of large amplitude coefficients (X, $ c , ~ )  that are considered to be 
“outliers.” All others are approximately equal to (W: $ l ,m) ,  which are independent 
Gaussian random variables of variance 02. 

A robust estimator of o2 is calculated from the median of { (X, $ I , ~ ) } ~ < ~ < ~ / ~ .  
The median of P coefficients Med(a,)olp<p is the value of the middle coefficient 
a,,, of rank P/2. As opposed to an average, it does not depend on the specific 
values of coefficients ap > a%. If M is the median of the absolute value of P 
independent Gaussian random variables of zero-mean and variance ai, then one 
can show that 

The variance o2 of the noise W is estimated from the median MX of 
{ I  (X, $l;rn) I } o < ~ < N / ~  by neglecting the influence of f :  

E{M} M 0.6745 UO. 

- Mx g=- 
0.6745 ‘ 

(10.70) 

Indeed f is responsible for few large amplitude outliers, and these have little impact 
on M x .  
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Hard or Soft Thresholding If we choose the threshold T = ad- of 
Theorem 10.4, we saw in (10.41) that a soft thresholding guarantees with a high 
probability that 

The estimator k is at least as regular as f because its wavelet coefficients have 
a smaller amplitude. This is not true for the hard thresholding estimator, which 
leaves unchanged the coefficients above T, and which can therefore be larger than 
those off because of the additive noise component. 

Figure 10.4(a) shows a piecewise polynomial signal of degree at most 3, whose 
wavelet coefficients are calculated with a Symmlet 4. Figure 10.4(c) gives an 
estimation computed with a hard thresholding of the noisy wavelet coefficients in 
Figure 10.4(b). An estimator 6’ of the noise variance a’ is calculated with the 
median (10.70) and the threshold is set to T = 6 d m .  Thresholding wavelet 
coefficients removes the noise in the domain where f is regular but some traces 
of the noise remain in the neighborhood of singularities. The resulting S N R  is 
30. 8db. The soft thresholding estimation of Figure 10.4(d) attenuates the noise 
effect at the discontinuities but the reduction by T of the coefficient amplitude 
is much too strong, which reduces the S N R  to 23.8 db. As already explained, 
to obtain comparable S N R  values, the threshold of the soft thresholding must be 
about half the size of the hard thresholding one. In this example, reducing by two 
the threshold increases the SNR of the soft thresholding to 28.6 db. 

Multiscale SURE Thresholds Piecewise regular signals have a proportion of large 
coefficients I (f, $ jJ  I that increases when the scale 2j increases. Indeed, a sin- 
gularity creates the same number of large coefficients at each scale, whereas the 
total number of wavelet coefficients increases when the scale decreases. To use 
this prior information, one can adapt the threshold choice to the scale 2j.  At large 
scale 2j the threshold Tj should be smaller in order to avoid setting to zero too 
many large amplitude signal coefficients, which would increase the risk. Section 
10.2.3 explains how to compute the threshold value for a soft thresholding, from 
the coefficients of the noisy data. We first compute an estimate 5’ of the noise 
variance D’ with the median formula (10.70) at the finest scale. At each scale 2j,  a 
different threshold is calculated fromthe 2-j noisy coefficients { ( X ,  $j,m))O<m<2-i 

with the algorithm of Section 10.2.3. A SURE threshold Tj is calculated by min- 
imizing an estimation (10.65) of the risk at the scale 2j.  The soft thresholding is 
then performed at each scale 2j with the threshold Tj.  For a hard thresholding, we 
have no reliable formula with which to estimate the risk and hence compute the 
adapted threshold with a minimization. One possibility is simply to multiply by 2 
the SURE threshold calculated for a soft thresholding. 

Figure 10.5(c) is a hard thresholding estimation calculated with the same 
threshold T = 54- at all scales 2j.  The SNR is 23.3 db. Figure 10.5(d) is 
obtained by a soft thresholding with SURE thresholds Tj adapted at each scale 2j. 
The S N R  is 24. ldb. A soft thresholding with the threshold T = 5-/2d= 
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FIGURE 10.4 (a): Piecewise polynomial signal and its wavelet transform on 
the right. (b): Noisy signal (SNR = 21.9db) and its wavelet transform. (c): 
Estimation reconstructed from the wavelet coefficients above threshold, shown 
on the right (SNR = 30.8db). (d): Estimation with a wavelet soft thresholding 
(SNR = 23.8 db). (e): Estimation with a translation invariant hard thresholding 
(SNR = 33.7db). 
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at all scales gives a smaller S N R  equal to 21.7 db. The adaptive calculation of 
thresholds clearly improves the estimation. 

Translation Invariance Thresholding noisy wavelet coefficients creates small rip- 
ples near discontinuities, as seen in Figures 10.4(c,d) and 10.5(c,d). Indeed, set- 
ting to zero a coefficient (f, $ ~ j , ~ )  subtracts (f,  $j ,m)  $jlm from f ,  which intro- 
duces oscillations whenever (f, $ ~ j ; ~ )  is non-negligible. Figure 10.4(e) and Fig- 
ures 10.5(e,f) show that these oscillations are attenuated by a translation invariant 
estimation (10.67), significantly improving the SNR. Thresholding wavelet coef- 
ficients of translated signals and translating back the reconstructed signals yields 
shifted oscillations created by shifted wavelets that are set to zero. The averaging 
partially cancels these oscillations, reducing their amplitude. 

When computing the translation invariant estimation, instead of shifting the 
signal, one can shift the wavelets in the opposite direction: 

( f [n  - PI : +j,m [.I) = (f[nI 7 $j,m [n + PI) = (f[nI 7 $j[n -~2’, + PI). 
If f and all wavelets $J, are N periodic then all these inner products are provided 
by the dyadic wavelet transform defined in Section 5.5: 

wf[2’,~] = (f[n],$j[n-~]) foro I P < N .  

The “algorithme 2 trous” of Section 5.5.2 computes these Nlog2N coefficients for 
L < j 5 0 with O(Nlog2N) operations. One can verify (Problem 10.10) that the 
translation invariant wavelet estimator (10.67) can be calculated by thresholding 
the dyadic wavelet coefficients (X[n], $j[n - p]) and by reconstructing a signal 
with the inverse dyadic wavelet transform. 

Image Estimation in Wavelet Bases Piecewise regular images are particularly 
well estimated by thresholding their wavelet coefficients. The image f [q , nz] 
contaminated by a white noise is decomposed in a separable two-dimensional 
wavelet basis. Figure 10.6(c) is computed with a hard thresholding in a Symmlet 
4 wavelet basis. For images of N2 = 5122 pixels, the threshold is set to T = 30 
instead of T = CT,/=, because this improves the S N R  significantly. This 
estimation restores smooth image components and discontinuities, but the visual 
quality of edges is affected by the Gibbs-like oscillations that also appear in the 
one-dimensional estimations in Figure 10.4(c) and Figure 10.5(c). Figure 10.6(c) 
is obtained with a wavelet soft thresholding calculated with a threshold half as large 
T = 3/20. When using a different SURE threshold Tj calculated with (10.66) at 
each scale 2j, the S N R  increases to 33.1 db but the visual image quality is not 
improved. As in one dimension, the Figures 10.6(e,f) calculated with translation 
invariant thresholdings have a higher SNR and better visual quality. A translation 
invariant soft thresholding, with SURE thresholds, gives an S N R  of 34.2 db. 

Section 10.3.3 proves that a thresholding in a wavelet basis has a nearly mini- 
max risk for bounded variation images. Irregular textures are badly estimated 
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FIGURE 10.5 (a): Original signal. (b): Noisy signal ( S N R  = 13.1db). 
(c): Estimation by a hard thresholding in a wavelet basis (Symmlet 4), with 
T = L+Jw ( S N R  = 23.3db). (d): Soft thresholding calculated with SURE 
thresholds Tj adapted to each scale 2j (SNR = 24.5 db). (e): Translation invari- 
ant hard thresholding with T = L+Jm (SNR = 25.7db). (0: Translation 
invariant soft thresholding with SURE thresholds ( S N R  = 25.6db). 
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FIGURE 10.6 (a): Original image. (b): Noisy image (SNR = 28.6db). (c): 
Estimation with a hard thresholding in a separable wavelet basis (Symmlet 4), 
(SNR = 31.8db). (d): Soft thresholding (SNR = 31.1 db). (e): Translation in- 
variant hard thresholding (SNR = 34.3 db). (0: Translation invariant soft thresh- 
olding (SNR = 3 1.7 db). 
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FIGURE 10.7 The first row shows the wavelet modulus maxima of the noisy 
image 10.6(b). The scale increases from left to right, from T7 to 2p5. The chains 
of modulus maxima selected by the thresholding procedure are shown below. The 
bottom image is reconstructed from the selected modulus maxima at all scales. 

because they produce many coefficients whose amplitudes are at the same level 
as the noise. To restore textures, it is often necessary to use stochastic models of 
textures, with parameters that can be estimated in presence of noise. Constructing 
such models is however difficult, as explained in Section 5.5.3. 

Multiscale Edge Estimation Section 9.3 explains that wavelet bases are not op- 
timal for approximating images because they do not take advantage of the geo- 
metrical regularity of edges. Understanding how to use the geometrical image 
regularity to enhance wavelet estimations is a difficult open issue. One approach 
implemented by Hwang and Mallat [258] is to regularize the multiscale edge 
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representation of Section 6.3. In many images, discontinuities belong to regular 
geometrical curves that are the edges of important structures. Along an edge, the 
wavelet coefficients change slowly and their estimation can thus be improved with 
an averaging. 

The image is decomposed with a two-dimensional dyadic wavelet transform, 
whose modulus maxima locate the multiscale edges. At each scale 2j, the chaining 
algorithm of Section 6.3.1 links the wavelet maxima to build edge curves. Instead 
of thresholding each wavelet maxima independently, the thresholding is performed 
over contours. An edge curve is removed if the average wavelet maxima amplitude 
is below T = 30 .  Prior geometrical information can also be used to refine the edge 
selection. Important image structures may generate long contours, which suggests 
removing short edge curves that are likely to be created by noise. The first line of 
Figure 10.7 shows the modulus maxima of the noisy image. The edges selected 
by the thresholding are shown below. At the finest scale shown on the left, the 
noise is masking the image structures. Edges are therefore selected by using the 
position of contours at the previous scale. 

The thresholded wavelet maxima are regularized along the edges with an av- 
eraging. A restored image is recovered from the resulting wavelet maxima, using 
the reconstruction algorithm of Section 6.2.2. Figure 10.7 shows an example of an 
image restored from regularized multiscale edges. Edges are visually well recov- 
ered but textures and fine structures are removed by the thresholding based on the 
amplitude and length of the maxima chains. This produces a cartoon-like image. 

10.2.5 Best Basis Thresholding 

When the additive noise W is white, the performance of a thresholding estimation 
depends on its ability to efficiently approximate the signal f with few basis vectors. 
Section 9.4 explains that a single basis is often not able to approximate well all 
signals of a large class. It is then necessary to adapt the basis to the signal [242]. We 
study applications of adaptive signal decompositions to thresholding estimation. 

Best Orthogonal Basis Sections 8.1 and 8.5 construct dictionaries 2) = UxEaBX 
where each Bx = {gA}O<m<N is a wavelet packet or a local cosine orthogonal 
basis. These dictionaries have P = Nlog2N distinct vectors but include more than 
2N/2 different orthogonal bases by recombining these vectors. 

An estimation of f from the noisy measurements X = f + W is obtained by 
thresholding the decomposition of X in Bx: 

N-1 

m=O 

The ideal basis B" is the one that minimizes the average estimation error 

(10.71) 
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In practice, we cannot find this ideal basis since we do not know f .  Instead, we 
estimate the risk E{ J l f  - in each basis BA, and choose the best empirical 
basis that minimizes the estimated risk. 

Threshold Value If we wish to choose a basis adaptively, we must use a higher 
threshold T than the threshold value a,/- used when the basis is set in 
advance. Indeed, an adaptive basis choice may also find vectors that better correlate 
the noise components. Let us consider the particular case f = 0. To ensure that 
the estimated signal is close to zero, since X = W, we must choose a threshold T 
that has a high probability of being above all the inner products I (W, g;) I with all 
vectors in the dictionary D. For a dictionary including P distinct vectors, for P 
large there is a negligible probability for the noise coefficients to be above 

T = ad-. (10.72) 

This threshold is however not optimal and smaller values can improve the risk. 

Basis Choice For a soft thresholding, (10.58) defines an estimator i-?(f, T )  of the 
riskr?(f,T) = E { / ~ f - F A ~ ~ z } :  

N-1 

%YT,f> = ~@(l(x,g;)12), (10.73) 
m=l 

with 
(10.74) 

Theorem 10.5 proves that this estimator is unbiased. 

estimated risk 
The empirical best basis B" for estimating f is obtained by minimizing the 

$(T?f) = min$(T,f) . (10.75) 

The estimated risk is calculated in (10.73) as an additive cost function over the 
noisy coefficients. The fast algorithm of Section 9.4.2 can thus find the best basis 
B" in wavelet packet or local cosine dictionaries, with O(N logzN) operations. 
Figure 10.8(d) shows the estimation of a sound recording "grea" in the presence 
of a white noise with an SNR of 8.7db. A best empirical local cosine basis is 
chosen by the minimization (10.75) and is used to decompose the noisy signal. 
This best basis is composed of local cosine vectors having a time and a frequency 
resolution adapted to the transients and harmonic structures of the signal. A hard 
thresholding is performed and the Heisenberg boxes of the remaining coefficients 
are shown in Figure 10.8(c). 

Donoho and Johnstone [166] prove that for T = u d w  the risk E{ Ilf - 
F" 1l2} in the empirical best basis B" is within a log,N factor of the minimum risk 
E{ I l f  - ka112} in the ideal best basis P. In that sense, the best basis algorithm is 
guaranteed to find a nearly optimal basis. 

AEA 
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FIGURE 10.8 (a): Speech recording of "grea." (b): Noisy signal (SNR = 
8.7db). (c): Heisenberg boxes of the local coefficients above the threshold in 
the best basis. (d): Estimated signal recovered from the thresholded local cosine 
coefficients (SNR = 10.9 db). 

Cost of Adaptivity An approximation in a basis that is adaptively selected is nec- 
essarily more precise than an approximation in a basis chosen a priori. However, 
in the presence of noise, estimations by thresholding may not be improved by an 
adaptive basis choice. Indeed, using a dictionary of several orthonormal bases 
requires raising the threshold, because the larger number of dictionary vectors 
produces a higher correlation peak with the noise. The higher threshold removes 
more signal components, unless it is compensated by the adaptivity, which can 
better concentrate the signal energy over few coefficients. The same issue appears 
in parametrized estimations, where increasing the number of parameters may fit 
the noise and thus degrade the estimation. 

For example, if the original signal is piecewise smooth, then a best wavelet 
packet basis does not concentrate the signal energy much more efficiently than a 
wavelet basis. In the presence of noise, in regions where the noise dominates the 
signal, the best basis algorithm may optimize the basis to fit the noise. This is why 
the threshold value must be increased. Hence, the resulting best basis estimation 
is not as precise as a thresholding in a fixed wavelet basis with a lower threshold. 
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However, for oscillatory signals such as the speech recording in Figure 10.8(a), a 
best local cosine basis concentrates the signal energy over much fewer coefficients 
than a wavelet basis, and thus provides a better estimation. 

10.3 MINIMAX OPTlMALlTY 

We consider the noisy data X = f + W, where W is a Gaussian white noise of 
variance 02. An estimation fi = DX off  has a risk r(D,  f) = E{ llDX - f 1 I 2 } .  If 
some prior information tells us that the signal we estimate is in a set 0, then we 
must construct estimators whose maximum risk over 0 is as small as possible. Let 
r(D,  0) = supfEe r(D,  f )  be the maximum risk over 0. The linear minimax risk 
and non-linear minimax risk are respectively defined by 

where 01 is the set of all linear operators from CN to CN and 0, is the set of all 
linear and non-linear operators from CN to CN. We study operators D that are 
diagonal in an orthonormal basis B = { g m } o < m < N :  

N- 1 

P=DX=CMX+I)~, , 

and find conditions to achieve a maximum risk over 0 that is close to the minimax 
risk. The values of q(Q) and r,(O) are compared, so that we can judge whether 
it is worthwhile using non-linear operators. 

Section 10.3.1 begins by studying linear diagonal operators. For orthosym- 
metric sets, Section 10.3.2 proves that the linear and non-linear minimax risks are 
nearly achieved by diagonal operators. As a consequence, thresholding estimators 
in a wavelet basis are proved to be nearly optimal for signals and images hav- 
ing a bounded variation. Readers more interested by algorithms and numerical 
applications may skip this section, which is mathematically more involved. 

10.3. I 

An estimator that is linear and diagonal in the basis B can be written 

m=O 

Linear Diagonal Minimax Estimation 

N - 1  

P = DX = C a [ m ] ~ ~ [ m ]  g, , (10.76) 

where each a[m] is a constant. Let Ol;d  be the set of all such linear diagonal 
operators D. Since Ol,d  C 01, the linear diagonal minimax risk is larger than the 
linear minimax risk 

m=O 

We characterize diagonal estimators that achieve the minimax risk rl,d (0). If 0 
is translation invariant, we prove that q d ( @ )  = ? - I ( @ )  in a discrete Fourier basis. 
This risk is computed for bounded variation signals. 
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Quadratic Convex Hull The “square” of a set 0 in the basis B is defined by 

lfg[m112gm with f E 01. 
N-1  

(0); = { j  : j = (10.77) 

We say that Q is quadratically convex in B if (0); is a convex set. A hyperrectangle 
Rx in B of vertex x E CN is a simple example of quadratically convex set defined 

m=O 

by 
~ ~ = { f  : ~ f s [ m l l ~ ~ x s [ m l l f o r ~ ~ m < ~  

The quadratic convex hull QH[Q] of 0 in the basis B is defined by 

N-1  

QH[Q] = {f : Ifs[m]l2 is in the convex hull of (e);} . (10.78) 
m=O 

It is the largest set whose square (QH[Q]); is equal to the convex hull of (0);. 

linear diagonal risk r ~ , d  (0) : 
The risk of an oracle attenuation (10.28) gives a lower bound of the minimax 

(10.79) 

The following theorem proves that this inequality is an equality if Q is quadratically 
convex. 

Theorem 10.6 ZfQ is a bounded and closed set, then there existsx E QH[Q] such 
that r&) = qnf (QH[Q]) in the basis B. Moreovel; the linear diagonal operator 
D defied by 

a[m] = Ixs[ml l 2  
a2+)xg[m]12 ’ (10.80) 

achieves the linear diagonal minimax risk 

Proof 3. The risk r(D,f) of the diagonal operator (10.76) is 

Since it is a linear function of I f ~ [ m ] ) ~ ,  it reaches the same maximum in Q and 
in QH[Q]. This proves that @,e) = r(D,QH[O]) and hence that r l , d ( @ )  = 
rid (QWQl). 

To verify that q,(Q) = rinf (QH[Q]) we prove that rl,d(QH[Q]) = rinf(QH[Q]). 
Since (10.79) shows that rinf(QH[8]) 5 r[;d(QH[e]) to get the reverse inequality, it is 
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sufficient to prove that the linear estimator defined by (10.80) satisfies r(D,  QH[Q]) 5 
rinf(QH[Q]). Since 8 is bounded and closed, QH[Q] is also bounded and closed 
and thus compact, which guarantees the existence of x E QH[Q] such that rinf(x) = 
rinf(QH[Q]). The risk of this estimator is calculated with (10.82): 

N -  1 N -  1 
- 1x0 l 2  + a4 I f B  [m112 - IxE 1' 
- m=O ' a 2 + ( x E [ m ] l z  m=O (aZ + Ix€3[ml 12)' 

' 

To show that r(D,  f) 5 rinf (QH[Q]), we verify that the second summation is negative. 
Let 0 5 r] 5 1 and y be a vector whose decomposition coefficients in B satisfy 

b 5  [m112 = (l- r ] )  IxB [m112 + r]  I f E  [MI 1' . 

Since QH[S] is quadratically convex, necessarily y E QH[Q] so 

Since the maximum of J(r])  is at r ]  = 0, 

which finishes the proof. w 

This theorem implies that rl,d(O) = q+j(QH[O]). To take advantage of the fact 
that Q may be much smaller than its quadratic convex hull, it is necessary to use 
non-linear diagonal estimators. 

Translation Invariant Set Signals such as sounds or images are often arbitrarily 
translated in time or in space, depending on the beginning of the recording or the 
position of the camera. To simplify border effects, we consider signals of period 
N. We say that 0 is translation invariant if for any f [ n ]  E 0 then f[n - p ]  E 0 
for all 0 5 p < N .  

If the set is translation invariant and the noise is stationary, then we show 
that the best linear estimator is also translation invariant, which means that it is 
a convolution. Such an operator is diagonal in the discrete Fourier basis B = 
{g,[n] = & exp (i27rmn/N)}o5,<~. The decomposition coefficients off  in this 
basis are proportional to its discrete Fourier transform: 
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For a set 0, the lower bound .inf(0) in (10.79) becomes 

The following theorem proves that diagonal operators in the discrete Fourier basis 
achieve the linear minimax risk. 

Theorem 10.7 Let 0 be a closed and bounded set. Let x E QH[Q] be such that 
rinf(x) = rinf(QH[@]) and 

(10.83) 

I f  8 is translation invariant then 
risk 

= DX = X @ h achieves the linear minimax 

(10.84) T I ( @ )  = r (D,Q)  = ri,f (QH[@]) . 

Proof 3. Since q(0) 5 q,d(Q)  Theorem 10.6 proves in (10.81) that 

Moreover, the risk rinf (QH[O])  is achieved by the diagonal estimator (10.80). In the 
discrete Fourier basis it corresponds to a circular convolution whose transfer function 
is given by (10.83). 

Weshowthatq(0) 1 rinf (QH[O])  byusingparticularBayespriors. Iff E QH[O] 
then there exists a family {fi}i of elements in 0 such that for any 0 5 m < N, 

with Cpi= 1 .  
i I 

To each f i  E 8 we associate a random shift vector Fi[n] = f i  [n -Pi] as in (9.19). Each 
Fi[n] is circular stationary, and its power spectrum is computed in (9.21): kFi [m] = 
N-' Iji[m] 1 2 .  Let F be a random vector that has a probability-pi to be equal to Fi. It is 
circular stationary and its power spectrum is &[m] = N-'If[m]12. We denote by ~f 
the probability distribution of F. The risk r j (Tf )  of the Wiener filter is calculated in 
(10.13): 

Since 0 is translation invariant, the realizations of F are in 0, so Tf E 8*. The 
minimaxTheorem 10.3provesin(lO.l9)thatr~(~~) 5 r l (8) .  Sincethisistrueforany 
f E QH[Q],  taking a sup with respect to f in (10.85) proves that rl (QH[Q])  5 rl(Q), 
which finishes the proof. 
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Bounded Variation Signals The total variation defined in (2.60) measures the 
amplitude of all signal oscillations. Bounded variation signals may include sharp 
transitions such as discontinuities. A set 8 v  of bounded variation signals of period 
N is defined by 

N-1 

% = i f  : I l f I l v = ~ l f ~ ~ l - f [ ~ - l l i ~ C ~  * (10.86) 

Since 0" is translation invariant, the linear minimax estimator is diagonal in the 
discrete Fourier basis. The following proposition computes the minimax linear 
risk, which is renormalized by the noise energy E{ 11 W112} = No2.  

n=O 

Proposition 10.5 If 1 5 C f n 5 N1I2 then 

(10.87) 

Proof 3. The set QV is translation invariant but it is not bounded because we do not 
control the average of a bounded variation signal. However, one can verify with a 
limit argument that the equality ~ [ ( Q v )  = rini(QHI&]) of Theorem 10.7 is still valid. 
To compute rid(QH[QV]) we show that Qv is included in a hyperrectangle 71, = 
{f : 13(m]l 5 li[m]l}, by computing an upper bound of \j[m]l for each f E &.Let 
g[n] = f i n ]  - f [n - I]. Its discrete Fourier transform satisfies 

(10.88) 

(10.89) 

which proves that OV c R,. The value \ i[O] 1 = 00 is formally treated like all others. 
Since R, is quadratically convex, QH[ev] c Rx. Hence 

witho2N-' iR[O]12(a2+N-' 12[011z))-' = az. Since I-l?[m]l- CN1ml-l and 15 C/G 5 
N1l2, a direct calculation shows that 

rinf(QH[@v]) I rinf('Rz) N CN'"a.  (10.90) 

To compute a lower bound for ri,f(QH[Qv]) we consider the two signals in QV 
defined by 
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Let f E QH[Qv] such that 

A simple calculation shows that form # 0 

so 
rinf(QH[Q~]) 1 rinf(f) N C N ” 2 a  

Together with (10.90) this proves (10.87). 

This theorem proves that a linear estimator reduces the energy of the noise by a 
factor that increases likeN’/2. The minimax filter averages the noisy data to remove 
part of the white noise, without degrading too much the potential discontinuities 
of f. Figure 10.2(c) shows a linear Wiener estimation calculated by supposing 
that Ij[m]12 is known. The resulting risk (10.17) is in fact the minimax risk over 
the translation invariant set Q f  = {g : g[n] = f [ n  - p ]  with p E Z}. If f has a 
discontinuity whose amplitude is on the order of C then although the set Of is 
much smaller than OV, the minimax linear risks rl (Of) and rl (0,) are of the same 
order. 

10.3.2 Orthosymmetric Sets 

We study geometrical conditions on Q that allow us to nearly reach the non-linear 
minimax risk rn(8 )  with estimators that are diagonal in a basis B = {gm}osm<N. 
The maximum risk on 0 of any linear or non-linear diagonal estimator has a lower 
bound calculated with the oracle diagonal attenuation (10.28): 

Thresholding estimators have a maximum risk that is close to this lower bound. 
We thus need to understand under what conditions r, (0) is on the order of qnf (0) 
and how it compares with rl (e). 
Hyperrectangle The study begins with hyperrectangles which are building 
blocks for computing the minimax risk over any set Q. A hyperrectangle 

R, = {f : Ifs[m] I 5 I X B  [m] I for 0 5 m < N }  

is a separable set along the basis directions g,. The risk lower bound for diagonal 
estimators is 

rJ2 bt3 1.21 l 2  N-1 

% l f ( R X )  = c cr2+ IxB[m]12 
m=O 

The following theorem proves that for a hyperrectangle, the non-linear minimax 
risk is very close to the linear minimax risk. 
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Theorem 10.8 On a hyperrectangle R, the linear and non-linear minimax risks 
are reached by diagonal estimators. They satisfy 

rl(Rx) = rinf ( R x )  I (10.91) 

and 
prinf(%) I m(%) 5 rinf(Rx) with p I 1/1.25 . (10.92) 

Proof ’. We first show that a linear minimax estimator is necessarily diagonal in 0. 
Let P = D X  be the estimator obtained with a linear operator D represented by the 
matrix A in B: 

Let trA be the trace of A, and A* be its complex transpose. Since X = f + W where 
W is a white noise of variance cr’ , a direct calculation shows that 

= E{lIF-fII’} = c r ‘ t r A A * + ( A f ~ - f ~ ) * ( A f ~ - f ~ ) .  (10.93) 

FB = A X B .  

If Dd is the diagonal operator whose coefficients are a[m] = am;m the risk is then 

To prove that the maximum risk over R, is minimized when A is diagonal, we show 
that r(Dd,R,) 5 r (DIRx) .  For this purpose, we use a prior probability distribution 
r E 7Z: corresponding to a random vector F whose realizations are in 72,: 

F o b ]  =s[m]x~[m] . (10.95) 

The random variables S[m] are independent and equal to 1 or - 1 with probability 1/2. 
The expected risk r ( D : r )  = E{ I(F -FIl’} is derived from (10.93) by replacing f by 
F and taking the expected value with respect to the probability distribution T of F. If 
m#pthenE{FB[m]FB[p]}=Osoweget  

(10.96) 
m=O m=O 

Since the realizations of F are in R,, (10.20) implies that r(D,R,) 2. r ( D I r ) ,  so 
r (D,R, )  2 r(Dd,x) .  To prove that r (D,R, )  2 r(DdlR,)  it is now sufficient to verify 
that r(Dd,R,) = r ( D d , X ) .  To minimize r(Dd,f), (10.94) proves that necessarily 
a,, E [0,1]. In this case (10.94) implies 

r(Dd,Rx) = SUP r (Dd, f )  = r(DdrX) . 
f € a x  

Now that we know that the minimax risk is achieved by a diagonal operator, we apply 
Theorem 10.6 which proves in (10.81) that the minimax risk among linear diagonal 
operator is rinf(R,) because R, is quadratically convex. So r[(R,) = rinf(R,). 



476 CHAPTERX ESTIMATIONS ARE APPROXIMATIONS 

To prove that the non-linear minimax risk is also obtained with a diagonal operator 
we use the minimax Theorem 10.3 which proves that 

(10.97) 

The set R, can be written as a product of intervals along each direction g,. As a 
consequence, to any prior T E R: corresponding to a random vector F we associate a 
prior .rr‘ E R: corresponding to F’ such that Fh[rn] has the same distribution as F ~ [ r n ]  
but with FA[rn] independent from FA b] for p # m. We then verify that for any operator 
D, r(D,n) 5 r ( D , d ) .  The sup over 77,: in (10.97) can thus be restricted to processes 
that have independent coordinates. This independence also implies that the Bayes 
estimator that minimizes r(D, T) is diagonal in B. The minimax theorem proves that 
the minimax risk is reached by diagonal estimators. 

Since r,,(Rx) 5 rl(R,) we derive the upper bound in (10.92) from the fact that 
rl(Rx) = Rinf(Rx). The lower bound (10.92) is obtained by computing the Bayes 
risk r,, (T) = infocon r(D,  T )  for the prior T corresponding to F defined in (10.95), and 
verifying that rn(r )  2 pri,,f(R,). We see from (10.97) that r,,(Rx) 2 r , , ( ~ ) ,  which 
implies (10.92). 

The bound p > 0 was proved by Ibragimov and Khas’minskii [219] but the essen- 
tially sharp bound 1/1.25 was obtained by Donoho, Liu and MacGibbon [172]. 
They showed that ,LA depends on the variance u2 of the noise and that if u2 tends to 
0 or to +oo then p tends to 1. Linear estimators are thus asymptotically optimal 
compared to non-linear estimators. 

Orthosymmetric sed To differentiate the properties of linear and non-linear esti- 
mators, we consider more complex sets that can be written as unions of hyperrect- 
angles. We say that 8 is orthosymmetric in B if for any f E 0 and for any a[m] 
with Ia[m] I I 1 then 

N-1 

C a [ m ~  f ~ [ m 1  g m  E Q 
m=O 

Such a set can be written as a union of hypemctangles: 

@ = U R f .  
f €6 

(10.98) 

An upper bound of r, (Q) is obtained with the maximum risk r, (e) = sup rt (f) 
of a hard or soft thresholding estimator in the basis B, with a threshold T = 

Proposition 10.6 I f  0 is orthosymmetric in B then the linear minimax estimator 
is reached by linear diagonal estimators and 

q/=. 

n(0) = qnf(QH[Q]) . (10.99) 

The non-linear minimax risk satisfies 

L c n f ( 0 )  5 .,(e) I r t ( 0 )  I (210g,N+ 1) (u2+q,f(@)). 1.25 
(10.100) 
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Proof '. Since 0 is orthosymmetric, 0 = UfGeRf. On each hyperrectangle Rf, 
we showed in (10.96) that the maximum risk of a linear estimator is reduced by 
letting it be diagonal in L3. The minimax linear estimation in 0 is therefore diagonal: 
r l ( 0 )  = r l , d ( @ ) .  Theorem 10.6 proves in (10.81) that r j ,d (Q)  = rinf(QH[@]) which 
implies (10.99). 

Since 0 = UfEeRf we also derive that r n ( 0 )  2 supfEs rn(Rf).  So (10.92) 
implies that 

1 
r n ( @ )  2 1.25 rinf(Q) . 

Theorem 10.42 proves in (10.4) that the thresholding risk satisfies 

4 3 p )  I (21og,N+l) ( .2+r,(f))  ' 

A modification of the proof shows that this upper bound remains valid if r p ( f )  is 
replaced by rinf(f) [167]. Taking a sup over all f E 0 proves the upper bound 

This proposition shows that rfl( 0)  always remains within a factor 2 log, N of the 
lower bound qnf (0) and that the thresholding risk rt (0) is at most 2 log, N times 
larger than r n ( 0 ) .  In some cases, the factor 2log,N can even be reduced to a 
constant independent of N .  

Unlike the nonlinear risk r f l ( 0 ) ,  the linear minimax risk r1 (0 )  may be much 
larger than qnf (0). This depends on the convexity of 0. If 0 is quadratically 
convex then 8 = QH[Q] so (10.99) implies that q(0) = rinf(0). Since r f l ( 0 )  2 
qnf (0) / 1.25, the risk of linear and non-linear minimax estimators are of the same 
order. In this case, there is no reason for working with non-linear as opposed 
to linear estimators. When 0 is an orthosymmetric ellipsoid, Problem 10.14 
computes the minimax linear estimator of Pinsker [282] and the resulting risk. 

If 0 is not quadratically convex then its hull QH[Q] may be much bigger than 
0. This is the case when 0 has a star shape that is elongated in the directions of the 
basisvectors g,, asillustratedinFigure 10.9. Thelinearriskrl(0) = rinf (QH[Q]) 
may then be much larger than finf(Q). Since m(0) and r t ( 0 )  are on the order 
of qnf (e), they are then much smaller than T I ( @ ) .  A thresholding estimator thus 
brings an important improvement over any linear estimator. 

(10.100), given that rn(@)  I r t ( 0 ) .  

Example 10.2 Let 0 be an 1P ball defined by 

N-1 

m=O 

It is an orthosymmetric set. Its square is 

N - 1  

(10.101) 

m=O 
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9 2  
4 

9 2  + 

FIGURE 10.9 
The quadratically convex hull QH[0] is a larger ellipsoid including 0. 

(a): Example of orthosymmetric set 0 in three dimensions. (b): 

If p 2 2 then (0); is convex so 0 is quadratically convex. If p < 2, the convex 
hull of (0); is {f  : C:z:/3: Ifa[rn] I 5 C2} so the quadratic convex hull of 0 is 

N - l  

QH[@] = {f  : l f o [ ~ l 1 2  I C2}. (10.102) 
m=O 

The smaller p ,  the larger the difference between 0 and QH[O]. 

Risk calculation The following proposition proves that rinf(0) depends on the 
error en [MI of non-linear approximations of signals f E 0 with M vectors selected 
from the basis B. 

Proposition 10.7 Let s > 1/2 and C be such that 1 5 C/v 5 N S .  Iffor each 
f E 0 we have e,[M] 5 C2M1-2s  then 

rinf(0) 5 2c1/sff2-1/s . (1 0.103) 

then Gnf(Oc,s) N ~ ~ / ~ v ~ - ~ / ~ .  

Proof '. The same derivations as in the proof of Proposition 10.3 show that r , ( f )  5 
2C'/sna2-'/" for any f E 0. Since r in f ( f )  5 r , ( f )  we get (10.103) by taking a sup 
over 0. 

satisfies en [MI 5 
C2M'-> / (2s -  I ) ,  which implies that rinf(6&) = ~ ( C ' / " C T ~ ' / ~ ) ) .  To get a reverse 

Theorem 9.5 together with Theorem 9.4 proves that any f E 
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inequality we consider f E Ocr such that If~[rn]I = u for 0 5 m < L(C/O) ' /~]  and 
fB[rn] = ~ f o r r n >  L ( C / O ) ' / ~ ] .  Inthiscase 

r , ( f )  = L(C/a)'/"] a 2  - C'/"aZ2-'/" . 

Since ~ , f (Oc+)  2 rp(f)/2, it follows that . i , f(O~;~) N u2-1/sC1/s. 

The hypothesis C/o 2 1 guarantees that the largest signal coefficient is not dom- 
inated by the noise, whereas C/o 5 N S  indicates that the smallest coefficient has 
an amplitude smaller than the noise. This is typically the domain of application for 
noise removal algorithms. If s is large, then ~.i,f(Q) is almost on the order of u2. 
This risk is much smaller than the noise energy E(llWll'} = N o 2 ,  which means 
that the estimation removed most of the noise. 

10.3.3 Nearly Minimax with Wavelets 

A thresholding estimator in a wavelet basis has a nearly minimax risk for sets of 
piecewise regular signals.This result is proved for piecewise polynomial signals, 
which have key characteristics that explain the efficiency of wavelet thresholding 
estimators. The more general case of bounded variation signals and images is 
studied. 

Piecewise Polynomials Piecewise polynomials are among the most difficult 
bounded variation signals to estimate with a linear operator. Indeed, the proof 
of Proposition 10.5 shows that the maximum risk of an optimal linear estimator is 
nearly reached by piecewise constant signals. 

The estimation of a piecewise polynomial f is improved by non-linear op- 
erators that average the noisy data X = f + W over large domains where f is 
regular, but which avoid averaging X across the discontinuities of f. These adap- 
tive smoothing algorithms require estimating the positions of the discontinuities 
of f from X. Let @ K , d  be the set of piecewise polynomial signals on [O,N - 11, 
with at most K polynomial components of degree d or smaller. Figure 10.2 gives 
an example with d = 3 and K = 9. The following proposition computes a lower 
bound of the minimax risk r, ( @ K : d ) .  

Proposition 10.8 If @K,d is a set of piecewise polynomial signals then 

(10.105) 

Proof *. We consider f E O K , d  which is equal to polynomials of degree d on apartition 
of [O,N - 11 composed of K sub-intervals {[q, ~ k + 1 -  1 ] } 0 5 k l ~ .  To compute a lower 
bound of r , ( Q ~ , d ) ,  we create an oracle estimator that knows in advance the position 
of each interval [ T ~ ; T ~ + I  - 11. On [ ~ k , ~ k + l  - 11, f is equal to a polynomial Pk of 
degree d, which is characterized by d + 1 parameters. Problem 10.3 shows that the 
minimum risk when estimating pk on [q, r k + l -  11 from X = f + W is obtained with 
an orthogonal projection on the space of polynomials of degree d over [T,,,T~+' - 11. 
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The resulting risk is (d+ 1) oz. Since r,(OK,d) is larger than the sum of these risks on 
the K intervals, 

r n ( Q , d )  1 K (d + 1) 0'. 

The lower bound (10.105) is calculated with an oracle estimator that knows in 
advance the positions of the signal discontinuities. One can prove [227] that the 
need to estimate the position of the signal discontinuities introduces another log, N 
factor in the non-linear minimax risk 

It is much smaller than the normalized linear minimax risk (10.87), which decays 
like N-'/'. 

The inner product of a wavelet with d + 1 vanishing moments and a polynomial 
of degree d is equal to zero. A wavelet basis thus gives a sparse representation 
of piecewise polynomials, with non-zero coefficients located in the neighborhood 
of their discontinuities. Figure 10.4(a) gives an example. The following theorem 
derives that a thresholding estimator in a wavelet basis has a risk that is close to 
the non-linear minimax. 

Proposition 10.9 Let T = u , / m .  The risk of a hard or a so@ thresholding 
in a Daubechies wavelet basis with d + 1 vanishing moments satisjes 

(10.106) 

when N tends to +oo. 

Proof '. On [O,N - 11, the discrete wavelets $j,m [n] of a Daubechies basis with d + 1 
vanishing moments have a support of size N2j(2d + 2). Let f E OK:d. If the support 
of $+, is included inside one of the polynomial components off,  then (f, $j ,m)  = 0. 
At each scale 2j,  there are at most K (26 + 2) wavelets $j:m whose support includes one 
of the K transition points of f .  On at most log, N scales, the number M of non-zero 
coefficients thus satisfies 

M 5 K ( 2 d + 2 )  log,N. (10.107) 

Since min(l(f,+ji,,,,)lZ,oZ) 5 oz and min(l(f,.1Clj,m)12,02) = 0 if (f,$j,,,,) = 0, we 
derive from (10.42) that the thresholding risk satisfies 

rt(f) I (210geN+1)(M+1)oZ. 

Inserting (10.107) yields 

rt(Q) 5 (1+2K(d+l)log,N)(210g,N+l)oZ. 

Extracting the dominating term for N large gives (10.106). 
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The wavelet thresholding risk rt(OK:d) is thus larger than r,(OK,d) by at most a 
log, N factor. This loss comes from a non-optimal choice of the threshold T = 
o d m .  If a different threshold Tj is used to threshold the wavelet coefficients 
at each scale 2 j ,  then one can prove [227] that the log, N factor disappears: 

( 10.108) 

For a soft thresholding, nearly optimal values Tj are calculated from the noisy data 
with the SURE estimator (10.66), and the resulting risk r t ( & d )  has an asymptotic 
decay equivalent to ( 10.108) [ 1691. 

Bounded Variation Let QV be the set of signals having a total variation bounded 
by C: 

N-1 

Q v = { f  : I l f I l v = ~ l f ~ ~ l - f ~ ~ - ~ l l I ~ } .  
n=O 

To prove that a thresholding estimator in a wavelet basis has nearly a minimax 
risk, we show that QV can be embedded in two sets that are orthosymmetric in 
the wavelet basis. This embedding is derived from the following proposition that 
computes an upper bound and a lower bound of 1 1  f I I v from the wavelet coefficients 
of f .  To simplify notations we write the scaling vectors of the wavelet basis: 
I $ J , ~  = $ J + I , ~ .  Recall that the minimum scale is 2L = N - l .  

Proposition 10.10 There exist A? B > 0 such that for all N > 0 

J+1 2-j-1 

(10.109) 
j=L+1 m=O 

and 

(1 0.1 10) 

The proof is identical to the proof of Theorem 9.6, replacing integrals by 
discrete sums. The factor N-'I22-j l2  comes from the fact that I l + j , m l l v  - 
N-' /22 - j /2 .  Theupperbound (10.109) andthelowerbound (10.110) correspond 
to Besov norms (9.32), calculated at scales 2j  > N-' .  The two Besov balls 

) 
2-j-1 

IIfIIv > A N - ' / ~ s ~ P  2-j"I(f?+j;m)l . 
i<J ( m=O 

J+1 2-j-1 

f : 2-j" l ( f : + j : m ) \  i B-' CN'" 
j=L+I m=O 
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are clearly orthosymmetric in the wavelet basis. Proposition 10.10 proves that 

@l,l,l c Q v  c @l:l,m * (10.1 11) 

Proposition 10.6 shows that a thresholding risk is nearly minimax over orthosym- 
metric sets. The following theorem derives a similar result over 0" by using the 
orthosymmetric embedding (10.1 1 1). 

Theorem 10.9 (DONOHO, JOHNSTONE) Let T = u d m .  There existA1, B1> 
0 such that if1 5 C/u 5 N then 

Proof '. Since @JJ and Q1,m,l are orthosymmetric, Proposition 10.6 proves that 

The double inequality (10.112) is proved by verifying that 

(10.1 13) 

The same proof as in Proposition 9.5 verifies that there exists Bz such that for each 
f E Q ~ J , ~  the non-linear approximation error satisfies 

E, [MI I B2 cz N M-2 . 
Applying Proposition 10.7 for s = 3/2 shows that 

(10.1 14) 

Since Q,,~(@JJ) _< ri , , f (Ql ,~,~) ,  it is now sufficient to compute a similar lower 
bound for rinf(Q1,l,l). Let 8' c @ 1 , 1 , ~  be the set of signals f such that (f:?,hjZm) = 0 
for j # I ,  and which satisfy 

2-1 

I (f, ?,hl,m) I I B-' CN1/'2'/' = Cl . 
m=O 

Over these 2-' non-zero wavelet coefficients, 61 is identical to the set BCz:, defined in 
(10.104), for s = 1. Proposition 10.7 proves that 

rinf(@) N C N ' / 2 2 ' / 2 a .  (10.115) 
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Since 1 5 C/u 5 N one can choose 1 5 2-' 5 N such that 

CN1/2 2/3 
2-1 < ( 6) < 2-'+'. 

so 
1/2 2/3g2-2/3 

rinf(@1:1,1) L rinf(Qi) ( C N  ) 
W 

This theorem proves that for bounded variation signals, the thresholding risk in 
a wavelet basis is close to the minimax risk rn(Qv). The theorem proof can be 
refined [ 1681 to show that 

The loss of a factor log, N in the thresholding risk is due to a threshold choice 
T = od- that is too high at large scales. If the wavelet coefficients are 
thresholded with different thresholds T, that are optimized for scale 2 j  then the 
logeN factor disappears [170, 2271. In this case, when N increases, r,(Qv) and 
r,(Qv) have equivalent decay. For a soft thresholding, the thresholds Ti can be 
calculated with the SURE estimator (10.66). We restrict our study to bounded 
variation signals because they have a simple characterization, but the minimax 
and thresholding risks can also be calculated in balls of any Besov space, leading 
to similar near-optimality results [170]. 

Bounded Variation Imager We now study the estimation of bounded variation 
images of N2 pixels, which we will assume to be periodic to avoid border problems. 
The discrete total variation is defined in (2.70): 

Images also have a bounded amplitude, which has an important influence on linear 
estimation. If we subtract 128 from the image intensity, its amplitude is bounded 
by C ,  = 128. Let be the set of images that have a total variation and an 
amplitude bounded respectively by CV and Cm: 

@v,m = { f : llfllv 5 cv 7 l lfl loo I cr} . 

In one dimension, Theorem 10.7 proves that if a set 0 is translation invariant, 
then the linear minimax risk q(0) is reached by an estimator that is diagonal in 
the discrete Fourier basis, and thus corresponds to a circular convolution. This 
result remains valid for images, and is proved similarly. Since Q v , ~  is translation 
invariant, the minimax linear estimator can be written as a circular convolution. 
The next theorem computes the linear minimax risk rl( OV,,) . 
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Theorem 10.10 IfN-' 5 CV Cm/u2 5 N then 

(10.1 16) 

Proof 3. An upper bound of r ~ ( @ v , ~ )  is calculated in a separable discrete wavelet 
basis. As in Theorem 9.7 one can prove that there exists B1 such that for all 1 I I 5 3 
and N-' < 2j < 1 the discrete wavelet coefficients satisfy 

I(f , I j: ,m)I I B ~ N I I ~ I I ~  
2jm~[0,1]2 

The factor N comes from the fact that two-dimensional discrete wavelets satisfy 
llIjj,mll~ - N - ~ .  Since the P norm of Ij$,m is proportional to ~ 2 j  we also prove 
as in (9.49) that there exists Bz such that 

I V > I j i , m ) I  ~ B Z N ~ ~ I I ~ I I S  . 
Since E,, 1anI2 I supn Ian1 E, Ian1 and llfllv l l f l l m  I CvCm we get 

1 (f, Iji,m) 1' I Bi BzN2 Cv C,  2' . (10.117) 
z j m ~ [ 0 , 1 ] 2  

Let O2 be the set of signals f that satisfy (10.1 17). We just proved that 0v,, c 0 2 ,  

which implies that r l ( B ~ , ~ )  5 rl (02) .  Moreover, since @2 is orthosymmetric and 
quadratically convex in the wavelet basis, Theorem 10.6 proves that rl (e,) = rinf (e,). 
We now use Proposition 10.7 to compute an upper bound of rinf(Q2). For any f E 0 2 ,  

as in Proposition 9.6 we verify that there exists B3 such that for any f E 0 2  the linear 
approximation error satisfies 

~@4] I B~ cV C,  . 
Since en[M] 5 q[M] we can apply (10.103), which proves for s = 3/4 and for C = 
(CvCm)'/2Nthat 

(10.1 18) 

This is valid only for 1 5 C/u I N2", hence the theorem hypothesis. 

operator is diagonal in the discrete Fourier basis and hence that in the Fourier basis 
To compute a lower bound of i-l(QV+,) we use the fact that the minimax linear 

If f = C, llo,q~ with L = Cv N / ( 4  CE) then f E eV,=. A direct calculation shows 
that there exists B4 such that 

Together with (10.118) itproves (10.116). 
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The hypothesis of bounded amplitude is very important for linear estimation. 
Let us consider the set of images having a uniformly bounded total variation, with 
no constraint on their amplitude: 

Ov = {f : llfllv I c v }  * 

Clearly O V , ~  c O V .  One can prove (Problem 10.15) that rl(Qv)/(N(T2) - 1, 
which means that the linear minimax risk over OV is much larger than over O V , ~ .  

For non-linear estimation, the hypothesis of bounded amplitude plays a minor 
role. The following theorem computes the non-linear minimax risk r, ( O V )  as well 
as the thresholding risk r t (Ov)  in a separable wavelet basis. 

Theorem 10.11 Let T = ad-. There exist A1 B1 > 0 such that ifN-' I 
C v / u  I N then 

(10.119) 

Proof '. An upper bound and a lower bound are calculated by embedding OV in two 
sets that are orthosymmetric in a separable wavelet basis. These sets are derived from 
upper and lower bounds of I( f I I v  calculated with the wavelet coefficients of f .  

As in Theorem 9.7, one can prove that there exist A,B > 0 such that for all N > 0 
the discrete wavelet coefficients satisfy 

.I 3 

with L = -log, N. The factor N comes from the fact discrete two-dimensional 
wavelets satisfy I l $ $ , m I I V  - N-l. Let us define 

Clearly O 1  c OV. 
Let fb [k] be the sorted wavelet coefficients in decreasing amplitude order. This 

sorting excludes the 2u scaling coefficients (f ,  @::rn). As in Theorem 9.8, one can 
verify that 

Hence the set Q2 = {f : Ifb[k]I 5 CvNBk- ' }  includes OV: 

W l f l l v  2 k l f ; , k l I .  (10.121) 

(10.122) 

Since 81 and O2 are orthosymmetric in the wavelet basis, Proposition 10.6 implies 

01 c Qv c 0 2 .  

that 

1 
1.25 -rinf(@l) 5 rn(Ov) 5 rt (Qv)  5 (2log,N+l) 
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Any signal f E 6 2  has a non-linear approximation error which satisfies €.[MI = 
O(C$PM-'). Applying Proposition 10.7 for s = 1 and C = CvN proves that 
rinf(82) = O(CvNa) for N-' 5 Cv/a 5 N. Since 6 1  is defined with an upper 
bound C =AN Cv on the 1' norm of the wavelet coefficients, Proposition 10.7 also 
proves that rjnf(C31) N CvNa. But rinf(Qi) 5 finf(Q2) SO 

rinf(Q1) N rinf(Q2) N C V N ~ .  (10.124) 

As in one dimension, if the threshold T =  dm is replaced by thresholds 
Tj that are optimized at each scale, then the log, N term disappears [ 170,2271 and 

We thus derive (10.119) from (10.123) and (10.124). 

(10.125) 

For a soft thresholding, the thresholds Tj can be calculated with the SURE es- 
timator (10.66). If QV is replaced by the smaller set O V , ~  of images with a 
bounded amplitude, the decay of the minimax risk and of the thresholding risk is 
not improved. 

When N increases, a thresholding estimator has a risk which decays like N-' 
as opposed to N-2 /3  for an optimal linear estimator. This numerical improvement 
remains limited for images where typically N I 512. However, thresholding 
estimators bring important visual improvements by suppressing totally the noise 
in regions where the image intensity is highly regular. 

10.4 RESTORATION 

Measurement devices can introduce important distortions and add noise to the 
original signal. Inverting the degradation is often numerically unstable and thus 
amplifies the noise considerably. The signal estimation must be performed with 
a high amplitude noise that is not white. Deconvolutions are generic examples of 
such unstable inverse problems. 

Section 10.4.1 studies the estimation of signals contaminated by non white 
Gaussian noises. It shows that thresholding estimators are quasi-minimax optimal 
if the basis nearly diagonalizes the covariance of the noise and provides sparse 
signal representations. Inverse problems and deconvolutions are studied in Section 
10.4.2, with an application to the removal of blur in satellite images. 

10.4. I Estimation in Arbitrary Gaussian Noise 

The signal f is contaminated by an additive Gaussian noise Z: 

X = f + Z .  

The random vector Z is characterized by its covariance operator K, and we suppose 
that E{Z[n]} = 0. When this noise is white, Section 10.3.2 proves that diagonal 
estimators in an orthonormal basis B = {gm}n)Olm<N are nearly minimax optimal 
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if the basis provides a sparse signal representation. When the noise is not white, 
the coefficients of the noise have a variance that depends on each g,: 

The basis choice must therefore depend on the covariance K. 

Diagonal Estimation We study the risk of estimators that are diagonal in B: 
N - 1  

F = D X = C d m ( X ~ [ m ] ) g , .  (10.126) 
m=O 

I f d , ( X ~ [ m ] )  = a [ m ] X ~ [ m ] ,  weverify as in (10.28) that the minimumrisk E{ llF- 
f [ 1 2 }  is achieved by an oracle attenuation: 

(1 0.127) 

Over a signal set 0 ,  the maximum risk of an oracle attenuation is qnf(0) = 
supfEs cnf(f). An oracle attenuation cannot be implemented because a[m] de- 
pends on If~[m]l which is not known, so rinf(0) is only a lower bound for the 
minimax risk of diagonal estimators. However, a simple thresholding estimator 
has a maximum risk that is close to Cnf (0) .  We begin by studying linear diagonal 
estimators D, where each a[m] is a constant. The following proposition computes 
an upper bound of the minimax linear risk. The quadratic convex hull QH[0] of 
0 is defined in (10.78). 

Proposition 10.11 Let 8 be a closed and bounded set. There exists x E QH[Q] 
such that qnf(x) = rinf(QH[O]). If0 is the linear operator defined by 

(1 0.129) 

Proof z. Let be the minimax risk obtained over linear operators that are diag- 
onal in B. Clearly rl(Q) 5 qd(@). The same derivations as in Theorem 10.6 prove 
that the diagonal operator defined by (10.129) satisfies 
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Among non-linear diagonal estimators, we concentrate on thresholding estimators: 

(10.131) 

where p ~ ( x )  is a hard or soft thresholding function. The threshold T, is adapted 
to the noise variance a: in the direction of g,. Proposition 10.4 computes an 
upper bound of the risk rt( f )  when T, = a, d m .  If the signals belong to 
a set 8, the threshold values are improved by considering the maximum of signal 
coefficients: 

If st3 [m] I am then setting XB [m] to zero yields a risk If B [m] l2 that is always smaller 
than the risk a; of keeping it. This is done by choosing T, = 00 to guarantee that 
pr,, ( X B [ ~ ] )  = 0. Thresholds are therefore defined by 

(10.132) 

Proposition 10.12 For the thresholds (10.132), the risk of a thresholding estima- 
tor satisfies for N 2 4 

Proof '. The thresholding risk r t ( f )  is calculated by considering separately the case 
T, = M, which produces a risk of Ifs[m]12, from the case T, < 30 

A slight modification [167] of the proof of Theorem 10.4 shows that 

This proposition proves that the risk of a thresholding estimator is not much above 
r inf (8) .  It now remains to understand under what conditions the minimax risk 
rn(Q) is also on the order of qnf(8). 
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Neatly Diagonal Covariance To estimate efficiently a signal with a diagonal op- 
erator, the basis B must provide a sparse representation of signals in 0 but it must 
also transform the noise into “nearly” independent coefficients. Since the noise 2 
is Gaussian, it is sufficient to have “nearly” uncorrelated coefficients, which means 
that the covariance K of Z is “nearly” diagonal in 17. This approximate diagonal- 
ization is measured by preconditioning K with its diagonal. We denote by Kd 
the diagonal operator in the basis B, whose diagonal coefficients are equal to the 
diagonal coefficients c r i  of K. We suppose that K has no eigenvalue equal to zero, 
because the noise would then be zero in this direction, in which case the estimation 
is trivial. Let K-l be the inverse of K, and Ki’2 be the diagonal matrix whose 
coefficients are the square root of the diagonal coefficients of Kd. The follow- 
ing theorem computes lower bounds of the minimax risks with a preconditioning 
factor defined with the operator sup norm 1 1  . 11s introduced in (A.16). 

Theorem 10.12 (DONOHO, KALIFA, MALLAT) The preconditioning factor satis- 

xs = l l ~ l / ~  K - I  2 1 . ( 10.136) 
Jies 

If 0 is orthosymmetric in t3 then 

(10.137) 

and 

Proof ’. The proof considers first the particular case where K is diagonal. If K is 
diagonal in l? then the coefficients Z,[m] are independent Gaussian random variables 
of variance D:. Estimating f E 0 fromX = f + Z  is equivalent to estimating fo from 
XO = f 0 + Z, where 

The signal f 0 belongs to an orthosymmetric set 80 and the renormalized noise Z, 
is a Gaussian white noise of variance 1. Proposition 10.6 applies to the estimation 
problem Xo = f + &. By reinserting the value of the renormalized noise and signal 
coefficients, we derive that 

To prove the general case we use inequalities over symmetrical matrices. If A 
and B are two symmetric matrices, we write A 2 B if the eigenvalues of A - B are 
positive, which means that (Af, f) 2 (I3 f ,  f )  for all f E CN. Since X, is the largest 
eigenvalue of K;” K-’ K;”, the inverse X i ’  is the smallest eigenvalue of the inverse 
K i ‘ / 2 K K i ’ / 2 .  It follows that ( K i ’ / 2 K K i 1 / 2 f ,  f) 2 X , ’ ( f ,  f ) .  By setting g = 
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K;'/'f we get (Kg,g) 2 X i '  (Kj/2g,Kj/2g). Since this is valid for all g E CN, we 
derive that 

K 2 X i 1 & .  (10.141) 

Observe that XS 2 1 because (Kg,, g,) = (Kdg,, g,). Lower bounds for the minimax 
risks are. proved as a consequence of the following lemma. 

Lemma 10.2 Consider the two estimation problems Xi = f + Zi for i = 1,2, where 
Ki is the covariance of the Gaussian noise 5. We denote by q n ( Q )  and ri,l(Q) the 
non-linear and linear minimax risks for each estimation problem i = 1,2. If Kl 2 K2 
then 

r l , n ( @ )  2 rz,n(@) and ri,i(Q) 2 rz,l(@) . (10.142) 

Since K1 2 K2 one can write Zl = 5 +Z, where & and Z, are two independent 
Gaussian random vectors and the covariance of Z, is K3 = 4- Kz 2 0. We denote by 
7ri the Gaussian probability distribution of Zi. To any estimator 81 = D1 XI off from 
XI we can associate an estimator &, calculated by augmenting the noise with Z, and 
computing the average with respect to its probability distribution: 

~ 2 = = 2 ~ 2 = ~ , , { ~ 1 ( ~ 2 + Z , ) } = ~ ~ 3 { ~ 1 x l } ~  

The risk is 

{ 14x2 - f 1 2 )  = E,, { IEm3 {ax1 1 - f 1') 
I E,,{E,,{IDlXI -f12H=~T,{ID1xl -fI23 

To any estimator F1= 01x1 we can thus associate an estimator & = DzXz of lower risk 
for all f E 0. Taking a sup over all f E Q and the infimum over linear or non-linear 
operators proves (10.142). 

Since K 2 X i '  Kd, Lemma 10.2 proves that the estimation problem with the noise 
Z of covariance K has a minimax risk that is larger than the minimax risk of the 
estimation problem with a noise of covariance X i '  Kd. But since this covariances is 
diagonal we can apply (10.140). The definition of rinf (e) is the same for a noise of 
covariance K and for a noise of covariance Kd because IT: = (Kg,, g,) = (Kdg,, g,). 
When multiplying Kd by a constant X i '  5 1, the value rinf (0) that appears in (10.140) 
is modified into r i n f ( 0 )  with (nf(0) 2 Xi1rinf(8) .  We thus derive (10.138) and 
(10.137). 

One can verify that AB = 1 if and only if K = K d  and hence that K is diagonal 
in B. The closer AS is to 1 the more diagonal K. The main difficulty is to find a 
basis B that nearly diagonalizes the covariance of the noise and provides sparse 
signal representations so that 0 is orthosymmetric or can be embedded in two 
close orthosymmetric sets. 

An upper bound of q(0) is computed in (10.130) with a linear diagonal oper- 
ator, and together with (10.137) we get 

1 
- rinf(QH[@]) I rl(@) I rinf(QH[Q]) . 
At? 

(10.143) 
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Similarly, an upper bound of r, (0) is calculated with the thresholding risk calcu- 
lated by Proposition 10.12. With the lower bound (10.138) we obtain 

If the basis B nearly diagonalizes K so that Xg is on the order of 1 then rl (0) is on 
the order of Cnf (QH [e] ) , whereas r, (0) and r, (0) are on the order of qnf (0) .  If 
0 is quadratically convex then 0 = QH[O] so the linear and non-linear minimax 
risks are close. If 0 is not quadratically convex then a thresholding estimation in 
B may significantly outperform an optimal linear estimation. 

10.4.2 Inverse Problems and Deconvolution 

The measurement of a discrete signal f of size N is degraded by a linear operator 
U and a Gaussian white noise W of variance u2 is added: 

Y = U f  + w. (10.145) 

We suppose that U and u2 have been calculated through a calibration procedure. 
The restoration problem is transformed into a denoising problem by inverting the 
degradation. We can then apply linear or non-linear diagonal estimators studied in 
the previous section. When the inverse U-' is not bounded, the noise is amplified 
by a factor that tends to infinity. This is called an ill-posed inverse problem 
[96,323] The case where U is a convolution operator is studied in more detail with 
an application to satellite images. 

Pseudo Inverse The degradation U is inverted with the pseudo-inverse defined 
in Section 5.1.2. Let V = ImU be the image of U and V I  be its orthogonal 
complement. The pseudo-inverse 0-l of U is the left inverse whose restriction to 
VI is zero. The restoration is said to be unstable if 

Estimating f from Y is equivalent to estimating it from 

x = 0-1y = 0-1 U f  + 0-'w. (10.146) 

The operator 0-' u = PV is an orthogonal projection on v so 

X = P v f + Z  with Z =  P'w.  (10.147) 

The noise 2 is not white but remains Gaussian because 0-l is linear. It is consid- 
erably amplified when the problem is unstable. The covariance operator K of 2 
is 

1 (10.148) K = g2 0-1 0-1* 
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where A* is the adjoint of an operator A. 
To simplify notation, we formally rewrite (10.147) as a standard denoising 

problem: 
X = f + Z ,  (10.149) 

while considering that the projection of Z in VI is a noise of infinite energy to 
express the loss of a~ information concerning the projection of f in VI. It is 
equivalent to write formally z = U-' W .  

Let B = {gm}O<m<N be an orthonormal basis such that a subset of its vectors 
defines a basis of V = ImU. The coefficients of the noise have a variance g i  = 
E{lZg[m]12}, and we set a,,, = 00 if g,,, E VL. An oracle attenuation (10.127) 
yields a lower bound for the risk 

(10.150) 

The loss of the projection off in V'- appears in the terms 

Proposition 10.12 proves that a thresholding estimator in B yields a risk that 
is above G,f(O) by a factor 2log,N. Theorem 10.12 relates linear and non-linear 
minimax risk to qnf (S) . Let Kd be the diagonal operator in 8, equal to the diagonal 
of the covariance K defined in (10.148). The inverse of K is replaced by its pseudo 
inverse K - l =  ( T - ~  U* U and the preconditioning number is 

Thresholding estimators have a risk r t ( 0 )  that is close to rn(Q) if 8 is nearly 
orthosymmetric in l3 and if Xg is on the order of 1. The main difficulty is to find 
such a basis B. 

The thresholds (10.132) define a projector that is non-zero only in the space 
VO c V generated by the vectors {g,},<,~,]. This means that the calculation of 
X = 0-l Y in (10.146) can be replaced by a regularized inverse X = Pv, 0-l Y ,  
to avoid numerical instabilities. 

Deconvolution The restoration of signals degraded by a convolution operator U 
is a generic inverse problem that is often encountered in signal processing. The 
convolution is supposed to be circular to avoid border problems. The goal is to 
estimate f from 

Y = f B u + W .  

The circular convolution is diagonal in the discrete Fourier basis E3 = 
{g,,,[n] = N-'I2exp (i27rm/N)}Olm<N. The eigenvalues are equal to the discrete 
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Fourier transform C[m], so V = ImU is the space generated by the sinusoids g ,  
such that C[m] # 0. The pseudo inverse of U is 0-l f = f 8 ii-' where the discrete 
Fourier transform of ii-' is 

h 

ii-1 [m] = { i /G[m] ifC[m] # o 
if C[m] = 0 ' 

The deconvolved data are 

x = iy'y = y 8  fi-1 . 

The noise z = 0-l w is circular stationary. ~ t s  covariance K is a circular convolu- 
tion with u2 ii-' @E-', where E-' [n] = ii-' [-.I. The Karhunen-Lohe basis that 
diagonalizes K is therefore the discrete Fourier basis 17. The eigenvalues of K are 
02 = u2 lii[m]1-2. When C[m] = o we formally set 

When the convolution filter is a low-pass filter with a zero at a high frequency, 
the deconvolution problem is highly unstable. Suppose that C[m] has a zero of 
order p 2 1 at the highest frequency rn = W / 2 :  

= 00. 

(10.151) 

The noise variance u: has a hyperbolic growth when the frequency m is in the 
neighborhood of fN/2 .  This is called a hyperbolic deconvolution problem of 
degree p ,  

Linear Estimation In many deconvolution problems the set 8 is translation in- 
variant, which means that if g E 8 then any translation of g modulo N also belongs 
to 8. Since the amplified noise Z is circular stationary the whole estimation prob- 
lem is translation invariant. In this case, the following theorem proves that the 
linear estimator that achieves the minimax linear risk is diagonal in the discrete 
Fourier basis. It is therefore a circular convolution. In the discrete Fourier basis, 

(10.152) 

We denote by Q H [ 8 ]  the quadratic convex hull of 0 in the discrete Fourier basis. 

Theorem 10.13 Let 0 be a translation invariant set. The minimax linear risk is 
reached by circular convolutions and 

o(Q)  = l i n f ( Q H [ @ ] )  . (10.153) 

Proof 3. Proposition 10.1 1 proves that the linear minimax risk when estimating f E 
0 from the deconvolved noisy data X satisfies rl(0) 5 rinf(QHIO]). The reverse 
inequality is obtained with the same derivations as in the proof of Theorem 10.7. The 
risk rinf(QH[Q]) is reached by estimators that are diagonal in the discrete Fourier 
basis. 
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If 0 is closed and bounded, then there exists n E QH[0] such that rinf(n) = 
rinf (QH[O]).  The minimax risk is then achieved by a filter whose transfer function 
hl [m] is specified by (10.129). The resulting estimator is 

F =D1X = dl @X = dl R6-l  BY. 

So = DY = d @ Y ,  and one can verify (Problem 10.16) that 

(10.154) 

If ai,= a21ii[m]l-2 << N-l li[m]12 then 2[m] M S-'[m], but if ai  >> N-' li[m]12 
then d [m] M 0. The filter h is thus a regularized inverse of u. 

Theorem 10.13 can be applied to a set of signals with bounded total variation 

(10.155) 

The set QV is indeed translation invariant. 

Proposition 10.13 For a hyperbolic deconvolution of degree p ,  i fN'l2 5 C/o 5 
Nrf1I2  then 

(10.156) 

Proof z. Since QV is translation invariant, Theorem 10.13 proves that q(QV) = 
ri,,f(QH[Bv]). Proposition 10.5 shows in (10.89) that all f E Qv have a discrete 
Fourier transform that satisfies 

(10.157) 

Hence Bv is included in the hyperrectangle R,. The convex hull QH[Ov] is thus also 
included in R, which is quadratically convex, and one can verify that 

rinf(QH[@]V) 5 r inf (Rx)  52rinf(QH[Qly) . (10.158) 

The value cnf(7Zx) is calculated by inserting (10.157) with ui2 = 
(10.152): 

lC[m]12 in 

(10.159) 

For [P[m][ - 12mN-' - lIp, if 1 5 C/u 5 N then an algebraic calculation gives 
rinf(7Zx) N (CN-' /2a-')(2p-') /p .  So rl(Qv) = rinf(QH[Ov]) satisfies (10.156). W 

The condition N'I2 I C / a  < - Nr+lI2 imposes that the noise variation is sufficiently 
large so that the problem is indeed unstable, but not too large so that some high 
frequencies can be restored. The larger the number p of zeroes of the low-pass 
filter ii[k] at k = M / 2 ,  the larger the risk. 
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FIGURE IO. I O  (a): Degraded data Y, blurred with the filter (10.160) and con- 
taminated by a Gaussian white noise (SNR = 25.0 db). @): Deconvolution calcu- 
lated with a circular convolution estimator whose risk is close to the linear minimax 
risk over bounded variation signals (SNR = 25.8 db). 

Example 10.3 Figure lO.lO(a) is a signal Y obtained by smoothing a signal f 
with the low-pass filter 

(10.160) i[m] = c o s 2  ( N) . 
This filter has a zero of order p = 2 at W / 2 .  Figure lO.lO(b) shows the estimation 

= Y 8 d  calculated with the transfer function i[m] obtained by inserting (10.157) 
in (10.154). The maximum risk over QV of this estimator is within a factor 2 of 
the linear minimax risk rr (0,). 

rm 

Thresholding Deconvolution h efficient thresholding estimator is implemented 
in a basis 23 that defines a sparse representation of signals in OV and which nearly 
diagonalizes K. This approach was introduced by Donoho [163] to study inverse 
problems such as inverse Radon transforms. We concentrate on more unstable 
hyperbolic deconvolutions. 

The covariance operator K is diagonalized in the discrete Fourier basis and its 
eigenvalues are 

(10.161) 

Yet the discrete Fourier basis is not appropriate for the thresholding algorithm 
because it does not provide efficient approximations of bounded variation signals. 
In contrast, periodic wavelet bases provide efficient approximations of such signals. 
We denote by $o,o[n] = N-' /2 .  A discrete and periodic orthonormal wavelet basis 
can be written 

B = { $ j , m ) ~ < j < 0 , 0 < m < 2 - j  . ( 10.162) 

However, we shall see that this basis fails to approximately diagonalize K. 
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FIGURE 10.1 I Wavelets and mirror wavelets are computed with a wavelet 
packet filter bank tree, where each branch corresponds to a convolution with a 
filter h or g followed by a subsampling. The graphs of the discrete Fourier trans- 
forms I$j,n[k] and l$j,,[k] are shown below the tree. The variance a; of the noise 
has a hyperbolic growth but varies by a bounded factor on the frequency support 
of each mirror wavelet. 

: 

The discrete Fourier transform $jlj;m [k] of a wavelet has an energy mostly con- 
centrated in the interval [2-j-', 2 - j ] ,  as illustrated by Figure 10.1 1. If 2j < 2N-' 
then over this frequency interval (10.161) shows that the eigenvalues a; remain 
on the order of cr'. These wavelets are therefore approximate eigenvectors of K. 
At the finest scale 2' = 2N-' ,  [k] I has an energy mainly concentrated in the 
higher frequency band [N/4, N / 2 ] ,  where a: varies by a huge factor on the order 
of N2'. These fine scale wavelets are thus far from approximating eigenvectors of 
K. 

To construct a basis of approximate eigenvectors of K, the finest scale wavelets 
must be replaced by wavelet packets that have a Fourier transform concentrated in 
subintervals of [ N / 4 , N / 2 ]  where a: varies by a factor that does not grow with N .  
In order to efficiently approximate piecewise regular signals, these wavelet packets 
must also have the smallest possible spatial support, and hence the largest possible 
frequency support. The optimal trade-off is obtained with wavelet packets that we 
denote 4 j , ! ,  which have a discrete Fourier transform $j,m [k] mostly concentrated in 
[ N / 2  - 2-',N/2 - 2-j-'], as illustrated by Figure 10.1 1. This basis is constructed 

A 



10.4 RESTORATION 497 

with a wavelet packet filtering tree that subdecomposes the space of the finest 
scale wavelets. These particular wavelet packets introduced by Kalifa and Mallat 
[232,233]  are called mirror wavelets because 

Let L = - log, N .  A mirror wavelet basis is a wavelet packet basis composed of 
wavelets at scales 2j  < 2L-' and mirror wavelets to replace the finest scale 

To prove that the covariance K is "almost diagonalized" in B for all N ,  the 
asymptotic behavior of the discrete wavelets and mirror wavelets must be con- 
trolled. The following theorem thus supposes that these wavelets and wavelet 
packets are constructed with a conjugate mirror filter that yields a continuous time 
wavelet $ ( t )  with q > p vanishing moments and which is Cq. The near diagonal- 
ization is verified to prove that a thresholding estimator in a mirror wavelet basis 
has a risk whose decay is equivalent to the non-linear minimax risk. 

Theorem 10.14 (KALIFA, MALLAT) Let B be a mirror wavelet basis constructed 
with a conjugate mirmrjlter that deJnes a wavelet that is Cq with q vanishing 
moments. For a hyperbolic deconvolution of degree p < q and p > 112, ifN'12 5 
C / u  5 Npf112 then 

( 1  0.163) 

Proof '. The main ideas of the proof are outlined. We must first verify that there exists 
X such that for all N > 0 

II1Yy2K-'K;qS 5 A .  (10.164) 

The operator K-' = u-2 u* U is a circular convolution whose transfer function is 
o-2 In[m] I 2  N u2 12rn/N - 1 12P. The matrix of this operator in the mirror wavelet 
basis is identical to the matrix in the discrete wavelet basis of a different circular 
convolution whose transfer function satisfies IP[m+N/2] 1' - u-2 12m/NI2P. This 
last operator is a discretized and periodized version of a convolution operator in L2 (a) 
of transfer function n(u) N u-2N-2P Iu 12P. One can prove [47,221] that this operator 
is preconditioned by its diagonal in a wavelet basis of Lz(IR) if the wavelet has q > p 
vanishing moments and is Cq. We can thus derive that in the finite case, when N grows, 
@i'2K-1 Ki'211~ remains bounded. 

The minimax and thresholding risk cannot be calculated directly with the inequal- 
ities (10.144) because the set of bounded variation signals OV is not orthosymmetric 
in the mirror wavelet basis B. The proof proceeds as in Theorem 10.9. We first show 
that we can compute an upper bound and a lower bound of llfllv from the absolute 
value of the decomposition coefficients off in the mirror wavelet basis B. The result- 
ing inequalities are similar to the wavelet ones in Proposition 10.10. This constructs 
two orthosymmetric sets 0' and 0 2  such that 0 1  c 0 v  c 0 2 .  A refinement of the 
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FIGURE 10.12 Deconvolution of the signal in Figure lO.lO(a) with a thresh- 
olding in a mirror wavelet basis ( S N R  = 29.2 db). 

inequalities (10.144) shows that over these sets the minimax and thresholding risks 
are equivalent, with no loss of a log,N factor. The risk over 01 and 02 is calculated 
by evaluating qnf(Ql) and rinf(Oz), from which we derive (10.163), by using the 

This theorem proves that a thresholding estimator in a mirror wavelet basis yields a 
quasi-minimax deconvolution estimator for bounded variation signals: r,, ( O V )  - 
r, ( Qv)  . Moreover, it shows that the thresholding risk r, (0,) is much smaller than 
the linear minimax risk rl(0v) as long as there is enough noise so that the inverse 
problem is indeed unstable. If C/cr - N'/"- then 

expression (10.156) for ~(0,). 

(10.165) 

Example 10.4 Figure lO.lO(a) shows a signal Y degraded by a convolution with a 
low-pass filter h[k] = cos2 (7rk/N).  The result of the deconvolution and denoising 
with a thresholding in the mirror wavelet basis is shown in Figure 10.12. A 
translation invariant thresholding is performed to reduce the risk. The S N R  is 
29.2 db, whereas it was 25.8 db in the linear restoration of Figure lO.lO(b). 

Deconvolution of Satellite Imager Nearly optimal deconvolution of bounded 
variation images can be calculated with a separable extension of the deconvo- 
lution estimator in a mirror wavelet basis. Such a restoration algorithm is used by 
the French spatial agency (CNES) for the production of satellite images. 

The exposition time of the satellite photoreceptors cannot be reduced too much 
because the light intensity reaching the satellite is small and must not be domi- 
nated by electronic noises. The satellite movement thus produces a blur, which is 
aggravated by the imperfection of the optics. The electronics of the photorecep- 
tors adds a Gaussian white noise. The image 10.140>), provided by the CNES, 
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is a simulated satellite image calculated from the airplane image shown in Figure 
10.14(a). The total variation of satellite images is often bounded, and since their 
amplitude is also bounded, they belong to a set 

Qv,m = { f : llfllv 5 cv 7 l l f l lm I cm} . 

When the satellite is in orbit, a calibration procedure measures the impulse 
response u of the blur and the noise variance a’. The impulse response is a 
separable low-pass filter: 

Uf[nl;n2] = f@u[n1,nz] with 4n1,nzI = .l[nllu2[nzl 

The discrete Fourier transform of u1 and uz have respectively a zero of order p1 
and p2 at W / 2 :  

The deconvolvednoise has a covariance K that is diagonalized in a two-dimensional 
discrete Fourier basis. The eigenvalues are 

Most satellite images are well modeled by bounded variation images. The main 
difficulty is again to find an orthonormal basis that provides a sparse representation 
of bounded variation images and which nearly diagonalizes the noise covariance 
K. Each vector of such a basis should have a Fourier transform whose energy is 
concentrated in a frequency domain where the eigenvectors a:, ,k2 vary at most by 
a constant factor. Rouge [299, 3001 has demonstrated numerically that efficient 
deconvolution estimations can be performed with athresholding in a wavelet packet 
basis. 

At low frequencies (kl ,kz) E [0,N/4I2 the eigenvalues remain approximately 
constant: ff:,:k2 - 2. This frequency square can thus be covered with two- 
dimensional wavelets y$m.  The remaining high frequency annulus is covered 
by two-dimensional mirror wavelets that are separable products of two one- 
dimensional mirror wavelets. One can verify that the union of these two families 
defines an orthonormal basis of images of N 2  pixels: 

This two-dimensional mirror wavelet basis segments the Fourier plane as illustrated 
in Figure 10.13. It is an anisotropic wavelet packet basis as defined in Problem 8.4. 
Decomposing a signal in this basis with a filter bank requires O(N2) operations. 
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FIGURE IO. I 3 The mirror wavelet basis (10.167) segments the frequency plane 
(k l ,  kz)  into rectangles over which the noise variance c$, ,k2 = uz, cz2 varies by a 
bounded factor. The lower frequencies are covered by separable wavelets #, and 
the higher frequencies are covered by separable mirror wavelets $Jj $ J j j .  

To formally prove that a thresholding estimator in B has a risk rt(Ov,,) that 
is close to the non-linear minimax risk r , ( $ ~ , ~ ) ,  one must prove that there exists 
X such that llKi’z K-’ K:’’ll~ 5 X and that OV,, can be embedded in two close 
sets that are orthosymmetric in B. Since this deconvolution problem is essentially 
separable, one can prove [232] that the minimax linear and non-linear risks as 
well as the thresholding risk are about N times larger than the risks calculated for 
one-dimensional signals in the set OV defined in (10.155). Proposition 10.13 and 
Theorem 10.14 compute these risks. In two dimensions, it is however crucial to 
incorporate the fact that images have a bounded amplitude. The constant factors 
depend upon CV and C,. The improvement of a thresholding estimator over an 
optimal linear estimator is then of the same order for a one-dimensional signal of 
size N and an image of N 2  pixels. 

Figure 10.14(c) shows an example of deconvolution calculated in the mirror 
wavelet basis. The thresholding is performed with a translation invariant algo- 
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FIGURE IO. I4 (a): Original airplane image. (b): Simulation of a satellite im- 
age provided by the CNES (SNR = 3 1. ldb). (c): Deconvolution with a translation 
invariant thresholding in a mirror wavelet basis (SNR = 34.1db). (d): Deconvo- 
lution calculated with a circular convolution, which yields a nearly minimax risk 
for bounded variation images (SNR = 32.7db). 

rithm. This can be compared with the linear estimation in Figure 10.14(d), cal- 
culated with a circular convolution estimator whose maximum risk over bounded 
variation images is close to the minimax linear risk. As in one dimension, the 
linear deconvolution sharpens the image but leaves a visible noise in the regular 
parts of the image. The thresholding algorithm completely removes the noise in 
these regions while improving the restoration of edges and oscillatory parts. 

10.5 COHERENT ESTIMATION 

If we cannot interpret the information carried by a signal component, it is often 
misconstrued as noise. In a crowd speaking a foreign language, we perceive sur- 
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rounding conversations as background noise. In contrast, our attention is easily 
attracted by a remote conversation spoken in a known language. What is important 
here is not the information content but whether this information is in a coherent for- 
mat with respect to our system of interpretation. The decomposition of a signal in 
a dictionary of vectors can similarly be considered as a signal interpretation [259]. 
Noises are then defined as signal components that do not have strong correlation 
with any vector of the dictionary. In the absence of any knowledge concerning the 
noise, a signal is estimated by isolating the coherent structures which have a high 
correlation with vectors in the dictionary. If the noise is not Gaussian, computing 
the estimation risk is much more difficult. This section introduces algorithms that 
can be justified intuitively, but which lack a h n  mathematical foundation. 

10.5. I Coherent Basis Thresholding 

Let f3 = { gm}O<m<N be an orthonormal basis. If W[n] is a Gaussian white process 
of size N and variance a’, then E{ 1 1  Wll’} = N$ and the coefficients (W, g,) are 
independent Gaussian random variables. When N increases there is a probability 
converging towards 1 that [9] 

The factor CN is the maximum normalized correlation of a Gaussian white noise 
of size N .  

The correlation of a signal f with the basis B is defined by 

We say that f is a noise with respect to B if it does not correlate vectors in B any 
better than a Gaussian white noise: C( f) 5 CN. For example, f [n] = eiB is a noise 
in a basis of discrete Diracs g, [n] = 6[n - m], because 

Coherent Structures Let Z be an unknown noise. To estimate a signal f from 
X = f + Z ,  we progressively extract the vectors of B that best correlate X. Let us 
sort the inner products (X, g,): 

The data X is not reduced to a noise if 
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The vector g,, is then interpreted as a coherent structure. 
For any k 2 1, we consider 

k N 

p= 1 p=k+l 

The residue RkX is the orthogonal projection of X in a space of dimension N - k. 
The normalized correlation of this residue with vectors in B is compared with the 
normalized correlation of a Gaussian white noise of size N - k. This residue is 
not a noise if 

The vector gmk is then also a coherent structure. 
Let M be the minimum index such that 

c ( p x )  5 C N - M .  (10.169) 

Observe that it4 is a random variable whose values depend on each realization of 
X. The signal f is estimated by the sum of the M - 1 coherent structures: 

M -  1 

p=l 

This estimator is also obtained by thresholding the coefficients ( X :  gm) with the 
threshold value 

112 

T = G - M  I(X,gm,)1’ . (10.170) 

The extraction of coherent structures can thus be interpreted as a calculation of 
an appropriate threshold for estimating f, in the absence of any knowledge about 
the noise. This algorithm estimates f efficiently only if most of its energy is 
concentrated in the direction of few vectors gm in B. For example, f = g, 
has no coherent structures because C( f) = N-’I2 < C,. Even though Z = 0, the 
extraction of coherent structures applied to X = f yields = 0. This indicates 
that the basis representation is not well adapted to the signal. 

Figure 10.15(a) shows a piecewise regular signal contaminated by the addi- 
tion of a complex noise, which happens to be an old musical recording of Enrico 
Caruso. Suppose that we want to remove this “musical noise.” The coherent struc- 
tures are extracted using a wavelet basis, which approximates piecewise smooth 
functions efficiently but does not correlate well with high frequency oscillations. 
The estimation in Figure 10.15(b) shows that few elements of the musical noise are 
coherent structures relative to the wavelet basis. If instead of this musical noise 

(::: ) 
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FIGURE IO. I 5  (a): The same signal as in Figure 10.4 to which is added a noisy 
musical signal (SNR = 19.3 db). (b): Estimation by extracting coherent structures 
in a Daubechies 4 wavelet basis (SNR = 23. Odb). 

a Gaussian white noise of variance is added to this piecewise smooth signal, 
then the coherent structure algorithm computes an estimated threshold (10.170) 
that is within 10% of the threshold T = IS,/- used for white noises. The 
estimation is therefore very similar to the hard thresholding estimation in Figure 
10.4(c). 

Pursuit of Bases No single basis can provide a “coherent” interpretation of com- 
plex signals such as music recordings. To remove noise from historical recordings, 
Berger, Coihan and Goldberg [92] introduced an orthogonal basis pursuit algo- 
rithm that searches a succession of “best bases.” Excellent results have been 
obtained on the restoration the recording of Enrico Caruso. In this case, we must 
extract coherent structures corresponding to the original musical sound as opposed 
to the degradations of the recording. The coherent extraction shown in Figure 
10.15(b) demonstrates that hardly any component of this recording is highly co- 
herent in the Daubechies 4 wavelet basis. It is therefore necessary to search for 
other bases that match the signal properties. 

Let 51) = UxEnBX be a dictionary of orthonormal bases. To find a basis in D 
that approximates a signal f efficiently, Section 9.4.1 selects a best basis B” that 
minimizes a Schur concave cost function 

where @ ( x )  is a concave function, possibly an entropy (9.68) or an 1P norm (9.70). 
A pursuit of orthogonal bases extracts coherent structures from noisy data X with 
an iterative procedure that computes successive residues that we denote X,: 

1. Initialization XO = X. 
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2. Basis search A best basis B " p  is selected in D by minimizing a cost: 

c(x , ,Bo~)  = minC(X,,BX) . 
k h  

3.  Coherent calculation Coherent structures are extracted as long as 
C(RkX,)  > C N - ~  in B O P .  Let M p  be the number of coherent structures 
defined by C(R'pX,) 5 CN-M,. The remainder is 

x,,, = P P X , .  

4. Stopping rule If M ,  = 0, stop. Otherwise, go to step 2. 

For musical signals [92], the pursuit of bases is performed in a general dic- 
tionary that is the union of a dictionary of local cosine bases and a dictionary of 
wavelet packet bases, introduced respectively in Sections 8.1 and 8.5. In each dic- 
tionary, a best basis is calculated with an entropy function @(x) and is selected by 
the fast algorithm of Section 9.4.2. The best of these two "best" bases is retained. 
To take into account some prior knowledge about the noise and the properties of 
musical recordings, the correlation C (f)  used to extract coherent structures can be 
modified, and further ad-hoc refinements can be added [92]. 

10.5.2 Coherent Matching Pursuit 

A matching pursuit offers the flexibility of searching for coherent structures in 
arbitrarily large dictionaries of patterns D = {g,}yEr,  which can be designed 
depending on the properties of the signal. No orthogonal condition is imposed. The 
notions of coherent structure and noise are redefined by analyzing the asymptotic 
properties of the matching pursuit residues. 

Dictionary Noise A matching pursuit decomposes f over selected dictionary 
vectors with the greedy strategy described in Section 9.5.2. Theorem 9.10 
proves that the residue Rm f calculated after m iterations of the pursuit satisfies 

The matching pursuit behaves like a non-linear chaotic map, and it has been 
proved by Davis, Mallat and Avelaneda [151] that for particular dictionaries, the 
normalized residues Rm f llR" f 11-l converge to an attractor. This attractor is a 
set of signals h that do not correlate well with any g ,  E D because all coherent 
structures off in D are removed by the pursuit. The correlation of a signal f with 
the dictionary V is defined by 

limm++cc IIRmf I1 = 0. 

For signals in the attractor, this correlation has a small amplitude that remains 
nearly equal to a constant CD, which depends on the dictionary D [151]. Such 
signals do not correlate well with any dictionary vector and are thus considered as 
noise with respect to D. 
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FIGURE 10.16 Decay of the correlation C(R” f )  as a function of the number 
of iterations m, for two signals decomposed in a Gabor dictionary. (a): f is the 
recording of “greasy” shown in Figure 10.17(a). (b): f is the noisy “greasy” signal 
shown in Figure 10.17(b). 

The convergence of the pursuit to the attractor implies that after a sufficiently 
large number M of iterations the residue RM f has a correlation C(RM f) that is 
nearly equal to CD. Figure 10.16 gives the decay of C ( P  f )  as a function of m, 
for two signals decomposed in a Gabor dictionary. After respectively M = 1400 
and M = 76 iterations, both curves reach the attractor level Cjy = 0.06. 

Coherent Pursuit Coherent structures are progressively extracted to estimate f 
from X = f + 2. These coherent structures are dictionary vectors selected by the 
pursuit, and which are above the noise level h. For any m 2 0, the matching 
pursuit projects the residue RkX on a vector grk E D such that 

I (R% grA I = SUP I (m 8,) I * 
rEr 

The vector g, is a coherent structure of RkX if 

Let M be the minimum integer such that C(@ f) 5 CD. The residue RMX has 
reached the noise level and is therefore not further decomposed. The signal is 
estimated from the M coherent structures: 

M-1 

p=o 

This estimator can also be interpreted as a thresholding of the matching pursuit of 
X with a threshold that is adaptively adjusted to 

T = CD IIRMXll. 
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FIGURE IO. I 7  (a): Speech recording of “greasy.” (b): Recording of “greasy” 
plus a Gaussian white noise (SNR = 1.5 db). (c): Time-frequency distribution of 
the M = 76 coherent Gabor structures. (d): Estimation F reconstructed from the 
76 coherent structures (SNR = 6.8db). 

Example 10.5 Figure 10.17(b) from [259] shows the speech recording of “greasy” 
contaminated with a Gaussian white noise, with an SNR of 1.5 db. The curve (b) 
of Figure 10.16 shows that the correlation C(Rmf) reaches CD after m = M = 76 
iterations. The time-frequency energy distribution of these 76 Gabor atoms is 
shown in Figure 10.16(c). The estimation F calculated from the 76 coherent 
structures is shown in Figure 10.17(d). The SNR of this estimation is 6.8 db. 
The white noise has been removed and the restored speech signal has a good 
intelligibility because its main time-frequency components are retained. 

10.6 SPECTRUM ESTIMATION 

A zero-mean Gaussian process X of size N is characterized by its covariance ma- 
trix. For example, unvoiced speech sounds such as “ch” or “s” can be considered 
as realizations of Gaussian processes, which allows one to reproduce intelligi- 
ble sounds if the covariance is known. The estimation of covariance matrices is 
difficult because we generally have few realizations, and hence few data points, 
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compared to t h e p  covariance coefficients that must be estimated. Ifparametrized 
models are available, which is the case for speech recordings [61], then a direct 
estimation of the parameters can give an accurate estimation of the covariance 
[60]. This is however not the case for complex processes such as general sounds 
or seismic and underwater signals. We thus follow a non-parametrized approach 
that applies to non-stationary processes. 

When the Karhunen-Lohe basis is known in advance, one can reduce the 
estimation to the N diagonal coefficients in this basis, which define the power 
spectrum. This is the case for stationary processes, where the Karhunen-Lo&ve 
basis is known to be the Fourier basis. For non-stationary processes, the Karhunen- 
Lokve basis is not known, but it can be approximated by searching for a “best basis” 
in a large dictionary of orthogonal bases. This approach is illustrated with locally 
stationary processes, where the basis search is perfomed in a dictionary of local 
cosine bases. 

10.6. I Power Spectrum 

We want to estimate the covariance matrix of a zero-mean random vector X of size 
N from L realizations { X ~ } O < ~ < L .  Let B = {grn}Osrn<N be an orthonormal basis. 
The N 2  covariance coefficients of the covariance operator K are 

a[l ,ml= (Kg1,grn) = E { ( X , g l )  ( X : g m ) * } .  

When L is much smaller than N ,  which is most often the case, a naive estimation of 
these N 2  covariances gives disastrous results. In signal processing, the estimation 
must often be done with only L = 1 realization. 

Naive Estimation 
mean estimators 

Let us try to estimate the covariance coefficients with sample 

(10.17 1) 

We denote by K the estimated covariance matrix whose coefficients are theA[l, m]. 
The estimation error is measured with a Hilbert-Schmidt norm. The squared 
Hilbert-Schmidt norm of an operator K is the sum of its squared matrix coefficients, 
which is also equal to the trace of the product of K and its complex transpose K*: 

N- 1 

l,rn=O 

The Hilbert-Schmidt error of the covariance estimation is 
N- 1 

l l ~ - K l l i  = la [~ ,m]  - A [ ~ , m ] l ~ .  

The following proposition computes its expected value when X is a Gaussian 
random vector. 

Z,m=O 



10.6 SPECTRUM ESTIMATION 509 

Proposition 10.14 If X is a Gaussian random vector then 

(10.172) 
1 

E { IA 11, m] - a [I, m] I 1 = (la [Z , .21 l 2  + a [ I ,  11 a [m, ml) , 

and 

Proof '. The sample mean-estimator (10.171) is unbiased 

E{A[l,mI) =4,4 

(10.173) 

(1 0.174) 

(10.175) 

Each (Xk , gl) is a Gaussian random variable and for all k 

E{(Xk,gr) (xk,gm)*) =a[lim]. 

IfAl ,Az1A3:A4 are jointly Gaussian random variables, one can verify that 

E(AIAZA3A4) = E{AIAZ)E{A~A~} + E{A~A~}E{AzA~} + E{AIA~}E{A~A~}. 
Applying this result to (10.175) yields 

1 1 
E{lA[l:m]l'> = F L  ( a [ l ~ I ] a [ m , m ] + 2 ~ ~ [ l , m ] ~ ~ )  + L2(L2 - L )  (~[l,m]1~: 

so 

We thus derive (10.172) from (10.174). 
The Hilbert-Schmidt norm is 
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Observe that 
N-1 N-1 

E{ IIXII’I = C I (x, g m )  1’1 C a [ m ,  1111- 
m=O m=O 

Inserting this in the previous equation gives (10.173). w 
The error calculation (10.172) proves that E{IA[Z,m] - ~ [ l , m ] ) ~ }  depends not only 
on [a[lrm]12 but alsoontheamplitudeofthediagonalcoefficientsa[Z,I] anda[m,m]. 
Even though u[Z,m] may be small, the error of the sample mean estimator is large 
if the diagonal coefficients are large: 

(10.176) 

The error produced by estimating small amplitude covariance coefficients accu- 
mulates and produces a large Hilbert-Schmidt error (10.173). 

Example 10.6 Suppose that X is a random vector such that E{ IX[n] 1’) is on the 
order of o2 but that E{X[n]X[m]) decreases quickly when In - ml increases. The 
Hilbert-Schmidt norm of K can be calculated in a Dirac basis g,[n] = b[n - m], 
which gives 

N-1 

llKlli = IE{X[Z]X[m]}12 N N ~ ’ ,  
&m=O 

and 
N-1 

E{llXl12) = xE{IX[111l2} - N o 2 .  
n=O 

As a consequence, for N >> L, 

The estimation error is huge; a better result is obtained by simply setting K = 0. 

Power Spectrum If we know in advance the Karhunen-Lokve basis that diago- 
nalizes the covariance operator, we can avoid estimating off-diagonal covariance 
coefficients by working in this basis. The N diagonal coefficients p[m] = a[m,m] 
are the eigenvalues of K, and are called its power spectrum. 

We denote by P[m] = A[m, m] the sample mean estimator along the diagonal. 
The sample mean error is computed with (10.172): 

Since the covariance is diagonal, 
N-1  

IlKlli = Ip[mll2 = llP1I2- 
m=O 

(10.177) 

(10.178) 
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The estimated diagonal operator E with diagonal coefficients P[m] has therefore 
an expected error 

The relative error E { \ \ ~ - K ~ ~ $ } / ~ \ K ~ ~ $  decreases when L increases but it is in- 
dependent of N .  To improve this result, we must regularize the estimation of the 
power spectrum p[m] . 

Regularization Sample mean estimations P[m] can be regularized if p[m] varies 
slowly when m varies along the diagonal. These random coefficients can be inter- 
preted as “noisy” measurements of p [m] : 

P[m] = p[m] (1 + W[m]). 

Since P[m] is unbiased, E{ W [ m ] }  = 0. To transform the multiplicative noise into 
an additive noise, we compute 

logeP[m] =log,p[mm]+loge(l+W[m]). (10.180) 

If X[n] is Gaussian, then W[m] has ax;  distribution [40], and (10.177) proves 
that 

2 
E{lW[mIIZ> = E‘ 

The coefficients { (X; gn)}~5m<N of a Gaussian process in a Karhunen-Lohe basis 
are independent variables, so P[m] and P[Zl and hence W[m] and W[Z] are indepen- 
dent for Z # m. As a consequence, W[m] and log,(l + W [ m ] )  are non-Gaussian 
white noises. 

In the Gaussian case, computing a regularized estimate a[m] of p[m] from 
(10.180) is a white noise removal problem. Let K be the diagonal matrix whose 
diagonal coefficients are i [ m ] .  This matrix is said to be a consistent estimator of 

Linear estimations and Wiener type filters perform a weighted average with a 
kernel whose support covers a domain where log, p[m] is expected to have small 
variations. This is particularly effective if p[m] is uniformly regular. 

If p[m] is piecewise regular, then wavelet thresholding estimators improve the 
regularization of linear smoothings [ 1881. Following the algorithm of Section 
10.2.4, the wavelet Coefficients of log,P[m] are thresholded. Despite the fact that 
log,( 1 + W [ m ] )  is not Gaussian, if X [ n ]  is Gaussian then results similar to Theo- 
rem 10.4 are proved [344] by verifying that wavelet coefficients have asymptotic 
Gaussian properties. 
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Stationary Processes If X is circular wide-sense stationary, then its covariance 
operator is a circular convolution that is diagonalized in the discrete Fourier basis 

The power spectrum is the discrete Fourier transform of the covariance & [ I ]  = 
E{X[n]X[n - 11): 

It is estimated with only L = 1 realization by computing P[m], which is called a 
periodogram [60]: 

(10.181) 

Most often, the stationarity ofX is not circular and we only know the restriction 
of its realizations to [0, N - 11. The discrete Fourier basis is thus only an approx- 
imation of the true Karhunen-Lokve basis, and this approximation introduces a 
bias in the spectrum estimation. This bias is reduced by pre-multiplying X[n] with 
a smooth window g[n] of size N ,  which removes the discontinuities introduced 
by the Fourier periodization. Such discrete windows are obtained by scaling and 
sampling one of the continuous time windows g ( t )  studied in Section 4.2.2. This 
windowing technique can be improved by introducing several orthogonal windows 
whose design is optimized in [331]. 

To obtain a consistent estimator from the periodogram P[m] ,  it is necessary to 
pedorm a regularization, as previously explained. If the spectrum is uniformly 
regular, then a linear filtering can yield a consistent estimator [60]. Figure 10.18(c) 
shows a regularized log periodogram calculated with such a linear filtering. The 
random fluctuations are attenuated but the power spectrum peaks are smoothed. 
A linear filtering of the spectra is more often implemented with a time windowing 
procedure, described in Problem 10.19. The interval [O,N - 11 is divided in M 
subintervals with windows of size N I M .  A periodogam is computed over each 
interval and a regularized estimator of the power spectrum is obtained by averag- 
ing these M periodograms. Wavelet thresholdings can also be used to regularize 
piecewise smooth spectra [344]. 

10.6.2 Approximate Karhunen-Lodve Search 

If X is non-stationary, we generally do not know in advance its Karhunen-Lo&e 
basis. But we may have prior information that makes it possible to design a dic- 
tionary of orthonormal bases guaranteed to contain at least one basis that closely 
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FIGURE IO. I 8 (a): Log power spectnunlog,hx[m] ofastationaryprocess~[n]. 
(b): Log periodogram log,P[m] computed from L = 1 realization. (c): Linearly 
regularized estimator log, i, [m] . 

approximates the Karhunen-Lohe basis. Locally stationary processes are exam- 
ples where an approximate Karhunen-Lokve basis can be found in a dictionary of 
local cosine bases. The algorithm of Mallat, Papanicolaou and Zhang [260] esti- 
mates this best basis by minimizing a negative quadratic sum. This is generalized 
to other Schur concave cost functions, including the entropy used by Wickerhauser 
[761. 

Diagonal Estimation Proposition 10.14 proves that an estimation of all covariance 
coefficients produces a tremendous estimation error. Even though a basis B is not 
a Karhunen-Lokve basis, it is often preferable to estimate the covariance K with a 
diagonal matrix K, which is equivalent to setting the off-diagonal coefficients to 
zero. The N diagonal coefficients b[m]  are computed by regularizing the sample 
mean-estimators (10.171). They approximate the spectrum of K .  

The Hilbert-Schmidt error is the sum of the diagonal estimation errors plus the 
energy of the off-diagonal coefficients: 

N-1 N-1 

llK - ai = Ii,[ml - Pbl  IZ + l4bI 12. 
m=O I.m=O 

t+m 

Since 
N-1 N-1 N - 1  

IlKll; = l4l:m1I2 = IP[m1I2+ l4~:mIl2, 
l,m=O m=O I,m=O 

l+m 

we have 
N-1 N-1 

IIK-Klk = lj,[ml -P[4I2+ llKll;-c lP[m1I2* (10.182) 
m=O m=O 

Let us denote 
N-1 

(10.183) 
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Clearly C(K, B) 2 - IlKll~ and this sum is minimum in a Karhunen-Lotwe basis 
BKL where C(K,Bm) = - l l K / / i .  The error (10.182) can thus be rewritten 

Illk-Kll; = ~ ~ F - p ~ ~ 2 + C ( K , B )  -C(K,BKL). (10.184) 

Best Basis Let 2) = {l?"/}7Er be a dictionary of orthonormal bases fl = 
{gL}Olma. The error formulation (10.184) suggests defining a "best" Karhunen- 
Lohe approximation as the basis that minimizes C ( K ,  B). Since we do not know 
the true diagonal coefficients p[m],  this cost is estimated with the regularized 
sample mean coefficients: 

N-1  

q K ,  a) = - IF[m] 12. (10.185) 
m=O 

The covariance estimation thus proceeds as follows. 

1. Sample means For each vector g;l; E D, we compute the sample mean 
estimator of the variance in the direction of each gL E 2): 

. L  

(10.186) 

2. Regularization Regularized estimators [m] are calculated with a local 
averaging or a wavelet thresholding among a particular group of dictionary 
vectors. 

3.  Basis choice The cost of K is estimated in each basis E' by 

N-1  

E ( K , F )  = -Cl?"[m]l2,  (10.187) 
m=O 

and we search for the best basis a" that minimizes these costs: 

(10.188) 

4. Estimation The covariance K is estimated by the operator K" that is diag- 

SinceC(K,Bm) = -/lKll$and IlKlli 2 (Ip"1)2, toevaluatetheconsistencyofthis 
algorithm, we derive from (10.184) that 

onal in B", with diagonal coefficients equal to Pa [m] . 

/Ilk" 411; IIF" -pa112 + C ( K , W )  - C(K,B")  
llKll$ llP"1l2 C(K, B K L )  

This covariance estimator is therefore consistent if there is a probability converging 
to 1 that 

+ 0 when N + +cm (10.189) C ( K ,  B K L )  - C(K, B") 
C ( K ,  B K L )  
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and 
' I p a  + 0 when N + +KI . 

llP"1I2 
(10.190) 

This means that the estimated best basis tends to the Karhunen-Lo&e basis and the 
estimated diagonal coefficients converge to the power spectrum. The next section 
establishes such a result for locally stationary processes in a dictionary of local 
cosine bases. 

Generalized Basis Search 
a positive pseudo-distance between any B and BKL: 

The quadratic cost C ( K ,  B) defined in (10.183) yields 

d(B,BE) = C ( K , B )  - C ( K , B K L ) ,  (10.191) 

which is zero if and only if B is a Karhunen-Loke basis. The following theorem 
proves that any Schur concave cost function satisfies this property. 

Theorem 10.15 Let K be a covariance operator and B = { gm}Osm<N be an or- 
thonormal basis. I f @ ( x )  is strictly concave then 

N- 1 

C ( K ,  B) = ( W g m ,  g m )  
m=O 

is minimum i f  and only ifK is diagonal in B. 
Proof '. Let { h m } o S m < ~  be a Karhunen-Lohe basis that diagonalizes K .  As in (9.18), 
by decomposing gm in the basis { h i } ~ s i < ~  we obtain 

N - 1  

(Kgm, gm) = C I (gml hi) I' (Khi, hi). (10.192) 

Since Cy!: I (gm, hi) 1' = 1, applying the Jensen inequality (A.2) to the concave func- 
tion @ ( x )  proves that 

i=O 

N-1  

@ ( ( O m ,  gm)) L C I (gm, hi) I' @ ((Khi: hi)) . (10.193) 
i=O 

Since E::', l(gm,hi)l' = 1, we derive that 
N-1 N-1 

m=O i=O 

This inequality is an equality if and only if for all rn (10.193) is an equality. Since 
@ ( x )  is strictly concave, this is possible only if all values (Khi,hi)  are equal as long as 
(g,,hi) # 0. We thus derive that g ,  belongs to an eigenspace of K and is thus also an 
eigenvector of K .  Hence, (gm}O<m<N diagonalizes K as well. 
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The pseudo-distance (10.191) is mathematically not a true distance since it does 
not satisfy the mangle inequality. The choice of a particular cost depends on the 
evaluation of the error when estimating the covariance K. If @(x) = -x2, then 
minimizing the pseudo-distance (10.191) is equivalent to minimizing the Hilbert- 
Schmidt norm of the estimation error (10.184). Other costs minimize other error 
measurements, whose properties are often more complex. The cost associated to 
@(x) = -logex can be related to the Kullback-Liebler discriminant information 
[173]. The entropy @(x) = -xlog,x has been used in image processing to search 
for approximate Karhunen-Lokve bases for face recognition [76]. 

10.6.3 Locally Stationary Processes 

Locally stationary processes appear in many physical systems, where random 
fluctuations are produced by a mechanism that changes slowly in time or which bas 
few abrupt transitions. Such processes can be approximated locally by stationary 
processes. Speech signals are locally stationary. Over short time intervals, the 
throat behaves like a steady resonator that is excited by a stationary source. For a 
vowel the time of stationarity is about lo-' seconds, but it may be reduced to lop2 
seconds for a consonant. The resulting process is therefore locally stationary over 
time intervals of various sizes. 

A locally stationary process X is defined qualitatively as a process that is 
approximately stationary over small enough intervals, and whose values are un- 
correlated outside these intervals of stationarity. A number of mathematical char- 
acterizations of these processes have been proposed [143,260,266,267,286]. 

Donoho, Mallat and von Sachs [172] give an asymptotic definition of local 
stationarity for a sequence of random vectors having N samples, with N increasing 
to +m. The random vector XN[~]  has N samples over an interval normalized to 
[O: 11. Its covariance is &[n, m] = E{XN [n] XN [m]} and we write 

cN[n,T] =RN[n,n+T] . 
The decorrelation property of locally stationary processes is imposed by a uniform 
decay condition along T for all n. There exist Ql and 61 > 1/2 independent of N 
such that 

'dn , c ( 1 + 2 1 ~ 1 ~ ' )  I C N [ ~ , ~ I I ~  I Qi . (1 0.194) 

If XN is stationary, then C l ~ [ n ,  3-1 = CN [TI. A local approximation of XN with sta- 
tionary processes is obtained by approximating CN [n, T] over consecutive intervals 
with functions that depend only on T.  Such approximations are precise if CN[n, T] 

has slow variations in n in each approximation interval. This occurs when the 
average total variation of C N [ ~ :  7-1 decreases quickly enough as N increases. Since 
X N [ ~ ]  are samples separated by 1/N on [0,1], we suppose that there exist Q 2  and 
0 5 62 5 1 independent of N such that 

T 

- N-1-h 
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- 
Processes that belong to a sequence {XN}N~N that satisfies (10.194) and (10.195) 
are said to be locally stationary. 

Example 10.7 Simple locally stationary processes are obtained by blending to- 
gether a collection of unrelated stationary processes. Let ( X ~ ; N [ ~ ] } I ~ < I  be a col- 
lection of mutually independent Gaussian stationary processes whose covariances 
Rla[n ,  n + 7-1 = Cl,N [TI satisfy for 61 > 1 

r 

Let {wl[n]}1gg be a family of windows wl[n] 2 0 with 
the blended process 

wl[n] 5 1. Define 

I 

XN [.I = Wl [.I X1,N [.I . (10.196) 

One can then verify [ 1731 that XN satisfies the local stationarity properties (10.194) 
and (10.195), with 62 = 1. 

If the windows wl are indicator functions of intervals [al,q+l) in [O,N - 11, 
then the blend process has Z abrupt transitions. The process XN remains locally 
stationary because the number of abrupt transitions does not increase with N .  
Figure 10.19(a) gives an example. 

1=1 

Best Local Cosine Basis The covariance of a circular Stationary process is a circu- 
lar convolution whose eigenvectors are the Fourier vectors exp (i27rmnlN). Since 
the eigenvalues are the same at the frequencies 27rmlN and - 2 r m / N ,  we derive 
that cos (27rmnlN + q5)  is also an eigenvector for any phase 4. A locally stationary 
process can be locally approximated by stationary processes on appropriate inter- 
vals { [q, al+l)}l of sizes bl = al+l - al. One can thus expect that its covariance 
is “almost” diagonalized in a local cosine basis constructed on these intervals of 
approximate stationarity. Corollary 8.108 constructs orthonormal bases of local 
cosine vectors over any family of such intervals: 

(1 0.197) 

Local cosine bases are therefore good candidates for building approximate 
Karhunen-Loke bases. 

When estimating the covariance of a locally stationary process, the position and 
sizes of the approximate stationarity intervals are generally not known in advance. 
It is therefore necessary to search for an approximate Karhunen-Lo6ve basis among 
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a dictionary of local cosine bases, with windows of varying sizes. For this purpose, 
the best basis search algorithm of Section 10.6.2 is implemented in the dictionary 
2) of local cosine bases defined in Section 8.5.2. This dictionary is organized as 
a tree. A family 23; of N 2-j orthonormal cosine vectors is stored at depth j and 
position p. The support of these vectors cover an interval [a[ , a[ + 2 - i ~ ]  with 
ai= q N 2 - j -  1/2: 

The maximum depth is j 5 log, N ,  so the dictionary includes fewer than N log, N 
local cosine vectors. The decomposition of a signal of size N over all these 
vectors requires O(N 1og;N) operations. The power spectrum estimation from L 
realizations of a locally stationary process X, proceeds in four steps: 

1 .  Sample means The local cosine coefficients ( X N  , gq ,k , j )  of theL realizations 
are computed. The sample mean estimators P[q,  k ,  j ]  of their variances are 
calculated with (10.186). This requires O(LN I o d N )  operations. 

2. Regularization The regularization of P[q ,  k, j ]  is computed in each family 
f?; of 2-jN cosine vectors corresponding to 0 5 k < 2-jN. A regular- 
ized estimate p[q ,k ,  j ]  is obtained either with a local averaging along k 
of P[q ,k ,  j ] ,  or by thesholding the wavelet coefficients of P[q ,k ,  j ]  in a 
wavelet basis of size 2-jN. Over the whole dictionary, this regularization 
is calculated with O(N log, N )  operations. 

3. Basis choice The cost c(K, BY) of each local cosine basis W in (10.187) is 
an additive function of Ip[q,k, j ]  1' for the cosine vectors gq,k , j  in the basis 
P'. The algorithm of Section 9.4.2 finds the best basis Sa that minimizes 
this cost with O(Nlog,N)  operations. 

4. Estimation The local cosine power spectrum is estimated by the coeffi- 
cients k[q,k, j ]  for gq,k , j  in the best basis f?". 

This best basis algorithm requires O(LN log; N )  operations to compute a di- 
agonal estimator of the covariance KN. If the regularization of the local cosine 
coefficients is performed with a wavelet thresholding, using a conservative thresh- 
old that is proportional to the maximum eigenvalue of the process, Donoho, Mallat 
and von Sachs [172] prove that this covariance estimation is consistent for locally 
stationary processes. As N goes to +oo, the best local cosine basis converges to 
the Karhunen-Lohe basis and the regularized variance estimators converge to the 
power spectrum. As a result, JIKN  kill^ decreases to 0 with a probability that 
converges to 1 as N goes to +oo. 

Example 10.8 Let XN be a locally stationary process constructed in (10.196) 
by aggregating independent Gaussian stationary processes with three windows 
w[ [n] that are indicator functions of the intervals [0, 0.21, [O. 2,O. 781 and [O. 78,1] .  
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FIGURE IO. I9  (a): One realization of a process X, that is stationary on [O,O. 21, 
[O. 2,O. 781 and [O. 78,1], with N = 1024. (b): Heisenberg boxes of the best local 
cosine basis computed with L = 500 realizations of this locally stationary process. 
Grey levels are proportional to the estimated spectrum. (c): Best local cosine basis 
calculated with L = 3 realizations. 

In each time interval, the power spectrum of the stationary process is composed 
of harmonics whose amplitude decreases when the frequency increases. Figure 
10.19(a) shows one realization of this locally stationary process. 

A diagonal covariance is calculated in a best local cosine basis. For a large 
number L = 500 of realizations, the regularized estimator p[q ,  k ,  j ]  gives a precise 
estimation of the variance E{ I (XN, g,,k,J) l'}. The time-frequency tiling of the 
estimated best basis is shown in Figure 10.19(b). Each rectangle is the Heisenberg 
box of a local cosine vector g q , k , j  of the best basis B". Its grey level is proportional 
to P[q,k,j]. As expected, short windows are selected in the neighborhood of 
the transition points at 0.2 and 0.78, and larger windows are selected where the 
process is stationary. Figure 10.19(c) gives the time-frequency tiling of the best 
basis computed with only L = 3 realizations. The estimators p[q ,  k ,  j] are not as 
precise and the estimated best basis B& has window sizes that are not optimally 
adapted to the stationarity intervals of X,. 
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10.7 PROBLEMS 

10.1. Linearprediction Let F[n] be a zero-mean, wide-sense stationary random 
vector whose covariance is &[k]. We predict the future F[n + I ]  from past 
values { ~ [ n  - k]}O<k<N with Fin + Z] = zz~i u k ~ [ n  - k ] .  
(a) Prove that r = E {  IF[n + I ]  - F[n + Z]lz} is minimum if and only if 

N-1 

U k  R p  [q - k] = & [q + z] for 0 5 q < N .  
k=O 

Verify that r = RF [o] - ~~~~ uk 
Hint: use Proposition 10.1. 

[IC + 11 is the resulting minimum error. 

(b) Suppose that &[n] = $1 with IpI < 1. Compute P [ n  + 11 and r .  
Let X = F + W where the signal F and the noise W are zero-mean, wide- 

sense circular stationary random vectors. Let F[n] = X @ h[n] and r(D, n) = 
E{IIF -Fl12}. The minimum risk q(n) is obtained with the Wiener filter 
(10.12). A frequency selective filter h has a discrete Fourier transform h[m] 
which can only take the values 0 or 1. Find the frequency selective filter that 
minimizes r(D,n). Prove that z l (n )  5 r(D,x) 5 2rl(n). 

Let {gm}O<m<N be an orthonormal basis. we consider the space v, of 
signals generated by the first p vectors (gm}Ojm<,. We want to estimate 
f E V, from X = f + W, where W is a white Gaussian noise of variance uz. 
(a) Let F = DX be the orthogonal projection of X in V,. Prove that the 

10.2. 

10.3. 

resulting risk is minimax: 

r(D,V,) = T"(V,) = puz  . 

(b) Find the minimax estimator over the space of discrete polynomial signals 

10.4. LetF = f [ ( n - P ) m o d N ]  betherandomshiftpmcess(10.15)obtainedwith 
a Dirac doublet f [n] = S[n] - b[n - 11. We want to estimate F fromX = F + W 
where W is a Gaussian white noise of variance u2 = 4N-'. 
(a) Specify the Wiener filter and prove that the resulting risk satisfies 

q(n) = E { I I F - F I ~ ~ }  I 1. 
(b) Show that one can define a thresholding estimator F whose expected risk 

satisfies 

of size N and degree d. Compute the minimax risk. 

E(JIF-F112} 5 12(210geN+1)N-'. 
10.5. Let f = 1[o,p-1] be a discrete signal of N > P samples. Let F = f [ ( n  - 

P) modN] be the random shift process defined in (10.15). We measure X = 
F + W where W is a Gaussian white noise of variance u2. 

(a) Suppose that = F 8 h. Compute the transfer function h[m] of the Wiener 
filterandresultingriskq(n) = E{llF-Fllz}. 

(b) Let F be the estimator obtained by thresholding the decomposition coef- 
ficients of each realization of F in a Haar basis, with T = u d w .  
Rove that E{llF-F/12} 5 ~ ~ ( 2 l o g , N + l ) ~ .  

(c) Compare the Wiener and Haar thresholding estimators when N is large. 
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10.6. Let I (f, gmk) I 1 I ( f l  gmk+, ) I for k 2 1 be the sorted decomposition coeffi- 
cients off in f3 = { gm}05m<N. We want to estimate f from X = f + W, where 
W is a Gaussian white noise of variance 0'. If I ( f l  gmk)  I = 2-k/2, compute 
the oracle projection risk rp in (10.34) as a function of u2 and N. Give an 
upper bound on the estimation error e if we threshold at T = IS,/- the 
decomposition coefficients of X .  Same question if l ( f l  g,)l = k-'. Explain 
why the estimation is more precise in one case than in the other. 

Compare the SM and the visual quality of translation invariant hard and 
soft thresholding estimators in a wavelet basis, for images contaminated by an 
additive Gaussian white noise. Perform numerical experiments on the Lena, 
Barbara and Peppers images in WAVELAB. Find the best threshold values T 
as a function of the noise variance. How does the choice of wavelet (support, 
number of vanishing moments, symmetry) affect the result? 

Let g ( t )  be a Gaussian of variance 1. Let g,[n] = K , g ( n / s )  where K, 
is adjusted so that C n p s [ n ]  = 1. An adaptive smoothing of X = f + W is 
calculated by adapting the scale s as a function of the abscissa: 

10.7. 

10.8. 

N-1 m = C X [ n I  &(l) [I - .I . (10.198) 

The scale s(1) should be large where the signal f seems to be regular, whereas 
it should be small if we guess that f may have a sharp transition in the neigh- 
borhood of 1. 
(a) Find an algorithm that adapts s(Z) depending on the noisy data X[n] ,  and 

implement the adaptive smoothing (10.198). Test your algorithm on the 
Piece-Polynomial and Piece-Regular signals in WAVELAB, as a function 
of the noise variance 2. 

(b) Compare your numerical results with a translation invariant hard wavelet 
thresholding. Analyze the similarities between your algorithm that com- 
putes s(Z) and the strategy used by the wavelet thresholding to smooth or 
not to smooth certain parts of the noisy signal. 

Let rf ( f l  T) be the risk of an estimator off obtained by hard thresholding 
with a threshold T the decomposition coefficient of X = f + W in a basis 23. 
The noise W is Gaussian white with a variance 0'. This risk is estimated by 

n=O 

10.9. 

N-1 

Ft( f ,T )  = C @ ( I X B [ m ] l 2 )  
m=O 

with { :;u' i f u 5 T '  
i f u > T '  . @ ( u )  = 

(a) Justify intuitively the definition of this estimator as was done for (10.59) 

(b) Let &(x) = (2m~')-'/~exp(-x~/(2u')). With calculations similar to 
in the case of a soft thresholding estimator. 

the proof of Theorem 10.5, show that 

r t (T) -E{yf (T)}  = 2 T u 2  
m=O 
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(c) Implement in WAB an algorithm in O(N logzN) which finds i that 
minimizes Tt (T, f) . Study numerically the performance of ? to estimate 
noisy signals with a hard thresholding in a wavelet basis. 

Let B be an orthonormal wavelet basis of the space of discrete signals of 10.10. 
period N. Let I) be the family that regroups all translations of wavelets in B. 
(a) Prove that D is a dyadic wavelet frame for signals of period N. 
(b) Show that an estimation by thresholding decomposition coefficients in the 

dyadic wavelet family I) implements a translation invariant thresholding 
estimation in the basis 13. 

A translation invariant wavelet thresholding is equivalent to thresholding a 
wavelet frame that is not subsampled. For images, elaborate and implement an 
algorithm that performs a spatial averaging of the wavelet coefficients above 
the threshold, by using the geometrical information provided by multiscale 
edges. Coefficients should not be averaged across edges. 

Let X = f + W where f is piecewise regular. A best basis thresholding 
estimator is calculated with the cost function (10.74) in a wavelet packet dic- 
tionary. Compare numerically the results with a simpler wavelet thresholding 
estimator, on the Piece-Polynomial and Piece-Regular signals in WAVELAB. 
Find a signal f for which a best wavelet packet thresholding yields a smaller 
estimation error than a wavelet thresholding. 

Among signals f [ n ]  of size N we consider QV = {f : llfllv I C}. Let 
X = f + W where W is a Gaussian white noise of variance c?. We define a 
linear estimator DX [n] = X * h [n] with 

10.1 1. 

10.12. 

10.13. 

(10.199) 
CZ 

Cz + 4 uZ N I sin(nm/N) l2 ' b[m] = 

Prove that the maximum risk of this estimator is close to the minimax linear 
risk: 

ri(Qv) I r(D,@v) I2r i (Qv) . 
Hint: follow the approach of the proof of Proposition 10.5. 

10.14. We want to estimate a signal f that belongs to an ellipsoid 

from X = f + W, where W is a Gaussian white noise of variance uZ. W e  
denote x+ = max(x, 0). 
(a) Using Proposition 10.6 prove that the minimax linear risk on 0 satisfies 

N-1  

q(0) = CTZCa[m] (1 0.200) 
m=O 

with a[m] = (k - l)+, where X is a Lagrange multiplier calculated with 

(10.201) 
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(b) By analogy to Sobolev spaces, the 8 of signals having a discrete derivative 
of order s whose energy is bounded by C? is deiined from the discrete 
Fourier transform: 

Show that the minimax linear estimator D in 8 is a circular convolution 
DX = X 8 h. Explain how to compute the transfer function i [ m ] .  

(c) Show that the minimax linear risk satisfies 

C2/(b+l) 02-2/(2E+1) 

10.15. 3LetQv= {f : llfllv 5 C}beasetofboundedvariationdiscreteimagesof 
N 2  pixels. Prove that for signals in Ov contaminated by an additive Gaussian 
white noise of variance a', if 1 5 C/o  5 N then the linear minimax risk satis- 
fies .I(@,) N N202. Hint: compute a lower bound by finding an appropriate 
subset of QV which is orthosymmetric in a wavelet basis. 

We want to estimate f E 0 from Y = f 8 u + W where W is a white noise 
of variance 02. Suppose that Q is closed and bounded. We consider the 
quadratic convex hull QH[Q] in the discrete Fourier basis and x E QH[Q] 
such that ~ ( x )  = rinf(QH[Q]). Prove that the linear estimator that achieves 
the minimax linear risk rl (Q) in Theorem 10.13 is F = Y 8 h with 

10.16. 

Hint: use the diagonal estimator in Proposition 10.1 1. 
Implement in WAVELAB the algorithm of Section 10.5.1 that extracts co- 

herent structures with a pursuit of bases. Use a dictionary that is a union of 
a wavelet packet and a local cosine dictionary. Apply this algorithm to the 
restoration of the Caruso signal in WAVELAB. Find stopping rules to improve 
the auditory quality of the restored signal [92]. 

Stationary spectnun estimation Let X[n] be a zero-mean, infinite size 
process that is wide-sense stationary. The power spectrum k x ( w )  is the 
Fourier transform of the covariance Rx[p] = E{X[n]X[n - p ] } .  Let kx[p] = 

of X [n] . 
(a) Show that E{&[p]}  = ?Rx[p]  for IpI 5 N. 
(b) Verify that the discrete Fourier transform of & [ p ]  is the periodogram 

(c) Let i ( w )  = (=I2. hove that 

10.17. 

10.18. 

~ ; ~ ; - l " x  [ n ] X [n  + lpl] be an estimation of Rx [k] from a single realization 

P[m] in (10.181). 
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(d) Let g[n] be a discrete window whose support is [O,N - 11 and let h(w) = 
li(w)12. The periodogram of the windowed data is 

Prove that p[m] = E{P,[m]} = &&*A(%). How should we design 
g[n] in order to reduce the bias of this estimator of kx(w)? 

(e) Verify that the variance is: E{IP,[k] - p[k]12} = 21d[k]I2. Hint: use 
Proposition 10.14. 

10.19. 'Lapped spectrum estimation Let X[n] be a zeromean, infinite size process 
that is Gaussian and wide-sense stationary. Let &w) be the Fourier series 
of its covariance Rx [k]. We suppose that one realization of X[n] is known 
on [-v,N + q  - 11. To reduce the variance of the spectrogram (10.203), we 
divide [O,N - 11 in Q intervals [u,,uq+l] of size M, with ug = qM - 1/2 for 
0 5 p < Q. We denote by {gq,k}q,k the discrete local cosine vectors (8.108) 
constructed with windows g, having a support [aq - 77, uq+l + 771, with raising 
and decaying profiles of constant size 277. Since all windows are identical but 
translated, lig(w)lz = h(w). 
(a) Let Pg [k] = I (x; &,k) 1' and F[k] = Fl [k] . Verify that 

p [ k ] = E { P [ k ] } = - & * h ( G ( k + i ) ) .  1 
2n 

(b) Suppose that X[n] has a correlation length smaller thanM so that its values 
on different intervals [uq,uqfl] can be considered as independent. Show 
that E{ Ip[k] - p[k] 1 2 }  = 2 Ip[k] I2L-'. Discuss the trade-off between bias 
and variance in the choice of L. 

(c) Implement this power spectrum estimator in WAVET.,AE~. 
10.20. 'Adaptive spectnun estimation Problem 10.19 estimates the power spectrum 

and hence the covariance K of a stationary Gaussian process X[n] with a 
diagonal operator K in a local cosine basis. The diagonal values of k are the 
regularized coefficients F[k] = 

(a) Verify with (10.182) that 
Pl [k] . 

M M 

E { Ilf - Kll3) = L Z  E { IPPI -PPI I2 1 + 11~113 - L E  IPPI 1 2 .  
k= 1 k=l 

(10.204) 

(b) Find a best basis algorithm that chooses the optimal window size M = 2j 
by minimizing an estimator of the error (10.204). Approximate p[k ]  
with F[k] and find a procedure for estimating E(lF' [k]  - p[k] 1') from the 
data values {Pl[k]}~~[<~. Remember that when they are independent 
E{lF'[kI -P[kIl2} = 21P[kl12L. 



TRANSFORM CODING 

educing a liter of orange juice to a few grams of concentrated powder is 
what lossy compression is about. The taste of the restored beverage is 
,similar to the taste of orange juice but has often lost some subtlety. We 

are more interested in sounds and images, but we face the same trade-off between 
quality and compression. Major applications are data storage and transmission 
through channels with a limited bandwidth. 

A transform coder decomposes a signal in an orthogonal basis and quantizes 
the decomposition coefficients. The distortion of the restored signal is minimized 
by optimizing the quantization, the basis and the bit allocation. The basic infor- 
mation theory necessary for understanding quantization properties is introduced. 
Distortion rate theory is first studied in a Bayes framework, where signals are real- 
izations of a random vector whose probability distribution is known a priori. This 
applies to audio coding, where signals are often modeled with Gaussian processes. 

Since no appropriate stochastic model exists for images, a minimax approach 
is used to compute the distortion rate of transform coding. Image compression 
algorithms in wavelet bases and cosine block bases are described. These transform 
codes are improved by embedding strategies that fmt provide a coarse image 
approximation, then progressively refine the quality by adding more bits. The 
compression of video sequences with motion compensation and transform coding 
is also explained. 

525 
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I I. I SIGNAL COMPRESSION 

I1.1.1 StateoftheArt 

Speech Speech coding is used for telephony, where it may be of limited quality 
but good intelligibility, and for higher quality teleconferencing. Telephone speech 
is limited to the frequency band 200-3400 Hz and is sampled at 8 kHz. A Pulse 
Code Modulation (PCM) that quantizes each sample on 8 bits produces a code with 
64 kb/s (64 lo3 bits per second). This can be considerably reduced by removing 
some of the speech redundancy. 

The production of speech signals is well understood. Model based analysis- 
synthesis codes give intelligible speech at 2.4 kb/s. This is widely used for defense 
telecommunications [225, 3331. Digital cellular telephony uses 8 kb/s to repro- 
duce more natural voices. Linear Predictive Codes (LPC) restore speech signals 
by filtering white noise or a pulse train with linear filters whose parameters are 
estimated and coded. For higher bit rates, the quality of LPC speech production is 
enhanced by exciting the linear filters with waveforms chosen from a larger fam- 
ily. These Code-Excited Linear Prediction (CELP) codes provide nearly perfect 
telephone quality at 16 kb/s. 

Audio Audio signals include speech but also music and all types of sounds. On 
a compact disk, the audio signal is limited to a maximum frequency of 20 kHz. 
It is sampled at 44.1 kHz and each sample is coded on 16 bits. The bit rate of 
the resulting PCM code is 706 kb/s. For compact disks and digital audio tapes, 
signals must be coded with hardly any noticeable distortion. This is also true for 
multimedia CD-ROM and digital television sounds. 

No models are available for general audio signals. At present, the best com- 
pression is achieved by transform coders that decompose the signal in a local 
timefrequency basis. To reduce perceived distortion, perceptual coders [226] 
adapt the quantization of time-frequency coefficients to our hearing sensitivity. 
Compact disk quality sounds are restored with 128 kb/s. Nearly perfect audio 
signals are obtained with 64 kb/s. 

Images A grey-level image typically has 512 by 512 pixels, each coded with 8 
bits. Like audio signals, images include many types of structures that are difficult to 
model. Currently, the best image compression algorithms are also transform codes, 
with cosine bases or wavelet bases. The efficiency of these bases comes from their 
ability to construct precise non-linear image approximations with few non-zero 
vectors. With fewer than 1 bidpixel, visually perfect images are reconstructed. At 
0.25 bit/pixel, the image remains of good quality. 

Video Applications of digital video range from low quality videophones and 
teleconferencing to high resolution television. The most effective compression 
algorithms remove the time redundancy with a motion compensation. Local im- 
age displacements are measured from one frame to the next, and are coded as 
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motion vectors. Each kame is predicted from the previous one by compensating 
for the motion. An error image is calculated and compressed with a transform 
code. The MPEG standards described in Section 11.5.2 are based on this motion 
compensation [248]. 

For teleconferencing, color images have only 360 by 288 pixels. A maximum 
of 30 images per second are transmitted, but more often 10 or 15. If the images do 
not include too much motion, a decent quality video is obtained at 128kb/s, which 
can be transmitted in real time through a digital telephone line. 

The High Definition Television (HDTV) format has color images of 1280 by 
720 pixels, and 60 images per second. The resulting bit rate is on the order of 
lo3 Mb/s. To transmit the HDTV through channels used by current television 
technology, the challenge is to reduce the bit rate to 20 Mb/s, without any loss of 
quality. 

I I. I .2 Compression in Orthonormal Bases 

A transform coder decomposes signals in an orthonormal basis f? = {gm}O<m<AT 
and optimizes the compression of the decomposition coefficients. The perfor- 
mance of such a transform code is studied from a Bayes point of view, by sup- 
posing that the signal is the realization of a random process F[n] of size N ,  whose 
probability distribution is known a priori. 

Let us decompose F over f?: 

N-1 

F = -E F ~ [ r n ]  g,. 
m=O 

Each coefficient F ~ [ r n ]  is a random variable defined by 

N-1  

To center the variations of F ~ [ r n ]  at zero, we code F ~ [ r n ]  - E{F~[rnl }  and store 
the mean value E{F~[rn l } .  This is equivalent to supposing that F ~ [ r n ]  has a zero 
mean. 

Quantization To construct a finite code, each coefficient F13[rn] is approximated 
by a quantized variable F ~ [ r n ] ,  which takes its values over a finite set of real num- 
bers. A scalar quantization approximates each FB [rn] independently. If the coeffi- 
cients F ~ [ r n ]  are highly dependent, quantizer performance is improved by vector 
quantizers that approximate together the vector of N coefficients {FB[m]}o<m<N 
[27]. Scalar quantizers require fewer computations and are thus more often used. 
If the basis { g r n ) O ~ , < N  can be chosen so that the coefficients F ~ [ r n ]  are nearly 
independent, the improvement of a vector quantizer becomes marginal. After 
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quantization, the reconstructed signal is 

N-1  

m=O 

Distortion Rate A major issue is to evaluate the distortion introduced by this 
quantization. Ultimately, we want to restore a signal that is perceived as nearly 
identical to the original signal. Perceptual transform codes are optimized with re- 
spect to our sensitivity to degradations in audio signals and images [226]. However, 
distances that evaluate perceptual errors are highly non-linear and thus difficult to 
manipulate mathematically. A mean-square norm often does not properly quantify 
the perceived distortion, but reducing a mean-square distortion generally enhances 
the coder performance. Weighted mean-square distances can provide better mea- 
surements of perceived errors and are optimized like a standard mean-square norm. 

In the following, we try to minimize the average coding distortion, evaluated 
with a mean-square norm. Since the basis is orthogonal, this distortion can be 
written 

N-1 

The average number of bits allocated to encode a quantized coefficient Fg[m] is 
denoted Rm. For a given R,, a scalar quantizer is designed to minimize E{ l F ~ [ m ]  - 
F ~ [ m ] 1 ~ } .  The total mean-square distortion d depends on the average total bit 
budget 

N-1  

R = C R ~ .  
m=O 

The function d ( R )  is called the distortion rate. For a given R, the bit allocation 
{Rm}O<m<N must be adjusted in order to minimize d(R) .  

Choice of Basis The distortion rate of an optimized transform code depends on 
the orthonormal basis 23. We see in Section 11.3.2 that the Karhunen-Lohe basis 
minimizes d ( R )  for high resolution quantizations of signals that are realizations 
of a Gaussian process. This is not true when the process is non-Gaussian. 

To achieve a high compression rate, the transform code must produce many 
zero quantized coefficients whose positions are efficiently recorded. Section 11.4 
shows that d (R)  then depends on the precision of non-linear approximations in the 
basis B. 

I I .2 

Quantized coefficients take their values over a finite set and can thus be coded with 
a finite number of bits. Section 11.2.1 reviews entropy codes of random sources. 
Section 11.2.2 studies the optimization of scalar quantizers in order to reduce the 
mean-square error for a given bit allocation. 

DISTORTION RATE OF QUANTIZATION 
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I I .2. I 

Let X be a random source that takes its values among a finite alphabet of K symbols 
A = { X k } l < k < K .  The goal is to minimize the average bit rate needed to store the 
values of X: We consider codes that associate to each symbolxk a binary word w k  of 
length In. A sequence of values produced by the source X is coded by aggregating 
the corresponding binary words. 

All symbols Xk can be coded with binary words of the same size lk = [log, K1 
bits. However, the average code length may be reduced with a variable length 
code using smaller binary words for symbols that occur frequently. Let us denote 
by P k  the probability of occurrence of a symbol X k :  

Entropy Coding 

P k  = Pr{X = x k } .  

The average bit rate to code each symbol emitted by the source X is 

(11.1) 

We want to optimize the code words { W k } l < k s K  in order to minimize Rx. 

Prefix Code Codes with words of varying lengths are not always uniquely de- 
codable. Let us consider the code that associates to { ~ ~ } 1 5 k s 4  the code words 

{w1 = o ,  w 2 =  1 0 ,  wg = 110, w 4 =  101). (1 1.2) 

The sequence 1010 can either correspond to w 2  wz or to w 4  w1. To guarantee that 
any aggregation of code words is uniquely decodable, theprefi condition imposes 
that no code word may be the prefix (beginning) of another one. The code (1 1.2) 
does not satisfy this condition since w 2  is the prefix of w 4 .  The following code 

{w1 = 0 ,  w 2  = 10 ,  w 3  = 110 w 4  = 111) 

satisfies this prefix condition. Any code that satisfies the prefix condition is clearly 
uniquely decodable. 

A prefix code is characterized by a binary tree that has K leaves corresponding 
to the symbols { x k } l < k < K .  Figure 11.1 shows an example for a prefix code of 
K = 6 symbols. The left and right branches of the binary tree are respectively 
coded by 0 and 1. The binary code word w k  associated to Xk is the succession of 
0 and 1 corresponding to the left and right branches along the path from the root 
to the leaf xk. The binary code produced by such a binary tree is always a prefix 
code. Indeed, wm is a prefix of w k  if and ordy if x,,, is an ancestor of x k  in the 
binary tree. This is not possible since both symbols correspond to a leaf of the 
tree. Conversely, we can verify that any prefix code can be represented by such a 
binary tree. 
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FIGURE I I. I 
word Wk of each leaf is indicated below it. 

Prefix tree corresponding to a code with six symbols. The code 

The length lk of the code word Wk is the depth in the binary tree of the cor- 
responding leaf. The optimization of a prefix code is thus equivalent to the con- 
struction of an optimal binary tree that distributes the depth of the leaves in order 
to minimize 

K 

(11.3) RX = lk P k .  
k=l 

Higher probability symbols should therefore correspond to leaves higher in the 
tree. 

Shannon Entropy The Shannon theorem [306] proves that entropy is a lower 
bound for the average bit rate RX of any prefix code. 

Theorem 11.1 (SHANNON) Let X be a source whose symbols { X k } l < k g  occur 
with probabilities { P k ) l < k < K .  The average bit rate RX of a prefi  code satisfies 

K 

RX 2 x(x) = -xPklogZPk.  (11.4) 
k=l 

Moreovel; there exists a prefi  code such that 

Rx I X ( X )  + 1.  (11.5) 

The sum X ( X )  is called the entropy of X .  

Proof '. This theorem is based on the Kraft inequality given by the following lemma. 

Lemma 11.1 (KRAFT) Any prefi code satisfies 
K 

C 2 4 k  5 1. (11.6) 

Conversely, if { l k } l < k < K  is a positive sequence that satisfies (11.6), then there exists 
a sequence of binary words {wk}1<k<K of length { l k } l < k < K  that satisfies the pref i  
condition. 

k=l 
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m 

1 

FIGURE I I .2 The leaves at the depth m of the tree T are regrouped as sets sk of 
2m-'k nodes that are the leaves of a tree Tk whose root nk is at the depth lk. Here 
rn = 4 and 11 = 2 so S1 has 22 nodes. 

To prove (1 1.6), we construct a full binary tree T whose leaves are at the depth 
rn = r n a x { l l , l z ,  . . . l K } .  Inside this tree, we can locate the node nk at the depth l k  that 
codes the binary word w k .  we denote T k  the subtree whose root is nk, as illustrated in 
Figure 11.2. This subtree has a depth rn - and thus contains 2"-'k nodes at the level 
m of T.  There are 2" nodes at the depth m of T and the prefix condition implies that 
the subtrees TI, . . . , T K  have no node in common, so 

K 

k=l 

which proves (1 1.6). 
Conversely, we consider { l k } l < k < K  that satisfies (11.6), with 11 5 12 5 ... 5 1K 

and m = max{Zl,Zz, . . . , I K } .  Again we construct a full binary tree T whose leaves 
are at the depth rn. Let S1 be the 2"-'l first nodes at the level m , and Sz be the next 
2"-'2 nodes, and so on, as illustrated by Figure 11.2. Since Cf==, 2m-'k 5 2", the sets 
{ & } l < k < K  have fewer than 2" elements and can thus be constructed at the level rn of 
the tree. The nodes of a set s k  are the leaves of a subtree T k  of T. The root n k  of T k  is at 
the depth lk  and corresponds to a binary word w k .  By construction, dl these subtrees 
Tk are distinct, so { w k } l < k < K  is a prefix code where each code word w k  has a length 
lk . This finishes the lemma proof. 

To prove the two inequalities (1 1.4) and (1 1.5) of the theorem, we consider the 
minimization of 

K 

Rx = P k l k  
k=l 

under the Kraft inequality constraint 

K 

c 2 - ' k  5 1. 
k=l  
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If we admit non-integer values for l k ,  we can verify with Lagrange multipliers that 
the minimum is reached for l k  = - log2 p k .  The value of this minimum is the entropy 
lower bound 

which proves (1 1.4). 
To guarantee that l k  is an integer, the Shannon code is defined by 

lk = r- log2 P k l ,  (11.7) 

where rx1 is the smallest integer larger thanx. Since l k  2 -log, P k ,  the &aftinequality 
is satisfied 

K K 

Lemma 1 1.1 proves that there exists a prefix code whose binary words w k  have length 
W k .  For this code, 

K K 

RX = Z P k h  5 Z p k ( - l O & p k  + 1) = %!(x) + 1,  
k=l  k= l  

which proves (11.5). H 

The entropy X ( X )  measures the uncertainty as to the outcome of the random 
variable X. As in (9.69), we prove that 

The maximum value log, K corresponds to a sequence with a uniform probability 
distribution P k  = 1/K, for 1 5 k 5 K. Since no value is more probable than 
any other, the uncertainty as to the outcome of X is maximum. The minimum 
entropy value X ( X )  = 0 corresponds to a source where one symbol Xk occurs with 
probability 1. There is no uncertainty as to the outcome of X because we know in 
advance that it will be equal to xk. 

Huffman Code The lower entropy bound X ( X )  is nearly reachable with an opti- 
mized prefix code. The Hu$man algorithm is a dynamical programming algorithm 
that constructs a binary tree that minimizes the average bit rate RX = ~ f . ' = ,  Pklk. 
This tree is called an optimal prefix code tree. The following proposition gives 
an induction rule that constructs the tree from bottom up by aggregating lower 
probability symbols. 

Proposition 11.1 (HUFFMAN) Let us consider K symbols with theirprobability of 
occurrence sorted in increasing order P k  I Pk+l: 

{(X1:Pl),(Xz,Pz),(x3rP3), * * .  , ( X K : P K ) } .  (11.8) 
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We aggregate the two lower probability symbols X I  and xz in a single symbol x1.2 
of Probability 

P1:2 = P1+ Pz. 
An optimal prejix tree for the K symbols (11.8) is obtained by constructing an 
optimal prejix tree for the K - 1 symbols 

{ ( X l , Z , P 1 , 2 ) ,  (x37P3)7 . . . 7 ( X K , P K ) } :  (11.9) 

and by dividing the leaf X I , ,  into two children nodes corresponding to x1 and x2. 

The proof of this proposition [27, 2161 is left to the reader. The Huffman 
rule reduces the construction of an optimal prefix code of K symbols ( 1  1.8) to 
the construction of an optimal code of K - 1 symbols ( 1  1.9) plus an elementary 
operation. The Huffman algorithm iterates this regrouping K - 1 times to grow 
a prefix code tree progressively from bottom to top. The Shannon Theorem 11.1 
proves that the average bit rate of the optimal Huffman prefix code satisfies 

X ( X )  I Rx I X ( X )  + 1 . (11.10) 

As explained in the proof of Theorem 11.1, the bit rate may be up to one bit 
more than the entropy lower bound because this lower bound is obtained with 
lk = - log, P k ,  which is generally not possible since lk must be an integer. In 
particular, lower bit rates are achieved when one symbol has a probability close 
to 1. 

Example 11.1 We construct the Huffman code of six symbols {Xk}l<k<6 whose 
probabilities are 

{p1=0.05, p2=0.1,  p3=0.1, p4=0.15, p5=0.2,p6=0.4}.  

The symbols XI and x2 are the lower probability symbols, which are regrouped in 
a symbol x1,2 whose probability is p1,2 = P I +  pz = 0.15. At the next iteration, 
the lower probabilities are p3 = 0.1 and p1,2 = 0.15, so we regroup x1.2 and x3 
in a symbol x1,2,3 whose probability is 0.25. The next two lower probability 
symbols are x4 and x5. which are regrouped in a symbol x4,5 of probability 0.35. 
We then group x4,5 and ~ 1 , 2 : 3  which yields X1,2,3,4,5 of probability 0.6, which is 
finally aggregated with X 6 .  This finishes the tree, as illustrated in Figure 11.3. The 
resulting average bit rate ( 1  1.3) is RX = 2.35 whereas the entropy is X ( X )  = 2.28. 
This Huffman code is better than the prefix code of Figure 11.1, whose average 
bit rate is RX = 2.4. 

Block coding As mentioned above, the inequality ( 1  1.10) shows that a Huffman 
code may require one bit above the entropy because the length lk of each binary 
word must be an integer, whereas the optimal value - log, pk is generally a real 



534 CHAPTERXI TRANSFORM CODING 

0.2 0.15 0.1 

xz x1 
0.1 0.05 

FIGURE I I .3 Prefix tree grown with the Huffman algorithm for a set of K = 6 
symbols Xk whose probabilities Pk are indicated at the leaves of the tree. 

number. To reduce this overhead the symbols are coded together in blocks of size 
n. 

Let us consider the block of n independent random variables 2 = XI, . . . , X,,, 
where each x k  takes its values in the alphabet A = { X k } l s k < K  with the same 
probability distribution as X .  The vector 2 can be considered as a random variable 
taking its values in the alphabet d" of size K". To each block of symbols s' E d" 
we associate a binary word of length Z(9. The average number of bits per symbol 
for such a code is 

The following proposition proves that the resulting Huffman code has a bit rate 
that converges to the entropy of X as n increases. 

Proposition 11.2 The H u . n  code for a block of size n requires an average 
number of bits per symbol that satisfies 

(11.11) 
1 
n X ( X )  I RX I X ( X )  + -. 

Proof '. The entropy of 2 considered as a random variable is 

XtlC2) = CP(S3 l%,P(S'). 
?€A" 

Denote by Rf  the average number of bits to code each block 2. Applying (11.10) 
shows that with a Huffjnan code, Rf  satisfies 

X ( 2 )  5 if I X ( 2 )  + 1. (1 1.12) 
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Since the random variables Xi that compose i are independent, 
n 

P ( S ~  = P ( s ~ :  . . .,sn) = f l p ( s i )  . 
i=l 

We thus derive that X ( 2 )  = n X ( X )  and since R = i / n ,  we obtain (1 1.11) from (1 1.12). 
rn 

Coding together the symbols in blocks is equivalent to coding each symbol x k  

With an average number of bits l k  that is not an integer. This explains why block 
coding can nearly reach the entropy lower bound. The Huffman code can also 
be adaptively modified for long sequences in which the probability of occurrence 
of the symbols may vary [20]. The probability distribution is computed from the 
histogram (cumulative distribution) of the N most recent symbols that were de- 
coded. The next N symbols are coded with a new Huffman code calculated from 
the updated probability distribution. However, recomputing the Huffman code af- 
ter updating the probability distribution is computationally expensive. Arithmetic 
codes have a causality structure that makes it easier to adapt the code to a varying 
probability distribution. 

Arithmetic Code Like a block Huffman code, an arithmetic code [294] records 
in blocks the symbols { X k } l < k < K  to be coded. However, an arithmetic code is more 
structured. It constructs progressively the code of a whole block as each symbol 
is taken into account. When the probability P k  of each symbol X k  is not known, 
an adaptive arithmetic code progressively learns the probability distribution of the 
source and adapts the encoding. 

We consider a block of symbols s'= SI, s2 , . . . , s, produced by a random vector 
X = X1 , . . , X, of n independent random variables. Each& has the same probability 
distribution p ( x )  as the source X, with p(x j )  = p i .  An arithmetic code represents 
each ?by an interval [a,, a, + b,] included in [0,1], whose length is equal to the 
probability of occurrence of this sequence: 

+ 

n 

k = l  

This interval is defined by induction as follows. We initialize a0 = 0 and bo = 1. Let 
[ai, ai + bi] be the interval corresponding to the first i symbols S I , .  . . , si. Suppose 
that the next symbol si+l is equal to xj so that p(si+l)  = pj .  The new interval 
[ai+l, ai+l+ bi+l] is a sub-interval of [ai, ai + bi] whose size is reduced by pj :  

j -  1 

ai+l =ai + bj C p k  and bi+l = bipj . 
k = l  

The final interval [a,, a, + b,] characterizes the sequence SI . . . , s, unambigu- 
ously because the K" different blocks of symbols s' correspond to K" different 
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intervals that make a partition of [0,1]. Since these intervals are non-overlapping. 
[a,, a, +b,] is characterized by coding in binary form a number c, E [a,, a, + b,]. 
The binary expression of the chosen numbers c, for each of the K" intervals de- 
fines a prefix code, so that a sequence of such numbers is uniquely decodable. The 
value of c, is progressively calculated by adding refinement bits when [ai , ai + bi] 
is reduced in the next sub-interval [ai+l, ai+l+ bj+l] until [ a n ,  an + bn]. There are 
efficient implementations that avoid numerical errors caused by the finite precision 
of arithmetic calculations when calculating cn [355]. The resulting binary number 
cn has d, digits with 

Since log,b, = 
average number of bits per symbol of this arithmetic code satisfies 

log,p(q) and % ( X )  = E{log2X}, one can verify that the 

(11.13) 
2 
n % ( X )  I Rx I X ( X )  + - . 

When the successive values x k  of the blocks are not independent, the upper and 
lower bounds (1 1.13) remain valid because the successive symbols are encoded as 
if they were independent. 

An arithmetic code has a causal stsucture in the sense that the first i symbols of a 
sequence SI, . . . ,si, si+l, . . . , s, are specified by an interval [ai, ai + bi] that does not 
depend on the value of the last n - i symbols. Since the sequence is progressively 
coded and decoded, one can implement an adaptive version which progressively 
learns the probability distribution p ( x )  [273,295]. When coding si+l, this proba- 
bility distribution can be approximated by the histogram (cumulative distribution) 
pi(x) of the first i symbols. The sub-interval of [ai,ai +bi] associated to si+l is 
calculated with this estimated probability distribution. Suppose that si+l= x i .  We 
denote pi (x j )  = pi,j.  The new interval is defined by 

j -  1 

Ui+l =aj+b jxPi ,k  and bi+l = b i P i , j .  

The decoder is able to recover si+l by recovering the first i symbols of the sequence 
and computing the cumulative probability distribution pi ( x )  of these symbols. The 
interval [ai+l, ai+l+ bi+~]  is then calculated from [ai; ai + bi] with (1 1.14). The 
initial distribution po(x) can be set to be uniform. 

If the symbols of the block are produced by independent random variables, 
then as i increases the estimated probability distribution pi(x) converges to the 
probability distribution p ( x )  of the source. As the total block size n increases 
to +m one can prove that the average bit rate of this adaptive arithmetic code 
converges to the entropy of the source. Under weaker Markov random chain 
hypotheses this result remains also valid [295]. 

(1 1.14) 
k= 1 
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Noise Sensitivity Huffman and arithmetic codes are more compact than a simple 
fixed length code of size log, K, but they are also more sensitive to errors. For a 
constant length code, a single bit error modifies the value of only one symbol. In 
contrast, a single bit error in a variable length code may modify the whole symbol 
sequence. In noisy transmissions where such errors might occur, it is necessary 
to use an error correction code that introduces a slight redundancy in order to 
suppress the transmission errors [20]. 

I I .2.2 Scalar Quantization 

If the source X has arbitrary real values, it cannot be coded with a finite number 
of bits. A scalar quantizer Q approximates X by X = Q ( X ) ,  which takes its values 
over a finite set. We study the optimization of such a quantizer in order to minimize 
the number of bits needed to code X for a given mean-square error 

d = E{(X-X),}. 

Suppose that X takes its values in [a, b], which may correspond to the whole 
real axis. We decompose [a,b] in K intervals { (Yk-1, Yk]}l<k<K of variable length, 
with yo = a and YK = b. A scalar quantizer approximates all x E (Yk-1 yk] by Xk: 

The intervals (Yk-1, yk] are called quantkation bins. Rounding off integers is a 
simple example where the quantization bins (yk-1, yk] = (k - i, k + $1 have size 
1 andxk = k for any k E Z. 

High-Resolution Quantizer Let p(x) be the probability density of the random 
source X. The mean-square quantization error is 

+m 2 
d =  E{(X-%)2} = ( x - Q ( x ) )  p(x)dx. 

--3o 

(11.15) 

A quantizer is said to have a high resolution if p(x) is approximately constant on 
each quantization bin (yk-1 yk] of size Ak = yk - Yk-1. This is the case if the 
sizes L?q are sufficiently small relative to the rate of variation of p ( x ) ,  so that one 
can neglect these variations in each quantization bin. We then have 

where 
Pk =Pr{X E (Yk-lryk]}. 

The next proposition computes the mean-square error under this high resolution 
hypothesis. 
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Proposition 11.3 For a high resolution quantizel; the mean-square error d is 
minimized when Xk = (Yk + Yk-1)/2, which yields 

K 

d = - E p  kA:. 
k=l 

1 
12 

Proof 2. The quantization error (1 1.15) can be rewritten 

Replacing p ( x )  by its expression (1 1.16) gives 

(11.17) 

(1 1.18) 

One can verify that each integral is minimum for xk = (yk + Yk-1) /2 ,  which yields 
(1 1.17). 

Uniform Quantizer The uniform quantizer is an important special case where all 
quantization bins have the same size 

For a high resolution uniform quantizer, the average quadratic distortion (1 1.17) 
becomes 

(11.19) 

It is independent of the probability density p ( x )  of the source. 

Entropy Constrained Quantizer We want to minimize the number of bits required 
to code the quantized values2 = Q ( X )  for a fixed distortion d = E{ ( X  -X)2}. The 
Shannon Theorem 1 1.1 proves that the minimum average number of bits to code 
3 is the entropy ?f (X) . Huffman or an arithmetic codes produce bit rates close to 
this entropy lower bound. We thus design a quantizer that minimizes ?f(X). 

The quantized source .% takes K possible values {xk}l<k<K with probabilities 

Yk 

Pk=Pr(-%=xk)=Pr(X E (yk-I,yk]) =/ p(x )dn .  
Yk-1 

Its entropy is 
K 

k=I 
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For a high resolution quantizer, the following theorem of Gish and Pierce [ 19 11 
relates %(@ to the dflerential entropy of X defined by 

Theorem 11.2 (GISH, FIERCE) IfQ is a high resolution quantizer with respect to 
P ( X ) ,  then 

(1 1.21) 1 
%(*) >%d(X)-Tlog2(12d). 

This inequality is an equality ifand only i f Q  is a uniform quantizer. 

Proof ’. By definition, a high resolution quantizer satisfies (1 1.16), so Pk = 
for x E (yk-1, yk]: Hence K 

X ( x )  = -xPklogzpk 
k=l 

K 

k=l 

(1 1.22) 

The Jensen inequality for a concave function 4(x) proves that if Pk 2 0 with 
K 

x k = l  Pk = 1, then for any {ak}l<k<K 

(11.23) 

If b(x) is strictly concave, the inequality is an equality if and only if dl ak are equal 
when p k  # 0. Since log, (x) is strictly concave, we derive from (1 1.17) and (1 1.23) 

Inserting this in (1 1.22) proves that 
1 X ( 2 )  2 %(X) - Zlog,(12d). 

This inequality is an equality if and only if all Ak are equal, which corresponds to a 

This theorem proves that for a high resolution quantizer, the minimum average bit 
rate Rx = %(X) is achieved by a uniform quantizer and 

uniform quantizer. 

In this cased = A2/12 so 

Rx =%!d(X)-log,A. (11.25) 
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The distortion rate is obtained by taking the inverse of ( 1  1.24): 

(11.26) 

I 1.3 

Section 11.3.1 studies the distortion rate performance of a transform coding com- 
puted with high resolution quantizers. These results are illustrated with a wavelet 
transform image coder. For Gaussian processes, Section 11.3.2 proves that the 
optimal basis is the Karhunen-Lokve basis. An application to audio compression 
is studied in Section 11.3.3. 

HIGH BIT RATE COMPRESSION 

I I .3. I 

Let us optimize the transform code of a random vector F[n] decomposed in an 

Bit Allocation 

O a h O n O d  basis {gm}o<m<N: 

N- 1 

F = F B [ ~ ]  g,. 
m=O 

Each FB [m] is a zero-mean source that is quantized into p~ [m] with an average bit 
budget Rm. For a high resolution quantization, Theorem 11.2 proves that the error 
d, = E{ IFg[m] - p ~ [ m ]  1 2 }  is minimized with a uniform scalar quantization, and 
R,  = X d ( X )  - log, Am where A, is the bin size. It now remains to optimize the 
choice of { A r n ) ~ s m < ~  in order to minimize the average total number of bits 

N-1 

R=CR, 
m=O 

for a specified total error 
N-l  

d = E d r n .  
m=O 

Let R = R / N  be the average number of bits per sample. The following bit allocation 
theorem proves that the transform code is optimized when all Am are equal. 

Theorem 11.3 For high resolution quantizations and afixed total distortion d the 
number of bits R is minimum if 

12d 
A:=- N forO<m<N ( 1  1.27) 

and 
N 

d(R) = - 12 2 2 z d  2-2  ( 1  1.28) 
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where t l d  is the averaged differential entropy 

Proo$ For uniform high resolution quantizations, (1 1.25) proves that 

so 

Minimizing R is equivalent to maximizing ~ ~ ~ ~ l o g z ( 1 2 d m ) .  Applying the Jensen 
inequality (11.23) to the concave function 4(x) = log,(x) and Pk = 1/N proves that 

This inequality is an equality if and only if all d, are equal. Hence A i /  12 = d,,, = d/N, 
which proves ( 1  1.27). We also derive from (1 1.29) that 

which implies (1 1.28). 

This theorem shows that the transform code is optimized if it introduces the same 
expected error d,  = A2/12 = d / N  along each direction g ,  of the basis B. The 
number of bits R, used to encode Fa[m] then depends only on its differential 
entropy: 

(11.30) 

Let u i  be the variance of Fa [m] , and let PB [m] = FB [m] /urn be the normalized 
random variable of variance 1. A simple calculation shows that 

x d  (FB [m]) = x d  (FB [m]) + log, urn . 

The “optimal bit allocation” R, in (1 1.30) may become negative if the variance urn 
is too small, which is clearly not an admissible solution. In practice, R, must be a 
positive integer but the resulting optimal solution has no simple analytic expression 
(Problem 11.7). If we neglect the integral bit constraint, (1 1.30) gives the optimal 
bit allocation as long as R, 2 0. 
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Weighted Mean-Square Error We mentioned that a mean-square error often does 
not measure the perceived distortion of images or audio signals very well. When 
the vectors g, are localized in time and frequency, a mean-square norm sums the 
errors at all times and frequencies with equal weights. It thus hides the temporal 
and frequency properties of the error F - P.  Better norms can be constructed by 
emphasizing certain frequencies more than others, in order to match our audio or 
visual sensitivity, which varies with the signal frequency. A weighted mean-square 
norm is defined by 

N- 1 
dm 

d = C 7 ,  
m=O wm 

(11.31) 

where { W ~ } O S , < N  are constant weights. 
We can apply Theorem 11.3 to weighted mean-square errors by observing that 

N - l  

m=O 

where = d, /wi  is the quantization error of Fg[m] = F ~ [ m ] / w , .  Theorem 
11.3 proves that bit allocation is optimized by quantizing uniformly all Q[m] 
with the same bin size A. This implies that the coefficients F B [ ~ ]  are uniformly 
quantized with a bin size A,,, = Aw,; it follows that d, = w i d / N .  As expected, 
larger weights increase the error in the corresponding direction. The uniform 
quantization QA, with bins of size A, is often computed with a quantizer Q that 
associates to any real number its closest integer: 

I I .3.2 Optimal Basis and Karhunen-Loeve 

Transform code performance depends on the choice of an orthonormal basis B. 
For high resolution quantizations, (11.28) proves that the distortion rate d(R) is 
optimized by choosing a basis B that minimizes the average differential entropy 

In general, we do not know how to compute this optimal basis because the proba- 
bility density of the FB [m] = (FI  g,) may depend on g, in a complicated way. 

Gaussian Process If F is a Gaussian random vector then the coefficients F ~ [ r n ]  
are Gaussian random variables in any basis. In this case, the probability density 
of FB [m] depends only on the variance 0:: 
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With a direct integration, we verify that 

Inserting this expression in ( 1  1.28) yields 

where p2 is the geometrical mean of all variances: 

(11.33) 

The basis must therefore be chosen in order to minimize p 2 .  

Proposition 11.4 The geometrical mean variance p2 is minimized in a Karhunen- 
Lokve basis of F .  

Proof 2. Let K be the covariance operator of F ,  

= ( O m ,  g m ) .  

Observe that . N-1 

(11.34) 

Theorem 10.15 proves that if O(x) is strictly concave then 

N- 1 

Q, ( ( K g m  g m )  I 
m=O 

is minimum if and only if { gm)05m<N diagonalizes K .  Since log, ( x )  is strictly concave, 
we derive that p2 is minimum if and only if 13 is a Karhunen-hkve basis. 

Together with the distortion rate ( 1  1.33), this result proves that a high bit rate 
transform code of a Gaussian process is optimized in a Karhunen-Lokve basis. 
The Karhunen-Loke basis diagonalizes the covariance matrix, which means that 
the decomposition coefficients FB [m] = ( F  g,) are uncorrelated. If F is a Gaussian 
random vector, then the coefficients F ~ [ r n ]  are jointly Gaussian. In this case, being 
uncorrelated implies that they are independent. The optimality of a Karhunen- 
Lokve basis is therefore quite intuitive since it produces coefficients F B [ ~ ]  that 
are independent. The independence of the coeficients justifies using a scalar 
quantization rather than a vector quantization. 
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Coding Gain The Karhunen-Lokve basis {g,}o<m<N of F is a priori not well 
structured. The decomposition coefficients { (f, gm)}o+<N of a signal f are thus 
computed with N2 multiplications and additions, which is often too expensive in 
real time coding applications. Transform codes often approximate this Karhunen- 
Lokve basis by a more structured basis that admits a faster decomposition algo- 
rithm. The performance of a basis is evaluated by the coding gain [35] 

(11.35) 

Proposition 1 1.4 proves that G is maximum in a Karhunen-Lokve basis. 

Non-Gaussian Processes When F is not Gaussian, the coding gain G no longer 
measures the coding performance of the basis. Indeed, the distortion rate (1 1.28) 
depends on the average differential entropy factor 22zd, which is not proportional 
to p2. The Karhunen-h&ve basis is therefore not optimal. 

Circular stationary processes with piecewise smooth realizations are examples 
of non-Gaussian processes that are not well compressed in their Karhunen-Lohe 
basis, which is the discrete Fourier basis. Section 11.4 shows that wavelet bases 
yield better distortion rates because they can approximate these signals with few 
non-zero coefficients. 

I I .3.3 Transparent Audio Code 

The compact disk standard samples high quality audio signals at 44.1 kHz. Samples 
are quantized with 16 bits, producing a Pulse Code Modulation of 706 kbls. Audio 
codes must be “transparent,” which means that they should not introduce errors 
that can be heard by an “average” listener. 

Sounds are often modeled as realizations of Gaussian processes. This justifies 
the use of a Karhunen-Lokve basis to minimize the distortion rate of transform 
codes. To approximate the Karhunen-Lokve basis, we observe that many audio 
signals are locally stationary over a sufficiently small time interval. This means 
that over this time interval, the signal can be approximated by a realization of 
a stationary process. Section 10.6.2 explains that the Karhunen-Lokve basis of 
locally stationary processes is well approximated by a local cosine basis with 
appropriate window sizes. The local stationarity hypothesis is not always valid, 
especially for attacks of musical instruments, but bases of local time-frequency 
atoms remain efficient for most audio segments. 

Bases of time-frequency atoms are also well adapted to matching the quantiza- 
tion errors with our hearing sensitivity. Instead of optimizing a mean-square error 
as in Theorem 11.3, perceptual coders [226] adapt the quantization so that errors 
fall below an auditory threshold, which depends on each time-frequency atom g,. 

Audio Masking A large amplitude stimulus often makes us less sensitive to 
smaller stimuli of a similar nature. This is called a masking effect. In a sound, a 
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small amplitude quantization error may not be heard if it is added to a strong signal 
component in the same frequency neighborhood. Audio masking takes place in 
critical frequency bands [w, - Aw/2 ,  w, + Aw/2 ]  that have been measured with 
psychophysical experiments [304]. A strong narrow band signal whose frequency 
energy is in the interval [w, - Aw/2 ,  w, + Aw/2 ]  decreases the hearing sensitiv- 
ity within this frequency interval. However, it does not influence the sensitivity 
outside this frequency range. In the frequency interval [0,20&], there are ap- 
proximately 25 critical bands. Below 700 Hz, the bandwidths of critical bands are 
on the order of 100 Hz. Above 700 Hz the bandwidths increase proportionally to 
the center frequency w,: 

100 for w, 5 700 
0. 15w, for 700 5 w, I 20,000 A W E {  (1 1.36) 

The masking effect also depends on the nature of the sound, particularly its 
tonality. A tone is a signal with a narrow frequency support as opposed to a noise- 
like signal whose frequency spectrum is spread out. A tone has a different masking 
influence than a noise-type signal; this difference must be taken into account [3 141. 

Adaptive Quantization To take advantage of audio masking, transform codes 
are implemented in orthogonal bases of local time-frequency atoms {g,}O~,<N, 

whose frequency supports are inside critical bands. To measure the effect of audio 
masking at different times, the signal energy is computed in each critical band. 
This is done with an FFT over short time intervals, on the order of lOms, where 
signals are considered to be approximately stationary. The signal tonality is esti- 
mated by measuring the spread of its Fourier transform. The maximum admissible 
quantization error in each critical band is estimated depending on both the total 
signal energy in the band and the signal tonality. This estimation is done with ap- 
proximate formulas that are established with psychophysical experiments [240]. 
For each vector g, whose Fourier transform is inside a given critical band, the in- 
ner product (f, 8,) is uniformly quantized according to the maximum admissible 
error. Quantized coefficients are then entropy coded. 

Although the SNR may be as low as 13 db, such an algorithm produces a 
nearly transparent audio code because the quantization error is below the perceptual 
threshold in each critical band. The most important degradations introduced by 
such transform codes are pre-echoes. During a silence, the signal remains zero, 
but it can suddenly reach a large amplitude due to a beginning speech or a musical 
attack. In a short time interval containing this attack, the signal energy may be quite 
large in each critical band. By quantizing the coefficients (f, g,) we introduce 
an error both in the silent part and in the attack. The error is not masked during 
the silence and will clearly be heard. It is perceived as a "preecho" of the attack. 
This pre-echo is due to the temporal variation of the signal, which does not respect 
the local stationarity hypothesis. It can however be detected and removed with 
post-processings. 
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Choice of Basis The MUSICAM (Masking-pattern Universal Subband Integrated 
Coding and Multiplexing) coder [ 1531 used in the MPEG-I standard [ 1021 is the 
simplest perceptual subband coder. It decomposes the signal in 32 equal frequency 
bands of 750 Hz bandwidth, with a filter bank constructed with frequency modu- 
lated windows of 5 12 samples. This decomposition is similar to a signal expansion 
in a local cosine basis. The quantization levels are adapted in each frequency band, 
to take into account the masking properties of the signal. Quantized coefficients 
are not entropy coded. This system compresses audio signals up to 128 kbls with- 
out audible impairment. It is often used for digital radio transmissions where small 
defects are admissible. 

The AC-systems produced by Dolby decompose the signal in a local cosine 
basis, and adapt the window sizes to the local signal content. They also perform 
a perceptual quantization followed by a Huffman entropy coding. These coders 
operate on a variety of bit rates from 64 kb/s to 192 kb/s. 

In order to best match human perception, transform code algorithms have been 
developed in wavelet packet bases, whose frequency resolution match the critical 
frequency bands [350]. Sinha and Tewfik [314] propose the wavelet packet basis 
shown in Figure 11.4, which is an M = 4 wavelet basis. The properties of M- 
band wavelet bases are explained in Section 8.1.3. These four wavelets have a 
bandwidth of 1/4, 1/5, 1/6 and 1/7 octaves respectively. The lower frequency 
interval [0,700] is decomposed with eight wavelet packets of the same bandwidth, 
to match the critical frequency bands (1 1.36). These wavelet packet coefficients 
are quantized with perceptual models and are entropy coded. Nearly transparent 
audio codes are obtained at 70 kb/s. 

Wavelets produce smaller pre-echo distortions compared to local cosine bases. 
At the sound attack, the largest wavelet coefficients appear at fine scales. Because 
fine scale wavelets have a short support, a quantization error creates a distortion 
that is concentrated near the attack. However, these bases have the disadvantage 
of introducing a bigger coding delay than local cosine bases. The coding delay is 
approximately equal to half the maximum time support of the vector used in the 
basis. It is typically larger for wavelets and wavelet packets than for local cosine 
vectors. 

Choice of Filter Wavelet and wavelet packet bases are constructed with a filter 
bank of conjugate mirror filters. For perceptual audio coding, the Fourier transform 
of each wavelet or wavelet packet must have its energy well concentrated in a 
single critical band. Second order lobes that may appear in other frequency bands 
should have a negligible amplitude. Indeed, a narrow frequency tone creates large 
amplitude coefficients for all wavelets whose frequency support covers this tone, as 
shown in Figure 11.5. Quantizing the wavelet coefficients is equivalent to adding 
small wavelets with amplitude equal to the quantization error. If the wavelets 
excited by the tone have important second order lobes in other frequency intervals, 
the quantization errors introduces some energy in these frequency intervals that is 
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0 

0.69 

FIGURE 11.4 Wavelet packet tree that decomposes the frequency interval 
[0,22kHz] in 24 frequency bands covered by M = 4 wavelets dilated over six 
octaves, plus eight low frequency bands of the same bandwidth. The frequency 
bands are indicated at the leaves in kHz. 

FIGURE I I .5 A high energy narrow frequency tone can excite a wavelet whose 
Fourier transform has second order lobes outside the critical band of width A w .  
The quantization then creates audible distortion. 

not masked by the energy of the tone, introducing audible distortion. 
To create wavelets and wavelet packets with small second order frequency 

lobes, the transfer function of the corresponding conjugate mirror filter i(w) must 
have a zero of high order at w = K .  Theorem 7.5 proves that conjugate mirror 
filters with p zeros at w = 7r have at least 2 p  non-zero coefficients, and correspond 
to wavelets of size 2 p  - 1. Increasing p thus produces a longer coding delay. 
Numerical experiments [314] show that increasing p up to 30 can enhance the 
perceptual quality of the audio code, but the resulting filters have at least 60 non- 
zero coefficients. 
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I I .4 IMAGE COMPRESSION 

So far, we have studied the performance of transform codes from a Bayes point of 
view, by considering signals as realizations of a random vector whose probability 
distribution is known. However, there is no stochastic model that incorporates 
the diversity of image structures such as non-stationary textures and edges. In 
particular, Gaussian processes and homogeneous Markov random fields are not 
appropriate. The distortion rate formulas were also calculated with a high resolu- 
tion quantjzation hypothesis, which is not valid for image transform codes. 

Section 11.4.1 introduces a different framework where the distortion rate is 
computed by considering images as deterministic signals. Image transform codes 
in orthonormal wavelet bases and block cosine bases are studied in Sections 11.4.2 
and 11.4.3. Embedding strategies to improve wavelet transform codes are intro- 
duced in Section 11.4.4. 

Any prior information about the class of images to be compressed can be used 
to specify a set Q that includes this class. For example, large classes of images 
are included in sets of bounded variation signals. In the absence of probabilistic 
models, we cannot calculate the expected coding distortion over 0, which is re- 
placed by the maximum distortion. Minimizing this maximum distortion leads to 
the notion of Kolmogorov €-entropy. Section 11.4.5 gives conditions for reaching 
a minimax distortion rate with a transform coding. 

I I .4. I 

An image is considered as a deterministic signal f that is decomposed in an or- 
thonormal basis f3 = { gm}05m<N2 : 

Deterministic Distortion Rate 

Nz-1 

f =  C f ~ [ m ] g m  withfB[m~=(f,gm)- 
m=O 

A transform code quantizes all coefficients and reconstructs 
Nz-1 

(11.37) 
m=O 

Let R be the number of bits used to code the N 2  quantized coefficients Q(f~[m]). 
The coding distortion is 

Nz-1 
@,f) = Ilf - .?llz = If~bl- Q(f~[ml>l~- (1 1.38) 

We denote by p ( x )  the histogram of the N 2  coefficients f ~ [ m ] ,  normalized so 
that J p ( x )  dx = 1. The quantizer approximates each x E ( y k - 1 ,  yk] by Q ( x )  = xk .  
The proportion of quantized coefficients equal to Xk is 

m=O 

f Y k  

(1 1.39) 
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Suppose that the quantized values of f can take at most K different quantized 
values xk. A variable length code represents the quantized values equal to X k  with 
an average of l k  bits, where the lengths lk are specified independently from f. It 
is implemented with a prefix code or an arithmetic code, over blocks of quantized 
values that are large enough so that the lk can be assumed to take any real values 
that satisfy the Kraft inequality (1 1.6) E:='=, 2-zk 5 1. Encoding a signal with K 
symbols requires a total number of bits 

(11.40) 
k= 1 

A constant size code corresponds to lk = log, K ,  in which case R = N 2  log, K. The 
bit budget R reaches its minimum for lk = -log, Pk and hence 

K 

(11.41) 
k=l  

We denote by dx (R, f) the distortion obtained with R = 3-1. Minimizing R for a 
given quantizer produces a minimum distortion for a fixed R. So dx(R,  f) is a 
lower bound of the distortion rate d(R ,  f) obtained with a prefix or an arithmetic 
code. In practice, we do not know in advance the values of P k ,  which depend on 
the signal f .  The oracle distortion rate dx(R,  f) is obtained by an oracle coder 
that uses extra information that is normally not available. 

An adaptive variable length code takes a different approach, as explained 
in Section 11.2.1. Instead of fixing a priori the values { l k } l s k < K ,  such a code 
estimates the distribution P k  as the coding progresses and adapts the lengths l k .  
It produces a bit budget R that is often close to 3-1, but it can be smaller when 
the sequence of quantized coefficients is not homogeneous. For example, the 
wavelet coefficients of an image often have a larger amplitude at large scales. 
An adaptive arithmetic code adapts the encoding to the probability distribution 
which is different depending on the scale. It thus produces a total bit budget that 
is smaller than the entropy 3-1 obtained with a fixed code optimized for the N 2  
wavelet coefficients. 

High Resolution Quantization The high resolution assumption supposes that 
p ( x )  is approximately constant over each quantization interval ( Y k - 1 ,  Y k ] .  The 
following proposition computes the distortion rate under this assumption. 

Proposition 11.5 Suppose that the high resolution quantization assumption is 
valid for R = R / N 2 .  

0 The oracle distortion rate is minimum if and only if Q is a uniform quantizer 

(1 1.42) 
and 

&(E,  f) = N 2  -2 2 x d ( f )  2-2  , 
12 

with Nd( f )  = - p(x )  10g2p(x) dx. 
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Suppose that there exists C such that S U P ~ + , < ~ Z  I f  B [m] I 5 C. Ifthe quantized 
coeficients are coded with constant size binary words then the distortion rate 
is 

(1 1.43) 
N 2  

d(R,  f )  = - C2 2-a. 
3 

Proof '. Let X be a random variable whose probability distribution is the histogram 
p ( x ) .  The distortion defined in (11.38) can be rewritten 

&(E; f) = NZ E{  IX - Q(X) 1') . 
The minimum bit budget (11.41) is equal to the entropy R = ;Fl(Q(X)). Under the 
high resolution assumption, Theorem 11.2 proves that E( IX - Q ( X )  1') is minimum if 
and only if Q is a uniform quantizer, and (1 1.21) implies (1 1.42). 

A uniform high resolution quantization with bin size A has a distortion calculated 
in (11.19): d(R,  f) = N2A2/12. The number of quantization bins is K = 2C/A and 

The high resolution quantization assumption is valid if the quantization bins are 
small  enough, which means that the bit rate R is sufficiently large. In this case, 
the distortion rate decays exponentially. 

the total number of bits is R = log, K, from which we derive (1 1.43). 

Wavelet Image Code A simple wavelet image code is introduced to illustrate the 
properties of transform coding. The image is decomposed in a separable wavelet 
basis. AI1 wavelet coefficients are quantized with a uniform quantizer 

(11.44) if 1x1 < A/2 
= { :ign(x)kA if (k- 1/2)A i 1x1 < ( k +  1/2)A . 

The quantized coefficients are coded with an adaptive arithmetic code. The par- 
ticular choice of wavelet basis and the implementation details are discussed in the 
next section. Figure 11.6 shows examples of coded images with R = 0.5 bidpixel. 
Mandrill is the only image where one can see a slight degradation, in the fur. 

The Peak Signal to Noise Ratio (PSNR) is defined by 

N' 255' 
PSNR(R, f )  = 10 log,, - 

d ( R , f ) .  
The distortion rate formula (1 1.42) predicts that there exists a constant K such that 

PSNR(R,f) = (20loglo2)R+K. 

Figure 1 1.7 shows that PSNR(R, f) has indeed a linear growth for R 2 1, but not for 
R < 1. At low bit rates R 5 1, the quantization interval A is relatively large. The 
normalized histogram p(x)  of wavelet coefficients in Figure 1 1.8 has a narrow peak 
in the neighborhood of x = 0. Hence p ( x )  is poorly approximated by a constant 
in the zero bin [-A/2, A/2], where Q ( x )  = 0. The high resolution quantization 
hypothesis is not valid in this zero bin, which explains why the distortion rate 
formula (1 1.42) is wrong. For Mandrill, the high resolution hypothesis remains 
valid up to R = 0.5 because the histogram of its wavelet coefficients is wider in 
the neighborhood of x = 0. 
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Lena GoldHill 

Boats Mandrill 

FIGURE 11.6 
bitlpixel, by a wavelet transform coding. 

These images of N 2  = 5122 pixels are coded with R = 0.5 

Low Resolution Quantization If the basis B is chosen so that many coefficients 
f a [ m ]  = ( f ,  8,) are close to zero, then the histogram p(x) has a sharp high am- 
plitude peak at x = 0, as in the wavelet histograms shown in Figure 11.8. At low 
bit rates R the distortion d(R ,  f )  must therefore be computed without using a high 
resolution quantization assumption. 

The bit budget R can be calculated by considering separately the significant 
coeficients f a [ m ]  such that Q ( f a [ m ] )  # 0. The positions of these significant 
coefficients are recorded by a binary significance map 

(1 1.45) 

Let M be the number of significant coefficients. The proportions of 0 and 1 in 
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PSNR 

50. 

45. 

FIGURE I I .7 PSNR as a function of E .  (a): Lena (solid line) and Boats (dotted 
line). (b): GoldHill (solid line) and Mandrill (dotted line) 

FIGURE 11.8 Normalized histograms of orthogonal wavelet coefficients for 
each image. 

the significance map are respectively PO = (N2 - M ) / N 2  and p1 = M / N 2 .  The 
number of bits RO needed to code the significance map with a variable length code 
has a lower bound calculated with lo = - log, po and 11 = - log, p 1  : 

Ro L -N2 (PO log2 PO + p i  log2 p i )  . (1 1.46) 

An adaptive variable length code can nearly reach this lower bound. The number 
M 5 N2 of significant coefficients is 6rst computed and coded on log, N 2  bits. The 
values of po and p1 are derived from M and the significance map is coded with 
10 = - log, po and 11 = - log, p1. This adaptive code has an overhead of logz N 2  
bits relative to the lower bound (1 1.46). 

Figure 11.9 shows the significance maps of the quantized wavelet coefficients 
that code the four images in Figure 1 1.6. The total bit budget R to code all quantized 
coefficients is 

R = R o + R i ,  

where R1 is the number of bits coding the quantized values of the significant 
coefficients, with a variable length code. 

The distortion d(R ,  f) is calculated by separating in (1 1.38) the coefficients 
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Le 

Mandrill 

FIGURE I I .9 
coded with R = 0.5 bidpixel. 

Significance map of quantized wavelet coefficients for images 

that are in the zero bin [-A/2, A/2] from the significant coefficients: 

Let f~ be the non-linear approximation of f  from the M significant coefficients: 

f M =  fa[m]grn. 
I f o b l  I P / 2  

The first sum of d ( R ,  f )  can be rewritten as a non-linear approximation error: 
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DeVore, Jawerth and Lucier [156] observed that this approximation error often 
dominates the value of d(R,  f). 

The following theorem computes d(R, f) depending on the decay rate of the 
sorted decomposition of f in the basis f3. We denote by fB[k] = f ~ [ m k ]  the 
coefficient of rank k, defined by &[k] I 2 I f  b[k + 11 I for 1 I k I N 2 .  We write 
IfB[k] I N Ck+ if there exist two constants A,B > 0 independent of C, k and N 
suchthatACk+ I lfB[k]l IBCk-S. 

Theorem 11.4 ( F M O N ,  -AT) Let Q be a uniform quantizel: There exists an 
adaptive variable length code such thatfor all s > 1/2 and C > 0, if1 fB [k] I N C k-S 
then for R 5 N2 

(11.48) 

Proof 3. Let A be the quantization step of the uniform quantizer. Since 0 I Ix - 
Q ( x )  I 5 A/2, (1 1.47) implies 

(1 1.49) 

where M is the number of coefficients such that [fa[m]l 2 A/2. Since the sorted 
coefficients satisfy Ifa [k] 1 - C k-S we derive that 

M ,,, C’/”A-’/” . (1 1.50) 

We shall see that R < p implies M < N2/2. Since s > 112, the approximation error 
is 

A2 
I l f - f M I I  I 4 R : f )  I Ilf-fM1I2+M-;?- 7 

But (11.50) shows thatMA2 N C2M1-zp  so (11.49) yields 

d ( R , f )  - CzM’-2”. (1 1.52) 

Let us now evaluate the bit budget R = Ro + R1. We construct an adaptive variable 
length code that requires a number of bits that is of the same order as the number 
of bits obtained with an oracle code. The proportion of significant and insignificant 
coefficients is respectively p 1  = M / p  and pa = (Nz - M)/N2. An oracle codes the 
significance map with a bit budget 

Po log2po + p1 log,p1 (11.53) 

An adaptive variable length code adds an overhead of log,@ bits to store the value of 
M. This does not modify the order of magnitude of Ro: 

(11.54) 
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We also decompose RI = R, + R,, where R, is the number of bits that code the 
amplitude of the M significant coefficients of f ,  and R, is the number of bits that code 
their sign, given that their amplitude is already coded. Clearly 0 5 R, 5 M .  Let pj 
be the fraction of significant coefficients whose amplitude is quantized to jA. An 
oracle codes the amplitude with a variable length code defined by Zi = - log, pi. The 
resulting bit budget is 

+m 

N, = -M c p j  10g,pj. (11.55) 

Let nj = Mpj be the number of coefficients such that lQ(fi[k]) I = jA, which means 
that lfB[k]l E [ ( j - l /2)A,(j+l /2)A).  SinceIfB[k]I -Ck-" 

j=1 

Together with (1 1.50) we get 

so (1 1.55) proves that ?la - M. 
optimized for s = 1/2 by setting 

The value of s is not known a priori, but one may choose a variable length code 

We can verify that for all s > 1/2, the resulting bit budget satisfies 

+m 

R, = - M ) ~ ~ z ~  - M  -? la .  
j=1 

As a result R1 = R, + R, N M. Together with (1 1.54) this proves that 

R=Ro+RI-M (l+log,:) - N ,  (1 1.57) 

with N = -N' ~ f= '= ,  Pk log, pk. 

which was used to prove that d(R, f )  - CzM1-2". Inverting equation (11.57) gives 
One can also verify that RO + R1 1 2M so that R 5 NZ implies that M 5 p / 2 ,  

M-R (1+1og2g)- '  

andd(R,f) N C2M'-2" implies (11.48). rn 

The equivalence sign - means that lower and upper bounds of d(R, f) and dx (R, f) 
are obtained by multiplying the right expression of (1 1.48) by two constants A,  B > 
0 that are independent of C, R and N. It thus specifies the decay of d ( R , f )  and 
dx (R, f) as R increases. Theorem 11.4 proves that at low bit rates, the distortion 
is proportional to R'-%, as opposed to 2-mIN2 as in the high bit rak. distortion 
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formula of Proposition 11.5. At low bit rates, to minimize the distortion one must 
find a basis B where the sorted coefficients off have a fast decay that maximizes 
the value of s. The notion of minimax distortion rate and results obtained in 
optimized bases are studied in Section 11.4.5. 

The theorem supposes that the transform code uses a uniform quantizer. When 
the high resolution quantization hypothesis holds, a uniform quantizer is optimal, 
but this is not the case at low bit rates. The proof shows that coefficients quantized 
to zero are mostly responsible for the behavior of the distortion rate. Modifylng the 
size of other quantization bins has amarginal effect. The distortion rate equivalence 
(1 1.48) thus remains valid for a non-uniform optimal quantizer. 

Adaptive Basis Choice For signals having complicated structures, the decay of 
sorted coefficients can be significantly improved by choosing the basis adaptively. 
Let 73 = { BX}xEn be a family of orthonormal bases BX = { gA}Olm<N2. The decay 
of sorted coefficients can be controlled indirectly by minimizing the number M A  
of significant coefficients (not quantized to zero). This number can be written as 
a cost function: 

MA = @ ( ( f  , g;>, (11.58) 
Nz-1 

m=O 

with 
(11.59) 0 ifQ(x) = O  

1 ifQ(x)#O @ ( x )  = 

The proof of Theorem 11.4 shows that the bit budget RX of the transform coding 
in the basis BX is almost proportional to M A .  

Dictionaries of wavelet packets and local cosine bases include more than 2@14 
different orthonormal bases. Since the cost function (1 1.58) is additive, the algo- 
rithm of Section 9.4.2 finds the best basis that minimizes M A  with O(N210g,N) 
operations. It is also necessary to code which basis is selected [288, 2691, be- 
cause this basis depends on f .  In wavelet packets and local cosine dictionaries, 
a constant size code requires more than N2/2 bits. This overhead can more than 
offset the potential gain obtained by optimizing the basis choice. If we know the 
probability distribution of the bases that are chosen, then a variable length code 
reduces the average value of the overhead. 

More flexible adaptive decompositions with matching pursuits can also im- 
prove the distortion rate [193]. Section 9.5.2 discusses matching pursuit algo- 
r i thms, which decompose signals as a sum of vectors selected in a dictionary 
2) = { g7}7Er plus a residue: 

M 

p=l 

The transform code neglects the residue RM f ,  quantizes the coefficients ap and 
records the indices y p  E I?. Coding these indices is equivalent to storing a sig- 
nificance map defined by b[yp] = 1 for 1 5 p I M and b[y] = 0 for other y E I?. 
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Choosing dictionaries that are larger than orthogonal bases results in a more pre- 
cise approximation off using M dictionary vectors but requires more bits to code 
the significance map, which is larger. Optimal dictionary sizes are therefore ob- 
tained through a trade-off between the approximation improvement and the bit 
rate increase of the significance map code. Efficient matching pursuit image codes 
have been designed to code the errors of motion compensation algorithms in video 
compression [279, 3431. 

I I .4.2 Wavelet Image Coding 

Implementation At low bit rates, a uniform quantizer does not minimize the 
distortion rate of a wavelet transform code. One can verify both numerically 
and mathematically [257] that doubling the size of the zero bin improves the 
distortion rate for large classes of images. This reduces the proportion of significant 
coefficients and thus improves the bit budget by a factor that is not offset by the 
increase of the quantization error. A larger zero bin increases the quantization 
error too much, degrading the overall distortion rate. The quantizer thus becomes 

if 1x1 < A 
= { yign(x) (,./A] + 1/2) A if 1x1 L A ' 

(1 1.60) 

The histogram of wavelet coefficients often has a slower decay for 1x1 2 A than 
for 1x1 > A, as shown by Figure 11.8. The high resolution quantization hypothesis 
is approximately valid for 1x1 2 A with 1/8 5 R 5 1, which means that a uniform 
quantizer is nearly optimal. 

Figure 11.9 displays several significance maps of wavelet coefficients. There 
are more significant coefficients at larger scales 2j because wavelet coefficients 
have a tendency to decrease across scales. This is further explained in Section 
11.4.4. The compression package of Davis in LastWave (Appendix B.2) encodes 
these significance maps and the values of non-zero quantized coefficients with 
adaptive arithmetic codes. Each subimage of wavelet coefficients is scanned in 
zig-zag order, and all wavelet subimages are successively visited from large to fine 
scales, as illustrated by Figure 11.10. An adaptive arithmetic code takes advantage 
of the fact that higher amplitude wavelet coefficients tend to be located at large 
scales. The resulting code depends on the distribution of wavelet coefficients at 
each scale. 

Visual distortions introduced by quantization errors of wavelet coefficients 
depend on the scale 2j. Errors at large scales are more visible than at fine scales 
[347]. This can be taken into account by quantizing the wavelet coefficients with 
intervals A j  = A wj  that depend on the scale 2j. For R 5 1 bidpixel, w j  = 2-j is 
appropriate for the three finest scales. As shown in (1 1.3 l), choosing such weights 
is equivalent to minimizing a weighted mean-square error. For simplicity, in the 
following we set w j  = 1. 

Bounded Variation Images Section 2.3.3 explains that large classes of images 
have a bounded total variation because the average length of their contours is 
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FIGURE I I. I O  Each binary significance map of wavelet coefficients is scanned 
in zig-zag order, illustrated with a dotted line. All wavelet subimages are succes- 
sively visited from coarse to fine scales in the order indicated by the arrows. 

bounded independent of the resolution N. The total variation norm 1 1  f 1 1  v is related 
to the wavelet coefficients of f by an upper bound (10.120) and a lower bound 
(10.121). Iff has discontinuities along edges, then its sorted wavelet coefficients 
IG PI I satisfy 

IfL[kII N Ilfllvk-' 

This decay property is verified by the wavelet coefficients of the Lena and Boat 
images. We derive from Theorem 11.4 that if = R / N 2  5 1 then 

mf) - h ( R , f )  llf112vR-1 (1 -1ogzR) (1 1.61) 

For general bounded variation images, Section 11.4.5 proves that the decay R - l  

cannot be improved by any other signal coder. In that sense, a wavelet transform 
coding is optimal for bounded variation images. The resulting PSNR is 

PSNR(R,f) M lOlog,,2 [logzR-logz(l-logz~) -K] , (11.62) 

where K is a constant. Figure l l . l l (a)  shows the PSNR computed numerically 
from the wavelet transform code of the Lena and Boat images. As expected from 
(1 1.62), the PSNR increases almost linearly as a function of log,,R, with a slope 
of 10 log,, 2 M 3 dbhit. 

More Irregular Images Mandrill and GoldHiU are examples of images that do 
not have a bounded variation. This appears in the fact that their sorted wavelet 
coefficients satisfy lfB[k]l N CkPS for s < 1. The PSNR calculated from the 
distortion rate formula (1 1.48) is 

PSNR(R, f) M (2s - 1) 10 log,, 2 log, R - log10 (1 - log, R) - K] , [ 
where K is a constant. For GoldHill, s M 0.8, so the PSNR increases by 1.8 dbhit. 
Mandrill is even more irregular, with s M 213, so at low bit rates R < 114 the PSNR 
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( 4  (b) 

FIGURE I I. I I 
(dotted line) (b): GoldHill (solid line) and Mandrill (dotted line) 

PSNR as a function of log2(@. (a): Lena (solid line) and boats 

increases by only 1 dbhit. Such images can be modeled as elements of Besov 
spaces whose regularity index s/2 + 1/2 is smaller than 1. The distortion rate of 
transform coding in general Besov spaces is studied in [ 1321. 

For natural images, the competition organized for the PEG-2000 image com- 
pression standard shows that wavelet image transform codes give the best distortion 
rate and best visual quality among all existing real time image coders. The adap- 
tive arithmetic coder is quite efficient but not optimal. Section 11.4.4 shows that 
embedded wavelet transform codes produce a slightly larger PSNR, by better tak- 
ing into account the distribution of large versus small wavelet coefficients across 
scales. 

For specialized images such as fingerprints [ 1031 or seismic images, other bases 
can outperform wavelets. This is particularly true when the image includes high 
frequency oscillatory textures, which create many significant fine scale wavelet 
coefficients. These images are better compressed in local cosine or wavelet packet 
bases, whose vectors approximate high frequency oscillations more efficiently. 
Block cosine bases used by the JPEG standard may also outperform wavelets for 
such images. 

Choice of Wavelet To optimize the transform code one must choose a wavelet 
basis that produces as many zero quantized coefficients as possible. A two- 
dimensional separable wavelet basis is constructed from a one-dimensional wavelet 
basis generated by a mother wavelet $. Three criteria may influence the choice of 
$: number of vanishing moments, support size and regularity. 

High amplitude coefficients occur when the supports of the wavelets overlap a 
brutal transition like an edge. The number of high amplitude wavelet coefficients 
created by an edge is proportional to the width of the wavelet support, which should 
thus be as small as possible. Over smooth regions, wavelet coefficients are small 
at fine scales if the wavelet has enough vanishing moments to take advantage of 
the image regularity. However, Proposition 7.4 shows that the support size of $ 
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increases proportionally to the number of vanishing moments. The choice of an 
optimal wavelet is therefore a trade-off between the number of vanishing moments 
and support size. If the image is discontinuous then the wavelet choice does not 
modify the asymptotic behavior of the distortion rate (1 1.61) but it influences the 
multiplicative constant. 

Wavelet regularity is important in reducing the visibility of artifacts. A quan- 
tization error adds to the image a wavelet multiplied by the amplitude of the 
quantized error. If the wavelet is irregular, the artifact is more visible because it 
looks like an edge or a texture element [81]. This is the case for Haar wavelets. 
Continuously differentiable wavelets produce errors that are less visible, but more 
regularity often does not improve visual quality. 

To avoid creating large amplitude coefficients at the image border, it is best 
to use the folding technique of Section 7.5.2, which is much more efficient than 
the periodic extension of Section 7.5.1. However, it requires using wavelets that 
are symmetric or antisymmetric. Besides Haar, there is no symmetric or anti- 
symmetric wavelet of compact support which generates an orthonomal basis. 
Biorthogonal wavelet bases that are nearly orthogonal can be constructed with 
symmetric or antisymmetric wavelets. They are therefore more often used for 
image compression. 

Overall, many numerical studies have shown that the 7-9 biorthogonal wavelets 
of Figure 7.15 give the best distortion rate pedormance for wavelet image trans- 
form codes. They provide an appropriate trade-off between the vanishing mo- 
ments, support and regularity requirements. This biorthogonal wavelet basis is 
nearly orthogonal and thus introduces no numerical instability. The compression 
examples of Figure 11.6 are calculated in this basis. 

Geometric Regularity For the set of all images having a total variation bounded 
by a constant C, Section 11.4.5 proves that a wavelet transform coding has a 
distortion rate that is close to the minimax lower bound. The total variation of an 
image is equal to the average length of its level sets, which may be highly irregular 
curves. If we only consider images having level sets that are piecewise regular 
curves then one can improve the distortion rate of a wavelet transform coding, by 
taking into account the geometric regularity. This is case for the Lena and Boats 
images. 

The inefficiency of a wavelet transform code for Lena and Boat appears in the 
significance maps of Figure 11.9. They are coded with a zig-zag scanning that 
does not take advantage of the geometric regularity of edges where significant 
coefficients are located. The use of three oriented wavelets translated on dyadic 
grids also partially destroys the geometry. 

Using edges for image coding was originally proposed by Carlsson [115]. 
Figure 11.12 shows the larger amplitude wavelet maxima at the finest scales, cal- 
culated with the algorithm of Section 6.3.1. A compact code has been designed 
[261,186] to use the geometric regularity of these maxima chains and the slow vari- 
ation of wavelet coefficients along these chains. Other edge coding strategies have 
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FIGURE I I .  I2 Edge chains calculated from the larger amplitude wavelet trans- 
form modulus maxima at the finest scale. 

also been implemented [121,243]. However, these geometry-oriented codes are 
mathematically not well understood, and whether they can significantly improve 
the distortion rate for interesting classes of images has yet to be determined. 

I I .4.3 

The JPEG image compression standard [345] is a transform coding in a block 
cosine-I basis. Theorem 8.7 proves that the following cosine-I family is an orthog- 
onal basis of an image block of L by L pixels: 

Block Cosine Image Coding 

QSk: j<L 
(1 1.63) 

with 

(11.64) 

In the JPEG standard, images of N 2  pixels are divided in N 2 / 6 4  blocks of 8 by 
8 pixels. Each image block is expanded in this separable cosine basis with a fast 
separable DCT-I transform. 

JPEG quantizes the block cosine coefficients uniformly. In each block of 64 
pixels, a significance map gives the position of zero versus non-zero quantized 
coefficients. Lower frequency coefficients are located in the upper right of each 
block, whereas high frequency coefficients are in the lower right, as illustrated in 
Figure 1 1.13. Many image blocks have significant coefficients only at low fre- 
quencies and thus in the upper left of each block. To take advantage of this prior 
knowledge, JPEG codes the significance map with a run-length code. Each block 
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j=7 

FIGURE I I. I3  A block of 64 cosine coefficients has the zero frequency (DC) 
coefficient at the upper left. The run-length makes a zig-zag scan from low to high 
frequencies. 

Table I I. I Matrix of weights WkJ used to quantize the block cosine coefficient 
corresponding to each cosine vector gk,  j [74]. The order is the same as in Figure 
11.13. 

of 64 coefficients is scanned in zig-zag order as indicated in Figure 1 1.13. In this 
scanning order, JPEG registers the size of the successive runs of coefficients quan- 
tized to zero, which are efficiently coded together with the values of the following 
non-zero quantized coefficients. Insignificant high frequency coefficients often 
produce a long sequence of zeros at the end of the block, which is coded with an 
End Of Block (EOB) symbol. 

In each block i ,  there is one cosine vector gb,o[n,m] of frequency zero, which 
is equal to 1/8 over the block and 0 outside. The inner product (f, g6,0) is propor- 
tional to the average of the image over the block. Let DC' = Q((f, g;,,)) be the 
quantized zero-frequency coefficient. Since the blocks are small, the averages are 
often close for adjacent blocks, and JPEG codes the differences DCi - DC'-'. 
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Weighted Quantization Our visual sensitivity depends on the frequency of the 
image content. We are typically less sensitive to high frequency oscillatory pat- 
terns than to low frequency variations. To minimize the visual degradation of the 
coded images, P E G  performs a quantization with intervals that are proportional 
to weights specified in a table, whose values are not imposed by the standard. This 
is equivalent to optimizing a weighted mean-square error (1 1.3 1). Table 11.1 is an 
example of an 8 by 8 weight matrix that is used in JPEG [345]. The weights at the 
lowest frequencies, corresponding to the upper left of Table 1 1.1, are roughly 10 
times smaller than at the highest frequencies, corresponding to the bottom right. 

Distortion Rate At 0.25-0.5 bidpixel, the quality of JPEG images is moderate. 
At 0.2 bidpixel, Figure 11.14 shows that there are blocking effects due to the 
discontinuities of the square windows. At 0.75-1 bidpixel, images coded with the 
JPEG standard are of excellent quality. Above 1 bidpixel, the visual image quality 
is perfect. The P E G  standard is often used for R E [O. 5,1]. 

At low bit rates, the artifacts at the block borders are reduced by replacing the 
block cosine basis by a local cosine basis [42, 801, designed in Section 8.4.4. If 
the image is smooth over a block, a local cosine basis creates lower amplitude 
high frequency coefficients, which slightly improves the coder performance. The 
quantization errors for smoothly overlapping windows also produce more regular 
grey level image fluctuations at the block borders. However, the improvement has 
not been significant enough to motivate replacing the block cosine basis by a local 
cosine basis in the JPEG standard. 

Figure 1 1.15 compares the PSNR of P E G  and of the wavelet transform code for 
two images. The wavelet transform code gives an improvement of approximately 
2-3db. For R 5 2-4 the performance of JPEG deteriorates because it needs to keep 
at least N2/64 zero-frequency coefficients in order to recover an estimate of image 
intensity everywhere. 

Implementation of JPEG The baseline JPEG standard [345] uses an intermediate 
representation that combines run-length and amplitude values. In each block, 
the 63 (non-zero frequency) quantized coefficients indicated in Figure 11.13 are 
integers that are scanned in zig-zag order. A JPEG code is a succession of symbols 
SI = (L ,B)  of eight bits followed by symbols Sz. The L variable is the length 
of a consecutive run of zeros, coded on four bits. Its value is thus limited to the 
interval [0,15]. Actual zero-runs can have a length greater than 15. The symbol 
SI = ( 15,O) is interpreted as a run-length of size 16 followed by another run-length. 
When the run of zeros includes the last 63d coefficient of the block, a special End 
Of Block symbol SI = (0,O) is used, which terminates the coding of the block. For 
high compression rates, the last run of zeros may be very long. The EOB symbol 
stops the coding at the beginning of this last run of zeros. 

The B variable of SI is coded on four bits and gives the number of bits used to 
code the value of the next non-zero coefficient. Since the image grey level values 
are in the interval [0,28], one can verify that the amplitude of the block cosine 
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0.5 bidpixel 0.2 bidpixel 

FIGURE I I. I 4  Image compression with JPEG. 
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FIGURE I I. I 5  
the wavelet transform code (solid line) for Lena and GoldHill. 

Comparison of the PSNR obtained with P E G  (dotted line) and 

B 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

- - Range of values 

-1,l 

-7 . . . -4;4 . . . 7 
-3, -2; 2,3 

-15 . . . -8:8 . . . 15 
-31 . .  . -16 ,16 . .  . 31 
-63 . . . -32 ,32 . .  . 63 

-127 . . . -64 ,64 . .  . 127 
-255 . . . -128,128 . . . 255 
-511 . . .  -256,256 . . .  511 

-1023 . . . -512,512..  . 1023 

Table I I .2 The value of coefficients coded on B bits belongs to a set of 2B values 
that is indicated in the second column. 

coefficients remains in [-21°, 2" - 11. For any integers in this interval, Table 11.2 
gives the number of bits used by the code. For example, 70 is coded on B = 7 
bits. There are Z7 different numbers that are coded with seven bits. If B is non- 
zero, after the symbol SI the symbol Sz of length B specifies the amplitude of the 
following non-zero coefficient. This variable length code is a simplified entropy 
code. High amplitude coefficients appear less often and are thus coded with more 
bits. 

For DC coefficients (zero frequency), the differential values DC' -De'-' 
remain in the interval [-21';211 - 11. They are also coded with a succession of 
two symbols. In this case, S1 is reduced to the variable B which gives the number 
of bits of the next symbol S2 which codes DC' - DC'-'. 

For both the DC and the other coefficients, the S1 symbols are encoded with 
a Huffman entropy code. P E G  does not impose the Huffman tables, which may 
vary depending on the type of image. An arithmetic entropy code can also be used. 
For coefficients that are not zero frequency, the L and the B variables are lumped 
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together because their values are often correlated, and the entropy code of SI takes 
advantage of this correlation. 

I I .4.4 Embedded Transform Coding 

For rapid transmission or fast image browsing from a data base, a coarse signal 
approximation should be quickly provided, and progressively enhanced as more 
bits are transmitted. Embedded coders offer this flexibility by grouping the bits in 
order of significance. The decomposition coefficients are sorted and the first bits of 
the largest coefficients are sent first. An image approximation can be reconstructed 
at any time, from the bits already transmitted. 

Embedded coders can take advantage of any prior information about the lo- 
cation of large versus sma l l  coefficients. Such prior information is available for 
natural images decomposed on wavelet bases. As a result, an implementation with 
zero-trees designed by Shapiro [307] yields better compression rates than classical 
wavelet transform coders. 

Embedding The decomposition coefficients f s [ m ]  = (f,gm) are partially or- 
dered by grouping them in index sets s k  defined for any k E Z by 

The Set Sk is coded with a binary significance map bk [m] : 

0 ifm $ s k  

bk[m] = { 1 i fmESk (11.65) 

An embedded algorithm quantizes f s [m]  uniformly with a quantization step 
(bin size) A = 2" that is progressively reduced. Let m E s k  with k 2 n. The 
amplitude I Q( fs [m] ) I of the quantized number is represented in base 2 by a binary 
string with non-zero digits between the bit k and the bit n. The bit k is necessarily 
1 because 2k I I Q(fs [m] )  I < 2k+'. Hence, k - n bits are sufficient to specify this 
amplitude, to which is added one bit for the sign. 

The embedded coding is initiated with the largest quantization step that pro- 
duces at least one non-zero quantized coefficient. In the loop, to refine the quanti- 
zation step from 2"+' to 2", the algorithm records the significance map b,[m] and 
the sign of f ~ [ m ]  for m E S,. This can be done by directly recording the sign of 
significant coefficients with a variable incorporated in the significance map b,, [m] . 
Afterwards, the code stores the bit n of all amplitudes lQ(fg [m]) I form E Sk with 
k > n. If necessary, the coding precision is improved by decreasing n and con- 
tinuing the encoding. The different steps of the algorithm can be summarized as 
follows [301]: 

1. Znitialization Store the index n of the first non-empty set S,, 
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2. SigniJicunce map Store the significance map bn[m] and the sign of f a [ m ]  
form E S,. 

3.  Quantization refinement Store the nth bit of all coefficients Ifs[m]I > 
2"+'. These are coefficients that belong to some set Sk for k > n, whose 
coordinates were already stored. Their n" bit is stored in the order in which 
their position was recorded in the previous passes. 

4. Precision refinement Decrease n by 1 and go to step 2. 

Distortion Rate This algorithm may be stopped at any time in the loop, providing 
a code for any specified number of bits. The distortion rate is analyzed when the 
algorithm is stopped at the step 4. All coefficients above A = 2" are uniformly 
quantized with a bin size A = 2". The zero quantization bin [-A, A] is therefore 
twice as big as the other quantization bins, which was shown to be efficient for 
wavelet image coders. 

Once the algorithm stops, we denote by it4 the number of significant coefficients 
above A = 2". The total number of bits of the embedded code is 

R = Rg f R;, 

where Rg is the number of bits needed to code all significance maps bk [m] fork 2 n, 
and Rf the number of bits used to code the amplitude of the quantized significant 
coefficients Q ( f g [ m ] ) ,  knowing that m E sk fork > n. 

To appreciate the efficiency of this embedding strategy, let us compare the bit 
budget Rg + Ri to the number of bits RO + R1 used by the direct transform code of 
Section 1 1.4.1. The value Ro is the number of bits that code the overall significance 
map 

(11.67) 

and R1 is the number of bits that code the quantized significant coefficients. 
An embedded strategy codes Q ( f a [ m ] )  knowing that m E Sk and hence 

that 2k 5 lQ(fa[m])l  < 2"+', whereas a direct transform code knows only that 
I Q( fa [m] ) I > A = 2". Fewer bits are thus needed for embedded codes: 

R; 5 R1. (11.68) 

However, this improvement may be offset by the supplement of bits needed to 
code the significance maps {bk[m]}k>n of the sets {&}k>n. A direct transform 
code records a single significance map b[m],  which specifies Uk>,,Sk. It provides 
less information and is therefore coded with fewer bits: 

Rg 2 Ro. (1 1.69) 

An embedded code brings an improvement over a direct transform code if 
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This can happen if we have some prior information about the position of large 
coefficients I f~[ rn] I  versus smaller ones. This allows us to reduce the number 
of bits needed to encode the partial sorting of all coefficients provided by the 
significance maps ( l ~ k [ r n ] } k > ~ .  The use of such prior information produces an 
overhead of Rz relative to Ro that is smaller than the gain of R; relative to R1. This 
is the case both for embedded transform codes implemented in wavelet bases and 
for the block cosine I basis used by JPEG [358]. 

Wavelet Embedded Code Wavelet Coefficients have a large amplitude where 
the signal has sharp transitions. If an image f is uniformly Lipschitz a in the 
neighborhood of (XO,  yo) ,  then (6.62) proves that for wavelets $~f ,~ ; ,  located in this 
neighborhood there exists A 2 0 such that 

The worst singularities are often discontinuities, so a! 2 0. This means that in 
the neighborhood of singularities without oscillations, the amplitude of wavelet 
coefficients decreases when the scale 2j decreases. This property is not valid for 
oscillatory patterns. High frequency oscillations create coefficients at large scales 
2j that are typically smaller than at the fine scale which matches the period of 
oscillation. We thus consider images where such oscillatory patterns are relatively 
rare. 

Wavelet zero-trees introduced by Lewis and Knowles [250] take advantage 
of the decay of wavelet coefficients by relating these coefficients across scales 
with quad-trees. Shapiro [307] used this zero-tree structure to code the embedded 
significance maps of wavelet coefficients. The numerical examples are computed 
with the algorithm of Said and Pearlman [301], which improves Shapiro's zero-tree 
code with a set partitioning technique. 

Good visual quality images are obtained in Figure 11.16 with 0.2 bidpixel, 
which considerably improves the JPEG compression results shown in Figure 1 1.14. 
At 0.05 bidpixel the wavelet embedded code recovers a decent approximation, 
which is not possible with JPEG. Figure 1 1.17 compares the PSNR of the wavelet 
embedded code with the PSNR of the direct wavelet transform code described in 
Section 11.4.2. For any quantization step both transform codes yield the same 
distortion but the embedded code reduces the bit budget: 

As a consequence the PSNR curve of the embedded code is a translation to the 
left of the PSNR of the direct transform code. For a set Sv of bounded variation 
images, one can show that the zero-tree algorithm can at most reduce the bit budget 
by a constant. However, for particular classes of images where the significant 
coefficients are well aligned across scales, the 10g2(N2/R) term that appears in the 
distortion rate (11.61) can disappear [132]. 
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0.2 bidpixel 0.05 bidpixel 

FIGURE I I. I6  Embedded wavelet transform coding. 
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Lena 
PSNR 

GoldHill 
PSNR 

FIGURE I I. I7 Comparison of the PSNR obtained with an embedded wavelet 
transform code (dotted line) and a direct wavelet transform code (solid line). 

Zero-Tree Implementation The significance maps of a wavelet embedded code 
are stored in zero-trees with an algorithm introduced by Shapiro [307]. These 
zero-trees also incorporate the sign of non-zero coefficients, which is therefore not 
coded with the amplitude. The signed significance map of a set S, has the same 
structure as an array of wavelet coefficients defined for I = 1 : 2,3 by 

1 if 2" 5 (f,$f,p,q) < 2,+l 
(1 1.70) I 0 otherwise 

1 b j [ ~ : q ]  = -1 if-2"+' < (f,+f,p,q) 5 -2, . 

At the largest scale 2J, there is also a significance map b j b ,  q] computed ftom the 
scaling coefficients. 

Wavelet zero-trees encode these significance maps with quad-trees. For each 
orientation Z = 1,2,3, we create quad-trees by recursively relating each coefficient 
bf [ p ,  q] to the following four children at the next finer scale 2j-l: 

bf-,[2p,2ql , b;-,[2p+1,24] , bf-,[2p:2q+l] , bf-,[2p+1,2q+l]. 

The values of a wavelet coefficient and its four children depend on the variations 
of the image grey level in the same spatial area. At the largest scale 2J, the children 
of by [p, q] are defined to be the three wavelet coefficients at the same scale and 
location: b: [p, 41, bJ" [ p ,  q] and b: [p, 41. The construction of these trees is illustrated 
in Figure 11.18. 

If bf [p, q] = 0, we say that this coefficient belongs to a zero-tree if all its de- 
scendants in the quad-tree are also zero. This happens if its descendants have 
wavelet coefficients of smaller amplitude, which is likely. The position of all the 
zero values inside a zero-tree are specified by the position (p, q), orientation 1 and 
scale 2j of the zero-tree root, which is labeled by R. This encoding is particularly 
effective if R is located at a large scale because the zero-tree includes more zero 
coefficients. If bi[p,q] = 0 but one of its descendants in the quad-tree is non- 
zero, then this coefficient is called an isolated zero, denoted by I. The coefficients 
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.... .... .... .... 
FIGURE I I .  I 8  At the coarsest scale 2J, the children of each pixel in by are the 
three pixels of the same position in bi, b: and b;. At all other scales, in each 
direction I ,  quad-trees are constructed by relating a pixel of bf to its four children 
in bfPl. 

b ib ;  41 = 1 or bf[p: 41 = -1 are represented respectively by the symbols P (pos- 
itive) and N (negative). The wavelet table of symbols (R,I,P,N) corresponding to 
the significance map (1 1.70) is scanned in the zig-zag order illustrated in Figure 
1 1.10. The resulting sequence of symbols is then coded with an adaptive arithmetic 
code [307]. 

Let us mention that zero-tree wavelet encoding are closely related to fractal 
compression algorithms implemented with Iterated Function Systems [7]. Davis 
[150] shows that these wavelet embedded codes bring significant improvements 
over existing fractal codes [84]. 

Example 11.2 Figure 1 1.19 gives an example of wavelet coefficients for an image 
of 64 pixels [307]. The amplitude of the largest coefficient is 63 so SS is the first 
non-empty set S,,. The coefficients in S5 have an amplitude included in [32,64). 
The array of symbols is on the right of Figure 11.19. The dots correspond to 
coefficients inside a zero-tree. A zig-zag scanning in the order indicated in Figure 
11.10 yields the sequence: P,N,I,R,P,R,R,R,R,I,R,R,I,P,I,I. 

I I .4.5 

A compression algorithm is not optimized for a single signal f but for a whole 
class. The coder must be adapted to the prior information available about these 
signals. We rarely have a probabilistic model of complex signals such as images, 
but we can define a prior set 0 that includes our signal class. The model 0 is a set 
of functions in L2[0, 1]*, which are approximated and discretized by the coder. To 
control the coder distortion for all signals in 0 we want to minimize the maximum 

Minimax Distortion Rate 
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-5 9 -1 41 
3 0 - 3  2 
2 -3 6 - 4  

4 6 -2 2 
3 - 2  0 4 
3 6 3 6 

M; :I: : : : 

FIGURE I I. I9 The left table is an array of 64 wavelet coefficients. The set Ss 
corresponding to coefficients in [32,64) has a significance map whose zero-tree 
symbols are shown on the right. 

distortion over 0: 
d(R, 0) = supd(R, f) . 

f €9 

The definition of a minimax distortion rate is closely related to Kolmogorov E-  

entropy [174]. As in the estimation problems of Chapter 10, it is necessary to 
approach this minimax distortion rate with a signal coder that is fast and simple 
to implement. If the basis provides a sparse representation of signals in 0 then a 
transform code can be nearly optimal among all possible coders. 

Kolmogorov €-Entropy In its most general form, a coding algorithm is specified 
by an operator D that approximates any f E 0 by j = D f which belongs to the 
approximation net 

Let Card(0D) be the cardinal of the net 00, i.e., the number of elements in this 
set. The number of bits required to specify each coded signal j is 

Q D = { ~  : 3 f € Q ,  j = D f } .  

R = [log, Card(QD)] . 

The maximum distortion over 0 is 

&(Q) =supIlf-DDfII. 
f E@ 

Let 0, be the set of all coders D such that d ~ ( 0 )  5 E .  An optimal coder D E 0, 
has an approximation net 00 of minimum size. The corresponding Kolmogorov 
E-entropy [ 1741 is defined by 

3c, (0) = log, (min Card( e ~ ) )  
DEO, 

(11.71) 

The best coder D E 0, has a bit budget R = T3ctl,(Q)l. For sets 0 of functions in 
infinite dimensional spaces, few cases are known where the Kolmogorov €-entropy 
can be computed exactly [1741. 
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For a fixed bit budget R, to minimize the distortion we consider the set of all 
coders D E OR whose approximation net has a size Card(0D) 5 2R. The minimax 
distortion rate is defined by 

dmin(R,O) = inf &(0) . (1 1.72) 
DEUR 

When R varies, the distortion rate of a particular family of coders DR E OR is 
defined by 

YR>O , d ( R , O ) = d ~ , ( 0 ) .  

Transform coders are examples where R depends upon the size of the quantization 
bins. The decay exponent of d(R ,  Q) for large R is 

p(0) = SUP { p  : 3X > 0 , d(R, 0)  5 XR-a> . 

For the minimax distortion rate d(R ,  0)  = &in (R:  e), the decay exponent p(0 )  = 
pmax(Q) is maximum. In practice, we need to find coders that are simple to im- 
plement, and such that d(R ,  0) has a decay exponent close to or equal to ,Om,( 0). 

Transform Coding Let 8 be a set of images in L2[0, 11’. A transform coding in 
an orthonormal basis I3 = {gmImEK sets to zero all coefficients for m 2 N 2  and 
quantizes all the others with R bits: 

(11.73) 

We suppose that Q is a uniform quantizer, and the quantized coefficients Q(fg[m]) 
are coded with a variable length code. The distortion can be decomposed as a sum 
of two errors: 

d(R:f)  = d N ( R , f ) + E l ( N 2 : f )  7 

where 
N Z -  1 

d ~ ( R : f )  = I f~bl  -Q(f~[m])l’  
m=O 

is the distortion rate of the transform coding on the first N 2  coefficients and 

+m 

4 N 2 , f )  = I fBb l12  
m=N’ 

is the linear approximation error produced by setting to zero all coefficients ( f :  gm) 
for m 2 P. 

In practice, it is the camera which restricts the signal to its lower frequencies, 
and sets to zero all inner products ( f ,  8,) form 2 N 2 .  The bit budget R is generally 
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adjusted so that the coding distortion is larger than the error introduced by the 
camera: 

To control EI (N2 ,  f) , we suppose that 0 has a compact tail, which means that there 
exists B > 0 and a > 1/2 such that 

d N ( 4 f )  L EZ(N2,f). 

v f ~ e  : I ( f : g m ) l I B m - a .  

This implies that q ( N 2 , f )  = O(BzN-') with y = 2(2a - 1) > 0. 
Theorem 11.4 proves that the distortion rate of a transform code depends es- 

sentially on how the sorted coefficients decay. Let fB[k] be the decomposition 
coefficient off in B whose amplitude has rank k. The decay of signal coefficients 
over a set 0 is characterized by 

s(0) = sup{s : 3C > 0 Vf E 0 IfB[k]l I Ck-'} . 
The following theorem proves that a transform coding is asymptotically optimal 
over orthosymmetric sets, in the sense that the distortion rate has an optimal decay 
exponent. We recall from Section 10.3.2 that a set 0 is orthosymmetric in B = 
{gm)mEN if for all f E 0 and all Ia[m] I 5 1 then 

m=O 

Theorem 11.5 (DONOHO) Let 0 be an orthosymmetric set in t?, with a compact 
tail. Zfs(0) > 1/2 then 

(11.74) 

The decay exponent (0) is reached by a transfonn coding in B with a unifonn 
quantizer and an adaptive variable length code. 

Proof '. Since Q has a compact tail, there exist B and CY > 1/2 such that 0 c AB,u 
with 

AB,== f : l f ~ [ m ] l < B m - ~  . 

= 2s(O) - 1 . 

{ I 
{ } 

Moreover, for any s < s(Q) there exists C > 0 such that 8 c Qc,~ with 

Qc,+ = f : If;B[k]I < Ck+ . (11.75) 

So Q c O C , ~  n AB,u. The following lemma computes the distortion rate of a transform 
coding in B. 

Lemma 11.2 Ifs > cy > 1/2 then for large R a transfonn coding in B with a uniform 
quantizer and an optimized variable length code satisfis 

(1 1.76) 
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The main steps of the proof are given without details. First, we verify that 

SUP d ( R , f )  SUP d N ( R , f ) +  SUP E l ( N 2 , f ) .  
f EeC,snAB,a f E 0 , S  f +e 

The same derivations as in Theorem 1 1.4 show that an optimized transform coding has 
a distortion rate such that 

Moreover, 

Hence 

The values of R and N are adjusted to reach the minimum. If B2 NZ('-'") = C2 
the minimum is nearly reached and 

This lemma proves that the distortion of a transform coding in B satisfies 

sup{p : 3X > 0 d ( ~ ,  Oc,s nABJ I X R + )  = 2s - 1 

For any s < s(0),  since 8 c Qc,s n ABpr it follows that 

dmin(Rl0) I d(R,  0) I d(R,  OC,~  n h p )  , 

and hence that pmaX (0) >_ 2s - 1. Increasing s up to s( Q) proves that pmax (0) 2 
2 4 8 )  - 1. 

The proof that pmax(0) 5 2s(0) - 1 requires computing a lower bound of the 
Kolmogorov €-entropy over orthosymmetric sets. This difficult part of the proof is 
given in [164]. 

Bounded Variation Images The total variation llfliv o f f  E L2[0, 11' is defined 
in (2.65). We consider a set of bounded variation images that have a bounded 
amplitude: 

Qv,m = {f E L2[% 112 : llfllv I C and l l f i l m  5 C )  . 

The following proposition computes the distortion rate of a wavelet transform 
coding and proves that its decay is optimal. 
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Proposition 11.6 In a separable wavelet basis, for large R the distortion rate of 
a transfomz coding with a undform qwntization satisfies 

(1 1.77) 

The resulting decay exponent is equal to the minimax decay exponent 

Pmax(Qv,m) = 1 . 

Proof ’. This proposition is derived from Theorem 11.5 by finding two sets 8 1  and 
632 that are orthosymmetric in a wavelet basis and such that 0 1  c Q v , ~  c Qz. The 
main steps are given without details. One can verify that there exists B1 > 0 such that 

J 3  

The set 0 1  of functions such that 

is thus an orthosymmetric set included in e”,=. 
Theorem 9.8 proves that there exists Bz such that the sorted wavelet coefficients 

satisfy lfB[k]l 5 Bz l l f l l v  k-’. Moreover, we saw in (9.49) that there exists B3 such 
that 

The set 0 2  of all f such that I (f, $$:n) I I B3 2’ C and IfB [k] I I BZ C k-’ is therefore 
an orthosymmetric set that includes Qv-,. 

Since Qi c Qv,, c Qz we have Prnax(Q1) 1 Pmax(@v:m) I Pmax(Q2). One 
can verify that the sets Q1 and Q2 have a compact tail and that ~ ( 0 1 )  = ~ ( 0 2 )  = 1. 
Theorem 11.5 thus implies that 

l ( f , $ ~ , n ) l ~ B 3 2 j I l f I I x ~  

Prnax(Q1) = Prnax(Q2) = 1 

and hence that Pmax ( O V , ~ )  = 1. 

For a transform coding in a wavelet basis, 

Lemma 11.2 shows that an optimized transform code in a wavelet basis satisfies 

Over 0 1 ,  one can select a family of signals whose distortion rate reaches the same 
decay, which finishes the proof of (1 1.77). 
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This proposition proves that for a general set of bounded variation images with 
a bounded amplitude, one cannot improve the decay exponent R-' obtained in a 
wavelet basis. The hypothesis of bounded amplitude is important to guarantee that 
this set has a compact tail. Of course, for particular subsets of bounded variation 
images, one may construct coders with a distortion rate having a faster decay. 
Section 11.4.2 explains that this can be the case for images having edges with a 
regular geometry, if the coder can take advantage of this geometric regularity. 

I I .5 VIDEO SIGNALS 

Video compression is currently the most challenging coding problem, with con- 
siderable commercial applications. A video signal is a time sequence of images, 
with 30 images per second in the NTSC television standard. Time could be viewed 
as just another dimension, which would suggest decomposing video signals in an 
orthonormal basis for three dimensional signals. However, such a representation 
is inefficient because it ignores the fact that most image modifications in time are 
due to the relative motion of the scene with respect to the camera. This induces a 
displacement of grey level points in the image, which is called opticalflow. 

Section 11.5.2 describes MPEG video compression algorithms that use motion 
compensation to predict an image from the previous one. In addition to image 
compression, measuring optical flow has major applications in computer vision, 
for example in tracking objects and recovering depth information. Section 11.5.1 
explains how to compute optical flow with multiscale approaches. 

11.5.1 Optical Flow 

The movement of a point in a three dimensional scene is observed through its 
projection in the image plane. If the image intensity is not uniform in the neigh- 
borhood of this point, the motion in the image plane appears as a displacement of 
the grey levels, which is the optical flow. Let f(x, t )  be the image intensity as a 
function of space and time. Measuring optical flow is an ill-posed problem. At 
one extreme, suppose that f(x, t )  is constant. h e  the image points moving or not? 
They could be, but you cannot tell, because all grey levels have the same value. 
At the other extreme, the motion of a single white point in a black background is 
uniquely defined. The image grey level f(x, t )  must vary sufficiently along x in 
order to compute the grey level motion in time. 

Most often, optical flow is measured using matching techniques, which are 
based on intuitive ideas that have relatively simple hardware implementations. 
Yet, comparative studies [87] show that the most accurate results are obtained with 
differential computations. Both approaches process images at several scales. 

Block Matching The displacement vector T~ (x) of the grey level f,(x) from time 
t = pA to ( p  + 1) A satisfies f p  (x) = fp+l  (x - T, (x)) . The corresponding velocity 
vector is v p  (x) = A-' T~ ( x )  . If the velocity varies slowly in the neighborhood of 
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u, then for s sufficiently small, 

Under this assumption, the matching strategy estimates the displacement vector 
T~ (u) by minimizing the norm of the difference f p  ( x )  - f p + l  (x  - T) over a square 
block of size s, 

The optical flow displacement ~ ~ ( u )  is approximated by the translation TU,B which 
minimizes the error: E ( U , T ~ )  = min,E(u,T). 

A major difficulty is to optimize the choice of s. If s is too small, then f p  ( x )  may 
not have enough details in the neighborhood of u to match a unique neighborhood 
in f p + l  (x ) .  In this case, E(U, T) has several local minima of similar amplitudes for 
different T. Choosing the global minimum can lead to a wrong estimate of ~ ~ ( u )  
in the presence of noise. If s is too large, then the velocity vp ( x )  may not remain 
constant for Ix - uI I s. The neighborhood is not just translated but also deformed, 
which increases the differences between the two blocks. The minimization of 
E ( U , T )  may thus also yield a wrong estimate of the displacement. 

For a discrete image f p  [n], the norm (1 1.78) is replaced by a discrete norm 
over a block of 2 pixels. A sub-pixel estimation of the displacement ~ ~ ( u )  is 
obtained by calculating fp+l [n - 7-1 with an interpolation when T is not an integer. 
Computing the discretized norm (11.78) over a block of s2 pixels requires s2 
additions and multiplications. For each of the N 2  pixels of f [n], a brute force 
algorithm would compute the matching error of its neighborhood with the N 2  
blocks corresponding to all potential displacement vectors 7. This requires s2N4 
additions and multiplications, which is prohibitive. 

Faster matching algorithms are implemented with multiscale strategies that 
vary the width s of the matching neighborhood [77]. Section 7.7.1 explains how 
to compute multiscale approximations uj of an image f of N 2  pixels. At each 
scale N-' I 2i 5 1, the approximation ai includes 2-2j pixels, as illustrated by 
Figure 11.20. Figure 7.23 gives an example. Let u; and u;" be respectively 
the approximations of f and f p + l .  A course to $ne algorithm matches the 
approximations a; and a;" at a large scale 2j = 2J, which is then progressively 
reduced. A come estimate of the displacement field is computed by matching each 
pixel of uJ" with a pixel of u!" by minimizing a distance calculated over blocks 
of s2 pixels, where s is typically equal to 5. This requires s2 2-" operations. A 
refined estimation of the velocity is then calculated at the next finer scale 2='-l. 

[n] is an averaging of f around 2jn, over a 
neighborhood of size proportional to N 2j. At the same location, a displacement 
vector ~ j + l ( 2 j n )  was previously calculated at the scale 2j+l, by finding the best 
match in u;:: for the block around a;+, [n/2] .  This displacement vector is used as 

At any scale 2j,  each pixel 
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FIGURE I I .20 The pixels of an image approximation aj correspond to averages 
of the image intensity over blocks of width proportional to N 2j. 

an initial guess to find the block of a;" that best matches the block around a; [n]. 
Among the K2 displacement vectors T of integers such that I T  - 2~j+l(2jn)  I 5 K, 
the best match ~ j ( 2 j n )  is calculated by minimizing the difference between the 
blocks around a; [n] and up" [n - T ] .  The 2-2j displacement vectors ~ j ( 2 j n )  for 
all pixels aj"[n] are thus obtained with O(K222-2j)  operations. The width s of 
the matching neighborhood remains unchanged across scales. A block of width 
s in a? corresponds to a block of width s N 2  22j in f p .  This multiscale algorithm 
thus computes matching errors over neighborhoods of large sizes at first, and then 
reduces the size as the scale is refined. The total number of operations at all scales 
2J 5 2j 5 N-' is O(K2 s2N2) ,  as opposed to O(s2N4) with a fixed scale algorithm. 

Optical Flow Equation Motion vectors can be calculated with a totally different 
approach that relates the motion to the time and space derivatives of the image. 
Suppose that x ( t )  = (x1 ( t )  , x 2 ( t ) )  is the coordinate of a grey level point that moves 
in time. By definition the grey level value f ( x ( t ) ,  t )  remains constant, so 

The velocity vector is v = (VI, v2) = (x; , x i ) .  Let ? f = (g  , g) be the gradient 
of f. The optical flow equation derived from (1 1.79) relates v and f at any point 
x at time t:  

+ af af af v f . v = -VI + -v2 = -- 
axl ax2 at 

(11.80) 

The optical flow equation specifies the projection of v(x ,  t )  over 9 f ( x ,  t )  but gives 
no information about the orthogonal component of v(x,t). This is commonly 
known as the aperture problem. Taking a pointwise derivative is similar to observ- 
ing an edge through an aperture so small that the edge looks straight, as illustrated 
in Figure 11.21. The velocity parallel to the gradient can be calculated but the other 
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FIGURE I I .2 I Seen through a small enough aperture, an edge looks straight. 
The gradient vector a f  shown on the left is perpendicular to the edge. The motion 
vector on the right can only be measured in the direction of $ f .  

component remains unknown. To circumvent this aperture problem one needs to 
make assumptions about the regularity in x of the velocity vector v(x ,  t) [214]. 

Wavelet Flow Suppose that v(x,  t) is a smooth function of x, which means that 
it can be approximated by a constant over a sufficiently small domain. Weber and 
Malik [348] as well as Simoncelli [309] have shown that a precise estimate of 
v(x,  t )  can be calculated by projecting the optical flow equation over multiscale 
wavelets. We describe the fast algorithm of Bernard [95], which computes the 
optical flow in a complex wavelet frame. 

Let us consider a family of K complex mother wavelets {+k}O<k<K of compact 
support that are dilated and translated: 

Suppose that s is small enough so that v(x,f) M v(u,t) over the support of +,,",,. 
For any 1 5 k 5 K, computing a spatial inner product of the optical flow equation 
(1 1.80) with +:!, and performing an integration by parts gives 

The error term ~,(u,t) is due to the approximation of v(x,t) by v(u,t) over the 
wavelet support. The coefficients ( f ,  2) and ( f ,  z) are the wavelet coeffi- 
cients of f at time t, calculated with new wavelets that are partial derivatives of 
the original ones. The wavelet flow equation (1 1.8 1) is a weak form of the original 
optical flow equation, which does not require that f be differentiable. If v(x,t) 
is twice continuously differentiable and f has a singularity at u that is Lipschitz 
a < 1, then Bernard [95] proves that Es(u,t) becomes negligible when s goes to 
zero. 
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Time Aliasing A video sequence is composed of images at intervals A in time: 
f p ( x )  = f(x,pA). A second order estimate of g(f,$L,s) at t = ( p +  1/2)A is 
calculated with a finite difference: 

j@I)uJ = Z ( f p + l  -fp'$:,,) + G ( U ' t )  . (11.82) 

If v(x: t )  is twice differentiable, we obtain a second order error term 

This error is small if IvI A << s, which means that the image displacement during 
the time interval A is small compared to the wavelet support. Since f(x,t) at 
t = ( p  + 1 /2) A is not known, it is approximated by [fp (x) + f p + l  (x)] /2. Inserting 
(11.82) in (11.81) gives a wavelet flow equation at t = ( p +  ;)A: 

If v(x,t) is twice differentiable, then IEO(u;t)l = O ( l ~ 1 ~ A ~ s - ~ ) .  The two error 
terms cS and E, are small if [ V I  << sA-l and v(x,t) is nearly constant over the 
support of I),",, whose size is proportional to s. The choice of s is a trade-off 
between these conflicting conditions. 

The velocity v cannot be calculated if the wavelet coefficients in the left of 
(11.83) are zero. This happens when the image is constant over the wavelet sup- 
port. Complex wavelets are used to avoid having wavelet coefficients that vanish 
at locations where the image is not locally constant. The sign of real wavelet co- 
efficients can change in such domains, which means that real coefficients vanish 
regularly. 

Optical Flow System If we neglect the error cs + E, then (1 1.83) defines a system 
of K complex equations 

wu,s vu,s = DU$ . (1 1.84) 

The K by 2 matrix Wu,s gives the inner products of ;(f,+l+ f , )  with partial 
derivatives of complex wavelets, whereas Du,s is the matrix of wavelet coefficients 
of (fp+l- fp)/A, and vu,s is an estimate of the velocity vector at u. Let Real(M) 
be the matrix whose coefficients are the real parts of the coefficients of a complex 
matrix M. Since the velocity v is real, we compute the real least square solution 
of the overdetermined system (1 1.84), which is the solution of 

Real(Wi,, W U , S )  VU,$ = Real(WIpu:s) . (11.85) 

There are three possible cases. 
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FIGURE I 1.22 The image at far left shows the Fourier transform modulus 
(J2(w1,w2)1 of a scaling function in the Fourier plane. Black amplitude values 
are close to 1. The next four figures show lGk (w1, w2) I for four analytic wavelets 
which generate a frame. 

The least square solution yields a larger error 1 1  Wu,sv,,, - D,,, 1 1 .  This means 
that the error terms E, + E, cannot be neglected. Either the velocity is not 
approximately constant over the wavelet support, or its amplitude is too 
large. 
The smallest eigenvalue of Real( W;,, W,,,) is comparable to the variance of 
the image noise. This happens when there is an aperture problem over the 
wavelet support. In this neighborhood of u, the image has local variations 
along a single direction, or is uniformly constant. 
Otherwise the solution vu,, gives a precise estimate of v(u, t )  at t = ( p  + 
1 / 2 ) A .  

Multiscale Calculation For fast calculations, we use the frame of complex 
wavelets with compact support calculated in Problem 7.15 from a separable wavelet 
basis. Figure 11.22 shows the Fourier transforms of these analytic wavelets. Each 
of them has an energy concentrated in one quadrant of the Fourier plane. There 
are four complex mother wavelets G k ( x )  which generate a frame of the space of 
real functions in L~ (Et2) 

To the four complex wavelets, we add the real scaling function of the wavelet 
basis: Gy,n = $;,n, which is considered as a wavelet in the following. The Fourier 
transform of $' is concentrated at low frequencies, as illustrated by Figure 1 1.22. 

The optical flow system (1 1.83) is calculated with the five wavelets I,!J~,~ cen- 
tered at u = 2jn. The error E ,  is small at the scale 2j  if IvI A << 2j. This constraint 
is avoided by a multiscale algorithm that computes an estimate of the flow at a 
coarse scale 2-', and progressively refines this estimate while performing a motion 
compensation. 

Suppose that an estimate v'i+l,n/2 of v(u,t) at u = 2j+'n/2  = 2jn is already 
computed with a wavelet system at the scale 2j+l .  To reduce the amplitude of 
the displacement, a motion compensation is performed by translating f n+l  (x) by 
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-2 j r  where r E 2' is chosen to minimize 12jr - A v ~ + ~ , ~ ~ I .  Since the translation 
is proportional to 2j, the indices of the wavelet coefficients of fp+l at the scale 
2 j  are just translated by -r. This translation subtracts 2jrA-I from the motion 
vector. At the scale 2j, the estimate vhn of the motion at u = 2jn is decomposed 
into 

= 2jrA-I + v': I F  7 

where the residual motion ~ f , ~  = (v:, v;) is a solution of the motion-compensated 
wavelet flow equation calculated with wavelet coefficients translated by -r: 

This motion compensation is similar to the multiscale matching idea, which takes 
advantage of a coarse scale estimate of the velocity to limit the matching search 
to a narrow domain at the next finer scale. The system (11.86) has five complex 
equations, for 0 5 k 5 4. A real least square solution vf,, is calculated as in (1 1.85). 
Even when the velocity amplitude IvI is large, the motion compensation avoids 
creating a large error when calculating the time derivatives of wavelet coefficients 
at fine scales, because the residual motions vfS are small. Reducing the scale 2' 
gives estimates of the motion that are denser and more precise. 

For a discrete image of N 2  pixels, a fast filter bank algorithm requires O(N2)  
operations to compute the wavelet coefficients of the system (11.86) at all scales 
N-' 5 2j  < 1 and locations 2jn (Problem 11.18). Computing the least-square so- 
lutions of the motion compensated systems at all scales also requires O(N2)  opera- 
tions. The overall complexity of this algorithm is thus O(N2)  [95]. A MATLAB code 
is availableat http://wave.cmap.polytechnique.fr/soft/OF/. 

Figure 11.23(b) shows the optical flow calculation for a Rubik cube on a 
turntable, and a street scene where three cars are moving. The arrows indicate 
the direction and amplitude of the motion vectors. A point corresponds to zero 
velocity. The algorithm does not compute the optical flow in areas where the 
image intensity is locally constant, or at the border of moving objects, where the 
motion vectors are discontinuous. If the motion is discontinuous, the assumption 
of having a nearly constant velocity over the wavelet support is violated at all 
scales. Figure 11.23(c) shows that the difference between two consecutive images 
of a video sequence has a large amplitude in regions where the image grey level has 
fine scale variations. This is particularly visible along edges. To reduce this error, 
a motion compensation predicts one image from a previous one by translating the 
image pixels with the displacement vectors derived from the motion vectors in 
Figure 11.23(b). Along sharp edges, small errors on the motion vectors produce 
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FIGURE I I .23 (a): Images of two video sequences: at left, a Rubik cube on 
a turntable; at right, three cars moving in a street. (b): Each arrow indicates 
the direction and amplitude of the local motion vector. (c): Difference between 
two consecutive images of the video sequence. Black, grey and white pixels 
correspond respectively to negative, zero and positive values. (d): Difference 
between an image and a prediction calculated from a previous image, with a motion 
compensation using the optical flow vectors in (b). 
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prediction errors, which are visible in Figure 11.23(d). However, these errors are 
much smaller than with the simple difference shown in Figure 11.23(c). The largest 
amplitude errors are along occlusion boundaries where the motion is discontinuous. 
Warping algorithms can compute motion discontinuities reliably, but they require 
more calculations [98]. 

I 1.5.2 MPEG Video Compression 

In the MPEG video compression standards, motion vectors are coded to predict an 
image from a previous one with a motion compensation [120,315]. MPEG-1 is 
devoted to lower quality video with applications to CD-ROM and video telecom- 
munication. The bit rate is below 1.5 Mbits/s, with decent quality for entertainment 
video at 1.2 Mbitds. It can handle video whose spatial and temporal resolution 
goes up to the NTSC television standard, with a degraded quality. MPEG-2 is de- 
signed for higher quality video, not lower than the NTSC television and up to High 
Definition Television (HDTV). It uses the same motion compensation algorithm 
as MPEG-1, and can handle interlaced video. MPEG-2 also offers scalability 
features, to provide a layered video bit stream that can be decoded and used by 
video supports having different spatial and temporal resolution. This is important 
for video browsing and for producing video signals used both for HDTV and the 
NTSC television formats. 

MPEG-1 divides a video sequence in Groups Of Pictures (GOP) of typically 15 
frames (half a second of video). The first image of a GOP is called an Intra frame. 
It is coded with the block cosine P E G  algorithm described in Section 11.4.3. In 
a GOP there are typically four P pictures, each coded from the previous one with 
a prediction algorithm using a motion compensation. They are divided in blocks 
of 162 pixels. For each block, MPEG-1 codes a displacement vector that specifies 
a matching block in the previous image. The difference between the two blocks is 
coded with PEG,  which uses a cosine transform over blocks of 8 by 8 pixels. 

MPEG-1 does not specify the algorithm that computes the displacement vec- 
tors. To minimize the number of bits required by the P E G  code, we want to 
minimize the square norm of the difference between blocks. The displacement 
vector is thus often calculated with a matching algorithm that finds the displace- 
ment vector by minimizing the square norm of the error. The multiscale algorithm 
of the previous section can be implemented with various flavors. The motion 
compensation error is often concentrated along edges where the image has a sharp 
transition, and in particular occlusion contours. Figure 11.23(d) shows two ex- 
amples of motion compensation errors calculated with a higher resolution optical 
flow, obtained with the wavelet flow algorithm. 

Between P pictures, there are typically two B pictures that are coded with a 
bidirectional motion compensation, as illustrated in Figure 11.24. If the video 
jumps to a different scene or if occlusions are present, the precision of a block 
prediction may be very different if performed from a frame before or a frame after. 
For each block of a B picture, we find the blocks that have a minimum distance in 
the I or P picture that is just before and in the P picture that is just after. From these 
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FIGURE I I .24 The P pictures are coded from the previous ones with a motion 
compensation, as indicated by the arrows. The B pictures are coded from the 
previous and next I or P pictures, in the order indicated by the numbers below. 

two, the block with the smallest matching error is selected, and the difference with 
the original block of the B picture is coded with a block cosine JPEG. 

To store or transmit video at a constant bit rate, it is necessary to buffer the 
variable bitstream generated over time by the encoder. A rate control algorithm 
adjusts the quantizers of the JPEG compression, depending on the video content 
and activity. It must ensure that the video buffer does not overflow while trying to 
maintain it as full as possible to maximize the image quality. 

Future trends The MPEG-1 and MPEG-2 standards use low resolution motion 
vectors associated to blocks of 162 pixels. The design of these standards is limited 
by the constraints of real-time calculations. Calculating the motion vectors domi- 
nates the overall computational complexity of video coding. Real time calculation 
of higher resolution optical flow is also possible with the wavelet flow algorithm 
described in the previous section. However, higher resolution optical flow can 
improve video coding only if the array of motion vectors is efficiently coded and 
if the bit allocation between motion vectors and prediction errors is optimized. 

To reach very low bit rates (4-64 kbitds), prediction errors of motion compen- 
sation must be coded with a bit budget that is so reduced that transform codings 
in block cosine bases and wavelet bases introduce important degradations. Better 
results are obtained with adaptive representations such as the matching pursuit 
expansion of Section 9.5.2 [279]. The dictionary of two-dimensional vectors is 
optimized to match the structures of motion compensation errors [343], and the 
resulting decomposition coefficients are quantized and entropy coded. 

The ongoing MPEG-4 standardization offers a more structured, “content 
based” approach to video coding at very low bit rates. Besides compression per- 
formance, MPEG-4 is adapted to the requirements of interactive video. A video 
scene is represented through media objects. These objects may correspond to ele- 
ments of a natural scene such as a moving head in a video-conference, or computer 
graphics structures such as a written text. Natural images must be segmented in 
regions. Each region is a media object, which can be characterized by its con- 
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tour, motion and texture parameters. This approach is clearly promising but very 
difficult. It brings image compression into the world of computer vision [70]. 

11.6 PROBLEMS 

11.1. ' Let X be a random variable which takes its values in {xk} lSks7 with proba- 
bilities {0.49,0.26,0.12,0.04,0.04,0.03,0.02}. 

(a) Compute the entropy X ( X ) .  Construct a binary Huffman code and cal- 
culate the average bit rate Rx. 

(b) Suppose that the symbols are coded with digits that may take three values: 
- 1 , 0, 1 instead of two as in a bit representation. Variable length ternary 
prefix codes can be represented with ternary trees. Extend the Huffinan 
algorithm to compute a ternary prefix code for X that has a minimal 
average length. 

11.2. ' Let xI be the symbol of highest probability of a random variable X ,  and Z1 
the length of its binary word in a Huffman code. Show that if p1 > 2/5 then 

11.3. ' Let X be a random variable equal to x1 or xz with probabilities p1 = 1 - E 

and pz  = E .  Verify that X ( X )  converges to 0 when E goes to 0. Show that the 
Huffman code has an average number of bits that converges to 1 when E goes 
to 0. 

= 1. verify that if p1 < 1/3 then 21 2 2. 

11.4. Prove the Huffman code Proposition 11.1. 
11.5. ' Let X be a random variable with a probability density p ( x ) .  Let Q be a 

quantizer whose bin sizes are { (yk-I, y k ] } l l k l ~ .  

(a) Prove that E{ IX - Q ( X )  1') is minimum if and only if 

(b) Suppose that p ( x )  is a Gaussian with variance mz. Find a and X I  for a "1 

11.6. ' Consider a pulse code modulation that quantizes each sample of a Gaussian 
random vector F[n] and codes it with an entropy code that uses the same 
number of bits for each n. If the high resolution quantization hypothesis is 
satisfied, prove that the distortion rate is 

bit" quantizer defined by yo = -MI, y1 = 0 and yz = +m. 

11.7. ' Let d = Cil',d,,, be the total distortion of a transform code. We suppose 
that the distortion rate d,(r) for coding the mtk coefficient is convex. Let 
R = E:=', R, be the total number of bits. 
(a) Prove that there exists a unique bit allocation that minimizes d(R)  for R 

= - A  where X is a constant that depends fixed, and that it satisfies 
on R. Hint: use Lagrange multipliers. 

@) Derive a new proof of Theorem 11.3. 
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(c) To impose that each R, is a positive integer, we use a greedy iter- 
ative algorithm that allocates the bits one by one. Let { R m , p } ~ + < ~  
be the bit allocation after p iterations, which means that a total of 
p bits have been allocated. The next bit is added to Rk:p such that 

) . Justify this strategy. Prove that this al- 

gorithm gives an optimal solution if all curves dm(r) are convex and if 

Let X[m] be a binary first order Markov chain, which is specified by the 
transition probabilities pol = Pr{X[m] = 1 IX[m - 11 = 0}, pm = 1 - pol , 
pl0 = Pr{X[m] = 0 IX[m - 11 = l} and pl1  = 1 - pl0. 

(a) Prove that PO = Pr{X[m] = 0) = plo/(plo + POI) and that 
PI = Pr{X[m] = 1)  = pod(p lo+po l ) .  

(b) A run-length code records the length 2 of successive runs of 0 values of 
X[m] and the length Z of successive runs of 1. Show that if 2 and Z are 
entropy coded, the average number of bits per sample of the run-length 
code, denoted R, satisfies 

adk(Rk.p) - max I ar I-o<rn<NI ar I 
dm(n+ I)-drn(n) M for all E N. 

11.8. 

which is the average information gained by moving one step ahead in the 
Markov chain. 

(d) Suppose that the binary significance map of the transform code of a signal 
of size N is a realization of a first order Markov chain. We denote a = 
l/E{Z} + l/E{Z}. LetM be the number of significant coefficients (equal 
to 1). K M  << N then show that 

(11.87) 

with P = alog,e - 2alog,a - (1 - a) log,( 1 -a). 
(e) Implement a run-length code for the binary significance maps of wavelet 

image coefficients d:[n,m] = (f7+i:n,m), for j and 1 fixed. See whether 
(11.87) approximates the bit rate R calculated numerically as a function 
of N/M for the Lena and Barbara images. How does a vary depending 
on the scale 2j and the orientation 1 = 1,2,3? 

Implement in WAVELAB a transform code that can compress an image in any 
basis of a separable wavelet packet dictionary. Perform numerical experiments 
on the LM, Barbara and Peppers images. Compute the bit rate R in the "best 
basis" that minimizes the two cost functions (9.68) and (1 1.59). Compare the 
results. Is it more efficient to code these images with one of these best basis 
algorithm compared to a fixed wavelet basis? 

1 1.9. 
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11.10. Implement the P E G  compression algorithm and replace the DCT-I by an 
orthogonal local cosine transform over blocks of the same size. Compare the 
compression rates in DCT-I and local cosine bases, as well as the visual image 
quality for R E [O. 2, I]. 

Implement a zero-tree embedded wavelet code for one-dimensional signals. 
Implement an adaptive image coder that selects a best basis by minimizing 

the cost function (11.58) in a wavelet packet dictionary. To optimize your 
transform code, you can either restrict the size of the wavelet packet dictionary, 
or elaborate an entropy code to specify the chosen basis within the dictionary. 
Compare this transform code with a wavelet transform code. 

Elaborate and implement a wavelet transform code for color images. Trans- 
form the red, green and blue channels in the color Karhunen-Lokve basis 
calculated in Problem 9.8. Find an efficient algorithm that encodes together 
the embedded significance maps of these three channels, which are uncorre- 
lated but highly dependent. Take advantage of the fact that the amplitude of 
grey level variations typically decreases from the Karhunen-Mve channel of 
highest variance to that of lowest variance. 

For most images, the amplitudes of DCT-I coefficients used in P E G  have 
a tendency to decrease when the frequency of the cosine vectors increases. 
Develop an embedded DCT-I transform code that takes advantage of this 
property by using zero-trees to record the position of significant coefficients 
in each block of 64 DCT-I coefficients [358]. 

Develop and implement an algorithm that computes the optical flow of an 
image sequence with the coarse to fine multiscale matching strategy described 
in Section 11.5.1. 

Develop a video compression algorithm in a three dimensional wavelet ba- 
sis [341]. In the time direction, choose a Haar wavelet in order to minimize 
the coding delay. This yields zero coefficients at locations where there is no 
movement in the image sequence. Implement a separable three-dimensional 
wavelet transform and design an efficient algorithm that records the positions 
of coefficients quantized to zero. How does your compression scheme com- 
pare to a motion compensation algorithm? 

11.17. Letr(t) bethetrajectoryintheimageoftheprojectionof apointthatmoves 
in a scene. Suppose that the illumination of a scene changes in time by a factor 

(a) Explain why the image intensity satisfies f ( x ( t ) , t )  = Xl(t) where Xis a 

(b) Write a modified optical flow equation that adds a term Z'(t)/ l( t)  to the 

(c) Modify the wavelet flow algorithm of Section 11.5.1 to recover both the 

Let f and f p+l be two consecutive images of N2 pixels in a video sequence. 
With the results of Problem 7.14 and Problem 7.15, design a fast filter bank 
algorithm that requires O(N2) operations to compute all the inner products 
that appear in equation (1 1.86), for 4N-' 5 2j < 1 and 2jn E [0,1]*. Compute 
the motion vectors as a least square solution of these wavelet optical flow 

11.1 1. 
11.12. 

11.13. 

1 1.14. 

11.15. 

11.16. 

w>. 
constant. 

optical flow equation (1 1.79). 

motion vectors and the illumination change. 
11.18. 
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systems. Compare your implementation with the Matlab code available at 
http://wave.crnap.polytechnique.fr/soft/OF/. 



APPENDIX A 

MATH EMATICAL COMPLEMENTS 

mportant mathematical concepts are reviewed without proof. Sections A.1- 
A S  present results of real and complex analysis, including fundamental prop- I erties of Hilbert spaces, bases and linear operators [63]. Random vectors and 

Dirac distributions are covered in the last two sections. 

A. I FUNCTIONS AND INTEGRATION 

Analog signals are modeled by measurable functions. We first give the main 
theorems of Lebesgue integration. A function f is said to be integrable if 
Jyz I f  (t)I dt < +x. The space of integrable functions is written L1(W). Two 
functions f l  and f 2 are equal in L'(W) if 

This means that f 1 ( t )  and f 2 ( t )  can differ only on a set of points of measure 0. 
We say that they are almost everywhere equal. 

The Fatou lemma gives an inequality when taking a limit under the Lebesgue 
integral of positive functions. 

Lemma A.l (FATOU) Let { f n } n E ~  be a family of positive functions fn ( t )  2 0. If 
limn,+, f n ( t )  = f ( t )  almost everywhere then 

59 I 
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The dominated convergence theorem supposes the existence of an integrable 
upper bound to obtain an equality when taking a limit under a Lebesgue integral. 

Theorem A.l (DOMINATED CONVERGENCE) Let { f n } n E ~  be a family such that 
limn,+, f n(t) = f (t) almost mewhere.  If 

+33 

h EN Ifn(t>l I g(f) and J_, g(t> dt < +m (A.1) 

then f is integrable and 

r+w r+w 

The Fubini theorem gives a sufficient condition for inverting the order of inte  
ga ls  in multidimensional integrations. 

TheoremA.2 (FuBINI) Us-'," (s:: I f (xl,x2)ldxl) d x z  < +GO then 

~ y [ ~ f ( x l , x z ) d x l d x 2  = [T (J-+kof (Xl,X2)dx1) 

Convexity A function f (t) is said to be convex if for all p1, pz  > 0 with PI + pz  = 
1andall(t1,tz)€R2, 

f (Pltl+ P2t2) I P1 f (tl) + P z f  (12) . 

The function - f satisfies the reverse inequality and is said to be concave. If f 
is convex then the Jensen inequality generalizes this property for any P k  2 0 with 

K x k = l  Pk = 1 and any tk € R: 

The following proposition relates the convexity to the sign of the second order 
derivative. 

Proposition A.1 Iff is twice differentiable, then f is convex ifand only iff "(t) 2 
0 for all t E R. 

The notion of convexity also applies to sets R c R". This set is convex if for 
allp1,pz > Owithpl +p2 = 1 andall (XI,XZ) E R2, thenplxl +pzxz E R. If Riis 
not convex then its convex hull is defined as the smallest convex set that includes 
a. 
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A.2 BANACH AND HILBERT SPACES 

Banach Space Signals are often considered as vectors. To define a distance, we 
work within a vector space H that admits a norm. A norm satisfies the following 
properties: 

Vf E H  , l l f l l  2 0  and l l f l l  = o  @ f = O ,  
VA E @. I l A f l l  = 1x1 I l f l l :  

Y f , g  E H 7 Ilf+gll I llfll + llgll. 

(A.3) 
(A.4) 
(A.5) 

With such a norm, the convergence of { f n } n E ~  to f in H means that 

To guarantee that we remain in H when taking such limits, we impose a complete- 
ness property, using the notion of Cauchy sequences. A sequence { f n } n E ~  is a 
Cauchy sequence if for any E > 0, if n and p are large enough, then l l fn  - f 1 1  < E. 

The space H is said to be complete if every Cauchy sequence in H converges to 
an element of H. 

Example A.l For any integer p > 0 we define over discrete sequences f [n] 

The space 1P = {f : llfllP < +a} is a Banach space with the n o m  Ilfllp. 

Example A.2 The space LP(W) is composed of the measurable functions f on IR 
for which 

This integral defines a norm and LP(W) is a Banach space, provided one identifies 
functions that are equal almost everywhere. 

Hilbert Space Whenever possible, we work in a space that has an inner product 
to define angles and orthogonality. A Hilbert space H is a Banach space with an 
inner product. The inner product of two vectors (f, g}  is linear with respect to its 
first argument: 

VA1, A2 E @. , 0 1  f l  + A2 f 2 ,  g )  = A1 (fl, g )  + A2 (f2, g ) .  

( f , d  = ( g : f ) * .  

(A.6) 

It has an Hermitian symmetry: 
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Moreover 
(f,f) 2 0  and (f,f) = O  e- f = o .  

One can verify that I ( f l l  = (f,f)’l2 is a norm. The positivity (A.3) implies the 
Cauchy-Schwarz inequality: 

l(f,g)l 5 llfll llgll, (A.7) 

which is an equality if and only i f f  and g are linearly dependent. 

ExampleA.3 An inner product between discrete signals f[n] and g[n] can be 
defined by 

+30 

(f ,d = f[nlg*[nl* 
n=-m 

It corresponds to an 12(2) norm: 

n=--00 

The space 12(Z) of finite energy sequences is therefore a Hilbert space. The 
Cauchy-Schwarz inequality (A.7) proves that 

Example A.4 Over analog signals f ( t )  and g(t), an inner product can be defined 
by 

The resulting norm is 

The space L2(B) of finite energy functions is thus also a Hilbert space. In L2(W), 
the Cauchy-Schwarz inequality (A.7) is 

Il:=f(f)g*(t)dtl 5 (J’” --m lf(t)12dt)1/2 (s’” -x lg(t)l’dt)1/2. 

Two functions f l  and f 2 are equal in L2(B) if 

J -M 
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A.3 BASES OF HILBERT SPACES 

Orthonormal Basis A family {en}nEN of a Hilbert space H is orthogonal if for 
n # P  

(en,  eP> = 0. 
If for f E H there exists a sequence X[n] such that 

N 

then {en},EN is said to be an orthogonal basis of H. The orthogonality implies 
thatnecessarilyX[n] =(f,e,)/llen112andwewn~ 

A Hilbert space that admits an orthogonal basis is said to be separable. 
The basis is orthonormal if 1 1  e, I I = 1 for all n E N. Computing the inner product 

of g E H with each side of (A.8) yields a Parseval equation for orthonormal bases: 

n=O 

When g = f, we get an energy conservation called the Plancherel formula: 

(A.lO) 
n=O 

The Hilbert spaces l2 (Z) and L2 (W) are separable. For example, the family of 
translated Diracs {e,[k] = 6 [ k  - n ] } n E ~  is an orthonormal basis of 12(Z). Chapter 
7 and Chapter 8 construct orthonormal bases of L2(W) with wavelets, wavelet 
packets and local cosine functions. 

Riesz Bases In an infinite dimensional space, if we loosen up the orthogonality 
requirement, we must still impose a partial energy equivalence to guarantee the 
stability of the basis. A family of vectors {en}nEN is said to be a Riesz basis of 
H if it is linearly independent and there exist A > 0 and B > 0 such that for any 
f E H one can find X[n] with 

fl=O 

which satisfies 
1 1 
- B Ilf 1 1 2  I IN.112 I 2 Ilf 112. 

n 

(A.11) 

(A.12) 
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The Riesz representation theorem proves that there exist Zn such that X[n] = (f , a n ) ,  

and (A. 12) implies that 

Theorem 5.2 derives that for all f E H, 

(A.14) 

and 
+W +m 

f = (f, 2,) en = (f, en) 2n-  
n=O n=O 

The dual family {Z,},,, is linearly independent and is also a Riesz basis. The 
case f = ep yields ep = E,'=", (ep ,  2,) e,. The linear independence of {en}nEN 
thus implies a biorthogonality relationship between dual bases, which are called 
biorthogonal bases: 

(en 7 2,) = h[n - PI. (A.15) 

A 4  LINEAR OPERATORS 

Classical signal processing algorithms are mostly based on linear operators. An 
operator T from a Hilbert space HI to another Hilbert space Hz is linear if 

VAi,Xz E , Vf i , f z  E H , T(Xi f i + A z f z )  = Xi T ( f  1 )  + X z T ( f z ) .  

Sup N o m  The sup operator norm of T is defined by 

(A.16) 

If this norm is finite, then T is continuous. Indeed, I( Tf - Tgll becomes arbitrarily 
s m a l l  if 1 1  f - gl) is sufficiently small. 

Adjoint The adjoint of T is the operator T* from Hz to H1 such that for any 
f EH1 andgEH2 

When T is defined from H into itself, it is self-adjoint if T = T*.  

X E C such that 
T f  = X f .  

In a finite dimensional Hilbert space (Euclidean space), a self-adjoint operator is 
always diagonalized by an orthogonal basis {en}Osn<N of eigenvectors 

( T f : g )  = ( f , T * g ) .  

A non-zero vector f E H is a called an eigenvector if there exists an eigenvalue 

Ten = A, en I 
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When T is self-adjoint the eigenvalues A, are real. For any f E H, 
N-1 N - 1  

fl=O fl=O 

In an infinite dimensional Hilbert space, this result can be generalized by intro- 
ducing the spectrum of the operator, which must be manipulated more carefully. 

Orthogonal Projector Let V be a subspace of H. Aprojector PV on V is a linear 
operator that satisfies 

Vf E H  P V f  EV and Vf EV P V f  = f .  

The projector PV is orthogonal if 

Vf E H  : V g E V  (f-Pvf:g)=O. 

The following properties are often used in this book. 

Proposition A.2 IfPv is aprojector on V then the following statements are equiv- 
alent: 

( i )  PV is orthogonal. 
( i i )  PV is self-adjoint. 

(i i i)  llPvlls = 1. 
(iv) Vf E H 9 Ilf -Pvf II = min,,v I l f  - gll. 

If { en}nEN is an orthogonal basis of V then 

If {en}nEN is a Riesz basis of V and { Z n } n E ~  is the biorthogonal basis then 

(A. 17) 

(A. 18) 
n=O fl=O 

Limit and Density Argument Let {T,},,N be a sequence of linear operators from 
H to H. Such a sequence converges weakly to a linear operator T, if 

To find the limit of operators it is often preferable to work in a well chosen 
subspace V c H which is dense. A space V is dense in H if for any f E H there 
exist { f m } m E ~  with f ,,, E V such that 

lim ] I f  - 
m++m 

The following proposition justifies this approach. 
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Proposition A 3  (DENSITY) Let V be a dense subspace of H. Suppose that there 
exists C such that llTnlls I C for all n E N. If 

A.5 SEPARABLE SPACES AND BASES 

Tensor Product Tensor products are used to extend spaces of one-dimensional 
signals into spaces of multiple dimensional signals. A tensor product f l  18 fz 
between vectors of two Hilbert spaces HI and HZ satisfies the following properties: 

Linearity 
V X E C ,  ~ ( f l I 8 f z ) = ( ~ f l ) I 8 f z = f l I 8 ( ~ f z ) .  (A. 19) 

Distributivity 

( f l + g l ) @ ( f ~ + g z ) =  (flI8fz)+(flI8gz)+(glI8fz)+(glI8gz). (A.20) 

This tensor product yields anew Hilbert space H = H1I8 HZ that includes all vectors 
of the form f l @  fz where f l  E HI and f 2 E Hz, as well as linear combinations 
of such vectors. An inner product in H is derived from inner products in HI and 

(fl (A.21) 

Separable Bases The following theorem proves that orthonormal bases of tensor 
product spaces are obtained with separable products of two orthonormal bases. It 
provides a simple procedure for transforming bases for one-dimensional signals 
into separable bases for multidimensional signals. 

Theorem A.3 Let H = Hi €3 Hz. If {eA}nepq and {ez}nEN are two Riesz bases 
respectively of HI and HZ then {e: 18ei}(n,m)Epp is a Riesz basis of H. Zfthe two 
bases are orthononnal then the tensor product basis is also orthonoimal. 

Hz by 
f 2  3 g l@ g2)H = ( f l ,  gl)Hl (fz, &)&. 

Example A S  A product of functions f E L2(R) and g E L2(R) defines a tensor 
product: 

Let L2(Rz) be the space of h(x1 ,xz)  such that 
dxz) = f I8 g(x1 ,a). 

I:ms_lm Ih(x1,~z)12dX1~z < +cm. 

One can verify that L2(Rz) = L2(R) €3 L2(R). Theorem A.3 proves that if 
{$n(t)}nEN is an orthonormal basis of Lz(R), then {$n, ( ~ i ) $ n ~ ( x z ) } ( n ~ : n ~ ) ~ ~  is 
an orthonormal basis of L2 (Rz). 
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Example A.6 A product of discrete signals f E 12(2) and g E 12(Z) also defines 
a tensor product: 

The space 12(Z2) of images h[nl,n2] such that 

f[n1Ig[nzl =f@gb1,nzI .  

is also decomposed as a tensor product l2 ( Z2) = l2 (Z) @ l2 (Z) . Orthonormal bases 
can thus be constructed with separable products. 

A6 RANDOM VECTORS AND COVARIANCE OPERATORS 

A class of signals can be modeled by a random process (random vector) whose 
realizations are the signals in the class. Finite discrete signals f are represented 
by a random vector Y, where Y [n] is a random variable for each 0 5 n < N. For 
a review of elementary probability theory for signal processing, the reader may 
consult [56,59].  

Covariance Operator The average of a random variable X is E{X}. The covari- 
ance of two random variables XI and X2 is 

COV(Xl,X2) = E{ ( X I  - EIXlt) ( X 2  - E{Xd)*). (A.22) 

The covariance matrix of a random vector Y is composed of the N 2  covariance 
values 

R[n,m] = c o v  0 Y[n],Y[m] . 

It defines the covariance operator K which transforms any h[n] into 

N-1 

Kh[n] = C R [ n , m ] h [ m ] .  
m=O 

For any h and g 

N-1 N-1 

n=O n=O 

are random variables and 

Cov((Y,h), (Y,g)) = (Kg,h). (A.23) 

The covariance operator thus specifies the covariance of linear combinations of 
the process values. 
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Karhunen-Loeve Basis The covariance operator K is self-adjoint because 
R[n, m] = R* [m, n] and positive because 

(Kh,h) = E{I(Y,h)12} 20. (A.24) 

This guarantees the existence of an orthogonal basis { gk}O<k<N that diagonalizes 
K: 

Kgk=o;gk- 

This basis is called a Karhunen-Lo2ve basis of Y ,  and the vectors g k  are the 
principal directions. The eigenvalues are the variances 

d = (Kgkrgk) = E{I(Y,gk)12}. (A.25) 

Wide-Sense Stationarity We say that Y is wide-sense stationary if 

E{Y[n] Y*[m]} = R[n,m] = Ry[n-m]. (A.26) 

The correlation at two points depends only on the distance between these points. 
The operator K is then a convolution whose kernel RY [k] is defined for -N < k < N. 
A wide-sense stationary process is circular stationary if Ry [n] is N periodic: 

R Y ~ ]  =Ry[N+n] f o r - N S n i O .  (A.27) 

This condition implies that a periodic extension of Y [n] on Z remains wide-sense 
stationary on Z. The covariance operator K of a circular stationary process is a 
discrete circular convolution. Section 3.3.1 proves that the eigenvectors of circular 
convolutions are the discrete Fourier vectors 

1 i27rkn { g k b l  = exP (7) } O<k<N' 

The discrete Fourier basis is therefore the Karhunen-Lokve basis of circular sta- 
tionary processes. The eigenvalues (A.25) of K are the discrete Fourier transform 
of RY and are called the power spectrum 

(A.28) 

The following theorem computes the power spectrum after a circular convolution. 

Theorem A.4 Let Z be a wide-sense circular stationary random vector. The ran- 
dom vector Y [n] = Z @ h[n] is also wide-sense circular stationary and its power 
spectrum is 

i y [ k ]  = Rz[k] li;[k] 12. (A.29) 
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A.7 DIRACS 

Diracs are useful in making the transition from functions of a real variable to 
discrete sequences. Symbolic calculations with Diracs simplify computations, 
without worrying about convergence issues. This is justified by the theory of 
distributions [66,69]. A Dirac b has a support reduced to t = 0 and associates to 
any continuous function 4 its value at t = 0 

(A.30) 

Weak Conve ence A Dirac can be obtained by squeezing an integrable function 
g such that J-, 7 m  g(t)dt = 1. Let g,(t) = :g(i). For any continuous function 4 

A Dirac can thus formally be defined as the limit 6 = lim,,o g,, which must be 
understood in the sense of (A.3 1). This is called weak convergence. A Dirac is not 
a function since it is zero at t # 0 although its "integral" is equal to 1. The integral 
at the right of (A.3 1) is only a symbolic notation which means that a Dirac applied 
to a continuous function 4 associates its value at t = 0. 

General distributions are defined over the space C r  of testhnctions which are 
infinitely continuously differentiable with a compact support. A distribution d is a 
linear form that associates to any 4 E CF a value that is written J-+z d(t)+(t)dt .  It 
must also satisfy some weak continuity properties [66,69] that we do not discuss 
here, and which are satisfied by a Dirac. ' b o  distributions dl and d2 are equal if 

(A.32) 

Symbolic Calculations The symbolic integral over a Dirac is a useful notation 
because it has the same properties as a usual integral, including change of vari- 
ables and integration by parts. A translated Dirac &(t) = b(t - T) has a mass 
concentrated at T and 

+m 

This means that +*b(u) = $(a). Similarly +*b,(u) = 4(u-7) .  

is zero outside t = T, it follows that 
A Dirac can also be multiplied by a continuous function 4 and since b(t - T) 

q q t ) d ( t - . r )  = +(T)b ( t -T ) .  
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The derivative of a Dirac is defmed with an integration by parts. If qh is con- 
tinuously differentiable then 

+m 
/+m $(t) S'( t )  dt = - ( qh'(t) S( t )  dt = -+'(O).  

J -m J --w 

The k" derivative of b is similarly obtained with k integrations by parts. It is a 
distribution that associates to 4 E Ck 

J -m 

The Fourier transform of S associates to any e-'W' its value at t = 0: 

and after translation & (w)  = The Fourier transform of the Dirac comb 
c( t )  = r:? -w ~ ( t  - n ~ )  is therefore ~ ( w )  = YTY -w e-hTw . The Poisson formula 
(2.4) proves that 

+m 

( 2;k) 
27r 
T 

+)=- 6 w-- 
k=-m 

This distribution equality must be understood in the sense (A.32). 
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SOFTWARE TOOLBOXES 

he book algorithms are implemented in WAVELAB and LASTWAVE, which 
are freeware softwares that can be retrieved through the Internet. Nearly T all the computational figures of the book are reproduced as demos. Other 

freeware toolboxes are listed in Section B.3. Pointers to new software and infor- 
mation concerning the Wavelet Digest newsletter is available at 

http://www.wavelet.org. 

B. I WAVELAB 

WAVELAB is a library of MATLAB routines for wavelets and related time-frequency 
transforms. It is improved and maintained at Stanford University by David Donoho 
with contributions to earlier versions by John Buckheit, Shaobing Chen, Xiaoming 
Huo, Iain Johnstone, Eric Kolaczyk, Jeffrey Scargle, and Thomas Yu [lOS]. It 
requires buying MATLAB, which offers an interactive environment for numerical 
computations and visualizations. MATLAB is a product of The Mathworks company 
based in Natick, Massachusetts. The WAVELAB version 0.800 has more than 800 
files including programs, data, documentation and scripts, which can be retrieved 
at: 

http://www-stat.stanford.edu/Nwavelab. 

Versions are available for Unix workstations, Linux, Macintosh, and PC (Win- 
dows). 

A partial list of directories inside WaveLab is provided (in bold). For each 
directory, we give the names of the main computational subroutines, followed by 
the sections that describe the algorithms and the figures that use them. 

603 
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Datasets Synthetic and real signals. 

Readsignal Reads a Signal from a data set of one-dimensional signals. 
Figures4.7,6.7, 8.19,9.9and9.11. 

ReadImage Reads an Image from an image data set. Figure 9.10. 

Makesignal Makes a synthetic one-dimensional Signal. Figures 2.1,4.3, 
4.14,4.13,4.18,6.3, 6.6,9.1, 10.1, 10.5. 

MakeImage Makes a synthetic Image. Figure 7.26. 

MakeProcess Makes arealization of a stochastic Process. Section 10.6.3. 
Figure 10.19. 

MakeBrownian Makes a realization of a fractional Brownian motion. Sec- 
tion 6.4.3. Figure 6.20. 

6.16 and 6.18. 
Makecantor Makes a generalized Cantor measure. Section 6.4.1. Figures 

Continuous Continuous wavelet transform tools. 

RWT Real Wavelet Transform. Sections 4.3.1 and 4.3.3. Figures 4.7,6.1,6.3, 
6.5,6.6,6.16 and 6.20. 

IRWT Inverse Real Wavelet Transform. Sections 4.3.1 and 4.3.3. 

MMliWT Modulus Maxima of a Real Wavelet Transform. Section 6.2. Figures 

SkelMap Skeleton Map of maxima curves. Section 6.2. Figures 6.5, 6.6, 

AWT Analytic Wavelet Transform. Sections 4.3.2 and 4.3.3. Figures 4.11, 

6.5,6.6,6.7,6.16 and 6.20. 

6.7 and 6.16. 

4.16 and4.17. 

IAWT Inverse Analytic Wavelet Transform. Sections 4.3.2 and 4.3.3. 

RidgeAWT Ridges of an Analytic Wavelet Transform. Section 4.4.2. Fig- 
ures 4.15,4.16 and 4.17. 

Fractals Fractal computations. 

FracPart it ion FractalPartitionfunction based on wavelet modulus max- 
ima. Section 6.4.2. Figure 6.18. 

FracScalExp Fractal Scaling Exponent of the partition function. Section 
6.4.2. Figures 6.18 and 6.20. 
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FracSingSpect Fractal Singularity Spectrum. Section 6.4.2. Figures 
6.18 and 6.20. 

TimeFrequency Time-frequency distributions. 

WindowFT Windowed Fourier Transform. Section 4.2. Figures 4.3, 4.13 
and 4.14. 

IWindowFT InverseWindowedFourierTransform. Sections4.2.1 and4.2.3. 

Ridge-WindowFT Ridges of a Windowed Fourier Transform. Section 
4.4.1. Figures 4.12,4.13 and 4.14. 

WignerDist Wigner-Ville Distribution. Sections 4.5.1 and 4.5.4. Figures 
4.18 and4.19. 

CohenDi s t Cohen class time-frequency Distributions. Sections 4.5.3 and 
4.5.4. Figures 4.20 and 4.21. 

Orthogonal Periodic Orthogonal wavelet transforms. 

FWT-PO Forward Wavelet Transform, Periodized and Orthogonal. Sections 
7.3.1 and7.5.1. Figures7.7and9.2. 

IWT-PO Inverse Wavelet Transform, Periodized and Orthogonal. Sections 
7.3.1 and 7.5.1. Figure 9.2. 

FWT-IO Forward Wavelet Transform, on the Interval and Orthogonal. Sec- 
tions 7.3.1 and 7.5.3. Figure 9.2. 

IWT-IO Inverse Wavelet Transform, on the Interval and Orthogonal. Sections 
7.3.1 and 7.5.3. Figure 9.2. 

FWT2 -PO Forward Wavelet Transform of images, Periodized and Orthogonal. 
Section 7.7.3. Figure 7.26. 

IWT2-PO Inverse Wavelet Transform of images, Periodized and Orthogonal. 
Sections 7.7.3. 

MakeONFilter Makes Orthogonal conjugate mirror Filters for Daube- 
chies, Coiflets, Symmlets, Haar and Battle-LemariC wavelets. Sections 
7.1.3 and 7.2.3. Figure 7.4. 

Cohen-Daubecbies-Vial wavelets. Section 7.5.3. 
MakeOBFilter Makes Orthogonal Boundary conjugate mkor  Filters for 

MakeWavelet Makes graph of orthogonal Wavelets and scaling functions. 
Section7.3.1. Figures7.2,7.5,7.9and7.10. 
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Meyer Meyer orthogonal and periodic wavelet transforms. 

FWT-YM Forward Wavelet Transform With Yves Meyer wavelets. Sections 
7.2.2, 8.4.2 and 8.4.4. 

IWT-YM Inverse Wavelet Transform with Yves Meyer wavelets. Sections 
7.2.2, 8.4.2 and 8.4.4. 

FWT2-YM Forward Wavelet Transform of images withYves Meyer wavelets. 
Sections 7.7.2, 8.4.2 and 8.4.4. 

IWT2-YM Inverse Wavelet Transform of images with Yves Meyer wavelets. 
Sections 7.7.2, 8.4.2 and 8.4.4. 

Biorthogonal Biorthogonal wavelet transforms. 

FWT-PB Forward Wavelet Transform, Periodized and Biorthogonal. Sections 
7.3.2 and 7.4. 

IWT-PB Inverse Wavelet Transform, Periodized and Biorthogonal. Sections 
7.3.2 and 7.4. 

FWT2-PB Forward Wavelet Transform of images, Periodized and Biorthog- 
onal. Section 7.7.3. 

IWT2-PB Inverse Wavelet Transform of images, Periodized and Biorthogo- 
nal. Section 7.7.3. 

MakeBSFi l te r  MakesperfectreconstructionBiorthogonalSyrmnetricFil- 
ters. Section 7.4.3. 

MakeBSWavelet Makes graph of Biorthogonal Symmetric Wavelets and 
scaling functions. Figures 7.14 and 7.15. 

Interpolating Multiscale interpolations. 

FWTDD Forward interpolating Wavelet Transform calculated with Des- 
lauriers-Dubuc filters. Section 7.6.2. 

I WTDD Inverse interpolating Wavelet Transform calculated with Des- 
lauriers-Dubuc filters. Section 7.6.2. 

Invariant Translation invariant wavelet transforms. 

FWTATrou Forward dyadic Wavelet Transform calculated with the Algo- 
rithme h Trous. Section 5.5. Figures 5.5 and 6.7. 
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IWTllTrou Inverse dyadic Wavelet Transform calculated with the Algo- 
rithme 21 Trous. Sections 5.5 and 6.7. 

FWT-Stat Forward dyadic Wavelet Transform calculated with Stationary 
shifts of the signal. Section 10.2.4. Figures 10.4 and 10.5. 

IWT-St at Inverse dyadic Wavelet Transform calculated with Stationary 
shifts of the signal. Section 10.2.4. Figures 10.4 and 10.5. 

MMDWT Modulus Maxima of a Dyadic Wavelet Transform. Section 6.2.2. 
Figure 6.7. 

IMMDWT Inverse reconstruction of signals from Modulus Maxima of a 
Dyadic Wavelet Transform. Section 6.2.2. Figure 6.8. 

FWT2 llTrou Forward dyadic Wavelet Transform of images calculated with 
the Algorithme 2I Trous. Section 6.3.2. Figures 6.9 and 6.10. 

MM2 DWT Modulus Maxima of an image Dyadic Wavelet Transform. Section 
6.3.2. Figures 6.9 and 6.10. 

IMM2DWT Inverse reconstruction of an image from Modulus Maxima of a 
Dyadic Wavelet Transform. Section 6.3. Figure 6.1 1. 

Packets Best wavelet packet and local cosine bases. 

One-D For one-dimensional signals. 

WPTour WavePacket tree decomposition and best basis selection. Sec- 
tions 8.1 and 9.4. Figures 8.6 and 8.8. 

MakeWavelet Packet Makes graph of Wavepacket functions. Section 
8.1. Figures 8.2 and 8.4. 

CPTour Local Cosine Packet tree decomposition and best basis selection. 
Sections 8.5 and 9.4. Figures 8.19,9.9 and 9.11. 

KLinCP Karhunen-Lohe basis estimation in a Cosine Packet tree. Section 
10.6.2. Figure 10.19. 

'ho-D For two-dimensional signals. 

WP2 Tour WavePacket 2-dimensional decomposition and best basis selec- 
tion. Sections 8.2 and 9.4.2. 

CPaTour Local Cosine Packet 2-dimensional decomposition and best ba- 
sis selection. Sections 8.5.3 and 9.4.2. Figures 8.22 and 9.10. 
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Pursuit Basis and matching pursuits. 

WPBPursuitTour Wavepacket dictionary for Basis Pursuits. Section 
9.5.1. Figure 9.11. 

CPBPursuitTour Cosine Packet dictionary for Basis Pursuits. Section 
9.5.1. 

WPMPursuit Tour Wavepacket dictionary for Matching Pursuits. Section 
9.5. Figures 9.11 and 9.12. 

CPMPursuitTour Cosine Packet dictionary for Matching Pursuits. Sec- 
tion 9.5. 

GaborPursuitTour Gabor dictionary for Matching Pursuits. Section 
9.5.2. Figures 9.11(b) and 9.12. 

DeNoising Removal of additive noises. 

ThreshWave Thresholds orthogonal Wavelet coefficients. Section 10.2.4. 
Figures 10.4 and 10.5. 

ThreshWave2 Thresholds orthogonal Wavelet coefficients of images. Sec- 
tion 10.2.4. Figure 10.6. 

ThreshWP Thresholds coefficients of a best Wavepacket basis. Section 
10.2.5. 

ThreshCP Thresholds coefficients of a best Cosine Packet basis. Section 
10.2.5. Figure 10.8. 

CohWave Coherent threshold of orthogonal Wavelet coefficients. Section 
10.5.1. Figure 10.15. 

Figure Demonstration The Wavelab directory has a folder called WaveTour. 
It contains a subdirectory for each chapter (WTChO 1, WTChO2,. . . ); these subdi- 
rectories include all the files needed to reproduce the computational figures. Each 
directory has a demo file. For example, the figures of Chapter 4 are reproduced 
by invoking the file WTCh04Demo in NIATLAB. A menu bar appears on the screen, 
listing all computational figures of Chapter 4. When a figure number is activated 
by a mouse-click, the calculations are reproduced and the resulting graphs are dis- 
played in a separate window. The command window gives a narrative explaining 
the results. The file WTCh04Demo. m is in the directory WTCh04. The h h m  
source code that computes Figure 4.X is in the file wt04f igX .m in that same 
directory. Equivalent names are used for all other chapters. 
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B.2 LASTWAVE 

LASTWAVE is a wavelet signal and image processing environment, written in C for 
X1 l/Unix and Macintosh computers. This stand-alone freeware does not require 
any additional commercial package, and can be retrieved through the Internet at: 

http://wave.cmap.polytechnique.fr/soft/LastWave/ . 
LASTWAVE was created and is maintained by Emmanuel Bacry, at Ecole Poly- 
technique in France. It includes a command line language, and a high level 
object-oriented graphic language for displaying simple objects (buttons, strings, ...) 
and more complex ones (signals, images, wavelet transforms, time-frequency 
planes...). The computational subroutines and commands are regrouped in in- 
dependent packages. An extensive on-line documentation is available. New com- 
mands are added with the command language or as C subroutines. This software 
is rapidly evolving with packages provided by users across the Internet. The cur- 
rent contributors include Benjamin Audit, Geoff Davis, Nicolas Decoster, Jdr6me 
Fraleu, Rdmi Gribonval, Wen-Liang Hwang, Stkphane Mallat, Jean Frangois Muzy 
and Sifen Zhong. The following gives a list of current packages (in bold) with 
their main computational commands, and the sections they relate to. 

Signal Section 3.3. 

s= Arithmetic calculations over signals. 

f f t Forward and inverse fast Fourier transforms. 

conv Fast convolution. 

Wavelet Transform (Id) Sections 4.3 and 7.3. 

cwt Continuous wavelet transform. 

owt d , owt r Orthogonal and biorthogonal wavelet transforms, forward and 
reverse. 

wthre sh Wavelet coefficient thresholding. 

Wavelet Transform Maxima (ld) Section 6.2. 

extrema, chain Computes the maxima of a continuous wavelet trans- 
form, and chains them through scales. 

Wavelet Transform Modulus Maxima Method (la) Section 6.4. 

pf Computes the partition functions and singularity spectra of multifractal 
signals. 
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Matching Pursuit Sections 4.2 and 9.5.2. 

s t f t d Short time windowed Fourier transform. 

mp , mpr Matching pursuit in a Gabor dictionary, forward and reverse. 

Image Section 3.4. 

i = Arithmetic operations over images. 

Orthogonal Wavelet Transform (2d) Section 7.7.2. 

owtad, owt2r Orthogonal and biorthogonal wavelet transforms of im- 
ages, forward and reverse. 

Dyadic Wavelet Transform (2d) Section 6.3. 

dwt2d I dwt2r Dyadic wavelet decomposition of images, forward and re- 
verse. 

extrema2 I extreconsa Computes the modulus maxima of a dyadic 
wavelet transform, and reconstructs the image from these maxima. 

chain2 Computes the chains of modulus maxima corresponding to edges. 

denoise2 Denoising by thresholding the chains of modulus maxima. 

Compression (2d) Section 11.4.2. 

code2 , decode2 Image compression with a wavelet transform code, and 
reconstruction of the coded image. 

8.3 FREEWARE WAVELET TOOLBOXES 

We give a partial list of freeware toolboxes for wavelet signal processing that can 
retrieved over the Internet. 

EMBEDDED IMAGE COMPRESSION is a C++ software for wavelet image com- 
pression (Amir Said and William Pearlman): 

http://ipl.rpi.edu/SPIHT 

FRACLAB is wavelet fractal analysis toolbox developed at INRIA (Christophe 
Canus, Paul0 Goncalv&s, Bertrand Guiheneuf and Jacques L6vy Velel): 

http://www-syntim.inria.fr/fractales/. 
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MEGAWAVE is a collection of command line C subroutines under Unix for 
wavelet, wavelet packet and local cosine processing, with sound and image pro- 
cessing applications (Jacques Froment): 

http://www.ceremade.dauphine.fr/Nmw. 

RICE WAVELET TOOLBOX is a wavelet Matlab toolbox with orthogonal and 
biorthogonal transforms and applications to denoising (DSP p u p  at Rice univer- 
sity): 

http://www-dsp.rice.edu/software/RWT. 

SWAVE is an S+ tool box with continuous wavelet transforms and windowed 
Fourier transforms, including detection of ridges (Rent Carmona, Wen-Liang 
Hwang and Bruno Torresani): 

http://chelsea.princeton.edu/Nrcarmona/TFbook/. 

TIME-FREQUENCY is a Matlab toolbox for the analysis of non-stationary sig- 
nals with quadratic time-frequency distributions (Francois Auger, Patrick Flandrin, 
Olivier Lemoine and Paul0 Goncalvks): 

http://www.physique.ens-lyon.fr/ts/tftb.html. 

XWL, WPLIB, DENOISE are libraries of subroutines that implement orthogonal 
signal decompositions in dictionaries of wavelet packet and local cosine bases, 
with applications to noise removal and signal compression (wavelet group at Yale 
University): 

http : //pascal.math. yale. edu/pub/wavelets/software/ . 

WAVELET TOOLBOX IN KHOROS includes orthogonal and biorthogonal wavelet 
transforms for multidimensional signals (Jonio Cavalcanti and Ramiro Jordon): 

http : //www. khoral. com/obtain/contrib. html 
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curves, 191 
of wavelet transform, 176, 190, 

propagation, 178 
203 

Median filter, 459 
Mexican hat wavelet, 80, 146 
Meyer 

wavelet, 247,606 
wavelet packets, 361 

distortion rate, 548,572 
estimation, xx, 16,435,442 
risk, 16,443,469,473,474,485 
theorem, 443 

Minimax 

Mirror wavelet basis, 497 
Modulus maxima, 176,189,466 
Modulus of continuity, 299 
Mother wavelet, 68, 156 
Motion 

compensation, 582,585 
estimation, 527,577 

Moyal formula, 110 
MPEG, 17,527,585 
Multifractal, 6,200 

partition function, 205,604 
scaling exponent, 206,604 

Mulhsolution approximations 
definition, 221 
piecewise constant, 223,234, 

305 
Shannon, 223,224,234,305 
splines, 224,235, 305 

Multiscale derivative, 167 
Multiwavelets, 244,3 18 
MUSICAM, 546 

Neural network, 424 
Norm, 593 

LZ(R), 594 

12(2), 594 
11, 418 

lp, 390,395,410,593 
Hilbert-Schmidt, 508 
sup for operators, 596 
weighted, 542,563 

Operator 
adjoint, 596 
Hilbert-Schmidt norm, 508 
preconditioning, 489 
projector, 597 
sup norm, 596 
time-invariant, 20,49 

equation, 579 

attenuation, 449,474,487 
distortion rate, 549 
estimation, 448,479 
projection, 449,455 

basis, 47,595 
projector, 597 

optical flow, 577 

Oracle 

Orthogonal 

Orthosymmetric set, 476,485,574 

Parsed formula, 26,595 
Partition function, 205 
Periodogram, 5 12 
Piecewise 

constant, 223,234,305 
polynomial, 44 1,479 
regular, 392,403 

Pixel, 60 
F'lancherel formula, 26,595 
Poisson formula, 28,242 

approximation, 295 
spline, see Spline 

Polyphase decomposition, 275 
Posterior distribution, 435 

Polynomial 
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Power spectrum, 439,508,600 

Pre-echo, 545 
Preconditioning, 489 
Prediction, 520 
Prefix code, 529 
Principal directions, 387,600 
Prior distribution, 435 
Prior set, 442 
Pseudo inverse, 128,491 
PSNR, 550 
Pursuit 

regularization, 5 1 1,5 12 

basis, 41 8 
matching, 421,505 
of bases, 504 
orthogonal matching, 428 

Quad-tree, 339,372,570 
Quadratic 

convex hull, 470,476 
convexity, 470 

Quadrature mirror filters, 259,316 
Quantization, 16,527,537 

adaptive, 545 
bin, 537 
high resolution, 537,540,549 
low resolution, 55 1 
uniform, 538,549 
vector, 528 

Random shift process, 387,441 
Real wavelet transform, 80,604 

energy conservation, 80 
inverse, 80,604 

Reproducing kernel 
frame, 136 
wavelet, 83 
windowed Fourier, 74 

Residue, 421,428,503 
Restoration, 486,492 
Ridges 

wavelet, 103,604 
windowed Fourier, 97,605 

Riemann function, 217 

Riemann-Lebesgue lemma, 40 
Riesz basis, 131,222,596 
Rihaczek distribution, 120 
Risk, 15,435 
Run-length code, 561 

Sampling 
block, 49 
generalized theorems, 48,293 
irregular, 126,127 
redundant, 137 
two-dimensional, 60 
Whittaker theorem, 43,60 

Satellite image, 498 
Scaling equation, 228,295 
Scaling function, 83,225 
Scalogram, 86 
Schur concavity, 409 
Segmentation, 160 
Self-similar 

function, 6,202 
set, 200 

basis, 63,598 
block basis, 345 
convolution, 61 
decomposition, 63 
filter, 62 
filter bank, 341 
local cosine basis, 373 
multiresolution, 304 
wavelet basis, 304,306 
wavelet packet basis, 341 

code, 532 
entropy theorem, 530 
multiresolution, 224 
sampling theorem, 43 

Sigma-Delta, 138, 160 
Signal to Noise Ratio, 440 
Significance map, 551,561,566 
Singularity, 6, 163 

S N R ,  440 

Separable 

Shannon 

spectrum, 205,605 
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Sobolev 
differentiability, 378,383 
space, 379,383,395 

Sonar, 101 
Sound model, 93 
Spectrogram, 70 
Spectrum 

estimation, 510,512,523 
of singularity, 205,605 
operator, 597 
power, 600 

Speech, 93,428,526 
Spline 

approximation, 393 
multiresolution, 224 
wavelet basis, 239 

Stationary process, 388,512 
circular, 439 
locally, 516,544 

Stein Estimator, 456 
SURE threshold, 455,457,460,481 
Symmetric filters, 269,606 
Symmlets, 253,460,605 

Tensor product, 304,598 
Texture discrimination, 158 
Thresholding, 467 

approximation, 389 
best basis, 467 
coherent, 503, 608 
estimation, 15, 16,462,488 
hard, 450,460 
local cosine, 608 
maxima, 466 
risk, 450,476,480 
soft, 451,460 
SURE, 455,457,460,481 
threshold choice, 454,467,488, 

translation invariant, 457,462 
wavelet packets, 608 
wavelets, 460,480,485,511, 

503 

608,610 

Time-frequency 
atom, 2,67 
plane, 2,68 
resolution, 69,75,85,99, 107, 

112,117,332 
Tomography, 41 
Tonality, 545 
Total variation 

discrete signal, 34 
function, 33,380,397 
image, 36 

Transfer function, 62 
analog, 25 
discrete, 50 

PEG, 17,561 
with wavelets, 17, 557 

Transform code, 16,526,527,610 

Transient, 415 
Translation invariance, 146,183,363, 

425,457,462,471 
Triangulation, 404 
Turbulence, 215 

Uncertainty principle, 2, 30,67,69, 
75 

Uniform sampling, 43 

Vanishing moments, 166,241,295, 
383,391,559 

Variance estimation, 459,5 11 
video compression, 17,527,577 
Vision, 156,587 
Von Koch fractal, 202 

Walsh wavelet packets, 330 
WaveLab, xvii, 603 
Wavelet basis, 235,238 

Battle-Lemarit, 249,393,605 
boundary, 258,286,605 
choice, 241,559 
Coiflets, 254 
Daubechies, 8,250 
discrete, 263 
folded, 284 
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graphs, 259,606 
Haar, 248 
interval, 281,383 
lazy, 275 

Meyer, 247 
mirror, 497 
orthogonal, 7 
periodic, 282,605 
regularity, 244 
separable, 306 
Shannon, 246 
Symmlets, 253 

M-band, 333,546 

Wavelet packet basis, 325,411,413, 
466,496,546 

quad-tree, 372 
tree, 324,607 
two-dimensional, 339,607 
Walsh, 330 

Wavelet transform, 5 
admissibility, 82, 144 
analytic, 5,85,604 
continuous, 5,79,609 
decay, 169,171 
dyadic, 148 
frame, 143 
maxima, 148,176,191,466, 

604,610 
multiscale differentiation, 167 
oriented, 156 
real, 80 
ridges, 102,175 

Weak convergence, 601 
White noise, 439,447,503 

Wiener estimator, 437,441,472 
Wigner-Ville 

cross terms, 112 
discrete, 120 
distribution, 3,67,107,112, 

427,605 
instantaneous frequency, 109 
interferences, 112 
marginals, 111 
positivity, 114 

Blackman, 77 
design, 54, 76, 362 
discrete, 54 
Gaussian, 77 
Hamming, 77 
Hanning, 54,77 
rectangle, 54 
scaling, 75 
side-lobes, 54,76,99 
spectrum, 5 12 

605 

Window 

Windowed Fourier transform, 3,70, 

discrete, 77 
energy conservation, 72 
frame, 138 
inverse, 72 
reproducing kernel, 74 
ridges, 97 

Zak transform, 16 1 
Zero-tree, 568,570 
Zygmund class, 170 









a wavelet 

%phe Wis a Rofessor in the Computer science Oepamnent of the Cowant Instilute of Mathematical Sdences at New Yolk 
himiiyonda Rdeaarja the Applied Molhemolio Oepamnentatkole Pdytechniqua, Paris, Fmnce. He hos been a visiling 
p h o r i n  Ihe Elecbiad E n g h i q  oepomnentathhdmtts Institute Oflbhokqy ad in the Applied Molhemalia oepamnent 
at the University of Tel Aviv. 
Ik Mdbt rewived the 1990 IEEE Signal Roceffing society's paper OWMd, the 1993 AHred Sban felbwship in Molhematia, the 
1997 ovmondiy Achkmnt Awmd fmm the SPlE OptKal Engineeiy society, and the 1997 Bbi pax01 h e  in applied 

I 

*,fnmthe French Academyofsdences. 


	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Dedication
	Table of Contents
	Preface
	Preface to the Second Edition
	Notation

	Chapter 1: Introduction to a Transient World
	1.1 Fourier Kingdom
	1.2 Time-Frequency Wedding
	1.3 Bases of Time-Frequency Atoms
	1.4 Bases for What?
	1.5 Travel Guide

	Chapter 2: Fourier Kingdom
	2.1 Linear Time-Invariant Filtering
	2.2 Fourier Integrals
	2.3 Properties
	2.4 Two-Dimensional Fourier Transform
	2.5 Problems

	Chapter 3: Discrete Revolution
	3.1 Sampling Analog Signals
	3.2 Discrete Time-Invariant Filters
	3.3 Finite Signals
	3.4 Discrete Image Processing
	3.5 Problems

	Chapter 4: Time Meets Frequency
	4.1 Time-Frequency Atoms
	4.2 Windowed Fourier Transform
	4.3 Wavelet Transforms
	4.4 Instantaneous Frequency
	4.5 Quadratic Time-Frequency Energy
	4.6 Problems

	Chapter 5: Frames
	5.1 Frame Theory
	5.2 Windowed Fourier Frames
	5.3 Wavelet Frames
	5.4 Translation Invariance
	5.5 Dyadic Wavelet Transform
	5.6 Problems

	Chapter 6: Wavelet Zoom
	6.1 Lipschitz Regularity
	6.2 Wavelet Transform Modulus Maxima
	6.3 Multiscale Edge Detection
	6.4 Multifractals
	6.5 Problems

	Chapter 7: Wavelet Bases
	7.1 Orthogonal Wavelet Bases
	7.2 Classes of Wavelet Bases
	7.3 Wavelets and Filter Banks
	7.4 Biorthogonal Wavelet Bases
	7.5 Wavelet Bases on An Interval
	7.6 Multiscale Interpolations
	7.7 Separable Wavelet Bases
	7.8 Problems

	Chapter 8: Wavelet Packet and Local Cosine Bases
	8.1 Wavelet Packets
	8.2 Image Wavelet Packets
	8.3 Block Transforms
	8.4 Lapped Orthogonal Transforms
	8.5 Local Cosine Trees
	8.6 Problems

	Chapter 9: An Approximation Tour
	9.1 Linear Approximations
	9.2 Non-Linear Approximations
	9.3 Image Approximations with Wavelets
	9.4 Adaptive Basis Selection
	9.5 Approximations with Pursuits
	9.6 Problems

	Chapter 10: Estimations Are Approximations
	10.1 Bayes versus Minimax
	10.2 Diagonal Estimation in a Basis
	10.3 Minimax Optimality
	10.4 Restoration
	10.5 Coherent Estimation
	10.6 Spectrum Estimation
	10.7 Problems

	Chapter 11: Transform Coding
	11.1 Signal Compression
	11.2 Distortion Rate of Quantization
	11.3 High Bit Rate Compression
	11.4 Image Compression
	11.5 Video Signals
	11.6 Problems

	Backmatter
	Appendix A: Mathematical Complements
	Appendix B: Software Toolboxes
	Bibliography
	Index

	Back Cover



