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Abstract

To provide a convincing proof that a new method is better than the state-of-the-art, computer graphics projects
are often accompanied by user studies, in which a group of observers rank or rate results of several algorithms.
Such user studies, known as subjective image quality assessment experiments, can be very time consuming and do
not guarantee to produce conclusive results. This paper is intended to help design efficient and rigorous quality
assessment experiments and emphasise the key aspects of the results analysis. To promote good standards of data
analysis, we review the major methods for data analysis, such as establishing confidence intervals, statistical
testing and retrospective power analysis. Two methods of visualising ranking results together with the meaningful
information about the statistical and practical significance are explored. Finally, we compare four most prominent
subjective quality assessment methods: single-stimulus, double-stimulus,forced-choice pairwise comparison, and
similarity judgements. We conclude that the forced-choice pairwise comparison method results in the smallest
measurement variance and thus produces the most accurate results.This method is also the most time-efficient,
assuming a moderate number of compared conditions.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—

Keywords: image quality, quality metrics, subjective metrics, ranking, user studies, single stimulus, double stim-
ulus, pairwise comparison, similarity judgements

1. Introduction

When developing a new imaging or computer graphics algo-
rithm, there is often a need to compare the results with the
state-of-the-art methods. The vast majority of publications
in computer graphics rely on rather informal validation, in
which several examples included in the paper can be care-
fully inspected and compared with the results of competitive
algorithms. This is an effective method, which often pro-
vides a sufficiently convincing proof of superiority of a new
algorithm, but only if the visual difference is unquestionably
large. If the differences are subtle, such informal comparison
is often disputable. There is also a question of how a few
very carefully selected and fine-tuned images generalise to
the entire population of cases, which the proposed algorithm

is claimed to handle. Can the judgement of the authors and
several reviewers generalise to the whole population of po-
tential users? There is definitely some lack of rigour in such
endeavours. For these reasons there is a strong new trend to
support the visual results by user studies, in which a larger
group of assessors make judgements about their preference
of one method over another.

Such user studies, or subjective quality assessment methods,
are the main focus of this paper. They are becoming almost a
compulsory part of many research projects. User studies are
much more tedious than the informal comparison included in
most papers, yet when done improperly, they do not improve
generality and strength of the results. There are numerous
methods of subjective quality assessment, but it is not clear
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which method is the most effective one and leads to the most
accurate results. The experimental results are often noisy and
their proper analysis and interpretation is not trivial. Finally,
the results for a few selected images may not generalise to
another set of images. Therefore, statistical testing is crucial
to build a confidence in the data.

In this work we address the problem of designing effec-
tive subjective quality assessment experiments and analysing
their results. The four most prominent experimental meth-
ods selected for this study are described in detail in Sec-
tion 3. In Section4 we explain how to compute the relevant
score values from raw experimental data. To compare the
four experimental methods, a number of experiments have
been conducted on two basic image distortions, JPEG2K im-
age compression and unsharp masking. The collected data
let us seek to answer the following important questions: Are
the measurements reliable (Section5.2)? Which experimen-
tal method is the most efficient and accurate (Section5.3
and5.4)? How many observers need to participate in the ex-
periments (Section5.5)?

The paper offers the following contributions:

• Compares the four most dominant methods of quality as-
sessment by comparing sensitivity and time effort of each
method. It helps to make an informed choice when decid-
ing on the most appropriate experimental procedure.

• Introduces the reader to the field of subjective quality
assessment and outlines the most important methods for
data analysis. Such information is difficult to find in one
place and often requires referring to several lengthy stan-
dard documents.

2. Related work

The subjective image quality assessment methods originate
from a wider group of psychometric scaling methods, which
were developed to measure psychological attributes [Tor85].
Image quality is one such attribute that describes preference
for a particular image rendering. The interest in image and
video quality assessment has been predominantly focused on
video compression and transmission applications, resulting
in several recommendations for the design of quality assess-
ment experiments [IR02,Kee03, IT08]. The documents rec-
ommend experimental procedures (some of them evaluated
in this study), viewing conditions, display calibration param-
eters and the methods for experimental data processing. The
goal of these experimental procedures is finding a scalar-
valued ’quality correlate’ that would express the level of im-
pairment (in case of video compression) or overall quality.
In this work we discuss how to interpret such quality cor-
relates in the context of rating rendering methods. We also
focus on statistical testing, which is a topic often neglected
in the quality assessment literature.

The standards, such as [IR02], describe the detailed proce-

dures, but lack the wider context, statistical background and
are limited to the recommended techniques. A more infor-
mative explanation of the scaling methods used for image
quality assessment can be found in [Eng00] and [CW11].
This paper summarises some practical insights from those
formal works in a more concise form. Because of such a
concise form, the reader is expected to understand selected
concepts of statistical analysis, such as ANOVA or multiple
comparisons. References to the statistical textbook [How07]
are provided whenever such knowledge is required.

Psychometric methods are not new to computer graphics.
Recent SIGGRAPH courses, such as [Fer08] and [SWB09],
demonstrate increasing interest in them. Psychometric meth-
ods have been used to scale a light reflection model in a per-
ceptually meaningful space [PFG00], or to find the best set
of parameters for tone mapping [YMMS06] or colour cor-
rection [MMTH09]. But the most prominent application of
experimental methods is comparison and validation of the
results produced by graphics algorithms. There is a grow-
ing share of publications that are accompanied by quality
comparison studies, but there is also work devoted explic-
itly to comparison of existing methods, for example tone
mapping operators [LCTS05, vWNA08] or image retarget-
ing methods [RGSS10]. These studies, however, benefit lit-
tle from the research that has been devoted to image quality
assessment. This work is intended to bridge the gap between
quality assessment research and practical quality compari-
son studies in computer graphics.

Relatively little work has been devoted to comparing sub-
jective quality assessment methods. Dijk et al. [vDMW95]
compared the direct ranking method (category scaling) with
similarity judgements (functional measurement) and found
that the results of direct ranking can be biased when the eval-
uated distortions are of a very different nature. Tominaga et
al. [THOT10] compared eight direct rating methods and con-
firmed very high correlation between their results. However,
little work has been done to compare the sensitivity of rating
and ranking methods, which is one of the main objectives of
this study.

Quality assessment would be a much easier task if it could be
performed by a computational algorithm without a need for
a subjective experiment. A large number of such algorithms,
known as objective quality metrics, have been proposed over
the years [WB06,PH11]. Their predictions can correlate well
with the subjective experiments if trained for a restricted set
of distortions [SSB06], but their accuracy decreases with the
growing variety of distortions [PLZ∗09]. Given the range of
distortions that can be found in computer graphics, variety of
content (images, video, geometry, textures) and complex us-
age scenarios, it is rather unlikely that computational metrics
can completely replace the need for subjective experiments
in the near future.
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Figure 1: Overview of the four subjective quality assessment methods we investigate in this work. The diagram shows the
timeline of each method and the corresponding screens.

Figure 2: The reference images (scenes) from the public do-
main Kodak Photo CD used in the experiments.

3. Subjective quality assessment

To avoid ambiguities, let us introduce a consistent naming
convention for all subsequent sections. Our goal is to com-
pare the quality between the results of several algorithms,
each using several sets of parameters. Following [IR02], the
combination of the algorithm and its parameters is called a
condition. Quality is assessed for severalscenes, each de-
picting different content, and each scene is rendered at sev-
eral conditions. The experiment is run by manyobservers,
and each observer can make severalrepetitions of the ex-
periment. The image produced for a particular condition and
for a particular scene is atest imagewhile the original undis-
torted image is areference.

3.1. Experimental methods

We investigate four experimental methods of quality assess-
ment, illustrated in Figure1. The methods were selected to

represent the broad spectrum of experimental procedures, as
well as reflect the most common practice in quality assess-
ment.Singleanddouble stimulusmethods represent categor-
ical rating, in which observers judge the quality of a single
and a pair of images on a fixed 5-point scale. Both meth-
ods are dominant in video quality assessment [IR02, IT08].
Forced-choicepairwise comparison is an ordering method,
in which observers decide which of the two displayed im-
ages has higher quality. The method is popular in computer
graphics [LCTS05], but is very tedious if large number of
conditions needs to be compared. In the pairwisesimilarity
judgementmethod observers not only choose which image
has higher quality, but also estimate the difference in qual-
ity on a continuous scale. Such method is used in the func-
tional measurement approach [dRM90], which relies on rel-
ative judgements. In the following paragraphs each method
is discussed in more detail.

Single stimulus categorical ratinginvolves displaying an
image for a short and fixed duration and then asking an
observer to rate it using one of the five categories: excel-
lent, good, fair, poor or bad (see Figure1a). Such adjectives
are commonly used in quality assessment as they give intu-
itive meaning to the numbers on an abstract quality scale.
The five-point Likert-type scale is a widely used approach
for scaling responses. But it must be also noted that some
methods favour continuous rather than categorical scales to
avoid quantisation artifacts [IR02, sec. 5.4]. The experimen-
tal method is also known asAbsolute category rating with
hidden reference[IT08]. Although 5–10 s presentation time
is recommended for video, we found in the pilot study that
3 s presentation is sufficient to assess image quality, yet it
does not slow-down the experiment too much. Fixing pre-
sentation time ensures that a comparable amount of atten-
tion is devoted to each image. However, presentation time
is a variable that also affects the overall length of the experi-
ment and thus the efficiency of the experimental method. All
images are shown in random order and include reference im-
ages. There is no time limit in the voting stage but no image
is shown during that time. The method is efficient as it re-
quires onlyn+1 trials to assessn conditions (one additional
trial for the reference image).
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Double stimulus categorical rating is analogous to the
single-stimulus method, but a reference image and a test im-
age are presented in random order one after another for 3
seconds each (see Figure1b). Following that, a voting screen
is displayed on which both images are assessed separately
using the same scale as for the single stimulus method. The
method requiresn trials to assessn conditions.

Ordering by force-choice pairwise comparison. The ob-
servers are shown a pair of images (of the same scene) cor-
responding to different conditions and asked to indicate an
image of higher quality (see Figure1c). Observers are al-
ways forced to choose one image, even if they see no dif-
ference between them (thus a forced-choice design). There
is no time limit or minimum time to make the choice. The
method is straightforward and thus expected to be more ac-
curate than rating methods. But it also requires more trials
to compare each possible pair of conditions: 0.5(n·(n−1))
for n conditions. The number of trials can be limited using
balanced incomplete block designs [GT61] in which all pos-
sible paired comparisons are indirectly inferred. But even
more effective reduction of trials can be achieved if a sorting
algorithm is used to choose pairs to compare [SF01].

Efficient sorting algorithms, such asquicksort, can reduce
the number of comparisons necessary to order a set of condi-
tions to approximatelyn log n, which could be significantly
less than the full comparison, especially if the number of
conditionsn is large. When incorporated into an experiment,
the sorting algorithm decides in an on-line fashion which
pairs of images to compare based on the previous compar-
isons made in the same experimental session. Each com-
parison necessary to sort a set of conditions requires one
trial with a two-alternative-forced-choice decision. Because
such decisions are noisy and non-deterministic, such sort-
ing rarely reflects the ranking of the true means. However,
Monte-Carlo simulations have shown that gains in perfor-
mance outweigh the loss of accuracy due to the incomplete
design [SF01]. This is because sorting tends to concentrate
comparisons around very similar images, which are the most
sensitive to subjective variations. For our experiments we
used the sorting algorithm based on the self balancing binary
trees, as it results in low and stable number of comparisons.

Pairwise similarity judgements. While the forced-choice
method orders images according to quality, it does not tell
how different the images are. In pairwise similarity judge-
ments observers are not only asked to mark their preference,
but also to indicate on a continuous scale how large the dif-
ference in quality is between the two images (see Figure1d).
Observers can choose to leave the marker in the ’0’ position
if they see no difference between the pair. The sorting algo-
rithm used for the pairwise comparisons can also be used for
the similarity judgements. The position of the marker (on the
left or right side of ’0’) decides on the ranking of the image
pair. If ’0’ is selected, the images are ranked randomly.

3.2. Experiment design

To compare the effectiveness of subjective quality assess-
ment methods we conduct experiments based on the four se-
lected methods.

Observers The images were assessed by naïve observers
who were confirmed to have normal or corrected to nor-
mal vision. The age varied between 22 and 43. 17 observers
completed two ranking experiments and 11 observers com-
pleted the two pairwise comparison experiments. Different
groups of observers completed the experiment for each ex-
perimental method. For additional reliability, all observers
repeated each experiment three times, but no two repetitions
took place on the same day in order to reduce the learning
effect.

Display conditionsThe experiments were run in two sepa-
rate laboratories on two different displays: 26” NEC Spec-
traView 2690 and 24” HP LP2480zx. Both are high qual-
ity, 1920 × 1200 pixel resolution, LCD displays offering
very good color reproduction. The display responses were
measured with the Minolta CS-200 colorimeter and Spec-
bos 1201 spectroradiometer. The measurements were used
to calibrate the displays and ensure that all images were re-
produced in the sRGB colour space. We increased the peak
luminance of the sRGB colour space from the suggested
80cd/m2 to 180cd/m2 to reflect current capabilities of LCD
displays rather than an average peak brightness of a CRT.
The observers were free to adjust the viewing distance to
their preference. The illumination in the room was subdued
by blackout curtains to minimise the effect of display glare.
Images were shown on 50%-grey background. The same
background was used for the intervals between images and
the voting screen. Note that quality experiments are rarely
performed in controlled conditions, where viewing distance
is restricted by a chin-rest and the display angular resolu-
tion (in pixels per degree) is kept constant. This is because
in real-world applications images are seen from varying dis-
tance on screens of different resolutions. Therefore, the data
is more representative for real-world conditions if the vari-
ability due to uncontrolled viewing conditions is included in
the measurements.

Images and distortions.Selected 10 images from the Ko-
dak Photo CD photo sampler collection, shown in Figure2.
This is the subset of images used to collect data for the
LIVE quality database [SSB06]. They contain a broad range
of content type, including faces, animals, man-made objects
and nature.

We selected JPEG 2000 (JP2K) compression distortions and
unsharp masking based on the bilateral filter (σs = 8, σr =
50) as the two evaluated algorithms, both at three levels
of either distortion (JP2K) or enhancement (unsharp mask-
ing). The JP2K test images are the same as in the LIVE
quality database [SSB06] while unsharp masking is a new
algorithm that we decided to include in our study. Unlike
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JP2K, unsharp masking can potentially improve image qual-
ity, though the quality will degrade if the filter is applied in
excessive amounts. Because of this, unsharp masking is a
very difficult case for computational (objective) quality met-
rics, which rely on the difference between test and reference
images. Unsharp masking is also a common component of
many computer graphics algorithms, such as tone-mapping.
We intentionally selected two well known and understood
algorithms, which are not comparable, so that we can fo-
cus on the subjective assessment methods rather than on the
problem of finding a better algorithm.

Experimental procedure Observers were asked to read a
written instruction before every experiment. Following the
ITU-R500 recommendation [IR02], the experiment started
with a training session in which observers could familiarise
themselves with the task, interface, and typical images. The
training session included 5 trials with images from the orig-
inal data set, which were selected to span a wide range of
distortions.. After that session, they could ask questions or
start the main experiment. To ensure that observers fully at-
tend the experiment, three random trials were shown at the
beginning of the main session without recording the results.
The images were displayed in a random order and with a
different randomisation for each session. Two consecutive
trials showing the same scene were avoided if possible. No
session took longer than 30 minutes to avoid fatigue.

4. Computing scores

Once we have collected experimental data, our goal is to find
a scalar measure for each test image that would rate its qual-
ity on a continuous interval scale. The following sections de-
scribe how this can be done for each experimental method.

4.1. Rating methods

Differential scores.We may be tempted to directly use the
rating results: excellent, good, fair, etc. However, it was
found in many studies that such estimates are very unre-
liable. One reason for this is that observers tend to assign
a separate quality scale for each particular scene and even
distortion type [vDMW95]. Instead of directly using rating
results, modern quality assessment methods focus on assess-
ing differences in quality between pairs of images. Follow-
ing this approach, we compute the difference mean opinion
score (DMOS) as the difference between reference and test
images

di, j,k,r = r i,ref(k),k,r − r i, j,k,r . (1)

The indices correspond toi-th observer,j-th condition,k-th
scene andr-th repetition. ref(k) is the reference condition for
scenek.

Z-scores.Different people are likely to use different adjec-
tives when rating images, resulting in different scale associ-
ated with each observer. The easiest way to unify the scales
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Figure 3: Example of projecting pairwise similarity scores
into a 1-dimensional scale. The table contains the dissimi-
larity judgements (differences), where positive values mean
that the condition in the column was selected as better than
the condition in the row. The conditions are ordered from the
lowest to the highest quality, so that the values just above
the diagonal line are all positive. The final score is the sum
of columns but computed only for the nearest (in terms of
ranking) condition pairs, which lie just above and below the
diagonal. All other difference values are ignored.

across observers, and thus make their data comparable, is to
apply a linear transform that makes the mean and the stan-
dard deviation equal for all observers. The result of such a
transform is called z-score and is computed as

zi, j,k,r =
di, j,k,r − d̄i

σi
. (2)

The mean DMOS,d̄i , and standard deviationσi are com-
puted across all images rated by an observeri. More sophis-
ticated scaling procedures, such as Thurstone scaling, can
account for non-linear scales that differ between observers
[Tor85]. These methods, however, require a large number of
measurements which are usually not available for smaller
scale quality assessment experiments.

4.2. Pairwise methods

Transitive relation . Since a reduced pairwise comparison
design was used for both the force-choice and the similar-
ity judgement methods, several assumptions must be made
to infer data for missing comparisons. The most obvious as-
sumption is that the quality estimates are in the transitive re-
lation: if image A is better than image B and B is better than
C, then A is better than C. It must be noted that this does
not need to be true for actual data collected in the full pair-
wise comparison experiment. Cyclic relations, in which the
assumption is violated, are quite common in the full design,
especially when images are similar.

Forced choice. Assuming the transitive relation, it is not dif-
ficult to compute the number of votes for each condition —
the number of times one condition is preferred to other as-
suming that all pairs of conditions are compared. The vote
count is also equivalent to the position in the ranking.

Similarity judgements data contains signed quality differ-
ences, where the sign indicates which image was judged as
better. Because each observer could use a different range
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of values, the quality differences are divided by the overall
standard deviation for a particular observer. Such scaling is
similar to the z-score transformation (Equation2), with the
difference that there is no correction for the mean valued̄i .

We need to make one more assumption to find unambiguous
quality scores from the quality differences between pairs of
images. The quality differences given by the observers rarely
correspond to distances in one-dimensional space. That is, if
|| · || is the magnitude estimate between a pair of conditions,
||AB||+ ||BC|| is rarely equal to||AC||. We could use Multi-
dimensional Scaling (MDS) to project the difference data to
one dimensional space under the least-square criterion, but
this would introduce further complications in the analysis of
variance. Instead, to find the quality scores in the 1D space,
we take into account only the quality difference values be-
tween the closest (in terms of ranking) pairs of images while
ignoring all other magnitude estimates in the data. This is
motivated by the fact that the magnitude estimates of the
most similar images should be the most reliable. This simpli-
fication gives a unique (up to a constant) projection to a 1D
space for each set of conditions. An example of computing
such a projection is shown in Figure3.

It is possible to use more advanced scaling methods to com-
pute quality correlates from the distance data, for example
using the Bayesian approach proposed in [SF01]. However,
this would complicate the analysis of variance and estima-
tion of confidence intervals, which are the key points of our
analysis.

5. Results and analysis

The following sections are meant to discuss the features of
the analysis using the collected data as an example, rather
than to compare a case of J2PK and unsharp masking dis-
tortions. The detailed results and some discussion of them
is included in the supplementary materials, where we also
compare our results with the LIVE image quality database
[SSB06] to demonstrate that the quality assessment studies
can be reproduced with high consistency.

Figure4 shows the result of the single stimulus experiment
for all images, averaged over all observers and shown in-
dividually for two selected observers. Such visualisation is
useful to understand the variations in the data due to scene
content and observers. In our example, we can notice that
the two observers gave different opinions about the unsharp
masking operator. The observer with the ID 13 showed pref-
erence for moderate unsharp masking, with the z-scores in
some cases exceeding that of the reference image, while the
observer 16 indicated dislike for unsharp masking with most
z-scores significantly lower than for the reference image.
However, themeanobserver data holds the opinion of the
second observer with lower quality for images treated with
unsharp masking.

5.1. Screening observers

The visualisation in Figure4 is also useful to screen the ob-
servers whose results are not coherent with the rest of the
data. The observers may report implausible quality scores
because they misunderstood the experiment instruction or
they did not engage in the task and gave random answers. If
the number of participants is low, it is easy to spot unreliable
observers by inspecting the plots. However, when the num-
ber of observers is very high or it is difficult to scrutinise the
plots, the ITU-R-BT.500-11 standard [IR02], Annex 2.3.1
provides a numerical screening procedure. The procedure
involves counting the number of trials in which the result
of the observer lies outside±2× standard deviation range
and rejecting those observers for which a) more than 5% of
the trials are outside that range; and b) the trials outside that
range are evenly distributed so that the absolute difference
between the counts of trials exceeding the lower and the up-
per bound of that range is not more than 30%. We executed
this procedure on our data and we did not find any partici-
pants whose data needed to be removed.

5.2. Confidence intervals and significance

Horizontal bars, such as the ones shown in Figure5, are a
common way to visualise rating experiment results. Most
studies are expected to report in addition to the mean scores
also the 95% confidence interval for the mean, i.e. the range
of values in which the true mean score resides with the 95%
probability [IR02]. However, such confidence intervals do
not explain whether the difference in scores is statistically
significant or not. Even if such confidence bars overlap by
small amount, the probability that the true mean lies within
the overlapping region is very small, usually lower than the
assumed 0.05 threshold. Thus, contrary to the convention,
the thin horizontal lines in Figure5 denote the confidence
interval for thedifferences in means. If such a bar overlaps
with the mean score of another condition, we have no suffi-
cient evidence to say which condition produced higher qual-
ity image atα = 0.05 level. However, this does not necessar-
ily mean that both conditions produce equally good results.
It can be only said that there is no statistical evidence that
they differ in quality.

When comparing several pairs of conditions, it is important
to adjust the confidence intervals for multiple-comparisons.
This is because as more comparisons are made, the chance
of the Type I error (falsely rejectingH0) increases and is no
longerα = 0.05, but instead is closer to the sum of proba-
bilities α = 1− (1−0.05)c, wherec is the number of com-
parisons. The multiple-comparisons adjustment ensures that
Type I error rate is below the desired confidence criterionα .
For our analysis we used Tukey’s honestly significant differ-
ence criterion [How07, sec. 12.6] available inmultcompare
Matlab Statistical Toolbox function.

To visualise significant differences using bars in Figure5, it
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Figure 4: The results of the single stimulus experiment for all images. Thetop row shows the data averaged across all observers
and the remaining rows shows the data for two selected observers. The error bars denote the standard error of the means.

is necessary to assume that the variance is the same for all
conditions. This assumption greatly simplifies the analysis,
the visualisation and gives better estimate of the true vari-
ance.

Although the bars in Figure5 are a convenient way to show
statistical significance, they do not convey the practical im-
portance of the difference in quality. Two conditions can be
statistically different, but the ostensibly better condition may
be in fact selected only marginally more often than its com-
petitor. To better visualize this aspect, Figure6 contains ad-
ditional information. It is a ranking and rating graph for the
same data as shown in Figure5. The x-axis corresponds to
score values and the conditions are plotted alternatively on
higher and lower position on the y-axis. Such layout lets
us better depict the relations between a condition and up
to four of its neighbors on the ranking scale. The relations
are marked as lines between two conditions: solid blue if
there is a statistically significant difference between them,
and dashed red if there is no evidence to choose a better
method (though one condition may still appear as better in
the ranking).

The percent numbers shown on the relation lines in Figure6
are the key feature of the graph. They represent the estimate
of the probability that the condition on the right is selected as
better than the condition on the left. When two methods are
indistinguishable, such probability is 50%, if one methods is
always selected, the probability is 100%. If the mean scores
for both conditions areui andu j and they have a common
varianceσ2 and equal sample sizes, such probability is equal
to

P= 1− 1

σ
√

4π

∫ 0

−∞
e

−(ui−uj )
2

4σ2 dt. (3)

TheP value is computed from the normal cumulative distri-

bution function assuming that the variance of the score dif-
ference is 2σ2. Such probability is very useful as it estimates
in what percentage of cases an average observer will select
one method (condition) over another. For example, the aver-
age quality for theunsharp_lowis statistically different and
better than for theunsharp_med(both bottom plots in Fig-
ure6), but the method will be selected as better only about
6 times out of 10 (64% probability) in the two alternative
forced choice scenario. Such information is very useful, as
it not only tells whether the difference is statistically signifi-
cant, but also whether it is significant from a practical point
of view.

The scaling methods that transform scores to the scale of
just-noticeable-differences (JND), such as case IV and V or
Thustone’s law of comparative judgements [Tor85,Eng00],
or Bayesian methods, [SF01] serve similar purpose as re-
porting the proposed probabilities. The difference of 1 on
such a JND-scale usually corresponds to the ’probability of
winning’ from Equation3 equal to 75%. The scaling, how-
ever, requires much stronger assumptions about the distribu-
tion of quality scores, is ineffective when the comparisons
are unanimous, it reduces the effect size (see Section5.3),
and adds an additional level of complexity to the analysis.
Thus reporting the “probability of winning” is often a more
convenient alternative to the scaling methods.

Figure6 lets us also compare the results of four experimen-
tal methods with each other. All methods produced almost
identical ranking, confirming that all of them can reliably
measure quality. If there are any inconsistencies in ranking,
such as the order of JP2K-affected images for the image
’sailing2’, the multiple-comparison test correctly identifies
no statistical difference. The dashed-lines serve as a warning
that the ranking order should not be trusted, and that there is
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Figure 5: Comparison of quality scores, for four different experimental procedures and the three representative scenes. The thin
black error bars visualise pair-wise statistical testing. If the two thin bars from two different conditions overlap at any point, the
difference between them is too small to be statistically significant.

either no visible difference, or the difference is not measur-
able given the collected data.

5.3. Sensitivity and reliability

One of the main goals of this study was to evaluate sensitiv-
ity and reliability of each experimental method. A more ac-
curate method should reduce randomness in answers, mak-

ing the pair of compared conditions more distinctive. A
more accurate method should result in more pairs of images
whose quality can be said to be different under a statisti-
cal test. Previous studies used the width of confidence inter-
vals [RLA∗10] or the standard deviation [PLZ∗09] to com-
pare experimental methods. Such measures, however, are not
the most suitable as the scale of quality values can vary sig-
nificantly between experimental methods. Even if the data is
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Figure 6: Ranking and rating graph illustrating the results of four tested experimental methods. Each blue circle represents tested
condition and they are ordered according to their ranking, with the least preferred condition on the left. X-axis represents rating
of each condition, expressed as z-score or the mean number of votes. The percentages indicate the probability that an average
observer will choose the condition on the right as better than the condition onthe left. If the line connecting two conditions
is red and dashed, it indicates that there is no statistical difference between this pair of conditions (Ho could not be rejected
for α = 0.05 and adjusted for multiple comparisons). The probabilities close to 50% usually result in the lack of statistical
significance. However, with the increasing sample size, the confidence intervals will shrink (not shown) and dashed-lines will
start to disappear from the plot, while the percentage values will get more accurate (but not necessarily lower).

linearly scaled to match the same range of values, there is
no guarantee that the score distribution is the same for each
method. A more robust, yet still very simple of measure of
performance is theeffect size, d, which is the difference be-

tween quality scores normalised by a common standard de-
viation:

d =
|ui −u j |

σ
. (4)
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Figure 7: The comparison of effect size for each experimen-
tal method. The larger the effect size, the more accurate is
the method. The notation is identical as in Figure6.

The larger the effect size is, the higher the statistical power
is, and thus we are more likely to find the statistically signif-
icant difference between a pair of conditions.

To compare the methods, we computed the effect size be-
tween the pairs of conditions jp2k_small↔ jp2k_med,
jp2k_med↔ jp2k_large, unsharp_small↔ unsharp_med,
and unsharp_med↔ unsharp_large. These are the pairs of
small but noticeable differences in quality. Since the effect
size is very sensitive to the estimate of the standard deviation
σ , that estimate was computed for each pair of conditions
using bootstrapping of 1000 samples from the original mea-
surements. Then, we ran 3-way analysis of variance [How07,
ch.13] (ANOVA: condition pair× experimental method×
scene) on the computedd-values. The results of paired com-
parison test are shown in Figure7. If one method has a
higher effect size and the test confirms statistical difference
(blue line), there is a high likelihood that the same method
will produce higher effect size also for other set of images
or pair of conditions. The percentage numbers on the lines
indicate the probability that the method on the right will pro-
duce a larger effect size given a random image and a random
pair of conditions.

The highest sensitivity was achieved by the forced-choice
pairwise comparison method, whose effect size was statis-
tically different from both ranking methods, which scored
the worst. However, the performance improvement is not
as high as the four-fold reduction of standard deviation be-
tween single stimulus and forced-choice methods reported
in [PLZ∗09]. We suspect that this discrepancy comes from
using different measure of performance: standard deviation
versus effect size. There was almost no difference between
the effect size of both ranking methods. The similarity judge-
ment method placed in-between ranking methods and the
forced-choice method, but the difference with respect to all
other methods was not significant.

The good performance of the forced-choice method confirms
that the method is a good choice when the sensitivity is the
major concern. The forced-choice method was also reported

to be the easiest for the observers, as it only requires di-
rectly comparing two simultaneously shown images and a
quick decision. The performance of the similarity judgement
method was rather disappointing given that each trial col-
lects more information than in the case of the forced-choice
method, the task is more difficult and the experiment takes
more time in overall. Surprisingly, there is no difference be-
tween the double and single stimulus methods. Although the
double stimulus method should result in higher sensitivity
because it provides a reference image, it also makes the task
more difficult for the observers, requiring a rating of two in-
stead of a single image. Overall, the methods that require a
simpler task from observers tend to give more coherent re-
sults.

Note that the improved effect size is not necessarily reflected
in smaller confidence intervals in Figures5 and6. This is
because fewer measurements were collected for both pair-
wise methods as compared with the ranking methods (33 vs.
51).

5.4. Time effort

Conditions 2 3 4 5 6 7 8 9 10 11

Single stimulus 65 52 43 37 32 29 26 23 21 20

Double stimulus 40 30 24 20 17 15 13 12 11 10

Forced choice 170 123 97 80 63 52 44 39 34 31

Similarity judgements130 87 65 52 40 32 27 23 21 18

Table 1: The maximum number of measurements (e.g.
scenes× repetitions) that can be assessed within 30 minute
session to compare a given number of conditions. The num-
bers correspond to the 80th-percentile of our experimental
data, i.e. 80% of observers are expected to finish the experi-
ment with so many measurements in 30 or less minutes.

When choosing an experimental method it is important to
consider not only the sensitivity of a statistical test, but also
the time that observers need to complete the experiment. Af-
ter all, even a less accurate method may result in smaller
confidence intervals if more measurements are collected. For
each run of the main sessions of the experiment we recorded
the total time as well as the number of trials. The data was
averaged over all observers to compute the mean time re-
quired for a single trial. We used this data as well as the ex-
pected number of trials for each method to plot in Figure8
the time required to compare a single scene at a given num-
ber of conditions. It is important to note that the experiment
time for the reduced pairwise design can vary depending on
the number of comparisons that is required to sort condi-
tions. Therefore the timing for these methods is shown as the
upper and lower bound of the sorting algorithm complexity
(shaded region), together with the average complexity (the
line with markers). The timing for the full design (all pairs
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(a) Non-compensated time

(b) Compensated time

Figure 8: (a) — the time required to compare the given num-
ber of conditions (x-axis) using each experimental method.
(b) — the same time that is compensated to result in the
same relative width of the confidence intervals. The plots are
based on the average time recorded in our experiments. Be-
cause the number of trials in reduced pairwise methods de-
pends on the complexity of a sorting algorithm, the shaded
regions represent the bounds between the best- and worst-
case scenario. The continuous lines indicate the times based
on the average complexity. The times include the assessment
of a reference image for all methods, i.e. 2 conditions point
corresponds to the assessment of two test images and one
reference image. Non-smooth shape is due to rounding to an
integer number of comparisons.

compared with each other) is shown as the dashed lines. Be-
cause the total amount time for the single and double stim-
ulus methods varies with the fixed presentation time, we re-
port the times both including (dashed lines) and excluding
(continuous lines) the 3-second presentation of images.

Plot8ashows that the forced choice is the fastest method for
a moderate number of conditions. When the reduced design
with sorting is used, the method is even faster than the sin-

gle stimulus. The simplicity of the task of choosing one of
the two images definitely contributes to the relatively short
times for this method. But the time for this method raises
rapidly with the number of conditions if the full design is
used. Thus the reduced pairwise design brings significant
savings in time compared to the full design starting with 6
or more conditions. Both the double stimulus and the simi-
larity judgements methods are relatively slow, arguably be-
cause the observers’ task for those methods is more complex.
The time required for these methods will also depend on the
choice of the presentation time.

Table 1 gives a more practical view of the same data. It
shows how many measurements can be run within a recom-
mended 30-minute session for each experimental method. To
give a conservative estimates, the data corresponds to the 80-
th percentile rather than average time. The table can be used
as a guideline on how many scenes to include in the experi-
ment so that each session is not excessively long. Note that
the times are valid for the experimental procedures described
in Section3.1.

Since the methods differ in their sensitivity, some methods
may require more measurements to result in the same con-
fidence intervals as the other methods. To account for this
difference, Figure8b shows the times compensated for the
difference in the effect size. To produce this plot, the relative
standard deviation for each method was estimated from the
average effect size (Section5.3). The confidence intervals
for the experimental methodsA andB are equal when

σA

√

1
NA

= σB

√

1
NB

, (5)

whereσA andσB are the relative standard deviations for the
corresponding methods, andNA is the number of measure-
ments per condition. Then, the increase in the number of
measurements can be estimated as

NA

NB
=

σ2
A

σ2
B

. (6)

The time for worse performing methods was increased rela-
tive to the most accurate method — the forced choice pair-
wise comparison. After compensating the times, it is clear
that both rating methods are significantly less effective than
the pairwise comparison methods, especially the forced-
choice method. If the reduced design is used, the single stim-
ulus method does not seem to be more effective even if a
large number of conditions is considered.

5.5. Retrospective power analysis

The key question about the quality experiment design is how
many observers and/or how many repetitions are necessary
to collect reliable data. Fewer samples will result in wider
confidence intervals so that small quality differences will be
indistinguishable in statistical terms. In an attempt to find the
minimum number of observers, Winkler [Win09] collected
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data from 5 different quality assessment experiments and ran
simulations to find that at least 10 observers are needed to
measure quality score variability (standard deviation) with
sufficient accuracy. But this number does not necessarily
guarantee that the quality difference between a pair of con-
ditions is statistically significant. Statistical power analysis
is the method for estimating the sample sizes that give desir-
able sensitivity levels. The problem is that the power analysis
requires prior knowledge of the differences in quality scores
and their variance, which are usually unknown in advance.
Therefore, in this section we employ a retrospective power
analysis on our results in order to estimate typical sample
sizes that are required to distinguish small and larger differ-
ences in image quality. We hope that these values will be a
useful guidance when designing experiments using one of
the described subjective methods.

Statistical power is the probability of correctly rejecting false
H0 (image quality is the same) when the alternative is true
(image quality is different). If there is actual difference in
quality, the high value of statistical power (0.8 or more) will
ensure us that this difference will be detected by our test.
The values in Table2 were computed using thesampsizepwr
Matlab Statistical Toolbox function and Equation4 for the
effect size. The desirable sample sizesN0.8 in the table tell
us how many measurements are necessary, so that the prob-
ability of finding a statistically significant difference is 0.8.
However, this value is meaningful only if such a difference
actually exists.

The values in the table include the cases for which any sta-
tistical difference is unlikely to be found, such as the differ-
ence betweensmallandmedJP2K conditions for the scene
sailing2. Because of the tiny effect size for this pair of condi-
tions, over 2,700 measurements are needed for the pairwise-
comparison method to prove a potential difference. For such
a case, it is usually safe to assume that the difference can-
not be found. The number of measurements needed for both
pairwise comparison methods is on average lower than for
the ranking methods, which confirms the result of the ef-
fect size comparison from Section5.3. The median condi-
tion data suggests that the experiment must be repeated at
least 26–38 times on a single scene and a set of conditions
to collect sufficient evidence for ranking images in case of
a larger quality difference. But even 29–66 measurements
(observers× repetitions) are needed in case of smaller qual-
ity differences. These numbers are accurate only for a single
statistical t-test, and the values can be expected to be higher
if the confidence levels are adjusted to account for multiple-
comparisons.

6. Supplementary materials

The complete set of measurements is included in the sup-
plementary materials, which we hope to serve as a reference
for validating objective and subjective image quality metrics.
Although there are several publicly available image quality

Condition pair Method d N power N0.8

sailing2 Single stimulus 0.061 51 0.071 2115
small - med Double stimulus 0.14 51 0.17 381

Forced choice 0.054 33 0.06 2736
Similarity judgements 0.079 33 0.072 1271

sailing2 Single stimulus 0.019 51 0.052 21791
med - large Double stimulus 0.18 51 0.24 248

Forced choice 0.075 33 0.07 1397
Similarity judgements 0.18 33 0.17 253

woman Single stimulus 0.17 51 0.22 276
small - med Double stimulus 0.22 51 0.34 161

Forced choice 0.53 33 0.84 30
Similarity judgements 0.27 33 0.32 111

woman Single stimulus 0.91 51 1 12
med - large Double stimulus 0.93 51 1 12

Forced choice 1.1 33 1 9
Similarity judgements 1.3 33 1 7

Median Single stimulus 0.47 51 0.91 38
small - med Double stimulus 0.57 51 0.98 27

Forced choice 0.58 33 0.89 26
Similarity judgements 0.58 33 0.9 26

Median Single stimulus 0.41 51 0.73 66
med - large Double stimulus 0.49 51 0.92 36

Forced choice 0.58 33 0.85 29
Similarity judgements 0.44 33 0.67 48

Table 2: Power analysis for quality differences between im-
ages compressed at different JP2K settings. In addition to
the values for selected scenes, median values are computed
across all scenes.d represents standardised effect size,N
is the sample size in our experiments andN0.8 is the sam-
ple size required to achieve statistical power greater than or
equal to 0.8.

data sets, they usually provide only aggregated data, which
are difficult to use for proper statistical analysis.

7. Conclusions

This study is meant to provide a better understanding of
subjective quality assessment methods and their potential in
ranking computer graphics algorithms. The central theme of
this study is the comparison of four most common quality as-
sessment methods. The forced-choice pairwise comparison
method was found to be the most accurate from the tested
methods. This method was also found to be the most time-
efficient if used in combination with a sorting algorithm that
reduces the number of comparisons. Surprisingly, we found
no benefit of using a more complex similarity judgement
method as compared with a straightforward forced-choice.
We also found no evidence that the double stimulus method
is more accurate than the single stimulus method. It is im-
portant to note that these results are valid only for the exper-
imental procedures, images and distortions used in our study,
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and they do not necessarily generalise to differently designed
experiments. For example, if the visible differences between
conditions are larger, the single stimulus rating method may
become more effective.

This work emphasises the need for analysis of variance and
statistical testing. If such analysis is missing, the mean rating
or ranking results alone do not provide evidence that there
is actually a difference between the tested algorithms. Col-
lecting such evidence, though, requires relatively large num-
ber of measurements, often exceeding 30–60 repetitions per
condition.

Quality experiment results are not easy to visualise because
of the inherent uncertainty associated with the subjective
measurements. This work intends to promote unambiguous
reporting of such results, which does not hide uncertainty
in averaged scores, but clearly indicates both statistical and
practical significance of quality differences.
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