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a b s t r a c t

Assessing the perceptual quality of wideband audio signals is an important considera-

tion in many audio and multimedia networks and devices. Examples of such multimedia

technologies are: streaming audio over the Internet, Digital Radio Mondiale (DRM),

Digital Audio Broadcasting (DAB), VoIP (Voice over Internet Protocol), mobile phones, as

well as compression algorithms for digital audio. The International Telecommunications

Union (ITU) standard for audio quality (BS.1387) is commonly referred to as perceptual

evaluation of audio quality (PEAQ). PEAQ is currently the only available standardised

method for the purpose of audio quality assessment. This paper includes a brief

technical summary of the standardised PEAQ algorithm. Furthermore, this paper

outlines recent advancements in the general area of audio quality assessment since the

publication of the ITU standard, and discusses possible techniques, including some

recent findings, that could be used to extend the applicability of PEAQ and improve the

accuracy of the algorithm in assessing the quality of multimedia devices and systems.

& 2009 Elsevier B.V. All rights reserved.
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Table 1
Listening tests grading scale based on ITU-R BS.1284 standard ranging
1. Introduction

The ITU (International Telecommunications Union)
standard for audio quality assessment is PEAQ [1–4]
which is often used in the development and testing of
multimedia devices, codecs and networks. Furthermore, it
can also be used for objective comparisons between
devices, and can be used with a combination of other
quality assessment algorithms in providing an effective
overall system assessment, especially in the multimedia
industry e.g. MPEG 1, layer 2 and layer 3 (Moving Picture
Experts Group). Many of the latest consumer audio
devices have been tested using PEAQ or some combination
of PEAQ and other speech and audio quality assessment
algorithms. The accuracy of PEAQ in estimating the quality
of a device or system is important to the end user,
particularly with high-end audio systems as it is the end
user who will use the device or system to listen to speech,
music and other complex sounds. Poor quality signals can
be annoying and even disturbing to the user, hence the
importance of speech and audio quality assessment
algorithms such as PEAQ. Furthermore, PEAQ can be used
to differentiate between different devices in terms of
quality. Traditionally subjective human listening tests
have been used to assess the quality of such devices and
systems but such listening tests are expensive and time
consuming. For this reason, computer based objective
algorithms have been developed to assess the quality of
audio devices, networks and systems.

PEAQ is an algorithm that models the psychoacoustic
principles of the human auditory system and these same
psychoacoustic principles are used in many audio codecs
to reduce the bit-rate while still maintaining an accep-
table level of audio quality. PEAQ can be described as
consisting of two parts: the psychoacoustic model and the
cognitive model as shown in Fig. 1.

There have been some very good technical summary
papers on PEAQ; one of the best known is Thiede et al.’s
[3] review of PEAQ in 2000 which gave a comprehensive
overview of the algorithm and a summary of the standard
along with some additional graphics and results from the
algorithm. Since the standardisation of PEAQ, there has
been some work done to improve the perceptual perfor-
mance of PEAQ. Recent work such as Huber’s novel
assessment model [5] and the novel cognitive model in
[6] opens up the possibility of adding new functionality
Fig. 1. Block diagram showing the two main parts to the PEAQ algorithm.

Reference refers to the original undistorted signal. Degraded refers to the

distorted test signal that is being assessed. The score output is the final

quality score grade ranging from 0 to �4.
into the algorithm to improve its accuracy while main-
taining a similar level of complexity. This paper attempts
to consolidate some of this recent research.

The layout of this paper is as follows. Section 2 in this
paper gives some background information on audio
quality assessment techniques leading up to the develop-
ment of PEAQ. This is important as it describes the basis of
many of the techniques used in PEAQ. A technical
overview of the PEAQ algorithm is given with the
description of the psychoacoustic models and the cogni-
tive model (Section 3) which includes a description of the
model output variables (MOVs) used in PEAQ. The
technical description presented here is somewhat differ-
ent to technical details of the algorithm given in previous
publications as it gives more details on areas where
improvements to PEAQ may be possible in the future.
Section 4 gives details on recent novel findings in the
general of audio quality assessment and proposes possible
enhancements to the algorithm based on these findings in
order to improve the perceptual accuracy of PEAQ.

2. Development of audio quality assessment algorithms

Listening tests to define how human listeners score the
quality of an audio signal involve assessing the quality of
audio signals according to a grading scale based on an
official ITU standard Recommendation ITU-R BS.1284 [7].
The ITU BS.1284 document summarises previous ITU
standards. A 5-point scale given in [7] is shown in Table
1 with quality scores ranging from 1.0 to 5.0.

As noted previously, human subjective listening tests
are expensive and time consuming since they require a
large number of trained human listeners and specialised
equipment. In order to eliminate listening tests, computer
based objective algorithms are used to grade the quality of
the audio signals without the need for any human
involvement. Listening tests are still required for the
development and training of the objective quality assess-
ment algorithm and are often used to verify the accuracy
of the objective algorithm. During the development of the
PEAQ algorithm, the listening tests were implemented
based on the guidelines contained in ITU Recommenda-
tion BS.1116 [8]. The test audio tracks ranged in length
from 1.0 to 5.0.

Quality Impairment

5.0 Excellent 5 Imperceptible

4.0 Good 4 Perceptible but not annoying.

3.0 Fair 3 Slightly annoying

2.0 Poor 2 Annoying

1.0 Bad 1 Very annoying

This listening scale corresponds to PEAQ’s range of 0 to �4 where 0

represents ‘‘Imperceptible’’.
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from 10 to 20 s, with each track incorporating some
impairment (by applying various codec distortions). The
listening test results were used in PEAQ to help in
the training of a neural network in the algorithm’s
cognitive model and in the verification of PEAQ’s accuracy.

The equivalent standard algorithm for speech quality
assessment is PESQ (perceptual evaluation of speech quality)
[9] but PESQ (including wideband PESQ) only supports
limited bandwidth signals such as narrowband speech
(4 kHz bandwidth) and does not support high bandwidth
applications used in the most modern audio systems.

Objective quality assessment algorithms, such as PESQ
and PEAQ, are generally considered to be intrusive as they
require both a reference (original undistorted signal) and a
degraded signal (distorted signal, usually the output of a
codec or system). At present no non-intrusive audio
quality assessment algorithm has yet been standardised
by the ITU although some non-intrusive speech quality
assessment algorithms have been developed (e.g. ITU
standard (ITU P.563) [10]).

Previously developed objective algorithms used for the
assessment of audio signals were based purely on
engineering principles such as total harmonic distortion
(THD) and signal to noise ratio (SNR), i.e. they did not
attempt to model the psychoacoustic features of the
human auditory system. These algorithms do not give
accurate results for the objective quality assessment of
audio signals when compared with the performance of
perceptually based audio quality assessment methods
such as PESQ and PEAQ. Furthermore, many modern
codecs are non-linear and non-stationary making the
shortcomings of these engineering techniques even more
evident. To improve on the accuracy of engineering based
objective quality assessment algorithms it became neces-
sary to develop objective audio quality assessment
algorithms in order to provide a higher degree of accuracy.

Schroeder [11] was one of the first to develop an
algorithm to include aspects of the human auditory system
and Karjalainen [12] was one of the first to use an auditory
model to assess the quality of sound. His model was based
on a noise loudness parameter, which is still used today as
one of the parameters in the PEAQ algorithm. Brandenburg
[13,14] developed a noise to mask ratio (NMR) model in
1987 but it was not originally developed with audio quality
in mind. However, it does evaluate the level difference
between the noise signal and the masked threshold which
is used in PEAQ and in other speech and audio quality
assessment algorithms. Brandenburg’s work also led to the
development of an audio quality assessment model in 1993
[14] and some components of this model are included in
the PEAQ algorithm including aspects of a follow up study
by Sporer et al. in the same year [15]. In 1996 Sporer
examined the mean opinion scale for audio quality
assessment [16] and completed further work in this area
as described in [17]. These early developments ultimately
led to the development and standardization of the PEAQ
algorithm [1–4]. Around the same time as PEAQ was being
standardised by the ITU, temporal masking effects were
being incorporated into the previously developed Bark
spectral distortion (BSD) measure for audio quality assess-
ment [18].
3. Perceptual evaluation of audio quality

This section gives a technical description of the PEAQ
algorithm. A summary outline of the algorithm is first
given before the psychoacoustic models used in PEAQ are
investigated. Finally the cognitive model in PEAQ is briefly
discussed.

3.1. Overall algorithm structure

There are two ‘‘Versions’’ of the PEAQ algorithm; the
‘‘Basic Version’’ is used in applications where computa-
tional efficiency is an issue, and the ‘‘Advanced Version’’
which is more perceptually accurate than the Basic
Version but is four times more computationally demand-
ing. It is used where accuracy is of the utmost importance.

The main structural difference between the Basic
Version and the Advanced Version is that the Basic
Version has only one peripheral ear model (FFT based
ear model) whereas the Advanced Version has two
peripheral ear models (FFT based and filter bank based
ear models). The Basic Version produces 11 MOVs whereas
the Advanced Version only produces 5 MOVs.

The MOVs are output features based on loudness,
modulation, masking and adaptation. The MOVs are the
inputs to a neural network which is trained to map them
to a single ODG (overall difference grade) score. The ODG
score represents the expected perceptual quality of the
degraded signal if human subjects were used. The ODG
score can range from 0 to �4 where 0 represents a signal
with imperceptible distortion and �4 represent a signal
with very annoying distortion. However, it should be
noted that PEAQ has only been designed to grade signals
with extremely small impairments.

A block diagram of the two models is shown in Fig. 2.
In this figure, significant differences can be seen between
the ear models and these are discussed in more detail
later in the paper. The FFT based ear model, which is used
in both versions of PEAQ, is processed in frequency
domain frames of samples. The filter bank based ear
model, which is only used in the Advanced Version of
PEAQ, processes the data in the time domain. As seen in
Fig. 2 both ear model outputs are involved in producing
the MOVs which are mapped to a single ODG quality score
using a neural network in the cognitive model. The filter
bank based ear model is mainly based on Thiede’s
research [4] where an audio quality assessment model
known as ‘‘DIX’’ (disturbance index) was developed.

There are two psychoacoustic models used in the
Advanced Version but only the FFT based ear model is
used in the Basic Version of PEAQ as the filter bank based
ear model is not used.

3.2. Psychoacoustic models

The psychoacoustic model transforms the time domain
input signals into a basilar membrane representation
(i.e. a model of the basilar membrane in the human
auditory system) and after this transformation the signals
are processed in the frequency domain with the use of a
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fast Fourier transform (FFT). A transformation to the pitch
scale (Bark scale) takes place (where the pitch scale is
the psychoacoustic representation of the frequency scale).
The two psychoacoustic ear models used in PEAQ are
described in this section. Firstly, the FFT-based model is
described, followed by the filter bank-based model.
3.2.1. FFT based ear model

A FFT-based ear model is used in both versions of PEAQ
and operates in the frequency domain. A listening level of
92 dB SPL (sound pressure level) is assumed where the
playback level is not known. Normal conversation is around
70 dB SPL while loud rock music is approximately 100 dB
SPL, therefore, 92 dB SPL is a reasonable intermediate level
of sound pressure without being damaging to hearing and is
close to the dynamic range of the 16 bit PCM format test
data. Each FFT frame contains 2048 samples, which for
audio files with a sampling frequency of 48 kHz corresponds
to a frame length of approximately 43 ms; a 50% overlap is
used to give a frame interval of approximately 21.5 ms. The
magnitude of the FFT is used in subsequent processing.

In the outer ear and middle ear (pinna and auditory
canal/meatus) a resonance and filtering effect is evident
while sound waves are converted to mechanical vibrations
at the eardrum (tympanic membrane). Three tiny bones
(hammer/malleus, anvil/incus and stirrup/stapes) act as a
transformer between the air filled outer ear and the fluid
filled inner ear. This is essentially an impedance match
ensuring minimal loss of energy by means of reflection.
The PEAQ algorithm attempts to model the characteristics
of the effect of the outer and middle ear on audio signals
by using Terhardt’s [19] approach which models these
effects including the contribution of internal noise in the
ear. A part of the frequency response is shown in Fig. 3
which shows that the outer-middle ear acts like a band-
pass filter with a resonance at around 3 kHz and also
shows that there is a resonance between 2 and 4 kHz.

In the cochlea of the inner ear, the hair cells are the
receptors of the sound pressure. A frequency to position
transform is performed and the position of the maximum
excitation depends on the frequency of the input signal.
Each point along the Basilar membrane is associated with
a specific Characteristic Frequency (Critical Frequency).
The critical band scale defined by Zwicker [20] ranges
from upper cut-off frequencies of 100–15 500 Hz i.e. 24
Bark ¼ 15 500 Hz. The frequency scale used in PEAQ is a
variation of this and ranges from 80 Hz–18 kHz. The
spacing between bands is different for the FFT-based
models used in the Basic and Advanced Versions. A
resolution of 0.25 Bark is used in the Basic Version while
a resolution of 0.5 Bark is used in the Advanced Version.
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These bark frequency bandwidths lead to a total of 109
critical filter bands for the FFT based ear model in the
Basic Version, and 55 critical frequency bands for the FFT
based ear model used in the Advanced Version. In PEAQ
the frequency components produced by the FFT (weighted
by the outer-middle ear frequency response) are grouped
into critical frequency bands as happens in the human
auditory system. The energy of the FFT bins within each
critical band are summed together to produce a single
energy value for each band. The next step in the FFT based
ear model is the addition of a frequency dependent offset
to each critical band as shown in Fig. 4. The offset
represents the internal noise generated inside the human
ear. Internal noise is a distinct masker that produces a
continuous masking threshold, more commonly known as
the ‘‘threshold in quiet’’. The PEAQ standard describes the
signals at this point as Pitch Patterns.

The pitch patterns are smeared out over frequency
using a level dependent spreading function which models
simultaneous masking (frequency spreading). The lower
slope is a constant 27 dB/Bark as shown in (2). Thiede [4],
who developed the DIX audio quality assessment algo-
rithm on which many parts of PEAQ is based, indicates
that during experiments, changing the lower slope roll-off
rate had no significant effect on the performance of his
audio quality assessment model. Thiede used the highest
value of slope found in literature which was 31 dB/Bark.
However, the upper slope used in PEAQ is level and
frequency dependent (1) and (2).

Su½k; Lðk;nÞ�
dB

Bark

� �
¼ �24�

230 Hz

f ck

 !
þ 0:2�

Lðk;nÞ

dB

� �

(1)

Sl½k; Lðk;nÞ� ¼ 27
dB

Bark

� �
(2)

where L is the Pitch Patterns, fc ¼ centre frequencies, k is
the critical band index and n is the frame index number. Su

is the upper slope calculation and Sl is the lower slope
calculation.

Spreading (masking) is carried out independently for
each critical band and the results of the frequency
spreading process are referred to in the standard as
Unsmeared Excitation Patterns.

With PEAQ the FFT based ear model only accounts for
Forward Masking characteristics of temporal masking
effects as the resolution of the FFT based peripheral ear
model makes Backward Masking insignificant in terms of
overall performance. Backward masking normally lasts
just a few (typically 5–10) ms [21], whereas PEAQ frames
have a length of approximately 21 ms. Forward masking is
modeled as a simple first order low pass filter that is used
to smear the energies out in each critical band over time.
3.2.2. Filter bank based peripheral ear model

In the Advanced Version of PEAQ a second ear model is
used in conjunction with the FFT based ear model already
used in the Basic Version of PEAQ. In the filter bank based ear
model, processing is carried out in the time domain rather
than in short frames as with the FFT based peripheral ear
model. Prior to the standardisation of PEAQ there were few
audio codecs or audio quality assessment algorithms contain-
ing a filter bank based ear model due to issues of complexity
and computational inefficiency. There were some speech
codecs with such a model ([12] for example). In 1989 Kapust
[4] used both FFT and filter bank based ear models in an
audio codec. However, its accuracy was not verified with data
for which subjective listening test results were known. In
1996 two algorithms were developed which were verified
with subjective listening data [15,22]. The filter bank based
ear model provides a more accurate modeling of the human
ear as it uses finer time resolution, hence modeling of
backward masking is possible and the temporal fine structure
of the signal (roughness sensation) is maintained.

The filter bank based ear model is mainly based on
Thiede’s DIX model [22]. A listening level of 92 dB is
assumed as with the FFT based ear model. The reference
and degraded signals are each processed individually.
Various sub-samplings are implemented to reduce the
computational effort at different stages of processing.

The signals are decomposed into band pass signals
with a filter bank containing equally spaced critical bands.
The filter bank has 40 filters ranging with centre
frequencies from 50 Hz to 18 kHz and the centre frequen-
cies are equally spaced on the Bark scale.

Each critical band consists of two filters with equal
frequency response with one having a 901 phase shift
(Hilbert transform). The envelopes of their impulse re-
sponses have a Hanning (sin2) shape. The coefficients of the
FIR filters can be calculated using the following equations:

hreðk;nÞ ¼ 4
N½k� sin2 p n

N½k�

� �
� cos 2pf c½k� n� N½k�

2

� �
T

� �

himðk;nÞ ¼
4

N½k� sin2 p n
N½k�

� �
� sin 2pf c½k� n� N½k�

2

� �
T

� �

�����������������

0pnoN½k�

hreðk;nÞ ¼ himðk;nÞ ¼ 0
no0

nXN½k�

����� (3)
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where k is the critical band index ranging from 1 to 40, n is
the sample number and T is the sampling time in seconds.

A plot of the frequency responses at a centre frequency
of approximately 1 kHz is shown in Fig. 5. The imaginary
part of the response is the Hilbert transform of the real
part, and the phase shift of 901 is clearly evident.

After the filter bank, the next part of the algorithm
models the filtering effect of the outer and middle ear
which is done in the same way as with the FFT based ear
model. Simultaneous masking (frequency spreading) is
also modeled as in the FFT based ear model. The
instantaneous energy of each filter bank output is then
calculated prior to temporal masking. While forward
temporal masking is implemented in both the FFT and
filter-bank models, backward masking is only implemen-
ted in the filter bank based peripheral ear model of the
Advanced Version. A 12 tap FIR Filter is used to model
backward temporal masking. The filter smears the
frequency-spread energies over time according to (4):

E1½k;n� ¼
0:9761

6

X11

i¼0

E0½k;n� i� cos2 p ði� 5Þ

12

� �
(4)

where k is the critical band index, n is the frame index, i is
the delay sample number and E0 are the filter bank output
energies. The 0.9761 is a constant that takes playback
level into account, while the factor 6 represents the down-
sampling rate.

Most of the research on obtaining the most accurate
backward masking model was implemented by Thiede [22].
The filter bank based ear model is completed by including
models for the internal noise contribution and for modeling
forward masking. Again, these are based on the same
principles as those used in the FFT based ear model. The
filter bank output patterns after masking and additional of
internal noise are referred to as ‘‘excitation patterns’’.

3.3. Cognitive model

The cognitive model in PEAQ models the cognitive
processing of the human brain which is used to give an
Fig. 5. Plot of the real and imaginary parts of the filter frequency

response for a centre frequency of 1 kHz (broken line is imaginary).
audio signal a quality score. In PEAQ the cognitive model
processes the parameters produced by the psychoacoustic
ear models to form output parameters known as MOVs
and subsequent mapping of the MOVs to a single ODG
score. The Basic Version produces 11 MOVs and the
Advanced Version produces 5 MOVs which become the
inputs to a multi-layer perceptron neural network
(MLPNN). The neural network is trained to produce the
ODG score and the training of the neural network involves
the collection of a large amount of human subjective
listening test data.

3.3.1. Description of MOVs

The MOVs are based on a range of parameters such as
loudness, amplitude modulation, adaptation and masking
parameters. The MOVs also model concepts such as linear
distortion, bandwidth, NMR, modulation difference and
noise loudness. They are generally calculated as averages
of these parameters, taken over the duration of the test
and reference signals; typically, more than one MOV is
derived from each class of parameter (modulation,
loudness, bandwidth etc.). A description of the 11 MOVs
calculated in the Basic Version of PEAQ is given here (the
names of the MOVs are taken from the PEAQ standard
[1]):

MOV 1: WinModDiff1. This is a windowed average of
difference in the amount of amplitude modulation of the
temporal envelopes of the input reference and test signals.
The amplitude modulation is calculated from the un-
smeared excitation patterns for the test and reference
signals (i.e. the excitation patterns before temporal
masking is applied). It is calculated using a low-pass
filtered version of the ‘‘loudness’’ of the excitation (which
is the simply calculated as the excitation raised to the
power of 0.3) as well as its low-pass filtered temporal
derivative.

MOV 2 and MOV 3: AvgModDiff1 and AvgModDiff2.
These MOVs represent linear averages of the modulation
difference calculated from the FFT based ear model. The
difference between these MOVs is that slightly different
constants are used in the averaging equations.

MOV 4: RmsNoiseLoud. Partial loudness of additive
distortions in the presence of the masking reference signal
is calculated in PEAQ. This MOV is the squared average of
the noise loudness calculated from the FFT-based ear
model.

MOV 5 and MOV 6: BandwidthTest and BandwidthRef.
These MOVs represent the mean bandwidths of the input
test and reference signals.

MOV 7 (RelDistFrames). This is the relative fraction of
frames for which at least one frequency band contains a
significant noise component. This MOV is only calculated
for frames with reasonable energy levels.

MOV 8: Total NMR. This is the linear average of the
NMR. It is only calculated for frames with reasonable
energy levels.

MOV 9: maximum filtered probability of detection

(MFPD). The ‘‘probability of detection’’ is a measure
of the probability of detecting differences between
the reference and test signal and a defined method for
the calculation of this parameter for PEAQ is defined in the
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standard [1]. This particular MOV models the fact that
distortions towards the beginning of the audio track are
less ‘‘memorable’’ than distortions at the end.

MOV 10: average distorted block (ADB). This is the
number of valid frames with a probability of detection
above 0.5, and is calculated over all frames.

MOV 11: EHS. This MOV models the fact that, with
certain harmonic reference (e.g. clarinet, harpsichord), the
spectrum of the error signals may have the same
harmonic structure as the signal itself, but with harmonic
peaks offset in frequency.

A description of the 5 MOVs calculated in the Advanced
Version of PEAQ is given below:

MOV 1: RmsNoiseLoudAsym. This is the weighted sum of
the squared averages of the noise loudness and the
loudness of frequency components lost from the test
signal. It is calculated from the filter bank based ear
model.

MOV 2: RmsModDiff. This MOV is similar to the
modulation difference based MOVs calculated for the
Basic Version. It is the squared average of the modulation
difference calculated from the filter bank based ear model.

MOV 3: AvgLinDist. This MOV measures the loudness of
the components lost during the ‘‘spectral adaptation’’ of
the two signals. Spectral adaptation refers to the process
used in PEAQ to compensate for differences in level and
the amount of linear distortion between the test and
reference signal [1].

MOV 4: Segmental NMR. Segmental NMR is the same as
Total NMR in the Basic Version. It is the local linear
average.

MOV 5: EHS. EHS for the Advanced Version is the same
as EHS for the Basic Version, and models the possibility
that the error takes on the harmonic structure of the
signal, for certain types of input.

3.3.2. Mapping of MOVs to single ODG score

The ODG-scale depends on the meaning of the anchor
points of the five-grade impairment scale. As the meaning
of these anchor points is linked to a subjective definition
of quality, it may change over time. For this reason, a
technical quality measure should preferably not be
expressed as a difference grade, but by a more abstract
unit, which maps monotonically to ODGs. If the anchors of
the ODG-scale change, this measure remains the same,
and only the mapping to ODGs has to be adjusted.

A convenient way to derive such a measure is to use
the input of the final nonlinearity of the output layer of
the neural network. At this point, all MOVs are already
combined into a single value, but the final scaling to the
range of the SDG-scale has not yet taken place. This value
is called the distortion index (DI). The inputs (MOVs) to
the neural network are mapped to a DI using the following
Eq. (1):

DI ¼ wy½J� þ
XJ�1

j¼0

wy½j�sig wx½I; j� þ
XI�1

i¼0

wx½I; j�
x½i� � amin½i�

amax½i� � amin½i�

 ! !

(5)

In the above equation the x term represents the MOV
inputs. The sig term refers to a sigmoid activation
function. The weighting factors for the inputs and outputs
are called Wx and Wy, respectively, and are given in
BS.1387 [1]. These have been calculated/trained using
subjective listening test data.

The equation for calculating the ODG from the DI is [1]:

ODG ¼ bmin þ ðbmax � bminÞ � sigðDIÞ (6)

where bmin, bmax are pre-defined scaling factors,
DI ¼ distortion index.

The output scaling factors of bmin and bmax are given in
the standard [1], which does not, however, detail how
these were attained. The term ‘‘sig’’ refers to the sigmoid
activation function. This ODG gives an estimation of the
quality of the audio signal and ranges from 0 to �4 where
0 is optimum quality and �4 is annoying distortion.

The algorithm was tested extensively in the course of
its development, with a wide range of audio signals of
different types, including jazz, rock, tuba, speech etc with
instruments such as triangles, clarinets, claves, harps,
drums, saxophone, bagpipe etc. The signals were of high
audio quality distorted by the effects of codecs such
MPEG1, NICAM, Dolby and Mini Disc. Some of the audio
material used had been processed by a cascade of codecs,
and some material contained quantizing distortion, THD
and noise. Each signal was between 10 and 20 s in
duration. Estimates of quality estimated by the algorithm
(objective) were compared to scores obtained from
listening tests, from which it was established that the
correlation coefficient between objective and subjective
scores was 0.837 for the Basic Version and 0.851 for the
Advanced Version [1].
4. Recent findings

This Section discusses some research that has been
carried out in this area since the publication of the
original PEAQ standard and its subsequent update. The
section is divided into three subsections; the first two
subsections—psychoacoustic model, and cognitive mod-
el—all focus on recent developments for different parts of
perceptually-based quality assessment algorithms. The
third subsection examines other related developments in
this area, particularly looking at a wider range of
applications, including multichannel metrics, audio
synthesis, and metrics that investigate the performances
of noise reduction algorithms.
4.1. Psychoacoustic model

The psychoacoustic model is made up of many
different blocks that model the various individual parts
of the human auditory system. The main features of the
human auditory system have been well known for quite
some time. However, in order to improve PEAQ’s accuracy
new models of certain parts of the human auditory system
may be incorporated into PEAQ. By incorporating recent
research findings into the PEAQ algorithm it may be
possible to improve its perceptual accuracy for certain
applications or distortion types.
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In 2002, Cave [23] developed a novel auditory model
based on previously developed masking models that
attempt to overcome some apparent problems with these
models, including the one in PEAQ. Cave states that the
Sound pressure level (SPL) in PEAQ should accurately reflect
the level presented to the ear, independently of the
frequency resolution of the auditory model. However,
with PEAQ this is not the case as PEAQ normalises the
spectrum according to a single frequency component.
Once the spectrum is normalised in this way, the SPL of a
given frequency band is obtained by calculating the sum
of all the components in that band, and is somewhat
sensitive to the frequency resolution in PEAQ. The SPL
should be set independently of the frequency resolution in
order to give a more accurate representation of its true
level. Cave indicates that PEAQ is one of the few auditory
models to account for the additivity of masking, although
PEAQ’s additivity of masking is based on relatively simple
spreading functions, and questions are raised in [23]
about the accuracy of the PEAQ spreading functions when
masker integration is studied. Cave suggests that noise
maskers should be integrated over a complete critical
band, whereas PEAQ attempts to increase its resolution by
using bands that are fractions of critical bands. This is
undesirable when using non-linear models due to the fact
that it impacts greatly on masking effects. Cave also
claims that the modeling of forward masking in PEAQ is
an inaccurate model of natural human masking since the
low pass filter used to model forward masking in PEAQ
fails to account for the fact that components in previous
frames may also be present in the current frame, and that
it is important to consider the boundaries of the maskers
and the position of the maskee. To overcome these issues,
Cave developed a novel auditory model that was im-
plemented for audio coding applications but not for audio
quality assessment. In his model he calculates a SPL level
that overcomes the problems in relation to inaccurate SPL
levels. Cave’s auditory model also accounts for tracking of
temporal maskers from frame to frame and includes
boundary detection to overcome the lack of accuracy in
PEAQ’s forward masking model. Thus far, Cave’s model has
only been used in audio coding applications but it may
also be applied to audio quality assessment. Cave tested
his model by means of an audio coder test bed and tested
against the PEAQ auditory model. The PEAQ based model
outperformed his model for speech coding, but not for
audio coding as the novel auditory model appeared to give
improvements over PEAQ according to his subjective
listening tests. The model could replace most of the
current auditory model in PEAQ’s FFT-based ear model, or
at least some of the concepts in this auditory model could
be considered for incorporation into PEAQ for use in audio
quality assessment.

Huber’s novel audio quality assessment model appears
to provide greater accuracy than PEAQ for a wide range of
distortions of distortion types [5]. However, the new
model seems to be significantly less computationally
efficient than the PEAQ Advanced Version (which itself is
more computationally complex than the Basic Version).
Huber did not conduct his own listening tests to validate
his results. Instead he used listening test data that was
gathered by the ITU and MPEG in six listening tests
between 1990 and 1995 which all conformed to BS.1116
[5]. Furthermore he does not assume that the reference
and degraded signals are time and level aligned and
includes both level and time alignment in his algorithm.
Once time and level aligned the audio signal is split into
the various critical bands to simulate the behavior of the
basilar membrane. 35 critical bands are formed through a
linear fourth order Gammatone filter bank. The 35 bands
represent the bandpass filter characteristics of the basilar
membrane. The actions of the inner hair cells are modeled
by half wave rectification and low pass filtering at 1 kHz.
Temporal masking and adaptation are also included in the
proposed model. The final part of Huber’s auditory model
is a linear modulation filter bank that analyses the
envelope signal. As with PEAQ, Huber attempts to model
the difference between the reference and degraded signals.
The linear cross correlation coefficient of the internal
representations of the two signals is calculated, this is
discussed later in this section when cognitive models are
examined. One of the advantages of Huber’s model over
PEAQ is the ability to detect both large and small
impairments (PEAQ has been optimized for small impair-
ments). Huber speculates that PEMO-Q is more accurate
for unknown data but also states that it falls short on
linearly distorted signals [5]. For known distortions and
signals the linear correlation coefficient was 0.90 [5]
which is slightly better than the performance of PEAQ’s
Advanced Version, which has a correlation coefficient of
0.87 [1]. A database of 433 known audio files was used in
the testing of PEMO-Q [5]. The correlation for nonlinearly
distorted signals was 0.97 for PEMO-Q and 0.79 for the
PEAQ Advanced Version [5]. The psychoacoustic model is
somewhat similar to the PEAQ Advanced Version psy-
choacoustic model, however, Huber’s system also uses a
novel cognitive model that is discussed later in this
section.
4.2. Cognitive model

Vanam and Creusere [24] examined PEAQ’s perfor-
mance in evaluating low bit rate audio codecs and
compared it to the previously developed energy equalisa-
tion algorithm (EEA) [24]. They found that the PEAQ
Advanced Version performed poorly for various codecs
compared to the previously developed energy equalisation
approach. However, by including the energy equalisation
parameter as a MOV in PEAQ (Advanced Version) a
dramatic improvement in performance was obtained.
Energy Equalization operates on the grounds that the
perceived quality of an audio signal is severely distorted
when an isolated segment of time-frequency energy are
formed, mainly around 2–4 kHz. The EEA algorithm uses
the number of time-frequency segments (referred to as
‘‘islands’’) as a measure of quality, grading the signal with
highest number of energy ‘‘islands’’ as much lower quality
compared to a signal having less energy islands [24]. The
original EEA algorithm used the eleven MOVs that were
used with the Basic Version of PEAQ and an additional
MOV being based on Energy Equalization. A single layer
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neural network was used. The correlation between
subjective and objective scores suggests that this modified
version of the PEAQ Basic Version outperforms the
existing PEAQ standard for mid to low quality codec
signals; the correlation coefficient between subjective and
objective scores for the original EEA was 0.67 compared to
0.37 for the Basic Version of PEAQ. The Advanced Version
performed more poorly again. The modified PEAQ Ad-
vanced Version with the additional MOV and single layer
neural network produced a correlation coefficient of 0.82.
The performance of the new algorithm without the
additional Energy Equalization MOV was also better than
PEAQ’s performance but produced a lower performance
than the algorithm that included the extra MOV i.e. the
single layer neural network performed better than PEAQ’s
neural network but the single layer neural network
performed even better with the extra energy equalization
MOV included.

Huber’s metric [5] has already been discussed and it
has been shown to have better correlation for all types of
data [5]. Huber did not use a MLPNN in his cognitive
model. Instead, the linear cross correlation coefficient of
the internal representations of the reference and the
degraded signals is calculated. In the first stage of the
cognitive model the internal representation of the dis-
torted test signal is partially adapted to that of the
reference signal, similarly to the adaptation process in
PEAQ. The methods used by Huber are based on the fact
that ‘‘missing’’ components are less perceptually disturb-
ing than ‘‘additive’’ components. The final cross correla-
tion is performed separately for each modulation channel.
The final quality score, which Huber denotes PSM
(Perceptual Similarity Measure) is then calculated, as
detailed in [5].

This quality score ranges from �1 to 1 so Huber uses a
mathematical regression function to map the PSM score to
the subjective scale used in listening tests. It is difficult to
ascertain exactly how Huber’s model outperforms PEAQ
for the signals examined. However, since Huber’s psy-
choacoustic model is somewhat similar to the psychoa-
coustic model used in PEAQ (Advanced Version) it is
reasonable to assume that the type of cognitive model
introduced by Huber merits further study for all types of
applications.

Some research has shown PEAQ to be inaccurate under
certain conditions, such as for male speech [1]. Barbedo
[6] suggests that the cognitive model used in PEAQ only
provides a crude model of the human cognitive system
and attempts to overcome this by (a) extracting different
parameters (i.e. MOVs) from the signals to those extracted
by PEAQ, and (b) integration of a new mapping system
into PEAQ to combine these parameters and produce the
ODG score. A psychoacoustic model very similar to that in
the Advanced Version of PEAQ was used, which included
both a FFT based ear model and a filter bank based ear
model. Six MOVs were calculated instead of the usual 5
MOVs with the Advanced Version of PEAQ. The MOVs are
variations of existing MOVs in PEAQ: noise loudness, NMR,
detection probability and relative number of disturbed
samples. The selection of these MOVs was based on earlier
studies which singled these out as the most important
contributors to perceptual accuracy [25–27]. One of the
most interesting parts of Barbedo’s model is the introduc-
tion of a new output MOV not previously used in audio
quality assessment algorithms, called Perceptual Streaming

and Informational Masking [11]. This MOV is a combination
of a Perceptual Streaming (PS) calculation and an Informa-

tional Masking (IM) measure. Perceptual Streaming is a
cognitive process of human hearing that separates distinct
simultaneous components and groups them into different
types of perceptions. The process is described in [11]. If
the reference signal is degraded in some way that results
in the test signal being split by the listener into two
separate segments, the annoyance level caused by such a
distortion will be more intense than when both segments
are combined and assessed as one segment. Informational
Masking (IM) describes the situation where distortions
become inaudible due to the complexity of a masker but
perceptual streaming reduces this effect hence both IM
and PS are modeled together. IM is quite complex to
calculate and an in-depth description of the calculation is
given in [28,29].

As mentioned previously PEAQ uses a MLPNN to map
the various MOVs to a single ODG score. The MLPNN does
have certain limitations when used in audio quality
assessment algorithms. For example the curve mappings
from subjective to objective scores generally do not map
very well [6]. To overcome the drawbacks associated with
the MLPNN used in PEAQ, Barbedo incorporates a
Kohonen self-organising map (KSOM) into a novel version
of PEAQ [6]. This provides a more accurate model of the
human cognitive process and makes PEAQ more accurate
for lower quality signals [6]. The new model proposed
provides remarkable improvements in accuracy over the
existing PEAQ model. However, PEAQ still outperforms
Barbedo’s model for male speech and some other types of
signals. Nevertheless, improvements in the future to the
psychoacoustic model could overcome this problem [6].
Furthermore, accuracy is not the only advantage of this
novel model; it also provides significant computational
savings over the original PEAQ algorithm, as the MOVs
used are all extracted from the filter bank based
psychoacoustic ear model, and the FFT-based model is
not used.

Further developments in the assessment of linear and
nonlinear distortions arose from the work of Moore et al.
[30–32]. They proposed a new model based on a weighted
sum of independent separate predictions for linear
distortion, and nonlinear distortion. The combined effects
of linear and non-linear distortions are calculated as
follows:

Soverall ¼ aSlin þ ð1� aÞSnonlin (7)

where a ¼ 0.3, Slin is a measure of linear distortion and
Snonlin is a measure of non linear distortion, both as
calculated in [33].

The results obtained matched subjective listening test
results closely for the model and the correlations for
speech only signals were greater than 0.85 and 0.90 for
music only signals. Moore also found that the effects of
nonlinear distortions had a greater impact than linear
distortions. The Advanced Version of PEAQ includes
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modelling of linear distortions but studies have indicated
that inaccuracies may exist with this model [10]. It may be
possible to incorporate Moore’s model for linear and
nonlinear distortions into a new auditory model which
could also include features from Barbedo’s [6] cognitive
model.
4.3. Related applications

Assessing the quality of synthesized speech and audio
has been an area of interest for certain researchers. In
2001 Chu et al. developed an average ‘‘concatenative cost

function’’ as the objective measure for naturalness of
synthesized speech [34]. The ‘‘concatenative’’ cost is
defined as the weighted sum of seven sub-costs. All the
seven sub-costs are derived directly from the input text
and from the speech database. The new algorithm
performed well with an average absolute error (measured
as the average absolute difference between subjective and
objective scores across the test data) of 0.32, and a
correlation coefficient between subjective and objective
scores of 0.872. In 2007 Wood [35] assessed, for speech
synthesis, the performances of two previously developed
objective measures. Both the perceptual audio quality
measure (PAQM) and NMR objective tests were investi-
gated for an algorithm for digital waveguide synthesis.
The scores produced by the two algorithms were
compared to human subjective listening test results and
the level of correlation between the objective and
subjective scores was assessed. Only 71% of the scores
produced by the PAQM algorithm fell within the range of
scores found in the subjective listening tests and the NMR
algorithm performed even poorer with just 57% of its
scores within the range of scores produced by the
subjective listening tests. The results suggest that more
research is required for this area, as neither the PAQM nor
NMR algorithms were adjudged to be accurate for
assessing speech synthesis algorithms.

There have also been other objective quality assess-
ment measures that were developed for different levels
and types of degradations. In 2005 Rohdenburg et al.
investigated the performances of various objective per-
ceptual quality assessment models in assessing the
performance of different noise reduction schemes for
speech [36]. Rohdenburg compared the results produced
by the objective metrics PESQ and PEMO-Q, with results
obtained from subjective human listening tests with 16
listeners. The noise reduction algorithms considered were
short-term spectral attenuation (STSA) algorithms which
try to reconstruct the desired signal’s envelope in sub-
bands by means of a time-variant filter in the frequency
domain. The speech signals were male and female
German speech and the noise signals were speech-shaped
noise, cafeteria noise, speech-like modulated noise, and
white Gaussian noise. Non perceptually based objective
measurements were also used including SNR, coherence, a
critical bandwidth weighted SNR and quality evaluation
such as log-area ratio (LAR), log-likelihood ratio (LLR),
Itakura–Saito distance (ISD) (all based on a linear
predictive coding model) [36]. The SNR-enhancement
(SNRE) measure is defined in [36] as the difference in dB
of the SNR at the output of the beamformer and a
reference input. The results showed that some objective
measures examined were able to predict the subjective
scores well. Rohdenburg states that for noise reduction
alone the SNRE measure is appropriate, with the highest
correlation coefficient between subjective and objective
scores of 0.75. PESQ and PEMO-Q perform better for the
objective assessment of perceived speech signal distortion
and overall quality. For the assessment of speech signals
PESQ gave the best correlation with a value of 0.74. For
overall quality, PESQ again gave the highest average
correlation, with a value of 0.81. Rohdenburg states that
PESQ is suited to speech only but that PEMO-Q can cover
music also.

The original PEAQ algorithm assumed the use of 2
channels (i.e. a stereo system). However, there is increas-
ing interest in the use of multi-channel surround sound
systems, and it is therefore desirable to develop techni-
ques for the objective assessment of such systems.
Zielinski et al. [37,38] investigate the areas of quality
assessment of multi-channel audio (e.g. 5.1 surround
sound), and automotive audio. In [37] three software tools
for the prediction of multi-channel audio quality were
described. A large database of subjective scores was
created for test purposes. The first software tool allows a
user to predict the quality of audio as a function of the
bandwidth of multi-channel signals. It works on the basis
of several manually-input parameters, including the
bandwidth of the front left and right channels, the
bandwidth of the centre channel, and the bandwidth of
the surround channels. It does not predict quality based
on physical measurements, but rather predicts what
would happen to the audio quality if the bandwidth were
limited to certain cut-off frequencies. The second tool can
be used for the prediction of the audio quality depending
on different down-mix algorithms used (i.e. 1/0 (mono), 2/
0 (stereo), 2/1, 1/2, 2/2, 3/0, 3/1, LR mono). It allows the
user to predict the audio quality at two listening positions,
centre and off centre. Overall results are calculated as the
averaged scores for both listening positions. The third tool
was a combination of the first two, and aimed to find the
optimum band-limitation algorithm or down-mix algo-
rithm for a given total transmission bandwidth of a multi-
channel audio signal. A high correlation between the
subjective and objective scores was shown by Zielinski’s
system. In particular, the first tool provided a correlation
coefficient of 0.89 and the second tool’s correlation
coefficient was 0.96. The test conditions were only
experimental and future work may include a more
accurate validation of results in more realistic environ-
ments. The development of such a multi-channel audio
quality assessment algorithm could have consequences
for future versions of PEAQ as it may be possible to
integrate such findings with a new version of PEAQ.

Another application of interest is the evaluation of the
output of blind source separation (BSS) algorithms. One
such research paper on this topic was presented by
Vincent et al. [39]. It estimates the quality difference
between the actual estimated source, and the ideal source.
A global quality score is produced by measuring the
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Table 2
Summary of recent research findings.

Author(s) and year Comments on recent findings

A. Psychoacoustic model

Cave [23] (2002) A novel auditory model based on PEAQ for

audio coding. Attempted to address

drawbacks of PEAQ’s auditory model such as

temporal masking model and calculation of

SPL level. The work is unpublished in the

literature.

Huber [5] (2006) Huber developed a novel audio quality

assessment algorithm that appeared to be

more accurate than PEAQ for a wider range of

distortions except linear distortions. Also,

more suitable for assessing signals with high

impairment levels.

B. Cognitive model

Vanam and Creusere [24]

(2005)

Creusere developed the Energy Equalization

Algorithm based on the 12 MOVs of the PEAQ

Basic Version and an additional energy

equalisation MOV. A single layer neural

network was used. Vanam extended the work

by adding the energy equalization parameter

as an additional MOV in the Advanced

Version.

Barbedo [6] (2005) Incorporated a new cognitive model into

PEAQ that appears to provide substantial

accuracy improvements over the current

PEAQ algorithm.

Moore [30–32] (2006) More accurate methods of calculating linear

and non linear distortions. Possibility of

incorporating these findings into PEAQ to

improve its perceptual accuracy.

Huber [5] (2006) Huber used an MLPNN as is used in PEAQ. The

MLPNN was trained for a greater impairment

level and for a wider range of distortions.

C. Related applications

Chu [34] (2001) and

Wood [35] (2007)

Chu and Wood have investigated the

assessment of the quality of synthesized

speech and audio.

Rohdenburg [36] (2005) Investigated performances of PEMO-Q and

PESQ models in assessing the performance of

different noise reduction schemes for speech.

Zielinski [37, 38] (2006) Focuses on surround sound, multi-channel

audio and automotive applications. May be

scope to combine these findings with revised

PEAQ algorithm or use PEAQ for automotive

research applications.

Vincent [39] (2005) and

Fox [40] (2007)

Vincent’s performance measure, for blind

source separation (BSS), estimates the quality

difference between the actual estimated

source and the ideal source wanted. Fox

investigated the importance of 18 different

features in assessing the quality of BSS

algorithms and found that a subset of 4 of

these features were able to produce an
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energy ratio and individual quality scores for each of the
four different types of distortions examined. There are a
number of techniques for BSS and Vincent et al.’s objective
quality measures allows for an evaluation of these various
techniques to be carried out. Distortion types investigated
include time-invariant gains, time-varying distortions and
filtering distortions. The main advantage of this model
over previous measurement models such as is that it does
not assume any specific BSS algorithm and provides scores
for a wider range of distortions. Fox et al. [40] compared
subjective listening test results for audio source separa-
tion to 18 algorithmic ‘‘features’’ and found that a subset
of these features produced a correlation coefficient of 0.96
when compared to subjective results. 31 listeners were
used in the subjective listening tests. The 18 features
investigated included the MOVs derived from the basic
version of PEAQ but these did not perform well in general.
The 3 features that performed best include ratio of signal
energy to error due to spatial distortion (‘‘ISR’’), inter-
ference (‘‘SIR’’) and artifacts (‘‘SAR’’). The correlation
coefficient for these four features ranged from 0.75 to
0.87. Most other features had a very low correlation
coefficient number. These three features were combined
with a fourth feature, Maximum probability of detection
after lowpass filter (‘‘MPD’’), using a linear regression
model. The combination produced an overall correlation
coefficient of 0.96 [40]. The work in [39,40] results in a
stronger correlation to subjective measurements than
PEAQ but it should be noted that it is not based on an
auditory model. These results suggest that a number of
different measures may need to be combined in order to
produce a single quality measure that can be used in a
range of applications; these applications need to extend
beyond the codec distortions originally targeted by PEAQ,
and should cover some of the additional applications
mentioned above.

At the time of writing, ITU-R Study Group 6 has a
research study in progress, led by Dr. Thomas Sporer, that
is investigating quality assessment of multichannel audio,
and assessment of intermediate quality audio signals.
However, there are currently no publicly-accessible pub-
lications arising from this work. Apart from the research
described above, other recent papers which address
various aspects of audio quality assessment (including
multi-channel audio, and a wider range of distortions)
include [41–44].

The PEAQ algorithm is now approximately eight years
old and a revision of the algorithm may now be
appropriate, not least because of the emergence of some
of the techniques described above. Such a revision would
be expected to attempt to improve the predictive accuracy
of the algorithm, and also to extend its use in audio
environments that are of increasing importance, e.g.
multi-channel surround sound. A summary of the recent
findings detailed here is given in Table 2.
accurate metric when used with a linear

regressions function.

ITU Study Group 6 (2008) Investigating a possible revision of PEAQ,

specifically investigating the quality

assessment of multichannel audio and

intermediate quality audio.
5. Conclusion

This paper has discussed the history of audio quality
assessment algorithms leading up to the ITU standard
PEAQ algorithm and has given a detailed technical
description of the PEAQ algorithm, including a description
of PEAQ’s psychoacoustic and cognitive models. The main
focus of this paper is on recent developments since the
PEAQ algorithm was published and on how PEAQ’s
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shortcomings can be addressed. Recent work investigated
includes developments to the different parts of perceptual
quality assessment algorithms such as PEAQ, including
�
 psychoacoustic model;

�
 cognitive models.
Other recent work has focused on applications other
than codec distortions, which is what PEAQ was originally
developed for, and include the assessment of speech/
audio synthesis algorithms, noise reduction algorithms
and blind source separation algorithms, as well as multi-
channel applications such as automotive sound quality
assessment. Some of the findings discussed here could
potentially form part of a future revision of the PEAQ
algorithm, or possibly a more comprehensive algorithm
incorporating auditory-based and non auditory-based
approaches in order to provide coverage of a broader
range of application scenarios.
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