# Kirchhoff-type modelling of concentrated parameter mechanical systems 

P. Fiala

Engineering Acoustics Lecture Notes

## Contents

Elements of mechanical systems

SDOF damped oscillator

Vehicle with suspension

Mechano-electrical analogies

Vinyl pickup

Tuned Mass Dampers

## Concentrated mass

Assumptions:

- acceleration proportional to excitation force


Newton's second law

$$
\begin{equation*}
f(t)=m a(t) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& t \text { is time }[\mathrm{s}] \\
& f \text { is excitation force }[\mathrm{N}] \\
& a \text { is acceleration }\left[\mathrm{m} / \mathrm{s}^{2}\right] \\
& m \text { is mass }[\mathrm{kg}]
\end{aligned}
$$

Note: acceleration is measured relative to a fixed reference position (infinite mass)

## Concentrated stiffness /compliance

## C

Assumptions:

- deformation proportional to excitation force


Hooke's law

$$
\begin{equation*}
f(t)=k u(t)=\frac{1}{c} u(t) \tag{2}
\end{equation*}
$$

where
$f$ is excitation force [ N ]
$u$ is linear deformation $\left(L(t)-L_{0}\right)$ [ m$]$
$k$ is stiffness [ $\mathrm{N} / \mathrm{m}$ ]
$c$ is compliance $[\mathrm{m} / \mathrm{N}]$

## Concentrated stiffness /compliance

Hooke's law in more general form:

$$
\begin{equation*}
\sigma(t)=E \epsilon(t) \tag{3}
\end{equation*}
$$

where
$\sigma$ is mechanical stress (force per unit area) $\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$\epsilon$ is strain $\left(\frac{L-L_{0}}{L_{0}}\right)[-]$
$E$ is Young's modulus of elasticity $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ - material parameter
Relation of stiffness / compliance to material and geometrical parameters:

$$
\begin{equation*}
k=\frac{E A}{L_{0}}, \quad c=\frac{L_{0}}{E A} \tag{4}
\end{equation*}
$$

## Concentrated viscous damping

Assumptions:

- velocity proportional to excitation force


$$
\begin{equation*}
f(t)=r v(t) \tag{5}
\end{equation*}
$$

where
$f$ is excitation force [ N ]
$v$ is velocity of deformation $\frac{\mathrm{d}}{\mathrm{d} t}\left(L(t)-L_{0}\right)[\mathrm{m} / \mathrm{s}]$
$r$ is viscous damping [ $\mathrm{Ns} / \mathrm{m}$ ]

## Mechanical impedance

Impedance is interpreted in frequency domain: $f(t)=\hat{f}(\omega) \mathrm{e}^{\mathrm{j} \omega t}$
Assumptions:

- velocity proportional to excitation force


$$
\begin{equation*}
\hat{f}(\omega)=z_{\mathrm{m}}(\omega) \hat{v}(\omega) \tag{6}
\end{equation*}
$$

where
$\hat{f}$ is complex amplitude of excitation force [N]
$\hat{v}$ is complex amplitude of velocity of deformation [ $\mathrm{m} / \mathrm{s}$ ]
$z_{\mathrm{m}}$ is mechanical impedance $[\mathrm{Ns} / \mathrm{m}$ ]

## Mechanical impedance of concentrated elements

- mechanical impedance of mass:

$$
\begin{equation*}
z_{\mathrm{mass}}=\frac{\hat{f}}{\hat{\hat{v}}}=\frac{\hat{f}}{\frac{\hat{a}}{\mathrm{j} \omega}}=\mathrm{j} \omega m \tag{7}
\end{equation*}
$$

- mechanical impedance of compliance:

$$
\begin{equation*}
z_{\text {comp }}=\frac{\hat{f}}{\hat{v}}=\frac{\hat{f}}{\mathrm{j} \omega \hat{u}}=\frac{1}{\mathrm{j} \omega c} \tag{8}
\end{equation*}
$$

- mechanical impedance of damping:

$$
\begin{equation*}
z_{\text {damp }}=\frac{\hat{f}}{\hat{v}}=r \tag{9}
\end{equation*}
$$

## Dynamic mechanical transfer quantities

$\begin{array}{ll}\hat{f} / \hat{u}: \text { dynamic stiffness } & \hat{u} / \hat{f}: \text { dynamic compliance } \\ \hat{f} / \hat{v}: \text { impedance } & \hat{v} / \hat{f}: \text { admittance } \\ \hat{f} / \hat{a}: \text { dynamic mass } & \hat{a} / \hat{f}: \text { dynamic mobility }\end{array}$

## Connecting mechanical impedances

Common velocity


Common force


$$
\begin{align*}
& \hat{v}=\hat{v}_{1}=\hat{v}_{2},  \tag{10}\\
& \hat{f}=\hat{f}_{1}+\hat{f}_{2}  \tag{11}\\
& z=z_{1}+z_{2} \tag{12}
\end{align*}
$$

## SDOF damped oscillator



$$
\begin{equation*}
\hat{v}(s)=\hat{f}(s) \cdot \frac{1}{z}=\hat{f}(s) \cdot \frac{1}{s m+r+\frac{1}{s c}}=\hat{f}(s) \cdot \frac{s c}{1+\frac{1}{Q}\left(\frac{s}{\omega_{0}}\right)+\left(\frac{s}{\omega_{0}}\right)^{2}} \tag{16}
\end{equation*}
$$

with natural frequeny $\omega_{0}$ and quality factor $Q$ written as

$$
\begin{equation*}
\omega_{0}=\frac{1}{\sqrt{m c}}, \quad Q=\frac{\sqrt{m}}{r \sqrt{c}} \tag{17}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\hat{u}(s)=\frac{\hat{v}(s)}{s}=\hat{f}(s) c \cdot \frac{1}{1+\frac{1}{Q}\left(\frac{s}{\omega_{0}}\right)+\left(\frac{s}{\omega_{0}}\right)^{2}} \tag{18}
\end{equation*}
$$

## SDOF damped oscillator

$$
\begin{equation*}
\frac{\hat{u}(s)}{\hat{f}(s) \cdot c}=\frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}=\frac{1}{1+\frac{1}{Q} \frac{\mathrm{j} \omega}{\omega_{0}}-\left(\frac{\omega}{\omega_{0}}\right)^{2}} \tag{19}
\end{equation*}
$$

- low frequency: $\omega<\omega_{0}$

Transfer $\approx 1$

- mid frequency: $\omega \approx \omega_{0}$

Transfer determined by quality factor $Q$ (damping)
Amplification at $\omega=\omega_{0}: Q$

- high frequency: $\omega>\omega_{0}$

Transfer $\approx 1 / \omega^{2}$
Asymptotically: -12 dB per octave ( -40 dB per decade)

## SDOF damped oscillator

Response to Dirac delta force excitation $\hat{f}(s)=1$ (with damping factor $\xi=1 / 2 Q$ ):

$$
\begin{equation*}
\hat{u}(s)=c \cdot \frac{1}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}=c \cdot \frac{1}{1+2 \xi \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}} \tag{20}
\end{equation*}
$$

poles of transfer function

$$
\begin{equation*}
s=-\xi \omega_{0} \pm \mathrm{j} \omega_{0} \sqrt{1-\xi^{2}} \tag{21}
\end{equation*}
$$

Time domain solution (with inverse Laplace transform):

$$
\begin{equation*}
u(t)=\frac{c \omega_{0}}{\sqrt{1-\xi^{2}}} \mathrm{e}^{-t / \tau} \sin \left(\omega_{\mathrm{d}} t\right) \tag{22}
\end{equation*}
$$

with time constant and damped natural frequency written as

$$
\begin{equation*}
\tau=\frac{1}{\omega_{0} \xi}, \quad \omega_{d}=\omega_{0} \sqrt{1-\xi^{2}} \tag{23}
\end{equation*}
$$

## Vehicle with suspension


$v_{\mathrm{w}}$ velocity of wheel
$v_{c}$ velocity of car
$m_{\mathrm{w}}$ mass of wheel
$c_{\mathrm{S}}, r_{\mathrm{s}}$ compliance and damping of suspension $m_{\mathrm{c}}$ mass of car

## Mechano-electrical analogies

| electrical | mechanical |
| :--- | :--- |
| voltage | force |
| current | velocity |
| inductance | mass |
| resistance | damping |
| capacitance | compliance |
| impedance | impedance |
| parallel | common force |
| serial | common velocity |

## Vehicle with suspension



$$
\begin{gather*}
\frac{v_{\mathrm{c}}}{v_{\mathrm{w}}}=\frac{r_{\mathrm{s}}+\frac{1}{s c_{\mathrm{s}}}}{r_{\mathrm{s}}+\frac{1}{s c_{\mathrm{s}}}+s m_{\mathrm{c}}}=\frac{1+\frac{1}{Q} \frac{s}{\omega_{0}}}{1+\frac{1}{Q} \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}  \tag{24}\\
\omega_{0}=\frac{1}{\sqrt{m_{\mathrm{c}} c_{\mathrm{s}}}}, \quad Q=\frac{\sqrt{m_{\mathrm{c}}}}{r_{\mathrm{s}} \sqrt{c_{\mathrm{s}}}} \tag{25}
\end{gather*}
$$

## A dynamic interaction problem

- velocity generator $v_{\mathrm{g}}$ with finite impedance $z_{\mathrm{g}}$ loaded by impedance $z_{1}$
State I - disconnected
- generator vibrates with velocity $v_{g}$
- structure stands still $v=0$

State II - connected

- both components vibrate with velocity $v$
- velocities modified by common interaction (contact) force $f_{\mathrm{c}}$

$$
\begin{gather*}
f_{\mathrm{c}}=z_{\mathrm{g}} \cdot\left(v_{\mathrm{g}}-v\right)=z_{\mathrm{l}} \cdot v  \tag{26}\\
f_{\mathrm{c}}=v_{\mathrm{g}}\left(z_{\mathrm{g}} \times z_{\mathrm{l}}\right), \quad v=\frac{f_{\mathrm{c}}}{z_{\mathrm{l}}}=\frac{z_{\mathrm{g}}}{z_{\mathrm{g}}+z_{\mathrm{l}}} \tag{27}
\end{gather*}
$$



## Vinyl pickup


mechano-electrical analog


## Vinyl pickup

Transfer at low frequencies: $1 / \omega c_{0} \gg \omega\left(m_{s}+m_{a}\right)$

$$
\begin{equation*}
\frac{v_{\mathrm{s}}}{v_{0}}=\frac{s m_{\mathrm{a}}}{s m_{\mathrm{a}}+r_{\mathrm{s}}+\frac{1}{s c_{\mathrm{s}}}}=\frac{\left(\frac{s}{\omega_{1}}\right)^{2}}{1+\frac{1}{Q_{1}}\left(\frac{s}{\omega_{1}}\right)+\left(\frac{s}{\omega_{1}}\right)^{2}} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{1}=1 / \sqrt{m_{\mathrm{a}} c_{\mathrm{s}}}, \quad Q_{1}=\frac{\sqrt{m_{\mathrm{a}}}}{r_{\mathrm{s}} \sqrt{c_{\mathrm{s}}}} \tag{29}
\end{equation*}
$$

Transfer at high frequencies: $1 / \omega c_{\mathrm{s}} \ll r_{\mathrm{s}}, \omega m_{\mathrm{a}} \gg r_{\mathrm{s}}$

$$
\begin{equation*}
\frac{v_{\mathrm{s}}}{v_{0}}=\frac{\frac{1}{s c_{0}}}{\frac{1}{s c_{0}}+s m_{\mathrm{s}}+r_{\mathrm{s}}}=\frac{1}{1+\frac{1}{Q_{2}}\left(\frac{s}{\omega_{2}}\right)+\left(\frac{s}{\omega_{2}}\right)^{2}} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{2}=1 / \sqrt{m_{\mathrm{s}} c_{0}}, \quad Q_{2}=\frac{\sqrt{m_{\mathrm{s}}}}{r_{\mathrm{s}} \sqrt{c_{0}}} \tag{31}
\end{equation*}
$$

## Vinyl pickup



Parameters:

- $m_{\mathrm{s}}=0.1 \mathrm{~g}$
- $\omega_{1}=2 \pi \cdot 10 \mathrm{~Hz}, Q_{1}=0.5$
- $m_{\mathrm{a}}=50 \mathrm{~g}$
- $\omega_{2}=2 \pi \cdot 10 \mathrm{kHz}, Q_{2}=1$


## Tuned mass dampers

- Mass-spring oscillator (M,C) excited by wideband force $\hat{f}(s)$
- Velocity response $\hat{v}(s)$ in frequency domain

$$
\begin{equation*}
\hat{v}(s)=\hat{f}(s) \cdot \frac{s C}{1+\left(\frac{s}{\omega_{0}}\right)^{2}} \tag{32}
\end{equation*}
$$

where $\omega_{0}=\frac{1}{\sqrt{M C}}$

- Tuned mass damper: extend the system by an other mass-spring oscillator ( $m, c$ ) tuned to the same frequency $\omega_{0}=\frac{1}{\sqrt{m c}}$


## Tuned mass dampers


mechano-electrical analog

input impedance without TMD $(m=0)$

$$
\begin{equation*}
z=\frac{1}{s C}+s M=\frac{1+s^{2} M C}{s C} \tag{33}
\end{equation*}
$$

input impedance with TMD

$$
\begin{equation*}
z=\frac{1}{s C}+s M+\frac{1}{s c} \times s m=\underbrace{\frac{1+s^{2} M C}{s C}}_{0}+\underbrace{\frac{s m}{1+s^{2} m c}}_{\infty} \tag{34}
\end{equation*}
$$

## Tuned mass dampers



- $M / m=10$
- $Q=q=\infty$

- $M / m=10$
- $Q=q=10$

