The identity integral operator \( K(x,y) = \delta(x-y) \).
More...
#include <integral_operator.hpp>
|
template<class TestField , class TrialField , class OnSameMesh = std::false_type> |
base_t::template wr_result_type< TestField, TrialField >::type | derived_eval_on_fields (field_base< TestField > const &test_field, field_base< TrialField > const &trial_field, OnSameMesh) const |
| evaluate an identity operator on a test and a trial field More...
|
|
wr_result_type< TestField, TrialField >::type | eval_on_fields (field_base< TestField > const &test_field, field_base< TrialField > const &trial_field, OnSameMesh) const |
| sub-weighted residual on a test and a trial field More...
|
|
integral_transform< identity_integral_operator, typename std::enable_if< is_function_space< FuncSpace >::value, FuncSpace >::type > | operator[] (FuncSpace &&funcspace) |
| apply the integral operator on a function space and create a NiHu::integral_transform More...
|
|
The identity integral operator \( K(x,y) = \delta(x-y) \).
Definition at line 310 of file integral_operator.hpp.
◆ derived_eval_on_fields()
template<class TestField , class TrialField , class OnSameMesh = std::false_type>
base_t::template wr_result_type<TestField, TrialField>::type NiHu::identity_integral_operator::derived_eval_on_fields |
( |
field_base< TestField > const & |
test_field, |
|
|
field_base< TrialField > const & |
trial_field, |
|
|
OnSameMesh |
|
|
) |
| const |
|
inline |
evaluate an identity operator on a test and a trial field
- Template Parameters
-
TestField | the test field's type |
TrialField | the trial field's type |
- Parameters
-
[in] | test_field | the test field |
[in] | trial_field | the trial field |
- Returns
- the result matrix of the double integral
Definition at line 326 of file integral_operator.hpp.
The documentation for this class was generated from the following file: