|
NiHu
2.0
|
#include <guiggiani_1992.hpp>
Public Types | |
| enum | { radial_order = RadialOrder, tangential_order = TangentialOrder } |
| quadrature orders stored as internal constants More... | |
| enum | { laurent_order = singular_kernel_traits<kernel_t>::singularity_type_t::value - 1 } |
| typedef TrialField | trial_field_t |
| the trial field type | |
| typedef trial_field_t::elem_t | elem_t |
| the element type | |
| typedef elem_t::domain_t | domain_t |
| the original reference domain type | |
| typedef domain_t::xi_t | xi_t |
| the reference coordinate vector type | |
| typedef elem_t::scalar_t | scalar_t |
| the geometrical scalar type | |
| typedef Eigen::Matrix< scalar_t, domain_t::dimension, domain_t::dimension > | trans_t |
| the Rong's transformation matrix type | |
| typedef elem_t::x_t | x_t |
| the physical coordinate vector type | |
| typedef trial_field_t::nset_t | trial_nset_t |
| shape function set type | |
| typedef trial_nset_t::shape_t | trial_n_shape_t |
| the shape function vector type | |
| typedef Kernel | kernel_t |
| the kernel type | |
| typedef kernel_traits< kernel_t >::test_input_t | test_input_t |
| the kernel's test input type | |
| typedef kernel_traits< kernel_t >::trial_input_t | trial_input_t |
| the kernel's trial input type | |
| typedef weighted_input< trial_input_t, elem_t >::type | w_trial_input_t |
| the kernel's weighted trial input type | |
| typedef singular_kernel_traits< kernel_t >::singular_core_t | singular_core_t |
| the singular core type | |
| typedef polar_laurent_coeffs< singular_core_t > | laurent_t |
| the Laurent coefficients computing class | |
| typedef semi_block_product_result_type< typename singular_core_t::result_t, trial_n_shape_t >::type | laurent_coeff_t |
| value type of the Laurent coefficients | |
| typedef semi_block_product_result_type< typename kernel_t::result_t, trial_n_shape_t >::type | total_result_t |
| value type of the integral result | |
Public Member Functions | |
| guiggiani (elem_t const &elem, kernel_base< kernel_t > const &kernel) | |
| constructor More... | |
| template<class result_t > | |
| void | integrate (result_t &&I, xi_t const &xi0, x_t const &normal) |
| the entry point of integration More... | |
| template<class T , T order> | |
| const x_t & | get_rvec_series (std::integral_constant< T, order >) const |
| return Taylor coefficient of the distance measured from the collocation point | |
| template<class T , T order> | |
| const x_t & | get_Jvec_series (std::integral_constant< T, order >) const |
| return Taylor coefficient of the Jacobian vector around the collocation point | |
| template<class T , T order> | |
| const trial_n_shape_t & | get_shape_series (std::integral_constant< T, order >) const |
| return Taylor coefficient of the shape set around the collocation point | |
| template<class T , T order> | |
| laurent_coeff_t & | get_laurent_coeff (std::integral_constant< T, order >) |
| return a Laurent coefficient | |
| template<class T , T order> | |
| void | set_laurent_coeff (std::integral_constant< T, order >, laurent_coeff_t const &v) |
| set a Laurent coefficient | |
| const x_t & | get_n0 (void) const |
| return the unit normal at the collocation point | |
| const kernel_t & | get_kernel (void) const |
brief specialisation of Guiggiani's method for surface elements
Definition at line 89 of file guiggiani_1992.hpp.
| anonymous enum |
quadrature orders stored as internal constants
| Enumerator | |
|---|---|
| radial_order | quadrature order in radial direction |
| tangential_order | quadrature order in tangential direction |
Definition at line 95 of file guiggiani_1992.hpp.
| anonymous enum |
| Enumerator | |
|---|---|
| laurent_order | the required Laurent expansion order |
Definition at line 149 of file guiggiani_1992.hpp.
|
inline |
constructor
| [in] | elem | the element |
| [in] | kernel | the kernel |
Definition at line 158 of file guiggiani_1992.hpp.
|
inline |
the entry point of integration
| result_t | the result type where the integral is assembled |
| [in] | xi0 | the singular point in intrinsic coordinates |
| [in] | normal | the normal vector in the singular point |
| [out] | I | the result matrix where the data is assembled |
todo this is for highly distorted elements
Definition at line 277 of file guiggiani_1992.hpp.