NiHu  2.0
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12345]
 CACAClass performing Adaptive Cross Approximation
 Ctmp::internal::accumulate_impl< begin< Seq >::type, end< Seq >::type, deref< begin< Seq >::type >::type, if_< less< _1, _2 >, _1, _2 > >
 Ctmp::internal::accumulate_impl< begin< Seq >::type, end< Seq >::type, deref< begin< Seq >::type >::type, if_< less< _1, _2 >, _2, _1 > >
 Ctmp::internal::accumulate_impl< begin< Seq >::type, end< Seq >::type, empty< Seq >::type, concatenate< _1, _2 > >
 Ctmp::internal::accumulate_impl< begin< Seq >::type, end< Seq >::type, empty< Seq >::type, if_< is_member< _1, _2 >, _1, push_back< _1, _2 > > >
 Ctmp::internal::accumulate_impl< begin< Seq >::type, end< Seq >::type, Init, tmp::plus< _1, _2 > >
 Ctmp::internal::accumulate_impl< begin< Seq >::type, end< Seq >::type, internal::empty, internal::inheriter< _1, _2 > >
 Ctmp::internal::accumulate_impl< begin< typename tmp::transform< elem_type_vector_t, tmp::inserter< typename tmp::empty< elem_type_vector_t >::type, tmp::push_back< tmp::_1, tmp::_2 > >, eigen_std_vector< tmp::_1 > >::type >::type, end< typename tmp::transform< elem_type_vector_t, tmp::inserter< typename tmp::empty< elem_type_vector_t >::type, tmp::push_back< tmp::_1, tmp::_2 > >, eigen_std_vector< tmp::_1 > >::type >::type, internal::empty, internal::inheriter< _1, _2 > >
 Ctmp::internal::accumulate_impl< begin< typename tmp::transform< field_type_vector_t, tmp::inserter< typename tmp::empty< field_type_vector_t >::type, tmp::push_back< tmp::_1, tmp::_2 > >, eigen_std_vector< tmp::_1 > >::type >::type, end< typename tmp::transform< field_type_vector_t, tmp::inserter< typename tmp::empty< field_type_vector_t >::type, tmp::push_back< tmp::_1, tmp::_2 > >, eigen_std_vector< tmp::_1 > >::type >::type, internal::empty, internal::inheriter< _1, _2 > >
 Ctmp::arg< N >Placeholder that selects N-th argument
 CNiHu::assembly< TestSpace, TrialSpace, OnSameMesh >Assemble result matrix from field wr submatrices
 CNiHu::fmm::black_box_fmm< Kernel >Black box FMM for a smooth kernel
 CNiHu::blind_singular_quadrature< BlindTransform, RegularFamily, LSet >
 CNiHu::blind_singular_quadrature< blind_transform::duffy, RegularFamily, LSet >
 CNiHu::blind_transform_selector< asymptotic_type, domain >Assign a blind transformation method to a singularity type and a reference domain
 CNiHu::blind_transform_selector< asymptotic::inverse< 1 >, quad_domain >Assign a blind transformation method to 1/r singularity and quad domain
 CNiHu::blind_transform_selector< asymptotic::inverse< 1 >, tria_domain >Assign a blind transformation method to 1/r singularity and tria domain
 CNiHu::block_product_result_type< leftDerived, mat, rightDerived >Metafunction returning the value type of a block product
 CNiHu::fmm::bounding_box< Dim, Scalar >Multidimensional square bounding box
 CNiHu::fmm::bounding_box< dimension, double >
 Ctmp::break_point< X, Y >A break point consisting of a X and a Y value
 Ctmp::bubble_sort< Seq, Compare, cnt >Sort a sequence by bubble sort
 CC
 CNiHu::fmm::chebyshev_cluster< Dim, Scalar, FieldDim >Cluster class of the Black Box FMM
 CNiHu::mex::classID< Scalar >Metafunction assigning a Matlab class ID to a C type
 CNiHu::mex::classID< double >Specialisation of classID to double
 CNiHu::mex::classID< float >Specialisation of classID to float
 CNiHu::mex::classID< int >Specialisation of classID to double
 CNiHu::mex::classID< RealScalar >
 CNiHu::mex::classID< unsigned >
 CNiHu::fmm::cluster_base< Derived >CRTP base class of clusters
 CNiHu::fmm::cluster_base< helmholtz_2d_wb_cluster >
 CNiHu::fmm::cluster_base< helmholtz_3d_hf_cluster >
 CNiHu::fmm::cluster_base< laplace_2d_cluster >
 CNiHu::fmm::cluster_base< laplace_3d_cluster >
 CNiHu::fmm::cluster_traits< Derived >CRTP traits structure of a cluster
 CNiHu::fmm::cluster_traits< chebyshev_cluster< Dim, Scalar, FieldDim > >Traits class of the chebyshev_cluster
 CNiHu::fmm::cluster_traits< empty_cluster< Dim > >Traits of empty cluster
 CNiHu::fmm::cluster_traits< helmholtz_2d_wb_cluster >Specialisation of fmm::cluster_traits for the 2d Helmholtz wb fmm
 CNiHu::fmm::cluster_traits< helmholtz_3d_hf_cluster >Specialisation of cluster traits for the Helmholtz 3D HF cluster
 CNiHu::fmm::cluster_traits< laplace_2d_cluster >Specialisation of cluster traits for the 2D Laplace FMM
 CNiHu::fmm::cluster_traits< laplace_3d_cluster >Specialisation of cluster traits for the 3D Laplace FMM
 CNiHu::fmm::cluster_tree< ClusterDerived >Class representing a cluster tree
 CNiHu::fmm::cluster_tree< cluster_t >
 CNiHu::formalism::collocationalCollocational case when the test field is Dirac
 CNiHu::mex::complexity< Scalar >Metafunction assigning a Matlab complexity to a C type
 CNiHu::mex::complexity< std::complex< RealScalar > >
 CNiHu::complexity_estimator< TestField, TrialField, KernelEstimator >Class to estimate kernel complexity between two fields
 Cconditional
 CNiHu::conditional_precompute< Complexity, Func, Args >Conditionally precompute and store objects
 CNiHu::conditional_precompute< matrix_function_complexity::constant, Func, Args... >Specialisation of NiHu::conditional_precompute for the matrix_function_complexity::constant case
 CNiHu::conditional_precompute< matrix_function_complexity::zero, Func, Args... >Specialisation of NiHu::conditional_precompute for the matrix_function_complexity::zero case
 CNiHu::conditional_precompute< shape_complexity< Derived, Order >::type, shape_function< Derived, Order >, domain< Derived >::type::xi_t >
 CNiHu::conditional_precompute_instance< Complexity, Func, Args >
 CNiHu::conditional_precompute_instance< location_complexity< Derived, 1 >::type, normal_impl< Derived >, location_value_type< Derived, 1 >::type >
 CNiHu::conditional_precompute_instance< location_complexity< Derived, Order >::type, location_impl< Derived, Order >, coords_type< Derived >::type, shape_set_traits::domain< lset< Derived >::type >::type::xi_t >
 CNiHu::conditional_precompute_instance< location_complexity< NiHu::surface_element, 1 >::type, normal_impl< NiHu::surface_element >, location_value_type< NiHu::surface_element, 1 >::type >
 CNiHu::conditional_precompute_instance< matrix_function_complexity::constant, Func, Args... >
 CNiHu::conditional_precompute_instance< matrix_function_complexity::zero, Func, Args... >
 CNiHu::matrix_function_complexity::constantReturned matrix is constant and can be stored
 CNiHu::field_option::constantTag to describe a constant field
 CNiHu::constant_shape_set< Domain >Constant interpolation functions
 CNiHu::ConstVariance< Space >
 Ctmp::containsPlaceholderExpression< T, Args >
 Ctmp::containsPlaceholderExpression< Args... >
 Ctmp::containsPlaceholderExpressionImpl< First, Args >
 CNiHu::convected_helmholtz_3d_DLP_kernel< WaveNumber >
 CNiHu::convected_helmholtz_3d_DLP_tan_kernel< WaveNumber >
 CNiHu::convected_helmholtz_3d_DLPt_kernel< WaveNumber >
 CNiHu::convected_helmholtz_3d_DLPt_n_kernel< WaveNumber >
 CNiHu::convected_helmholtz_3d_HSP_kernel< WaveNumber >
 CNiHu::convected_helmholtz_3d_SLP_kernel< WaveNumber >SLP kernel of the convected Helmholtz equation in 3D
 CNiHu::fmm::convolution_matrix< Scalar >Class performing convolution
 CNiHu::fmm::convolution_matrix< std::complex< double > >
 CNiHu::element_traits::coords_type< Derived >Matrix that stores the element's corner coordinates
 Ctmp::merge_intervals< Inter1, Inter2 >::copy_cond< Iter, Begin >Copy condition when zipping an interval
 CNiHu::corner_angle_computer< Elem, NSet, dimension >
 CNiHu::corner_angle_computer< Elem, Nset, 1 >
 CNiHu::corner_angle_computer< Elem, Nset, 2 >
 CNiHu::shape_set_traits::corner_index_vector< Derived >
 CNiHu::shape_set_traits::corner_index_vector< constant_shape_set< Domain > >
 CNiHu::shape_set_traits::corner_index_vector< line_1_gauss_shape_set >
 CNiHu::shape_set_traits::corner_index_vector< line_2_shape_set >
 CNiHu::shape_set_traits::corner_index_vector< quad_1_gauss_shape_set >
 CNiHu::shape_set_traits::corner_index_vector< quad_28_shape_set >
 CNiHu::shape_set_traits::corner_index_vector< quad_2_shape_set >
 CNiHu::shape_set_traits::corner_index_vector< tria_1_gauss_shape_set >
 CNiHu::shape_set_traits::corner_index_vector< tria_2_shape_set >
 CNiHu::shape_set_traits::corner_index_vector_mat< Derived >Materialized corner index vector type
 CNiHu::function_space_impl_internal::get_num_dofs< Mesh, field_option::gauss, Dimension >::count_elem_type_nodes< ElemType >
 CNiHu::cpu_timeCPU time
 Cdecay
 Ctmp::deref< Iter >Metafunction to dereference an iterator
 Ctmp::deref< stack_iterator< Seq > >Specialisation of metafunction tmp::deref for the stack iterator
 CNiHu::iteration::diadicInner and outer iterators (Descartes)
 CNiHu::iteration::diagonalParallel
 CNiHu::fmm::diagonal_preconditioner< Scalar >
 CDimension
 CNiHu::dirac_field< Field >Dirac view of a field
 CNiHu::dirac_space< FuncSpace >Dirac-like extension of a function space
 CNiHu::directional_derivative_field< Field >Field class that computes the directional derivative of a field
 CNiHu::directional_derivative_field_iterator< DerivedField, OriginalIterator >Iterator class for iterating over a directional derivative function space
 CNiHu::directional_derivative_function_space< FunctionSpace >Directional derivative of a function space
 CNiHu::distance_dependent_kernel< Derived >
 CNiHu::distance_dependent_kernel< helmholtz_kernel< space_2d< scalar >, WaveNumber > >
 CNiHu::distance_dependent_kernel< helmholtz_kernel< space_3d< scalar >, WaveNumber > >
 CNiHu::distance_dependent_kernel< laplace_kernel< space_2d< scalar > > >
 CNiHu::distance_dependent_kernel< laplace_kernel< space_3d< scalar > > >
 CNiHu::distance_kernel_interval< asymptotic, Accuracy >Define intervals for distance range and accuracy
 CNiHu::distance_kernel_interval< asymptotic::inverse< 1 >, 2 >Specialisation of NiHu::distance_kernel_interval for 1/r and 1% error
 CNiHu::distance_kernel_interval< asymptotic::inverse< 1 >, 3 >Specialisation of NiHu::distance_kernel_interval for 1/r and .1% error
 CNiHu::distance_kernel_interval< asymptotic::inverse< 2 >, 2 >Specialisation of NiHu::distance_kernel_interval for 1/r^2 and 1% error
 CNiHu::distance_kernel_interval< asymptotic::inverse< 2 >, 3 >Specialisation of NiHu::distance_kernel_interval for 1/r^2 and .1% error
 CNiHu::distance_kernel_interval< asymptotic::inverse< 3 >, 2 >Specialisation of NiHu::distance_kernel_interval for 1/r^3 and 1% error
 CNiHu::distance_kernel_interval< asymptotic::inverse< 3 >, 3 >Specialisation of NiHu::distance_kernel_interval for 1/r^3 and .1% error
 CNiHu::distance_kernel_interval< asymptotic::log< 1 >, 2 >Specialisation of NiHu::distance_kernel_interval for log r and 1% error
 CNiHu::distance_kernel_interval< asymptotic::log< 1 >, 3 >Specialisation of NiHu::distance_kernel_interval for log r and .1% error
 CDistanceKernel
 CNiHu::fmm::divide_base< Derived >Base CRTP class for cluster division
 CNiHu::fmm::divide_base< divide_depth >
 CNiHu::fmm::divide_base< divide_diameter >
 CNiHu::fmm::divide_base< divide_num_nodes >
 CNiHu::field_traits::dof_vector_type< Derived >Assign the DOF vector value type to the field type
 CDomain
 CNiHu::shape_set_traits::domain< Derived >Defines the domain where the shape function set is defined
 CNiHu::domain_base< Derived >Polygonal subset of the \( \xi \) space. All elements are defined on a domain
 CNiHu::domain_base< brick_domain >
 CNiHu::domain_base< line_domain >
 CNiHu::domain_base< quad_domain >
 CNiHu::domain_base< tria_domain >
 CNiHu::double_integral< Kernel, TestField, TrialField, Formalism >Class evaluating double integrals of the weighted residual approach
 CNiHu::double_integral< Kernel, TestField, TrialField, formalism::collocational >Specialisation of NiHu::double_integral for the collocational formalism
 CNiHu::double_integral< Kernel, TestField, TrialField, formalism::general >Specialisation of NiHu::double_integral for the general formalism
 CNiHu::double_integral_free_dimensions< TestField, TrialField, SingularityDimension, class >
 CNiHu::double_integral_traits< Kernel, TestField, TrialField >
 CNiHu::fmm::down_shift
 CNiHu::dual_iterator< IterationMode, It1, It2 >
 CNiHu::dual_iterator< iteration::diagonal, test_iterator_t, trial_iterator_t >
 CNiHu::dual_range< IterationMode, OutIt, InIt >Combination of two ranges
 CNiHu::dual_range< IterationMode, TestAccelerator::const_iterator, TrialAccelerator::const_iterator >
 CNiHu::blind_transform::duffyDuffy type polar transformation
 CNiHu::duffy_quadrature< QuadFamily, LSet >Transform regular quadratures into weakly singular ,,Duffy-type'' quadratures
 CNiHu::duffy_traits< LSet >Traits class of a Duffy quadrature
 CNiHu::duffy_traits< quad_1_shape_set >Specialisation of NiHu::duffy_traits for NiHu::quad_1_shape_set
 CNiHu::duffy_traits< quad_2_shape_set >Specialisation of NiHu::duffy_traits for NiHu::quad_2_shape_set
 CNiHu::duffy_traits< tria_1_shape_set >Specialisation of NiHu::duffy_traits for NiHu::tria_1_shape_set
 CNiHu::duffy_traits< tria_2_shape_set >Specialisation of NiHu::duffy_traits for NiHu::tria_2_shape_set
 CNiHu::eigen_std_vector< T >Convert T to an std::vector<T> with Eigen allocator
 CNiHu::eigen_std_vector< x_t >
 CNiHu::elastodynamics_dataClass representing parameters of the elastodynamics kernel
 CNiHu::elastostatics_2d_U_collocation_constant_lineCollocational singular integral of 2D Elastostatics U kernel over constant line
 CNiHu::elastostatics_2d_U_galerkin_face_constant_lineGalerkin face match integral of 2D Elastostatics U kernel over constant line
 CNiHu::elastostatics_kernelBase class for elastostatics kernels. This class contains the two material parameters
 CNiHu::mesh< ElemTypeVector >::elem_adder< elem_t >
 CNiHu::field_traits::elem_type< Derived >Assigns the element type to the field
 CNiHu::field_traits::elem_type< Field >
 CNiHu::element_base< Derived >The geometrical element representation
 CNiHu::element_matchClass describing the adjacency (match) state of two elements
 CNiHu::element_overlappingClass describing the overlapping state of two elements
 CNiHu::field_2_elem_type_vector< FieldTypeVector >::elemize< field_t >Helper metafunction to extract the element type of a field
 CElemType
 CNiHu::fmm::empty_cluster< Dim >Empty cluster class
 Ctmp::internal::empty_impl< Seq::tag >
 CNiHu::empty_input< Space >Kernel input representing a single location \( \gamma = {\bf x} \)
 CNiHu::double_integral< Kernel, TestField, TrialField, formalism::general >::eval_singular_on_accelerator< singular_accelerator_t, dummy >Evaluate double singular integral with selected singular accelerator
 CNiHu::double_integral< Kernel, TestField, TrialField, formalism::collocational >::eval_singular_on_accelerator< singular_accelerator_t, dummy >Evaluate collocational singular integral with selected singular accelerator
 CNiHu::double_integral< Kernel, TestField, TrialField, formalism::general >::eval_singular_on_accelerator< invalid_singular_accelerator, dummy >Specialisation of eval_singular_on_accelerator to the invalid accelerator
 CNiHu::double_integral< Kernel, TestField, TrialField, formalism::collocational >::eval_singular_on_accelerator< invalid_singular_accelerator, dummy >Evaluate collocational singular integral with the invalid accelerator
 CNiHu::exponential_covariance_kernel< Space, Dimension >
 Cfalse_type
 CNiHu::distance_dependent_kernel_traits_ns::far_field_behaviour< Derived >
 CNiHu::kernel_traits_ns::far_field_behaviour< Derived >Return the far field asymptotic behaviour of the kernel
 CNiHu::field< ElemType, NSet, Dimension >Field class that stores the dof vector and an element by value
 CNiHu::field_2_elem_type_vector< FieldTypeVector >Metafunction to return the element type vector of a field type vector
 CNiHu::function_space_impl< function_space< FieldTypeVector > >::field_adder< field_t >Subclass called by call_each to add a field to the function space
 CNiHu::field_base< Derived >CRTP base class of all fields
 CNiHu::field_impl< Derived >Implementation class of a general field
 CNiHu::field_impl< field< ElemType, NSet, Dimension > >Field class that stores the dof vector and the element by value
 CNiHu::field_points< xType >Container class for field points
 CNiHu::field_points< first_elements_x_type< ElemTypeVector >::type >
 CNiHu::field_type_accelerator< Field, Family, Acceleration, Enable >
 CNiHu::field_type_accelerator< Field, Family, Acceleration, typename std::enable_if< field_traits::is_dirac< Field >::value >::type >Specialisation of NiHu::field_type_accelerator for the Dirac field type
 CNiHu::field_type_accelerator< Field, Family, acceleration::hard >
 CNiHu::field_type_accelerator_elem< Field, Family, Acceleration >Stores a quadrature point and a shape function vector
 CNiHu::field_view< ElemType, Option, Dimension >Field automatically generated from an element using a field generation option
 CNiHu::first_elements_x_type< ElemTypeVector >Metafunction computing the first element's x_t in a vector of elements
 CNiHu::fmm::fmm_assembly_timesHelper class for storing FMM assembly times
 CNiHu::fmm::fmm_matrix< P2P, P2M, P2L, M2P, L2P, M2M, L2L, M2L >Matrix representation of the FMM method
 CNiHu::fmm::fmm_operator< FmmTag >Operator defining its tag type
 CNiHu::fmm::fmm_operator< identity_p2p_operator::fmm_tag >
 CNiHu::fmm::fmm_operator< l2l_tag >
 CNiHu::fmm::fmm_operator< l2p_tag >
 CNiHu::fmm::fmm_operator< m2l_tag >
 CNiHu::fmm::fmm_operator< m2m_tag >
 CNiHu::fmm::fmm_operator< m2p_tag >
 CNiHu::fmm::fmm_operator< p2l_tag >
 CNiHu::fmm::fmm_operator< p2m_tag >
 CNiHu::fmm::fmm_operator< p2p_tag >
 CNiHu::fmm::fmm_operator< std::decay< Operator >::type::fmm_tag >
 CNiHu::fmm::fmm_operator_collection< Ops >Class representing a collection of FMM operators
 CNiHu::fmm::fmm_timerClass to store fmm timing data
 CFromIt
 CNiHu::function_space< FieldTypeVector >Class describing a function space
 CNiHu::function_space_base< Derived >CRTP base class of function spaces
 CNiHu::function_space_impl< Derived >Implementation class of function spaces
 CNiHu::function_space_traits< Derived >Traits class of function spaces
 CNiHu::function_space_traits< dirac_space< FuncSpace > >Traits class of a NiHu::dirac_space
 CNiHu::function_space_traits< directional_derivative_function_space< FunctionSpace > >Traits of the directional derivative function space
 CNiHu::function_space_traits< function_space< FieldTypeVector > >Traits class of a function space
 CNiHu::function_space_traits< function_space_view< Mesh, FieldOption, Dimension > >Traits class of a function space view
 CNiHu::function_space_view< Mesh, FieldOption, Dimension >A mesh extended with a Field generating option
 CNiHu::field_option::gaussTag to describe a gauss field
 CNiHu::gauss_family_tagTag for the family of Gaussian quadratures
 CNiHu::gaussian_covariance_kernel< Space, Dimension >
 CNiHu::gaussian_quadrature< Domain >
 CNiHu::gaussian_quadrature< domain_t >
 CNiHu::gaussian_quadrature< NiHu::line_domain >
 CNiHu::formalism::generalGeneral case when the test field is not Dirac
 CNiHu::matrix_function_complexity::generalReturned matrix should be computed on the fly
 CNiHu::get_formalism< TestField, TrialField, class >Return formalism from Test and Trial field types
 CNiHu::function_space_impl_internal::get_num_dofs< Mesh, FieldOption, Dimension >
 CNiHu::function_space_impl_internal::get_num_dofs< Mesh, field_option::constant, Dimension >
 CNiHu::function_space_impl_internal::get_num_dofs< Mesh, field_option::gauss, Dimension >
 CNiHu::function_space_impl_internal::get_num_dofs< Mesh, field_option::isoparametric, Dimension >
 CEigen::GMRES< _MatrixType, _Preconditioner >A GMRES solver for sparse square problems
 Ctmp::greater< N, M >General declaration of the greater oparation
 CNiHu::guiggiani< TrialField, Kernel, RadialOrder, TangentialOrder, Enable >Implementation of Guiggiani's method
 CNiHu::guiggiani< TrialField, Kernel, RadialOrder, TangentialOrder, typename std::enable_if< !element_traits::is_surface_element< typename TrialField::elem_t >::value >::type >Specialisation of Guiggiani's method for volume elements and collocation
 CNiHu::guiggiani< TrialField, Kernel, RadialOrder, TangentialOrder, typename std::enable_if< element_traits::is_surface_element< typename TrialField::elem_t >::value >::type >
 CNiHu::acceleration::hardReal acceleration
 CNiHu::helmholtz_2d_DLP_collocation_general< TestField, TrialField, order >Collocational integral of the 2D DLP kernel over a general curved line with general shape sets
 CNiHu::helmholtz_2d_DLP_galerkin_face_general< TestField, TrialField, order >Face match double integral of the DLP kernel
 CNiHu::helmholtz_2d_DLPt_collocation_general< TestField, TrialField, order >Collocational integral of the 2D DLPt kernel over a general curved line with general shape sets
 CNiHu::helmholtz_2d_DLPt_galerkin_face_general< TestField, TrialField, order >Face match double integral of the DLPt kernel
 CNiHu::helmholtz_2d_HSP_collocation_general< TestField, TrialField, order >Collocational integral of the 2D HSP kernel over a general curved line with general shape sets Full singularity subtraction in the reference coordinate system. The singularpart is integrated analytically in HFP sense. The regular part is integrated numerically with standard Gaussian quadrature
 CNiHu::helmholtz_2d_HSP_collocation_straight_line< TestField, TrialField, order >Collocational singular integral of the 2D Helmholtz HSP kernel over a straight line element
 CNiHu::helmholtz_2d_HSP_galerkin_edge_general< TestField, TrialField, order >Edge match double integral of the HSP kernel over curved elements with general shape sets
 CNiHu::helmholtz_2d_HSP_galerkin_face_general< TestField, TrialField, order >Face match double integral of the HSP kernel
 CNiHu::helmholtz_2d_SLP_collocation_constant_line< expansion_length >Collocational singular integral of the 2D Helmholtz SLP kernel over a constant line element
 CNiHu::helmholtz_2d_SLP_collocation_curved< TestField, TrialField, order >Collocational integral of the 2D SLP kernel over a curved line with general shape sets
 CNiHu::helmholtz_2d_SLP_galerkin_face_constant_line< expansion_length >Face match double integral of the SLP kernel over a line element with constant shape function
 CNiHu::helmholtz_2d_SLP_galerkin_face_general< TestField, TrialField, order >Face match double integral of the SLP kernel over a curved element with general shape set
 CNiHu::fmm::helmholtz_2d_wb_fmm< WaveNumber >2d wide band helmholetz fmm
 CNiHu::fmm::helmholtz_2d_wb_l2l_matrixL2l matrix of the wide band 2d helmholtz fmm
 CNiHu::fmm::helmholtz_2d_wb_level_dataClass containing the level data of the helmholtz 2d wide band fmm
 CNiHu::fmm::helmholtz_2d_wb_m2l_matrixM2l matrix of the wide band 2d helmholtz fmm
 CNiHu::fmm::helmholtz_2d_wb_m2m_matrixM2m matrix of the wide band 2d helmholtz fmm
 CNiHu::helmholtz_3d_DLP_collocation_constant_plane_nearly_singularNearly singular collocational integral of the 3D Helmholtz DLP kernel over planes The singular static part is redirected to the corresponding Laplace kernel The regular dynamic part is integrated numerically using a regular quadrature
 CNiHu::helmholtz_3d_DLPt_collocation_constant_plane_nearly_singularNearly singular collocational integral of the 3D Helmholtz DLPt kernel over planes
 CNiHu::fmm::helmholtz_3d_hf_fmm< WaveNumber >Fmm for the 3D Helmholtz equation
 CNiHu::fmm::helmholtz_3d_hf_level_dataLevel data of the helmholtz 3d hf fmm
 CNiHu::helmholtz_3d_HSP_collocation_constant_plane< order >Collocational singular integral of the 3D Helmholtz HSP kernel over a constant planar element
 CNiHu::helmholtz_3d_HSP_collocation_constant_plane_nearly_singularNearly singular collocational integral of the 3D Helmholtz HSP kernel over planes The singular static part is redirected to the corresponding Laplace kernel The regular dynamic part is integrated numerically using a regular quadrature
 CNiHu::helmholtz_3d_SLP_collocation_constant_plane< order >Collocational singular integral of the 3D Helmholtz SLP kernel over a constant planar element
 CNiHu::helmholtz_3d_SLP_collocation_constant_plane_nearly_singularNearly singular collocational integral of the 3D Helmholtz SLP kernel over planes
 CNiHu::fmm::helmholtz_burton_miller_solver< Fmm, TrialSpace >Generic collocational Burton-Miller solver
 CNiHu::fmm::helmholtz_field_point< Fmm, TestSpace, TrialSpace >
 CNiHu::helmholtz_kernel< Space, WaveNumber >
 CNiHu::helper_base< test_domain_t, trial_domain_t >Base structure for quadrature helpers
 CNiHu::helper_base< line_domain, line_domain >
 CNiHu::helper_base< quad_domain, quad_domain >
 CNiHu::helper_base< tria_domain, tria_domain >
 CNiHu::element_traits::id< Derived >Assigns an id to the element type
 CNiHu::domain_traits::id< Derived >Assigns an id to the domain
 CNiHu::field_traits::id< Derived >Assign a numeric ID to the field
 CNiHu::shape_set_traits::id< Derived >Assigns an id to the shape set
 CNiHu::field_traits::id< line_1_gauss_field >
 CNiHu::field_traits::id< quad_1_gauss_field >
 CNiHu::field_traits::id< tria_1_gauss_field >
 CNiHu::fmm::op_tags::idx2tag< idx >
 Cignore< T, Ignore >Metafunction returning its first argument and ignoring all subsequent
 CNiHu::mex::index_proxy< Parent >Index proxy class of a complex matrix
 CNiHu::index_tIndex class defined to use as a base class
 CNiHu::fmm::indexed< Op, FmmTag >
 CNiHu::fmm::indexed< Op, l2l_tag >
 CNiHu::fmm::indexed< Op, l2p_tag >
 CNiHu::fmm::indexed< Op, m2l_tag >
 CNiHu::fmm::indexed< Op, m2m_tag >
 CNiHu::fmm::indexed< Op, m2p_tag >
 CNiHu::fmm::indexed< Op, p2l_tag >
 CNiHu::fmm::indexed< Op, p2m_tag >
 CNiHu::fmm::indexed< Op, p2p_tag >
 CNiHu::fmm::indexed_functor< TestIt, TrialIt, ClusterDerived >
 CNiHu::sequence_materializer< Seq >::insert< Iter, Dummy >
 CNiHu::sequence_materializer< Seq >::insert< typename tmp::end< Seq >::type, Dummy >
 Ctmp::inserter< State, Operation >Compile time inserter
 Cintegral_constant
 CNiHu::integral_operator< Kernel >General integral operator with an arbitrary kernel
 CNiHu::integral_operator_base< Derived >CRTP base of integral operator expressions
 CNiHu::integral_operator_base< identity_integral_operator >
 CNiHu::fmm::integral_operator_diff< Lhs, Rhs >Difference of two integral operators
 CNiHu::fmm::integral_operator_expression< Derived >Base class of every integral operator
 CNiHu::fmm::integral_operator_expression< p2p_integral< identity_p2p_operator, TestField, TrialField > >
 CNiHu::fmm::integral_operator_expression< x2p_integral< Operator, NiHu::dirac_field< TestField > > >
 CNiHu::fmm::integral_operator_expression_traits< Derived >Traits structure of an integral operator
 CNiHu::fmm::integral_operator_expression_traits< integral_operator_diff< Lhs, Rhs > >Traits of the difference of two integral operators
 CNiHu::fmm::integral_operator_expression_traits< integral_operator_scaled< Lhs, Scalar > >Traits of the scaled integral operator
 CNiHu::fmm::integral_operator_expression_traits< integral_operator_src_concatenated< Lhs, Rhs > >Traits of the source concatenated integral operator
 CNiHu::fmm::integral_operator_expression_traits< integral_operator_sum< Lhs, Rhs > >Traits of the sum of two integral operators
 CNiHu::fmm::integral_operator_expression_traits< p2p_integral< identity_p2p_operator, TestField, TrialField > >
 CNiHu::fmm::integral_operator_expression_traits< p2p_integral< Operator, TestField, TrialField > >
 CNiHu::fmm::integral_operator_expression_traits< p2x_integral< Operator, TrialField > >
 CNiHu::fmm::integral_operator_expression_traits< x2p_integral< Operator, TestField > >
 CNiHu::fmm::integral_operator_scaled< Lhs, Scalar >Scalar times an integral operator
 CNiHu::fmm::integral_operator_src_concatenated< Lhs, Rhs >Source-concatenation of two integral operators
 CNiHu::fmm::integral_operator_sum< Lhs, Rhs >Sum of two integral operators
 CNiHu::integral_operator_traits< Derived >Traits class for an integral operator
 CNiHu::integral_operator_traits< identity_integral_operator >Traits class of the identity integral operator
 CNiHu::integral_operator_traits< integral_operator< Kernel > >Traits of an integral operator
 CNiHu::integral_operator_traits< scaled_integral_operator< Scalar, IntOp > >Traits class of class NiHu::scaled_integral_operator
 CNiHu::integral_operator_traits< sum_integral_operator< LhsOp, RhsOp > >
 CNiHu::integral_transform_base< Derived >CRTP base class of all integral_transform expressions
 CNiHu::integral_transform_base< integral_transform< Operator, TrialSpace > >
 CNiHu::integral_transform_base< integral_transform_sum< LDerived, RDerived > >
 CNiHu::fmm::integrated< Op, FmmTag >Generic integrated FMM operator
 CNiHu::fmm::integrated< Op, l2p_tag >Specialization for L2P operator
 CNiHu::fmm::integrated< Op, m2p_tag >Specialization for M2P operator
 CNiHu::fmm::integrated< Op, p2l_tag >Specialization for P2L operator
 CNiHu::fmm::integrated< Op, p2m_tag >Specialization for P2M operator
 CNiHu::fmm::integrated< Op, p2p_tag >Specialization for P2P operator
 CNiHu::fmm::integrated_functor< TestTag, TrialTag >
 CNiHu::fmm::interaction_listsClass storing the different interaction lists of a tree
 CNiHu::fmm::interpolatorClass interpolating over the unit sphere
 CNiHu::interval_estimator< Interval >Specialisation of NiHu::complexity_estimator for the interval case
 CNiHu::interval_estimator< tmp::merge_intervals< Interval1, Interval2 >::type >
 CNiHu::invalid_singular_acceleratorInvalid singular accelerator assigned to nonexisting integrals
 CNiHu::invalid_singular_iteratorInvalid singular iterator assigned to nonexisting integrals
 CNiHu::inverse_mapping< Elem >Mapping from physical to intrinsic coordinates
 CNiHu::inverse_mapping< surface_element< LSet, Scalar > >Inverse mapping for surface elements
 CNiHu::IpowC< Base, Exp >Metafunction computing integer power
 CNiHu::IpowC< 0, 0 >Terminating case of the recursion IpowC
 CNiHu::IpowC< 0, Exp >Terminating case of the recursion IpowC
 CNiHu::IpowC< Base, 0 >Terminating case of the recursion IpowC
 Cis_base_of
 Cis_same
 CNiHu::distance_dependent_kernel_traits_ns::is_singular< Derived >
 CNiHu::kernel_traits_ns::is_singular< Derived >Return whether the kernel is singular or not
 CNiHu::distance_dependent_kernel_traits_ns::is_singular< DK >
 CNiHu::element_traits::is_surface_element< Derived >Indicates if the element is a surface element or not
 CNiHu::kernel_traits_ns::is_symmetric< Derived >Return whether the kernel is symmetric or not
 CNiHu::isoparam_shape_set< Domain >Isoparametric shape sets
 CNiHu::field_option::isoparametricTag to describe an isoparametric field
 CIt
 CNiHu::function_space_traits< directional_derivative_function_space< FunctionSpace > >::iterator< field_t >
 CNiHu::function_space_traits< function_space< FieldTypeVector > >::iterator< field_t >Iterator type of a field type subvector
 Citerator
 CNiHu::function_space_traits< directional_derivative_function_space< FunctionSpace > >::iterator< directional_derivative_field< original_field_t > >
 CNiHu::jacobian_computer< elem, enable >
 CNiHu::jacobian_computer< elem_t, typename std::enable_if< !NiHu::element_traits::is_surface_element< elem_t >::value >::type >
 CNiHu::jacobian_computer< elem_t, typename std::enable_if< NiHu::element_traits::is_surface_element< elem_t >::value >::type >
 CNiHu::shape_set_traits::jacobian_order< Derived >Defines the polynomial order of the shape set's Jacobian
 CNiHu::shape_set_traits::jacobian_order< brick_1_shape_set >
 CNiHu::shape_set_traits::jacobian_order< constant_shape_set< Domain > >
 CNiHu::shape_set_traits::jacobian_order< line_1_gauss_shape_set >
 CNiHu::shape_set_traits::jacobian_order< line_1_shape_set >
 CNiHu::shape_set_traits::jacobian_order< line_2_shape_set >
 CNiHu::shape_set_traits::jacobian_order< quad_1_gauss_shape_set >
 CNiHu::shape_set_traits::jacobian_order< quad_1_shape_set >
 CNiHu::shape_set_traits::jacobian_order< quad_28_shape_set >
 CNiHu::shape_set_traits::jacobian_order< quad_2_shape_set >
 CNiHu::shape_set_traits::jacobian_order< tria_1_gauss_shape_set >
 CNiHu::shape_set_traits::jacobian_order< tria_1_shape_set >
 CNiHu::shape_set_traits::jacobian_order< tria_2_shape_set >
 CNiHu::kernel_base< Derived >CRTP base class of all BEM kernels
 CNiHu::kernel_base< elastodynamics_2d_U_kernel >
 CNiHu::kernel_base< elastodynamics_3d_T_kernel >
 CNiHu::kernel_base< elastodynamics_3d_U_kernel >
 CNiHu::kernel_base< elastostatics_2d_T_kernel >
 CNiHu::kernel_base< elastostatics_2d_U_kernel >
 CNiHu::kernel_base< elastostatics_3d_T_kernel >
 CNiHu::kernel_base< elastostatics_3d_U_kernel >
 CNiHu::kernel_base< kernel_t >
 CNiHu::kernel_base< normal_derivative_kernel< DistanceKernel, 0, 0 > >
 CNiHu::kernel_base< normal_derivative_kernel< DistanceKernel, 0, 1 > >
 CNiHu::kernel_base< normal_derivative_kernel< DistanceKernel, 1, 0 > >
 CNiHu::kernel_base< normal_derivative_kernel< DistanceKernel, 1, 1 > >
 CNiHu::kernel_base< normal_derivative_kernel< DistanceKernel, 2, 0 > >
 CNiHu::kernel_base< stokes_2d_T_kernel >
 CNiHu::kernel_base< stokes_2d_U_kernel >
 CNiHu::kernel_base< stokes_3d_T_kernel >
 CNiHu::kernel_base< stokes_3d_U_kernel >
 CNiHu::kernel_base< Derived >::kernel_bindKernel bound at the test kernel input
 CNiHu::kernel_compl_estimator< Derived >
 CNiHu::fmm::kernel_derivative_traits< Kernel >
 CNiHu::fmm::kernel_derivative_traits< normal_derivative_kernel< DistanceDependentKernel, Nx, Ny > >
 CNiHu::kernel_input_traits< empty_input< Space > >Traits of a location
 CNiHu::kernel_traits< Derived >Traits class of a kernel
 CNiHu::kernel_traits< convected_helmholtz_3d_DLP_kernel< WaveNumber > >
 CNiHu::kernel_traits< convected_helmholtz_3d_DLP_tan_kernel< WaveNumber > >
 CNiHu::kernel_traits< convected_helmholtz_3d_DLPt_kernel< WaveNumber > >
 CNiHu::kernel_traits< convected_helmholtz_3d_DLPt_n_kernel< WaveNumber > >
 CNiHu::kernel_traits< convected_helmholtz_3d_HSP_kernel< WaveNumber > >
 CNiHu::kernel_traits< convected_helmholtz_3d_SLP_kernel< WaveNumber > >
 CNiHu::kernel_traits< elastodynamics_2d_U_kernel >Properties of the elastodynamics 2D U kernel
 CNiHu::kernel_traits< elastodynamics_3d_T_kernel >Properties of the elastodynamics 3D T kernel
 CNiHu::kernel_traits< elastodynamics_3d_U_kernel >Properties of the elastodynamics 3D U kernel
 CNiHu::kernel_traits< elastostatics_2d_T_kernel >Properties of the elastostatics 2d T kernel
 CNiHu::kernel_traits< elastostatics_2d_U_kernel >Properties of the elastostatics 2d U kernel
 CNiHu::kernel_traits< elastostatics_3d_T_kernel >
 CNiHu::kernel_traits< elastostatics_3d_U_kernel >Properties of the elastostatics U kernel
 CNiHu::kernel_traits< kernel_t >
 CNiHu::kernel_traits< normal_derivative_kernel< DistanceKernel, 0, 0 > >
 CNiHu::kernel_traits< normal_derivative_kernel< DistanceKernel, 0, 1 > >
 CNiHu::kernel_traits< normal_derivative_kernel< DistanceKernel, 1, 0 > >
 CNiHu::kernel_traits< normal_derivative_kernel< DistanceKernel, 1, 1 > >
 CNiHu::kernel_traits< normal_derivative_kernel< DistanceKernel, 2, 0 > >
 CNiHu::kernel_traits< stokes_2d_T_kernel >Properties of the Stokes 2d T kernel
 CNiHu::kernel_traits< stokes_2d_U_kernel >Properties of the Stokes 2d U kernel
 CNiHu::kernel_traits< stokes_3d_T_kernel >
 CNiHu::kernel_traits< stokes_3d_U_kernel >Properties of the Stokes U kernel
 CNiHu::kernel_traits< unit_kernel< Scalar > >Traits of the unit kernel
 CNiHu::fmm::kron_identity< Lhs, Dim >
 CNiHu::fmm::op_tags::l2l
 CNiHu::fmm::laplace_2d_fmm::l2lL2L operator of the Laplace 2D FMM
 CNiHu::fmm::laplace_3d_fmm::l2lL2L operator of the Laplace 3D FMM
 CNiHu::fmm::op_tags::l2p
 CNiHu::fmm::laplace_2d_fmm::l2p< Nx >L2P operator of the Laplace 2D FMM
 CNiHu::fmm::laplace_3d_fmm::l2p< Nx >L2P operator of the Laplace 3D FMM
 CNiHu::fmm::helmholtz_2d_wb_fmm< WaveNumber >::l2p_type< Nx >
 CNiHu::laplace_2d_DLP_collocation_curved< TestField, TrialField, order >Collocational integral of the DLP kernel over a curved line
 CNiHu::laplace_2d_DLP_galerkin_edge_constant_lineEdge match double integral of the DLP kernel over constant lines
 CNiHu::laplace_2d_DLP_galerkin_face_general< TestField, TrialField, order >Face match double integral of the DLP kernel
 CNiHu::laplace_2d_DLPt_collocation_curved< TestField, TrialField, order >Collocational integral of the DLPt kernel over a curved line
 CNiHu::laplace_2d_DLPt_galerkin_face_general< TestField, TrialField, order >Face match double integral of the DLPt kernel
 CNiHu::fmm::laplace_2d_fmmFmm for the Laplace equation in 2D
 CNiHu::laplace_2d_HSP_collocation_curved< TestField, TrialField, order >Collocational integral of the HSP kernel over a curved line
 CNiHu::laplace_2d_HSP_collocation_straight< TestField, TrialField >Collocational integral of the HSP kernel over a straight line
 CNiHu::laplace_2d_HSP_galerkin_edge_general< TestField, TrialField, order >Edge match double integral of the HSP kernel
 CNiHu::laplace_2d_HSP_galerkin_face_constant_lineFace match double integral of the HSP kernel over a constant line
 CNiHu::laplace_2d_HSP_galerkin_face_general< TestField, TrialField, order >Face match double integral of the HSP kernel
 CNiHu::laplace_2d_SLP_collocation_curved< TestField, TrialField, order >Collocational integral of the SLP kernel
 CNiHu::laplace_2d_SLP_collocation_straight< TestField, TrialField >Collocational integral of the SLP kernel over a straight line
 CNiHu::laplace_2d_SLP_galerkin_edge_constant_lineEdge match double integral of the SLP kernel over constant lines
 CNiHu::laplace_2d_SLP_galerkin_edge_general< TestField, TrialField, order >Edge match double integral of the HSP kernel
 CNiHu::laplace_2d_SLP_galerkin_face_constant_lineFace match double integral of the SLP kernel over a constant line
 CNiHu::laplace_2d_SLP_galerkin_face_general< TestField, TrialField, order >Face match double integral of the SLP kernel
 CNiHu::laplace_2d_SLP_galerkin_face_linear_lineFace match double integral of the SLP kernel over a linear line
 CNiHu::laplace_3d_DLP_collocation_constant_plane_nearly_singular
 CNiHu::laplace_3d_DLPt_collocation_constant_plane_nearly_singularCollocational near.sing. integral of the laplace 3D DLPt kernel over constant plane elements
 CNiHu::fmm::laplace_3d_fmmFmm for the Laplace equation in 3D
 CNiHu::laplace_3d_HSP_collocation_constant_planeCollocational singular integral of the 3D Laplace HSP kernel over a constant planar element
 CNiHu::laplace_3d_HSP_collocation_constant_plane_nearly_singular
 CNiHu::laplace_3d_SLP_collocation_constant_planeCollocational singular integral of the 3D Laplace SLP kernel over a constant plane element
 CNiHu::laplace_3d_SLP_collocation_constant_plane_nearly_singularNearly singular collocational integral of the 3D Laplace SLP kernel over planes
 CNiHu::laplace_kernel< Space >Kernel of the Laplace equation \( \nabla^2 u = 0 \) in two and three dimensions
 Ctmp::less< N, M >General declaration of the less oparation
 Ctmp::less< BP1::y, BP2::y >
 CNiHu::line_helper< match_type >Helper structure for the line-line case
 CNiHu::line_quad_store< order >Store-wrapper of a statically stored line quadrature
 CNiHu::matsumoto_internal::line_quad_store< order >Store-wrapper of a statically stored line quadrature
 CNiHu::location_impl< Derived, Order >Compute location derivatives from nodal coordinates
 CNiHu::location_input< Space >Class representing a simple location
 CNiHu::element_traits::location_return_type< Derived, Order >The return type of the physical location's derivatives
 CNiHu::element_traits::location_value_type< Derived, Order >Matrix that stores the physical location's derivatives
 CNiHu::element_traits::location_value_type< Derived, 0 >
 CNiHu::log_quad_store< order >
 CLowRank< Scalar >Class capable of storing a Low Rank Approximation of a matrix block
 CNiHu::element_traits::lset< Derived >The geometrical shape set of the element
 CNiHu::element_traits::lset< surface_element< LSet, Scalar > >
 CNiHu::element_traits::lset< volume_element< LSet, Scalar > >
 CNiHu::fmm::op_tags::m2l
 CNiHu::fmm::laplace_2d_fmm::m2lM2L operator of the Laplace 2D FMM
 CNiHu::fmm::laplace_3d_fmm::m2lM2L operator of the Laplace 3D FMM
 CNiHu::fmm::m2l_indices< Dim >Class assigning indices to M2L distances
 CNiHu::fmm::op_tags::m2m
 CNiHu::fmm::laplace_2d_fmm::m2mM2M operator of the Laplace 2D FMM
 CNiHu::fmm::laplace_3d_fmm::m2mM2M operator of the Laplace 3D FMM
 CNiHu::fmm::op_tags::m2p
 CNiHu::fmm::laplace_2d_fmm::m2p< Nx >M2P operator of the Laplace 2D FMM
 CNiHu::fmm::laplace_3d_fmm::m2p< Nx >M2P operator of the Laplace 3D FMM
 CNiHu::fmm::helmholtz_2d_wb_fmm< WaveNumber >::m2p_type< Nx >
 CNiHu::bessel::make_complex< T >Metafunction converting a floating point type to a complex type
 CNiHu::bessel::make_complex< std::complex< T > >
 CMap
 CNiHu::match_type_vector< TestField, TrialField, Enable >Matafunction assigning a match type vector to two fields
 CNiHu::match_type_vector< TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >Specialisation of match_type_vector for the collocational formalism
 CNiHu::match_type_vector< TestField, TrialField, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value >::type >Specialisation of match_type_vector for the general formalism
 CMatrix
 CNiHu::mex::matrix_baseBase class of a Matlab mex matrix
 CNiHu::matrix_block< Matrix, RowIndex, ColIndex >Proxy class to represent a block of a matrix
 CNiHu::fmm::matrix_free< FmmMatrix >An Eigen::Matrix adaptor for the fmm_matrix class
 Ctmp::max_< Val, Args >Compute maximum of types
 Ctmp::merge_intervals< Inter1, Inter2 >Merge two intervals
 CNiHu::merge_kernel_complexity_estimators< Estim1, Estims >Merge at least two complexity estimators
 CNiHu::merge_kernel_complexity_estimators< Estim1, Estim2 >Merge two complexity estimators (the general case)
 CMesh
 CNiHu::mesh_base< Derived >
 CNiHu::mesh_base< homogeneous_submesh< Mesh, Elem > >
 CNiHu::mesh_base< mesh< ElemTypeVector > >
 CNiHu::mesh_elem_iterator_t< ElemType >Metafunction returning the iterator that traverses the homogeneous element vector of specified element type
 Cmesh_t
 Ctmp::min_< Val, Args >Compute minimum of types
 CNiHu::minimal_reference_dimension< SingularityType >Returns the minimal reference domain dimension where the singularity can be integrated
 CNiHu::minimal_reference_dimension< asymptotic::inverse< order > >Specialisation of NiHu::minimal_reference_dimension to the 1/r^o singularity
 CNiHu::minimal_reference_dimension< asymptotic::log< 1 > >Specialisation of NiHu::minimal_reference_dimension to the log<1> singularity
 CNiHu::minimal_reference_dimension< asymptotic::power< order > >Specialisation of NiHu::minimal_reference_dimension to the r^o singularity
 Ctmp::minus< A, B >Binary minus
 Ctmp::mul< A, B >Binary multiply
 CNiHu::element_traits::name< Derived >The element type's textual id
 CNiHu::domain_traits::name< Derived >Assigns a textual id the domain
 CNiHu::shape_set_traits::name< Derived >The shape set's textual id - used for debug information
 CNiHu::nearly_singular_collocational< TrialField, Kernel, RadialOrder, TangentialOrder, Enable >
 CNiHu::nearly_singular_collocational< TrialField, Kernel, RadialOrder, TangentialOrder, typename std::enable_if< element_traits::is_surface_element< typename TrialField::elem_t >::value >::type >
 CNiHu::nearly_singular_collocational_telles< TrialField, Kernel, Order, Enable >
 CNiHu::nearly_singular_collocational_telles< TrialField, Kernel, Order, typename std::enable_if< element_traits::is_surface_element< typename TrialField::elem_t >::value >::type >
 CNiHu::nearly_singular_integral< Kernel, TestField, TrialField, Enable >
 CNiHu::nearly_singular_integral< convected_helmholtz_3d_DLP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >
 CNiHu::nearly_singular_integral< convected_helmholtz_3d_DLPt_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >
 CNiHu::nearly_singular_integral< convected_helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >
 CNiHu::nearly_singular_integral< helmholtz_3d_DLP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< helmholtz_3d_DLP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< helmholtz_3d_DLPt_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >Collocational near.sing. integral of the Helmholtz DLPt kernel over constant tria
 CNiHu::nearly_singular_integral< helmholtz_3d_DLPt_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< helmholtz_3d_SLP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >Nearly singular collocation integral, 3D Helmholtz SLP, not constant linear tria
 CNiHu::nearly_singular_integral< helmholtz_3d_SLP_kernel< WaveNumber >, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Nearly singular collocation integral, 3D Helmholtz SLP, constant linear tria
 CNiHu::nearly_singular_integral< laplace_3d_DLP_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_DLP_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_DLPt_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_DLPt_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_HSP_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_HSP_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_SLP_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >
 CNiHu::nearly_singular_integral< laplace_3d_SLP_kernel, TestField, TrialField, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Class enabling the specialisation for 3D SLP Laplace kernel
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< Kernel, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< helmholtz_3d_DLP_kernel< WaveNumber >, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< helmholtz_3d_DLPt_kernel< WaveNumber >, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< helmholtz_3d_HSP_kernel< WaveNumber >, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< helmholtz_3d_SLP_kernel< WaveNumber >, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< laplace_3d_DLP_kernel, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< laplace_3d_DLPt_kernel, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< laplace_3d_HSP_kernel, Elem >
 CNiHu::nearly_singular_planar_constant_collocation_shortcut< laplace_3d_SLP_kernel, Elem >
 Ctmp::next< A >Increment operator
 CNiHu::normal_derivative_kernel< DistanceKernel, Nx, Ny >Normal derivative of a distance dependent kernel
 CNiHu::normal_impl< Derived, enable >Compute surface normal from location derivatives
 CNiHu::normal_impl< Derived, typename std::enable_if< element_traits::space_type< Derived >::type::dimension==2 >::type >Specialisation of NiHu::normal_impl for 2D
 CNiHu::normal_impl< Derived, typename std::enable_if< element_traits::space_type< Derived >::type::dimension==3 >::type >Specialisation of NiHu::normal_impl for 3D
 CNiHu::element_traits::normal_return_type< Derived >The return type of the normal vector
 CNiHu::field_traits::nset_type< Derived >Assigns the N-set type to the field
 CNiHu::field_traits::nset_type< Field >
 CNiHu::field_traits::nset_type< field< ElemType, NSet, Dimension > >Assign an N-set type to a field
 CNiHu::field_traits::nset_type< field_view< ElemType, field_option::constant, Dimension > >Assign an N-set type to a constant field view
 CNiHu::field_traits::nset_type< field_view< ElemType, field_option::gauss, Dimension > >Assign a Gaussian shape set type to an element
 CNiHu::field_traits::nset_type< field_view< ElemType, field_option::isoparametric, Dimension > >Assign an N-set type to a field view
 CNiHu::num_cols< T >Metafunction returning the number of compile time columns
 CNiHu::num_cols< double >Specialization of num_cols for the double scalar type
 CNiHu::num_cols< std::complex< double > >Specialization of num_cols for the complex scalar type
 CNiHu::domain_traits::num_corners< Derived >Defines the number of domain corners
 CNiHu::domain_traits::num_corners< brick_domain >Metafunction returning the domain's number of corners
 CNiHu::domain_traits::num_corners< line_domain >Metafunction returning the number of corners
 CNiHu::domain_traits::num_corners< quad_domain >Metafunction returning the domain's number of corners
 CNiHu::domain_traits::num_corners< tria_domain >Metafunction returning the domain's number of corners
 CNiHu::domain_traits::num_edges< Derived >Defines the number of edges
 CNiHu::domain_traits::num_edges< brick_domain >Metafunction returning the domain's number of edges
 CNiHu::domain_traits::num_edges< line_domain >Metafunction returning the number of edges
 CNiHu::domain_traits::num_edges< quad_domain >Metafunction returning the domain's number of edges
 CNiHu::domain_traits::num_edges< tria_domain >Metafunction returning the domain's number of edges
 CNiHu::shape_set_traits::num_nodes< Derived >Defines the number of shape functions in the set
 CNiHu::shape_set_traits::num_nodes< constant_shape_set< Domain > >
 CNiHu::shape_set_traits::num_nodes< isoparam_shape_set< Domain > >
 CNiHu::shape_set_traits::num_nodes< line_1_gauss_shape_set >
 CNiHu::shape_set_traits::num_nodes< line_2_shape_set >
 CNiHu::shape_set_traits::num_nodes< quad_1_gauss_shape_set >
 CNiHu::shape_set_traits::num_nodes< quad_28_shape_set >
 CNiHu::shape_set_traits::num_nodes< quad_2_shape_set >
 CNiHu::shape_set_traits::num_nodes< tria_1_gauss_shape_set >
 CNiHu::shape_set_traits::num_nodes< tria_2_shape_set >
 CNiHu::num_rows< T >Metafunction returning the number of compile time rows
 CNiHu::num_rows< double >Specialization of num_rows for the double scalar type
 CNiHu::num_rows< std::complex< double > >Specialization of num_rows for the complex scalar type
 CNiHu::fmm::fmm_operator_collection< Ops >::op_type< FmmTag >Metafunction for retreiving operator type for a given tag
 CNiHu::fmm::operator_with_wave_number< WaveNumber >Class storing a wave number
 CNiHu::fmm::operator_with_wave_number< wave_number_t >
 COriginalIterator
 CNiHu::fmm::op_tags::p2l
 CNiHu::fmm::laplace_2d_fmm::p2l< Ny >P2L operator of the Laplace 2D FMM
 CNiHu::fmm::laplace_3d_fmm::p2l< Ny >P2L operator of the Laplace 3D FMM
 CNiHu::fmm::helmholtz_2d_wb_fmm< WaveNumber >::p2l_type< Ny >
 CNiHu::fmm::op_tags::p2m
 CNiHu::fmm::laplace_3d_fmm::p2m< Ny >P2M operator of the Laplace 3D FMM
 CNiHu::fmm::laplace_2d_fmm::p2m< Ny >P2M operator of the Laplace 2D FMM
 CNiHu::fmm::helmholtz_2d_wb_fmm< WaveNumber >::p2m_type< Ny >
 CNiHu::fmm::op_tags::p2p
 CNiHu::fmm::p2p_integral< Operator, TestField, TrialField >
 CNiHu::fmm::helmholtz_2d_wb_fmm< WaveNumber >::p2p_type< Nx, Ny >
 CNiHu::fmm::p2x_integral< Operator, TrialField >Integrate a p2x-operator over a trial field
 CNiHu::fmm::p2x_precompute< Result, FmmTag >
 Cpair
 CNiHu::plain_type< T, true >Plain object type of a class
 Ctmp::plus< A, B >Binary plus
 CNiHu::polar_laurent_coeffs< singularity_type >Definition of Laurent coefficients of singularities
 CNiHu::polar_laurent_coeffs< convected_helmholtz_3d_DLPt_kernel< WaveNumber > >
 CNiHu::polar_laurent_coeffs< convected_helmholtz_3d_DLPt_n_kernel< WaveNumber > >
 CNiHu::polar_laurent_coeffs< convected_helmholtz_3d_HSP_kernel< WaveNumber > >
 CNiHu::polar_laurent_coeffs< elastostatics_3d_T_kernel >
 CNiHu::polar_laurent_coeffs< normal_derivative_kernel< laplace_kernel< space_3d< Scalar > >, 1, 1 >>Specialisation of class NiHu::polar_laurent_coeffs for the NiHu::laplace_3d_HSP_kernel
 CNiHu::polar_laurent_coeffs< stokes_3d_T_kernel >Polar Laurent coefficients of the 3d Stokes traction kernel
 CNiHu::shape_set_traits::polynomial_order< Derived >Defines the polynomial order of the shape set
 CNiHu::shape_set_traits::polynomial_order< constant_shape_set< Domain > >
 CNiHu::shape_set_traits::polynomial_order< isoparam_shape_set< Domain > >
 CNiHu::shape_set_traits::polynomial_order< line_1_gauss_shape_set >
 CNiHu::shape_set_traits::polynomial_order< line_2_shape_set >
 CNiHu::shape_set_traits::polynomial_order< quad_1_gauss_shape_set >
 CNiHu::shape_set_traits::polynomial_order< quad_28_shape_set >
 CNiHu::shape_set_traits::polynomial_order< quad_2_shape_set >
 CNiHu::shape_set_traits::polynomial_order< tria_1_gauss_shape_set >
 CNiHu::shape_set_traits::polynomial_order< tria_2_shape_set >
 CNiHu::pool< C, MaxOrder >Class storing a vector of class instances
 CNiHu::pool< field_type_accelerator< Field, Family, acceleration::hard >, MaxOrder >
 CNiHu::pool< quadrature_type< Family, Field::elem_t::domain_t >::type, MaxOrder >
 CNiHu::shape_set_traits::position_dof_vector< Derived >Defines the nodal degrees of freedoms of the shape functions
 CNiHu::shape_set_traits::position_dof_vector< constant_shape_set< Domain > >
 CNiHu::shape_set_traits::position_dof_vector< line_1_gauss_shape_set >
 CNiHu::shape_set_traits::position_dof_vector< line_2_shape_set >
 CNiHu::shape_set_traits::position_dof_vector< quad_1_gauss_shape_set >
 CNiHu::shape_set_traits::position_dof_vector< quad_28_shape_set >
 CNiHu::shape_set_traits::position_dof_vector< quad_2_shape_set >
 CNiHu::shape_set_traits::position_dof_vector< tria_1_gauss_shape_set >
 CNiHu::shape_set_traits::position_dof_vector< tria_2_shape_set >
 CNiHu::shape_set_traits::position_dof_vector_mat< Derived >Materialized position vector type
 CNiHu::fmm::precompute< Op, FmmTag >
 CNiHu::fmm::precompute< Op, l2l_tag >
 CNiHu::fmm::precompute< Op, l2p_tag >
 CNiHu::fmm::precompute< Op, m2l_tag >
 CNiHu::fmm::precompute< Op, m2m_tag >
 CNiHu::fmm::precompute< Op, m2p_tag >
 CNiHu::fmm::precompute< Op, p2l_tag >
 CNiHu::fmm::precompute< Op, p2m_tag >
 CNiHu::fmm::precompute< Op, p2p_tag >
 CNiHu::fmm::precompute_functor< ClusterDerived >
 Ctmp::prev< A >Decrement operator
 Cprint< Seq, bool >Print elements of a compile time sequence
 Cprint< Seq, true >Terminating case of print
 CNiHu::product_type< Lhs, Rhs >Metafunction returning the product type of two classes
 CNiHu::quad_helper< match_type >Helper struct of the quad-quad algorithm
 CNiHu::quadr_elem< Derived >Metafunction to assign a quadrature element to a quadrature
 CNiHu::quadrature_elem< XiType, ScalarType >Quadrature element is a base point and a weight
 CNiHu::quadrature_elem< Field::elem_t::domain_t::xi_t, Field::elem_t::domain_t::scalar_t >
 CNiHu::distance_dependent_kernel_traits_ns::quadrature_family< Derived >
 CNiHu::kernel_traits_ns::quadrature_family< Derived >Return the quadrature family the kernel is integrated with
 CNiHu::distance_dependent_kernel_traits_ns::quadrature_family< DK >
 CNiHu::quadrature_traits< Derived >
 CNiHu::quadrature_traits< gaussian_quadrature< Domain > >Traits of a Gaussian quadrature
 CNiHu::quadrature_traits< log_gaussian_quadrature >Traits of a Log-Gaussian quadrature
 CNiHu::quadrature_type< Family, Domain >Metafunction to assign a quadrature type to a quadrature family and a domain
 CNiHu::quadrature_type< Family, Field::elem_t::domain_t >
 CNiHu::quadrature_type< quadrature_family_t, trial_domain_t >
 CNiHu::field_traits::quantity_dimension< Derived >Assigns the dimensionality of the interpolated physical quantity
 CNiHu::field_traits::quantity_dimension< Field >
 Cratio_less
 CNiHu::real_part_type< T >Metafunction returning the real scalar part type
 CNiHu::real_part_type< std::complex< T > >Specialisation of real_part_type for a complex scalar
 CNiHu::asymptotic::regularNo singularity
 CNiHu::regular_quad_store< domain_t, order >Store-wrapper of a statically stored quadrature
 CNiHu::distance_dependent_kernel_traits_ns::result< Derived >
 CNiHu::kernel_traits_ns::result< Derived >Return the kernel's result type
 CNiHu::distance_dependent_kernel_traits_ns::result< DK >
 CNiHu::kernel_traits_ns::result< exponential_covariance_kernel< Space, Dimension > >
 CNiHu::kernel_traits_ns::result< gaussian_covariance_kernel< Space, Dimension > >
 CNiHu::distance_dependent_kernel_traits_ns::result< helmholtz_kernel< Space, WaveNumber > >
 CNiHu::distance_dependent_kernel_traits_ns::result< laplace_kernel< Space > >
 CNiHu::scalar< T >Metafunction returning the scalar type
 CNiHu::scalar< double >Specialization of scalar for the double type
 CNiHu::scalar< std::complex< double > >Specialization of scalar for the complex type
 CNiHu::scaled_integral_operator< Scalar, IntOp >Proxy class representing an integral operator multiplied by a scalar
 Ctmp::select_argument< N, T, Args >Select N-th argument of a variadic template
 Ctmp::select_argument< 1U, T, Args... >Terminating case of select_argument
 Ctmp::select_argument< N, Args... >
 CNiHu::select_singular_accelerator< Kernel, TestField, TrialField, SingularityDimension, class >Select a singular accelerator for a kernel and test and trial fields
 CNiHu::semi_block_product_result_type< mat, rightDerived >Metafunction returning the value type of a semi block product
 CNiHu::semi_block_product_result_type< typename singular_core_t::result_t, trial_n_shape_t >
 CSeq
 CNiHu::sequence_materializer< Seq >
 CNiHu::shape_set_traits::shape_complexity< Derived, Order >Defines the complexity to determine if the shape functions can be precomputed or not
 CNiHu::shape_set_traits::shape_complexity< line_1_gauss_shape_set, 0 >
 CNiHu::shape_set_traits::shape_complexity< line_1_gauss_shape_set, 1 >
 CNiHu::shape_set_traits::shape_complexity< line_1_gauss_shape_set, 2 >
 CNiHu::shape_set_traits::shape_complexity< line_2_shape_set, 2 >
 CNiHu::shape_set_traits::shape_complexity< line_2_shape_set, Order >
 CNiHu::shape_set_traits::shape_complexity< lset< Derived >::type, Order >
 CNiHu::shape_set_traits::shape_complexity< quad_1_gauss_shape_set, Order >
 CNiHu::shape_set_traits::shape_complexity< quad_28_shape_set, Order >
 CNiHu::shape_set_traits::shape_complexity< quad_2_shape_set, Order >
 CNiHu::shape_set_traits::shape_complexity< tria_1_gauss_shape_set, 0 >
 CNiHu::shape_set_traits::shape_complexity< tria_1_gauss_shape_set, 1 >
 CNiHu::shape_set_traits::shape_complexity< tria_1_gauss_shape_set, 2 >
 CNiHu::shape_set_traits::shape_complexity< tria_2_shape_set, Order >
 CNiHu::shape_function< Derived, Order >
 CNiHu::shape_function< brick_1_shape_set, 0 >Linear 8-noded general brick shape functions
 CNiHu::shape_function< brick_1_shape_set, 1 >Linear 8-noded general brick shape function derivative matrix
 CNiHu::shape_function< brick_1_shape_set, 2 >Linear 8-noded general brick shape function second derivative matrix
 CNiHu::shape_function< constant_shape_set< Domain >, 0 >
 CNiHu::shape_function< constant_shape_set< Domain >, 1 >
 CNiHu::shape_function< constant_shape_set< Domain >, 2 >
 CNiHu::shape_function< line_1_gauss_shape_set, 0 >
 CNiHu::shape_function< line_1_gauss_shape_set, 1 >
 CNiHu::shape_function< line_1_gauss_shape_set, 2 >
 CNiHu::shape_function< line_1_shape_set, 0 >Linear 2-noded line shape functions
 CNiHu::shape_function< line_1_shape_set, 1 >Linear 2-noded line shape function derivative matrix
 CNiHu::shape_function< line_1_shape_set, 2 >Linear 2-noded line shape function second derivative matrix
 CNiHu::shape_function< line_2_shape_set, 0 >Quadratic 3-noded line shape functions
 CNiHu::shape_function< line_2_shape_set, 1 >Quadratic 3-noded line shape function derivatives
 CNiHu::shape_function< line_2_shape_set, 2 >Quadratic 3-noded line shape function second derivatives
 CNiHu::shape_function< quad_1_gauss_shape_set, 0 >
 CNiHu::shape_function< quad_1_gauss_shape_set, 1 >
 CNiHu::shape_function< quad_1_shape_set, 0 >Linear 4-noded general quadrilateral shape functions
 CNiHu::shape_function< quad_1_shape_set, 1 >Linear 4-noded general quadrilater shape function derivative matrix
 CNiHu::shape_function< quad_1_shape_set, 2 >Linear 4-noded general quadrilater shape function second derivative matrix
 CNiHu::shape_function< quad_28_shape_set, 0 >Quadratic 8-noded quad shape functions
 CNiHu::shape_function< quad_28_shape_set, 1 >Quadratic 8-noded quad shape function derivatives
 CNiHu::shape_function< quad_28_shape_set, 2 >Quadratic 8-noded quad shape function second derivatives
 CNiHu::shape_function< quad_2_shape_set, 0 >Quadratic 9-noded quad shape functions
 CNiHu::shape_function< quad_2_shape_set, 1 >Quadratic 9-noded quad shape function derivatives
 CNiHu::shape_function< quad_2_shape_set, 2 >Quadratic 9-noded quad shape function second derivatives
 CNiHu::shape_function< tria_1_gauss_shape_set, 0 >
 CNiHu::shape_function< tria_1_gauss_shape_set, 1 >
 CNiHu::shape_function< tria_1_shape_set, 0 >Linear 3-noded triangle shape functions
 CNiHu::shape_function< tria_1_shape_set, 1 >Linear 3-noded tria elem shape function derivative matrix
 CNiHu::shape_function< tria_1_shape_set, 2 >Linear 3-noded tria elem shape function second derivative matrix
 CNiHu::shape_function< tria_2_shape_set, 0 >Quadratic 6-noded tria shape functions
 CNiHu::shape_function< tria_2_shape_set, 1 >Quadratic 6-noded tria shape function derivatives
 CNiHu::shape_function< tria_2_shape_set, 2 >Quadratic 6-noded tria shape function second derivatives
 CNiHu::shape_set_traits::shape_return_type< Derived, Order >Defines the return type of the shape function matrix
 CNiHu::shape_set_traits::shape_return_type< nset_type< Derived >::type, 0 >
 CNiHu::shape_set_base< Derived >Shapeset base class for CRTP
 CNiHu::shape_set_base< line_1_gauss_shape_set >
 CNiHu::shape_set_base< line_2_shape_set >
 CNiHu::shape_set_base< quad_1_gauss_shape_set >
 CNiHu::shape_set_base< quad_28_shape_set >
 CNiHu::shape_set_base< quad_2_shape_set >
 CNiHu::shape_set_base< tria_1_gauss_shape_set >
 CNiHu::shape_set_base< tria_2_shape_set >
 CNiHu::shape_set_traits::shape_value_type< Derived, Order >Defines the value type of the shape function matrix (and derivatives)
 CNiHu::shape_set_traits::shape_value_type< nset_type< directional_derivative_field< Field > >::type, 0 >
 CNiHu::single_integral< TestField, TrialField, class >Single integral for different element types
 CNiHu::single_integral_impl< TestField, TrialField, Formalism >Single integral over an element for the general case
 CNiHu::single_integral_impl< TestField, TrialField >
 CNiHu::single_integral_impl< TestField, TrialField, formalism::collocational >Specialisation for the collocational case
 CNiHu::single_integral_traits< TestField, TrialField >Traits class of NiHu::single_integral
 CNiHu::singular_accelerator< Kernel, TestField, TrialField, class >Accelerator class that stores singular quadratures for different singularity types
 CNiHu::singular_accelerator< Kernel, TestField, TrialField, formalism::collocational >Specialisation the singular accelerator for the collocational case
 CNiHu::singular_accelerator< Kernel, TestField, TrialField, formalism::general >Specialisation of NiHu::singular_accelerator for the general formalism
 CNiHu::distance_dependent_kernel_traits_ns::singular_core< DerivedSpace >
 CNiHu::kernel_traits_ns::singular_core< Derived >Return the kernel's singular core type
 CNiHu::distance_dependent_kernel_traits_ns::singular_core< helmholtz_kernel< Space, WaveNumber > >
 CNiHu::distance_dependent_kernel_traits_ns::singular_core< laplace_kernel< Space > >
 CNiHu::kernel_traits_ns::singular_core< normal_derivative_kernel< DK, Nx, Ny > >
 CNiHu::singular_galerkin_quadrature< quadrature_family_t, test_domain_t, trial_domain_t >Class computing singular Galerkin type quadratures for different domains
 CNiHu::singular_galerkin_quadrature< quadrature_family_t, line_domain, line_domain >Specialisation of NiHu::singular_galerkin_quadrature for the line-line case
 CNiHu::singular_galerkin_quadrature< quadrature_family_t, quad_domain, quad_domain >Specialisation of NiHu::singular_galerkin_quadrature for the quad-quad case
 CNiHu::singular_galerkin_quadrature< quadrature_family_t, quad_domain, tria_domain >Specialisation of NiHu::singular_galerkin_quadrature for the quad-tria case
 CNiHu::singular_galerkin_quadrature< quadrature_family_t, tria_domain, quad_domain >Specialisation of NiHu::singular_galerkin_quadrature for the tria-quad case
 CNiHu::singular_galerkin_quadrature< quadrature_family_t, tria_domain, tria_domain >Specialisation of NiHu::singular_galerkin_quadrature for the tria-tria case
 CNiHu::singular_integral_shortcut< Kernel, TestField, TrialField, SingularityDimension, Enable >Shortcut for the user to define customised singular integral methods
 CNiHu::singular_integral_shortcut< convected_helmholtz_3d_DLPt_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >Collocational singular integral of the 3D DLPt kernel
 CNiHu::singular_integral_shortcut< convected_helmholtz_3d_DLPt_n_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >Collocational singular integral of the 3D DLPt kernel
 CNiHu::singular_integral_shortcut< convected_helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value >::type >Collocational singular integral of the 3D HSP kernel
 CNiHu::singular_integral_shortcut< elastodynamics_3d_T_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::collocational >::value >::type >Collocational singular integral of the T kernel
 CNiHu::singular_integral_shortcut< elastostatics_2d_T_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_line< TrialField >::value >::type >Collocational singular integral of the 2D T kernel over a constant line
 CNiHu::singular_integral_shortcut< elastostatics_2d_T_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&std::is_same< typename TestField::elem_t::lset_t, line_1_shape_set >::value &&std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value &&std::is_same< typename TestField::nset_t, line_0_shape_set >::value &&std::is_same< typename TrialField::nset_t, line_0_shape_set >::value >::type >Galerkin face-match singular integral of the 2D T kernel over a constant line
 CNiHu::singular_integral_shortcut< elastostatics_2d_U_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_line< TrialField >::value >::type >Collocational singular integral of the 2D U kernel over a constant line
 CNiHu::singular_integral_shortcut< elastostatics_2d_U_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value &&std::is_same< typename TestField::nset_t, line_0_shape_set >::value &&std::is_same< typename TrialField::nset_t, line_0_shape_set >::value >::type >Galerkin face-match singular integral of the 2D U kernel over a constant line
 CNiHu::singular_integral_shortcut< elastostatics_3d_T_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::collocational >::value >::type >Collocational singular integral of the T kernel
 CNiHu::singular_integral_shortcut< helmholtz_2d_DLP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!(std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value) >::type >Collocational singular integral of the 2D DLP kernel over a curved line
 CNiHu::singular_integral_shortcut< helmholtz_2d_DLP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >Face-match double integral of the DLP kernel over a curved line
 CNiHu::singular_integral_shortcut< helmholtz_2d_DLPt_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!(std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value) >::type >Collocational singular integral of the 2D DLPt kernel over a curved line
 CNiHu::singular_integral_shortcut< helmholtz_2d_DLPt_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >Face-match double integral of the DLPt kernel over a curved line
 CNiHu::singular_integral_shortcut< helmholtz_2d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_0d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value >::type >Edge-match double integral of the SLP kernel over two constant lines
 CNiHu::singular_integral_shortcut< helmholtz_2d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >Collocational singular integral of the 2D HSP kernel over a curved line
 CNiHu::singular_integral_shortcut< helmholtz_2d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >Collocational singular integral of the 2D HSP kernel over a straight line
 CNiHu::singular_integral_shortcut< helmholtz_2d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value >::type >Face-match double integral of the HSP kernel over a curved line
 CNiHu::singular_integral_shortcut< helmholtz_2d_SLP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_line< TrialField >::value >::type >Collocational singular integral of the 2d SLP kernel over not a constant line
 CNiHu::singular_integral_shortcut< helmholtz_2d_SLP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_line< TrialField >::value >::type >Collocational singular integral of the 2d SLP kernel over a constant line
 CNiHu::singular_integral_shortcut< helmholtz_2d_SLP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!(is_constant_line< TrialField >::value &&is_constant_line< TestField >::value) >::type >Face match double integral of the SLP kernel over a constant line
 CNiHu::singular_integral_shortcut< helmholtz_2d_SLP_kernel< WaveNumber >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&is_constant_line< TrialField >::value &&is_constant_line< TestField >::value >::type >Face match double integral of the SLP kernel over a constant line
 CNiHu::singular_integral_shortcut< helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >Collocational singular integral of the 3D HSP kernel NOT over a constant triangle
 CNiHu::singular_integral_shortcut< helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Collocational singular integral of the 3D HSP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< helmholtz_3d_HSP_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::collocational >::value &&std::is_same< typename TrialField::lset_t, tria_1_shape_set >::value &&std::is_same< typename TrialField::nset_t, tria_0_shape_set >::value >::type >Collocational hypersingular integral of the HSP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< helmholtz_3d_SLP_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Collocational singular integral of the 3D SLP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< helmholtz_3d_SLP_kernel< WaveNumber >, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::collocational >::value &&std::is_same< typename TrialField::lset_t, tria_1_shape_set >::value &&std::is_same< typename TrialField::nset_t, tria_0_shape_set >::value >::type >Collocational singular integral of the SLP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< laplace_2d_DLP_kernel, TestField, TrialField, match::match_0d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_straight_line< TrialField >::value >::type >Collocational singular integral of the DLP kernel over a straight line
 CNiHu::singular_integral_shortcut< laplace_2d_DLP_kernel, TestField, TrialField, match::match_0d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&is_constant_line< TrialField >::value &&is_constant_line< TestField >::value >::type >Edge-match double integral of the DLP kernel over constant lines
 CNiHu::singular_integral_shortcut< laplace_2d_DLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_straight_line< TrialField >::value >::type >Collocational integral of the DLP kernel over a curved line
 CNiHu::singular_integral_shortcut< laplace_2d_DLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >Face-match double integral of the DLP kernel over a curved line
 CNiHu::singular_integral_shortcut< laplace_2d_DLPt_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_straight_line< TrialField >::value >::type >Collocational integral of the DLPt kernel over a curved line
 CNiHu::singular_integral_shortcut< laplace_2d_DLPt_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >Face-match double integral of the DLPt kernel over a curved line
 CNiHu::singular_integral_shortcut< laplace_2d_HSP_kernel, TestField, TrialField, match::match_0d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value >::type >Edge-match double integral of the HSP kernel
 CNiHu::singular_integral_shortcut< laplace_2d_HSP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_straight_line< TrialField >::value >::type >Collocational integral of the HSP kernel over a curved line
 CNiHu::singular_integral_shortcut< laplace_2d_HSP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_straight_line< TrialField >::value >::type >Collocational integral of the HSP kernel over a straight line
 CNiHu::singular_integral_shortcut< laplace_2d_HSP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!(is_constant_line< TestField >::value &&is_constant_line< TrialField >::value) >::type >Face-match double integral of the HSP kernel
 CNiHu::singular_integral_shortcut< laplace_2d_HSP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&is_constant_line< TestField >::value &&is_constant_line< TrialField >::value >::type >Face-match double integral of the HSP kernel over a constant line
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_0d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_straight_line< TrialField >::value >::type >Collocational singular integral of the SLP kernel over a straight line
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_0d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!(is_constant_line< TrialField >::value &&is_constant_line< TestField >::value) >::type >Edge-match double integral of the SLP kernel
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_0d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&is_constant_line< TrialField >::value &&is_constant_line< TestField >::value >::type >Edge-match double integral of the SLP kernel over constant lines
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_straight_line< TrialField >::value >::type >Collocational integral of the SLP kernel over a curved line
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_straight_line< TrialField >::value >::type >Collocational singular integral of the SLP kernel over a straight line
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&!(is_linear_line< TrialField >::value &&is_linear_line< TestField >::value) &&!(is_constant_line< TrialField >::value &&is_constant_line< TestField >::value) >::type >Face-match double integral of the SLP kernel
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&is_constant_line< TestField >::value &&is_constant_line< TrialField >::value >::type >Face-match double integral of the SLP kernel over a constant line
 CNiHu::singular_integral_shortcut< laplace_2d_SLP_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&is_linear_line< TrialField >::value &&is_linear_line< TestField >::value >::type >Face-match double integral of the SLP kernel over a linear line
 CNiHu::singular_integral_shortcut< laplace_3d_Gxx_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Collocational singular integral of the 3d Gxx kernel over a constant triangle
 CNiHu::singular_integral_shortcut< laplace_3d_HSP_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&!is_constant_tria< TrialField >::value >::type >Collocational singular integral of the HSP kernel not over a constant triangle
 CNiHu::singular_integral_shortcut< laplace_3d_HSP_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Collocational singular integral of the 3D HSP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< laplace_3d_SLP_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_tria< TrialField >::value >::type >Collocational singular integral of the 3D SLP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< laplace_3d_SLP_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&std::is_same< typename TrialField::lset_t, tria_1_shape_set >::value &&std::is_same< typename TrialField::nset_t, tria_0_shape_set >::value &&std::is_same< typename TestField::nset_t, tria_0_shape_set >::value >::type >Galerkin singular integral of the Laplace SLP kernel over a constant triangle
 CNiHu::singular_integral_shortcut< normal_derivative_kernel< DK, 0, 1 >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >
 CNiHu::singular_integral_shortcut< normal_derivative_kernel< DK, 0, 1 >, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename TrialField::elem_t::lset_t, tria_1_shape_set >::value >::type >
 CNiHu::singular_integral_shortcut< normal_derivative_kernel< DK, 1, 0 >, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value >::type >
 CNiHu::singular_integral_shortcut< normal_derivative_kernel< DK, 1, 0 >, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename TrialField::elem_t::lset_t, tria_1_shape_set >::value >::type >
 CNiHu::singular_integral_shortcut< stokes_2d_T_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_line< TrialField >::value >::type >Collocational singular integral of the 2D T kernel over a constant line
 CNiHu::singular_integral_shortcut< stokes_2d_T_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&std::is_same< typename TestField::elem_t::lset_t, line_1_shape_set >::value &&std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value &&std::is_same< typename TestField::nset_t, line_0_shape_set >::value &&std::is_same< typename TrialField::nset_t, line_0_shape_set >::value >::type >Galerkin face-match singular integral of the 2D T kernel over a constant line
 CNiHu::singular_integral_shortcut< stokes_2d_U_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< is_collocational< TestField, TrialField >::value &&is_constant_line< TrialField >::value >::type >Collocational singular integral of the 2D U kernel over a constant line
 CNiHu::singular_integral_shortcut< stokes_2d_U_kernel, TestField, TrialField, match::match_1d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::general >::value &&std::is_same< typename TrialField::elem_t::lset_t, line_1_shape_set >::value &&std::is_same< typename TestField::nset_t, line_0_shape_set >::value &&std::is_same< typename TrialField::nset_t, line_0_shape_set >::value >::type >Galerkin face-match singular integral of the 2D U kernel over a constant line
 CNiHu::singular_integral_shortcut< stokes_3d_T_kernel, TestField, TrialField, match::match_2d_type, typename std::enable_if< std::is_same< typename get_formalism< TestField, TrialField >::type, formalism::collocational >::value >::type >Collocational singular integral of the T kernel
 CNiHu::singular_kernel_traits< Derived >Singular traits class of a kernel
 CNiHu::singular_kernel_traits< convected_helmholtz_3d_DLP_kernel< WaveNumber > >
 CNiHu::singular_kernel_traits< convected_helmholtz_3d_DLP_tan_kernel< WaveNumber > >
 CNiHu::singular_kernel_traits< convected_helmholtz_3d_DLPt_kernel< WaveNumber > >
 CNiHu::singular_kernel_traits< convected_helmholtz_3d_DLPt_n_kernel< WaveNumber > >
 CNiHu::singular_kernel_traits< convected_helmholtz_3d_HSP_kernel< WaveNumber > >
 CNiHu::singular_kernel_traits< convected_helmholtz_3d_SLP_kernel< WaveNumber > >
 CNiHu::singular_kernel_traits< elastodynamics_2d_U_kernel >Singular properties of the elastodynamics 2D U kernel
 CNiHu::singular_kernel_traits< elastodynamics_3d_T_kernel >Singular properties of the elastodynamics 3D T kernel
 CNiHu::singular_kernel_traits< elastodynamics_3d_U_kernel >Singular properties of the elastodynamics 3D U kernel
 CNiHu::singular_kernel_traits< elastostatics_2d_T_kernel >Singular properties of the elastostatics 2d T kernel
 CNiHu::singular_kernel_traits< elastostatics_2d_U_kernel >Singular properties of the elastostatics 2d U kernel
 CNiHu::singular_kernel_traits< elastostatics_3d_T_kernel >Singular properties of the elastostatics T kernel
 CNiHu::singular_kernel_traits< elastostatics_3d_U_kernel >Singular properties of the elastostatics U kernel
 CNiHu::singular_kernel_traits< stokes_2d_T_kernel >Singular properties of the Stokes 2d T kernel
 CNiHu::singular_kernel_traits< stokes_2d_U_kernel >Singular properties of the Stokes 2d U kernel
 CNiHu::singular_kernel_traits< stokes_3d_T_kernel >Singular properties of the Stokes T kernel
 CNiHu::singular_kernel_traits< stokes_3d_U_kernel >Singular properties of the Stokes U kernel
 CNiHu::kernel_traits_ns::singular_quadrature_order< Derived >Return the quadrature order the singular kernel needs to be integrated with
 CNiHu::distance_dependent_kernel_traits_ns::singular_quadrature_order< Derived >
 CNiHu::distance_dependent_kernel_traits_ns::singular_quadrature_order< DK >
 CNiHu::singular_shortcut_switch< SingularityDimension >
 CNiHu::kernel_traits_ns::singularity_type< Derived >Return the kernel's singularity type
 CNiHu::distance_dependent_kernel_traits_ns::singularity_type< Derived >
 CNiHu::acceleration::softView-acceleration
 CNiHu::distance_dependent_kernel_traits_ns::space< Derived >
 CNiHu::kernel_traits_ns::space< Derived >Return the coordinate space where the kernel is defined
 CNiHu::space< Scalar, Dimension >Class representing a coordinate space with a scalar and a dimension
 CSpace
 CNiHu::distance_dependent_kernel_traits_ns::space< DK >
 CNiHu::space< Scalar, LSet::domain_t::dimension >
 CNiHu::space< Scalar, LSet::domain_t::dimension+1 >
 CNiHu::element_traits::space_type< Derived >The physical coordinate space of the element
 CNiHu::domain_traits::space_type< Derived >Assigns a coordinate space to the domain
 CNiHu::fmm::spectral_interpolateClass performing spectral interpolation
 Ctmp::stack_iterator< Seq >Stack iterator type used by tmp::begin, tmp::end and tmp::deref
 Ctmp::stack_iterator< empty_stack >
 Ctmp::stack_iterator< Seq::tail >
 Ctmp::stack_iterator< Stack >
 CNiHu::stokes_2d_U_collocation_constant_lineCollocational singular integral of 2D Stokes U kernel over constant line
 CNiHu::stokes_2d_U_galerkin_face_constant_lineGalerkin face match integral of 2D Stokes U kernel over constant line
 CNiHu::stokes_kernelBase class for Stokes kernels. This class contains one material parameter
 CNiHu::store< C >Storage class with a static member
 CNiHu::sum_integral_operator< LhsOp, RhsOp >
 CNiHu::sum_type< Lhs, Rhs >
 CNiHu::surface_element< LSet, scalar_t >Class describing a surface element that provides a normal vector
 CNiHu::surface_element< LSet, Scalar >
 CNiHu::tag2type< Tag >Metafunction recovering the type from a tag
 CNiHu::tag2type< type2tag< Type > >
 Ctemplate apply< Args... >
 Ctemplate apply< arithmetic_sequence_impl< increment_type< std::integral_constant< int, 0 >, increment >::type, N-1, empty< tmp::vector<> >::type, increment >::type, std::integral_constant< int, 0 > >
 Ctemplate apply< arithmetic_sequence_impl< increment_type< value, increment >::type, N-1, empty< Seq >::type, increment >::type, value >
 Ctemplate apply< arithmetic_sequence_impl< increment_type< value, increment >::type, N-1, Seq, increment >::type, value >
 Ctemplate apply< constant_sequence_impl< dof0, N-1, empty< tmp::vector<> >::type >::type, dof0 >
 Ctemplate apply< constant_sequence_impl< value, N-1, empty< Seq >::type >::type, value >
 Ctemplate apply< constant_sequence_impl< value, N-1, Seq >::type, value >
 Ctemplate apply< Seq >
 Ctemplate apply< Seq >
 Ctemplate apply< Seq >
 Ctemplate apply< Seq >
 Ctemplate apply< Seq >
 Ctemplate apply< Seq >
 Ctemplate apply< Seq, Pos >
 Ctemplate apply< Seq, T >
 Ctemplate apply< Seq, T >
 Ctemplate wr_result_type
 CNiHu::kernel_traits_ns::test_input< Derived >Return the kernel's test input
 CNiHu::kernel_traits_ns::test_input< exponential_covariance_kernel< Space, Dimension > >
 CNiHu::kernel_traits_ns::test_input< gaussian_covariance_kernel< Space, Dimension > >
 CNiHu::kernel_traits_ns::test_input< normal_derivative_kernel< DK, 0, Ny > >
 CNiHu::kernel_traits_ns::test_input< normal_derivative_kernel< DK, Nx, Ny > >
 Ctmp::internal::transform_if_ptr_impl< begin< Seq >::type, end< Seq >::type, Ins, Cond, tmp::deref< _1 > >
 Ctmp::internal::transform_if_ptr_impl< begin< Seq >::type, end< Seq >::type, Ins, Cond, Trans >
 Ctmp::internal::transform_impl< begin< Seq >::type, end< Seq >::type, Ins, _1 >
 Ctmp::internal::transform_impl< begin< Seq >::type, end< Seq >::type, Ins, Trans >
 Ctmp::internal::transform_impl< begin< Seq2 >::type, end< Seq2 >::type, inserter< Seq1, push_back< _1, _2 > >, _1 >
 CNiHu::tria_helper< match_type >Helper structure for the tria-tria case
 CNiHu::kernel_traits_ns::trial_input< Derived >Return the kernel's trial input
 CNiHu::kernel_traits_ns::trial_input< exponential_covariance_kernel< Space, Dimension > >
 CNiHu::kernel_traits_ns::trial_input< gaussian_covariance_kernel< Space, Dimension > >
 CNiHu::kernel_traits_ns::trial_input< normal_derivative_kernel< DK, Nx, 0 > >
 CNiHu::kernel_traits_ns::trial_input< normal_derivative_kernel< DK, Nx, Ny > >
 Ctrue_type
 CNiHu::function_space_impl< function_space< FieldTypeVector > >::field_adder< field_t >::type
 CNiHu::function_space_impl_internal::get_num_dofs< Mesh, field_option::gauss, Dimension >::count_elem_type_nodes< ElemType >::type
 CNiHu::mesh< ElemTypeVector >::elem_adder< elem_t >::type
 CNiHu::merge_kernel_complexity_estimators< Estim1, Estim2 >::type
 Ctype
 Ctype
 CNiHu::assembly< TestSpace, TrialSpace, OnSameMesh >::eval_on_impl< Operator, TestField, TrialField, true >::type
 CNiHu::singular_accelerator< Kernel, TestField, TrialField, formalism::general >::generate_wrapper< Match >::type
 Ctype
 CNiHu::assembly< TestSpace, TrialSpace, OnSameMesh >::eval_on_impl< Operator, TestField, TrialField, isTrivial >::type
 Ctype
 CNiHu::singular_shortcut_switch< SingularityDimension >::type
 CNiHu::type2tag< Type >Metafunction assigning a tag to a type
 CNiHu::unit_kernel< Scalar >Unit kernel returning K(x,y) = 1 for all inputs
 CNiHu::fmm::unit_sphereClass performing interpolation and integration over the unit sphere
 CNiHu::fmm::up_shift
 Ctmp::vector< Args >Compile time vector with an arbitrary number of arguments
 Ctmp::vector< Args... >
 Ctmp::vector< Args..., T >
 Ctmp::vector< T, Args... >
 Ctmp::vector<>
 Ctmp::vector_iterator< Seq, Pos >Vector iterator type used by tmp::begin, tmp::end and tmp::deref
 Ctmp::vector_iterator< Seq, next< Pos >::type >
 Ctmp::vector_iterator< Seq, prev< Pos >::type >
 CNiHu::domain_traits::volume< Derived >Defines the domain's size (volume)
 CNiHu::domain_traits::volume< brick_domain >Metafunction returning the domain's volume
 CNiHu::domain_traits::volume< line_domain >Metafunction returning the domain's volume
 CNiHu::domain_traits::volume< quad_domain >Metafunction returning the domain's volume
 CNiHu::domain_traits::volume< tria_domain >Metafunction returning the domain's volume
 CNiHu::volume_element< LSet, scalar_t >Class describing a volume element that has no normal vector
 CNiHu::wave_number_kernel< WaveNumber >
 CNiHu::wc_timeWall clock time
 CNiHu::weighted_input< Input, Elem >Weigthed input is an extended input that contains the jacobian a well
 CNiHu::weighted_input< location_input< typename surface_element< LSet, Scalar >::space_t >, surface_element< LSet, Scalar > >
 CNiHu::weighted_input< location_input< typename volume_element< LSet, Scalar >::space_t >, volume_element< LSet, Scalar > >
 CNiHu::weighted_input< location_normal_jacobian_input< typename surface_element< LSet, Scalar >::space_t >, surface_element< LSet, Scalar > >
 CNiHu::weighted_input< location_volume_jacobian_input< typename volume_element< LSet, Scalar >::space_t >, volume_element< LSet, Scalar > >
 CNiHu::wr_base< Derived >Base class of all weighted residual expressions
 CNiHu::wr_base< weighted_residual< TestSpace, Projection > >
 CNiHu::wr_base< wr_sum< Left, Right > >
 CNiHu::integral_operator_traits< integral_operator< Kernel > >::wr_result_type< TestField, TrialField >Metafunction returning the weighted residual return type
 CNiHu::integral_operator_traits< identity_integral_operator >::wr_result_type
 CNiHu::fmm::x2p_integral< Operator, TestField >Integrate an x2p-operator over a test field
 CNiHu::fmm::x2p_precompute< Result, FmmTag >
 CNiHu::matrix_function_complexity::zeroReturned matrix is a zero expression