NiHu
2.0
|
implementation of Gaussian quadratures More...
Go to the source code of this file.
Classes | |
class | NiHu::gaussian_quadrature< Domain > |
struct | NiHu::quadrature_traits< gaussian_quadrature< Domain > > |
traits of a Gaussian quadrature More... | |
class | NiHu::gaussian_quadrature< line_domain > |
Gaussian quadrature over a line domain. More... | |
class | NiHu::gaussian_quadrature< quad_domain > |
Gaussian quadrature over a quad domain. More... | |
class | NiHu::gaussian_quadrature< tria_domain > |
specialisation of gauss_quadrature for a triangle domain More... | |
struct | NiHu::gauss_family_tag |
tag for the family of Gaussian quadratures More... | |
struct | NiHu::quadrature_type< gauss_family_tag, Domain > |
specialisation of quadrature_type to Gaussian family on line More... | |
struct | NiHu::quadrature_traits< log_gaussian_quadrature > |
traits of a Log-Gaussian quadrature More... | |
class | NiHu::log_gaussian_quadrature |
Log-Gaussian quadrature over a line domain. More... | |
Functions | |
template<class scalar_t > | |
Eigen::Matrix< scalar_t, Eigen::Dynamic, 2 > | NiHu::gauss_impl (size_t N) |
return 1D N-point Guassian quadrature More... | |
implementation of Gaussian quadratures
Definition in file gaussian_quadrature.hpp.
Eigen::Matrix<scalar_t, Eigen::Dynamic, 2> NiHu::gauss_impl | ( | size_t | N | ) |
return 1D N-point Guassian quadrature
scalar_t | the scalar type |
[in] | N | number of Gaussian points |
The Gaussian locations are roots of the Legendre polynomials \(\varphi_n(x)\). The polynomials obey the recurrence relation
\(\varphi_{0}(x) = 1\)
\(\varphi_{1}(x) = x\)
\(\varphi_{n+1}(x) = x\varphi_{n}(x) - b_n \varphi_{n-1}(x)\), where \(b_n = \frac{n^2}{4n^2-1}\)
so the Legendre polynomials are the characteristic polynomial of the tridiagonal Jacobi matrix
\(J = \begin{pmatrix} 0 & \sqrt{b_1} \\ \sqrt{b_1} & 0 & \sqrt{b_2} \\ & \ddots & & \ddots \\ & & \sqrt{b_{N-2}} & 0 & \sqrt{b_{N-1}} \\ & & & \sqrt{b_{N-1}} & 0 \end{pmatrix}\)
and therefore the quadrature locations are the eigenvalues of \(J\)
Definition at line 62 of file gaussian_quadrature.hpp.